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A B S T R A C T

The World-Wide Web was initially conceived as a repository of infor-

mation tailored for human consumption. In the last decade, the idea

of transforming the web into a machine-understandable web of data,

has gained momentum. To this end, the World Wide Web Consortium

(W3C) maintains a set of standards, referred to as the Semantic Web

(SW), which allow to openly share data and metadata. Among these

is the Resource Description Framework (RDF), which represents data

as graphs, RDF-S and OWL to describe the data structure via ontolo-

gies or vocabularies, and SPARQL, the RDF query language. On top

of the RDF data model, standards and recommendations can be built

to represent data that adheres to other models. The multidimensional

(MD) model views data in an n-dimensional space, usually called a

data cube, composed of dimensions and facts. The former reflect the

perspectives from which data are viewed, and the latter correspond to

points in this space, associated with (usually) quantitative data (also

known as measures). Facts can be aggregated, disaggregated, and fil-

tered using the dimensions. This process is called Online Analytical

Processing (OLAP).

Despite the RDF Data Cube Vocabulary (QB) is the W3C standard

to represent statistical data, which resembles MD data, it does not in-

clude key features needed for OLAP analysis, like dimension hierar-

chies, dimension level attributes, and aggregate functions. To enable

this kind of analysis over SW data cubes, in this thesis we propose

the QB4OLAP vocabulary, an extension of QB.

A problem remains, however: writing efficient analytical queries

over SW data cubes requires a deep knowledge of RDF and SPARQL,

unlikely to be found in typical OLAP users. We address this prob-

lem in this thesis. Our approach is based on allowing analytical users

to write queries using what they know best: OLAP operations over

data cubes, without dealing with SW technicalities. For this, we de-

vised CQL, a simple, high-level query language over data cubes. Then

we make use of the structural metadata provided by QB4OLAP to

translate CQL queries into SPARQL ones. We adapt general-purpose

SPARQL query optimization techniques, and propose query improve-

ment strategies to produce efficient SPARQL queries. We evaluate our

implementation tailoring the well known Star-Schema benchmark,

which allows us to compare our proposal against existing ones in a

fair way. We show that our approach outperforms other ones. Finally,

as another result, our experiments allow us to study which combina-

tions of improvement strategies fits better to an analytical scenario.

Key words: Semantic Web, OLAP, Multidimensional data.
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R E S U M E N

La World-Wide Web fue concebida como un repositorio de informa-

ción a ser procesada y consumida por humanos. Pero en la última

década ha ganado impulso la idea de transformar a la Web en una

gran base de datos procesables por máquinas. Con este fin, el World

Wide Web Consortium (W3C) ha establecido una serie de estándares

también conocidos como estándares para la Web Semántica (WS), los

cuales permiten compartir datos y metadatos en formatos abiertos.

Entre estos estándares se destacan: el Resource Description Framework

(RDF), un modelo de datos basado en grafos para representar datos y

relaciones entre ellos, RDF-S y OWL que permiten describir la estruc-

tura y el significado de los datos por medio de ontologías o vocabu-

larios, y el lenguaje de consultas SPARQL. Estos estándares pueden

ser utilizados para construir representaciones de otros modelos de

datos, por ejemplo datos tabulares o datos relacionales.

El modelo de datos multidimensional (MD) representa a los datos

dentro de un espacio n-dimensional, usualmente denominado cubo

de datos, que se compone de dimensiones y hechos. Las primeras

reflejan las perspectivas desde las cuales interesa analizar los datos,

mientras que las segundas corresponden a puntos en este espacio n-

dimensional, a los cuales se asocian valores usualmente numéricos,

conocidos como medidas. Los hechos pueden ser agregados y resum-

idos, desagregados, y filtrados utilizando las dimensiones. Este pro-

ceso es conocido como Online Analytical Processing (OLAP).

Pese a que la W3C ha establecido un estándar que puede ser uti-

lizado para publicación de datos multidimensionales, conocido como

el RDF Data Cube Vocabulary (QB), éste no incluye algunos aspectos

del modelo MD que son imprescindibles para realizar análisis tipo

OLAP como son las jerarquías de dimensión, los atributos en los nive-

les de dimensión, y las funciones de agregación para resumir valores

de medidas. Para permitir este tipo de análisis sobre cubos en la SW,

en esta tesis se propone un vocabulario que extiende el vocabulario

QB denominado QB4OLAP.

Sin embargo, para realizar análisis tipo OLAP en forma eficiente

sobre cubos QB4OLAP es necesario un conocimiento profundo de

RDF y SPARQL, los cuales distan de ser populares entre los usuarios

OLAP típicos. Esta tesis también aborda este problema. Nuestro en-

foque consiste en brindar un conjunto de operaciones clásicas para los

usuarios OLAP, y luego realizar la traducción en forma automática

de estas operaciones en consultas SPARQL. Comenzamos definiendo

un lenguaje de consultas para cubos en alto nivel: Cube Query Lan-

guage (CQL), y luego explotamos la metadata representada medi-

ante QB4OLAP para realizar la traducción a SPARQL. Asimismo,

mejoramos el rendimiento de las consultas obtenidas, adaptando y

aplicando técnicas existentes de optimización de consultas SPARQL.

Para evaluar nuestra propuesta adaptamos a los estándares de la SW

vii
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el Star Schema benchmark, el cual es el estándar para la evaluación

de sistemas tipo OLAP. Esto permite comparar nuestro enfoque con

otras propuestas existentes, asi como evaluar el impacto de nuestras

estrategias de mejoras de consultas SPARQL. De esta comparación

podemos concluir que nuestro enfoque supera a otras propuestas ex-

istentes, y que nuestras técnicas de mejoras logran incrementar en 10

veces el rendimiento del sistema.

Palabras clave: Web Semántica, OLAP, Datos Multidimensionales

viii

[ September 19, 2016 at 12:46 – ]



P U B L I C AT I O N S

Some ideas and figures contained in this document have already ap-

peared in previous publications. Chapter 4 has partially appeared

in [3] and [4]. The ideas in Chapter 5 were presented in [1] and

[6] . The formal model described in Chapter 6 was presented in [2],

while the querying approach was described in [5]. In [8] we have pre-

sented the web application that implements our querying approach

(detailed in Section 6.7). Finally, we contributed to sections related to

the QB4OLAP vocabulary ( Introduction, Preliminaries, Representing

Multidimensional Data in RDF, and Related Work) in [7].
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1
I N T R O D U C T I O N

"The White Rabbit put on his spectacles.
‘Where shall I begin, please your Majesty?’ he asked.

‘Begin at the beginning,’ the King said gravely,

‘and go on till you come to the end: then stop.’ "

Lewis Carroll, Alice In Wonderland

The World-Wide Web was initially conceived as a repository of in-

formation tailored for human consumption. In the last decade, the

idea of transforming the web into a machine-understandable web

of data, has gained momentum. The World Wide Web Consortium

(W3C)1 has developed a set of standards, referred to as the Seman-

tic Web (SW), to assist in the transformation of the traditional web

of Documents into a web of data. Among these standards is the Re-

source Description Framework (RDF) [33], which represents data as

graphs, and is the data model of the SW. The W3C has also defined

SPARQL [13] as the RDF query language for RDF, and the ontology

languages RDF-S [5] and OWL [15] to describe the data structure

via ontologies or vocabularies. The interoperability between heteroge-

neous data sets is achieved by using common vocabularies to describe

data, which help in the integration of published data sets.

The RDF data model represents data as sets of triples of the form

(subject,predicate,object), which can be seen as a graph, where

subject and object represent nodes, and predicate represents and

edge. A set of standards or good practices are needed to specify

how RDF data must be represented. For example, the Linked Data

paradigm is a set of best practices for publishing and interlinking

structured data on the web using SW standards, in particular RDF

[14]. Recent studies report that the amount of open data available as

Linked Data is approximately 90 billion triples in over 3,300 data sets,

most of them freely-accessible via SPARQL query endpoints.2 How-

ever, these general recommendations focus on the representation of

tabular or relational data, but they do not suffice to represent other

data models, in particular multidimensional data.

The multidimensional (MD) model views data in an n-dimensional

space, usually called a data cube, composed of dimensions and facts.

The former reflect the perspectives from which data are viewed, and

the latter correspond to points in this space, associated with (usually)

quantitative data (also known as measures). There is a large number of

MD models in the literature based on the data cube metaphor [11, 16,

45]. Statistical databases are closely related to the MD data model, since

they also organize data in hypercubes, but the underlying data model

shows some differences [37]. Online Analytical Processing (OLAP) is

1 http://www.w3.org/

2 http://www.stats.lod2.eu/

1
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Figure 1: Sample data from the asylum applications data cube.

a well-established approach for MD data analysis to support decision

making, and is one of the techniques used in Business Intelligence (BI)

processes. OLAP operations allow to aggregate, disaggregate, and fil-

ter facts using the dimensions.

As an example of MD data, consider the evolution over time of asy-

lum applications in Europe. These data can be modeled as an OLAP

cube, with dimensions Origin, Destination, and Time, as shown in Fig-

ure 1. Dimension instances are composed of members. For example,

‘Syria’ is a member of the dimension Origin. A cell in this cube rep-

resents a fact, and is of the form (‘Syria’, ‘Germany’, ‘201410’, 9995),

meaning that 9995 asylum applications were issued to Germany by

Syrian citizens in October, 2014. The first three elements in the tuple

represent the dimension members (the cube coordinates), while the

last one is the measure that quantifies the fact. This kind of repre-

sentation allows the end user to analyze data in a very simple way.

Thus, we can see in Figure 1 that the number of asylum applications

to Germany, issued by Syrian citizens, has steadily increased during

2014, while the applications to Germany, issued by Turkish citizens,

is quite stable in the same period.

Aggregations can be performed along dimension hierarchies. For

example, months can be organized into years, such that, for instance,

‘201408’ and ‘201410’ belong to the Month level and are related to

‘2014’ at the Year level. OLAP operations allow us, for instance, to

aggregate and disaggregate data. For example, aggregating the fac-

tual data in Figure 1 up to the Year level, we can see that the total

asylum applications to Germany, issued by Syrian and Turkish citi-

zens, amount to 25205 and 745, respectively. Figure 2 shows a rep-

resentation of the aggregated cube. Although many different OLAP

operators can be found in the literature, the most common ones are:

roll-up : Aggregates measures along a dimension hierarchy, using

an aggregate function, producing measures at a coarser granu-

larity.
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Figure 2: Sample data from Figure 1 aggregated to the Year level.

drill-down : Disaggregates previously summarized data, and can

be considered the inverse of Roll-Up.

slice : Removes a dimension from a cube.

dice : Selects a subset of the cells of a cube, that satisfy a Boolean

formula φ over level members or measure values.

Typically, the MD data model and OLAP operations relate to Data

Warehouse (DW) systems, and have been historically used as tech-

niques for data analysis within organizations using, mostly, commer-

cial tools with proprietary formats. In the context of the web of data,

the need to publish, share, and analyze data cubes did not take long

to arise. In particular, initiatives such as Open Data3 and Open Gov-

ernment Data4, are encouraging organizations to publish statistical

and MD data. In this new scenario, the BI community faces several

challenges. We want to emphasize on two of them. First, there is a

need for instruments to represent MD data and metadata (e.g., di-

mensional structure, which is essential to adequately interpret and

reuse data), using SW standards. Second, it is necessary to provide

mechanisms to analyze SW data á la OLAP.

To cope with the first challenge, the W3C defined the RDF Data

Cube Vocabulary[8] (QB), as an standard for the representation of statis-

tical data. Although statistical data and MD data for OLAP are quite

similar, they are not the same. As a consequence, QB does not include

key features needed for OLAP analysis, such as the possibility to rep-

resent aggregation hierarchies, and aggregate functions. Further, QB

only supports dimensions with one aggregation level. These meta-

data are needed to automate the translation of OLAP operations into

the underlying technology storing the MD data. For example, DWs

have been typically implemented using relational technology and the

definition of a well-formed MD schema allows the automatic transla-

tion of OLAP operations into SQL queries. In Chapter 8 we discuss

QB, and show that it fails to adequately represent MD data for OLAP.

3 http://www.okfn.org/opendata/

4 http://www.opengovdata.org/
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Concerning OLAP analysis of SW data (the second challenge), two

main approaches can be found in the literature. The first one consists

in extracting MD data from the web, and loading them into tradi-

tional data management systems for OLAP analysis. The second one

explores data models and tools that allow publishing and performing

OLAP analysis directly over MD data, using SW standards. Our work

positions in the latter scenario, paying particular attention to: (1) the

use of SW technologies to model, manipulate, and share MD data;

(2) the specific characteristics of SW data (e.g: amount of data, dis-

tributed storage, etc.) that determine the need for novel data analysis

techniques; and (3) the extraction of MD data from the SW, identify-

ing dimensions and facts that can be then analyzed using traditional

OLAP analysis tools. All of these requires the definition of a precise

vocabulary for representing adequately the BI (in particular, OLAP)

data on the SW. Over these vocabulary, MD models and OLAP oper-

ators can be defined. To address this need, in this thesis we propose

an extension to QB, denoted QB4OLAP.

The main goal of this thesis is to provide a representation of MD data and

metadata using SW standards, such as RDF and RDF-S, and to study the

problem of performing OLAP operations over this representation.

1.1 case studies

We motivate our work with two case studies, which we use through-

out this thesis. The first one corresponds to a well-known fictitious

case study, namely the NorthWind DW. The second one corresponds

to the analysis of real-world data about asylum applications in Eu-

rope, originally published by the European Union Statistics Agency

(Eurostat).5 We use the MultiDim model [29, 42] to present the concep-

tual schema of each case. Of course, any conceptual model could be

used instead. To make this document self-contained we next sketch

the main components of the MultiDim model.

the multidim conceptual model The main components of

Multidim are depicted in Figure 3. A schema is composed of a set of

dimensions and a set of facts. A dimension is composed of either one

level, or one or more hierarchies. Instances of a level are called mem-

bers. A level has a set of attributes that describe the characteristics of

their members (Figure 3a), and one or more identifiers, each identifier

being composed of one or several attributes. A hierarchy is composed

of a set of levels (Figure 3b). Given two related levels in a hierarchy,

the lower one is called the child and the higher one, the parent; the

relationships between them are called parent-child relationships, whose

cardinalities are shown in Figure 3c. A dimension may contain several

hierarchies identified by a hierarchy name (Figure 3e). The name of the

leaf level in a hierarchy defines the dimension name, except when the

same level participates several times in a fact, in which case the role

name defines the dimension name. These are called role-playing dimen-

5 http://www.ec.europa.eu/eurostat/web/products-datasets/-/migr_asyappctzm
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OtherAttributes
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OtherAttributes
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Measure: AggFct

Fact Name

(d) Fact with measures and associated levels

HierName

(e) Hierarchy
name

Figure 3: Notation of the MultiDim model

sions. A fact (Figure 3d) relates several levels. Instances of a fact are

called fact members. A fact may contain attributes called measures. The

aggregation function associated to a measure can be specified next to

the measure name (Figure 3d), the default being the SUM function.

It is worth noting that MultiDim does not have a graphical element

to represent a dimension. Thus, a dimension is depicted by means of

its constituent elements, namely, levels and hierarchies. For example,

the conceptual model in Figure 4 shows six dimensions. The bottom

level of each dimension is connected to the fact, and the same level

can participate several times in a fact, playing different roles. Each

role is identified by a name and is represented by a separate link be-

tween the corresponding level and the fact. We will assume that the

name of the bottom level is the name of its corresponding dimension.

If a level participates with different roles in a fact, we will consider

each participation as a different dimension, whose name is the name

of the role itself. For example, in Figure 4, the Time dimension par-

ticipates in the data cube with two different roles: the OrderDate and

the DueDate of the sale.

1.1.1 The NorthWind DW

The NorthWind DW is a well-known example that represents sales

from a retail company. Figure 4 depicts a simplified version of this

data set (adapted from [42]) that we will use as one of our case stud-

ies. The Sales fact contains three measures: Quantity, which represents

the number of items purchased in each sale; UnitPrice, which repre-

sents the price of each unit; and SalesAmount, which represents the

total amount of each sale. These measures can be analyzed accord-

ing to six analysis dimensions: the Product that has been purchased,

the Employee that performed the sale, the Customer that purchased

the items, the Supplier that supplies the items, and finally the Time

dimension that participates with two different roles that correspond

to the OrderDate and the DueDate of the sale.

We have chosen this example as a case study, because its concep-

tual model includes features that go beyond the typical MD model-

ing constructs. For example, the geographical dimension presents a

ragged hierarchy, the supervision hierarchy is a recursive hierarchy, and
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Figure 4: Conceptual schema of the NorthwindDW (adapted from [42])

the time dimension participates with more than one role in the cube.

This modeling constructs are presented in Section 2.1.

1.1.2 Asylum Applications Data from Eurostat

Our second case study represents asylum applications to countries in

the European Union, and contains information about the number of

asylum applicants per month, age, sex, country of citizenship, appli-

cation type, and country that receives the application. This data set is

published in RDF using the QB vocabulary, in the Eurostat - Linked

Data dataspace.6

QB data sets are composed of a set of observations representing data

instances according to a data structure definition, which describes the

schema of the data cube. As an example, and given that we will ex-

plain QB later in this work, in Table 1 we show some observations

in the original data cube, in tabular format. The first row lists the di-

mensions in the cube, and the second row lists the dimension level

that corresponds to the observation.

We wanted to enrich the original data set in order to enhance the

analysis possibilities. Thus, we made use of the features of QB4OLAP,

the vocabulary we propose in this work, to reuse the published ob-

servations, and create new dimension hierarchies. We discuss how

this extension is performed in Section 5.3. Conceptually, we created

three new dimension levels. In the geographical dimension we added

two new levels: one, to represent Continents, and another one to rep-

resent the Government type of each country. In the time dimension

6 http://www.eurostat.linked-statistics.org/
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sex age time application type citizenship destination measures

Sex Age Month Application type Country Country
#applica-

tions

F 18 to 34 201409, September
2014

new applicant SY, Syria
DE,

Germany
425

M 18 to 34 201409, September
2014

new applicant SY, Syria
DE,

Germany
1680

M 18 to 34 201409, September
2014

new applicant SY, Syria FR, France 95

Table 1: Tabular representation of sample observations in the asylum appli-
cations data cube.
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Figure 5: Conceptual schema of the Asylum Applications cube

we added the Year level to organize months. To implement this, we

enriched the existent data set with DBpedia7 data to populate the

new levels in the geographical dimension, and manipulated data on

dates to populate the Year level. Figure 5 shows the resulting concep-

tual schema of the data cube. The asylum_applications fact contains

a measure (#applications) that represents the number of applications.

This measure can be analyzed according to six analysis dimensions:

the sex of the applicant, age which organizes applicants according

to their age group, month which represents the time of the applica-

tion and consists of two levels (month and year), application_type

that tells if the applicant is a first-time applicant or a returning ap-

plicant, and a geographical dimension that organizes countries into

continents (Geography hierarchy) or according to its government type

(Government hierarchy). This geographical dimension participates in

the cube with two different roles: the citizenship of the asylum appli-

cant, and the destination country of the application.

Thus, over the new cube in Figure 5 we can pose queries such

as “Total asylum applications per year”, or “Total asylum applications per

year submitted by Asian citizens to France or United Kingdom, where this

number is higher than 5,000”, which we discuss later in this paper.

7 http://www.dbpedia.org
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1.2 contributions

As a first contribution, we define QB4OLAP vocabulary, an extension

to the QB, that supports most of the concepts defined in classic MD

models for OLAP, and which cannot be represented in QB, among

other ones: dimension hierarchies, aggregate functions, and level at-

tributes.

As a second contribution, we study how to represent existing data

cubes using QB4OLAP. We propose and implement algorithms to

translate traditional data cubes (stored in relational databases) into

RDF using QB4OLAP. We also propose how to extend existing data

cubes, represented using the QB vocabulary.

As our third contribution, we formalize a MD data model, and show

that a data cube represented using this model, can be represented

using the QB4OLAP vocabulary.

As our fourth contribution, we propose a query language for OLAP

(denoted CQL) where the main object is the data cube. CQL provides

the operators needed to manipulate the data cube. This way, the user

just queries data cubes, independently of the underlying data repre-

sentation. We use our data model to clearly define the semantics of

these operators. The idea is that an OLAP user, without any knowl-

edge of SPARQL or SW concepts, can write QL queries over a concep-

tual MD model, regardless the underlying data model and data types.

Thus, users can exploit MD data directly over the web, without the

need of exporting these data to a relational repository.

As our fifth contribution we: (1) present a high-level query simpli-

fication heuristic strategy for CQL queries; (2) propose algorithms

to automatically translate CQL queries into equivalent SPARQL ones

over QB4OLAP data cubes; (3) propose an heuristic-based strategy

to improve the performance of the SPARQL queries produced in

(2); (4) introduce a benchmark, based on TPC-H Star-Schema bench-

mark, to evaluate the performance of the SPARQL queries; we show

that our improvement procedure substantially speeds up the query

evaluation process, and outperforms other proposals; (5) present the

QB4OLAP toolkit, a web application that allows exploring and query-

ing QB4OLAP cubes using the machinery described in this document.

1.3 overview

In Chapter 2 we summarize preliminary concepts that are used along

this thesis, while in Chapter 8 we present the context and related

work. The rest of the document is organized in three parts: the first

part deals with the representation of data cubes using SW Standards,

the second deals with OLAP analysis of SW data cubes, and the third

presents the conclusions of our work in both directions.

Part i is organized in two chapters. In Chapter 4 we present our

proposal to represent data cubes on the SW, based on the QB4OLAP

vocabulary. Then, in Chapter 5, we discuss how to create QB4OLAP

data cubes. In particular, we show how existing QB cubes can be
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1.3 overview 9

extended using QB4OLAP, and also show how to produce QB4OLAP

cubes from relational cubes.

Part ii is also organized in two chapters. In Chapter 6 we present

our approach to OLAP analysis over SW data cubes, based on a high

level language and its implementation as SPARQL queries. Then, in

Chapter 7 we present the evaluation of our approach. Part iii contains

our conclusions.
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2
P R E L I M I N A RY C O N C E P T S

"Those are my principles,

and if you don’t like them...well I have others."

Groucho Marx

In this section we present the concepts on MD data modeling, sta-

tistical databases, and SW standards that are relevant to this work.

2.1 multidimensional data modeling

As already mentioned, the MD model views data in an n-dimensional

space, usually called a data cube, where dimensions represent the per-

spectives from which data are viewed, and facts represent points in

this space and are associated with usually quantitative data (also

known as measures). Although there is a large number of MD models

in the literature based on the data cube metaphor [11, 16, 45], most

of them agree on considering that dimensions are organized in hier-

archies, which allow representing the data under analysis at different

abstraction levels. Dimension hierarchies can be classified according

to their characteristics. We now present several kinds of hierarchies,

following [42].

balanced hierarchies These are the simplest kind of hierar-

chies, where at the conceptual level there is only one path. At the

instance level, all parent members have at least one child member,

and each child member has exactly one corresponding parent mem-

ber. The Month dimension, in Figure 5, is an example of this.

unbalanced and recursive hierarchies Unbalanced hier-

archies despite having only one path at the conceptual level, not en-

force all parent members to have children. Recursive hierarchies are

considered a special case of unbalanced hierarchies, where a level

plays the role of parent and child in a parent-child relationship. As

an example of this consider the Supervision hierarchy in the Employee

dimension from Figure 4. It is easy to see that this hierarchy is unbal-

anced, since employees with no subordinates do not have correspond-

ing child members.

generalized and ragged hierarchies Generalized hierar-

chies contain multiple exclusive paths, that share at least the leaf

level. At the instance level, each member belongs to only one path.

These hierarchies are useful to represent, at the same level, members

of different types. In Multidim, the symbol ⊗ is used to indicate ex-

clusive paths. Ragged hierarchies are a special case of generalized

hierarchies, where alternative paths are obtained by skipping one or

11
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more intermediate levels. As an example, consider the Geography hier-

archy in the Supplier dimension from Figure 4. This hierarchy allows

a flexible representation of geographical administrative organization.

For example some countries may be organized in states, while others

use regions and states. The hierarchy is flexible enough to allow some

cities to be directly related to a country, while other should be related

to the state they belong.

alternative and parallel hierarchies Alternative hierar-

chies also contain multiple paths that share at least the leaf level, but

these paths are non exclusive. At the instance level, each member of

the leaf level belongs to all the paths, which represent different analy-

sis criteria that the user may choose. Parallel hierarchies occur when

more than one hierarchy can be defined for a dimension.

nonstrict hierarchies Usually, parent-child relationships car-

dinality is one-to-many. We refer to these as strict hierarchies. In

opposition, those that have at least one many-to-many parent child

relationship are called nonstrict. As an example, consider the parent-

child relationship between Employee and City levels, in the Territories

hierarchy from Figure 4, representing that an employee can work in

more than one city. Nonstrict hierarchies introduce the problem of

measure double counting in aggregations. This means that, in our ex-

ample, the quantity items sold by each employee will add-up to each

of the cities where the employee works. Different strategies can be

found in the literature to cope with this problem.

2.2 statistical databases

Statistical Data Bases (SDB) also organize data as hypercubes whose

axes are dimensions, and dimensions are structured in classification hi-

erarchies that allow analysis at different levels of aggregation. Each

point in this MD space is mapped through observations into one or

more spaces of measures. The Statistical Data and Metadata eXchange

inititative (SDMX)1 propose several standards for the publication, ex-

change and processing of statistical data. In particular, an information

model is defined [35] from which we summarize some concepts that

are relevant for the remainder.

A Dimension denotes a metadata concept used to classify a statis-

tical series, e.g., a statistical concept indicating a certain economic

activity or a geographical reference area. Two particular dimensions

are identified: the TimeDimension, used to convey the time period

of the observation in a data set; and the MeasureDimension, whose

purpose is to specify formally the meaning of the measures. Dimen-

sions, measures, and attributes are generally referred as Components.

Codelists enumerate a set of values to be used in the representation of

dimensions, attributes, and other structural parts of SDMX. They can

be supplemented by other structural metadata which indicates how

1 http://SDMX.org
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OLAP SDB

Roll up S-aggregation

Drill down S-disaggregation

Slice S-projection

Dice S-selection

Drill across S-union

Table 2: Correspondence between OLAP and SDB operators [37]

codes are organized into hierarchies. A Data Set denotes a set of ob-

servations that share the same dimensionality, which is specified by

a set of unique components (Dimension, MeasureDimension, TimeDi-

mension), together with associated AttributeValues that define specific

characteristics about the artifact to which it is attached. Each data

set has a set of structural metadata. These descriptions are referred

to in SDMX as Data Structure Definitions (DSD). The DSD includes

information about how concepts are associated with the measures,

dimensions, and attributes of a data ‘cube’ along with information

about the representation of data and related identifying and descrip-

tive (structural) metadata.

Several operators are defined over SDBs, and a correspondence can

be defined between these and OLAP ones. Table 2 presents a corre-

spondence taken from the classic work by Shoshani [37]. The SDMX

standard does not define operators over data sets, but provides a

mechanism to restrict the values within a data set via constraints. Cu-

beRegions or Slices are a particular kind of constraint that allow to

specify a set of component values, defining a subset of the total range

of the content of a data structure. The application of a Slice constraint

results on a subset of the original data set, fixing values for some

components (e.g: selecting some years in a TimeDimension) but not

reducing its dimensionality. Is it worth noting that the name Slice may

be misleading, since the result of the application of a CubeRegion con-

straint resembles a dicing OLAP operation rather than a slicing one.

2.3 semantic web standards

In this section we summarize the W3C standards used in this thesis.

2.3.1 RDF

RDF [33] is the base data model and language of the SW. The basic

construct of RDF is a triple, of the (s,p,o) form, where s stands for

subject, p for predicate, and o for object. In general, s, p, and o are

resources, identified with internationalized resource identifiers (IRIs).

An object can also be a data value, denoted a literal in RDF, or a blank

node, typically used to represent anonymous resources. Subjects can

also be represented by blank nodes. A set of RDF triples or RDF data
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set is a directed graph whose nodes are subjects or objects, and whose

arcs represent predicates. IRIs are commonly written as a prefix label

and a local part, separated by a colon ":". These are turned into IRIs

by concatenating the IRI associated with the prefix and the local part.

Usually, triples representing schema and instance data coexist in RDF

data sets. A collection of reserved words defined in RDF Schema [5]

(called the RDF-S vocabulary) is used to define classes, properties,

and hierarchical relationships. For example, the triple (r, rdf:type, c)

explicitly states that r is an instance of c, and it also implicitly states

that object c is an instance of rdfs:Class.

We now introduce a graphical representation for RDF graphs that

we use in this thesis. Ellipses represent IRI-identified resources, rect-

angles represent literals, and empty circles represent blank nodes, La-

beled arcs represent predicates. Figure 6 uses this representation to

show data about Germany, retrieved from DBPedia2 and GeoNames3.

All the RDF prefixes used in this work are defined in Appendix A.

dbr:Germanyschema:Country
rdf:type

yago:CountriesBorderingTheBalticSea

rdf:type

dbo:Country

rdf:
type

gn:2921044
owl:sameAs

51.5

g
e:

la
t

10.5

ge
:lo

ng

"Germany"@en

d
b
p
:c

o
m

m
o
n
N

am
e

357168

db
p:
ar
ea

K
m

Figure 6: Sample RDF data.

Finally, many formats for RDF serialization exist, and in this thesis

we use Turtle [4]. In this notation, triples are separated by ’.’ . The ’;’

symbol is used to repeat the subject of triples that vary only in predi-

cate and object, while the ’,’ symbol is used to repeat the subject and

predicate of triples that only differ in the object. The special predicate

rdf:type may be abbreviated as ’a’. Example 2.3.1 shows the triples

represented in Figure 6 using this notation.

Example 2.3.1. The triples below correspond to the data depicted in

Figure 6

dbr:Germany rdf:type dbo:Country .

dbr:Germany rdf:type yago:CountriesBorderingTheBalticSea ,

schema:Country .

dbr:Germany owl:sameAs gn:2921044 ;

dbp:areaKm 357168 ;

dbp:commonName "Germany"@en .

gn:2921044 ge:lat 51.5; ge:long 10.5 .

2 Germany on DBpedia http://dbpedia.org/page/Germany

3 Germany on GeoNames http://www.geonames.org/2921044/

federal-republic-of-germany.html
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2.3.2 SPARQL

SPARQL 1.1 [13] is the W3C standard query language for RDF at

the moment of writing this thesis. The query evaluation mechanism

of SPARQL is based on subgraph matching: RDF triples are inter-

preted as nodes and edges of directed graphs, and the query graph

is matched to the RDF data graph, instantiating the variables in the

query graph definition. The selection criteria is expressed as a graph

pattern in the WHERE clause, composed by basic graph patterns (BGP).

The ‘.’ operator represents the conjunction of graph patterns. Rele-

vant to our study, SPARQL 1.1 supports aggregate functions and the

GROUP BY clause. Example 2.3.2 shows an example.

Example 2.3.2. The following SPARQL query contains two BGPs. The

first one retrieves triples with dbr:Germany as subject, owl:sameAs

as predicate, and anything as object (variable ?s). The second BGP

matches any triple in the graph. The conjunction of these BGPs re-

trieves, for each node connected to dbr:Germany via owl:sameAs, all

the outgoing edges and connected nodes.

SELECT ?s ?p ?o

WHERE {dbr:Germany owl:sameAs ?s .

?s ?p ?o}

The results of running the query above over the graph in Exam-

ple 2.3.1 are the following:

gn:2921044 ge:lat 51.5 .

gn:2921044 ge:long 10.5 .

2.3.3 R2RML

R2RML [9] is a language to express mappings from relational data-

bases to RDF data sets, allowing representing relational data in RDF

using a customized structure and vocabulary. Both, R2RML mapping

documents (written in Turtle syntax) and mapping results, are RDF

graphs. The main object of an R2RML mapping is the triples map, a

collection of triples composed of a logical table, a subject map, and one

or more predicate object maps. A logical table is either a base table or

a view (using the predicate rr:tableName), or an SQL query (using

the predicate rr:sqlQuery). A predicate object map is composed of a

predicate map and an object map. Subject maps, predicate maps, and

object maps are either constants (rr:constant), column-based maps

(rr:column), or template-based maps (rr:template). Templates use col-

umn names as placeholders. Foreign keys are handled referencing

object maps, which use the subjects of another triples map as the ob-

jects generated by a predicate-object map. A set of R2RML mappings

can either be used to generate a static set of triples that represent the

underlying relational data (data materialization) or to provide a non-

materialized RDF view of the relational data (on-demand mapping). In

this thesis we use R2RML to translate existent OLAP cubes, stored in

relational databases, into QB4OLAP cubes (see Section 5.2)
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2.4 summary

In this chapter we have presented the concepts on MD data modeling,

statistical databases, and SW standards that are relevant to this work.
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3
M U LT I D I M E N S I O N A L D ATA R E P R E S E N TAT I O N O N

T H E S E M A N T I C W E B

"The idea of 10 dimensions might sound exciting,
but they would cause real problems

if you forget where you parked your car."

Stephen Hawking, The Grand Design

The problems studied in this thesis are relevant in the broader con-

text of the so-called BI 2.0, an evolution of traditional BI and OLAP

applications. In this chapter, we first describe this scenario. Then, we

present the RDF Data Cube vocabulary (QB), the W3C recommenda-

tion to publish statistical data and metadata in RDF following the

Linked Data principles. Although appropriate to represent and pub-

lish statistical data, QB has a set of shortcomings when it comes to

represent a MD model for OLAP. In this chapter we also elaborate on

these limitations

3.1 the big picture

Since the mid 90’s, DWs and traditional OLAP applications have been

built to consolidate enterprise business data, allowing taking timely

and informed decisions based on up-to-date consolidated data. How-

ever, the availability of enormous amounts of data from different do-

mains is calling for a shift in the way DW and BI practices are being

carried out. It is becoming clear that, for certain kinds of BI applica-

tions, the traditional approach, where day-to-day business data pro-

duced in an organization is collected in a huge common repository for

data analysis, needs to be revised, to account for efficiently handling

large scale data. Moreover, in the emerging domains where BI prac-

tices are gaining acceptance, massive-scale data sources are becoming

common, posing new challenges to the DW research community [41].

Recently, terms like self-service BI [1], Situational BI [28], and Ex-

ploratory OLAP [2], have emerged to refer to the capability of incor-

porating situational data into the decision process in the context of

the so-called BI 2.0, with little or no intervention of programmers

or designers. The web, and in particular the SW, is considered as a

large source of data that could enrich decision processes (e.g., senti-

ment analysis data on user reviews about a product). Abello et al. [1]

present an envisioned framework to support self-service BI, based on

the notion of fusion cubes, i.e., MD cubes that can be dynamically ex-

tended both in their schema and instances, and in which data and

metadata are associated with quality and provenance annotations.

Figure 7 presents a functional perspective on self-service BI, where

the user starts by posing an OLAP-like query that cannot be answered

using only existent data. Then, the system finds potentially relevant

17
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Figure 7: A functional perspective on self-service BI (adapted from [1] )

data sources, gets data from them, curates and integrates fetched data,

and finally presents the results to the user, who can then store and

share the results. This envisioned scenario is supervised by the user,

who evaluates the outcome of each step and may decide to intervene

in previous steps to get better results.

But the SW is not only a source of data in this scenario, it is also a

powerful set of tools that can play a key role by modeling data seman-

tics. Abello et al. [2] exhaustively survey and discuss the possibilities

of using SW technologies in the context of Exploratory OLAP, con-

cluding that they can help to discover, acquire, integrate, and query

new external data. Along these lines, Ibrahimov et al. [17] present

a framework for Exploratory BI over Linked Open Data. Their goal

is to semi-automatically derive MD schemas and instances, from al-

ready published Linked Data. This proposed framework uses the

QB4OLAP vocabulary that we present in this thesis, to represent the

discovered OLAP schemas, while the VoID vocabulary is used to link

the schema with available SPARQL endpoints that can be used to

populate the schemas. Varga et al. [43] present a methodology to

semi-automatically discover hierarchical dimensions in Linked Data,

starting from data cubes represented in QB. This work also proposes

a semantic-based method to define which aggregate function is suit-

able for each metric. The resulting cube schema and instances are also

represented using the QB4OLAP vocabulary.

3.2 the rdf data cube vocabulary (qb)

As mentioned above, the RDF Data Cube Vocabulary (from now on

we will use the term QB), is the W3C recommendation to publish

statistical data and metadata in RDF, following the Linked Data prin-

ciples. QB is based on the main components of the SDMX information

model explained above. Figure 8 depicts the QB vocabulary. Capital-

ized terms represent RDF classes and non-capitalized terms repre-

sent RDF properties. Capitalized terms in italics represent “abstract”

classes (i.e., classes with no instances). An arrow with black triangle

head from class A to class B, labeled rel means that rel is an RDF

property with domain A and range B. White triangles represent sub-

classes or sub-properties. For better comprehension, we next use the

[ September 19, 2016 at 12:46 – ]



3.2 the rdf data cube vocabulary (qb) 19

Figure 8: QB (cf. [8]) vocabulary

asylum applications dataset published by Eurostat, presented in Sec-

tion 1.1.2, to explain the QB elements.

Following SDMX, the schema of a QB data set is specified by means

of the data structure definition (DSD). This concept is modelled as an

instance of qb:DataStructureDefinition class, and is formed by a

set of component properties, which are instances of subclasses of the

qb:ComponentProperty class that represent dimensions, measures, and

attributes. Component properties are not directly related to the DSD:

the qb:ComponentSpecification class is an intermediate class, typi-

cally instantiated as RDF blank nodes, that allows specifying addi-

tional attributes for a component in a DSD (e.g., a component may be

tagged as required (i.e., mandatory), using the qb:componentRequired

property). Different parts of a component specification are linked us-

ing properties that depend on the kind of component: qb:dimension

for dimensions, qb:measure for measures, and qb:attribute for at-

tributes. The qb:component property DSDs with component specifica-

tions. Note that a DSD can be shared by different QB data sets (and

each QB data set is linked to its DSD) by means of the qb:structure

property. Figure 9 shows a graphical representation of the asylum ap-

plications data cube schema, where the node dsd:migr_asyappctzm

represents the DSD of the cube.
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qb:component

qb:componentqb:c
ompone

nt
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pr:asyl_app
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sdmxm:obsValue
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Figure 9: QB representation of the asylum applications data cube schema.
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Example 3.2.1 below shows the triples that represent the DSD of

the asylum applications case study. Prefix definitions are omitted in

all the examples, please refer to Appendix A to expand them

Example 3.2.1. The DSD of the asylum applications example is de-

fined in the file migr_asyappctzm.ttl1 and looks as follows.

1 dsd:migr_asyappctzm a qb:DataStructureDefinition ;

2 qb:component [ qb:dimension sdmxd:timePeriod] ;

3 qb:component [ qb:dimension pr:age] ;

4 qb:component [ qb:dimension pr:sex ] ;

5 qb:component [ qb:dimension pr:geo] ;

6 qb:component [ qb:dimension pr:citizen] ;

7 qb:component [ qb:dimension pr:asyl_app] ;

8 qb:component [ qb:dimension sdmxm:obsValue] ;

9 skos:notation "migr_asyappctzm_DSD" .

This DSD is composed of six dimensions: sdmxd:timePeriod represents the

month in which the application was issued, pr:age is the age group of

the applicant, pr:sex is the sex of the applicant, pr:citizen, the appli-

cant’s country of origin, pr:geo is the applicant’s country of destination,

and, finally, pr:asyl_app represents the type of application (e.g., a new

or returning asylum applicant). The measure of the data set is the generic

sdmxm:obsValue predicate (line 8).

Each DSD describes a MD data space indexed by dimensions, and

measured values are associated with points in this data space. The

associations between coordinates and measured values are called ob-

servations in the QB vocabulary (in OLAP terminology, facts). These

are represented as instances of the qb:Observation class, which are

organized in data sets (instances of the qb:DataSet class), through the

qb:dataSet property. As already mentioned, each qb:DataSet is asso-

ciated with the DSD that describes it, via the qb:structure property.

Every observation in a data set should be linked to a value in each

dimension of its corresponding DSD using properties, which are in-

stances of the qb:DimensionProperty class; analogously, values for

each observation are associated with measures via instances of the

qb:MeasureProperty class. Instances of qb:AttributeProperty repre-

sent observation attributes. Figure 10 shows an observation from the

asylum applications case study, which states that 425 new asylum ap-

plications were issued by female persons in the age group 18 to 34

from Syria to Germany in March 2014. This observation corresponds

to the third row of Table 1.

1 http://eurostat.linked-statistics.org/dsd/migr_asyappctzm.ttl
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Figure 10: An observation from the asylum applications data set.

Example 3.2.2 below shows triples that represent the observation

in Figure 10.

Example 3.2.2. The following triples represent the definition of a data

set that contains all the observations of the asylum applications data

cube (lines 1-3), followed by the triples that represent an observation

in this dataset, stating that 425 new asylum applications were issued

to Germany by female Syrian citizens in the age group 18 to 34 in

March 2014 (lines 5-14). This observation corresponds to the third

row of Table 1.

1 eurostatdt:migr_asyappctzm

2 rdf:type qb:DataSet;

3 qb:structure dsd:migr_asyappctzm .

4

5 eurostatcell:M,SY,F,Y18-34,NASY_APP,DE,2014M09

6 rdf:type qb:Observation

7 qb:dataSet eurostatdt:migr_asyappctzm ;

8 sdmxd:timePeriod "2014-09-01"^xsd:date ;

9 pr:age age:Y18-34 ;

10 pr:sex sex:F ;

11 pr:geo geo:DE ;

12 pr:citizen citizen:SY ;

13 pr:asyl_app app:NASY_APP ;

14 sdmxm:obsValue 425 .

Notice that each of the RDF properties defined as components in the DSD

(Example 3.2.1) are used here to link the observation with either dimension

members or measure values. In particular, at line 8, the sdmxd:timePeriod

predicate links the observation with a literal value that represents a date.

This imposes restrictions on the analysis capacities, because RDF triples

cannot have literals as subject, and therefore, it is not possible to link a

date modeled as a literal with further information (for example, the year).

We discuss on this topic in Chapter 5

In order to allow reusing the concepts defined in the SDMX guide-

lines [34], QB provides the qb:concept property which links compo-

nents to the general concepts they represent. The latter are modeled

using the skos:Concept class defined in the SKOS vocabulary.2 For

example, a dimension property representing time, may be linked to

the sdmxc:timePeriod.3

2 http://www.w3.org/TR/skos-reference/

3 http://purl.org/linked-data/sdmx/2009/concept
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Although QB can define the structure of a fact (via the DSD), it

does not provide a mechanism to represent an OLAP dimension

structure (i.e., the dimension levels and the relationships between

levels). However, QB allows representing hierarchical relationships

between level members in the dimension instances. The QB specifica-

tion describes three possible scenarios with respect to the organi-

zation of dimensions: (a) If there is no need to define hierarchical

relationships between dimension members, QB recommends to rep-

resent the members using skos:Concept and the set of admissible

values using skos:ConceptScheme or skos:Collection; (b) To repre-

sent hierarchical relationships, the skos:narrower predicate should

be used, with the following meaning: If two concepts A and B are

such that A skos:narrower B, B represents a narrower concept than

A (e.g., animals skos:narrower mammals). The skos:hasTopConcept

property allows linking a concept scheme, with the most general con-

cepts it contains (note that this implies that hierarchies of values in

QB should be traversed from coarser granularity concepts down to

finer granularity concepts, while OLAP navigation usually traverses

dimension hierarchies the other way round); (c) If publishers want to

reuse existing data as their codelists, where hierarchical relationships

are already defined using specific properties, QB provides the class

qb:HierarchicalCodeList.

Finally, QB slices have the same semantics than SDMX slices, mean-

ing that they are not operators over an existing cube, but new struc-

tures and new instances (observations) in which one or more values

of dimension members are fixed. The structure of a slice is defined

using a new DSD and an instance of the qb:SliceKey class. The class

qb:Slice allows to group the observations that correspond to a par-

ticular slice (using the qb:observation property) and the structure of

each slice is attached using the qb:sliceStructure property.

3.3 is the qb vocabulary enough to model multidimen-

sional data for olap?

The QB vocabulary has been designed to publish statistical data. As

already discussed in Section 2.2, statistical data are similar to MD

data, but present some differences which impose limitations on the

capability of QB for representing MD data suitable for OLAP. these

limitations are discussed next. The first and main limitation we en-

counter in the QB vocabulary is its lack of support for an OLAP

dimension structure. Although QB allows representing hierarchical

relationships between level members in the dimension instances, it does

not provide a mechanism to represent an OLAP dimension schema

(i.e., the dimension levels and the relationships between levels)4. That

means, QB allows stating that France is a concept of a finer gran-

ularity than Europe, but not that France is a Country, Europe is a

Continent, and that countries aggregate over continents. QB proposes

two mechanisms to represent hierarchical relationships between di-

4 http://www.w3.org/TR/vocab-data-cube/#schemes
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mension members. The first one consists in using the semantic re-

lationship skos:narrower, with the following meaning: If two con-

cepts A and B are such that A skos:narrower B, B represents a nar-

rower concept than A (e.g., continent skos:narrower country). Al-

though this mechanism is similar to OLAP relationships between

dimension members (called rollup relationships, as we will explain

later) it presents two important differences. First, it allows navigat-

ing a hierarchy of dimension members from a top concept to more

specific concepts, where rollup relationships navigate in the opposite

direction. Second, it is usually assumed that rollup relationships in

OLAP are transitive, while, according to the SKOS documentation5,

the skos:narrower property is not transitive. The second mechanism

avoids the use of the skos:narrower property, and allows to associate

each dimension with a custom property that implements parent-child

relationships, but again proposes the navigation of the hierarchy from

top concepts to more specific ones.

As a second limitation, QB does not provide native support to

represent aggregate functions. Many OLAP operations change the

granularity level of the data represented in a data cube (e.g., a roll-up

operation over the Time dimension from the Month level up to the

Year level). This involves aggregating measure values along dimen-

sions, using the aggregate function defined for each measure. These

aggregate functions depend on the nature of the measure (i.e., addi-

tive, semi additive, non additive [42]). The ability to link each mea-

sure with an aggregate function is therefore crucial and, although

present in OLAP tools, it is not considered in QB.

Finally, QB does not support level descriptive attributes. In the

MD model, each dimension level usually groups a set of real-world

objects or concepts with similar characteristics. Thus, each level is

associated with a set of attributes that describe the characteristics of

their members. For example, the level Country may have the attributes

countryName, population, etc., and one or more identifiers [42]. The lat-

ter uniquely identifies a level member, and the former describe its

characteristics. QB does not provide a mechanism to associate a set of

attributes with a dimension level. This makes it difficult to perform a

Dice operation. For example, to produce a data cube that only refers

to a country (e.g., France), we would need to filter the cube cells us-

ing the IRI representing that country, rather than the country’s name.

This would be not only unnatural to use, but also highly inefficient.

Further, it would not be possible to define conditions that allow to

keep cells that refer to countries with a population higher than a cer-

tain value.

3.4 summary

In this chapter we have presented the general framework of our work,

positioning it in the field of self-service BI, aimed at incorporating

situational data into the decision process, with the least possible in-

5 ttp://www.w3.org/TR/2009/NOTE-skos-primer-20090818/#sechierarchy
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tervention of programmers or designers. We then discussed QB, the

current W3C standard for publication of statistical data on the web,

and addressed its limitations when it comes to representing MD data

for OLAP analysis.
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"To present a whole world that doesn’t exist
and make it seem real,

we have to more or less pretend we’re polymaths.

That’s just the act of all good writing".

William Gibson

In Section 3.3 we have discussed the limitations of the QB vocab-

ulary for representing MD data for OLAP. Despite this, QB remains,

of course, suitable to represent statistical data. In addition, there is

already a considerable amount of data published using it. This mo-

tivates us to extend QB in order to support the missing concepts de-

fined in classic MD models for OLAP, rather than designing a new

vocabulary from scratch. We denoted this extension as QB4OLAP.1 In

this chapter we introduce this new vocabulary.

To design the QB4OLAP vocabulary, the following requirements

where considered.

• Expressiveness: QB4OLAP must be able to represent the most

common features of the MD model. The features considered are

based on the MultiDim model [42].

• Interoperability: QB4OLAP must allow to operate over already

published observations, which conform to DSDs defined in QB,

without the need of rewriting the existing observations. Note

that in a typical MD model, observations are the largest part

of the data while dimensions are usually orders of magnitude

smaller. In Section 5.3 we will show how data cubes in QB can

be extended and analyzed using QB4OLAP.

• OLAP automation: QB4OLAP must include all the metadata

needed to automatically generate SPARQL queries that imple-

ment OLAP operations. The idea is that OLAP users should not

need to be proficient in SPARQL. Even wrappers for OLAP tools

can be developed to query RDF data sets directly. We elaborate

on this topic in Chapter 6.

In short, QB4OLAP adds the following concepts to the QB vocabu-

lary:

• Dimension structure: The structure of a dimension is defined

in terms of levels, which compose hierarchies. The structure of

each level is defined in terms of a set of level attributes.

1 http://www.purl.org/qb4olap/cubes

27
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• Dimension instances: Level instances are called level members,

and there is a relation between level members in consecutive

levels. In typical OLAP these are called rollup relations (or, most

usually, functions). In QB4OLAP these relationships between

level members (from most specific to more general concepts)

are modeled using custom rollup properties (this is motivated by

the fact that more than one relation may hold between two di-

mension levels). Also, level members are associated with values

for each attribute.

• Aggregate functions: Aggregate functions are used to compute

measure aggregate values when performing OLAP operations

(e.g:Roll-Up). QB4OLAP allows us to represent aggregate func-

tions, and to associate them with measures in the data cube

schema.

Figure 11 depicts the QB4OLAP vocabulary. Original QB terms are

prefixed with “qb:”, while QB4OLAP terms are prefixed with “qb4o:”

and displayed in gray background. Capitalized terms represent RDF

classes, non-capitalized terms represent RDF properties, and terms

within ovals represent class instances. An arrow from class A to class

B, labeled rel means that rel is an RDF property with domain A and

range B. White triangles represent sub-class or sub-property relation-

ships. Black diamonds represent rdf:type relationships (instances).

We now present the main features of QB4OLAP, using our asylum

applications case study.
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Figure 11: The QB4OLAP vocabulary

4.1 data cube structure

Like in QB, in QB4OLAP, the data cube structure is an instance of the

class qb:DataStructureDefinition. However, instead of using dimen-

sions and measures to define a DSD, in QB4OLAP we use dimension

levels and measures. This allows us to be specific about the granular-
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ity level considered for each dimension. To represent dimension levels,

in QB4OLAP we propose to use the same mechanism used in QB to

represent dimensions: as classes of properties. For this, we introduced

the class qb4o:LevelProperty (a sub-class of qb:ComponentProperty)

for representing dimension levels. Instances of this class are used to

specify the schema of the cube in terms of dimension levels, using

qb:DataStructureDefinition.

In order to represent aggregate functions, we introduced the class

qb4o:AggregateFunction and the qb4o:aggregateFunction property.

The later associates measures with aggregate functions, and, together

with the concept of component sets, allows a given measure to be

associated with different aggregate functions in distinct cubes.

It is also worth noting that, in common MD data models, each fact

is related with at most one level member for each level that partic-

ipates in the fact. But sometimes this restriction has to be skipped,

yielding so-called many-to-many dimensions [42]. To support these,

we added the qb4o:cardinality property, which can be used to state

the cardinality of the relationship between a fact and a level. Note

that these constraints are purely declarative and not enforced by the

model.

We now present the representation of the asylum applications data

cube schema, using the QB4OLAP vocabulary. Example 4.1.1 shows

the triples that define the DSD, while Figure 12 shows a graphical

representation of these triples. For the sake of clarity, the definitions

of the prefixes are omitted here. We refer to Appendix A to expand

them. This case is derived from the existing QB specification of the

cube, presented in Example 3.2.1. In Chapter 5 we will explain how

we created this schema, that enables OLAP analysis of existing QB

observations.
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Figure 12: QB4OLAP representation of the asylum applications data cube
schema.

Example 4.1.1. The triples below, define the new DSD for the asylum

applications data cube defined using QB4OLAP.
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sc:migr_asyappctzmQB4O13 a qb:DataStructureDefinition ;

qb:component [ qb:measure sdmxm:obsValue ;

qb4o:aggregateFunction qb4o:sum ] ;

qb:component [ qb4o:level pr:age ;

qb4o:cardinality qb4o:ManyToOne ] ;

qb:component [ qb4o:level sdmxd:refPeriod ;

qb4o:cardinality qb4o:ManyToOne ] ;

qb:component [ qb4o:level pr:sex ;

qb4o:cardinality qb4o:ManyToOne ] ;

qb:component [ qb4o:level pr:geo ; qb4o:cardinality qb4o:ManyToOne ] ;

qb:component [ qb4o:level pr:citizen ; qb4o:cardinality qb4o:ManyToOne ] ;

qb:component [ qb4o:level pr:asyl_app ; qb4o:cardinality qb4o:ManyToOne] ;

dc:conformsTo <http://purl.org/qb4olap/cubes> .

#states that eurostat instances are described by the schema defined in QB4OLAP

eurostatdt:migr_asyappctzm qb:structure sc:migr_asyappctzmQB4O13 ;

dc:title "Asylum and first time asylum applicants to European countries by

citizenship, age and sex Monthly data"@en ;

dc:source <http://appsso.eurostat.ec.europa.eu/nui/show.do?

dataset=migr_asyappctzm> .

Note that the dimension properties of the original QB cube are now used

as level properties, and considered the lowest levels in each dimension hierar-

chy. This enables the analysis of existing observations without the need of

rewriting them. We give further details on this mechanism in Chapter 5.

4.2 representation of dimension hierarchies

As already mentioned, dimension hierarchies and levels are first-class

citizens in classic MD models for OLAP. Therefore, QB4OLAP focuses

on their representation, and several classes and properties are intro-

duced to this end. Before presenting them, we list a set of require-

ments that the QB4OLAP representation of hierarchies must meet, in

order to model the different kinds of hierarchies presented in Sec-

tion 2.1.

Requirement 1: Each dimension may be allowed to have more than

one hierarchy;

Requirement 2: Each level may be allowed to belong to more than

one hierarchy;

Requirement 3: In each hierarchy, a level may be allowed to have a

different set of parent levels;

Requirement 4: Cardinality constraints must be associated to each

parent-child relationship;

Requirement 5: For each parent-child relationship (at schema level),

the property representing the rollup relationship be-

tween level members (at the instance level) must be

defined.

To represent dimension hierarchies, the class qb4o:Hierarchy was in-

troduced. The relationship between dimensions and hierarchies is

represented via the property, qb4o:hasHierarchy. We can also use

the ‘inverse’ property, qb4o:inDimension. A hierarchy is modeled as

a collection of pairs of levels. Each pair is represented as an instance of
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the qb4o:HierarchyStep class, which represents the reification of the

parent-child relationship between two levels in a hierarchy. This reifi-

cation allows linking each pair of levels with: (a) its two component

levels, using properties qb4o:childLevel and qb4o:parentLevel, re-

spectively; (b) the hierarchy it belongs to, using the qb4o:inHierarchy

property; (c) the cardinality of the parent-child relationship, via prop-

erty qb4o:pcCardinality, and instances of qb4o:Cardinality class;

and (d) the property that implements the parent-child relationship at

the instance level, using the qb4o:rollup property. As usual in RDF,

blank nodes are used to implement such reification.

Our strategy for representing rollup relationships (in what follows,

RUPs) between levels, deserves some comments. A näive approach

would be to represent all the RUPs in a hierarchy with the same RDF

property. Although this solution is enough for most kind of hierar-

chies presented in Section 2.1, it does not suffice to represent, at the

instance level, dimensions with more than one RUP between the same

pair of levels, usually denoted as parallel dependent hierarchies [42]. As

an example of this situation, consider the dimension presented in Fig-

ure 13a. The Employee and City levels participate in two hierarchies:

one that represents the city where the employee lives (LivesIn), and

another that represents the city where the employee works (WorksIn).

Also, the City and Region levels participate in two hierarchies: one

that represents the administrative region that corresponds to a city

(Administrative), and another that represents the geographical region

(Geographical). Figure 13b presents, in tabular format, a possible set

of instances for the RUPs in this schema.

(a) Conceptual model

Employee LivesIn WorksIn

employee1 city1 city2

employee2 city2 city1

employee3 city2 city2

City Administrative Geographical

city1 region1 region1

city2 region1 region2

(b) Sample rollup relationship instances

Figure 13: Having multiple rollup relationships between levels.

In Example 4.2.1 we show the triples that represent these instances.

We can see that, in order to distinguish the city where employee1

lives (city1), from the city where she works (city2), different proper-

ties are needed (X and Y in our example). Therefore, we propose

to associate each hierarchy step, with the RDF property that repre-

sents the RUP relationship at the instance level. To model the fam-
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ily of all rollup relationships between level members, we introduced

the class qb4o:RollupProperty, and to emphasize that rollup rela-

tionships are transitive, this new class is declared as sub-class of

owl:TransitiveProperty2

Example 4.2.1. Multiple rollup relationships between a pair of levels.

:employee a qb4o:LevelProperty .

:city a qb4o:LevelProperty .

:region a qb4o:LevelProperty .

:employee1 a qb4o:LevelMember; qb4o:memberOf :employee .

:employee2 a qb4o:LevelMember; qb4o:memberOf :employee .

:employee3 a qb4o:LevelMember; qb4o:memberOf :employee .

:city1 a qb4o:LevelMember; qb4o:memberOf :city .

:city2 a qb4o:LevelMember; qb4o:memberOf :city .

:region1 a qb4o:LevelMember; qb4o:memberOf :region .

:region2 a qb4o:LevelMember; qb4o:memberOf :region .

:employee1 X :city1; Y :city2 .

:employee2 X :city2; Y :city1 .

:employee3 X :city2; Y :city2 .

:city1 W :region1; Z :region1 .

:city2 W :region1; Z :region2 .

Finally, to represent level attributes, we introduced the class of prop-

erties qb4o:LevelAttribute. When defining the structure of a dimen-

sion, each level (an instance of qb4o:LevelProperty) is associated

with a set of properties that are instances of qb4o:LevelAttribute

via the qb4o:hasAttribute property. Later, these attribute properties

will be used to link level members with the values of their attributes

(see Example 4.3.1).

We conclude this section showing the representation of the Citizen-

ship dimension schema (from Figure 5) using QB4OLAP. Figure 14

shows graphically a portion of the representation of this dimension,

while Example 4.2.2 presents the triples that define this dimension.
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Figure 14: An excerpt of the Citizenship dimension schema

2 http://www.w3.org/TR/2004/REC-owl-ref-20040210/#TransitiveProperty-def
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Example 4.2.2. To define the Citizenship dimension, we first declare

a resource that represents the dimension, and relate it with its hi-

erarchies. The conceptual model for this dimension is depicted in

Figure 5.

sc:citDim a qb:DimensionProperty ;

rdfs:label "Asylum geographical origin (citizenship) dimension"@en ;

qb4o:hasHierarchy sc:citGeoHier, sc:citGovHier .

We now define each hierarchy, declare to which dimension it belongs, and

which levels it traverses.

sc:citGeoHier a qb4o:Hierarchy ;

rdfs:label "Asylum origin Geographical Hierarchy"@en ;

qb4o:inDimension sc:citDim ;

qb4o:hasLevel pr:citizen, sc:continent .

sc:citGovHier a qb4o:Hierarchy ;

rdfs:label "Asylum origin Government Hierarchy"@en ;

qb4o:inDimension sc:citDim ;

qb4o:hasLevel pr:citizen, sc:govType .

Next, we define the base level in this dimension, that means, the one whose
instances compose the observations (in other words, the finest granularity),
and the upper levels in each hierarchy. In this case, since we are build-
ing a schema to analyze existent observations already published using QB,
we reuse the properties that link observations with members (with type
qb:DimensionProperty), and declare these properties as levels (with type
qb4o:LevelProperty) By doing this, we avoid the cost of rewriting the ob-
servations.

# Base levels

pr:citizen a qb4o:LevelProperty ;

rdfs:label "Country of origin when issuing an asylum application"@en ;

qb4o:hasAttribute sc:counName .

#Upper hierarchy levels

sc:continent a qb4o:LevelProperty ;

rdfs:label "Continent"@en ;

qb4o:hasAttribute sc:contName .

sc:govType a qb4o:LevelProperty ;

rdfs:label "Government Type"@en ;

qb4o:hasAttribute sc:govName .

#Level attributes

sc:counName a qb4o:LevelAttribute ;

rdfs:label "Country name"@en ;

rdfs:range xsd:string .

sc:contName a qb4o:LevelAttribute ;

rdfs:label "Continent name"@en ;

rdfs:range xsd:string .

sc:govName a qb4o:LevelAttribute ;

rdfs:label "Government type name"@en ;

rdfs:range xsd:string .

Finally, the hierarchy steps (i.e., parent-child relationships) are defined. Each

hierarchy step is associated with the property that will be used to implement

the rollup relationship between level members at the instance level, which

are also defined here.

#hierarchy steps
_:ih1 a qb4o:HierarchyStep ;

qb4o:inHierarchy schema:citGeoHier ;

qb4o:childLevel pr:citizen ;
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qb4o:parentLevel sc:continent ;

qb4o:pcCardinality qb4o:OneToMany ;

qb4o:rollup sc:inContinent .

_:ih2 a qb4o:HierarchyStep ;

qb4o:inHierarchy sc:citGovHier ;

qb4o:childLevel pr:citizen ;

qb4o:parentLevel sc:govType ;

qb4o:pcCardinality qb4o:OneToMany ;

qb4o:rollup sc:hasGovType .

#rollup relationships

sc:inContinent a qb4o:RollupProperty .

sc:hasGovType a qb4o:RollupProperty .

4.3 dimension members representation

To represent dimension level members at the instance level, we intro-

duced the class qb4o:LevelMember. Members can be attached to the

levels they belong to, by using the property qb4o:memberOf, which re-

sembles the semantics of skos:member. As already discussed, rollup

relationships between members are expressed using custom proper-

ties defined in the dimension structure, conveying the idea that hier-

archies of level members should be navigated from finer granularity

concepts up to coarser granularity concepts. Figure 15 shows an ex-

cerpt of the representation of the Citizenship dimension schema and a

sample dimension instance (on the right hand side of the figure).
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Figure 15: Citizenship dimension: schema and sample instance.

Note the relationship between schema and instance. For example,

the property sc:contName is declared to be an attribute of the Continent

level (sc:continent), and it is used to link a member of this level (Asia

represented by the node citDim:AS), with the literal that represents its

name. We can also see that the property qb4o:memberOf is used to tell

that Asia (citDim:AS) is a member of the dimension level Continent.

The triples represented in Figure 15 are detailed in Example 4.3.1.

Example 4.3.1. Definition of the dimension members corresponding

to Syria.
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1 citizen:SY qb4o:memberOf pr:citizen ;

2 sc:counName "Syria"@en ;

3 sc:inContinent citDim:AS ;

4 sc:hasGovType dbpedia:Unitary_state .

5

6 citDim:AS

7 qb4o:memberOf sc:continent ;

8 sc:contName "Asia" ;

9 skos:notation "AS" ;

10 skos:prefLabel "Asia"@en .

11

12 dbpedia:Unitary_state

13 qb4o:memberOf sc:governmentType ;

14 sc:govName "Unitary state"@en .

Line 1 declares that the resource that represents Syria is a member of the

Country level (represented by pr:citizen). Lines 3 and 4 state that Syria rolls

up to Asia (represented by citDim:AS) and to Unitary state (represented by

dbpedia:Unitary_state), which are defined as members of the levels Con-

tinent and Government Type in lines 7 and 13 respectively. The properties

that represent rollup relationships were previously defined in the dimen-

sion structure (see Example 4.2.2). Finally, the Country level has only one

attribute: the Country Name (represented by schema:countryName). Line 2

tells that the value of this attribute, for the resource that represents Syria, is

the string "Syria"@en.

4.4 summary

In this chapter we have introduced the QB4OLAP vocabulary, with

focus on the rationale of its design decisions. We also provided sim-

ple examples, showing how the main components of the MD model

are represented, at the schema and instance levels. In the next chap-

ter we will show how this vocabulary can be used to represent the

most common features of the model, as well as complex dimension

hierarchies.
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5
Q B 4 O L A P I N U S E

"The street finds its own uses for things."

William Gibson, Burning Chrome

In the previous chapter we have introduced the QB4OLAP vocabu-

lary through simple examples. In this chapter we address the problem

of creating QB4OLAP data cubes. The idea is to show the three typ-

ical ways in which QB4OLAP can be used: (1) To create data cubes

from scratch; (2) To export a relational DW into RDF format; (3) To

enrich with structural metadata, existing cubes published in QB; In

all the cases, we need a conceptual MD model to guide the design of

the cube. In the second case, we also need to be able to export the rela-

tional DW instance into RDF, to populate the cube. In this chapter, we

first show the expressiveness of QB4OLAP, by providing guidelines

and examples on how to represent advanced concepts in conceptual

MD modeling, and an algorithm to translate a conceptual model into

RDF. We then discuss how to obtain QB4OLAP data cubes from a

relational representation (ROLAP) of a DW. Finally, we elaborate on

how to create a QB4OLAP schema to exploit a data set published

using the QB vocabulary, addressing the third use case.

5.1 from conceptual multidimensional models to

qb4olap data cubes

As discussed in Section 2.1, conceptual MD models, and dimension

hierarchies in particular, can be quite complex in real-world situa-

tions. In the previous chapter we explain how the main components

of the MD model are represented in QB4OLAP. In this section we pro-

vide guidelines and examples on how to represent more advanced

MD design features. For each case, we show how to represent the

schema and the instances. All the examples provided are taken from

the Northwind case study (Figure 4). We conclude with an algo-

rithm that translates a MultiDim conceptual model into a QB4OLAP

schema. We start with flat dimensions (i.e., dimensions with just one

level), and then increase the degree of difficulty.

5.1.1 Flat Dimensions

Flat dimensions are dimensions with only one level. As an example,

consider the Product dimension in the Northwind case study. This

kind of dimension can be represented in QB4OLAP via a hierarchy

with no steps, i.e., with just a single level. Example 5.1.1 shows how

to declare the schema of flat dimensions, while instances are defined

as usual.

37
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Example 5.1.1. To represent flat dimensions, we define hierarchies

without steps.

nw:productDim a qb:DimensionProperty ;

rdfs:label "Product"@en ;

qb4o:hasHierarchy nw:productHier .

nw:productHier a qb4o:Hierarchy ;

rdfs:label "Product Hierarchy"@en ;

qb4o:inDimension nw:productDim ;

qb4o:hasLevel nw:product .

nw:product a qb4o:LevelProperty ;

rdfs:label "Product"@en ;

qb4o:hasAttribute nw:productName .

nw:productName a qb4o:LevelAttribute ;

rdfs:label "Product name"@en ;

rdfs:range xsd:string .

5.1.2 Shared Levels

Sometimes, levels are shared between two or more dimensions. As an

example, consider the levels City, State, Region, Country, and Continent

in the Northwind case study (Figure 4), that participate in the dimen-

sions Supplier and Customer. Note that, when levels are shared, rollup

relationships between level members are also shared, and have the

same semantics. As a consequence, in the QB4OLAP representation,

hierarchy steps can be shared between different hierarchies. At the

schema level, we propose to define each shared level only once, and

use these levels in the definition of the hierarchy steps. The properties

that will represent the rollup relationships at the instance level, are

also shared by the different hierarchies. Example 5.1.2 shows how to

declare the schema of two dimensions that share levels, while Exam-

ple 5.1.3 shows how to declare their instances.

Example 5.1.2. To represent the dimensions Supplier and Customer, we

first define each dimension and its corresponding hierarchy. Observe

that the levels in each hierarchy are all shared, with the exception of

the bottom level in each hierarchy.

# -- Customer dimension definition

nw:customerDim a rdf:Property , qb:DimensionProperty ;

rdfs:label "Customer Dimension"@en ;

qb4o:hasHierarchy nw:customerGeo .

# -- Customer Geography hierarchy

nw:customerGeo a qb4o:Hierarchy ;

rdfs:label "Customer Geography Hierarchy"@en ;

qb4o:inDimension nw:customerDim ;

qb4o:hasLevel nw:customer, nw:city, nw:state ;

qb4o:hasLevel nw:region, nw:country, nw:continent .

# -- Supplier dimension definition

nw:supplierDim a rdf:Property , qb:DimensionProperty ;

rdfs:label "Supplier Dimension"@en ;

qb4o:hasHierarchy nw:supplierGeo .

# -- Supplier Geography hierarchy

nw:supplierGeo a qb4o:Hierarchy ;
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rdfs:label "Supplier Geography Hierarchy"@en ;

qb4o:inDimension nw:supplierDim ;

qb4o:hasLevel nw:supplier, nw:city, nw:state ;

qb4o:hasLevel nw:region, nw:country, nw:continent .

Then we define each level, the rollup relationships, and finally the

structure of each hierarchy in terms of hierarchy steps. We only in-

clude the definition of the levels Customer, Supplier ,City, and State.

# -- Levels

nw:supplier a qb4o:LevelProperty .

nw:customer a qb4o:LevelProperty .

nw:city a qb4o:LevelProperty .

nw:state a qb4o:LevelProperty .

# -- Rollup relationships (shared in all hierarchies)

nw:inCity a qb4o:RollupProperty .

nw:inState a qb4o:RollupProperty .

_:hs11 a a qb4o:HierarchyStep ;

qb4o:inHierarchy nw:customerGeo ;

qb4o:childLevel nw:customer ; qb4o:parentLevel nw:city ;

qb4o:pcCardinality qb4o:ManyToOne ; qb4o:rollup nw:inCity .

_:hs21 a a qb4o:HierarchyStep ;

qb4o:inHierarchy nw:supplierGeo;

qb4o:childLevel nw:supplier ; qb4o:parentLevel nw:city ;

qb4o:pcCardinality qb4o:ManyToOne ; qb4o:rollup nw:inCity .

_:hs3 a a qb4o:HierarchyStep ;

qb4o:inHierarchy nw:customerGeo, nw:supplierGeo;

qb4o:childLevel nw:city; qb4o:parentLevel nw:state ;

qb4o:pcCardinality qb4o:ManyToOne ; qb4o:rollup nw:inState .

Finally, the bottom levels of these dimensions are used in the defi-

nition of a data cube, as follows.

nw:Northwind a qb:DataStructureDefinition ;

# -- Lowest level for each dimension in the cube

qb:component [qb4o:level nw:customer ; qb4o:cardinality qb4o:ManyToOne ] ;

qb:component [qb4o:level nw:supplier ; qb4o:cardinality qb4o:ManyToOne ] ;

[...]

Example 5.1.3. Instances of shared levels are defined as usual. The

triples bellow represent a customer and a supplier who live in the

same city.

nwc:343 qb4o:memberOf nw:customer

nw:companyName "Paris spécialités" ;

nw:inCity nwci:35 ;

[...]

nws:18 qb4o:memberOf nw:supplier ;

nw:companyName "Aux joyeux ecclésiastiques" ;

nw:inCity nwci:35 ;

[...]

nwci:35 qb4o:memberOf nw:city ;

nw:cityName "Paris" ;

nw:inState nwst:224 ;

[...]

nwst:224 qb4o:memberOf nw:state ;

nw:stateName "Paris" ;

[...]
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5.1.3 Role-playing Dimensions

In some cases, the same dimension is used more than once in a data

cube, and therefore a mechanism is needed to distinguish the role

that each dimension plays in it. These are called role-playing dimen-

sions (introduced in Section 1.1). As an example, consider the Time

dimension, that participates in the Northwind case study (Figure 4)

with two different roles that correspond to the OrderDate and the Due-

Date of the sale.

To represent role-playing dimensions in QB4OLAP, we propose to

define, at the schema level, one dimension per role. These dimen-

sions share all the levels, with the exception of the bottom one, which

needs to be different for each dimension in order to distinguish them

in each observation (recall that each observation is linked to the level

members that participate in it using the properties defined as levels).

At the instance level, members and rollup relationships are declared

only once, and each level member is linked to all the corresponding

levels. The mechanism is similar to the one described for shared lev-

els. Example 5.1.4 shows how to declare the schema of role-playing di-

mensions, while Example 5.1.5 shows how to declare their instances.

Example 5.1.4. To represent the role-playing dimensions OrderDate

and DueDate, we define one dimension for each role, and one hier-

archy for each dimension; hierarchy steps are shared between hierar-

chies. We include a portion of the definition of each level.

# -- OrderDate dimension definition

nw:orderDateDim a rdf:Property , qb:DimensionProperty ;

rdfs:label "Order Date Dimension"@en ;

rdfs:subPropertyOf sdmx-dimension:refPeriod ;

qb4o:hasHierarchy nw:calendarOrderDate .

# -- DueDate dimension definition

nw:dueDateDim a rdf:Property , qb:DimensionProperty ;

rdfs:label "Due Date Dimension"@en ;

rdfs:subPropertyOf sdmx-dimension:refPeriod ;

qb4o:hasHierarchy nw:calendarDueDate .

# -- Rollup relationships (shared in all hierarchies)

nw:inMonth a qb4o:RollupProperty .

nw:inYear a qb4o:RollupProperty .

# -- Order Date Calendar hierarchy

nw:calendarOrderDate a qb4o:Hierarchy ;

rdfs:label "Calendar Hierarchy"@en ;

qb4o:inDimension nw:orderDateDim ;

qb4o:hasLevel nw:orderDate, nw:month , nw:year .

# -- DueDate Calendar hierarchy

nw:calendarDueDate a qb4o:Hierarchy ;

rdfs:label "Calendar Hierarchy"@en ;

qb4o:inDimension nw:dueDateDim ;

qb4o:hasLevel nw:dueDate, nw:month, nw:year .

_:hs11 a qb4o:HierarchyStep ;

qb4o:inHierarchy nw:calendarOrderDate ;

qb4o:childLevel nw:orderDate ; qb4o:parentLevel nw:month ;

qb4o:pcCardinality qb4o:ManyToOne ; qb4o:rollup nw:inMonth .

_:hs21 a qb4o:HierarchyStep ;

qb4o:inHierarchy nw:calendarDueDate ;

qb4o:childLevel nw:dueDate ; qb4o:parentLevel nw:month ;
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qb4o:pcCardinality qb4o:ManyToOne ; qb4o:rollup nw:inMonth .

_:hs2 a qb4o:HierarchyStep ;

qb4o:inHierarchy nw:calendarOrderDate, nw:calendarDueDate ;

qb4o:childLevel nw:month ; qb4o:parentLevel nw:year ;

qb4o:pcCardinality qb4o:ManyToOne ; qb4o:rollup nw:inYear .

# -- Levels definition (bottom levels have the same attributes)

nw:orderDate a qb4o:LevelProperty ;

rdfs:label "Time Level"@en ;

qb4o:hasAttribute nw:date ;

qb4o:hasAttribute nw:dayNoWeek ;

qb4o:hasAttribute nw:dayNameWeek ;

qb4o:hasAttribute nw:dayNoMonth ;

qb4o:hasAttribute nw:dayNoYear ;

qb4o:hasAttribute nw:weekNoYear .

nw:dueDate a qb4o:LevelProperty ;

rdfs:label "Time Level"@en ;

qb4o:hasAttribute nw:date ;

qb4o:hasAttribute nw:dayNoWeek ;

qb4o:hasAttribute nw:dayNameWeek ;

qb4o:hasAttribute nw:dayNoMonth ;

qb4o:hasAttribute nw:dayNoYear ;

qb4o:hasAttribute nw:weekNoYear .

Finally, we show how the bottom levels of these dimensions are used

in the definition of a data cube.

nw:Northwind a qb:DataStructureDefinition ;

# -- Lowest level for each dimension in the cube

qb:component [qb4o:level nw:orderDate ; qb4o:cardinality qb4o:ManyToOne ] ;

qb:component [qb4o:level nw:dueDate ; qb4o:cardinality qb4o:ManyToOne ] ;

[...]

Example 5.1.5. To represent instances of role-playing dimensions, we

define instances of the bottom level only once, and link it to the bot-

tom level of each role-playing dimension. This example represents

the date "1998-06-06".

nwt:19980606

nw:dayNameWeek "Sunday" ;

nw:dayNoMonth 6 ;

nw:date "1998-06-06" ;

nw:dayNoWeek 7 ;

nw:weekNoWeek 23 ;

nw:dayNoYear 157 ;

nw:inMonth nwm:June1998 ;

qb4o:memberOf nw:orderDate,nw:dueDate .

nwm:June1998

nw:monthName "June" ;

nw:monthNo 6 ;

nw:inYear nwy:1998 ;

qb4o:memberOf nw:month .

nwy:1998

nw:yearNo 1998 ;

qb4o:memberOf nw:year .
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5.1.4 Recursive Hierarchies

Recursive hierarchies (introduced in Section 2.1) are a special case of

unbalanced hierarchies, where the same level plays the role of parent

and child. As an example, consider the Supervision hierarchy in the

Employee dimension of the Northwind case study (Figure 4), where

subordinate employees are related to their supervisors, which are also

members of the Employee level. QB4OLAP supports this kind of hier-

archy, since it just suffices to use the same level as child and parent

in a hierarchy step. Example 5.1.6 shows how to declare the schema

of a recursive hierarchy, while instances of recursive hierarchies are

represented as usual.

Example 5.1.6. To represent recursive hierarchies, we define a step

that declares the same level as parent and child.

nw:employeeDim a rdf:Property , qb:DimensionProperty ;

rdfs:label "Employee Dimension"@en ;

qb4o:hasHierarchy nw:supervision .

# -- Supervision hierarchy

nw:supervision a qb4o:Hierarchy ; rdfs:label "Supervision Hierarchy"@en ;

qb4o:inDimension nw:employeeDim ;

qb4o:hasLevel nw:employee .

# -- Roll up relationship

nw:supervisor a qb4o:RollupProperty .

_:hs1 a qb4o:HierarchyStep ; qb4o:inHierarchy nw:supervision ;

qb4o:childLevel nw:employee ; qb4o:parentLevel nw:employee ;

qb4o:pcCardinality qb4o:ManyToOne ; qb4o:rollup nw:supervisor .

5.1.5 Parallel Dependent Hierarchies

This case occurs when a dimension has more than one hierarchy, and

these hierarchies may share levels. As an example of this, consider

the dimension presented in Figure 13a, discussed in Section 4.2. The

Employee and City levels participate in two hierarchies: one that rep-

resents the city where the employee lives (LivesIn), and another that

represents the city where the employee works (WorksIn). Also, the City

and Region levels participate in two hierarchies: one that represents

the administrative region that corresponds to a city (Administrative),

and another that represents the geographical region (Geographical).

We propose to define one hierarchy for each possible path from the

bottom level up to the top, and one rollup property per parent-child

relationship. This allows us to specify, via the rollup property, which

path should be used to aggregate data. In this case, hierarchy steps

can also be shared between hierarchies. Example 5.1.7 shows how to

declare the schema of parallel dependent hierarchies, while Exam-

ple 5.1.8 shows how to declare their instances.

Example 5.1.7. To represent parallel dependent hierarchies LivesIn,

WorksIn, Geographical, and Administrative we first define four hierar-

chies, and four rollup properties (one per parent-child relationship).
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:employeeDim a rdf:Property , qb:DimensionProperty ;

qb4o:hasHierarchy :empLivesAdmin , :empLivesGeo , :empWorksAdmin , :empWorksGeo .

# -- Dimension levels

:employee a qb4o:LevelProperty .

:city a qb4o:LevelProperty .

:region a qb4o:LevelProperty .

# -- Rollup relationships

:worksin a qb4o:RollupProperty .

:livesin a qb4o:RollupProperty .

:administrative a qb4o:RollupProperty .

:geographical a qb4o:RollupProperty .

# -- Hierarchies

# -- One hierarchy for each path from bottom to top

:empLivesGeo a qb4o:Hierarchy ;

qb4o:inDimension :employeeDim ;

qb4o:hasLevel :employee , :city , :region .

:empLivesAdmin a qb4o:Hierarchy ;

qb4o:inDimension :employeeDim ;

qb4o:hasLevel :employee , :city , :region .

:empWorksGeo a qb4o:Hierarchy ;

qb4o:inDimension :employeeDim ;

qb4o:hasLevel :employee , :city , :region .

:empWorksAdmin a qb4o:Hierarchy ;

qb4o:inDimension :employeeDim ;

qb4o:hasLevel :employee , :city , :region .

We then define each step, and link it with the dimensions it belongs

to.

# -- Hierarchy step from employee to city via livesin
_:hs1 a qb4o:HierarchyStep;

qb4o:childLevel :employee ; qb4o:parentLevel :city ;

qb4o:rollup :livesin ;

qb4o:inHierarchy :empLivesGeo , :empLivesAdmin ;

qb4o:pcCardinality qb4o:ManyToOne .

# -- Hierarchy step from employee to city via worksin
_:hs2 a qb4o:HierarchyStep ;

qb4o:childLevel :employee ; qb4o:parentLevel :city ;

qb4o:rollup :worksin ;

qb4o:inHierarchy :empWorksGeo , :empWorksAdmin ;

qb4o:pcCardinality qb4o:ManyToOne .

# -- Hierarchy step from city to region via administrative
_:hs3 a qb4o:HierarchyStep ;

qb4o:childLevel :city ; qb4o:parentLevel :region ;

qb4o:rollup :administrative ;

qb4o:inHierarchy :empLivesAdmin , :empWorksAdmin ;

qb4o:pcCardinality qb4o:ManyToOne .

# -- Hierarchy step from city to region via geographical
_:hs4 a qb4o:HierarchyStep ;

qb4o:childLevel :city ; qb4o:parentLevel :region ;

qb4o:rollup :geographical ;

qb4o:inHierarchy :empLivesGeo , :empWorksGeo ;

qb4o:pcCardinality qb4o:ManyToOne .

Example 5.1.8. This example shows the triples that represent the in-

stances in Figure 13b.
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:employee1 a qb4o:LevelMember ; qb4o:memberOf :employee .

:employee2 a qb4o:LevelMember ; qb4o:memberOf :employee .

:employee3 a qb4o:LevelMember ; qb4o:memberOf :employee .

:city1 a qb4o:LevelMember ; qb4o:memberOf :city.

:city2 a qb4o:LevelMember ; qb4o:memberOf :city.

:region1 a qb4o:LevelMember ; qb4o:memberOf :region.

:region2 a qb4o:LevelMember ; qb4o:memberOf :region.

:employee1 :livesin :city1, :worksin :city2 .

:employee2 :livesin :city2, :worksin :city1 .

:employee3 :livesin :city2, :worksin :city2 .

:city1 :administrative :region1 ; :geographical :region1 .

:city2 :administrative :region1 ; :geographical :region2 .

5.1.6 Translating a MultiDim Model to QB4OLAP

We wrap-up the above, presenting an algorithm that, starting from a

conceptual (MultiDim) schema, produces a QB4OLAP representation

of the cube schema. We assume that there is a conceptual schema that

represents a cube C, with a fact F composed of a set M of measures,

a set D of dimensions, and a set RP of role-playing dimensions. Each

role-playing dimension rp ∈ RP is a pair (d, role), where d ∈ D. Each

dimension d ∈ D is composed of a set L of levels, organized in hier-

archies h ∈ H. Each level l ∈ L is described by a set of attributes A.

The algorithm comprises seven steps described next. We call CSRDF

the RDF graph that represents the cube schema, which is built in-

crementally. We will illustrate the steps in this algorithm, with the

Northwind DW case study introduced in Section 1.1.1, and depicted

in Figure 4.

Step 1 (Dimensions) For each dimension d ∈ D, if d is a role-

playing dimension, for each role CSRDF = CSRDF ∪ {t}, where t is

a triple stating that drRDF is a resource of type qb:DimensionProperty.

Else, CSRDF = CSRDF ∪ {t}, where t is a triple stating that dRDF is a

resource of type qb:DimensionProperty. Triples indicating the name of

each dimension can be added using property rdfs:label.

The triples below show how some dimensions in Figure 4 are repre-

sented (@en indicates that the names are in English, and nw: is a prefix

for the cube schema graph). Triples in lines 2 and 3 correspond to the

Time dimension participating with the roles OrderDate and DueDate.

nw:employeeDim a qb:DimensionProperty ; rdfs:label "Employee Dimension"@en .

nw:orderDateDim a qb:DimensionProperty ; rdfs:label "OrderDate Dimension"@en .

nw:dueDateDim a qb:DimensionProperty ; rdfs:label "DueDate Dimension"@en .

nw:productDim a qb:DimensionProperty ; rdfs:label "Product Dimension"@en .

nw:orderDim a qb:DimensionProperty ; rdfs:label "Order Dimension"@en .

nw:shipperDim a qb:DimensionProperty ; rdfs:label "Shipper Dimension"@en .

nw:customerDim a qb:DimensionProperty ; rdfs:label "Customer Dimension"@en .

nw:supplierDim a qb:DimensionProperty ; rdfs:label "Supplier Dimension"@en.

Step 2 (Hierarchies) For each hierarchy h ∈ H, CSRDF = CSRDF

∪ {t}, where t is a triple stating that hRDF has type qb4o:Hierarchy.

Triples indicating the name of each hierarchy can be added using

property rdfs:label.
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Applying Step 2 to the hierarchies in the Employee dimension we

obtain:

nw:supervision a qb4o:Hierarchy ; rdfs:label "Employee Supervision Hierarchy"@en .

nw:territories a qb4o:Hierarchy ; rdfs:label "Employee Territories Hierarchy"@en .

Step 3 (Levels and Attributes) For each level l ∈ L, CSRDF =

CSRDF ∪ {t}, where t is a triple telling that lRDF is a resource of

type qb4o:LevelProperty. For each attribute a ∈ A, add to CSRDF a

triple stating that aRDF has type qb4o:AttributeProperty. Finally, add

triples relating a level lRDF with its corresponding attribute aRDF, us-

ing the property qb4o:hasAttribute. Triples indicating the names of

levels and attributes can be added using property rdfs:label.

Applying Step 3 to level Employee in the Employee dimension we

obtain:

nw:employee a qb4o:LevelProperty ; rdfs:label "Employee Level"@en ;

qb4o:hasAttribute nw:firstName ; qb4o:hasAttribute nw:lastName .

nw:firstName a qb:AttributeProperty ; rdfs:label "First Name"@en .

nw:lastName a qb:AttributeProperty ; rdfs:label "Last Name"@en .

nw:city a qb4o:LevelProperty ;

rdfs:label "City Level"@en ;

qb4o:hasAttribute nw:cityName .

nw:cityName a qb:AttributeProperty ; rdfs:label "City Name"@en .

Step 4 (Dimension-Hierarchy Relationships) For each h ∈ H in

d ∈ D, relate dRDF in CSRDF to hRDF, and hRDF to dRDF. Then,

CSRDF = CSRDF ∪ {dRDF} qb4o:hasHierarchy hRDF and CSRDF =

CSRDF ∪ {hRDF} qb4o:inDimension dRDF.

Applying Step 4 to the Employee dimension and its hierarchies we

obtain:

nw:employeeDim qb4o:hasHierarchy nw:Supervision ;

qb4o:hasHierarchy nw:territories .

nw:supervision qb4o:inDimension nw:employeeDim .

nw:territories qb4o:inDimension nw:employeeDim .

Step 5 (Hierarchy Structure) For each hierarchy h ∈ H composed

of a level l ∈ L, relate hRDF in CSRDF to lRDF. Then CSRDF =

CSRDF ∪ {hRDF} qb4o:hasLevel lRDF. Let (l, l ′) be a pair of levels

in the C, such that l, l ′ ∈ h, and parentLevel(l,h) = l ′ with cardi-

nality car. Also, let lRDF, l ′RDF, and hRDF be the representations of l,

l ′ and h in CSRDF. Then add to CSRDF a blank node hsRDF of type

qb4o:HierarchyStep, and a triple to connect the hierarchy step with the

hierarchies it belongs to (hsRDF qb4o:inHierarchy hRDF). Add triples

hsRDF qb4o:childLevel lhRDF, hsRDF qb4o:parentLevel lh ′RDF. Also

add to CSRDF a node rupRDF of type qb4o:RollupProperty that rep-

resents the rollup relationship for that step, and then a triple hsRDF

qb4o:rollup rupRDF. Finally, add the triple hsRDF qb4o:pcCardinality

carRDF, to represent the cardinality of the relationship.

A part of the Employee and Supplier dimension structure obtained

is shown below. Notice that these dimensions have hierarchies that

share levels, and this is reflected by sharing hierarchy steps. Lines 28

to 33 and 34 to 39 show the support of a ragged hierarchy.

1 nw:supervision qb4o:hasLevel nw:employee .

2 nw:territories qb4o:hasLevel nw:employee , nw:city , nw:state .
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3 nw:territories qb4o:hasLevel nw:country , nw:continent .

4

5 nw:supplierGeo qb4o:hasLevel nw:supplier , nw:city , nw:state .

6 nw:supplierGeo qb4o:hasLevel nw:region , nw:country , nw:continent .

7

8 nw:supervises a qb4o:RollupProperty .

9 nw:worksIn a qb4o:RollupProperty .

10 nw:inState a qb4o:RollupProperty .

11 nw:inCountry a qb4o:RollupProperty .

12

13 # -- nw:supervision hierarchy structure

14 _:pl1 a qb4o:HierarchyStep ;

15 qb4o:inHierarchy nw:supervision ;

16 qb4o:childLevel nw:employee ;

17 qb4o:parentLevel nw:employee ;

18 qb4o:rollup nw:supervises ;

19 qb4o:cardinality qb4o:OneToMany .

20

21 # -- nw:territories hierarchy structure

22 _:pl2 a qb4o:HierarchyStep ;

23 qb4o:inHierarchy nw:territories ;

24 qb4o:childLevel nw_employee ;

25 qb4o:parentLevel nw:city ;

26 qb4o:rollup nw:worksIn ;

27 qb4o:cardinality qb4o:ManyToMany .

28 _:pl3 a qb4o:HierarchyStep ;

29 qb4o:inHierarchy nw:territories,nw:supplierGeo;

30 qb4o:childLevel nw:city ;

31 qb4o:parentLevel nw:state ;

32 qb4o:rollup nw:inState ;

33 qb4o:cardinality qb4o:OneToMany .

34 _:pl4 a qb4o:HierarchyStep ;

35 qb4o:inHierarchy nw:territories,nw:supplierGeo ;

36 qb4o:childLevel nw:city ;

37 qb4o:parentLevel nw:country ;

38 qb4o:rollup nw:inCountry ;

39 qb4o:cardinality qb4o:OneToMany .

Step 6 (Measures) For each measure m ∈ M, CSRDF = CSRDF ∪

{t}, such that t is a triple that states that mRDF is a resource with type

qb4o:MeasureProperty. The range of each mRDF can be defined using

the rdfs:range predicate.

The following triples are the result of the application of Step 6 to

our example.

nw:quantity a qb:MeasureProperty ;

rdfs:label "Quantity"@en ;

rdfs:range xsd:integer .

nw:unitPrice a qb:MeasureProperty ;

rdfs:label "UnitPrice"@en ;

rdfs:range xsd:decimal .

nw:salesAmount a qb:MeasureProperty ;

rdfs:label "SalesAmount"@en ;

rdfs:range xsd:decimal .

Step 7 (Cube) For each fact F, CSRDF = CSRDF ∪ {t}, such that t

is a triple stating that cRDF has type qb:DataStructureDefinition. For

each measure m ∈ M, add to CSRDF the triples cRDF qb:component

[qb:measure mRDF; qb4o:aggregateFunction fRDF], where fRDF is an ag-

gregation function defined in QB4OLAP. Also, for each of the levels

l ∈ L related to a fact F in the schema, CSRDF = CSRDF∪ {cRDF

qb:component [qb:level lRDF; qb4o:cardinality carRDF]}, where

carRDF represents the cardinality of the relationship between facts

and level members, and is one of cardinality restrictions defined in
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QB4OLAP (qb4o:OneToOne, qb4o:OneToMany, qb4o:ManyToOne,

qb4o:ManyToMany).

The following triples are the result of the application of Step 7.

# -- Cube definition (Data structure)

nw:Northwind a qb:DataStructureDefinition ;

# Lowest level for each dimension in the cube

qb:component [qb4o:level nw:employee ; qb4o:cardinality qb4o:ManyToOne] ;

qb:component [qb4o:level nw:orderDate ; qb4o:cardinality qb4o:ManyToOne] ;

qb:component [qb4o:level nw:dueDate ; qb4o:cardinality qb4o:ManyToOne] ;

qb:component [qb4o:level nw:supplier ; qb4o:cardinality qb4o:ManyToOne] ;

qb:component [qb4o:level nw:customer ; qb4o:cardinality qb4o:ManyToOne] ;

# -- Measures in the cube

qb:component [qb:measure nw:quantity ; qb4o:aggregateFunction qb4o:sum] ;

qb:component [qb:measure nw:unitPrice ; qb4o:aggregateFunction qb4o:avg] ;

qb:component [qb:measure nw:salesAmount ; qb4o:aggregateFunction qb4o:sum] .

5.2 from relational dws to qb4olap

Traditional DW systems usually store MD data in relational databases.

These systems, also known as Relational OLAP or ROLAP, implement

conceptual models at the logical level as a collection of tables orga-

nized in specialized structures known as star and snowflake schemas,

which relate a fact table to several dimension tables through foreign

keys. In a star schema, a fact table is linked through foreign keys to

one or more denormalized dimension tables. In a snowflake schema, di-

mension tables are normalized, and a dimension is represented as

a collection of tables linked to each other through foreign keys. A

starflake schema is a mixed approach, which includes normalized and

denormalized dimension tables in the same model. Since QB4OLAP

is aimed at publishing new and existing MD data, we would like to

be able to translate a relational DW (i.e., the actual instance of the

DW) into QB4OLAP, as automatically as possible. We already showed

how to create a cube schema in QB4OLAP, starting from a conceptual

schema. In this section, we first present a procedure to translate an

existing ROLAP DW, into its RDF representation, using QB4OLAP.

In the second part of the section, we show an implementation of

this procedure. Since there is no standard in ROLAP to represent

the cube schema (i.e. dimensions, structure, hierarchies, levels, etc.),

we assume that we have the conceptual model associated with the

relational DW.

5.2.1 ROLAP to QB4OLAP

We now present a procedure to obtain a QB4OLAP implementation

from a relational cube instance, starting from: (a) the cube concep-

tual schema C; (b) CSRDF, the RDF representation of the schema of

C; (c) the relational implementation of the cube C, which we denote

CIROLAP. The procedure generates a mapping file CIRDF that gen-

erates an RDF representation of the data stored in CIROLAP, using

the schema CSRDF. This mapping file is expressed using R2RML, the

W3C standard for expressing mappings between relational databases

and RDF data, which is based on templates (see Section 2.3.3). The
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Figure 16: Relational representation of the Northwind DW (from [42])

obtained R2RML mappings can either be used to generate a static set

of triples that represent the underlying relational data (data material-

ization), or to provide a non-materialized RDF view of the relational

data (on-demand mapping). A relevant problem here is how to gen-

erate adequate IRIs. In this case, a collection of IRI-safe strings P are

used to generate unique level members IRIs with R2RML rr:template,

based on the identifiers found in the relational data, such that each

level member has its corresponding pi ∈ P. Analogously, f is used to

generate unique IRIs for fact instances.

We organize the procedure in two parts: (1) Define mappings to

generate level members; (2) Define mappings to generate facts (ob-

servations). Since the typical MD model constructs, and in particular

dimension hierarchies, may have different relational representations,

the logical design of the underlying relational database determines

which mappings should be generated.

The procedure we present next, addresses the most common kinds

of dimension hierarchies discussed, and their relational representa-

tion as presented in [42], showing, for each case, how mappings can

be generated. The hierarchies addressed are: balanced, ragged, re-

cursive, and nonstrict. This covers a wide range of problems. Other

particular cases can be addressed based on these cases. Of course, we

also address the generation of facts (observations).

Figure 16 shows the relational representation of the conceptual

model presented in Figure 4. We use this representation to illustrate

the concepts in this section. Underlined attributes represent primary

keys, while arrows represent foreign key constraints. Optional at-

tributes are denoted placing a cardinality constraint (0,1) next to them.
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Step 1 (Balanced hierarchies) These hierarchies can be represented

as snowflake schemas or as star schemas.

If h ∈ H is a balanced hierarchy composed of a set of levels L, repre-

sented as a snowflake schema, there exists a set of tables Th ∈ CIROLAP,

where each table ti ∈ Th represents a level in li ∈ L, and contains a

key attribute pki and one attribute ai for each level attribute ati ∈ li.

For each pair li, li+1 ∈ h, represented as ti, ti+1 ∈ Th, such that

parentLevel(li,h) = li+1, there exists a foreign key attribute fki ∈ ti
referencing pki+1 ∈ ti+1.

To generate the instances of a balanced hierarchy represented as a

snowflake schema, for each level li ∈ h, CIRDF = CIRDF ∪ {t}, where

t is an R2RML rr:TripleMap that generates the members of li. The

components of t are: the rr:logicalTable ti, a rr:subjectMap which is

an IRI built using the rr:template pi{pki}, and one or more predicate

object maps (rr:predicateObjectMap )that express: (1) To which level

liRDF
∈ CSRDF the members generated by t belong; (2) The value of

each attribute aRDF ∈ liRDF
, which is obtained from the attributes in

ti, specified using rr:column; (3) The associated members in other lev-

els lj, using the predicate specified by qb4o:rollup for each step and

the rr:template pj{fkj}.

As an example, the Product dimension, obtained from Figure 4, is

a balanced hierarchy represented as a snowflake schema ( Figure 16).

We next show the R2RML mapping that generates the triples repre-

senting the members in level Product using data from the table Prod-

uct. The mapping in lines 10 to 15 implements the RUP relationship

between members of the Product and Category levels (represented in

the relational data via the attribute CategoryKey in Product table, and a

foreign key to the Category table). We only present the mappings corre-

sponding to the attribute ProductName, the other ones are analogous.

1 <#TriplesMapProduct > a rr:TriplesMap ;

2 rr:logicalTable [ rr:tableName "Product" ] ;

3 rr:subjectMap [

4 rr:termType rr:IRI ;

5 rr:template

6 "http://www.fing.edu.uy/inco/cubes/instances/northwind/Product#{ProductKey}";];

7 rr:predicateObjectMap [ rr:predicate qb4o:memberOf ; rr:object nw:product ; ] ;

8 rr:predicateObjectMap [ rr:predicate nw:productName ;

9 rr:objectMap [ rr:column "ProductName" ];] ;

10 rr:predicateObjectMap [ rr:predicate nw:inCategory;

11 rr:objectMap [

12 rr:termType rr:IRI ;

13 rr:template

14 "http://www.fing.edu.uy/inco/cubes/instances/northwind/Category#{CategoryKey}"];].

15

The triples shown below, are generated by the mapping above.

They represent the product “Ravioli Angelo” in the category “Grain-

s/Cereals”.

nwp:57 qb4o:memberOf nw:product;

nw:productName "Ravioli Angelo";

nw:inCategory nwca:5 .

If h ∈ H is a balanced hierarchy composed of a set of levels L, repre-

sented as a star schema, there exists a table th ∈ CIROLAP representing

all levels in li ∈ L. For each li there exists an attribute pki ∈ th which
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identifies each level member and for each level attribute ati ∈ li there

exists an attribute ai ∈ th.

The mapping for a balanced hierarchy represented as a star schema is

similar to the one in Step 1, except that the rr:logicalTable is the

same for all levels. According to Figure 16, the Time dimension from

Figure 4, is a balanced hierarchy represented as a star schema. The

R2RML mapping that produces the members in levels Month and Year

is the following:

<#TriplesMapMonth> a rr:TriplesMap ;

rr:logicalTable [ rr:tableName "Time" ] ;

rr:subjectMap [

rr:termType rr:IRI ;

rr:template "http://www.fing.edu.uy/instances/nw/Month#{MonthName}{Year}";];

rr:predicateObjectMap [

rr:predicate qb4o:memberOf ;

rr:object nw:month; ] ;

rr:predicateObjectMap [

rr:predicate nw:monthNumber ;

rr:objectMap [ rr:column "MonthNumber" ] ; ] ;

rr:predicateObjectMap [

rr:predicate nw:monthName ;

rr:objectMap [ rr:column "MonthName" ] ; ] ;

rr:predicateObjectMap [ rr:predicate nw:inYear;

rr:objectMap [

rr:termType rr:IRI ;

rr:template "http://www.fing.edu.uy/instances/nw/Year#{Year}" ] ;] .

<#TriplesMapYear> a rr:TriplesMap ;

rr:logicalTable [ rr:tableName "Time" ] ;

rr:subjectMap [

rr:termType rr:IRI ;

rr:template "http://www.fing.edu.uy/instances/nw/Year#{Year}" ; ] ;

rr:predicateObjectMap [ rr:predicate qb4o:memberOf ; rr:object nw:year ; ] ;

rr:predicateObjectMap [ rr:predicate nw:yearNumber ;

rr:objectMap [rr:column "Year"];].

The R2RML mapping above, generates triples like:

nwm:201101 qb4o:memberOf nw:month ;

nw:monthNumber 1; nw:monthName "January"; nw:inYear nwy:2011 .

nwy:2011 qb4o:memberOf nw:year ; nw:yearNumber 2011 .

Step 2 (Ragged hierarchies) These hierarchies can be represented

as snowflake schemas or as star schemas.

If h ∈ H is a ragged hierarchy composed of a set of levels L, repre-

sented as a snowflake schema, there exists a set of tables Th ∈ CIROLAP,

where each table ti ∈ Th represents a level in li ∈ L, and contains a

key attribute pki, and one attribute ai for each level attribute ati ∈ li.

For each pair li, li+1 ∈ h, represented as ti, ti+1 ∈ Th, such that

parentLevel(li,h) = li+1, there exists a optional foreign key attribute

fki ∈ ti referencing pki+1 ∈ ti+1. Note that these foreign key at-

tributes may contain null values. Given that R2RML template-valued

term mappings only produce results when the attributes used in the

template are not null, to generate instances we can apply the same

strategy than the one used in balanced hierarchies represented as a

snowflake schema.

As an example, the Geography dimension, obtained from Figure 4, is

a ragged hierarchy represented as a snowflake schema ( Figure 16).

We next show the R2RML mapping that produces the members in

level City using data from the table City. Members in this level may

have a corresponding one in the State or Country level, but not in both.

[ September 19, 2016 at 12:46 – ]



5.2 from relational dws to qb4olap 51

The mapping in lines 10 to 14 implements the RUP relationship be-

tween members of the City and State levels (represented in the rela-

tional model via a value different than null in attribute StateKey in

the City table, and a foreign key to the State table). Analogously, the

mapping to the Country level is presented in lines 10 to 14.

1 <#TriplesMapCity> a rr:TriplesMap ;

2 rr:logicalTable [ rr:tableName "City" ] ;

3 rr:subjectMap [

4 rr:termType rr:IRI ;

5 rr:template

6 "http://www.fing.edu.uy/inco/cubes/instances/northwind/City#{CityKey}";];

7 rr:predicateObjectMap [ rr:predicate qb4o:memberOf ; rr:object nw:city ; ] ;

8 rr:predicateObjectMap [ rr:predicate nw:cityName ;

9 rr:objectMap [ rr:column "CityName" ];] ;

10 rr:predicateObjectMap [ rr:predicate nw:inState;

11 rr:objectMap [

12 rr:termType rr:IRI ;

13 rr:template

14 "http://www.fing.edu.uy/inco/cubes/instances/northwind/State#{StateKey}"];].

15 rr:predicateObjectMap [ rr:predicate nw:inCountry;

16 rr:objectMap [

17 rr:termType rr:IRI ;

18 rr:template

19 "http://www.fing.edu.uy/inco/cubes/instances/northwind/Country#{CountryKey}"];].

The triples shown below, are generated by the mapping above.

They represent the “Vatican” city in the “Vatican” country, and “Sal-

vador” city in the Brazilian state of “Bahia”.

nwci:Vatican qb4o:memberOf nw:city;

nw:cityName "Vatican";

nw:inCountry nwco:1025.

nwci:Salvador qb4o:memberOf nw:city;

nw:cityName "Salvador";

nw:inState nwst:926;

If h ∈ H is a ragged hierarchy composed of a set of levels L, rep-

resented as a star schema, we can also apply the strategy for balanced

hierarchies.

Step 3 (Recursive hierarchies) These hierarchies are represented

as a table containing all attributes in a level, and a foreign key to the

same table, relating children members to their parents. If h ∈ H is a

parent-child hierarchy, composed of a pair of levels li, li+1 ∈ h such

that parentLevel(li,h) = li+1, there exists a table th ∈ CIROLAP

which contains a key attribute pki that identifies the members of li
and an attribute fki ∈ th, that identifies the members of li+1 and is a

foreign key referencing pki ∈ th.

The mapping for level members in a recursive hierarchy is similar

to the one presented for a star representation of a balanced hierar-

chy, since all hierarchy levels are populated from the same table (

rr:logicalTable). The Supervision hierarchy in Figure 4 is an example

of this. Its relational representation is depicted in the Employee table

in Figure 16. For this hierarchy we have the following.

<#TriplesMapEmployee> a rr:TriplesMap ;

rr:logicalTable [ rr:tableName "Employee" ] ;

rr:subjectMap [

rr:termType rr:IRI ;

rr:template "http://www.fing.edu.uy/instances/nw/Employee#{EmployeeKey}" ; ];

rr:predicateObjectMap [ rr:predicate qb4o:memberOf ; rr:object nw:employee ; ] ;

rr:predicateObjectMap [ rr:predicate nw:firstName ;
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rr:objectMap [ rr:column "FirstName" ] ; ];

rr:predicateObjectMap [ rr:predicate nw:lastName ;

rr:objectMap [ rr:column "LastName" ] ; ] ;

rr:predicateObjectMap [ rr:predicate nw:supervises;

rr:objectMap [

rr:termType rr:IRI ;

rr:template

"http://www.fing.edu.uy/instances/nw/Employee#{SupervisorKey}"];].

We show next some triples generated by the R2RML mapping.

nwe:5 qb4o:memberOf nw:employee ;

nw:firstName "Steven" ; nw:lastName "Buchanan" ; nw:supervises nwe:2 .

Step 4 (Nonstrict hierarchies). Here, each level is represented in

a different table, and a bridge table is used to represent the many-to-

many relationship between level members. If h ∈ H is a nonstrict

hierarchy, composed of a set of levels L, there exists a set of tables

Th ∈ CIROLAP, one table ti ∈ Th with a key attribute pki, for each

level li ∈ L. For each pair of levels li, li+1 ∈ h, represented as

ti, ti+1 ∈ T , such that parentLevel(li,h) = li+1 and members of

li have exactly one associated member in li+1, the mapping is the

same as for the snowflake representation of balanced hierarchies. If

members of li have more than one associated member in li+1, there

exists a bridge table bi ∈ T that contains two attributes fki, fki+1 ref-

erencing pki ∈ ti and pki+1 ∈ ti+1 respectively. Thus, each pair of

levels is populated by three triple maps rr:TriplesMap: two of them

generate level members, while the third one uses the bridge table as

rr:logicalTable to generate parent-child relationships between level

members.

The Territories hierarchy in Figure 4, represented in the relational

model of Figure 16, is nonstrict. The R2RML mapping that generates

the parent-child relationship between members in the Employees and

City levels, in the Territories hierarchy is given next.

<#TriplesMapTerritories>

rr:logicalTable [ rr:tableName "Territories" ] ;

rr:subjectMap [

rr:template "http://www.fing.edu.uy/instances/nw/Employee#{EmployeeKey}";];

rr:predicateObjectMap [ rr:predicate nw:worksIn ;

rr:objectMap [

rr:termType rr:IRI ;

rr:template "http://www.fing.edu.uy/instances/nw/City#{CityKey}" ] ; ] .

The R2RML mapping generates triples like the following ones.

nwe:5 nw:worksIn nwci:98, nwci:101, nwci:115, nwci:117, nwci:124 .

Step 5 (Facts) For each fact F, CIRDF = CIRDF ∪ t; t is an R2RML

rr:TripleMap that generates fact instances (observations). The compo-

nents of t are as follows: a rr:logicalTable, a rr:subjectMap, which is

an IRI built using the rr:template f{FKEY}, a rr:predicateObjectMap stat-

ing the observations dataset, a rr:predicateObjectMap for each level

related to the fact, and one rr:predicateObjectMap for each measure.

FKEY provides a unique value for each fact, and can be obtained from

a fact table column, or concatenating the keys of all the level members

that participate in the fact.
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The R2RML mapping that generates the members in the Sales facts

is shown below. Note that, in this case, the concatenation of the at-

tributes OrderLine and OrderLineNo from the table Sales can be used to

identify each fact. Also note the representation of the role-playing

dimensions, and the key in rr:template.

<#TriplesMapSales> a rr:TriplesMap ;

rr:logicalTable [ rr:tableName "Sales" ] ;

rr:subjectMap [

rr:termType rr:IRI ;

rr:template "http://www.fing.edu.uy/instances/nw/Sale#{OrderNo}_{OrderLineNo}";

rr:class qb:Observation ; ] ;

rr:predicateObjectMap [ rr:predicate qb:dataSet ; rr:object nwi:dataset1 ; ] ;

rr:predicateObjectMap [ rr:predicate nw:customer ;

rr:objectMap [

rr:termType rr:IRI ;

rr:template "http://www.fing.edu.uy/instances/nw/Customer#{CustomerKey}"];] ;

rr:predicateObjectMap [ rr:predicate nw:employee ;

rr:objectMap [

rr:termType rr:IRI ;

rr:template "http://www.fing.edu.uy/instances/nw/Employee#{EmployeeKey}"];];

rr:predicateObjectMap [ rr:predicate nw:orderDate ;

rr:objectMap [

rr:termType rr:IRI ;

rr:template "http://www.fing.edu.uy/instances/nw/Time#{OrderDateKey}" ] ; ];

rr:predicateObjectMap [ rr:predicate nw:dueDate ;

rr:objectMap [

rr:termType rr:IRI ;

rr:template "http://www.fing.edu.uy/instances/nw/Time#{DueDateKey}" ] ; ];

rr:predicateObjectMap [ rr:predicate nw:supplier ;

rr:objectMap [

rr:termType rr:IRI ;

rr:template "http://www.fing.edu.uy/instances/nw/Supplier#{SupplierKey}"];];

rr:predicateObjectMap [ rr:predicate nw:quantity ;

rr:objectMap [ rr:column "Quantity" ] ; ] ;

rr:predicateObjectMap [ rr:predicate nw:unitPrice ;

rr:objectMap [ rr:column "UnitPrice" ] ; ] ;

rr:predicateObjectMap [ rr:predicate nw:salesAmount ;

rr:objectMap [ rr:column "SalesAmount" ] ; ] .

The triples shown next, are produced by the R2RML mapping

above.

@prefix nws: <http://www.fing.edu.uy/inco/cubes/instances/northwind/Sale#>

nws:10248_1 a qb:Observation,

qb:dataSet <http://www.fing.edu.uy/inco/cubes/instances/northwind#dataset1> ;

nw:customer nwc:357 ;

nw:employee nwe:5 ;

nw:orderDate nwt:4 ;

nw:dueDate nwt:32 ;

nw:supplier nws:5 ;

nw:quantity 12 ; nw:unitPrice 14 ; nw:salesAmount 168 .

5.2.2 Implementation

We have implemented the approach in Section 5.2.1. We denoted such

implementation as the QB4OLAP Engine. This engine takes as input

the specification of a MD data cube, and its relational implementation

(a set of relational tables), and produces two RDF graphs that use

the QB4OLAP vocabulary. One of these graphs represents the schema

of the cube and the other one an instance of the cube. The graphs are

stored in an RDF triple store, which also implements an SPARQL
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endpoint. This allows publishing the cubes on the web, and offering

the capability of performing queries over them.

Given that there is no machine-processable and standard format to

represent the cube schema in traditional ROLAP systems, in practice,

this information is usually stored in proprietary formats which are

not interchangeable between different vendors. One exception is the

case of the Pentaho Mondrian open-source OLAP server.1 The Mon-

drian schema2 is an XML document that defines a MD database. It

contains a logical model, consisting of cubes, dimensions, hierarchies,

and members, and a mapping of this model into a physical one. The

physical model is the source of the data which is presented through

the logical model, typically, a star schema, implemented as a set of ta-

bles in a relational database. Mondrian supports star, snowflake, and

starflake schemas.

QB4OLAP Engine is composed of several modules that tackle each

one of the extraction and transformation processes. Figure 17 depicts

the data and control flows between these modules, and the interaction

with external components.

Relational

database

Cube Schema

(QB4OLAP)

Mapping File

(R2RML)

Cube Instance

Translator

Parser

XML Mondrian

Schema

R2RML Procesor

Wrapper

RDF Triple

Persistence

Cube Schema

Translator

Cube Instances

(QB4OLAP)

R2RML Procesor

TripleStore

(Virtuoso)

Figure 17: QB4OLAP Engine architecture.

The parser component first validates the input XML file that con-

tains the Mondrian schema against its DTD. Then, it extracts the log-

ical model of the cube, and the mappings onto the physical model,

creating an in-memory representation of this information that will

be used throughout all the transformation processes. The cube schema

translator is responsible for translating the logical model of the data

cube into RDF, producing as output a set of RDF triples that represent

the schema of the cube using QB4OLAP.

The cube instance translator is responsible for translating the data

in the relational database into RDF triples, that represent instances

of the data cube. That means, it generates triples, using QB4OLAP,

1 http://www.community.pentaho.com/projects/mondrian/

2 http://www.mondrian.pentaho.com/documentation/schema.php
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and the schema of the cube, namely: level members with their cor-

responding attribute values, parent-child relationships between level

members, and fact instances. The task at hand corresponds to the

more general problem of providing an RDF view over relational data.

Instead of directly generating triples that represent the instances, this

component produces a set of R2RML mappings, that encodes how to

produce these instances from the data stored in the physical model

of the cube. Then, this set of R2RML mappings can either be used to

generate a static set of triples that represent the underlying relational

data (data materialization) or to provide a non-materialized RDF view

of the relational data (on-demand mapping). Each of these strategies

has a set of well-known advantages and disadvantages [10]. In our

current implementation we have chosen to materialize the triples that

represent the instance. This decision is mainly based on the static na-

ture of the underlying data (there in, in general, no need for updates

in a DW). After the mappings are obtained, the R2RML processor wrap-

per interacts with an R2RML processor, which actually builds the RDF

triples. Finally, the RDF triples persistence module stores all the triples

into a triplestore.

5.3 enriching qb datasets using qb4olap

The QB4OLAP vocabulary is compatible with QB, in the sense that

QB4OLAP cube schemas can be built on top of data cube instances

(observations) already published using QB. Existing applications, or

applications that do not require OLAP style-analysis, can still use

the QB schema and instances. Therefore, the cost of adding OLAP

capabilities to existing datasets is the cost of building the new schema,

in other words, the cost of building the analysis dimensions while the

cube instances remain untouched. We call this process data enrichment.

As already mentioned, one of the main differences between QB and

QB4OLAP is the possibility of the latter of specifying a dimension

hierarchy. On the contrary, QB allows only to define dimension mem-

bers to be hierarchically organized into a skos:ConceptScheme struc-

ture using the skos:narrower property or its inverse skos:broader.

This concept scheme represents a hierarchy of level members. There-

fore, generating a QB4OLAP cube from a QB cube requires produc-

ing several pieces of information, not present in a typical QB data set,

among them:

• The hierarchy of levels (structural metadata).

• At the dimension instance level, the association between mem-

bers and dimension levels, and RUP functions between mem-

bers.

• The association between measures and aggregate functions.

This information can be inferred from internal and/or external data,

either (semi-)automatically or manually (e.g., by a curator). Exploit-

ing the existing QB semantics (i.e., metadata) and the analysis of the
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data set instances (i.e., data), enables the automatic discovery of po-

tentially new metadata concepts (e.g., new dimension levels), which

could be suggested to the user, or required by her. In addition, the

user may help the (semi-)automatic procedures in the taks of adding

missing semantics and conflict resolution [43]. If the structural in-

formation could not be produced or obtained, we must assume a

hierarchy of only one level, which can be created from the QB data

straightforwardly.

Another problem to be addressed when producing a QB4OLAP

data set from a QB one, refers to the generation of IRIs. Recall that

observations in QB are expressed using dimensions, while QB4OLAP

requires observations to be expressed in terms of dimension levels. To

avoid rewriting observations, we propose to reuse the IRIs that repre-

sent dimensions in the QB DSD, to represent the bottom level of each

dimension in the generated QB4OLAP DSD.

Algorithm 1 receives a QB cube schema, and producesa QB4OLAP

cube schema. The new schema must be linked to the dataset contain-

ing the (existing) observations. The algorithm creates and populates

the dimension structure, and creates a new DSD. We assume that,

for each dimension, a hierarchy of levels is known, and that we also

know how to populate each level.

Algorithm 1 Creating a cube in QB4OLAP from a cube in QB

Input: dsd1,the data structure definition of a data cube c1 in QB; D1 the set of dimensions
in c1; M, the set of pairs (mi,agi) where mi is a measure and agi is its corresponding
aggregate function. For each di ∈ D1, at least one hierarchy of levels hi is known. For
each level li ∈ hi a set of level members lmi is known.

Output: dsd2, the data structure definition of a data cube c2 in QB4OLAP, obtained from the
QB data set.

1: for all di ∈D1 (di a qb:DimensionProperty) do
2: Create a new dimension dj (dj a qb:DimensionProperty)
3: Let Hi be the set of known hierarchies for di

4: for all hi ∈Hi do
5: Add a triple (hi a qb4o:Hierarchy)
6: Add triples (hi qb4o:inDimension dj) and (dj qb4o:hasHierarchy hi)
7: for all li ∈ hi do
8: Add triples (li a qb4o:LevelProperty) and (hi qb4o:hasLevel li)
9: Let lmi be the set of know member levels of li

10: for all mei ∈ lmi do
11: Add a triple (mei qb4o:memberOf li).
12: end for
13: end for
14: for all (lj, lk) ∈ hi such that lj→ lk do
15: Add triples ( _hsjk a qb4o:HierarchyStep), (_hsjk qb4o:inHierarchy hi)
16: Add triples ( _hsjk qb4o:childLevel lj), (_hsjk qb4o:parentLevel lk)
17: Add a triple ( _hsjk qb4o:rollup rupjk), being rupjk the RDF property that

implements→
18: end for
19: if li is the bottom level in hi then
20: Add a triple (dsd2 qb:component [qb4o:levelli])
21: end if
22: end for
23: end for
24: for all mi such that (dsd1 qb:component [qb:measure mi]) do
25: Add a triple (dsd2 qb:component [qb:measure mi;qb:hasAggregateFunction agi])
26: end for

The cube structure definition we presented in Example 4.1.1 is the

result of applying Algorithm 1 to the cube structure in Example 3.2.1.

To conclude, we analyze the complexity of Algorithm 1 with re-

spect to the size of the components of the cube.
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complexity. Let c = (x,D,M) be a cube schema, where D is the

set of dimensions, and M is the set of measures. For each di ∈ D, we

denote Gdi
the directed acyclic graph (DAG) representing the dimen-

sion schema. For each level li ∈ Gdi
, LMli is the set of level members.

Let LMdi
=

⋃i=|Ldi
|

i=1 LMli .

Proposition 5.3.1. The upper complexity bound for Algorithm 1 is

given by O(
∑|D|

i=0 (|nodes(Gdi
)|+ |edges(Gdi

)|+ |LMdi
|) + |M|). The

upper bound of |edges(Ldi
)| is given by

∑k
j=1 |nj−1|.|nj|, where nj is

the set of nodes in Gdi
at distance j from the bottom node in Gdi

, and

k is the distance between the bottom and top (i.e., All) nodes.

Proposition 5.3.1 shows that the main source of complexity is the

size of the set of dimension level members, which is usually small,

compared to the set of observations (facts).

5.3.1 Implementation

In a joint work with other researchers in the field [44], we have pro-

duced QB2OLAP, a tool to semi-automatically enrich QB data sets

with QB4OLAP semantics. By exploring the data set, the system de-

fines dimension levels and hierarchies, and generates the correspond-

ing QB4OLAP triples. The workflow of the Enrichment process is

presented in Figure 18.

Figure 18: QB2OLAP enrichment workflow [44]

First, we have the Redefinition Phase, where elements of the input QB

cube are redefined according to QB4OLAP semantics, i.e., dimensions

are redefined as levels, while measures are copied and an aggregate

function is assigned to them. Starting from the levels of this redefined

schema, the Enrichment Phase collects level instances and their proper-

ties, discovering candidate hierarchies based on functional dependen-

cies. Finally, QB4OLAP triples are produced in the Triple Generation

Phase. The tool is implemented in Java 8, and the Jena 2.13.0 library3

is used to manipulate RDF. QB and QB4OLAP graphs, and Virtuoso

Open Source (version 7)4 is used as triplestore. The module GUI is

implemented in SWT.

3 https://jena.apache.org/

4 http://virtuoso.openlinksw.com/dataspace/doc/dav/wiki/Main
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5.4 summary

In this chapter we have shown different strategies to create QB4OLAP

cubes, illustrating the three main ways in which QB4OLAP is in-

tended to be used: creating cubes from scratch (using a MD model),

exporting an existing relational DW, and enriching existing QB data

sets at the minimum possible cost. First, we showed how advanced

MD design features can be represented in QB4OLAP. Then, we pro-

vided algorithms and tools to obtain QB4OLAP data cubes from a

ROLAP DW. Finally, we discussed how to create a QB4OLAP schema

to enrich a data set published using the QB vocabulary.
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6
Q U E RY I N G Q B 4 O L A P D ATA C U B E S

"The Answer to the Great Question...
Of Life, the Universe and Everything...

Is... Forty-two,’ said Deep Thought,

with infinite majesty and calm."

Douglas Adams, The Hitchhiker’s Guide to the Galaxy

One of the goals of our work is to promote publishing and query-

ing QB4OLAP cubes. Typically, users in a self-BI environment, or

even traditional OLAP users, are hardly aware of SW models and lan-

guages, like RDF or SPARQL. However, they will easily capture the

idea of languages dealing with cube operations. In this chapter we

motivate this idea, and explain our approach to enable OLAP analy-

sis of QB4OLAP cubes, by users non-expert on SW technologies.

6.1 motivation and general scheme

To promote OLAP users to publish and analyze statistical and MD

data on the SW, we must make their lives easy. That means, they

should not be required to learn new languages or models that are

far from their field of expertise. To accomplish this, we believe that

the best way to proceed is to allow them to manipulate the object that

they know the best, namely, the data cube, and make them forget about

SW technicalities. This is why in this chapter we propose a high-level

language, denoted CQL, based on an algebra for OLAP. The idea is

that the user will write her queries at the conceptual level, and we

provide the mechanisms to translate CQL queries into SPARQL ones

over the QB4OLAP-based RDF representation (at the logical level). The

main advantage of this approach is that it allows users to perform

OLAP queries over QB4OLAP cubes, without dealing with RDF or

SPARQL. Also, SPARQL optimization tips and best practices can be

incorporated in the CQL to SPARQL translation process, producing

efficient SPARQL queries that would be hard to obtain for an average

user.

The query processing pipeline is shown in Figure 19. The process

starts with a CQL query that is first simplified. This stage aims at

rewriting the query to eliminate unnecessary operations, and reorder-

ing operations written in a sequence that is probably not the best one.

We remark that, in a self-service BI environment, users may not be

experts, even to write queries in simple languages like CQL. The sec-

ond step translates the simplified CQL query into a single SPARQL

expression, following a naïve approach. Finally, we apply SPARQL op-

timization heuristics to improve the performance of the naïve queries,

taking into consideration SPARQL performance improvement strate-

gies and physical data organization.

61

[ September 19, 2016 at 12:46 – ]



62 querying qb4olap data cubes

(1) Simplify
CQL query

(2) Translate
CQL to SPARQL

(3) Improve
SPARQL query

input:
CQL query

output 1:
SPARQL

query

output 2:
Improved
SPARQL

query

Figure 19: Our Query processing pipeline takes as input a CQL query and
produces SPARQL queries.

In the remainder of this chapter, we will explain in detail each step

in this pipeline. First, in Section 6.2, we present a formal data model

for OLAP data cubes, also showing that it is possible to represent data

cubes that adhere to this formal model using QB4OLAP. Then, in Sec-

tion 6.3 we present CQL, giving a precise semantics to the OLAP

operators that conform this language. In Section 6.4 we describe our

approach to CQL queries simplification. The last two sections are ded-

icated to SPARQL implementation of CQL queries. In Section 6.5 we

introduce the algorithms that produce naïve SPARQL implementa-

tions of CQL queries, while we discuss how these queries can be

improved in Section 6.6.

6.2 data model

Several data models for MD data are found in the literature. The data

model we use in the sequel is inspired on the user-centric conceptual

data model proposed by Ciferri et al. [6], where a thorough analysis

of MD data models and query languages is presented. We now intro-

duce the formal model for data cubes upon which we build our query

language. The asylum applications case, presented in Section 1.1.2, is

used to exemplify each formal concept.

Definition 6.2.1. (Dimension schema). A dimension schema is a tuple

〈d,L,→,H〉 where: (a) d is the name of the dimension; (b) L is a

set of pairs 〈l, Al〉, called levels, where l identifies a level in L, and

Al = 〈a1, . . . ,an〉 is a tuple of level attributes. Each attribute ai has a

domain Dom(ai); (c) ‘→’ is a partial order over the levels in L, with a

unique bottom level and a unique top level (All); (d) H is a set of pairs

〈hn,Lh〉, called hierarchies, where hn identifies the hierarchy, Lh ⊆ L,

and there is at least one path between the bottom level in d, and the

top level All that contains only the levels in Lh.

Example 6.2.1. (Citizenship dimension schema) The schema of the Cit-

izenship dimension in Figure 5 is defined as:

〈Citizenship L = {〈Country, 〈countryCode, countryName〉〉,

〈Continent, 〈continentCode, continentName〉〉,

〈GovernmentType, 〈governmentType〉〉,

〈All, 〈all〉〉};

‘ → ’ = {Country → Continent, Country → GovernmentType,
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Continent → All, GovernmentType → All};

H = {〈Geography, {Country, Continent, All}〉,

〈Government, {Country, GovernmentType, All}〉}

Definition 6.2.2. (Dimension instance). Given a dimension schema

〈d,L,→,H〉, a dimension instance Id is a tuple 〈〈d,L,→,H〉,Tl,R〉

where: (a) Tl is a finite set of tuples of the form 〈v1, v2, . . . , vn〉∀l such

that L = 〈l, 〈a1, . . . ,an〉〉 ∈ L, and ∀i, i = 1, . . . ,n, vi ∈ Dom(ai); (b) R

is a finite set of relations RUP
Lj

Li
,Li,Lj ∈ L, and where Li → Lj ∈ ‘→’,

called rollup relationships.

Remark 1. Most MD models assume that relations between parent

and child levels are actually functions, allowing only dimensions

where each member in the child level has exactly one associated mem-

ber in the parent level. Despite Definition 6.2.2 allows rollup relations,

in the next sections, and to simplify the presentation, we will work

with rollup functions.

Example 6.2.2. (Citizenship dimension instance) A possible instance

of the Citizenship dimension in Figure 5 is:

TCountry = {〈 ’AD’, ’Andorra’ 〉, . . . , 〈’ZW’, ’Zimbabwe’〉}

TContinent = {〈’AF’, ’Africa’〉, . . . , 〈’OC’, ’Oceania’〉}

TGovernmentType = {〈’Republic’〉, . . . , 〈’Unitary state’〉}

TAll = {〈 ’all’〉}

R = {RUPContinent
Country , RUPAll

Continent, RUPGovernmentType
Country , RUPAll

GovernmentType},

with RUPContinent
Country = {(〈 ’AD’, ’Andorra’〉, 〈’EU’, ’Europe’〉), . . . , (〈 ’ZW’,

’Zimbabwe’〉, 〈’AF’, ’Africa’〉)};

RUPGovernmentType
Country = {(〈 ’AD’, ’Andorra’〉, 〈’Unitary state’〉), . . . , (〈 ’ZW’,

’Zimbabwe’〉, 〈’Presidential system’〉)};

RUPAll
Continent = {(〈x〉, 〈all〉) |x ∈ TContinent};

RUPAll
GovernmentType = {(〈x〉, 〈all〉) |x ∈ TGovernmentType}.

Definition 6.2.3. (Cube schema). Assume that there is a set A of ag-

gregate functions (at this time we consider the typical SQL functions

Sum, Count, Avg, Max, Min, the ones addressed in [25]).

A cube schema is a tuple 〈Cn,D,M,F〉 where: (a) Cn is the name of

the cube; (b) D is a finite set of dimension schemas (Definition 6.2.1);

(c) M is a finite set of attributes, where each m ∈ M, called measure,

has domain Dom(m); (d) F : M → A is a function that maps measures

in M to an aggregate function in A.

Example 6.2.3. (Asylum_application cube schema) We define the cube

schema, presented in Figure 5 as:

〈 Asylum_application, {Sex,Age,Time,Application_type, Citizenship, Des-

tination}, {#applications},{#applications,Sum} 〉, where dimension Cit-

izenship is defined as in Example 6.2.1. We omit the definition of

the other dimensions, for the sake of brevity and to avoid redun-

dancy.

To define a cube instance we need to introduce the notion of cuboid.
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Definition 6.2.4. (Cuboid instance). Given: (a) A cube schema

〈Cn,D, M,F〉, where |D| = r and |M| = p, (b) A dimension instance

Idi
for each di ∈ D, i = 1, . . . , r; and (c) A set of levels VCb =

{L1,L2, . . . ,LD} where Lj ∈ Lj in di, i = 1, . . . , r, such that not two

levels belong to the same dimension, a cuboid instance Cb is a partial

function Cb : TL1
× · · · × TLD

→ Dom(m1)× · · · ×Dom(mM), where

mk ∈ M, ∀k,k = 1, . . . ,p. The elements in the domain of Cb are called

cells, and VCb it the set of levels of the cuboid.

Example 6.2.4. (Cuboid instance) Consider the cube schema defined

in Example 6.2.3. A possible instance of the cuboid Cb1, where

VCb1 ={Sex, Age, Month, Application_type, Country, Country} is pre-

sented in Figure 20, using a tabular representation, where the first

row lists the dimensions in the cube schema, and the second row lists

the level corresponding to this cuboid.

Figure 20: Tabular representation of a cuboid instance of the asy-
lum_application cube schema

Sex Age Time Application_type Citizenship Destination Measures

Sex Age Month Application_type Country Country #applications

F 18 to 34
201408,
August

2014
new applicant SY, Syria DE, Germany 330

F 18 to 34
201410,
October

2014
new applicant SY, Syria DE, Germany 490

M 18 to 34
201410,
October

2014
new applicant SY, Syria DE, Germany 2050

M 35 to 64
201408,
August

2014
new applicant SY, Syria DE, Germany 495

M 35 to 64
201410,
October

2014
new applicant SY, Syria DE, Germany 795

We can now define a lattice of cuboids referring to the same cube

schema, provided that we define an order between cuboids. We do

this next.

Definition 6.2.5. (Adjacent Cuboids). Two cuboids Cb1 and Cb2, that

refer to the same cube schema, are adjacent if their corresponding level

sets VCb1
and VCb2

differ in exactly one level, i.e., |VCb1
− VCb2

| =

|VCb2
−VCb1

| = 1.

Example 6.2.5. (Adjacent cuboids) Consider the cube schema defined

in Example 6.2.3, and the cuboids Cb1, Cb2, and Cb3 given by VCb1 =

{Sex, Age, Month, Application_type, Country, Country}, VCb2 = {All, Age,

Month, Application_type, Country, Country}, and VCb3 = {All, Age, Year,

Application_type, Country, Country}. According to Definition 6.2.5, Cb1
is adjacent to Cb2, and Cb2 is adjacent to Cb3, but Cb1 is not adjacent

to Cb3.

Definition 6.2.6. (Order between adjacent cuboids).

Given two adjacent cuboids Cb1 and Cb2, such that VCb1
− VCb2

=

{Lc} and VCb2
−VCb1

= {Lp}, and Lp and Lc are levels in a dimension

dk such that Lc → Lp; then, we define the order Cb1 � Cb2 between

both cuboids. Moreover, for each pair of adjacent cuboids Cb1 � Cb2,
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Sex Age Time Applica-
tion_type

Citizenship Destination Measures

All Age Month Application_type Country Country #applica-
tions

all 18 to 34 201408 new applicant SY, Syria DE, Germany 330

all 18 to 34 201410 new applicant SY, Syria DE, Germany 2540

all 35 to 64 201408 new applicant SY, Syria DE, Germany 495

all 35 to 64 201410 new applicant SY, Syria DE, Germany 795

(a) Cuboid Cb2

Sex Age Time Applica-
tion_type

Citizenship Destination Measures

All Age Year Application_type Country Country #applica-
tions

all 18 to 34 2014 new applicant SY, Syria DE, Germany 2870

all 35 to 64 2014 new applicant SY, Syria DE, Germany 1290

(b) Cuboid Cb3

Figure 21: Two cuboid instances of the asylum_application cube schema

each cell c = (c1, . . . , ck−1, ck, ck+1, . . . , cn, m1,m2, . . .ms) ∈ Cb2 can

be obtained from the cells in Cb1 as follows. Let (c1, . . . , ck−1,bk1,

ck+1, . . . , cn, m1,1,m2,1, . . .ms,1), (c1, . . . , ck−1,bk2, ck+1, . . . , cn,

m1,2,m2,2, . . . , ms,2), . . . , (c1, . . . , ck−1,bkq, ck+1, . . . , cn,m1,p,m2,p,

. . .ms,p) be all the cells in Cb1 where (bki
, ck) ∈ RUP

Lp
Lc

, i = 1 . . . q.

Measures in c ∈ Cb2 are computed as mi = AGGi(mi,1, . . . ,mi,j),

j = 1..q, where AGGi is the aggregate function related to mi.

Example 6.2.6. (Order between cuboids) Consider cuboids Cb1, Cb2,

and Cb3 in Example 6.2.5. Then Cb1 � Cb2, because Month → Year

holds, and Cb2 � Cb3, because Country → Continent holds.

Finally we define a cube instance as the lattice of all possible cuboids

that share the same cube schema.

Definition 6.2.7. (Cube Instance). Given a cube schema 〈Cn,D,M,F〉

where |D| = D and |M| = M, and a dimension instance Ii for each

Di ∈ D, i = 1, . . . ,D, a cube instance CI is the lattice {CB,�} where CB

is the set of all possible cuboids, and � is the order between adjacent

cuboids in CB.

A Cube Instance is the lattice composed of all cuboids that share the

same cube schema, defined over the � order relation. The bottom of

this lattice is the original cube, and the top is the cuboid with just

the All level for all the dimensions in the cube. If Cbi and Cbj are two

cuboids in the lattice, such that there is a path from Cbi to Cbj, we

say that Cbi �
∗ Cbj.

Example 6.2.7. (Cuboids of the asylum_application cube) Consider the

cube schema defined in Example 6.2.3. All possible combinations of

the levels in the six dimensions of the cube, lead to 216 cuboids, which

are organized in a lattice. Assuming the instance of cuboid Cb1 in Fig-

ure 20, Figure 21a and Figure 21b present tabular representations of

instances of cuboids Cb2, and Cb3 given by VCb2 ={All, Age, Month,

Application_type, Continent, Country}, and VCb3 ={All, Age, Year, Appli-

cation_type, Continent,Country}.
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6.2.1 Data cubes in QB4OLAP

We have shown that all the concepts in the formal model introduced

above, can be represented in QB4OLAP. This includes dimension

schemas (with all of their features, like attributes, levels, and hier-

archies), dimension instances, cube schemas, cube instance. The only

concept whose QB4OLAP representation we have not addressed so

far, is the concept of cuboids. We next define this notion, since we

need it in the sequel.

Definition 6.2.8. (Cuboid instance in QB4OLAP) A cuboid instance

in QB4OLAP is a set of qb:Observations organized in a qb:DataSet.

An instance of the qb:DataStructureDefinition class, represents the

set of levels in the cuboid and the property qb:structure is used

to relate them. To state the fact that a cuboid instance adheres to a

specific cube schema we use the property qb4o:isCuboidOf.

Before presenting an example, we define the representation of a

cube schema (according to Definition 6.2.3).

Definition 6.2.9. (Cube schema in QB4OLAP) A cube schema in

QB4OLAP is an instance of the qb:DataStructureDefinition class,

that represents the set of dimensions and measures in the cube.

Example 6.2.8. (Cube Schema in QB4OLAP) The QB4OLAP represen-

tation of the asylum_application cube schema is defined as follows.

sc:migr_asyappctzmCUBE

rdf:type qb:DataStructureDefinition ;

qb:component [ qb:measure sdmxm:obsValue ; qb4o:aggregateFunction qb4o:sum] ;

qb:component [ qb:dimension sc:sexDim ; qb4o:cardinality qb4o:ManyToOne] ;

qb:component [ qb:dimension sc:ageDim ; qb4o:cardinality qb4o:ManyToOne] ;

qb:component [ qb:dimension sc:timeDim ; qb4o:cardinality qb4o:ManyToOne] ;

qb:component [ qb:dimension sc:asylappDim ; qb4o:cardinality qb4o:ManyToOne] ;

qb:component [ qb:dimension sc:citizenshipDim ; qb4o:cardinality qb4o:ManyToOne] ;

qb:component [ qb:dimension sc:destinationDim ; qb4o:cardinality qb4o:ManyToOne] ;

skos:notation "migr_asyappctzmCUBE" .

Example 6.2.9. (Cuboid instance in QB4OLAP) Over the cube schema

in Example 6.2.8, we can define a cuboid that contains the lowest level

for each dimension in the cube (i.e., the bottom of the cuboid lattice).

Below we show the QB4OLAP representation of the set of levels of the

cuboid, the definition of a data set that represents the cuboid instance,

and also a cell in this cuboid (qb:Observation), which corresponds to

the last row in Figure 20.

sc:migr_asyappctzmBOTTOM

rdf:type qb:DataStructureDefinition ;

qb4o: isCuboidOf sc:migr_asyappctzmCUBE;

qb:component [ qb:measure sdmxm:obsValue; qb4o:aggregateFunction qb4o:sum ] ;

qb:component [ qb4o:level pr:sex ] ;

qb:component [ qb4o:level pr:age ] ;

qb:component [ qb4o:level sdmxd:refPeriod ] ;

qb:component [ qb4o:level pr:asyl_app ] ;

qb:component [ qb4o:level pr:citizen] ;

qb:component [ qb4o:level pr:geo ] ;

skos:notation "migr_asyappctzmBOTTOM" .
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eurostatdt:migr_asyappctzm

rdf:type qb:DataSet ;

qb:structure sc:migr_asyappctzmBOTTOM .

eurostatcell:M,CD,F,Y18-34,NASY_APP,BE,2013M03

rdf:type qb:Observation ;

qb:dataSet eurostat: migr_asyappctzm ;

pr:citizen citizen:CD ;

pr:sex sex:F ;

pr:age age:Y18-34 ;

pr:asyl_app asyl_app:NASY_APP ;

pr:geo geo:BE ;

measure:obsValue 30 ;

sdmxd:refPeriod time:201303 .

In Section 6.5 we discuss in detail how to compute the cuboids in

the lattice.

6.3 the cql language

We now introduce a high-level query language, which we denote

CQL. The language is based on an algebra for OLAP, and deals only

with cubes, independently of the underlying data types, or of how

the cube is actually implemented. Further, the data model introduced

in Section 6.2 allows use to define a precise semantics for the OLAP

operations supported by CQL. We present the language next.

CQL follows the ideas introduced by Ciferri et al. [6], where a clear

separation between the conceptual and the logical levels is made,

allowing users to manipulate cubes regardless of their underlying

representation. In that paper, an algebra, denoted Cube Algebra, is

sketched. CQL is a subset of such algebra, and we chose it mainly due

to two reasons: (i) It includes the most common OLAP operations; (ii)

The correctness of these algebra has been proven in [25], where such

a proof is given for the first time. The semantics we define for our

operations is equivalent to the one given in [25].

6.3.1 CQL Operations

The CQL language is composed of the OLAP operations presented in

Chapter 1: Roll-up, Drill-down, Slice, and Dice. In this section we

formalize them, in terms of our data model, and the notion of cuboid

lattice, which allows us to give the operations an elegant and precise

semantics.

We consider the following sets: C is the set of all the cuboids in a

cube instance, D is the set of dimensions, M is the set of measures, L

is the set of dimension levels, and B is the set of boolean expressions

over level attributes and measures. For clarity, and to simplify the

definitions, we assume that the aggregate function associated to the

measures is SUM, so we drop F from the cube schema definition.

The Roll-up operation is a function Roll-up: C×D× L → C that

summarizes data at a higher level in a dimension hierarchy. It is de-

fined as follows:
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Definition 6.3.1. (ROLL-UP operation) Given a cube instance CI with

schema 〈Cn,Din,Min〉, a cuboid Cin ∈ CI with its corresponding

set of levels VCin
, a dimension d ∈ Din with schema 〈d,L,→〉, and

two levels Lin, Lout in Din such that: Lin ∈ VCin
and Lin →∗ Lout,

then Roll-up(Cin,Din, Lout) returns a cuboid Cout ∈ CI such that

VCout
= (VCin

− {Lin})∪ {Lout}. Notice that Cin ≺∗ Cout in the lattice

CI.

The Drill-down operation is a function Drill-down: C×D×L →

C that disaggregates data down to a specific level in a dimension

hierarchy.

Definition 6.3.2. (DRILL-DOWN operation) Given a cube instance

CI with schema 〈Cn,Din,Min〉, a cuboid Cin ∈ CI with its corre-

sponding set of levels VCin
, a dimension d ∈ Din with schema 〈d,L,

→〉, and two levels Lin, Lout in Din such that: Lin ∈ VCin
and Lout

→∗ Lin, then Drill-down(Cin,Din, lout) returns a cuboid Cout ∈ CI

such that VCout
= (VCin

− {Lin}) ∪ {Lout}. Notice that Cout ≺ Cin in

the lattice CI.

It is straightforward to show, using the lattice of cuboids, that the

cuboid produced by a Drill-down on a dimension D is always reach-

able from the bottom of the lattice, so it can also be obtained perform-

ing a Roll-up over the same dimension D from the bottom cuboid.

We will use this result in the sequel.

The Dice operation is a function Dice: C× B → C that selects the

values in dimension levels and measures that satisfy a Boolean condi-

tion. It resembles the Selection (σ) operation in relational algebra.

Definition 6.3.3. (DICE operation) Given a cube instance CI with

schema 〈Cn,Din,Min〉, a cuboid Cin ∈ CI with its corresponding

set of levels VCin
, and a Boolean condition φ over the measures in

Min and/or the attributes of the levels in VCin
, Dice(Cin,φ) returns

a cuboid Cout ∈ C as follows:

(a) ci = (ci1 , . . . , cin ,mi1 , . . .mis) ∈ Cout

if ∃cj = (cj1 , . . . , cjn ,mj1 , . . .mjs) ∈ Cin and cip = cjp ∀p,p = 1, . . . ,n

miq = mjq ∀q,q = 1, . . . , s, and cj satisfies φ;

(b) VCout
= VCin

The Slice operation is a function Slice: C× (D ∪M) → C that re-

duces the dimensionality of a cube by removing one of its dimensions

or measures. In the case of eliminating a dimension, the Roll-up op-

eration is applied to this dimension in the cuboid before removing

it.

Definition 6.3.4. (SLICE operation) Given a cube instance CI with

schema 〈Cn,Din,Min〉, where | Din |> 1 or where | Min |> 1 a

cuboid Cin ∈ CI with its corresponding set of levels VCin
, and a di-

mension d ∈ Din, or a measure M ∈ Min, depending on the input

parameters. (1) Slice(Cin,d) returns a cuboid Cout ∈ C as follows:

(a) ci = (ci1 , . . . , cik−1
, cik+1

,mi1 , . . .mis) ∈ Cout

if ∃cj = (cj1 , . . . , cik−1
, all, cik+1

. . . , cjn ,mj1 , . . .mjs) and cj ∈ Roll-

up(Cin,d,All) and cip = cjp ∀p,p = 1, . . . ,n, p 6= k, and miq = mjq
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∀q,q = 1, . . . , s;

(b) VCout
= VCin

− {ld}, where ld is the level corresponding to dimen-

sion d in Cin.

(2) Slice(Cin,M) returns a cuboid Cout ∈ C as follows:

(a) ci = (ci1 , . . . , cin ,mi1 , . . . ,mik−1
,mik+1

, . . . ,mis) ∈ Cout

if ∃cj = (cj1 , . . . , cjn ,mj1 , . . . ,mjk−1
,mjk ,mjk+1

, . . . ,mjs) and cj ∈ Cin

and cip = cjp ∀p,p = 1, . . . ,n, and miq = mjq ∀q,q = 1, . . . , s, q 6= k;

(b) VCout
= VCin

From Definitions 6.3.1 through 6.3.4, it follows that Roll-up and

Drill-down only imply a navigation across a lattice (and do not mod-

ify it). Thus, we denote them Instance Preserving Operations (IPO). On

the other hand, we denote Dice and Slice as Instance Generating Op-

erations (IGO), since they induce a new lattice (because they reduce

the number of cells in the cuboid, or reduce the dimensionality of the

cube, respectively), whose bottom cuboid is the result of the corre-

sponding operation.

In the sequel we assume that the starting point in the navigation

path representing a CQL query, is a cuboid which is at the bottom

of a certain cube instance. Also, we will use the following properties.

The proofs can be found in [12].

Property 6.3.1. (Roll-up/Drill-down commutativity) A sequence of

two consecutive Roll-up (Drill-down) operations over different di-

mensions is commutative.

Property 6.3.2. (Roll-up/Drill-down composition) A sequence of

consecutive Roll-up and Drill-down operations over the same di-

mension D, is equivalent to a Roll-up from the bottom level of D, to

the level reached by the last operation in the sequence.

Property 6.3.3. (Roll-up/Drill-down identity) The application of

the Roll-up or Drill-down operation over a dimension D from a

level L to itself is equivalent to not applying the operation at all.

Property 6.3.4. (Slicing Roll-up and Drill-down) Doing a Slice op-

eration over a dimension D after a sequence of Roll-up and Drill-

down operations over D, is equivalent to apply only the Slice opera-

tion.

6.3.2 CQL syntax

We now show the syntax of CQL with an example over the asylum

applications case study. The complete CQL syntax diagrams are in-

cluded in Appendix B. Example 6.3.1 presents the CQL expression

for Query 1 below.

Query 1: Total asylum applications submitted by African citizens to France in 2013, (by
sex, time, age, and citizenship country)

Example 6.3.1. (CQL queries syntax) The following CQL query pro-

duces a cuboid that answers Query 1.

[September 19, 2016 at 12:46 - classicthesis ]



70 querying qb4olap data cubes

$C1:= ROLLUP (migr_asyappctzm, timeDim, year);

$C2:= ROLLUP ($C1,citizenshipDim,continent);

$C3:= DICE ($C2,(citizenshipDim|continent|continentName = "Africa"));

$C4:= DICE ($C3,(destinationDim|geo|countryName = "France" AND

timeDim|year|yearNum = 2013));

$C5:= DRILLDOWN ($C4,citizenshipDim,citizenship);

$C6:= SLICE ($C5,asylappDim);

$C7:= SLICE ($C6,destinationDim);

First, a Roll-up operation aggregates measures up to the Year level

in the Time dimension. To keep only the cells that correspond to

African citizens, a Roll-up is performed over the Citizenship dimen-

sion, up to the Continent level; then a Dice operation keeps cells cor-

responding to members of this level, that satisfy the condition over

the contName attribute. Another Dice operator restricts the results to

cells that correspond to France and to the year 2013. Then, a Drill-

down is applied to go back to the Citizenship level (the applicant’s

country). Finally, dimensions Application Type and Destination are sliced

out since we do not want them in the result. We use the notation

dimension|level|attribute in the Dice expressions.

6.3.2.1 Valid CQL Queries

Not all possible combination of CQL operations can be considered a

valid input to our CQL simplification process. We define well-formed

CQL queries as follows.

Definition 6.3.5. (Well-formed CQL query). A well-formed query q is

a sequence of CQL operations that satisfies the following conditions:

(i) There is at most one Slice operation over each dimension D or

measure M; (ii) Every Drill-down operation over a dimension D is

preceded by at least one Roll-up operation over the same dimension;

(iii) There is no Dice operation including conditions over measure

values, in-between a Roll-up and a Drill-down.

The reason why we prevent Dice operations including conditions

over measure values in-between a Roll-up and/or Drill-down, is

that we want to avoid storing additional information, in particular

the computation trace. We illustrate this situation in Example 6.3.2.

Example 6.3.2. (Condition (iii) in Definition 6.3.5) Consider the query:

Query 2: Total asylum applications per month by sex, time, age, citizenship, destination,
and application type, only for years where the total amount of applications is less than
100.

The program below answers Query 2.

$C1:=ROLLUP(migr_asyapp, timeDim, year);

$C2:=DICE($C1, obsValue < 100);

$C3:=DRILLDOWN($C2,timeDim, month);

First, a Roll-up aggregates measures up to the Year level on the

Time dimension. A Dice is then applied to keep cells that satisfy the

restriction over the measure value (that is, a previously aggregated mea-

sure). As results are expected at the Month level, we would need to

keep track of the cells in the cuboid at the Month level, that roll up to
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the years that satisfy the Dice condition at the Year level. Condition

(iii) in Definition 6.3.5 prevents this.

To summarize, the following patterns define the valid CQL queries,

using regular expression notation. Dicel and Dicem denote Dice op-

erations applied only over level attribute or measure values, respec-

tively.

p1 : (Slice∗|Dice∗|Roll-up∗)
+

p2 : (Slice∗|Roll-up+|Drill-down+|Dice+l )
+

p3 : (Slice∗|Roll-up+|Drill-down+|Dice∗l )
+

Dice+m

6.4 cql simplification

As we have already mentioned, CQL is aimed at being used by non-

experts. Thus, even well-formed CQL queries may include unneces-

sary operations that should be eliminated. Further, operations can be

reordered to reduce the size of the cuboid as early as possible. Based

on the properties defined in Section 6.3.1, we define the following set

of rewriting rules (we also indicate the properties on which the rules

are based).

Rule 1. Remove all the Roll-up or Drill-down operations with the

same origin and target level (Property 6.3.3).

Rule 2. Find sequences of Roll-up and/or Drill-down operations

over the same dimension d that do not have a DiceL operation in-

between, where L is a level in d. Find the last level Ld in the sequence.

If Ld differs from the bottom level of d (call it L0d), replace the group

of operations with a single Roll-up from L0d to Ld. Otherwise, re-

move all the operations in the group (Properties 6.3.1, 6.3.2, and 6.3.3).

Rule 3. If there is a Slice operation over a dimension d, and no Dice

operation that considers level members of d, move the Slice opera-

tion to the beginning of the query; otherwise move it to the end.

Rule 4. If there is a Slice operation over a measure M, and no Dice

operation that mentions M, move the Slice to the beginning of the

query; otherwise move it to the end.

Rule 5. If there is a Slice operation over a dimension d, a sequence

of Roll-up and/or Drill-down operations over d, and there is no

Dice operation that mentions levels of d, remove all the Roll-up and

Drill-down operations, and keep only the Slice operation (Prop-

erty 6.3.4).

Let qin and qout be the CQL query before and after the simplifi-

cation process, respectively. Then, qout satisfies the following proper-

ties (proofs available in Appendix B).

Property 6.4.1. If there is no Dice operation in qin, there is at most

one Roll-up, and no Drill-down operation, for each Dimension d

in qout.

Property 6.4.2. Slice operations are either at the beginning or at the

end of qout, but not in the middle.
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We conclude this section presenting an example of the simplifica-

tion process.

Example 6.4.1. (CQL simplification)

Query 3: Total asylum applications per year (by sex, time, age, destination, and application
type)

The following CQL query answers Query 3.

$C1:= ROLLUP (migr_asyappctzm, timeDim, year);

$C2:= ROLLUP ($C1,destinationDim,government);

$C3:= ROLLUP ($C2,citizenshipDim,continent);

$C4:= DRILLDOWN ($C3,destinationDim,country);

$C5:= SLICE ($C4,citizenshipDim);

The application of Rule 2 to $C2 and $C4 replaces them with a sin-

gle Roll-up on dimension Destination, from level Country to itself,

so it can be removed, according with Rule 1. By Rule 3, operation $C5

is moved to the beginning of the query. Finally, by Rule 5, $C3 can be

removed, as operation $C5 performs a Slice over the same dimension.

The result of the process is:

$C1:= SLICE (migr_asyappctzm,citizenshipDim);

$C2:= ROLLUP ($C1, timeDim, year);

6.5 from cql to sparql over qb4olap

The next step in the process is the translation of CQL queries into

SPARQL expressions over QB4OLAP cubes. We start by showing that

in a QB4OLAP representation, adjacent cuboids that satisfy the or-

der relation presented in Definition 6.2.6, can be computed using

SPARQL queries. Combining this rationale with the semantics of each

CQL operation presented in Section 6.3, we are able to provide al-

gorithms that implement each operation as SPARQL queries over

QB4OLAP-based RDF data cubes.

Before presenting the algorithms, we discuss on the structure of

the generated SPARQL queries, and introduce auxiliary functions.

SPARQL queries may return results in different formats. In partic-

ular SELECT queries return a table of values, while CONSTRUCT queries

return a graph (i.e., a set of triples). Since each operation returns a

cuboid in a certain cube instance, and since cuboids in QB4OLAP

are RDF graphs, it is clear that algebra operations should be imple-

mented in SPARQL using CONSTRUCT queries. However, since SPARQL

1.1 does not allow us to compute aggregations in a CONSTRUCT query,

we will use subqueries for this computation, thus producing two que-

ries: (a) an inner SELECT query to compute aggregations, and (b) an

outer CONSTRUCT query that generates the graph using the computed

results. Notice that the inner query is responsible for the actual com-

putation of values, while the outer query just generates the output as

a graph.

Also, to improve the clarity of the presentation of all the algorithms

in this section, we use the auxiliary functions defined in Table 3. We
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also use an abstract representation of a SPARQL query, where for

each query: (a) queryType can be SELECT or CONSTRUCT; (b) resultFor-

mat represents the set of variables and expressions included in the

SELECT clause, or the set of BGPs included in the CONSTRUCT clause,

depending on the type of the query; (c) grPatterns represents the set

of graph patterns in the WHERE clause; (d) subQueries represents the

set of subqueries in the WHERE clause; (e) filter represents a FILTER

clause; (f) and groupBy represents the set of variables included in

the GROUP BY clause. We assume that each of these parts can be ac-

cessed and modified, and we use the dot notation (".") to access them.

We also consider a function add(), such that add(s) appends s to a

particular part of a query. For example, given a query q such that

q.queryType =="SELECT”, q.resultFormat.add(v) adds the vari-

able v to the SELECT clause of q.

Table 3: Auxiliary functions

Function signature Description

newVarName() Generates and returns a unique SPARQL variable name.

val(v) Returns the value stored in variable v

levels(s) Returns all the levels in a schema s (i.e., all the values of ?l that
satisfy s qb:component ?c. ?c qb4o:level ?l)

getLevel(s,d) Returns the only level l that corresponds to dimension d in the
schema s (i.e. the only value of ?l that satisfies s qb:component ?c.
?c qb4o:level ?l. ?h qb4o:hasLevel ?l. ?h qb4o:inDimension ?d)

levelsPath(lo,ld,d) Returns a path of levels from level lo to ld in dimension d

getRollup(lc,lp,d) Returns the predicate that implements the RUP function from level
lc to level lp in dimension d

measures(s) Returns all the measures in a schema s (all the values of ?m that
satisfy s qb:component ?c. ?c qb:measure ?m)

aggFunction(m,s) Returns the aggregation function of measure m (all the val-
ues of ?f that satisfy s qb:component ?c. ?c qb:measure ?m
;qb4o:aggregateFunction ?f).

6.5.1 Computing Adjacent Cuboids

Algorithm 2 performs the computation of adjacent cuboids as pre-

sented in Definition 6.2.6. It takes as input a cuboid instance Cb1
represented in QB4OLAP, and a level Lp such that Lp /∈ VCb1

and

∃Lc ∈ VCb1
, where Lc → Lp holds in a dimension Dk; the algorithm

produces a SPARQL query that computes a cuboid instance Cb2 that

satisfies Cb1 � Cb2 (i.e. VCb1
−VCb2

= {Lc} and VCb2
−VCb1

= {Lp}).

We now present the algorithms that implement each CQL opera-

tion as a SPARQL query over QB4OLAP-based RDF data cubes.

6.5.2 IPO Operations as SPARQL Queries

According to Definition 6.2.7, a cube instance is the lattice {CB,�}

where CB is the set of all possible cuboids that adhere to a cube

schema, and � is the order relation between adjacent cuboids in

CB. As stated by Definition 6.2.5, for each pair of adjacent cuboids

Cb1 � Cb2, each cell in Cb2 can be computed from the cells in Cb1.
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Algorithm 2 Generates a SPARQL query that computes Cb2, such
that Cb1 � Cb2
Input: Cb1, a cuboid instance in QB4OLAP; Lp, a level such that Lc ∈ VCb1

and Lc→ Lp in
the lattice (L,→) of a dimension Dk

Output: query, a SPARQL CONSTRUCT query that represents a cuboid instance Cb2 that
satisfies Cb1 � Cb2

1: function CreateAdjacentCuboidInstance
2: Lc← getLevel(Dk)
3: for all L ∈ Levels = levels(Cb1) do
4: if L 6= Lc then
5: newVar(li)
6: query.resultFormat.add(?id , l, val(Li))
7: sq.resultFormat.add(val(Li))
8: sq.grPattern.add(?i , l, val(Li))
9: sq.groupBy.add(val(Li))

10: end if
11: end for
12: for all m ∈M = measures(Cb1) do
13: f = aggFunction(m)
14: newVar(mi); newVar(agi)
15: query.resultFormat.add(?id , m, val(agi))
16: sq.resultFormat.add(f(val(mi)) AS agi)
17: sq.grPattern.add(?i , m, val(mi))
18: end for
19: newVar(lmi),newVar(plmi)
20: rup← getRollup(Lc,Lp,Dk)
21: sq.grPattern.add(?i , val(Lc), val(lmi))
22: sq.grPattern.add(val(plmi), qb4o:memberOf, val(Lp))
23: sq.grPattern.add(val(lmi),rup,val(plmi))
24: sq.groupBy.add(plmi)
25: sq.resulFormat.add(plmi)
26: query.resultFormat.add(?id , Lp, val(plmi))
27: query.grPattern.set(sq)
28: return query

29: end function

Therefore, starting from the bottom cuboid in the lattice, which is the

cuboid instance whose cells are members of the bottom levels in each

dimension of the schema, all the possible cuboids that form the cube

instance can be computed incrementally.

To compute the Roll-up operation over a cuboid Cbin and a dimen-

sion d, it suffices to start at Cbin, and navigate the cube lattice visiting

adjacent cuboids that differ only in the level associated to dimension

d, until we reach a cuboid Cbout that has the desired level in that

dimension (note that this path is unique).

Remark 2. It is not necessary to compute all the cuboids in the path,

it suffices to compute the target cuboid. To do so, we must add all the

triples needed to traverse the dimension hierarchy up to the target

level, and aggregate measure values up to this level.

As already mentioned, two SPARQL queries are needed: an inner

query qin that traverses the dimension hierarchy and computes ag-

gregate values using GROUP BY, and an outer one, called qout that

builds triples based on the values computed in qin.

Algorithm 3 builds both queries simultaneously, using the add

function. Lines 2 and 3 state the query type for each query. Line 4

states that generated observations belong to the dataset newDS. Lines

6 through 12 project the members of each level in the schema into the

result of both queries, also adding triples to the WHERE clause of the
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inner query, and adding the variables that represent the level mem-

bers to the GROUP BY clause, also in the inner query. Lines 13 through

19 do the same for measures. In Lines 14 and 18, f represents the

SPARQL function corresponding to the aggregate function for each

measure, and f(val(mi)) is the string that should be included to cal-

culate the aggregated value (e.g sum(?m) if val(mi) =?m). Lines 20

to 33 add the triples needed to navigate the dimension hierarchy. Line

22 retrieves the RDF property that implements the RUP relation for

each step in the path. Line 24 adds to the inner query, a triple that

associates the level member with the observation (only for the base

level Lc in dimension d); Line 27 adds a triple that allows us to state

to which level the level member belongs, and line 29 retrieves the

parent level member of the current level applying the RUP function

obtained in Line 22 (this is done for all the levels in the path except for

the target level Lout. When level Lout is reached Lines 31 and 32 add

the target level to the GROUP BY and SELECT clauses of the inner query,

respectively, while Line 33 adds the target level to the outer query

result. Finally, Line 34 sets the inner query as a subquery within the

WHERE clause of the outer query, which is returned in Line 35. For

clarity, we have omitted the clause that generates the expression that

binds variable ?newObs to a dynamically generated IRI from the val-

ues in the observation.

Example 6.5.1. The SPARQL query generated by Algorithm 3 for

RollUp(Asylum_application, Citizenship, Continent) is:

CONSTRUCT {

?newObs a qb:Observation .

?newObs qb:dataSet queries:ejRollup.

?newObs sdmxd:refPeriod ?time .

?newObs pr:sex ?sex .

?newObs pr:geo ?geo.

?newObs pr:age ?age.

?newObs pr:asyl_app ?apptype.

?newObs sc:continent ?citContinent .

?newObs sdmxm:obsValue ?sumApp }

FROM <http://www.fing.edu.uy/inco/cubes/instances/migr_asyapp_clean>

FROM <http://www.fing.edu.uy/inco/cubes/schemas/migr_asyappctzmQB4O13>

WHERE {

SELECT ?newObs ?time ?sex ?geo ?age ?apptype ?citContinent

(SUM(xsd:integer(?m)) AS ?sumApp)

WHERE{

?obs qb:dataSet eurostatdt:migr_asyappctzm.

?obs sdmxd:refPeriod ?time .

?obs pr:sex ?sex ; pr:geo ?geo.

?obs pr:age ?age; pr:asyl_app ?apptype.

?obs sdmxm:obsValue ?m .

?obs pr:citizen ?citizen .

?citizen qb4o:memberOf pr:citizen.

?citizen sc:inContinent ?citContinent.

?citContinent qb4o:memberOf sc:continent.

bind (iri(concat(’http://www.fing.edu.uy/inco/cubes/instances/migr_asyapp’,

md5(concat(str(?time), str(?sex), str(?geo), str(?age), str(?apptype),

str(?citContinent))))) as ?newObs)

}

GROUP BY ?newObs ?time ?sex ?geo ?age ?apptype ?citContinent

}
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Algorithm 3 Generates a SPARQL query that implements a Roll-up

in QB4OLAP

Input: Cin, cuboid instance in QB4OLAP, where VCin
is the set of levels of the cuboid, and

dr is the data set that represents the cuboid instance; Lout is a level such that Lc ∈ VCin

and Lc→
∗ Lout in the lattice (L,→) of a dimension D.

Output: qout, a SPARQL CONSTRUCT query that represents a cuboid instance, Cout = Roll-
up(Cin,D, Lout).

1: function CreateRollUpQuery(Cin, D, Lout)
2: qout.queryType = ’CONSTRUCT’
3: qin.queryType = ’SELECT’
4: qout.grPatterns.add(?newObs , qb:dataSet , newDS)
5: Lc← getLevel(Cin,d)
6: for all L ∈ Levels = levels(Cin) do
7: if L 6= Lc then
8: Li←newVar()
9: qin.grPatterns.add(?obs , l, val(Li))

10: qin.groupBy.add(val(Li))
11: qin.resultFormat.add(val(Li))
12: qout.resultFormat.add(?newObs , l, val(Li))
13: end if
14: end for
15: for all m ∈M = measures(Cin) do
16: f← aggFunction(m)
17: mi←newVar()
18: agi←newVar()
19: qin.grPatterns.add(?obs , m, val(mi))
20: qin.resultFormat.add(f(val(mi)) AS agi)
21: qout.resultFormat.add(?newObs , m, val(agi))
22: end for
23: for all (Li,Lj) ∈ path = levelsPath(Lc,Lout,D) do
24: lmi←newVar()
25: rup← getRollup(Li,Lj,D)
26: if Li = Lc then
27: qin.grPatterns.add(?obs , val(Li), val(lmi))
28: else
29: plmi←newVar()
30: qin.grPatterns.add(val(plmi), qb4o:memberOf, val(Li))
31: if Li 6= Lout then
32: qin.grPatterns.add(val(lmi),rup,val(plmi))
33: else
34: qin.groupBy.add(plmi)
35: qin.resulFormat.add(plmi)
36: qout.resultFormat.add(?newObs , lp, val(plmi))
37: end if
38: end if
39: end for
40: qout.subqueries.add(qin)
41: return qout

42: end function
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In Section 6.4 we have discussed that it is possible to transform a

Drill-down operation into a Roll-up, therefore there is no need to

provide an specific implementation for Drill-down in QB4OLAP.

6.5.3 IGO Operations as SPARQL Queries

IGO operations take as input a cuboid in a cube instance, induce

a new cube instance, and return a cuboid over this newly induced

lattice of cuboids. In some cases (e.g. Slice) the operations also affect

the schema of the cube before producing the cube instance.

The Dice operation takes as input a cuboid in a cube instance, and

a boolean expression φ over measure values and/or attribute val-

ues, and returns a cuboid in a new cube instance keeping only the

cells from the input cuboid that satisfy φ. The implementation of

this operation in SPARQL selects the qb:Observations that satisfy φ.

Since measures and attributes are literals, conditions over them can

be implemented as FILTER clauses. Also, conditions that only involve

equality can be efficiently implemented via graph patterns, restricting

the result of the query to observations that are related to a particu-

lar level member. Inequalities over level members are represented as

FILTER clauses. Algorithm 4 generates the SPARQL implementation

of the Dice operation, which is also based in an inner query which

performs the filter, and an outer query that produces the results.

Example 6.5.2. (SPARQL query that implements the Dice operation)

The operation:

Dice (Asylum_application, ((201303<=month<=201307) ∨ (#applica-

tions >80) ∧ Destination.country.countryName = Belgium)) is imple-

mented in SPARQL as follows.

CONSTRUCT { ?obs ?p ?v}

FROM <http://www.fing.edu.uy/inco/cubes/instances/migr_asyapp_clean>

FROM <http://www.fing.edu.uy/inco/cubes/schemas/migr_asyappctzmQB4O13>

WHERE{

SELECT ?o ?p ?v

WHERE{

?obs a qb:Observation;

?obs qb:dataSet eurostatdt:migr_asyappctzm.

?obs sdmxd:refPeriod ?time.

?obs sdmxm:obsValue ?m.

?obs pr:geo ?lm1 .

?lm1 sc:countryName "Belgium"@en .

?time sc:yearMonthNum ?timeMonthNum.

?obs ?p ?v.

FILTER (?timeMonthNum >= 201303 && ?timeMonthNum <= 201307&& xsd:integer(?m)>80)

}

}

The Slice operation comes in two flavors. In one case, it takes as in-

put a cuboid instance and a dimension. In the other, it takes a cuboid

instance and a measure. In both cases the implementation of this oper-

ation in QB4OLAP requires the creation of a new schema, where the

input dimension or the measure are removed. In the case where the

operation receives a dimension (Slice(Cin,D)), the new cube instance
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Algorithm 4 Generates a SPARQL query that implements a Dice in
QB4OLAP

Input: Cin, a cuboid instance in QB4OLAP, with its corresponding set of levels VCin
, a

boolean condition φ over the measures in Min, and/or over the attributes of the levels
in VCin

; dr is the data set that represents the cuboid instance.
Output: qout, a SPARQL CONSTRUCT query that represents a cuboid instance. Cout =

Dice(Cin,φ)

1: function CreateDiceQuery(Cin,φ)
2: qout.queryType = ’CONSTRUCT’
3: qin.queryType = ’SELECT’
4: lvars = []
5: mvars = []
6: bgpsfilter = []
7: qout.grPatterns.add(?newObs , qb:dataSet , newDS)
8: for all L ∈ Levels = levels(Cin) do
9: Li←newVar()

10: lvars[l] = Li

11: qin.grPatterns.add(?obs , l, val(Li))
12: qin.resultFormat.add(val(Li))
13: qout.resultFormat.add(?newObs , l, val(Li))
14: end for
15: for all m ∈M = measures(Cin) do
16: mi←newVar()
17: mvars[m] = mi

18: qin.grPatterns.add(?obs , m, val(mi))
19: qin.resultFormat.add((val(mi))
20: qout.resultFormat.add(?newObs , m, val(agi))
21: end for
22: treeCond←parseCondition(φ)
23: procCondition(treeCond, lvars,mvars, bgpsfilter,condfilter)
24: for all bgp ∈ bgpsfilter do
25: qin.grPatterns.add(bgp)
26: end for
27: qin.filter.add(condfilter)
28: qout.subqueries.add(qin)
29: return qout

30: end function
Input: tree is a bin tree representing a boolean condition φ. Internal nodes represent op-

erators (AND,OR,NOT). Leaves represent conditions over level attributes or measure
values.lvars is the set of level members, mvars is the set of measure values

Output: qout is a SPARQL CONSTRUCT query that represents a cuboid instance Cout =
Dice(Cin,φ)

31: function procCondition(tree, lvars,mvars,bgps, filter)
32: if tree = leaf then
33: if tree.type = "LEVEL" then
34: v←findVariable(tree.element, lvars)
35: la←newVar()
36: bgps.add(v , tree.level, la)
37: filter = (la, tree.oper, tree.value)
38: else
39: v←findVariable(tree.element,mvars)
40: filter = (v, tree.oper, tree.value)
41: end if
42: else
43: procCondition(tree.left, lvars,mvars, bgpsleft,filterleft)
44: procCondition(tree.right, lvars,mvars, bgpsright,filterright)
45: bgps.add(bgpsleft)
46: bgps.add(bgpsright)
47: filter.add(filterleft,tree.oper,filterright)
48: end if
49: end function
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Cout is computed as (Roll-up(Cin,D, All)). The SPARQL query gen-

eration algorithm is straightforward, and we omit it here to avoid

redundancy.

6.5.4 Putting all Together

By combining the algorithms presented above, we can produce a sin-

gle SPARQL expression that implements a CQL query.

Query 4: Total asylum applications per year submitted by Asian citizens to France or
United Kingdom, where applications count > 5000 (by sex, time, age, citizenship country,
and destination country)

$C1 := ROLLUP (migr_asyappctzm, citizenshipDim,continent);

$C2 := ROLLUP ($C1, timeDim, year);

$C3 := DICE ($C2, (citizenshipDim|continent|continentName = "Asia"));

$C4 := DICE ($C3, ( obsValue > 5000 AND

(destinationDim|country|countryName = "France")

OR (destinationDim|country|countryName = "United Kingdom")));

Example 6.5.3. (CQL to SPARQL translation)

The SPARQL query below, produced by our translation algorithms,

implements Query 4. It contains a subquery, where aggregated val-

ues are computed, and an outer query where the FILTER conditions

that implement the Dice operations are applied. Lines 10 through 12

implement the first roll-up (C1). Variable ?lm1 will be instantiated

with each member of the Country level in the Citizen dimension hier-

archy, related to an observation ?o (lines 10 and 11). Then, we navi-

gate the hierarchy up to the level Continent, using the rollup property

sc:inContinent (line 12). The variable ?plm1 will contain the conti-

nent corresponding to the country that instantiates ?lm1. It is placed

in the SELECT clause of the inner query (line 5), in the GROUP BY clause

of the inner query (line 25), and in the result of the outer query (line

1). Analogously, the navigation that corresponds to the Rollup in C2

is performed in lines 13 through 15. Lines 16 to 19 instantiate the

level members of the remaining dimensions in the cube, which are

also added to the GROUP BY clause, and to the SELECT clause of the in-

ner and outer query. Line 9 retrieves the value of the measure in each

observation, and the SUM aggregate function computes ?ag1 in line

5. The aggregated value is added to result of the outer query (line 1).

In this case, measure values are converted to integer before applying

the SUM function due to format restrictions of Eurostat data. Finally,

to implement the Dice operation in statement C3, we need to obtain

the name of each continent (line 20) and then use a FILTER clause

to keep only the cells that correspond to “Asia” (line 22). The Dice

operation in statement C4 is split. The restriction on country names

is implemented adding lines 23 and 24 to the FILTER clause (country

names are retrieved in line 21), while the restriction on the measure

values must be performed after the aggregation, and is implemented

by the FILTER clause of the outer query (line 26). The REGEX clause

evaluates a regular expression.
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1 SELECT ?plm1 ?plm2 ?lm3 ?lm4 ?lm5 ?lm6 ?ag1

2 FROM loc-ins:migr_asyapp_clean

3 FROM loc-sch:migr_asyappctzmQB4O13

4 WHERE {

5 { SELECT ?plm1 ?plm2 ?lm3 ?lm4 ?lm5 ?lm6 (SUM(xsd:integer(?m1)) as ?ag1)

6 WHERE {

7 ?o a qb:Observation .

8 ?o qb:dataSet data:migr_asyappctzm .

9 ?o sdmx-meas:obsValue ?m1 .

10 ?o pr:citizen ?lm1 .

11 ?lm1 qb4o:memberOf pr:citizen . ?lm1 sc:inContinent ?plm1 .

12 ?plm1 qb4o:memberOf sc:continent .

13 ?o sdmx-dim:refPeriod ?lm2 .

14 ?lm2 qb4o:memberOf sdmx-dim:refPeriod . ?lm2 sc:inYear ?plm2 .

15 ?plm2 qb4o:memberOf sc:year .

16 ?o pr:geo ?lm3 .

17 ?o pr:sex ?lm4 .

18 ?o pr:age ?lm5 .

19 ?o pr:asyl_app ?lm6 .

20 ?plm1 sc:continentName ?plm11 .

21 ?lm3 sc:countryName ?lm31 .

22 FILTER ( REGEX (?plm11,"Asia" , "i") &&

23 (REGEX (?lm31,"France" , "i") ||

24 REGEX (?lm31,"United Kingdom" , "i")) ) }

25 GROUP BY ?plm1 ?plm2 ?lm3 ?lm4 ?lm5 ?lm6

26 } FILTER ( ?ag1 > 5000) }

6.6 sparql queries improvement

We have shown that we can automatically produce naïveSPARQL

queries to implement CQL queries over QB4OLAP. To improve the

performance of such queries, we adapted existing techniques to the

characteristics of MD data in general, and of QB4OLAP representa-

tion. In this section we first provide a brief background on SPARQL

queries optimization, and then present how we adapted improvement

techniques to our setting.

6.6.1 SPARQL Queries Optimization

In [26] the authors focus on the static analysis of SPARQL queries, in

particular those that contain the OPTIONAL operator, which is not used

in our SPARQL queries. Tsialimanis et. al [40] propose a heuristic ap-

proach to the optimization for SPARQL joins, based on the selectivity

of graph patterns. Loizou et al.[27] propose a set of heuristics to im-

prove the performance of SPARQL queries, while Vesse [46] collects

recommendations on how to improve the performance of queries over

Jena triplestore.

All of these are general-purpose studies. On the contrary, we can

take advantage of the characteristics of our data model (e.g., the

OLAP operators, and the information provided by QB4OLAP meta-

data) to define improvement rules that may not apply to a more

generic scenario.
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6.6.2 SPARQL Improvement Strategy

First, we adapted to our setting the heuristics proposed by Loizou

et al.[27] to improve the performance of SPARQL queries. We next

indicate the heuristics, and how we use some of them.

H1 - Minimize optional graph patterns. This heuristic is based on

the fact that the introduction of OPTIONAL clauses leads to PSPACE-

completeness of the SPARQL evaluation problem[32]. Note that the

SPARQL queries we produce do not use the OPTIONAL operator.

H2 - Use named graphs to localize SPARQL graph patterns. This

heuristic is based on the fact that there is a trivial positive correlation

between the performance of a query and the number of triples it is

evaluated against. To take advantage of this, we organize QB4OLAP

data into two named graphs. The schema graph stores the schema

and dimension members, while the instances graph stores only obser-

vations. Due to MD data nature, in most cases the size of the instances

graph will be considerably bigger than the schema graph. With this

organization we can ensure a bound on the number of graph patterns

over the instance graph, which will be at most 2+|D|+|M|, being D

the set of dimensions, and M the set of measures.

H3 - Reduce intermediate results. This proposes to reduce inter-

mediate results, replacing connected triple patterns with path expres-

sions. This kind of patterns do not occur in our queries, and there-

fore this heuristic cannot be applied. Recall from Section 4.2, that

QB4OLAP proposes to use a different predicate to represent each

RUP relationship between level members, instead of using a single

predicate like skos:narrower in QB.

H4 - Reduce the impact of cartesian products. This only applies

when rows in the result differ at most in one value. In those cases, it is

suggested to collapse sets of almost identical rows in one, and to use

aggregate functions. Since in the result of an OLAP query, each row

represents exactly one point in the space (so there is no redundancy),

this heuristic cannot be applied to our problem.

H5 - Specifying alternative URIs. Proposes to transform FILTER

clauses with disjunction (||) of equality constraints, using either the

UNION of patterns, or a VALUES expression. In Example 6.6.1 we show

these transformations. Since the reported results are not conclusive

on which of these strategies leads to better performant queries, we

decided to try them both (see Chapter 7).

Example 6.6.1. (Rewriting FILTER clauses with disjunction of equality

constraints) The queries below show how FILTER clauses with disjunc-

tion of equality constraints can be replaced using H5.

SELECT ?a

WHERE {

?a <predicate> ?b .

FILTER (?b = value1 || ?b = value2)}

#rewriting FILTER using UNION

SELECT ?a

WHERE {

{ ?a <predicate> value1 }

UNION

[September 19, 2016 at 12:46 - classicthesis ]



82 querying qb4olap data cubes

{ ?a <predicate> value2 } }

#rewriting FILTER using VALUES

SELECT ?a

WHERE {

?a <predicate> ?b .

VALUES ?b (value1 value2)}

As our second strategy, we considered the recommendations in [46],

namely: (i) Split conjunctive FILTER equality constraints into a cascade

of FILTER equality constraints; (ii) Replace a FILTER equality constraint

that compares a variable and a constant, with a graph pattern. The

first recommendation may help the query processor to push FILTER

constraints down in the query tree, while the second allows the query

processor to use indexes to select the patterns that match the criteria.

Example 6.6.2. (Improving FILTERs) The first expression below, re-

turns the values of ?a that are associated via <predicate> with values

greater that ’value1’. We then apply the strategies mentioned above,

i.e., splitting and rewriting.

SELECT ?a

WHERE {

?a ?b ?c .

FILTER (?b = <predicate> && ?c > value1)}

#splitting FILTER conjunction

SELECT ?a

WHERE {

?a ?b ?c .

FILTER (?b = <predicate>)

FILTER (?c > value1)}

#replacing FILTER equality constraints over constants by BGPs

SELECT ?a

WHERE {

?a <predicate> ?c.

FILTER (?c > value1)}

The next example shows the result of applying the improvement

strategies to the query of Example 6.5.3.

Example 6.6.3. (SPARQL queries improvement) The application of

H2 organizes graph patterns in the inner query in two GRAPH clauses:

one that corresponds to patterns on the instance graph (lines 9 to 19),

and another on the schema graph (lines 20 to 30). Applying H5, the

FILTER clause on country names is replaced by a VALUES clause (line

29). Filter clauses are split, and the FILTER clause on continent name

is replaced by a graph pattern (line 24).

SELECT ?plm1 ?plm2 ?lm3 ?lm4 ?lm5 ?lm6 ?ag1

FROM NAMED loc-ins:migr_asyapp_clean

FROM NAMED loc-sch:migr_asyappctzmQB4O13

WHERE {

{ SELECT ?plm1 ?plm2 ?lm3 ?lm4 ?lm5 ?lm6 (SUM(xsd:integer(?m1)) as ?ag1)

WHERE {

{GRAPH loc-ins:migr_asyapp_clean

{?o a qb:Observation .

?o qb:dataSet eurostatdt:migr_asyappctzm .

?o sdmx-meas:obsValue ?m1 .

?o pr:citizen ?lm1 .
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?o sdmx-dim:refPeriod ?lm2 .

?o pr:geo ?lm3 .

?o pr:sex ?lm4 .

?o pr:age ?lm5 .

?o pr:asyl_app ?lm6 .

}}.

{GRAPH loc-sch:migr_asyappctzmQB4O13

{?lm1 qb4o:memberOf pr:citizen .

?lm1 sc:inContinent ?plm1 .

?plm1 qb4o:memberOf sc:continent .

?plm1 sc:continentName "Asia" .

?lm2 qb4o:memberOf sdmx-dim:refPeriod .

?lm2 sc:inYear ?plm2 .

?plm2 qb4o:memberOf sc:year .

?lm3 sc:countryName ?lm31 .

VALUES ?lm31 {"France"@en "United Kingdom"@en}

}}}

GROUP BY ?plm1 ?plm2 ?lm3 ?lm4 ?lm5 ?lm6

} FILTER (?ag1 > 5000) }

Our third, and final, strategy, is based on Stocker et. al [38]. This op-

timization is based on graph pattern selectivity. The idea behind this

approach is to reduce intermediate results by first applying the most

selective patterns. This requires to keep estimates on the selectivity of

each pattern. In our case, we take advantage of MD data characteris-

tics to estimate the selectivity of patterns beforehand: Since typically,

RUP relationships between level members are functions, each level

member has exactly one parent on the level immediately above. Thus,

for each pair of levels Li and Lj such that Li → Lj in a hierarchy

H, |Li| > |Lj|. Moreover, in most cases |Li| > |Lj| holds. Based on

the above, we define alternative ordering criteria (OC) for the graph

patterns.

• Ordering Criteria 1 (OC1) - For each dimension appearing in the

query, apply first the patterns that corresponds to higher levels.

• Ordering Criteria 2 (OC2) - For each dimension, apply OC1. Then,

reorder dimensions using the following criteria: First consider di-

mensions with conditions that fix a certain member, then dimen-

sions with conditions that restrain to a range of members, and then

the other dimensions.

• Ordering Criteria 3 (OC3) - For each dimension apply OC1. Then,

reorder dimensions according to OC2. If more than one dimension

satisfy any of the criteria in OC2, then use the number of members

in the highest level reached for each dimension to decide the relative

order between these dimensions. For example: If dimension A and

dimension B fix members a and b at levels lA and lB respectively,

and |lA| > |lB|, then dimension A goes before dimension B.

Example 6.6.4. (Reordering triple patterns) We show the result of ap-

plying OC2 to reorder the triple patterns on the schema graph in

Example 6.6.3. Triples in lines 2 through 5 correspond to the Citizen-

ship dimension, lines 7 and 8 correspond to Destination dimension,

and lines 10 through 12 correspond to the Time dimension. For each

dimension, the graph patterns are ordered from higher levels in the

hierarchy to lower ones. Then, the relative position of each dimension

in the query is altered with respect to the naive query. The Citizen-

ship dimension is considered first since a member of the dimension
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is fixed to “Asia”. Then we consider the Destination dimension be-

cause there is a restriction on members of this dimension (“France”

or “United Kingdom”).

GRAPH loc-sch:migr_asyappctzmQB4O13 {

?plm1 sc:continentName "Asia" .

?plm1 qb4o:memberOf sc:continent .

?lm1 sc:inContinent ?plm1 .

?lm1 qb4o:memberOf pr:citizen .

?lm3 sc:countryName ?lm31 .

VALUES ?lm31 {"France"@en "United Kingdom"@en}

?plm2 qb4o:memberOf sc:year .

?lm2 sc:inYear ?plm2 .

?lm2 qb4o:memberOf sdmx-dim:refPeriod .}

complexity : We end this section with some complexity remarks.

It has been proved that the evaluation of a SPARQL 1.0 query is NP-

complete for the AND-FILTER-UNION fragment of the language[32].

Moreover, the evaluation of queries that only contain UNION, AND

operators is already NP-complete, as proved in [36]. Perez et. al [32]

also proved that the main source of complexity in SPARQL 1.0 que-

ries is the introduction of the OPTIONAL, which leads to PSPACE-

completeness of the evaluation problem. The SPARQL queries we pro-

duce, both naïve and improved, avoid the OPTIONAL operator but

make an intensive use of two features added to SPARQL in version

1.1: The computation of aggregates (GROUP BY clauses), and sub-

queries. To the best of our knowledge there are still no theoretical

results on the complexity of such queries, and a study of this issue is

beyond the scope of this work.

6.7 implementation

The QB4OLAP toolkit is a web application that implements our ap-

proach, allowing to explore and query QB4OLAP cubes. It is com-

posed of two modules. The Explorer module enables the user to nav-

igate the cube schema, and visualize dimension instances stored in

a SPARQL endpoint. Figure 22 presents a screenshot of the explorer

module.

The Querying module implements the querying processing pipeline

presented in Figure 19, where the user starts by writing a CQL query.

Then, the application simplifies this CQL query, displaying the simpli-

fied version to the user. Then, the user may choose to generate either

a naïve SPARQL query or an improved SPARQL one. The query pro-

duced is presented to the user and executed. Results are presented

in tabular format. Figure 23 presents a screenshot of the querying

module. The QB4OLAP toolkit is available online.1

The QB4OLAP toolkit has been entirely developed in Java Script

over the Node.js platform2 using Express3 web framework. Handle-

1 https://www.fing.edu.uy/inco/grupos/csi/apps/qb4olap/

2 https://nodejs.org/en/

3 http://expressjs.com/

[ September 19, 2016 at 12:46 – ]



6.7 implementation 85

Figure 22: QB4OLAP toolkit: Explorer module

Figure 23: QB4OLAP toolkit: Query module
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bars4, jQuery5, and D3.js6 are used to implement the front-end. Virtu-

oso Open Source version 7 is used for RDF storage and SPARQL back-

end. The communication with Virtuoso is implemented via HTTP and

using JSON format to exchange data. Figure 24 presents the technol-

ogy stack of QB4OLAP toolkit. Source code is available at GitHub.7
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Figure 24: QB4OLAP toolkit: technology stack

6.8 summary

In this chapter we have presented our approach to perform OLAP

queries over SW cubes, which is based on a high-level query lan-

guage, called CQL. To provide clear semantics, we formalized a MD

data model, and showed that this data model can be implemented us-

ing QB4OLAP. We present a high-level query simplification heuristic

strategy for CQL queries, and proposed algorithms to automatically

translate CQL queries into equivalent SPARQL ones over QB4OLAP

data cubes. Finally, we presented a set of heuristics to improve the

performance of the produced SPARQL queries.

4 http://handlebarsjs.com/

5 http://jquery.com/

6 https://d3js.org/

7 https://github.com/lorenae/qb4olap-tools
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"It is a capital mistake to theorize before one has data.
Insensibly one begins to twist facts to suit theories,

instead of theories to suit facts".

Arthur Conan Doyle, Sherlock Holmes

In this chapter we report and discuss experimental results aimed at

showing that our approach allows to write complex OLAP queries in

a high-level query language, which can then be automatically trans-

lated into efficient SPARQL queries. Our evaluation goal is twofold:

On the one hand, we want to compare our approach against other

one(s) that are aimed at querying OLAP cubes on the web. On the

other hand, we would like to measure the impact of optimization

strategies, and choose combinations that yield to better performance

results. We want to remark that to facilitate the replication of the

benchmark and experiments presented in this chapter, we provide a

virtual machine with the complete experimental environment 1.

7.1 the ssb-qb4olap benchmark

In order to compare our approach against other ones that also pro-

pose to query OLAP cubes on the web (e.g., [21], which we discuss in

Section 8.2), we need a baseline.

The SSB-QB benchmark [21] is an adaptation of the Star Schema

Benchmark (SSB)[30] to evaluate OLAP queries on SW data cubes. It

consists of: (i) A representation of the SSB cube schema and dimen-

sion instances using QB and other related vocabularies; (ii) A representa-

tion of SSB facts as QB observations; and (iii) a set of thirteen SPARQL

queries over these data. These queries are equivalent to the SSB que-

ries, and aim at representing the most common types of star schema

queries in an OLAP setting.

Based on SSB-QB, we built the SSB-QB4OLAP benchmark, which

consists of: (i) A representation of the SSB cube schema and dimen-

sion instances using QB4OLAP; (ii) The same observations than in SSB-

QB; and (iii) A set of thirteen CQL queries that are equivalent to the SSB-

QB queries (and also to the SSB queries). Thus, the SSB-QB4OLAP

benchmark allows us to compare our approach against [21] (our first

evaluation goal), and also to measure the impact of our improve-

ment strategies (our second evaluation goal). For this, we first trans-

lated the CQL queries into SPARQL ones, using the naïve approach

described in Section 6.5, and then explored which combination of

strategies yields the best query performance, based on several met-

rics. Next, we introduce the SSB-QB4OLAP Benchmark in detail.

1 https://github.com/lorenae/ssb-qb4olap
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Figure 25: Conceptual schema of the SSB-QB4OLAP cube

7.1.1 SSB-QB4OLAP Data

SSB-QB4OLAP represents the SSB data cube at Scale 1, and is orga-

nized in three sets of triples that represent the cube schema, the facts

(observations), and the dimension instances (i.e., level members, at-

tribute values, and RUP relationships). The cube schema corresponds

to the conceptual MD model presented in Figure 25. Each line order

contains five measures (quantity, discount, extended price, revenue, and sup-

ply cost), which can be analyzed along four dimensions: Time, Part,

Customer, and Supplier.

The representation of this conceptual model in QB4OLAP, obtained

applying the techniques presented in Section 5.1, consists of about 250

RDF triples. The set of observations is the same as in SSB-QB, and

consists of about 132 Million RDF triples, representing 6 Million line

orders. Finally, a set of about 2.8 Million RDF triples represent level

members, attribute values, and RUP relationships. Table 4 shows the

number of members in each level, while Table 5 summarizes data vol-

umes. All these RDF triples are available for querying, at our SPARQL

endpoint2.

7.1.2 SSB-QB4OLAP queries

Queries are organized in four so-called query flights, which represent

different types of usual star-schema queries (functional coverage),

and to access different portions of the set of line orders (selectivity

coverage). The first query flight (QF1) is composed of three queries

2 https://www.fing.edu.uy/inco/grupos/csi/sparql
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Dim. Level #members Dim. Level #members

Time

Time 2556

Part

Part 2000000

Week 371 Brand 1000

Month 84 Cat. 25

Year 7 Manuf. 5

Custom.

Custom. 30000

Supp.

Supplier 2000

City 250 City 250

Nation 25 Nation 25

Region 5 Region 5

Table 4: SSB-QB4OLAP dataset statistics: dimension members

concept size(items) size(triples) size(mb)

cube schema
4

dimensions,
5 measures

∼ 250 0,013

observations 6 Million
line orders

132 Million 4430

level members, attribute values, and
RUP relationships

see Table 4 2,8 Million 127

Table 5: SSB-QB4OLAP dataset statistics: size

(Q1-Q3) that impose restrictions on only one dimension, and quantify

the revenue increase that would have resulted from eliminating cer-

tain company-wide discounts in a range of products in a certain year.

The three queries in the second query flight (QF2) (Q4-Q6) impose

restrictions on two dimensions, and compare revenue for some prod-

uct classes, for suppliers in a certain region, grouped by more restric-

tive product classes, along all years. The third query flight (QF3) has

four queries (Q7-Q10) that impose restrictions on three dimensions,

and aims at providing revenue volume for line order transactions by

customer nation, supplier nation, and year within a given region, in

a certain time period. The fourth query flight (QF4) has three que-

ries (Q11-Q13) and restrictions over four dimensions. It represents a

“what if” sequence of operations analyzing the profit for customers

and suppliers from America on specific product classes over all years.

The 13 queries are presented as CQL queries in Section C.1.

7.2 experimental setup

We ran our evaluation on an Ubuntu Server 14.04.1 LTS, 8x Intel(R)

Xeon(R) E5620 @2.40GHz CPU with 4 cores, 32 GB RAM, and 500 GB

for local data storage. We use Virtuoso Open source (V 07.20.3214) as

RDF store.

The BIBM tool3 was used to perform TPC-H power tests, and in each

test suit, a mix of thirteen queries was used with scale 1 and 2 client

streams. We also ran a test suit using the query mix from the SSB-

QB. We measured the average response time for each query and the

following TPC-H metrics for each query mix:

3 http://sourceforge.net/projects/bibm/

[ September 19, 2016 at 12:46 – ]



90 evaluation

• TPC-H Power, which measures the query processing power in

queries per hour (QphH);

• TPC-H Throughput (QphH): the total number of queries exe-

cuted over the length of the measurement interval;

• TPC-H Composite, which is the geometric mean of the previous

metrics.

The last metric reflects the query processing power when queries

are submitted in a single stream, and the query throughput for que-

ries submitted by multiple concurrent users [39]. In Section 7.2.1 we

report the experiments performed to evaluate the SPARQL improve-

ment strategies, and Section 7.2.2 compares our approach with SSB-

QB.

7.2.1 Evaluation of improvement strategies

We measured the impact on performance, of the improvement strate-

gies presented in Section 6.6, in order to find out which combination

of strategies results more beneficial. The strategies are summarized

in Table 6, while Table 7 indicates which strategies can be applied to

each of the thirteen queries in the benchmark.

S1: Use named graphs to reduce the search space [27]

S2: Replace FILTER equality constraints that compare a variable and a constant with BGPs
[46]

S3: Split FILTER clauses with CONJUNCTION of constraints into a cascade of FILTER
clauses with atomic constraints [46]

S4: Replace FILTER clauses with DISJUNCTION of equality constraints using UNION or
VALUES[27]

S5: Reorder triple patterns applying most restrictive patterns for each dimension first (using
criteria OC1, OC2, or OC3)

Table 6: Strategies used to improve query performance

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9
Q10 Q11 Q12 Q13

S1 X X X X X X X X X X X X X

S2 X X X X X X X X X X X

S3 X X X X X X X X X X

S4 X X X X

S5 X X X X X X X X X X X X X

Table 7: Applicability of each improvement strategy to SSB-QB4OLAP que-
ries.

The combination of all possible strategies defines a space from

which we chose a subset, based on the applicability of the strategies

to the different queries. Thus, we devised a space of Evaluation Scenar-

ios (ES), where each scenario represents the application of a sequence

of improvement strategies to the naïve SPARQL queries. Figure 26

shows the space of evaluation scenarios as a tree. Each node repre-

sents an ES, and labels on edges represent the improvement strategy
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applied to transform a parent ES into a child ES. We can see that S1

and S2 were chosen to belong to all evaluation scenarios, since they

apply to most queries. Then we consider the question of applying S3

(ES3) or not. For S4 we consider both flavours: either replacing FIL-

TER conjunction with UNION or VALUES clauses. Finally, we con-

sider the triples-reordering strategy (S5) using each of the ordering

criteria discussed in Section 6.6. As an example, ES11 is the result of

applying improvement strategies S1, S2, S4 (VALUES) and S5 (OC1),

to naïve SPARQL queries. See Section C.3 for details on all the gener-

ated SPARQL queries (247 in total).
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Figure 26: Improvement Strategies Evaluation Scenarios

Table 8 reports results for the naïve approach and all the evaluation

scenarios. ES7 and ES11 are the scenarios with better performance.

Figure 27 reports the average execution time for each query at the

best improvement scenarios.

7.2.2 Comparison against SSB-QB

One of goal of our experiments was to compare the queries produced

by our naïve approach, and the best and worst cases of the improved

queries, against the SSB-QB queries. Thus, we implemented the SSB-

QB queries in our experimental setting, and ran them. Table 9 shows

the results obtained for each TPC-H metric, and Figure 28 presents a

detailed comparison on the execution time for each query. We com-

pare SSB-QB best case (the minimum execution time) against the

naïve SSB-QB4OLAP worst case (the maximum execution time). See

Appendix C for details on the queries.

7.3 discussion

Regarding the improvement scenarios our results show that, for the

TPC-H Composite metric, scenario ES11 outperforms the other ones,
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Power (QpH) Throughput (QpH) Composite (QpH) Interval (sec)

Naïve 63.8 75.6 69.5 1237.6

ES1 253.1 293.3 272.4 319.2

ES2 402.4 361.2 381.2 259.1

ES3 326.7 353.9 340.0 264.5

ES6 354.5 108.3 196.0 864.2

ES14 217.3 148.9 179.9 628.7

ES15 257.4 198.7 226.2 471.0

ES16 415.5 254.0 324.9 368.4

ES7 706.8 561.9 630.2 166.6

ES17 427.2 368.4 396.7 254.1

ES18 427.6 339.4 381.0 275.8

ES19 456.6 379.6 416.4 246.6

ES4 375.8 215.9 284.9 433.4

ES8 253.6 171.5 208.6 545.7

ES9 227.0 146.5 182.4 638.8

ES10 214.7 148.0 178.2 632.6

ES5 490.8 418.6 453.3 223.6

ES11 693.1 750.1 721.0 124.8

ES12 472.4 368.9 417.5 253.7

ES13 380.2 327.2 352.7 286.1

Table 8: TPC-H metrics: improvement evaluation

Power (QpH)
Throughput

(QpH)
Composite

(QpH)
Interval
(sec)

SSB-QB[21] 69.9 17.2 34.7 5447.0

SSB-QB4OLAP
Naïve

63.8 75.6 69.5 1237.6

SSB-QB4OLAP
ES14 (worst
case)

217.3 148.9 179.9 628.7

SSB-QB4OLAP
ES11 (best case)

693.1 750.1 721.0 124.8

Table 9: TPC-H metrics comparison

with a 10X improvement with respect to the naïve scenario (see Ta-

ble 8), and a 10X speed-up in the execution time for the query mix.

The second best scenario is ES7, with a 9X improvement on TPC-

H Composite with respect to the naïve scenario and a 9X speed-up.

However, the average execution time per query is similar in both sce-

narios, except for queries Q7 (where ES7 outperforms ES11) and Q12

(where ES11 outperforms ES7). Both scenarios apply S1, S2, and S4

(with VALUES splitting of FILTER conditions), but ES7 applies S3, while

ES11 applies S5 with OC1 reordering (Figure 26).

About the impact of each improvement strategy (Table 8), strategies

S1 and S2 combined yield a 5.5X improvement with respect to naïve

queries. However, we cannot be conclusive on the impact of strategy

S3. Note that the pairs of scenarios (ES6, ES4) and (ES7, ES5) only

differ on the application of this strategy. In the first case, the scenario

where S3 is applied performs worse (ES6), while in the second case

the scenario where S3 is applied performs better (ES7). For S4, our re-

sults show that, replacing FILTER disjunctive conditions with VALUES

clauses, improves performance (ES3 vs. ES7 and ES2 vs. ES5), while

UNION downgrades the performance (ES3 vs ES6 and ES2 vs. ES4).
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Figure 27: Naïve vs. improved queries response time

Finally, we cannot be conclusive on the impact of reordering graph

patterns.

As presented in Section 7.2, we only evaluate our improvement

strategies on Virtuoso Open Source triplestore. We cannot conclude

that these results can be generalized across different SPARQL engines,

although some of the implemented strategies seem promising accord-

ing to the results reported in [27].

Comparing our approach with SSB-QB, although the values for

TPC-H Power metric are very similar, values for TPC-H composite

show that even our naïve approach represents a 2X improvement with

respect to SSB-QB (Table 9). Considering our less improved scenario

(ES14), we get a 5X enhancement, and 20X if we consider our best

improved scenario (ES11). A detailed analysis on the execution time

of each query (see Figure 28) shows that our approach outperforms

SSB-QB for Q1, Q4, Q7, Q11, and Q12.

We next further analyze the reasons why our naïve approach has

better performance than the SSB-QB queries.

First, SSB-QB queries include an ORDER BY clause to order results,

while our queries do not. From our point of view, ordering triples

is only advisable for visualization purposes and is not required for

computing the result of the query. Second, as a consequence of the

absence of level attributes, SSB-QB queries use string comparison on

IRIs to fix level members, while we can use comparison over other

data types, like, for example, numeric values. It is well-known that
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Figure 28: SSB-QB and Naïve SSB-QB4OLAP queries response time

string comparison is usually slower that integer comparison. Finally,

we observe that the BGPs used to traverse hierarchies in SSB-QB may

not take advantage of Virtuoso indexes, while the BGPs used in our

approach are designed to use the indexes.

To illustrate this last point we give some insight on Virtuoso, and

then present an example. Virtuoso triple store uses a relational data

base to store data. In particular, all the triples are stored in a single

table with four columns named graph (G), subject (S), predicate (P),

and object (O). According to Virtuoso documentation 4, the following

indexes are implemented on this table :

• PSOG - primary key index

• POGS - bitmap index for lookups on object value.

• SP - partial index for cases where only S is specified.

• OP - partial index for cases where only O is specified.

• GS - partial index for cases where only G is specified.

Since the primary key is PSOG data are physically ordered on this cri-

teria. Our strategy takes advantage of this index, while SSB-QB does

not. As an example, consider the representation of Q8 in SSB-QB (Fig-

ure 29) and in our naïve approach (Figure 30), and in particular the

4 Virtuoso technical documentation http://virtuoso.openlinksw.com/dataspace/

doc/dav/wiki/Main/VirtRDFPerformanceTuning
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BGPs that perform the ROLL-UP operation over the Time dimension

(lines 7-11 in Figure 29 and lines 8-11 in Figure 30). Even though our

approach uses more BGPs, at the time of the evaluation of each BGP,

only the object of the triple is unknown, while in SSB-QB, subjects are

unknown.

1 SELECT ?c_city ?s_city ?d_year sum(?rdfh_lo_revenue) as ?lo_revenue

2 FROM <http://lod2.eu/schemas/rdfh-inst#ssb1_ttl_qb>

3 FROM <http://lod2.eu/schemas/rdfh#ssb1_ttl_dsd>

4 FROM <http://lod2.eu/schemas/rdfh#ssb1_ttl_levels>

5 WHERE {

6 ?obs qb:dataSet rdfh-inst:ds.

7 ?obs rdfh:lo_orderdate ?d_date.

8 ?d_yearmonthnum skos:narrower ?d_date.

9 ?d_yearmonth skos:narrower ?d_yearmonthnum.

10 ?d_year skos:narrower ?d_yearmonth.

11 rdfh:lo_orderdateYearLevel skos:member ?d_year.

12 ?obs rdfh:lo_custkey ?c_customer.

13 ?c_city skos:narrower ?c_customer.

14 ?c_nation skos:narrower ?c_city.

15 ?c_region skos:narrower ?c_nation.

16 rdfh:lo_custkeyRegionLevel skos:member ?c_region.

17 ?obs rdfh:lo_suppkey ?s_supplier.

18 ?s_city skos:narrower ?s_supplier.

19 ?s_nation skos:narrower ?s_city.

20 ?s_region skos:narrower ?s_nation.

21 rdfh:lo_suppkeyRegionLevel skos:member ?s_region.

22 ?obs rdfh:lo_revenue ?rdfh_lo_revenue.

23 FILTER(?c_nation = rdfh:lo_custkeyNationUNITED-STATES ).

24 FILTER(?s_nation = rdfh:lo_suppkeyNationUNITED-STATES ).

25 FILTER(str(?d_year) >= "http://lod2.eu/schemas/rdfh#lo_orderdateYear1992" and

26 str(?d_year) <= "http://lod2.eu/schemas/rdfh#lo_orderdateYear1997").

27 }

28 GROUP BY ?d_year ?c_city ?s_city

29 ORDER BY ASC(?d_year) DESC(?lo_revenue)

Figure 29: Query 8 (SSB-QB)
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1 SELECT ?plm2 ?plm3 ?plm5 (SUM(xsd:float(?m4)) as ?ag1)

2 FROM <http://www.fing.edu.uy/inco/cubes/instances/ssb_qb4olap>

3 FROM <http://www.fing.edu.uy/inco/cubes/schemas/ssb_qb4olap>

4 WHERE {

5 ?o a qb:Observation .

6 ?o qb:dataSet rdfh-inst:ds .

7 ?o rdfh:lo_revenue ?m4 .

8 ?o rdfh:lo_orderdate ?lm1 .

9 ?lm1 qb4o:memberOf rdfh:lo_orderdate . ?lm1 schema:dateInMonth ?plm1 .

10 ?plm1 qb4o:memberOf schema:month . ?plm1 schema:monthInYear ?plm2 .

11 ?plm2 qb4o:memberOf schema:year .

12 ?o rdfh:lo_custkey ?lm2 .

13 ?lm2 qb4o:memberOf rdfh:lo_custkey . ?lm2 schema:inCity ?plm3 .

14 ?plm3 qb4o:memberOf schema:city . ?plm3 schema:inNation ?plm4 .

15 ?plm4 qb4o:memberOf schema:nation .

16 ?o rdfh:lo_partkey ?lm3 .

17 ?o rdfh:lo_suppkey ?lm4 .

18 ?lm4 qb4o:memberOf rdfh:lo_suppkey . ?lm4 schema:inCity ?plm5 .

19 ?plm5 qb4o:memberOf schema:city . ?plm5 schema:inNation ?plm6 .

20 ?plm6 qb4o:memberOf schema:nation .

21 ?plm4 schema:nationName> ?plm41 .

22 ?plm6 schema:nationName> ?plm61 .

23 ?plm2 schema:yearNum ?plm21 .

24 FILTER (REGEX (?plm41,"UNITED STATES" , "i")) &&

25 (REGEX (?plm61,"UNITED STATES" , "i")) &&

26 (?plm21 >= 1992) && (?plm21 <= 1997)

27 }

28 GROUP BY ?plm2 ?plm3 ?plm5

Figure 30: Query 8 (SSB-QB4OLAP naïve)

7.4 summary

In this chapter we presented the experiments performed to evalu-

ate the concepts and algorithms presented in this thesis. We first

presented the SSB-QB4OLAP benchmark, which consists of a set of

high-level queries expressed in CQL and a data cube represented in

QB4OLAP. Then, we used this benchmark to measure the impact

of different SPARQL improvement strategies, with respect to naïve

SPARQL queries, using TPC-H metrics to make this comparison. Fi-

nally, we also compared our approach with similar approaches, show-

ing that even our naïve SPARQL queries represent a 2X improvement

on query performance.
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B A C K G R O U N D A N D R E L AT E D W O R K

"Reading is going toward something that is about to be,

and no one yet knows what it will be."

Italo Calvino, If on a Winter’s Night a Traveler

In this chapter we first review the current approaches to the repre-

sentation and querying of MD data on the SW. In the second part, we

compare our proposal against these approaches.

8.1 current approaches

Current approaches to MD data representation using SW standards

can be organized in two categories: (i) Those that use specialized RDF

vocabularies to explicitly define data cubes; and (ii) Those that im-

plicitly define a data cube over existing RDF data graphs. Our work

followed the explicit approach, and extended the QB vocabulary to

include the MD structure.

Kämpgen et al. [21, 23] attempt to override the lack of structure

in QB using several different vocabularies, in particular QB4OLAP,

and an extension to the SKOS vocabulary (named skosclass)1. The

hierarchical structure of dimensions is described in terms of levels.

Hierarchies are instances of skos:ConceptScheme, levels are instances

of skosclass:ClassificationLevel, and levels are linked to the hi-

erarchies they belong to using the skos:inScheme predicate. The rel-

ative position of each level in a hierarchy is expressed in terms of

its depth within it, and this is represented by linking a level with an

ordinal number using the skosclass:depth datatype property, being

the top-most level All the level at depth 0. It is easy to see that, using

this representation, levels can only belong to one hierarchy. More-

over, only strict balanced hierarchies are supported (i.e., each level

can have at most one parent level). To represent aggregate functions,

this approach uses instances defined in the QB4OLAP vocabulary,

and the qb4o:hasAggregateFunction property lo link measures with

them. Finally, the proposal does not consider level attributes, with the

drawbacks that this carries, already explained in previous chapters.

Regarding dimension instances, the authors propose to link levels

with their members using the property skos:member.2 RUPs between

level members are represented using the skos:narrower property, as

suggested by the QB specification.

The OpenCube project3 aims at developing software tools that fa-

cilitate publishing and reusing Linked Statistical Data, strictly using

QB. A complete toolkit is provided, to assist in the statistical data

1 http://www.w3.org/2011/gld/wiki/ISO_Extensions_to_SKOS

2 https://www.w3.org/TR/2005/WD-swbp-skos-core-spec-20051102/#member

3 http://opencube-project.eu/
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life-cycle, including data analytics and visualizations. However, being

based purely on QB, the proposal only supports single-level dimen-

sions, reducing the possibilities of preforming OLAP operations.

The WaRG project4 discusses if traditional MD models could be

appropriate for analyzing RDF data, and proposes a new analytical

model that implicitly defines data cubes over RDF graphs. The core

concept here is the Analytical Schema (AnS), a graph that represents

an analytical view over existing RDF data, using the classical Global-

as-View data integration approach [7]. The nodes in an AnS are RDF

classes, while the edges are RDF properties, and the instances of AnSs

are intentionally defined using BGPs on the RDF data to be analyzed.

Figure 31 presents an example, taken from [7]. In this example, an

AnS is defined for analyzing the data graph presented in Figure 31a,

considering also the schema of the data, expressed in RDF-S and de-

picted in Figure 31b. Figure 31c presents the definition of an AnS,

where blue labels correspond to classes, and green labels correspond

to properties. The instance of this AnS is computed according to the

definitions provided for each element in Figure 31d. For example, the

class Blogger is populated with Persons that wrote things published

in blogs. The authors propose the property nextLevel to model hi-

erarchical relationships between dimension levels, which is used to

model parent-child relationships between levels in a dimension hier-

archy. This strategy only allows to represent strict balanced hierar-

chies at the schema level, and does not provide a representation for

rollup relationships between level members.

G =

{user1 hasName “Bill”, user1 hasAge “28”, user1 friend user3,

user1 bought product1, product1 rdf:type SmartPhone,

user1 worksWith user2, user2 hasAge “40”, . . .}

G =
user1

user2

worksWith

user3

friend

William
hasName

Bill hasName

28 hasAge

Madrid
inCity

Student
rdf:type

product1

bought

brand1 hasBrand
400hasPrice

SmartPhonerdf:type

rating1
gave

on

good dealhasValue

Rating
rdf:type

post1

post2

post3

post4

wrote

wrote

wrote

wrote

blog1

blog2

inBlog

inBlog

inBlog

inBlog

40hasAge

35 hasAge

NY inCity

468

(a) Sample RDF data graph.

G
′ = G∪

SmartPhone

Phone

Notebook

Product
sc sc

sc

Person

Studentsc

wrote
dm

bought

dm

rg

hasBrand
Brand

dm rg

inBlog

Message

Blog

dm

rg

xsd:int

hasAge rg

hasPrice rg

knows

rg

dm

worksWith sp

friend

spsc = rdfs:subClassOf

sp = rdfs:subPropertyOf

dm= rdfs:domain

rg = rdfs:range

468

(b) A schema in RDFS

n1 : Blogger

e1 : acquaintedWith

n2 : Name

e2 : identifiedBy

n3 : City

e3 : livesIn

n4 : BlogPost

e4 : wrotePost

n5 : Site

e5 : postedOn

n6 : Value

e6 : age

n7 : Iteme7 : purchased

e9 : ratedBy

e10 : cost

n8 : Type

e8 : classifiedAs

470

(c) A sample Analytical Schema (AnS)

node λ(n) δ(n)

n1 Blogger q(x):- x rdf:type Person, x wrote y, y inBlog z

n2 Name q(x):- y hasName x

n3 City q(x):- y inCity x

n4 BlogPost q(x):- x rdf:type Message,
x inBlog z, z rdf:type Blog

n5 Site q(x):- y inBlog x, x rdf:type Blog
n6 Value q(x):- z rdfs:range xsd:int, y z x

n7 Item q(x):- x rdf:type y, y rdfs:subClassOf Product
n8 Type q(x):- x rdfs:subClassOf Product

edge λ(e) δ(e)

e1 acquaintedWith q(x, y):- z rdfs:subPropertyOf knows, x z y

e2 identifiedBy q(x, y):- x hasName y

e3 livesIn q(x, y):- x hasCity y

e4 wrotePost q(x, y):- x wrote y, y rdf:type Message
e5 postedOn q(x, y):- x rdf:type Message, x inBlog y

e6 age q(x, y):- x rdf:type Person, x hasAge y

e7 purchased q(x, y):- x bought y
e8 classifiedAs q(x, y):- x rdf:type Product, x rdf:type y

e9 ratedBy q(x, y):- y gave z, z rdf:type Rating,
z on x, x rdf:type Product

e10 cost q(x, y):- x hasPrice y

470

(d) Definition of classes and proper-
ties in Figure31c over the graphs
in Figures 31a and 31b

Figure 31: An example of an Analytical Schema (AnS) (from [7])

4 https://team.inria.fr/oak/projects/warg/
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8.2 analytical queries over semantic web multidimen-

sional data

The terms "data analysis" or "analytical queries" are used in the lit-

erature to describe a broad kind of approaches to query data for

decision-making. We next study and compare OLAP-like approaches

that perform this analysis directly over SW MD data. To organize the

discussion, we define seven categorization criteria: Query Language

Abstraction, Query Language Expressiveness, Formalization, Materializa-

tion, Reasoning, Standardization, and Optimization. In the following sec-

tion we present each criterion, and then compare existing approaches

using this framework.

8.2.1 Analytical Queries Comparison Criteria

We define below the criteria we use to compare querying capabilities

of different approaches.

query language abstraction : Refers to the abstraction level

of the query language. In particular, we distinguish query languages

that operate at the conceptual level (i.e., over data cubes), from those

that operate at the logical level (over the actual representation of the

data cube).

query language expressiveness : Accounts for the operations

that are supported by the language, and their semantics.

formalization : Refers to the definition of a formal model be-

hind the query language, and if the semantics of the operations are

provided using this formalization.

materialization : Concerns to the kinds of data that need to

be materialized to answer queries. We distinguish between those ap-

proaches that only require base data, from those to require the materi-

alization of derived data (e.g., materialization of aggregate views)

reasoning : Refers to the level of reasoning, if any, involved in

the approach.

standardization : Accounts for the SW standards used. In par-

ticular we want to distinguish those approaches that entirely rely on

SW standards (e.g., RDF, RDF-S, SPARQL), from those that use other

mechanisms (e.g., relational databases, ad-hoc query answering ma-

chinery).

optimization : Refers to the optimization or improvement strat-

egy, if any, proposed in each approach.

The first three criteria account for the querying capabilities, while

the other four, for the machinery required by each approach.
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8.2.2 Comparison

Kämpgen et al. [20–24] propose a query language at the conceptual

level based on the concept of “OLAP queries”. Here, an OLAP query

is basically a set of operations over a data cube, namely Projection,

Slice, Dice, Roll-up/Drill-down, and Drill-across. Although this

approach proposes a formal data model for data cubes, only an infor-

mal description of each operation semantics is provided, with the ex-

ception of Drill-across [24]. Projection and Slice operations mod-

ify the schema of the cube. The first one allows to remove measures,

while the second one removes dimensions. The Slice operation re-

ceives a cube and a dimension, and returns the cube resulting from

removing the dimension in the input cube and aggregating over the

members of that dimension up to the All level. In this proposal, Dice

is not a selection operation, which is the usual semantics in OLAP. On

the contrary, it is defined as a combined filtering and slicing operation,

where filter conditions are restrained to equality conditions over level

members. Notice that, in this way, it is not possible to filter cells using

conditions over measure values. The Roll-up operation is defined as

usual: given a cube, a dimension, and a level in that dimension, this

operation changes the granularity of the cube, returning a new cube

where measures are aggregated up to the parameter level. The Drill-

across operator merges a set of input cubes, and it is only defined

for data cubes that share dimensions schema and instances. Regard-

ing materialization, this approach performs queries on base data. In

particular it uses facts (observations), the schema of the cube (DSD),

and the dimension instances. The approach is based on SW standards,

and it provides mechanisms to translate OLAP queries into SPARQL

queries over the MD data representation, previously discussed in this

chapter. To improve the performance of OLAP queries, the authors

explore the materialization of aggregated views, a mechanism used in

traditional OLAP systems. They propose to avoid the cost of material-

izing all possible views, by computing and storing just what they call

the closest view to each OLAP query. However, the approach does not

provide a distance function to compute this closeness. Moreover, this

improvement approach is only beneficial when queries are known in

advance, and only if aggregate views can be reused to answer more

than one query. Finally, view maintenance is not addressed in the

proposal.

In the context of the WaRG project, Analytical Queries (AnQ) allow

us to explore and aggregate data modeled via an Analytical Schema

(AnS) [3, 7]. Each AnQ is formed by a classifier (a set of BGPs over

the AnS that determine the analysis dimensions), a measure (also de-

termined by a set of BGPs over the AnS), and an aggregation function.

Example 8.2.1 shows a sample AnQ from [7]

Example 8.2.1. (Analytical Queries) Consider the data and the Analyt-

ical Schema from Figure 31. The following AnQ obtains “the number

of sites where each blogger posts, classified by the blogger’s age and

city”:
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〈c(x,y1,y2),m(x, z), count〉

where the classifier and measure queries are defined as:

c(x,y1,y2) : −x age y1.x livesIn y2

m(x, z) : −x wrotePost y.y postedOn z.

Then, the answer set of the classifier query is:

{〈user1, 28, “Madrid”〉, 〈user3, 35, “NY”〉}

and the answer set of the measure query is:

{〈user1,blog1〉, 〈user1,blog2〉, 〈user2,blog2〉, 〈user2,blog3〉}.

Finally, the results of the query are:

{〈28, “Madrid”, 2〉, 〈35, “NY”, 1〉}

This approach proposes to express some OLAP operations using

AnQs. The Slice operation is defined with its usual semantics. Dice

operation restricts a cube to the cells that correspond to certain level

members, and only equality conditions over level members are sup-

ported. Like in the work by Kämpgen et al, is not possible to filter

cells according to measure values. The authors define other opera-

tions, like Drill-in (adds a dimension), Drill-out (removes a di-

mension), and Roll-up, all sketched via examples, without a precise

definition. The answers to an analytical query are computed over the

union of the graphs that contain: (a) the data, (b) the schema, and

(c) the AnS, but also the triples that can be derived applying RDFS

entailment must be considered (e.g., in the graph G’ depicted in Fig-

ure 31c, the triple product1 rdf:type Phone). The authors explore

either the materialization of the AnS instance, or the rewriting of the

AnQs in terms of the underlying graphs. The proposed implementa-

tion does not use a triple store to handle data. Instead, it stores triples

in an in-memory column-based database, called kdb+5. Also, AnQs

are implemented using the q language6 and SQL, instead of SPARQL.

Finally, they explore to improve the efficiency of queries (in particular

of OLAP operations) based again in the idea of reusing the results of

previous queries[3].

In the context of the OpenCube project, a set of tools were devel-

oped (the OpenCube Toolkit), for exploring and analyzing QB data

cubes. Users interact with the cube via a GUI, so, for our compari-

son, we consider that this approach operates at the conceptual level.

No formalization is provided. Regarding expressiveness, these tools

allow to browse the cube, to Dice the cube, to fix the level members

in dimensions, and to perform Roll-up and Drill-down operations

over dimensions. Since dimensions have only one level, Roll-up oper-

ation is equivalent to aggregating cells up to the All level. The result

of each of these operations are new cubes, which are materialized

as QB slices. Recall from Section 3.2 that QB slices require not only

5 https://kx.com/software.php

6 q is a propietary query language over kdb+ http://kx.com/q/d/q.htm
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the definition of a new DSD, but also the materialization of new ag-

gregated observations. Regarding the standards used, these tools are

integrated into an existing tool, and use the Sesame triplestore 7 to

store the triples and compute aggregates.

Ibrahimov et al. [17] propose to use MDX8 (a de-facto standard

query language for OLAP) as a high-level language to express analyt-

ical queries, and then translate MDX into SPARQL queries over sev-

eral endpoints, using QB4OLAP metadata. Few details are provided

on the translation process from MDX to SPARQL. Although expert

OLAP users are likely to know MDX, in a self-service BI environment

most users are unlikely to be so proficient. Therefore, we think that a

more intuitive query language, that deals only with cubes, is needed.

Jakobsen et al. [18] study the improvement of SPARQL queries over

QB4OLAP data cubes. To reduce the number of joins (BGPs) needed

to traverse hierarchies, they propose to generate denormalized rep-

resentations of data instances called star patterns and denormalized

patterns, which resemble relational representation strategies, for MD

data. The idea behind this approach is to directly link facts (observa-

tions) with attribute values of related level members. Although pre-

liminary results show an improvement in query performance, this

approach prevents level members from being reused and referenced,

breaking the Linked Data nature of QB4OLAP data instances. The

representation of many-to-many rollup relationships between level

members is not discussed in this approach.

Table 10 summarizes the comparison of the querying capabilities

of each approach, while Table 11 summarizes the comparison on the

machinery required by each approach. In the latter we omit the ap-

proach by Ibragimov et al. due to lack of information. We also include

the proposal presented in this thesis document.

abstraction expressiveness formalization

Kämpgen et
al. [20–24]

conceptual Slice, Dice, Roll-up,
Drill-down,
Drill-across

Formal model, no
semantics

WaRG [3, 7] logical Slice, Dice, Drill-in,
Drill-out

Formal model and
semantics

OpenCube [19, 31] conceptual (GUI) Dice, Roll-up
(similar to Slice)

No formal model

Ibrahimov et al. [17] conceptual MDX operations No formal model

Jakobsen et al. [18] logical SPARQL queries does not apply

Our approach
(CQL)

conceptual Slice, Dice, Roll-up,
Drill-down

Formal model,
semantics

grounded on the
formal model

Table 10: Comparison summary (part 1)

7 http://rdf4j.org/

8 https://msdn.microsoft.com/en-us/library/ms144785.aspx
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materialization reasoning standards optimization

Kämpgen
et

al. [20–24]

schema,
instances

none RDF, RDF-S,
SPARQL

aggregate
views

(materialized)

WaRG [3,
7]

schema,
instances,

views

RDF-S
entailment

RDF, RDF-S,
no SPARQL

query
answering

using views

Open-
Cube [19,

31]

schema,
instances,

aggregated
cubes as QB

slices

none RDF, SPARQL –

Jakobsen
et al. [18]

schema,
instances,

de-normalized
cubes

none RDF, SPARQL cube denor-
malization

Our
approach

schema,
instances

none RDF, RDF-S,
SPARQL

SPARQL
improvement

Table 11: Comparison summary (part 2)

8.3 summary

In this chapter we reviewed the current approaches to the represen-

tation of MD data on the SW, and compared our proposal against

these approaches according to different criteria. We conclude that

the approach by Kämpgen et al. is the one that most resembles to

our approach, both on the representation of MD data and OLAP-like

analysis.
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C O N C L U S I O N S A N D F U T U R E W O R K

"There is no real ending.

It’s just the place where you stop the story."

Frank Herbert

In the context of the web of data, applications and users need to

publish and share MD data. Existing mechanisms that use SW stan-

dards, and in particular QB, the W3C standard, do not represent key

features of the MD model, like dimension hierarchies, aggregate func-

tions, or level attributes. Additionally, to perform OLAP operations di-

rectly over the SW, users have to deal with SW models and languages,

like RDF or SPARQL, skills that are hardly mastered by typical ana-

lytical users. In this thesis we addressed these problems, providing

a vocabulary that allows to represent complex MD models using SW

standards, a high-level query language, CQL, where the data cube is

a first-class citizen, based on well-known OLAP operations, and the

machinery to automatically translate CQL queries into SPARQL. We

conclude this document summarizing our contributions and provid-

ing ideas for further research.

9.1 conclusions

In this thesis we have defined QB4OLAP, an RDF vocabulary to rep-

resent MD data using SW standards. This vocabulary is an extension

to the current W3C standard, namely QB. We showed that QB4OLAP

is expressive enough to represent complex advanced MD design fea-

tures, like role-playing dimensions, flat hierarchies, parallel hierar-

chies, and ragged hierarchies, among other ones. These are not sup-

ported by other existing approaches. We also developed mechanisms

to produce QB4OLAP data cubes. In particular, we presented algo-

rithms and tools to obtain QB4OLAP cubes from data cubes stored in

a relational database (ROLAP), and explored how to create rich MD

schemas to analyze data already published using the QB vocabulary.

We also studied the problem of querying QB4OLAP data cubes. We

proposed a high-level query language, denoted CQL, based on an al-

gebra for OLAP, and we provided a clear semantics for the operations

in this algebra, using a formal model and the notion of cuboids. We

proposed a mechanism to translate CQL queries into SPARQL. This

mechanism comprises three steps: (a) CQL queries simplification, (b)

CQL to SPARQL translation, and (c) SPARQL queries improvement.

By simplifying CQL queries, we intend to eliminate unnecessary op-

erations, and to reorder operations to reduce the size of the data cube

as early as possible in the query evaluation process. We proposed a

set of rules, based on properties on the algebra operators, to accom-

plish these goals. Our CQL to SPARQL translation process (so-called
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our naïve approach) is based on a set of algorithms that produce

a SPARQL implementation of each operator. These algorithms are

grounded on the semantics of the operators and SPARQL. Through

the analysis of possible combination of operators (CQL query pat-

terns), we produced SPARQL implementations of CQL queries. Fi-

nally, we explored techniques to improve the performance of our

naïve queries. For this, we adapted general-purpose SPARQL perfor-

mance improvement strategies, to the particular characteristics of the

MD model, and its QB4OLAP representation.

We have implemented and evaluated our querying approach. The

evaluation strategy consisted in the development of a benchmark

(SSB-QB4OLAP), which allowed us not only to measure the impact

of the performance improvement strategies, but also to compare our

approach against the one proposed by Kämpgen et al. (SSB-QB) [20–

24]. The comparison, based on the TPC-H Composite metric, showed

that our naïve approach represents a 2X improvement with respect to

SSB-QB, while our least and best improved scenarios represents a 5X

and 20X enhancement, respectively.

Our most relevant conclusion is that it is possible to represent MD

data using SW standards, and also that is feasible to perform OLAP analy-

sis directly over the SW, using standard SPARQL features. Summing up,

we think that the results presented in this thesis can encourage and

promote the publication and sharing of MD data on the SW.

9.2 future work

Regarding QB4OLAP evolution, we believe that there are some MD

concepts to be incorporated in future versions. So far, the vocabulary

allows to declare different cardinality restrictions on RUP relation-

ships, but it does not provide a mechanism to define distributing at-

tributes, which are needed to properly calculate aggregate values in

Many-to-Many parent-child relationships. Calculated members, and

in particular calculated measures, are also a useful MD construct that

can be added to the vocabulary.

Finally, regarding the correct summarizability of measures, QB4OLAP

currently supports the definition of one aggregation function per mea-

sure in each cube, assuming that this function can be used to aggre-

gate values along any dimension in the cube. This assumption can

also be revised in future versions of QB4OLAP. We also plan to ex-

tend our querying approach, adding further operators, for example

DRILL-ACROSS to allow cube integration.

Additional tools can be implemented to enrich our current toolkit.

In this direction, we would like to have a graphical MD conceptual

model editor to produce cube schemas in QB4OLAP. Also, to explore

the generation of CQL queries via a graphical interface, similar to

what is done in traditional OLAP tools.
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9.3 open problems

One of the main motivations to publish MD data on the SW is to en-

able its reuse. In this sense, Kalampokis et al.[19] provide an interest-

ing insight on several issues that are present in MD data already pub-

lished using QB, that represent an obstacle to MD data reuse. Some

of them were experienced by us with Eurostat data. In particular, they

highlight that a great level of heterogeneity is found, with respect to

how the vocabularies are used (and sometimes even misused). This

is pointed out mainly as a consequence of the flexibility of the vo-

cabularies, which offer many possibilities to represent MD concepts.

We agree on this observation, but we also believe that MD conceptual

data modeling is not an easy task. Even assuming that vocabularies

are not misused, different publishers may end up with different ways

of representing the same conceptual model. Taking this into account,

we think that any approach aimed at reusing SW data, and MD data

in particular, must deal with heterogeneity since, on the web, hetero-

geneity is the norm, not the exception. Thus, the development of tools

to help users, not only in the publication, but in the modeling process

as well, may promote good practices, mitigate errors, and reduce rep-

resentational heterogeneity.

We identify several open problems regarding CQL algebra. What

kind of queries can we write using this algebra? Is the set of operators

complete? to answer these questions it seems relevant to study the ex-

pressiveness of the currently defined set of operators. Moreover, and

regarding the CQL to SPARQL translation, formal verification tech-

niques may be used to prove the equivalence of the obtained queries.

Finally, another key problem is the quality of data and metadata in

QB4OLAP. In particular, to enable the reuse of already published mul-

tidimensional data, the data cubes should include enough metadata

to give meaning to the domain concepts represented (for example,

metadata to state that members of the country level in a dimension

are countries). In this direction, although the QB vocabulary suggests

to link the components of each DSD to the concept that they represent

(using the qb:concept property), this is rarely used. An appropriate

representation of these domain concepts may also allow to use SW

reasoning capacities to find relationships between data cubes, to en-

hance analytical possibilities, and to create knowledge.
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A
P R E F I X E S U S E D I N T H I S T H E S I S

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

PREFIX dc: <http://purl.org/dc/terms/>

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX owl: <http://www.w3.org/2002/07/owl#>

PREFIX dbr: <http://dbpedia.org/resource/>

PREFIX dbo: <http://dbpedia.org/ontology/>

PREFIX dbp: <http://dbpedia.org/property/>

PREFIX yago: <http://dbpedia.org/class/yago/>

PREFIX schema: <http://schema.org/>

PREFIX gn: <http://sws.geonames.org/>

PREFIX ge: <http://www.w3.org/2003/01/geo/wgs84_pos#>

PREFIX qb: <http://purl.org/linked-data/cube#>

PREFIX qb4o: <http://purl.org/qb4olap/cubes#>

Figure 32: RDF prefixes used in this work

PREFIX sdmxm: <http://purl.org/linked-data/sdmx/2009/measure#>

PREFIX sdmxd: <http://purl.org/linked-data/sdmx/2009/dimension#>

PREFIX sdmxc: <http://purl.org/linked-data/sdmx/2009/concept#>

PREFIX dsd: <http://eurostat.linked-statistics.org/dsd#>

PREFIX pr: <http://eurostat.linked-statistics.org/property#>

PREFIX citizen: <http://eurostat.linked-statistics.org/dic/citizen#>

PREFIX geo: <http://eurostat.linked-statistics.org/dic/geo#>

PREFIX age: <http://eurostat.linked-statistics.org/dic/age#>

PREFIX sex: <http://eurostat.linked-statistics.org/dic/sex#>

PREFIX app: <http://eurostat.linked-statistics.org/dic/asyl_app#>

PREFIX eurostatdt: <http://eurostat.linked-statistics.org/data/>

PREFIX eurostatcell: <http://eurostat.linked-statistics.org/data/migr_asyappctzm#>

#Asylum application case study in QB4OLAP

PREFIX loc-ins:<http://www.fing.edu.uy/inco/cubes/instances/>

PREFIX loc-sch:<http://www.fing.edu.uy/inco/cubes/schemas/>

PREFIX sc: <http://www.fing.edu.uy/inco/cubes/schemas/migr_asyapp#>

PREFIX instances: <http://www.fing.edu.uy/inco/cubes/instances/migr_asyapp>

PREFIX citDim: <http://www.fing.edu.uy/inco/cubes/dims/migr_asyapp/citizen#>

PREFIX time: <http://purl.org/qb4olap/dimensions/time#201409>

PREFIX dbpedia: <http://dbpedia.org/resource/>

#Queries

PREFIX queries: <http://www.fing.edu.uy/inco/cubes/queries/migr_asyapp#>

Figure 33: RDF prefixes used in the asylum application case study
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PREFIX sdmxm: <http://purl.org/linked-data/sdmx/2009/measure#>

PREFIX sdmxd: <http://purl.org/linked-data/sdmx/2009/dimension#>

PREFIX sdmxc: <http://purl.org/linked-data/sdmx/2009/concept#>

PREFIX nw: <http://dwbook.org/cubes/schemas/northwind#> .

PREFIX nwt: <http://dwbook.org/cubes/instances/northwind/Time#>

PREFIX nwm: <http://dwbook.org/cubes/instances/northwind/Month#>

PREFIX nwy: <http://dwbook.org/cubes/instances/northwind/Year#>

PREFIX nws: <http://dwbook.org/cubes/instances/northwind/Supplier#>

PREFIX nwc: <http://dwbook.org/cubes/instances/northwind/Customer#>

PREFIX nwci: <http://dwbook.org/cubes/instances/northwind/City#>

PREFIX nwst: <http://dwbook.org/cubes/instances/northwind/State#>

PREFIX nwco: <http://dwbook.org/cubes/instances/northwind/Country#>

PREFIX nwe: <http://dwbook.org/cubes/instances/northwind/Employee#>

PREFIX nwp: <http://dwbook.org/cubes/instances/northwind/Product#>

PREFIX nwca: <http://dwbook.org/cubes/instances/northwind/Category#>

Figure 34: RDF prefixes used in the Northwind case study
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C Q L

b.1 cql syntax diagrams

We present CQL syntax diagrams, generated from CQL EBNF lan-

guage grammar using Railroad Diagram Generator1.

Prog

Query

Statement

Expression

SliceExpression

RollupExpression

DrilldownExpression

DiceExpression

SliceCondition

BooleanAndExpression

BooleanOrExpression

BooleanTerm

LevelDice

MeasureDice

b.2 cql simplification proofs

We now present the proofs of the properties satisfied by CQL queries

resulting from the simplification presented in Section 6.4. According

to Definition 6.3.5, before the simplification process CQL queries sat-

isfy the query patterns P1, P2, or P3. In each proof, we analyze each

1 http://bottlecaps.de/rr/ui
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one of these cases. In what follows, we denote qin and qout, the

queries before and after the simplification process, respectively.

b.2.1 Proof of Property 6.4.1

Property 6.4.1. If there is no Dice operation in qin, there is at most

one Roll-up, and no Drill-down operation, for each Dimension d

in qout.

Proof. (1) If qin corresponds to P1, and does not include a DICE op-

eration, then ∀p,operation(p) /p ∈ qin, either p is a SLICE or a

ROLL-UP. For each dimension d in qin, if there exists a sequence of

ROLL-UP operations over d, and also a SLICE operation over d, then,

after applying Rule 5 (from Section 6.4), the only operation in qout

over d is a SLICE . If there exists a sequence of ROLL-UP over d, and

there is no SLICE over d, then by the application of Rule 2 (from Sec-

tion 6.4), the only operation in qout over d is either a ROLLUP (if the

target level is different than the origin level), or there is no operation

at all (by the application of Rule 1).

(2) If qin corresponds to P2 or P3, and does not include a DICE opera-

tion, then ∀p,operation(p) /p ∈ qin either p is a SLICE, a ROLL-UP,

or a DRILL-DOWN. For each dimension d in qin, if there exists a se-

quence of ROLL-UP and DRILL-DOWN operations over d, and also a

SLICE operation over d, then, after applying Rule 5 (from Section 6.4),

the only operation in qout over d is a SLICE . If there exists a sequence

of ROLL-UP over d, and no SLICE over d, then by the application of

Rule 2 (from Section 6.4), the only operation in qout over d is either a

ROLLUP (if the target level is different than the origin level), or there

is no operation at all (by the application of Rule 1).

b.2.2 Proof of Property 6.4.2

Property 6.4.2. Slice operations are either at the beginning or at the

end of qout, but not in the middle.

Proof. We consider two cases: SLICE operations over dimensions, and

SLICE operation over measures.

(1) Rule 3 states that for each dimension d in qin, if there exist one

or more DICE operations, and a SLICE over d, the SLICE operation

will be at the end of qout; and if there is a SLICE and no DICE, then

the SLICE operation will be at the beginning of qout. This applies to

queries that correspond to all the patterns.

(2) Rule 4 indicates that for each measure m in qin, if there exist one

or more DICE operations, and a SLICE over m, the SLICE operation

will be at the end of qout; and if there is a SLICE and no DICE, then

the SLICE operation will at the beginning of qout. This applies to

queries that correspond pattern P3.
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S S B - Q B 4 O L A P B E N C H M A R K

c.1 cql queries

Figures 36 to 48 show the CQLversion of each query in the bench-

mark. The prefixes defined in Figure 35 apply to all theses queries.

prefix rdfh-inst: <http://lod2.eu/schemas/rdfh-inst#>;

prefix rdfh: <http://lod2.eu/schemas/rdfh#>;

prefix ssb-qb4olap: <http://www.fing.edu.uy/inco/cubes/schemas/ssb_qb4olap#>;

Figure 35: RDF prefixes used in CQLqueries

$C1 := SLICE(rdfh-inst:ds, ssb-qb4olap:customerDim );

$C2 := SLICE($C1, ssb-qb4olap:supplierDim );

$C3 := SLICE($C2, ssb-qb4olap:partsDim );

$C4 := SLICE($C3, MEASURES(rdfh:sum_revenue));

$C5 := SLICE($C4, MEASURES(rdfh:lo_revenue));

$C6 := SLICE($C5, MEASURES(rdfh:lo_supplycost));

$C7 := SLICE($C6, MEASURES(rdfh:sum_profit));

$C8 := DICE ($C7, rdfh:lo_quantity<= 24 );

$C9 := DICE ($C8, rdfh:lo_discount>=1 AND rdfh:lo_discount<=3);

$C10 := SLICE($C9, MEASURES(rdfh:lo_quantity));

$C11 := ROLLUP ($C10, ssb-qb4olap:timeDim, ssb-qb4olap:year);

$C12 := DICE ($C11, (ssb-qb4olap:timeDim|ssb-qb4olap:year|

ssb-qb4olap:yearNum = 1993));

$C13 := SLICE($C12, ssb-qb4olap:timeDim );

Figure 36: Query 1 (CQL)

$C1 := SLICE(rdfh-inst:ds, ssb-qb4olap:customerDim );

$C2 := SLICE($C1, ssb-qb4olap:supplierDim );

$C3 := SLICE($C2, ssb-qb4olap:partsDim );

$C4 := SLICE($C3, MEASURES(rdfh:sum_revenue));

$C5 := SLICE($C4, MEASURES(rdfh:lo_revenue));

$C6 := SLICE($C5, MEASURES(rdfh:lo_supplycost));

$C7 := SLICE($C6, MEASURES(rdfh:sum_profit));

$C8 := DICE ($C7, rdfh:lo_quantity>=26 AND rdfh:lo_quantity<=35);

$C9 := SLICE($C8, MEASURES(rdfh:lo_quantity));

$C10 := DICE ($C9, rdfh:lo_discount>=4 AND rdfh:lo_discount<=6);

$C11 := ROLLUP ($C10, ssb-qb4olap:timeDim, ssb-qb4olap:month);

$C12 := DICE ($C11, (ssb-qb4olap:timeDim|ssb-qb4olap:month|

ssb-qb4olap:yearmonthnum = 199401));

$C13 := SLICE($C12, ssb-qb4olap:timeDim );

Figure 37: Query 2 (CQL)

117

[ September 19, 2016 at 12:46 – ]



118 ssb-qb4olap benchmark

$C1 := SLICE(rdfh-inst:ds, ssb-qb4olap:customerDim );

$C2 := SLICE($C1, ssb-qb4olap:supplierDim );

$C3 := SLICE($C2, ssb-qb4olap:partsDim );

$C4 := SLICE($C3, MEASURES(rdfh:sum_revenue));

$C5 := SLICE($C4, MEASURES(rdfh:lo_revenue));

$C6 := SLICE($C5, MEASURES(rdfh:lo_supplycost));

$C7 := SLICE($C6, MEASURES(rdfh:sum_profit));

$C8 := DICE ($C7, rdfh:lo_quantity>=26 AND rdfh:lo_quantity<=35);

$C9 := SLICE($C8, MEASURES(rdfh:lo_quantity));

$C10 := DICE ($C9, rdfh:lo_discount>=5 AND rdfh:lo_discount<=7);

$C11 := ROLLUP ($C10, ssb-qb4olap:timeDim, ssb-qb4olap:week);

$C12 := DICE ($C11, (ssb-qb4olap:timeDim|ssb-qb4olap:week|

ssb-qb4olap:yearweeknum = 19946));

$C13 := SLICE($C12, ssb-qb4olap:timeDim );

Figure 38: Query 3 (CQL)

$C1 := SLICE(rdfh-inst:ds, ssb-qb4olap:customerDim );

$C3 := SLICE($C2, MEASURES(rdfh:lo_extendedprice));

$C4 := SLICE($C3, MEASURES(rdfh:sum_revenue));

$C5 := SLICE($C4, MEASURES(rdfh:lo_supplycost));

$C6 := SLICE($C5, MEASURES(rdfh:sum_profit));

$C7 := SLICE($C6, MEASURES(rdfh:lo_quantity));

$C8 := SLICE($C7, MEASURES(rdfh:lo_discount));

$C9 := ROLLUP ($C8, ssb-qb4olap:supplierDim, ssb-qb4olap:region);

$C10 := ROLLUP ($C9, ssb-qb4olap:partsDim, ssb-qb4olap:category);

$C11 := ROLLUP ($C10, ssb-qb4olap:timeDim, ssb-qb4olap:year);

$C12 := DICE ($C11, (ssb-qb4olap:supplierDim|ssb-qb4olap:region|

ssb-qb4olap:regionName = "AMERICA"));

$C13 := DICE ($C12, (ssb-qb4olap:partsDim|ssb-qb4olap:category|

ssb-qb4olap:categoryName = "MFGR#12"));

$C14:= SLICE($C13, ssb-qb4olap:supplierDim );

Figure 39: Query 4 (CQL)

$C1 := SLICE(rdfh-inst:ds, ssb-qb4olap:customerDim );

$C3 := SLICE($C2, MEASURES(rdfh:lo_extendedprice));

$C4 := SLICE($C3, MEASURES(rdfh:sum_revenue));

$C5 := SLICE($C4, MEASURES(rdfh:lo_supplycost));

$C6 := SLICE($C5, MEASURES(rdfh:sum_profit));

$C7 := SLICE($C6, MEASURES(rdfh:lo_quantity));

$C8 := SLICE($C7, MEASURES(rdfh:lo_discount));

$C9 := ROLLUP ($C8, ssb-qb4olap:supplierDim, ssb-qb4olap:region);

$C10 := ROLLUP ($C9, ssb-qb4olap:partsDim, ssb-qb4olap:brand);

$C11 := ROLLUP ($C10, ssb-qb4olap:timeDim, ssb-qb4olap:year);

$C12 := DICE ($C11, (ssb-qb4olap:supplierDim|ssb-qb4olap:region|

ssb-qb4olap:regionName = "ASIA"));

$C13 := DICE ($C12, (ssb-qb4olap:partsDim|ssb-qb4olap:brand|

ssb-qb4olap:brandName >= "MFGR#2221"));

$C14 := DICE ($C13, (ssb-qb4olap:partsDim|ssb-qb4olap:brand|

ssb-qb4olap:brandName <= "MFGR#2228"));

$C15 := SLICE($C14, ssb-qb4olap:supplierDim );

Figure 40: Query 5 (CQL)
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$C1 := SLICE(rdfh-inst:ds, ssb-qb4olap:customerDim );

$C3 := SLICE($C2, MEASURES(rdfh:lo_extendedprice));

$C4 := SLICE($C3, MEASURES(rdfh:sum_revenue));

$C5 := SLICE($C4, MEASURES(rdfh:lo_supplycost));

$C6 := SLICE($C5, MEASURES(rdfh:sum_profit));

$C7 := SLICE($C6, MEASURES(rdfh:lo_quantity));

$C8 := SLICE($C7, MEASURES(rdfh:lo_discount));

$C9 := ROLLUP ($C8, ssb-qb4olap:supplierDim, ssb-qb4olap:region);

$C10 := ROLLUP ($C9, ssb-qb4olap:partsDim, ssb-qb4olap:brand);

$C11 := ROLLUP ($C10, ssb-qb4olap:timeDim, ssb-qb4olap:year);

$C12 := DICE ($C11, (ssb-qb4olap:supplierDim|ssb-qb4olap:region|

ssb-qb4olap:regionName = "EUROPE"));

$C13 := DICE ($C12, (ssb-qb4olap:partsDim|ssb-qb4olap:brand|

ssb-qb4olap:brandName = "MFGR#2239"));

$C14 := SLICE($C13, ssb-qb4olap:supplierDim );

Figure 41: Query 6 (CQL)

$C1 := SLICE(rdfh-inst:ds, MEASURES(rdfh:lo_extendedprice));

$C2 := SLICE($C1, MEASURES(rdfh:sum_revenue));

$C3 := SLICE($C2, MEASURES(rdfh:lo_supplycost));

$C4 := SLICE($C3, MEASURES(rdfh:sum_profit));

$C5 := SLICE($C4, MEASURES(rdfh:lo_quantity));

$C6 := SLICE($C5, MEASURES(rdfh:lo_discount));

$C7 := ROLLUP ($C6, ssb-qb4olap:supplierDim, ssb-qb4olap:region);

$C8 := ROLLUP ($C7, ssb-qb4olap:customerDim, ssb-qb4olap:region);

$C9 := ROLLUP ($C8, ssb-qb4olap:timeDim, ssb-qb4olap:year);

$C10 := DICE ($C9, (ssb-qb4olap:supplierDim|ssb-qb4olap:region|

ssb-qb4olap:regionName = "ASIA"));

$C11 := DICE ($C10, (ssb-qb4olap:customerDim|ssb-qb4olap:region|

ssb-qb4olap:regionName = "ASIA"));

$C12 := DICE ($C11, (ssb-qb4olap:timeDim|ssb-qb4olap:year|

ssb-qb4olap:yearNum >= 1992));

$C13 := DICE ($C12, (ssb-qb4olap:timeDim|ssb-qb4olap:year|

ssb-qb4olap:yearNum <= 1997));

$C14 := SLICE ($C13, ssb-qb4olap:partsDim);

Figure 42: Query 7 (CQL)

$C1 := SLICE(rdfh-inst:ds, MEASURES(rdfh:lo_extendedprice));

$C2 := SLICE($C1, MEASURES(rdfh:sum_revenue));

$C3 := SLICE($C2, MEASURES(rdfh:lo_supplycost));

$C4 := SLICE($C3, MEASURES(rdfh:sum_profit));

$C5 := SLICE($C4, MEASURES(rdfh:lo_quantity));

$C6 := SLICE($C5, MEASURES(rdfh:lo_discount));

$C7 := ROLLUP ($C6, ssb-qb4olap:supplierDim, ssb-qb4olap:nation);

$C8 := ROLLUP ($C7, ssb-qb4olap:customerDim, ssb-qb4olap:nation);

$C9 := ROLLUP ($C8, ssb-qb4olap:timeDim, ssb-qb4olap:year);

$C10 := DICE ($C9, (ssb-qb4olap:supplierDim|ssb-qb4olap:nation|

ssb-qb4olap:nationName = "UNITED STATES"));

$C11 := DICE ($C10, (ssb-qb4olap:customerDim|ssb-qb4olap:nation|

ssb-qb4olap:nationName = "UNITED STATES"));

$C12 := DICE ($C11, (ssb-qb4olap:timeDim|ssb-qb4olap:year|

ssb-qb4olap:yearNum >= 1992));

$C13 := DICE ($C12, (ssb-qb4olap:timeDim|ssb-qb4olap:year|

ssb-qb4olap:yearNum <= 1997));

$C14 := SLICE ($C13, ssb-qb4olap:partsDim);

Figure 43: Query 8 (CQL)
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$C1 := SLICE(rdfh-inst:ds, MEASURES(rdfh:lo_extendedprice));

$C2 := SLICE($C1, MEASURES(rdfh:sum_revenue));

$C3 := SLICE($C2, MEASURES(rdfh:lo_supplycost));

$C4 := SLICE($C3, MEASURES(rdfh:sum_profit));

$C5 := SLICE($C4, MEASURES(rdfh:lo_quantity));

$C6 := SLICE($C5, MEASURES(rdfh:lo_discount));

$C7 := ROLLUP ($C6, ssb-qb4olap:supplierDim, ssb-qb4olap:city);

$C8 := ROLLUP ($C7, ssb-qb4olap:customerDim, ssb-qb4olap:city);

$C9 := ROLLUP ($C8, ssb-qb4olap:timeDim, ssb-qb4olap:year);

$C10 := DICE ($C9, ((ssb-qb4olap:supplierDim|ssb-qb4olap:city|

ssb-qb4olap:cityName = "UNITED KI1")OR

(ssb-qb4olap:supplierDim|ssb-qb4olap:city|

ssb-qb4olap:cityName = "UNITED KI5")));

$C11 := DICE ($C10, ((ssb-qb4olap:customerDim|ssb-qb4olap:city|

ssb-qb4olap:cityName = "UNITED KI1")OR

(ssb-qb4olap:customerDim|ssb-qb4olap:city|

ssb-qb4olap:cityName = "UNITED KI5")));

$C12 := DICE ($C11, (ssb-qb4olap:timeDim|ssb-qb4olap:year|

ssb-qb4olap:yearNum >= 1992));

$C13 := DICE ($C12, (ssb-qb4olap:timeDim|ssb-qb4olap:year|

ssb-qb4olap:yearNum <= 1997));

$C14 := SLICE ($C13, ssb-qb4olap:partsDim);

Figure 44: Query 9 (CQL)

$C1 := SLICE(rdfh-inst:ds, MEASURES(rdfh:lo_extendedprice));

$C2 := SLICE($C1, MEASURES(rdfh:sum_revenue));

$C3 := SLICE($C2, MEASURES(rdfh:lo_supplycost));

$C4 := SLICE($C3, MEASURES(rdfh:sum_profit));

$C5 := SLICE($C4, MEASURES(rdfh:lo_quantity));

$C6 := SLICE($C5, MEASURES(rdfh:lo_discount));

$C7 := ROLLUP ($C6, ssb-qb4olap:supplierDim, ssb-qb4olap:city);

$C8 := ROLLUP ($C7, ssb-qb4olap:customerDim, ssb-qb4olap:city);

$C9 := ROLLUP ($C8, ssb-qb4olap:timeDim, ssb-qb4olap:month);

$C10 := DICE ($C11, ((ssb-qb4olap:supplierDim|ssb-qb4olap:city|

ssb-qb4olap:cityName = "UNITED KI1")OR

(ssb-qb4olap:supplierDim|ssb-qb4olap:city|

ssb-qb4olap:cityName = "UNITED KI5")));

$C11 := DICE ($C10, ((ssb-qb4olap:customerDim|ssb-qb4olap:city|

ssb-qb4olap:cityName = "UNITED KI1")OR

(ssb-qb4olap:customerDim|ssb-qb4olap:city|

ssb-qb4olap:cityName = "UNITED KI5")));

$C12 := DICE ($C11, (ssb-qb4olap:timeDim|ssb-qb4olap:month|

ssb-qb4olap:yearmonthnum = 199712));

$C13 := SLICE ($C14, ssb-qb4olap:partsDim);

Figure 45: Query 10 (CQL)
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$C1 := SLICE(rdfh-inst:ds, MEASURES(rdfh:lo_extendedprice));

$C2 := SLICE($C1, MEASURES(rdfh:sum_revenue));

$C4 := SLICE($C3, MEASURES(rdfh:sum_profit));

$C5 := SLICE($C4, MEASURES(rdfh:lo_quantity));

$C6 := SLICE($C5, MEASURES(rdfh:lo_discount));

$C7 := ROLLUP ($C6, ssb-qb4olap:supplierDim, ssb-qb4olap:region);

$C8 := ROLLUP ($C7, ssb-qb4olap:customerDim, ssb-qb4olap:region);

$C9 := ROLLUP ($C8, ssb-qb4olap:timeDim, ssb-qb4olap:year);

$C10 := ROLLUP ($C9, ssb-qb4olap:partsDim, ssb-qb4olap:manufacturer);

$C11 := DICE ($C10, ssb-qb4olap:supplierDim|ssb-qb4olap:region|

ssb-qb4olap:regionName = "AMERICA");

$C12 := DICE ($C11, ssb-qb4olap:customerDim|ssb-qb4olap:region|

ssb-qb4olap:regionName = "AMERICA");

$C13 := DICE ($C12, ((ssb-qb4olap:partsDim|ssb-qb4olap:manufacturer|

ssb-qb4olap:manufacturerName = "MFGR#1")OR

(ssb-qb4olap:partsDim|ssb-qb4olap:manufacturer|

ssb-qb4olap:manufacturerName = "MFGR#2")));

$C14 := SLICE ($C13, ssb-qb4olap:partsDim);

$C15 := SLICE ($C14, ssb-qb4olap:supplierDim);

Figure 46: Query 11 (CQL)

$C1 := SLICE(rdfh-inst:ds, MEASURES(rdfh:lo_extendedprice));

$C2 := SLICE($C1, MEASURES(rdfh:sum_revenue));

$C4 := SLICE($C3, MEASURES(rdfh:sum_profit));

$C5 := SLICE($C4, MEASURES(rdfh:lo_quantity));

$C6 := SLICE($C5, MEASURES(rdfh:lo_discount));

$C7 := ROLLUP ($C6, ssb-qb4olap:supplierDim, ssb-qb4olap:region);

$C8 := ROLLUP ($C7, ssb-qb4olap:customerDim, ssb-qb4olap:region);

$C9 := ROLLUP ($C8, ssb-qb4olap:timeDim, ssb-qb4olap:year);

$C10 := ROLLUP ($C9, ssb-qb4olap:partsDim, ssb-qb4olap:manufacturer);

$C11 := DICE ($C10, ssb-qb4olap:supplierDim|ssb-qb4olap:region|

ssb-qb4olap:regionName = "AMERICA");

$C12 := DICE ($C11, ssb-qb4olap:customerDim|ssb-qb4olap:region|

ssb-qb4olap:regionName = "AMERICA");

$C13 := DICE ($C12, ((ssb-qb4olap:partsDim|ssb-qb4olap:manufacturer|

ssb-qb4olap:manufacturerName = "MFGR#1")OR

(ssb-qb4olap:partsDim|ssb-qb4olap:manufacturer|

ssb-qb4olap:manufacturerName = "MFGR#2")));

$C14 := DICE ($C13, (ssb-qb4olap:timeDim|ssb-qb4olap:year|

ssb-qb4olap:yearNum >= 1997));

$C15 := DICE ($C14, (ssb-qb4olap:timeDim|ssb-qb4olap:year|

ssb-qb4olap:yearNum <= 1998));

$C16 := SLICE ($C15, ssb-qb4olap:customerDim);

Figure 47: Query 12 (CQL)

c.2 naïve sparql queries

Figures 50 to 62 show the naïve SPARQL queries that implement each

CQLquery presented in Section C.1. The prefixes defined in Figure 49

apply to all theses queries.
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$C1 := SLICE(rdfh-inst:ds, MEASURES(rdfh:lo_extendedprice));

$C2 := SLICE($C1, MEASURES(rdfh:sum_revenue));

$C4 := SLICE($C3, MEASURES(rdfh:sum_profit));

$C5 := SLICE($C4, MEASURES(rdfh:lo_quantity));

$C6 := SLICE($C5, MEASURES(rdfh:lo_discount));

$C7 := ROLLUP ($C6, ssb-qb4olap:supplierDim, ssb-qb4olap:nation);

$C8 := ROLLUP ($C7, ssb-qb4olap:customerDim, ssb-qb4olap:region);

$C9 := ROLLUP ($C8, ssb-qb4olap:timeDim, ssb-qb4olap:year);

$C10 := ROLLUP ($C9, ssb-qb4olap:partsDim, ssb-qb4olap:category);

$C11 := DICE ($C10, ssb-qb4olap:supplierDim|ssb-qb4olap:nation|

ssb-qb4olap:nationName = "UNITED STATES");

$C12 := DICE ($C11, ssb-qb4olap:customerDim|ssb-qb4olap:region|

ssb-qb4olap:regionName = "AMERICA");

$C13 := DICE ($C12, (ssb-qb4olap:partsDim|ssb-qb4olap:category|

ssb-qb4olap:categoryName = "MFGR#14"));

$C14 := DICE ($C13, (ssb-qb4olap:timeDim|ssb-qb4olap:year|

ssb-qb4olap:yearNum >= 1997));

$C15 := DICE ($C14, (ssb-qb4olap:timeDim|ssb-qb4olap:year|

ssb-qb4olap:yearNum <= 1998));

$C16 := SLICE ($C15, ssb-qb4olap:customerDim);

Figure 48: Query 13 (CQL)

prefix qb: <http://purl.org/linked-data/cube#>

prefix qb4o: <http://purl.org/qb4olap/cubes#>

prefix skos: <http://www.w3.org/2004/02/skos/core#>

prefix schema: <http://www.fing.edu.uy/inco/cubes/schemas/ssb_qb4olap#>

prefix xsd: <http://www.w3.org/2001/XMLSchema#>

prefix rdfh: <http://lod2.eu/schemas/rdfh#>

prefix rdfh-inst: <http://lod2.eu/schemas/rdfh-inst#>

Figure 49: RDF prefixes used in naïve SPARQL queries

SELECT (?ag1 * ?ag2) as ?sum_revenue

FROM <http://www.fing.edu.uy/inco/cubes/instances/ssb_qb4olap>

FROM <http://www.fing.edu.uy/inco/cubes/schemas/ssb_qb4olap>

WHERE {

{ ?plm2 schema:yearNum ?plm21 }.

{

SELECT ?plm2 (SUM(xsd:float(?m2)) as ?ag1) (SUM(xsd:float(?m3)) as ?ag2)

WHERE {

?o a qb:Observation .

?o qb:dataSet rdfh-inst:ds .

?o rdfh:lo_quantity ?m1 .

?o rdfh:lo_discount ?m2 .

?o rdfh:lo_extendedprice ?m3 .

?o rdfh:lo_orderdate ?lm1 .

?lm1 qb4o:memberOf rdfh:lo_orderdate .

?lm1 schema:dateInMonth ?plm1 .

?plm1 qb4o:memberOf schema:month .

?plm1 schema:monthInYear ?plm2 .

?plm2 qb4o:memberOf schema:year .

FILTER (?m1 <= 24) && (?m2 >= 1) && (?m2 <= 3)

}

GROUP BY ?plm2 }

FILTER (?plm21=1993) }

Figure 50: Query 1 (naïve SPARQL)
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SELECT (?ag1 * ?ag2) as ?sum_revenue

FROM <http://www.fing.edu.uy/inco/cubes/instances/ssb_qb4olap>

FROM <http://www.fing.edu.uy/inco/cubes/schemas/ssb_qb4olap>

WHERE {

{ ?plm1 schema:yearmonthnum> ?plm11 }.

{

SELECT ?plm1 (SUM(xsd:float(?m2)) as ?ag1)

(SUM(xsd:float(?m3)) as ?ag2)

WHERE {

?o a qb:Observation .

?o qb:dataSet rdfh-inst:ds .

?o rdfh:lo_quantity ?m1 .

?o rdfh:lo_discount ?m2 .

?o rdfh:lo_extendedprice ?m3 .

?o rdfh:lo_orderdate ?lm1 .

?lm1 qb4o:memberOf rdfh:lo_orderdate .

?lm1 schema:dateInMonth ?plm1 .

?plm1 qb4o:memberOf schema:month .

FILTER (?m1 >= 26) && (?m1 <= 35) && (?m2 >= 4) && (?m2 <= 6)

}

GROUP BY ?plm1

} FILTER (?plm11=199401)

}

Figure 51: Query 2 (naïve SPARQL)

SELECT (?ag1 * ?ag2) as ?sum_revenue

FROM <http://www.fing.edu.uy/inco/cubes/instances/ssb_qb4olap>

FROM <http://www.fing.edu.uy/inco/cubes/schemas/ssb_qb4olap>

WHERE {

{ ?plm1 schema:yearweeknum> ?plm11 }.

{

SELECT ?plm1 (SUM(xsd:float(?m2)) as ?ag1) (SUM(xsd:float(?m3)) as ?ag2)

WHERE {

?o a qb:Observation .

?o qb:dataSet rdfh-inst:ds .

?o rdfh:lo_quantity ?m1 .

?o rdfh:lo_discount ?m2 .

?o rdfh:lo_extendedprice ?m3 .

?o rdfh:lo_orderdate ?lm1 .

?lm1 qb4o:memberOf rdfh:lo_orderdate .

?lm1 schema:dateInWeek ?plm1 .

?plm1 qb4o:memberOf schema:week .

FILTER (?m1 >= 26) && (?m1 <= 35) && (?m2 >= 5) && (?m2 <= 7)

}

GROUP BY ?plm1

} FILTER (?plm11=19946)

}

Figure 52: Query 3 (naïve SPARQL)
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SELECT ?plm2 ?plm3 (SUM(xsd:float(?m4)) as ?ag1)

FROM <http://www.fing.edu.uy/inco/cubes/instances/ssb_qb4olap>

FROM <http://www.fing.edu.uy/inco/cubes/schemas/ssb_qb4olap>

WHERE {

?o a qb:Observation .

?o qb:dataSet rdfh-inst:ds .

?o rdfh:lo_revenue ?m4 .

?o rdfh:lo_orderdate ?lm1 .

?lm1 qb4o:memberOf rdfh:lo_orderdate . ?lm1 schema:dateInMonth ?plm1 .

?plm1 qb4o:memberOf schema:month . ?plm1 schema:monthInYear ?plm2 .

?plm2 qb4o:memberOf schema:year .

?o rdfh:lo_partkey ?lm2 .

?lm2 qb4o:memberOf rdfh:lo_partkey . ?lm2 schema:hasBrand ?plm3 .

?plm3 qb4o:memberOf schema:brand . ?plm3 schema:hasCategory ?plm4 .

?plm4 qb4o:memberOf schema:category .

?o rdfh:lo_suppkey ?lm3 .

?lm3 qb4o:memberOf rdfh:lo_suppkey .?lm3 schema:inCity ?plm5 .

?plm5 qb4o:memberOf schema:city . ?plm5 schema:inNation ?plm6 .

?plm6 qb4o:memberOf schema:nation . ?plm6 schema:inRegion ?plm7 .

?plm7 qb4o:memberOf schema:region . ?plm7 schema:inRegion ?plm71 .

?plm4 schema:categoryName ?plm41 .

FILTER (REGEX (?plm71,"AMERICA" , "i"))&&

(REGEX (?plm41,"MFGR#12" , "i"))

}

GROUP BY ?plm2 ?plm3

Figure 53: Query 4 (naïve SPARQL)

SELECT ?plm2 ?plm3 (SUM(xsd:float(?m4)) as ?ag1)

FROM <http://www.fing.edu.uy/inco/cubes/instances/ssb_qb4olap>

FROM <http://www.fing.edu.uy/inco/cubes/schemas/ssb_qb4olap>

WHERE {

?o a qb:Observation .

?o qb:dataSet rdfh-inst:ds .

?o rdfh:lo_quantity ?m1 .

?o rdfh:lo_discount ?m2 .

?o rdfh:lo_extendedprice ?m3 .

?o rdfh:lo_revenue ?m4 .

?o rdfh:lo_orderdate ?lm1 .

?lm1 qb4o:memberOf rdfh:lo_orderdate . ?lm1 schema:dateInMonth ?plm1 .

?plm1 qb4o:memberOf schema:month . ?plm1 schema:monthInYear ?plm2 .

?plm2 qb4o:memberOf schema:year .

?o rdfh:lo_partkey ?lm2 .

?lm2 qb4o:memberOf rdfh:lo_partkey . ?lm2 schema:hasBrand ?plm3 .

?plm3 qb4o:memberOf schema:brand .

?o rdfh:lo_suppkey ?lm3 .

?lm3 qb4o:memberOf rdfh:lo_suppkey . ?lm3 schema:inCity ?plm4 .

?plm4 qb4o:memberOf schema:city . ?plm4 schema:inNation ?plm5 .

?plm5 qb4o:memberOf schema:nation . ?plm5 schema:inRegion ?plm6 .

?plm6 qb4o:memberOf schema:region . ?plm6 schema:inRegion ?plm61 .

?plm3 schema:brandName ?plm31 .

FILTER (REGEX (?plm61,"ASIA" , "i")) &&

(str(?plm31)>="MFGR#2221") &&

(str(?plm31)<="MFGR#2228")

}

GROUP BY ?plm2 ?plm3

Figure 54: Query 5 (naïve SPARQL)
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SELECT ?plm2 ?plm3 (SUM(xsd:float(?m4)) as ?ag1)

FROM <http://www.fing.edu.uy/inco/cubes/instances/ssb_qb4olap>

FROM <http://www.fing.edu.uy/inco/cubes/schemas/ssb_qb4olap>

WHERE {

?o a qb:Observation .

?o qb:dataSet rdfh-inst:ds .

?o rdfh:lo_revenue ?m4 .

?o rdfh:lo_orderdate ?lm1 .

?lm1 qb4o:memberOf rdfh:lo_orderdate . ?lm1 schema:dateInMonth ?plm1 .

?plm1 qb4o:memberOf schema:month . ?plm1 schema:monthInYear ?plm2 .

?plm2 qb4o:memberOf schema:year .

?o rdfh:lo_partkey ?lm2 .

?lm2 qb4o:memberOf rdfh:lo_partkey . ?lm2 schema:hasBrand ?plm3 .

?plm3 qb4o:memberOf schema:brand .

?o rdfh:lo_suppkey ?lm3 .

?lm3 qb4o:memberOf rdfh:lo_suppkey . ?lm3 schema:inCity ?plm4 .

?plm4 qb4o:memberOf schema:city . ?plm4 schema:inNation ?plm5 .

?plm5 qb4o:memberOf schema:nation . ?plm5 schema:inRegion ?plm6 .

?plm6 qb4o:memberOf schema:region . ?plm6 schema:inRegion ?plm61 .

?plm3 schema:brandName ?plm31 .

FILTER (REGEX (?plm61,"EUROPE" , "i")) &&

(REGEX (?plm31,"MFGR#2239" , "i"))

}

GROUP BY ?plm2 ?plm3

Figure 55: Query 6 (naïve SPARQL)

SELECT ?plm2 ?plm4 ?plm7 (SUM(xsd:float(?m4)) as ?ag1)

FROM <http://www.fing.edu.uy/inco/cubes/instances/ssb_qb4olap>

FROM <http://www.fing.edu.uy/inco/cubes/schemas/ssb_qb4olap>

WHERE {

?o a qb:Observation .

?o qb:dataSet rdfh-inst:ds .

?o rdfh:lo_revenue ?m4 .

?o rdfh:lo_orderdate ?lm1 .

?lm1 qb4o:memberOf rdfh:lo_orderdate . ?lm1 schema:dateInMonth ?plm1 .

?plm1 qb4o:memberOf schema:month . ?plm1 schema:monthInYear ?plm2 .

?plm2 qb4o:memberOf schema:year .

?o rdfh:lo_custkey ?lm2 .

?lm2 qb4o:memberOf rdfh:lo_custkey . ?lm2 schema:inCity ?plm3 .

?plm3 qb4o:memberOf schema:city . ?plm3 schema:inNation ?plm4 .

?plm4 qb4o:memberOf schema:nation . ?plm4 schema:inRegion ?plm5 .

?plm5 qb4o:memberOf schema:region .

?o rdfh:lo_partkey ?lm3 .

?o rdfh:lo_suppkey ?lm4 .

?lm4 qb4o:memberOf rdfh:lo_suppkey . ?lm4 schema:inCity ?plm6 .

?plm6 qb4o:memberOf schema:city . ?plm6 schema:inNation ?plm7 .

?plm7 qb4o:memberOf schema:nation . ?plm7 schema:inRegion ?plm8 .

?plm8 qb4o:memberOf schema:region .

?plm5 schema:inRegion ?plm51 . ?plm8 schema:inRegion ?plm81 .

?plm2 schema:yearNum ?plm21 .

FILTER (REGEX (?plm51,"ASIA" , "i")) &&

(REGEX (?plm81,"ASIA" , "i")) &&

(?plm21 >= 1992) && (?plm21 <= 1997)

}

GROUP BY ?plm2 ?plm4 ?plm7

Figure 56: Query 7 (naïve SPARQL)
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SELECT ?plm2 ?plm3 ?plm5 (SUM(xsd:float(?m4)) as ?ag1)

FROM <http://www.fing.edu.uy/inco/cubes/instances/ssb_qb4olap>

FROM <http://www.fing.edu.uy/inco/cubes/schemas/ssb_qb4olap>

WHERE {

?o a qb:Observation .

?o qb:dataSet rdfh-inst:ds .

?o rdfh:lo_revenue ?m4 .

?o rdfh:lo_orderdate ?lm1 .

?lm1 qb4o:memberOf rdfh:lo_orderdate . ?lm1 schema:dateInMonth ?plm1 .

?plm1 qb4o:memberOf schema:month . ?plm1 schema:monthInYear ?plm2 .

?plm2 qb4o:memberOf schema:year .

?o rdfh:lo_custkey ?lm2 .

?lm2 qb4o:memberOf rdfh:lo_custkey . ?lm2 schema:inCity ?plm3 .

?plm3 qb4o:memberOf schema:city . ?plm3 schema:inNation ?plm4 .

?plm4 qb4o:memberOf schema:nation .

?o rdfh:lo_partkey ?lm3 .

?o rdfh:lo_suppkey ?lm4 .

?lm4 qb4o:memberOf rdfh:lo_suppkey . ?lm4 schema:inCity ?plm5 .

?plm5 qb4o:memberOf schema:city . ?plm5 schema:inNation ?plm6 .

?plm6 qb4o:memberOf schema:nation .

?plm4 schema:nationName> ?plm41 .

?plm6 schema:nationName> ?plm61 .

?plm2 schema:yearNum ?plm21 .

FILTER (REGEX (?plm41,"UNITED STATES" , "i")) &&

(REGEX (?plm61,"UNITED STATES" , "i")) &&

(?plm21 >= 1992) && (?plm21 <= 1997)

}

GROUP BY ?plm2 ?plm3 ?plm5

Figure 57: Query 8 (naïve SPARQL)

SELECT ?plm2 ?plm3 ?plm4 (SUM(xsd:float(?m4)) as ?ag1)

FROM <http://www.fing.edu.uy/inco/cubes/instances/ssb_qb4olap>

FROM <http://www.fing.edu.uy/inco/cubes/schemas/ssb_qb4olap>

WHERE {

?o a qb:Observation .

?o qb:dataSet rdfh-inst:ds .

?o rdfh:lo_revenue ?m4 .

?o rdfh:lo_orderdate ?lm1 .

?lm1 qb4o:memberOf rdfh:lo_orderdate . ?lm1 schema:dateInMonth ?plm1 .

?plm1 qb4o:memberOf schema:month . ?plm1 schema:monthInYear ?plm2 .

?plm2 qb4o:memberOf schema:year .

?o rdfh:lo_custkey ?lm2 .

?lm2 qb4o:memberOf rdfh:lo_custkey . ?lm2 schema:inCity ?plm3 .

?plm3 qb4o:memberOf schema:city .

?o rdfh:lo_partkey ?lm3 .

?o rdfh:lo_suppkey ?lm4 .

?lm4 qb4o:memberOf rdfh:lo_suppkey . ?lm4 schema:inCity ?plm4 .

?plm4 qb4o:memberOf schema:city .

?plm3 schema:cityName ?plm31 .

?plm4 schema:cityName ?plm41 .

?plm2 schema:yearNum ?plm21 .

FILTER (REGEX (?plm31,"UNITED KI1" , "i") ||

REGEX (?plm31,"UNITED KI5" , "i")) &&

(REGEX (?plm41,"UNITED KI1" , "i") ||

REGEX (?plm41,"UNITED KI5" , "i")) &&

(?plm21 >= 1992) && (?plm21 <= 1997)

}

GROUP BY ?plm2 ?plm3 ?plm4

Figure 58: Query 9 (naïve SPARQL)
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SELECT ?plm1 ?plm2 ?plm3 (SUM(xsd:float(?m4)) as ?ag1)

FROM <http://www.fing.edu.uy/inco/cubes/instances/ssb_qb4olap>

FROM <http://www.fing.edu.uy/inco/cubes/schemas/ssb_qb4olap>

WHERE {

?o a qb:Observation .

?o qb:dataSet rdfh-inst:ds .

?o rdfh:lo_revenue ?m4 .

?o rdfh:lo_orderdate ?lm1 .

?lm1 qb4o:memberOf rdfh:lo_orderdate . ?lm1 schema:dateInMonth ?plm1 .

?plm1 qb4o:memberOf schema:month .

?o rdfh:lo_custkey ?lm2 .

?lm2 qb4o:memberOf rdfh:lo_custkey . ?lm2 schema:inCity ?plm2 .

?plm2 qb4o:memberOf schema:city .

?o rdfh:lo_partkey ?lm3 .

?o rdfh:lo_suppkey ?lm4 .

?lm4 qb4o:memberOf rdfh:lo_suppkey . ?lm4 schema:inCity ?plm3 .

?plm3 qb4o:memberOf schema:city . ?plm3 schema:cityName ?plm31 .

?plm2 schema:cityName ?plm21 .

?plm1 schema:yearmonthnum> ?plm11 .

FILTER (((REGEX (?plm31,"UNITED KI1" , "i") ||

REGEX (?plm31,"UNITED KI5" , "i"))) &&

((REGEX (?plm21,"UNITED KI1" , "i") ||

REGEX (?plm21,"UNITED KI5" , "i"))) &&

(?plm11 = 199712))

}

GROUP BY ?plm1 ?plm2 ?plm3

Figure 59: Query 10 (naïve SPARQL)

SELECT ?plm2 ?plm4 (SUM(xsd:float(?m4)-xsd:float(?m5)) as ?ag1)

FROM <http://www.fing.edu.uy/inco/cubes/instances/ssb_qb4olap>

FROM <http://www.fing.edu.uy/inco/cubes/schemas/ssb_qb4olap>

WHERE {

?o a qb:Observation .

?o qb:dataSet rdfh-inst:ds .

?o rdfh:lo_revenue ?m4 . ?o rdfh:lo_supplycost ?m5 .

?o rdfh:lo_orderdate ?lm1 .

?lm1 qb4o:memberOf rdfh:lo_orderdate . ?lm1 schema:dateInMonth ?plm1 .

?plm1 qb4o:memberOf schema:month . ?plm1 schema:monthInYear ?plm2 .

?plm2 qb4o:memberOf schema:year .

?o rdfh:lo_custkey ?lm2 .

?lm2 qb4o:memberOf rdfh:lo_custkey . ?lm2 schema:inCity ?plm3 .

?plm3 qb4o:memberOf schema:city . ?plm3 schema:inNation ?plm4 .

?plm4 qb4o:memberOf schema:nation . ?plm4 schema:inRegion ?plm5 .

?plm5 qb4o:memberOf schema:region .

?o rdfh:lo_partkey ?lm3 .

?lm3 qb4o:memberOf rdfh:lo_partkey . ?lm3 schema:hasBrand ?plm6 .

?plm6 qb4o:memberOf schema:brand . ?plm6 schema:hasCategory ?plm7 .

?plm7 qb4o:memberOf schema:category . ?plm7 schema:hasManufacturer ?plm8 .

?plm8 qb4o:memberOf schema:manufacturer .

?o rdfh:lo_suppkey ?lm4 .

?lm4 qb4o:memberOf rdfh:lo_suppkey . ?lm4 schema:inCity ?plm9 .

?plm9 qb4o:memberOf schema:city . ?plm9 schema:inNation ?plm10 .

?plm10 qb4o:memberOf schema:nation . ?plm10 schema:inRegion ?plm11 .

?plm11 qb4o:memberOf schema:region . ?plm11 schema:inRegion ?plm111 .

?plm5 schema:inRegion ?plm51 . ?plm8 schema:manufacturerName ?plm81 .

FILTER (REGEX (?plm111,"AMERICA" , "i")) && (REGEX (?plm51,"AMERICA" , "i")) &&

((REGEX (?plm81,"MFGR#1" , "i") || REGEX (?plm81,"MFGR#2" , "i")))

}

GROUP BY ?plm2 ?plm4

Figure 60: Query 11 (naïve SPARQL)
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SELECT ?plm2 ?plm7 ?plm10 (SUM(xsd:float(?m4)-xsd:float(?m5)) as ?ag1)

FROM <http://www.fing.edu.uy/inco/cubes/instances/ssb_qb4olap>

FROM <http://www.fing.edu.uy/inco/cubes/schemas/ssb_qb4olap>

WHERE { ?o a qb:Observation . ?o qb:dataSet rdfh-inst:ds .

?o rdfh:lo_revenue ?m4 . ?o rdfh:lo_supplycost ?m5 .

?o rdfh:lo_orderdate ?lm1 .

?lm1 qb4o:memberOf rdfh:lo_orderdate . ?lm1 schema:dateInMonth ?plm1 .

?plm1 qb4o:memberOf schema:month . ?plm1 schema:monthInYear ?plm2 .

?plm2 qb4o:memberOf schema:year .

?o rdfh:lo_custkey ?lm2 .

?lm2 qb4o:memberOf rdfh:lo_custkey . ?lm2 schema:inCity ?plm3 .

?plm3 qb4o:memberOf schema:city . ?plm3 schema:inNation ?plm4 .

?plm4 qb4o:memberOf schema:nation . ?plm4 schema:inRegion ?plm5 .

?plm5 qb4o:memberOf schema:region .

?o rdfh:lo_partkey ?lm3 .

?lm3 qb4o:memberOf rdfh:lo_partkey . ?lm3 schema:hasBrand ?plm6 .

?plm6 qb4o:memberOf schema:brand . ?plm6 schema:hasCategory ?plm7 .

?plm7 qb4o:memberOf schema:category . ?plm7 schema:hasManufacturer ?plm8 .

?plm8 qb4o:memberOf schema:manufacturer .

?o rdfh:lo_suppkey ?lm4 .

?lm4 qb4o:memberOf rdfh:lo_suppkey . ?lm4 schema:inCity ?plm9 .

?plm9 qb4o:memberOf schema:city . ?plm9 schema:inNation ?plm10 .

?plm10 qb4o:memberOf schema:nation . ?plm10 schema:inRegion ?plm11 .

?plm11 qb4o:memberOf schema:region . ?plm11 schema:inRegion ?plm111 .

?plm5 schema:inRegion ?plm51 .

?plm8 schema:manufacturerName ?plm81 . ?plm2 schema:yearNum ?plm21 .

FILTER (REGEX (?plm111,"AMERICA" , "i")) && (REGEX (?plm51,"AMERICA" , "i")) &&

((REGEX (?plm81,"MFGR#1" , "i") || REGEX (?plm81,"MFGR#2" , "i"))) &&

(?plm21 >= 1997) && (?plm21 <= 1998)

} GROUP BY ?plm2 ?plm7 ?plm10

Figure 61: Query 12 (naïve SPARQL)

SELECT ?plm2 ?plm6 ?plm8 (SUM(xsd:float(?m4)-xsd:float(?m5)) as ?ag1)

FROM <http://www.fing.edu.uy/inco/cubes/instances/ssb_qb4olap>

FROM <http://www.fing.edu.uy/inco/cubes/schemas/ssb_qb4olap>

WHERE { ?o a qb:Observation . ?o qb:dataSet rdfh-inst:ds .

?o rdfh:lo_revenue ?m4 . ?o rdfh:lo_supplycost ?m5 .

?o rdfh:lo_orderdate ?lm1 .

?lm1 qb4o:memberOf rdfh:lo_orderdate . ?lm1 schema:dateInMonth ?plm1 .

?plm1 qb4o:memberOf schema:month . ?plm1 schema:monthInYear ?plm2 .

?plm2 qb4o:memberOf schema:year .

?o rdfh:lo_custkey ?lm2 .

?lm2 qb4o:memberOf rdfh:lo_custkey . ?lm2 schema:inCity ?plm3 .

?plm3 qb4o:memberOf schema:city . ?plm3 schema:inNation ?plm4 .

?plm4 qb4o:memberOf schema:nation . ?plm4 schema:inRegion ?plm5 .

?plm5 qb4o:memberOf schema:region .

?o rdfh:lo_partkey ?lm3 .

?lm3 qb4o:memberOf rdfh:lo_partkey . ?lm3 schema:hasBrand ?plm6 .

?plm6 qb4o:memberOf schema:brand . ?plm6 schema:hasCategory ?plm7 .

?plm7 qb4o:memberOf schema:category .

?o rdfh:lo_suppkey ?lm4 .

?lm4 qb4o:memberOf rdfh:lo_suppkey . ?lm4 schema:inCity ?plm8 .

?plm8 qb4o:memberOf schema:city . ?plm8 schema:inNation ?plm9 .

?plm9 qb4o:memberOf schema:nation . ?plm9 schema:nationName> ?plm91 .

?plm5 schema:inRegion ?plm51 .

?plm7 schema:categoryName ?plm71 . ?plm2 schema:yearNum ?plm21 .

FILTER (REGEX (?plm91,"UNITED STATES" , "i")) &&

(REGEX (?plm51,"AMERICA" , "i")) && (REGEX (?plm71,"MFGR#14" , "i")) &&

(?plm21 >= 1997) && (?plm21 <= 1998)

} GROUP BY ?plm2 ?plm8 ?plm6

Figure 62: Query 13 (naïve SPARQL)

[ September 19, 2016 at 12:46 – ]



C.3 improved sparql queries 129

c.3 improved sparql queries

The improved SPARQL queries, for each of the 19 evaluations scenar-

ios, are available online1. In this section, we present the queries that

correspond to our best scenario (ES11). (Figures 63 to 75). The prefixes

used in these queries are the same as in the naïve case (Figure 49).

SELECT (?ag1 * ?ag2) as ?sum_revenue

FROM NAMED <http://www.fing.edu.uy/inco/cubes/instances/ssb_qb4olap>

FROM NAMED <http://www.fing.edu.uy/inco/cubes/schemas/ssb_qb4olap>

WHERE {

{ ?plm2 schema:yearNum> 1993 }.

{ SELECT ?plm2 (SUM(xsd:float(?m2)) as ?ag1) (SUM(xsd:float(?m3)) as ?ag2)

WHERE {

{GRAPH <http://www.fing.edu.uy/inco/cubes/instances/ssb_qb4olap> {

?o a qb:Observation .

?o qb:dataSet rdfh-inst:ds .

?o rdfh:lo_quantity ?m1 .

?o rdfh:lo_discount ?m2 .

?o rdfh:lo_extendedprice ?m3 .

?o rdfh:lo_orderdate ?lm1

FILTER (((?m1 <= 24))&&(((?m2 >= 1) && (?m2 <= 3))))

}}.

{GRAPH <http://www.fing.edu.uy/inco/cubes/schemas/ssb_qb4olap>{

?plm2 qb4o:memberOf schema:year.

?plm1 schema:monthInYear ?plm2 .?plm1 qb4o:memberOf schema:month .

?lm1 schema:dateInMonth ?plm1 .?lm1 qb4o:memberOf rdfh:lo_orderdate .

}}}

GROUP BY ?plm2

}}

Figure 63: Query 1 (from improvement scenario ES11)

SELECT (?ag1 * ?ag2) as ?sum_revenue

FROM NAMED <http://www.fing.edu.uy/inco/cubes/instances/ssb_qb4olap>

FROM NAMED <http://www.fing.edu.uy/inco/cubes/schemas/ssb_qb4olap>

WHERE {{ ?plm1 schema:yearmonthnum 199401 }.

{ SELECT ?plm1 (SUM(xsd:float(?m2)) as ?ag1) (SUM(xsd:float(?m3)) as ?ag2)

WHERE {

{GRAPH <http://www.fing.edu.uy/inco/cubes/instances/ssb_qb4olap> {

?o a qb:Observation .

?o qb:dataSet rdfh-inst:ds .

?o rdfh:lo_quantity ?m1 .

?o rdfh:lo_discount ?m2 .

?o rdfh:lo_extendedprice ?m3 .

?o rdfh:lo_orderdate ?lm1 .

FILTER ((((?m1 >= 26) && (?m1 <= 35)))&&(((?m2 >= 4) && (?m2 <= 6))))

}}.

{GRAPH <http://www.fing.edu.uy/inco/cubes/schemas/ssb_qb4olap>{

?plm1 qb4o:memberOf schema:month .

?lm1 schema:dateInMonth ?plm1 . ?lm1 qb4o:memberOf rdfh:lo_orderdate .

}}}

GROUP BY ?plm1

}}

Figure 64: Query 2 (from improvement scenario ES11)

1 https://github.com/lorenae/ssb-qb4olap/tree/master/ssb_qb4olap
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SELECT (?ag1 * ?ag2) as ?sum_revenue

FROM NAMED <http://www.fing.edu.uy/inco/cubes/instances/ssb_qb4olap>

FROM NAMED <http://www.fing.edu.uy/inco/cubes/schemas/ssb_qb4olap>

WHERE {

{ ?plm1 schema:yearweeknum> 19946}.

{ SELECT ?plm1 (SUM(xsd:float(?m2)) as ?ag1) (SUM(xsd:float(?m3)) as ?ag2)

WHERE {

{GRAPH <http://www.fing.edu.uy/inco/cubes/instances/ssb_qb4olap> {

?o a qb:Observation .

?o qb:dataSet rdfh-inst:ds .

?o rdfh:lo_quantity ?m1 .

?o rdfh:lo_discount ?m2 .

?o rdfh:lo_extendedprice ?m3 .

?o rdfh:lo_orderdate ?lm1 .

FILTER ((((?m1 >= 26) && (?m1 <= 35)))&&(((?m2 >= 5) && (?m2 <= 7))))

}}.

{GRAPH <http://www.fing.edu.uy/inco/cubes/schemas/ssb_qb4olap> {

?plm1 qb4o:memberOf schema:week .

?lm1 schema:dateInWeek ?plm1 . ?lm1 qb4o:memberOf rdfh:lo_orderdate .

}}

}

GROUP BY ?plm1

}}

Figure 65: Query 3 (from improvement scenario ES11)

SELECT ?plm2 ?plm3 (SUM(xsd:float(?m4)) as ?ag1)

FROM NAMED <http://www.fing.edu.uy/inco/cubes/instances/ssb_qb4olap>

FROM NAMED <http://www.fing.edu.uy/inco/cubes/schemas/ssb_qb4olap>

WHERE {

{GRAPH <http://www.fing.edu.uy/inco/cubes/instances/ssb_qb4olap> {

?o a qb:Observation .

?o qb:dataSet rdfh-inst:ds .

?o rdfh:lo_revenue ?m4 .

?o rdfh:lo_orderdate ?lm1 .

?o rdfh:lo_partkey ?lm2 .

?o rdfh:lo_suppkey ?lm3

}}.

{GRAPH <http://www.fing.edu.uy/inco/cubes/schemas/ssb_qb4olap> {

?plm2 qb4o:memberOf schema:year .

?plm1 schema:monthInYear ?plm2 .?plm1 qb4o:memberOf schema:month .

?lm1 schema:dateInMonth ?plm1 . ?lm1 qb4o:memberOf rdfh:lo_orderdate .

?plm4 schema:categoryName "MFGR#12" .?plm4 qb4o:memberOf schema:category .

?plm3 schema:hasCategory ?plm4 .?plm3 qb4o:memberOf schema:brand .

?lm2 schema:hasBrand ?plm3 .?lm2 qb4o:memberOf rdfh:lo_partkey .

?plm7 schema:regionName "AMERICA" .?plm7 qb4o:memberOf schema:region .

?plm6 schema:inRegion ?plm7 .?plm6 qb4o:memberOf schema:nation .

?plm5 schema:inNation ?plm6 .?plm5 qb4o:memberOf schema:city .

?lm3 schema:inCity ?plm5 .?lm3 qb4o:memberOf rdfh:lo_suppkey .

}}}

GROUP BY ?plm2 ?plm3

Figure 66: Query 4 (from improvement scenario ES11)
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SELECT ?plm2 ?plm3 (SUM(xsd:float(?m4)) as ?ag1)

FROM NAMED <http://www.fing.edu.uy/inco/cubes/instances/ssb_qb4olap>

FROM NAMED <http://www.fing.edu.uy/inco/cubes/schemas/ssb_qb4olap>

WHERE {

{GRAPH <http://www.fing.edu.uy/inco/cubes/instances/ssb_qb4olap> {

?o a qb:Observation .

?o qb:dataSet rdfh-inst:ds .

?o rdfh:lo_revenue ?m4 .

?o rdfh:lo_orderdate ?lm1 .

?o rdfh:lo_partkey ?lm2 .

?o rdfh:lo_suppkey ?lm3

}}.

{GRAPH <http://www.fing.edu.uy/inco/cubes/schemas/ssb_qb4olap> {

?plm2 qb4o:memberOf schema:year .

?plm1 schema:monthInYear ?plm2 . ?plm1 qb4o:memberOf schema:month .

?lm1 schema:dateInMonth ?plm1 . ?lm1 qb4o:memberOf rdfh:lo_orderdate .

?plm3 schema:brandName ?plm31 .?plm3 qb4o:memberOf schema:brand .

?lm2 schema:hasBrand ?plm3 .?lm2 qb4o:memberOf rdfh:lo_partkey .

?plm6 schema:regionName "ASIA" .?plm6 qb4o:memberOf schema:region .

?plm5 schema:inRegion ?plm6 .?plm5 qb4o:memberOf schema:nation .

?plm4 schema:inNation ?plm5 .?plm4 qb4o:memberOf schema:city .

?lm3 schema:inCity ?plm4 . ?lm3 qb4o:memberOf rdfh:lo_suppkey .

FILTER ((str(?plm31)>="MFGR#2221") && (str(?plm31)<="MFGR#2228"))

}}

}

GROUP BY ?plm2 ?plm3

Figure 67: Query 5 (from improvement scenario ES11)

SELECT ?plm2 ?plm3 (SUM(xsd:float(?m4)) as ?ag1)

FROM NAMED <http://www.fing.edu.uy/inco/cubes/instances/ssb_qb4olap>

FROM NAMED <http://www.fing.edu.uy/inco/cubes/schemas/ssb_qb4olap>

WHERE {

{GRAPH <http://www.fing.edu.uy/inco/cubes/instances/ssb_qb4olap> {

?o a qb:Observation .

?o qb:dataSet rdfh-inst:ds .

?o rdfh:lo_revenue ?m4 .

?o rdfh:lo_orderdate ?lm1 .

?o rdfh:lo_partkey ?lm2 .

?o rdfh:lo_suppkey ?lm3

}}.

{GRAPH <http://www.fing.edu.uy/inco/cubes/schemas/ssb_qb4olap> {

?plm2 qb4o:memberOf schema:year .

?plm1 schema:monthInYear ?plm2 .?plm1 qb4o:memberOf schema:month .

?lm1 schema:dateInMonth ?plm1 . ?lm1 qb4o:memberOf rdfh:lo_orderdate .

?plm3 schema:brandName "MFGR#2239" .?plm3 qb4o:memberOf schema:brand .

?lm2 schema:hasBrand ?plm3 .?lm2 qb4o:memberOf rdfh:lo_partkey .

?plm6 schema:regionName "EUROPE" .?plm6 qb4o:memberOf schema:region .

?plm5 schema:inRegion ?plm6 .?plm5 qb4o:memberOf schema:nation .

?plm4 schema:inNation ?plm5 .?plm4 qb4o:memberOf schema:city .

?lm3 schema:inCity ?plm4 . ?lm3 qb4o:memberOf rdfh:lo_suppkey .

}}}

GROUP BY ?plm2 ?plm3

Figure 68: Query 6 (from improvement scenario ES11)
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SELECT ?plm2 ?plm4 ?plm7 (SUM(xsd:float(?m4)) as ?ag1)

FROM NAMED <http://www.fing.edu.uy/inco/cubes/instances/ssb_qb4olap>

FROM NAMED <http://www.fing.edu.uy/inco/cubes/schemas/ssb_qb4olap>

WHERE {

{GRAPH <http://www.fing.edu.uy/inco/cubes/instances/ssb_qb4olap> {

?o a qb:Observation .

?o qb:dataSet rdfh-inst:ds .

?o rdfh:lo_revenue ?m4 .

?o rdfh:lo_orderdate ?lm1 .

?o rdfh:lo_custkey ?lm2 .

?o rdfh:lo_suppkey ?lm4

}}.

{GRAPH <http://www.fing.edu.uy/inco/cubes/schemas/ssb_qb4olap> {

?plm2 schema:yearNum> ?plm21 . ?plm2 qb4o:memberOf schema:year .

?plm1 schema:monthInYear ?plm2 . ?plm1 qb4o:memberOf schema:month .

?lm1 schema:dateInMonth ?plm1 . ?lm1 qb4o:memberOf rdfh:lo_orderdate .

?plm5 schema:regionName "ASIA" . ?plm5 qb4o:memberOf schema:region .

?plm4 schema:inRegion ?plm5 . ?plm4 qb4o:memberOf schema:nation .

?plm3 schema:inNation ?plm4 . ?plm3 qb4o:memberOf schema:city .

?lm2 schema:inCity ?plm3 . ?lm2 qb4o:memberOf rdfh:lo_custkey .

?plm8 schema:regionName "ASIA" . ?plm8 qb4o:memberOf schema:region .

?plm7 schema:inRegion ?plm8 . ?plm7 qb4o:memberOf schema:nation .

?plm6 schema:inNation ?plm7 . ?plm6 qb4o:memberOf schema:city .

?lm4 schema:inCity ?plm6 . ?lm4 qb4o:memberOf rdfh:lo_suppkey .

FILTER ((?plm21 >= 1992)&&(?plm21 <= 1997)) }}

}

GROUP BY ?plm2 ?plm4 ?plm7

Figure 69: Query 7 (from improvement scenario ES11)

SELECT ?plm2 ?plm3 ?plm5 (SUM(xsd:float(?m4)) as ?ag1)

FROM NAMED <http://www.fing.edu.uy/inco/cubes/instances/ssb_qb4olap>

FROM NAMED <http://www.fing.edu.uy/inco/cubes/schemas/ssb_qb4olap>

WHERE {

{GRAPH <http://www.fing.edu.uy/inco/cubes/instances/ssb_qb4olap> {

?o a qb:Observation .

?o qb:dataSet rdfh-inst:ds .

?o rdfh:lo_revenue ?m4 .

?o rdfh:lo_orderdate ?lm1 .

?o rdfh:lo_custkey ?lm2 .

?o rdfh:lo_suppkey ?lm4

}}.

{GRAPH <http://www.fing.edu.uy/inco/cubes/schemas/ssb_qb4olap> {

?plm2 schema:yearNum> ?plm21 . ?plm2 qb4o:memberOf schema:year .

?plm1 schema:monthInYear ?plm2 . ?plm1 qb4o:memberOf schema:month .

?lm1 schema:dateInMonth ?plm1 . ?lm1 qb4o:memberOf rdfh:lo_orderdate .

?plm4 schema:nationName "UNITED STATES" . ?plm4 qb4o:memberOf schema:nation .

?plm3 schema:inNation ?plm4 . ?plm3 qb4o:memberOf schema:city .

?lm2 schema:inCity ?plm3 . ?lm2 qb4o:memberOf rdfh:lo_custkey .

?plm6 schema:nationName "UNITED STATES" . ?plm6 qb4o:memberOf schema:nation .

?plm5 schema:inNation ?plm6 . ?plm5 qb4o:memberOf schema:city .

?lm4 schema:inCity ?plm5 . ?lm4 qb4o:memberOf rdfh:lo_suppkey .

FILTER ((?plm21 >= 1992)&&(?plm21 <= 1997))

}}}

GROUP BY ?plm2 ?plm3 ?plm5

Figure 70: Query 8 (from improvement scenario ES11)
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SELECT ?plm2 ?plm3 ?plm4 (SUM(float(?m4)) as ?ag1)

FROM NAMED <http://www.fing.edu.uy/inco/cubes/instances/ssb_qb4olap>

FROM NAMED <http://www.fing.edu.uy/inco/cubes/schemas/ssb_qb4olap>

WHERE {

{GRAPH <http://www.fing.edu.uy/inco/cubes/instances/ssb_qb4olap> {

?o a qb:Observation .

?o qb:dataSet rdfh-inst:ds .

?o rdfh:lo_revenue ?m4 .

?o rdfh:lo_orderdate ?lm1 .

?o rdfh:lo_custkey ?lm2 .

?o <rdfh:lo_suppkey ?lm4

}}.

{GRAPH <http://www.fing.edu.uy/inco/cubes/schemas/ssb_qb4olap> {

?plm2 schema:yearNum> ?plm21 . ?plm2 qb4o:memberOf schema:year .

?plm1 schema:monthInYear ?plm2 . ?plm1 qb4o:memberOf schema:month .

?lm1 schema:dateInMonth ?plm1 . ?lm1 qb4o:memberOf rdfh:lo_orderdate .

?plm3 schema:cityName ?plm31 . ?plm3 qb4o:memberOf schema:city .

?lm2 schema:inCity ?plm3 . ?lm2 qb4o:memberOf rdfh:lo_custkey .

?plm3 schema:cityName ?plm31.

VALUES ?plm31 {"UNITED KI1" "UNITED KI5" }.

?plm4 schema:cityName ?plm41 . ?plm4 qb4o:memberOf schema:city .

?lm4 schema:inCity ?plm4 . ?lm4 qb4o:memberOf rdfh:lo_suppkey .

?plm4 schema:cityName ?plm41.

VALUES ?plm41 {"UNITED KI1" "UNITED KI5" }.

FILTER ((?plm21 >= 1992)&&(?plm21 <= 1997))

}}}

GROUP BY ?plm2 ?plm3 ?plm4

Figure 71: Query 9(from improvement scenario ES11)

SELECT ?plm1 ?plm2 ?plm3 (SUM(xsd:float(?m4)) as ?ag1)

FROM NAMED <http://www.fing.edu.uy/inco/cubes/instances/ssb_qb4olap>

FROM NAMED <http://www.fing.edu.uy/inco/cubes/schemas/ssb_qb4olap>

WHERE {

{GRAPH <http://www.fing.edu.uy/inco/cubes/instances/ssb_qb4olap> {

?o a qb:Observation .

?o qb:dataSet rdfh-inst:ds .

?o rdfh:lo_revenue ?m4 .

?o rdfh:lo_orderdate ?lm1 .

?o rdfh:lo_custkey ?lm2 .

?o rdfh:lo_suppkey ?lm4

}}.

{GRAPH <http://www.fing.edu.uy/inco/cubes/schemas/ssb_qb4olap> {

?plm1 schema:yearmonthnum 199712 . ?plm1 qb4o:memberOf schema:month .

?lm1 schema:dateInMonth ?plm1 . ?lm1 qb4o:memberOf rdfh:lo_orderdate .

?plm2 schema:cityName ?plm21 . ?plm2 qb4o:memberOf schema:city .

?lm2 schema:inCity ?plm2 . ?lm2 qb4o:memberOf rdfh:lo_custkey .

?plm2 schema:cityName ?plm21.

VALUES ?plm21 {"UNITED KI1" "UNITED KI5" }.

?plm3 schema:cityName ?plm31 . ?plm3 qb4o:memberOf schema:city .

?lm4 schema:inCity ?plm3 . ?lm4 qb4o:memberOf rdfh:lo_suppkey .

?plm3 schema:cityName ?plm31.

VALUES ?plm31 {"UNITED KI1" "UNITED KI5" }.

}}}

GROUP BY ?plm1 ?plm2 ?plm3

Figure 72: Query 10 (from improvement scenario ES11)
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SELECT ?plm2 ?plm4 (SUM(xsd:float(?m4)-xsd:float(?m5)) as ?ag1)

FROM NAMED <http://www.fing.edu.uy/inco/cubes/instances/ssb_qb4olap>

FROM NAMED <http://www.fing.edu.uy/inco/cubes/schemas/ssb_qb4olap>

WHERE {

{GRAPH <http://www.fing.edu.uy/inco/cubes/instances/ssb_qb4olap> {

?o a qb:Observation . ?o qb:dataSet rdfh-inst:ds .

?o rdfh:lo_revenue ?m4 . ?o rdfh:lo_supplycost ?m5 .

?o rdfh:lo_orderdate ?lm1 . ?o rdfh:lo_custkey ?lm2 .

?o rdfh:lo_partkey ?lm3 . ?o rdfh:lo_suppkey ?lm4 .

}}.

{GRAPH <http://www.fing.edu.uy/inco/cubes/schemas/ssb_qb4olap> {

?plm2 schema:yearNum> ?plm21 . ?plm2 qb4o:memberOf schema:year .

?plm1 schema:monthInYear ?plm2 . ?plm1 qb4o:memberOf schema:month .

?lm1 schema:dateInMonth ?plm1 . ?lm1 qb4o:memberOf rdfh:lo_orderdate .

?plm5 schema:regionName "AMERICA" . ?plm5 qb4o:memberOf schema:region .

?plm4 schema:inRegion ?plm5 . ?plm4 qb4o:memberOf schema:nation .

?plm3 schema:inNation ?plm4 . ?plm3 qb4o:memberOf schema:city .

?lm2 schema:inCity ?plm3 . ?lm2 qb4o:memberOf rdfh:lo_custkey .

?plm11 schema:regionName "AMERICA" .?plm11 qb4o:memberOf schema:region .

?plm10 schema:inRegion ?plm11 . ?plm10 qb4o:memberOf schema:nation .

?plm9 schema:inNation ?plm10 . ?plm9 qb4o:memberOf schema:city .

?lm4 schema:inCity ?plm9 . ?lm4 qb4o:memberOf rdfh:lo_suppkey .

?plm8 schema:manufacturerName ?plm81 .

?plm8 qb4o:memberOf schema:manufacturer .

?plm7 schema:hasManufacturer ?plm8 . ?plm7 qb4o:memberOf schema:category .

?plm6 schema:hasCategory ?plm7 . ?plm6 qb4o:memberOf schema:brand .

?lm3 schema:hasBrand ?plm6 . ?lm3 qb4o:memberOf rdfh:lo_partkey .

VALUES ?plm81 {"MFGR#1" "MFGR#2" } }}}

GROUP BY ?plm2 ?plm4

Figure 73: Query 11 (from improvement scenario ES11)
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SELECT ?plm2 ?plm7 ?plm10 (SUM(xsd:float(?m4)-xsd:float(?m5)) as ?ag1)

FROM NAMED <http://www.fing.edu.uy/inco/cubes/instances/ssb_qb4olap>

FROM NAMED <http://www.fing.edu.uy/inco/cubes/schemas/ssb_qb4olap>

WHERE {

{GRAPH <http://www.fing.edu.uy/inco/cubes/instances/ssb_qb4olap> {

?o a qb:Observation . ?o qb:dataSet rdfh-inst:ds .

?o rdfh:lo_revenue ?m4 . ?o rdfh:lo_supplycost ?m5 .

?o rdfh:lo_orderdate ?lm1 . ?o rdfh:lo_custkey ?lm2 .

?o rdfh:lo_partkey ?lm3 . ?o rdfh:lo_suppkey ?lm4 .

}}.

{GRAPH <http://www.fing.edu.uy/inco/cubes/schemas/ssb_qb4olap> {

?plm2 schema:yearNum> ?plm21 . ?plm2 qb4o:memberOf schema:year .

?plm1 schema:monthInYear ?plm2 . ?plm1 qb4o:memberOf schema:month .

?lm1 schema:dateInMonth ?plm1 . ?lm1 qb4o:memberOf rdfh:lo_orderdate .

?plm5 schema:regionName "AMERICA" . ?plm5 qb4o:memberOf schema:region .

?plm4 schema:inRegion ?plm5 . ?plm4 qb4o:memberOf schema:nation .

?plm3 schema:inNation ?plm4 . ?plm3 qb4o:memberOf schema:city .

?lm2 schema:inCity ?plm3 . ?lm2 qb4o:memberOf rdfh:lo_custkey .

?plm11 schema:regionName "AMERICA" . ?plm11 qb4o:memberOf schema:region .

?plm10 schema:inRegion ?plm11 . ?plm10 qb4o:memberOf schema:nation .

?plm9 schema:inNation ?plm10 . ?plm9 qb4o:memberOf schema:city .

?lm4 schema:inCity ?plm9 . ?lm4 qb4o:memberOf rdfh:lo_suppkey .

?plm8 schema:manufacturerName ?plm81 . ?plm8 qb4o:memberOf schema:manufacturer .

?plm7 schema:hasManufacturer ?plm8 . ?plm7 qb4o:memberOf schema:category .

?plm6 schema:hasCategory ?plm7 . ?plm6 qb4o:memberOf schema:brand .

?lm3 schema:hasBrand ?plm6 . ?lm3 qb4o:memberOf rdfh:lo_partkey .

?plm8 schema:manufacturerName ?plm81.

VALUES ?plm81 {"MFGR#1" "MFGR#2" }. FILTER (?plm21 >= 1997)&&(?plm21 <= 1998) }}}

GROUP BY ?plm2 ?plm7 ?plm10

Figure 74: Query 12 (from improvement scenario ES11)
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SELECT ?plm2 ?plm6 ?plm8

(SUM(xsd:float(?m4)-xsd:float(?m5)) as ?ag1)

FROM NAMED <http://www.fing.edu.uy/inco/cubes/instances/ssb_qb4olap>

FROM NAMED <http://www.fing.edu.uy/inco/cubes/schemas/ssb_qb4olap>

WHERE {

{GRAPH <http://www.fing.edu.uy/inco/cubes/instances/ssb_qb4olap> {

?o a qb:Observation . ?o qb:dataSet rdfh-inst:ds .

?o rdfh:lo_revenue ?m4 . ?o rdfh:lo_supplycost ?m5 .

?o rdfh:lo_orderdate ?lm1 . ?o rdfh:lo_custkey ?lm2 .

?o rdfh:lo_partkey ?lm3 . ?o rdfh:lo_suppkey ?lm4 .

}}.

{GRAPH <http://www.fing.edu.uy/inco/cubes/schemas/ssb_qb4olap> {

?plm2 schema:yearNum> ?plm21 . ?plm2 qb4o:memberOf schema:year .

?plm1 schema:monthInYear ?plm2 . ?plm1 qb4o:memberOf schema:month .

?lm1 schema:dateInMonth ?plm1 . ?lm1 qb4o:memberOf rdfh:lo_orderdate .

?plm2 schema:yearNum> ?plm21 .

?plm5 schema:regionName "AMERICA" . ?plm5 qb4o:memberOf schema:region .

?plm4 schema:inRegion ?plm5 . ?plm4 qb4o:memberOf schema:nation .

?plm3 schema:inNation ?plm4 . ?plm3 qb4o:memberOf schema:city .

?lm2 schema:inCity ?plm3 . ?lm2 qb4o:memberOf rdfh:lo_custkey .

?plm9 schema:nationName "UNITED STATES" . ?plm9 qb4o:memberOf schema:nation .

?plm8 schema:inNation ?plm9 . ?plm8 qb4o:memberOf schema:city .

?lm4 schema:inCity ?plm8 . ?lm4 qb4o:memberOf rdfh:lo_suppkey .

?plm7 schema:categoryName "MFGR#14" . ?plm7 qb4o:memberOf schema:category .

?plm6 schema:hasCategory ?plm7 . ?plm6 qb4o:memberOf schema:brand .

?lm3 schema:hasBrand ?plm6 . ?lm3 qb4o:memberOf rdfh:lo_partkey .

FILTER ((?plm21 >= 1997)&&(?plm21 <= 1998))}

}}

GROUP BY ?plm2 ?plm8 ?plm6

Figure 75: Query 13 (from improvement scenario ES11)
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