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Abstract

The generalized Hough transform (GHT) is a well-established technique
for detecting complex shapes in images containing noisy or missing data.
Detection of a geometric feature under the GHT is digitally accomplished
by mapping the original image to an accumulator space (Hough space);
the large computational requirements for this mapping make the opti-
cal implementation an attractive alternative to digital-only methods. In
general, the attractiveness of optical processors for image processing ap-
plications (e.g. pattern recognition, feature extraction) lies in their highly
parallel operation and real-time processing capability. However, few ap-
proaches have been proposed for the optical implementation of the GHT
and all of them working under coherent illumination, even when it is well
known that incoherent processors are not sensitive to the phase variations
in the input plane and also exhibit no speckle noise.

Starting from the integral representation of the GHT, we propose a cor-
relator based on the point-spread function of a highly blurred optical
system in which the focal setting along with the orientation of the pupil
can be e�ciently controlled. This correlator works under fully (i.e., both
spatially and temporally) incoherent illumination and can handle orien-
tation changes or scale variations in the pattern. Real-time operation
(as limited by the frame rate of the device used to capture the GHT)
is achieved, allowing -besides static images- for the processing of video
sequences. Based in the previous system, we implement temporal mul-
tiplexing strategies for pattern recognition of geometrical features of dif-
ferent size and orientation. Besides, given the inherently convolutional
nature of our system, we are able to simultaneously detect the same tar-
get at multiple locations. The robustness of our method against noise
in the input, low contrast, or overlapping of geometrical features is also
assessed. Finallly, through the nonlinear �ltering of the GHT and sub-
sequent inversion (which is optically achieved in the incoherent system
under appropriate focusing setting), the previously detected features of
interest can be segmented.

Keywords: Hough transform, Optical image processing, Pattern recognition,

Image segmentation
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Resumen

La transformada de Hough generalizada (GHT) es una técnica bien es-
tablecida para la detección de formas complejas en imágenes conteniendo
información ruidosa o incompleta. La detección de una característica
geométrica usando la GHT se consigue digitalmente mediante el mapeo
de la imagen original a un espacio de acumulación; los grandes requer-
imientos computacionales para conseguir este mapeo hacen de la imple-
mentación óptica una atractiva alternativa a los métodos sólo digitales.
En general, el atractivo de los procesadores ópticos para aplicaciones de
procesamiento de imágenes (por ejemplo, reconocimiento de patrones,
extracción de características) radica en su operación altamente en par-
alelo y su capacidad de procesamiento a tiempo real. Sin embargo, pocos
acercamientos han sido propuestos para la implementación óptica de la
GHT y todos trabajando bajo iluminación coherente, aún cuando es bien
sabido que los procesadores incoherentes son insensibles a las variaciones
de fase en el plano de entrada y no exhiben ruido de speckle.

A partir de la representación integral de la GHT proponemos un corre-
lador incoherente basado en la respuesta al impulso de un sistema óptico
fuertemente desenfocado, donde el ajuste focal así como la orientación
de la pupila se pueden controlar e�cientemente. Este correlador tra-
baja con iluminación completamente (es decir, tanto espacialmente como
temporalmente) incoherente y puede tratar con cambios de orientación o
variaciones de escala del patrón. Se logra además procesamiento a tiempo
real (limitado por velocidad del dispositivo de captura de la GHT), lo que
permite -además de imágenes estáticas- el procesamiento de secuencias
de video. En base al sistema anterior implementamos estrategias de mul-
tiplexado temporal para el reconocimiento de características geométricas
de diferente tamaño y orientación. Además, dada la naturaleza inher-
entemente convolutiva de nuestro sistema, podemos detectar simultánea-
mente el mismo objetivo en múltiples posiciones. La robustez del método
frente a ruido en la entrada, bajo contraste o solapamiento de las car-
acterísticas geométricas también es evaluada. Finalmente, a través del
�ltrado no lineal de la GHT y subsiguiente inversión (que se logra ópti-
camente en el sistema incoherente con un adecuado ajuste de foco), las
características previamente detectadas pueden ser segmentadas.

Palabras clave: transformada de Hough, Procesamiento óptico de imágenes,

Reconocimiento de patrones, Segmentación de imágenes

v



vi



Index

Introduction 1

1 Optical Image Processing 5

1.1 A bit of history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2 Coherent and incoherent processors . . . . . . . . . . . . . . . . . . . 8

1.2.1 Fourier-based processing . . . . . . . . . . . . . . . . . . . . . 9

1.2.1.1 Edge-enhancement with coherent light . . . . . . . . 9

1.2.1.2 Coherent correlators . . . . . . . . . . . . . . . . . . 12

1.2.2 Incoherent architectures for image processing . . . . . . . . . 13

1.2.2.1 Incoherent edge-enhancement . . . . . . . . . . . . . 14

1.2.2.2 Incoherent correlators . . . . . . . . . . . . . . . . . 17

2 Hough transform and its optical implementation 21

2.1 Linear Hough transform . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.1.1 The Radon connection . . . . . . . . . . . . . . . . . . . . . . 25

2.2 Circle Hough Transform (and other analytic curves) . . . . . . . . . 25

2.2.1 Circle matching . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.3 Generalized Hough transform . . . . . . . . . . . . . . . . . . . . . . 28

2.4 A review of optical approaches . . . . . . . . . . . . . . . . . . . . . 30

2.4.1 LHT and CHT in the coherent regime . . . . . . . . . . . . . 30

2.4.2 LHT in the incoherent regime . . . . . . . . . . . . . . . . . . 33

2.4.3 GHT in the coherent regime . . . . . . . . . . . . . . . . . . . 33

3 Generalized Hough transform with incoherent light 37

3.1 Integral representation of the LHT: the Radon projections . . . . . . 38

3.2 Integral representation of the GHT . . . . . . . . . . . . . . . . . . . 38

3.3 Shift invariant linear systems in optics . . . . . . . . . . . . . . . . . 42

3.3.1 The search for a PSF . . . . . . . . . . . . . . . . . . . . . . . 44

3.4 Incoherent Optical GHT . . . . . . . . . . . . . . . . . . . . . . . . . 44

vii



INDEX

3.4.1 Preliminary results . . . . . . . . . . . . . . . . . . . . . . . . 46

3.4.1.1 Circle Hough transform . . . . . . . . . . . . . . . . 46

3.4.1.2 Orientation variant detection . . . . . . . . . . . . . 49

3.4.2 Performance study . . . . . . . . . . . . . . . . . . . . . . . . 49

3.4.2.1 Real-time execution . . . . . . . . . . . . . . . . . . 49

3.4.2.2 Parameter error . . . . . . . . . . . . . . . . . . . . 49

3.4.2.3 Natural scenes . . . . . . . . . . . . . . . . . . . . . 51

4 Pattern recognition using the optical generalized Hough transform 53

4.1 Performance under noise, low contrast or image degradation . . . . . 54

4.2 Multiple target recognition . . . . . . . . . . . . . . . . . . . . . . . . 56

4.2.1 Red blood cells counting . . . . . . . . . . . . . . . . . . . . . 56

4.2.2 Real-time droplet velocimetry in micro�uidics . . . . . . . . . 60

4.3 Temporal multiplexing strategies . . . . . . . . . . . . . . . . . . . . 60

4.3.1 Scale variant detection . . . . . . . . . . . . . . . . . . . . . . 60

4.3.2 Orientation variant detection . . . . . . . . . . . . . . . . . . 63

5 Image segmentation by nonlinear �ltering 67

5.1 Segmentation by nonlinear �lter: theory . . . . . . . . . . . . . . . . 68

5.1.1 Convolution inverse . . . . . . . . . . . . . . . . . . . . . . . 68

5.1.2 Thresholding . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.2 Segmentation under noise, contrast loss and overlapping . . . . . . . 71

5.3 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.3.1 Segmentation by shape . . . . . . . . . . . . . . . . . . . . . . 77

5.3.2 Segmentation by size . . . . . . . . . . . . . . . . . . . . . . . 78

6 Conclusions 81

6.1 Future lines of work . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

6.1.1 Pattern recognition in scattering media . . . . . . . . . . . . 82

6.1.2 Pattern recognition of phase objects . . . . . . . . . . . . . . 82

6.1.3 All-optical processing . . . . . . . . . . . . . . . . . . . . . . 82

6.1.4 Space multiplexing and template-variant detection . . . . . . 82

Publications 85

A Defocus aberration in geometric optics. 87

A.1 Optical Transfer Function . . . . . . . . . . . . . . . . . . . . . . . . 88

A.2 Defocus aberration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

A.2.1 Aberrated DOTF . . . . . . . . . . . . . . . . . . . . . . . . . 90

viii



INDEX

A.2.2 Aberrated GOTF . . . . . . . . . . . . . . . . . . . . . . . . . 91

A.2.2.1 Blurring radius for the optical GHT . . . . . . . . . 92

B A�ne transformation. 95

Bibliography 98

ix



INDEX

x



Figure Index

1.1 4f processor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.2 Coherent image di�erentiation . . . . . . . . . . . . . . . . . . . . . . 11

1.3 High-pass �ltering . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.4 Matched Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.5 Joint Transform correlator . . . . . . . . . . . . . . . . . . . . . . . . 13

1.6 Edge enhancement with FINCH . . . . . . . . . . . . . . . . . . . . . 15

1.7 Directional edge enhancement setup . . . . . . . . . . . . . . . . . . 16

1.8 Directional edge enhancement. . . . . . . . . . . . . . . . . . . . . . 16

1.9 Non-directional edge enhancement setup. . . . . . . . . . . . . . . . . 17

1.10 Laplacian edge enhancement . . . . . . . . . . . . . . . . . . . . . . . 17

1.11 Incoherent encryption . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.12 Multichannel shadow-casting . . . . . . . . . . . . . . . . . . . . . . 19

2.1 Linear Hough Transform Applications . . . . . . . . . . . . . . . . . 22

2.2 Circle Hough Transform Applications . . . . . . . . . . . . . . . . . . 22

2.3 Generalized Hough Transform Applications . . . . . . . . . . . . . . 23

2.4 Linear Hough Transform Normal Parameters . . . . . . . . . . . . . 24

2.5 Three Points Linear Hough Transform . . . . . . . . . . . . . . . . . 25

2.6 Three Points Circular Hough Transform . . . . . . . . . . . . . . . . 27

2.7 Three Points template matching . . . . . . . . . . . . . . . . . . . . 28

2.8 GHT parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.9 GHT matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.10 Steir and Shori setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.11 Eichmann and Dong setup . . . . . . . . . . . . . . . . . . . . . . . . 32

2.12 Ambs et al. setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.13 Stern setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.14 Shin and Jang setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.1 CHT with variable radius . . . . . . . . . . . . . . . . . . . . . . . . 39

xi



FIGURE INDEX

3.2 GHT with triangular template . . . . . . . . . . . . . . . . . . . . . . 41

3.3 Point Spread Function of an Optical System . . . . . . . . . . . . . . 43

3.4 Setup for incoherent GHT . . . . . . . . . . . . . . . . . . . . . . . . 45

3.5 inverted and non-inverted pupil in triangular GHT . . . . . . . . . . 45

3.6 Setup pictures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.7 CHT of Three Circles . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.8 GHT of Three Triangles . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.9 CHT of Natural Scene . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.1 input with AWGN . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.2 input with contrast loss and AWGN . . . . . . . . . . . . . . . . . . 55

4.3 input with degradation . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.4 PCE vs. noise level (full contrast) . . . . . . . . . . . . . . . . . . . . 57

4.5 PCE vs. noise level (with contrast loss) . . . . . . . . . . . . . . . . 58

4.6 PCE vs. degradation . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.7 Red Blood Cells counting . . . . . . . . . . . . . . . . . . . . . . . . 59

4.8 Droplet Counting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.9 Modi�ed setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.10 Scale variant detection . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.11 Orientation variant detection . . . . . . . . . . . . . . . . . . . . . . 65

5.1 Segmentation scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.2 Example of segmentation . . . . . . . . . . . . . . . . . . . . . . . . 72

5.3 Robustness of segmentation method . . . . . . . . . . . . . . . . . . 74

5.4 Segmentation under noise . . . . . . . . . . . . . . . . . . . . . . . . 75

5.5 Segmentation under overlapping . . . . . . . . . . . . . . . . . . . . . 76

5.6 Experimental setup for feature extraction . . . . . . . . . . . . . . . 78

5.7 Feature extraction by shape . . . . . . . . . . . . . . . . . . . . . . . 79

5.8 Feature extraction by size . . . . . . . . . . . . . . . . . . . . . . . . 80

A.1 Ideal image formation . . . . . . . . . . . . . . . . . . . . . . . . . . 88

A.2 Circular pupil overlap . . . . . . . . . . . . . . . . . . . . . . . . . . 90

A.3 GPSF for defocus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

A.4 Modulation Transfer Function for circular pupil . . . . . . . . . . . . 93

B.1 A�ne transformation . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

xii



Introduction

In comparison to purely digital methods, the attractiveness of optical processors

for image processing tasks like edge enhancement, pattern recognition or feature

extraction lies in their highly parallel operation and real-time processing capability.

In recent decades, the Hough transform (HT) has been established as an e�-

cient pattern recognition technique that works well even in images with disconnected

boundaries, noise, or occlusions. Initially proposed for the detection of lines in binary

images (linear HT or LHT) [Hough, 1962], then extended to other simple parametric

curves like circles or ellipses, and �nally generalized to an arbitrary nonparamet-

ric feature (generalized HT or GHT) [Ballard, 1981], the HT has been successfully

applied in object or motion detection, biometric authentication, medical imaging,

remote data processing, and robot navigation among others.

The principal drawback for a standard HT or GHT-based shape recognition al-

gorithm is its large computational requirements [van den Braak et al., 2011, Ujaldón

et al., 2008], which makes its real-time implementation di�cult even under dedicated

architectures [Zhou et al., 2014].

In order to achieve real-time processing, optically based algorithmic architectures

for the HT [Steier and Shori, 1986, Ambs et al., 1986] have been proposed, mostly

working under coherent illumination. With the capability of achieving signals with

less noise, the use of incoherent illumination was also suggested for the HT [Steier

and Shori, 1986, Schmid et al., 1998].

For the optical implementation of the GHT, few approaches can be found in the

literature and all working under coherent illumination. The use of lasers acousto-

optically modulated and the piece-wise representation of the template through ana-

lytical curves was proposed in [Casasent and Richards, 1993]. The use of a matrix of

holograms was proposed in [Shin and Jang, 2000] and the scale and rotation-variant

detection were accomplished by spatial multiplexing. However, the implementation

of the GHT under incoherent illumination had not been proposed, even when it is

well known that incoherent processors have the advantage of not being sensitive to

the phase variations in the input plane and also exhibit no speckle noise.
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INTRODUCTION

In the course of our work we try to answer the following questions concerning an

optical implementation of the generalized Hough transform:

1. Which would be a suitable optical system for the implementation of the trans-

form under incoherent illumination

2. The multiplexing strategies which may allow for the detection under variable

scale or orientation

3. The feasibility of optical schemes for feature extraction

To address the �rst item above mentioned (Item 1) we propose an incoherent

correlator [Fernández et al., 2015a] based on the point-spread function of a highly

blurred optical system, in which the focal setting along with the orientation of the

pupil can be e�ciently controlled. We also prove the real-time capability of our

system by means of the processing of video sequences. With the previous system as

a starting point, we implement temporal multiplexing strategies (Item 2) for pattern

recognition of geometrical features of di�erent size and orientation [Fernández et al.,

2015b]. Besides, given the convolution nature of our system, we are able to implement

multiple target detection out of static images as well as video sequences. For the

extraction of a given feature (Item 3) after detection, we also propose the nonlinear

�ltering of the GHT [Fernández et al., 2016].

Chapter 1 of this thesis is dedicated to a brief review of the optical processing

of images in comparison to digital counterparts. Special attention is devoted to two

particular tasks directly related to the rest of the work: (i) edge-enhancement, which

is a common preprocessing stage that can be e�ciently achieved by optical means

and (ii) pattern recognition, where optics has played a key role and where Hough

transform has proven to be e�cient for geometric features. In Chapter 2 the HT

and other transformations related to analytical features (e.g. circles and ellipses) are

introduced along with a review on the optical approaches to these transformations.

We also consider the de�nition of the GHT and the coherent optical approaches to

this transformation. Chapter 3 is dedicated to the GHT and its optical incoherent

implementation. Starting from the integral representation of this transform, and

comparing it to the response of an optical system linear in intensity, the Point Spread

Function (PSF) that allows for the implementation of the GHT in the incoherent

regime is introduced and the preliminary results for detection using this incoherent

GHT are presented. In Chapter 4 we present the pattern recognition applications

that result from improvements over the previous setup. Continuous time variation of

the scale and orientation parameters of the template in the GHT allows for varying

scale or orientation detection under temporal multiplexing. Aside from recognition

2



tasks, in Chapter 5 we introduce the theory and implementation of extraction of

geometrical features from an edge image. Finally in Chapter 6 the conclusions of the

work and future perspectives are presented.

3



INTRODUCTION

4



Chapter 1

Optical Image Processing

Optics plays a fundamental role in the acquisition, processing and transmission of in-

formation. Acquisition by optical means is present in microscopy, medical imaging,

astronomy, surveillance applications and robot vision among others, while optical

�bers have enabled data transmission at higher bandwidths and more robustly than

wire cables. An important �eld of optical image processing consists of pattern recog-

nition, localization and tracking. These tasks were from the beginning [McLachlan Jr,

1962] a prime choice for optical processing since they fully exploit the inherent par-

allelism of optical systems. Preprocessing by means of edge enhancement/detection

needs also to be performed in order to improve the recognition capability of an optical

system and can again bene�t from the capability of optics to carry out information

processing simultaneously over all the image input.

In comparison to digital methods, optics can be used for special-purpose proces-

sors in the aforementioned tasks due to the advantages related to simultaneous pro-

cessing as well as the possibility of operation over continuous data o�er. The higher

space-bandwidth product (SBP) in comparison to digital processors is another ad-

vantage, but given the increasing power of computer processing the development of

optical processors along with their commercialization have been limited. As pointed

out in a review by Alfalou and Brosseau [Alfalou and Brosseau, 2009], one of the

main concerns with the algorithmic developments in optical processing is to com-

pare them side by side with the interfaces needed to implement them. An optical

implementation can be considered successful when it achieves real-time processing

(as required in a dedicated setup) and ease in its implementation.

In the next, a brief historical review of optical image processing will be presented

to afterwards focus on the preprocessing of images by edge-enhancement and in

pattern recognition applications, both under coherent and incoherent light.

5



1. OPTICAL IMAGE PROCESSING

1.1 A bit of history

One of the milestones in the development of optical image processing can be traced

back to the work of Maréchal in the early 1950s (a comprehensive review on the

history of optical information processing can be found in [Ambs, 2010, Goodman,

1996]). Maréchal and collegues [Maréchal and Croce, 1953] showed that by the use of

spatial �lters in a coherent optical system, image enhancement (deblurring and edge

enhancement for example) can be achieved. A review on spatial �ltering [O'Neill,

1956] from the same decade pointed out the relative ease of optical implementation of

well-known electrical signals counterparts such as edge-sharpening and equalization.

By that time, however, the idea was not completely new. The control of Fourier spec-

tra of an image underlies Zernike's phase contrast technique for microscopy (1935)

[Johnson, 2012] where the observed intensity is linearly related to the phase shift

introduced by a specimen. Even earlier, the work of Abbe (1870s) on the image

formation theory in microscopy set the path for the tools to be developed in the

general analysis of imaging systems.

From an applications viewpoint, a major step toward establishing optical process-

ing as a recognized branch of optics was the use of coherent optics to process data

derived from a synthetic aperture radar (SAR) [Leith, 2000] (which indeed started

with an incoherent source approximation in 1953).

With the development of laser sources in the 1960s, optical information pro-

cessing began a rapid expansion. Major coherent optical correlation advances were

accomplished by 1970 in parallel with the development of holography. Practical real-

time implementations were only limited by the development of e�cient Spatial Light

Modulators (SLM). In the late 1960s the �rst electrically addressed SLM's based

in Liquid Crystal were developed and by the end of the 1970s, optically addressed

SLM's were also available. Despite these advances, no real-time useful processor was

developed due to the lack of e�cient SLMs. At the same time, digital computers

achieved enough power to compete with some optical counterparts, like SAR.

By the early 1980s, although digital computers were not powerful enough, most

of the optical processors developed still remained in prototypes mainly because appli-

cations that would bene�t from the speed of optics were few and also because of the

absence of e�cient modulators. In spite of this, several di�erent SLM technologies

were developed, among which two survived and are commercially available in display

devices: LCD and Digital Micromirror Devices (DMD). During the 1980s and 1990s

several optical processing devices were realized taking advantage of the progress in

SLM fabrication. In particular, many attempts at commercializing optical correla-

tors date from this period (see [Ambs, 2010] and references therein). As it will be

6



1.1 A bit of history

discussed in detail in the next chapter, several optical implementations of the Hough

transform date from those years.

The perspectives for optical computing by the late 1990s [Caul�eld, 1998] were

not to focus in replacing what was better done electronically. Instead, e�orts were

aimed at concentrating on the roles electronics cannot play and joining e�orts to

achieve better overall performance. In fact, no all-optical processor is desirable since

at least in a �nal capture stage, electronics will be needed. Those roles at which

optics plays best are for example the implementation of massive, arbitrary mapping

from an N×N input array to an N×N output array. In this regard, operations that

can be put in terms of a convolution -like the generalized Hough transform in which

we are interested- are expected to perform very well under optical architectures.

Optics is also free of "garbage" operations (there is no storage and later deletion of

intermediate information to carry out an operation) which involve time and energy

resources; in fact, driving power consumption down is a major engineering concern

that has led research e�orts towards the control of light �ow at Ghz in silicon [Lipson,

2015].

The possibility to encode information in dimensions such as phase, wavelength or

polarization is another unique feature of optics which has been exploited for informa-

tion encryption applications [Javidi, 2005] and hyperspectral imaging for inspection

and surveillance [Co�ey, 2015], among others. However, the most interesting and

complex optical systems still imply a combination of optical and digital processing.

A great example can be found in the �eld of adaptive optics [Tyson, 2011] in

which optical methods are part of a preprocessing stage for wavefront sensing and

are followed by digital methods for determining appropriate changes for an adaptive

mirror.

Pattern recognition has also bene�t from the joint design optimization of optical

and digital domains [Awwal et al., 2010], usually obtaining an improvement in overall

performance in comparison to only digital or optical methods.

Another recent example of combination of optics and electronics can be found in a

physics-based signal transformation known as anamorphic stretch transform [Asghari

and Jalali, 2013] that enables a digitizer to capture signals that would otherwise be

beyond its bandwidth and at the same time, compresses the digital data volume,

alleviating the storage and transmission bottlenecks associated with the big data.

Based on a discrete approximation of the equations that govern this transformation,

and coupling with standard JPEG compression, 56-fold reduction in data size has

been accomplished.

In the same line of thought, optics may also o�er inspiration for computational

developments as can be found in the implementation of virtual spiral phase �ltering
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1. OPTICAL IMAGE PROCESSING

on a GPU [Zhong et al., 2014] or the digital implementation of phase encryption for

a Joint Transform Correlator (see Section 1.2.1.2) [Alsamman, 2010].

Although not in the "golden era" when all-optical processors were expected to

overcome their computational counterparts, and even when these counterparts have

proven to be e�cient in a great number of tasks, room is still available for opti-

cal implementations which prove to be e�cient at real-time processing and ease in

implementation. Recent proposals for beam-shaping by means of layered materials

[Yousse� et al., 2016, Bykov et al., 2014, Doskolovich et al., 2014] are directed to-

wards analog all-optical processing of information. This revival in analog optical

computing is not based on trying to achieve an optical counterpart of a digital ma-

chine but in creating an analog machine capable of accelerating existing electronic

computers [Solli and Jalali, 2015].

The role of an optical implementation of the Generalized Hough Transform in

connection with real-time capability and implementation is to be discussed in Chap-

ter 3. To place this transform in the correct context of optical image processing

we will brie�y review edge-enhancement (crucial as preprocessing step) and pattern

recognition tasks under coherent and incoherent illumination.

1.2 Coherent and incoherent processors

The mode of illumination on the object plane of a system greatly determines its

optical properties. The inclusion of a mutual coherence factor between the points

that form the illumination source allows for treating the image formation in the

optical system in a completely general way. The mutual coherence factor takes into

account two types of coherence of an optical wave, namely temporal and spatial

coherence [Born and Wolf, 2000, Goodman, 1985].

When we talk about temporal coherence we are dealing with the ability of a light

beam to interfere with a delayed version of itself, as a result of amplitude splitting

of the beam (for example, in a Michelson interferometer). Spatial coherence on the

other hand is related to the ability of a light beam to interfere with a spatially shifted

(but not delayed) version of itself, as a result of wavefront splitting of the beam (for

example, in a Young double slit experiment).

In the following sections we will deal with the extreme cases of coherence. First

we will consider coherent processors where the object plane is treated as being illumi-

nated by a monochromatic (perfectly temporally coherent) plane (perfectly spatially

coherent) wave. This is an idealization that to a good extent might be met by a laser

source. But, as any real source has a �nite bandwidth, temporal coherence should

be relaxed, even up to the extreme case of white light sources. Non-perfect spatial
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1.2 Coherent and incoherent processors

coherence should also been taken into account since real sources have also a �nite

size and the radiating points that give rise to the source might not emit in phase. In

an extreme case, Chapter 3 deals with totally incoherent sources, i.e. both spatially

and temporally incoherent light.

1.2.1 Fourier-based processing

In this section we will brie�y review the operations that can be performed in coherent

optical systems where linearity in the complex amplitude of light (characterized by

its modulus and phase) can be considered.

One of the operations that an optical processor can easily perform is the two-

dimensional Fourier Transform of information incoming in the form of a complex

wave. Taking advantage of the basic laws of propagation and di�raction of light,

Fourier transform is achieved in the propagation between the front and back focal

planes of a converging lens [Goodman, 1996, Iizuka, 2008, Stark, 2012].

Following this principle, an optical system might be formed by arranging a se-

quence of lenses that gives a succession of Fourier transform planes. In the early 60's

Van der Lugh (see 1.2.1.2) proposed a basic Fourier processing con�guration known

as 4f-processor ( Figure 1.1). Between planes P1 and P2 lens L1 performs the Fourier

transform of the input.A second lens L2 placed behind P2 performs another Fourier

transform, so the output of the system (with no �lter applied over the signal) is the

inverted image of the input. Control over the Fourier components of the image is

achieved by acting on the Fourier plane. This basic scheme allows to perform the

most important shift-invariant operations in image processing under coherent light:

�ltering and pattern recognition. The paraxial or �rst order [Alieva, 2008] optical

systems like the 4f-processor constitute the basic analog optical information process-

ing tools in Fourier Optics. More sophisticated processing arises from considering

propagation through graded index media instead of simple lenses in order to achieve

fractional Fourier transforms [Mendlovic and Ozaktas, 1993, Ozaktas and Mendlovic,

1993] or by the implementation of wavelet transforms [Sheng et al., 1992, Mazzaferri

et al., 2003] in optical correlation (Section 1.2.1.2) architectures .

Next we explore the applications that arise from operating over the frequency

components of an image in the coherent regime.

1.2.1.1 Edge-enhancement with coherent light

The enhancement of edges that serve as boundaries which delimit regions of the

image with di�erent properties is one of the most important pre-processing tasks in

image processing. Given that the edges correspond to jumps in the derivative of a
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1. OPTICAL IMAGE PROCESSING

Figure 1.1: 4f coherent optical processor (from [Stark, 2012]).

certain property (intensity, color, texture) or equivalently, to zero crossings of the

second derivative [Marr and Hildreth, 1980], coherent optical processing for edge-

enhancement is primary oriented towards the realization of derivatives [Eguchi and

Carlson, 1970]. It can be easily seen that the derivative of a signal can be obtained

by multiplying the Fourier transform of the signal by j2πf , with j representing the

imaginary unit and f the spatial frequency, and performing the inverse transform.

In order to apply this idea on a 4f-processor we need to place a j2πf mask in the

Fourier plane of the processor. At the same time, and as it was common in the early

stages of Fourier image processing, the mask is given by the product of an amplitude

only and a phase only mask (Figure 1.2). A result for image di�erentiation through

this method can be seen in the same �gure.

Basic high-pass �ltering of images can also be realized by means of amplitude only

masks placed in the Fourier plane. In Figure 1.3 high-pass �ltering is achieved by

stopping the low frequency Fourier components of an image in the Fourier plane of a

4f processor, resulting in an image with omnidirectional (i.e., rotationally invariant)

edge-enhancement. Similarly, in digital processing, working in the frequency space of

an image is commonly used for high or low-pass �ltering (i.e. edge enhancement or

blurring of images), periodic noise removal, etc. [Gonzalez and Woods, 2002, Russ,

2011].

Other methods, based on a spiral �ltering create a directional edge-enhanced

image by the convolution of a complex function representing the sample with a vortex

impulse response function of the optical system. Spiral phase plates with azimuthal

structure can be used as a SLM in the Fourier plane of a 4f processor so that the

output image corresponds to the convolution of the input image with a vortex PSF of

the optical system. The �nal image corresponds to the edge-enhanced version of the

input [Situ et al., 2009, Crabtree et al., 2004]. This approach to edge-enhancement
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1.2 Coherent and incoherent processors

Figure 1.2: Image di�erentiation using coherent light (Top) Fourier
mask synthesis by the product of phase only and amplitude only
masks (Middle) Basic coherent setup for image di�erentiation (from
[Iizuka, 2008]) (Bottom) Di�erentiation in the horizontal direction,
original image (left) horizontal edge-enhanced image (right) (from
[Eguchi and Carlson, 1970]).
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1. OPTICAL IMAGE PROCESSING

Figure 1.3: High-pass �ltering in a 4f-system at our
lab. (a) original image (b) edge-enhanced image
using an aperture stop at the Fourier plane

has proven to be useful in di�erent applications in microscopy [Fürhapter et al.,

2005, Jesacher et al., 2005] and it is also known as radial Hilbert transform processing

[Davis et al., 2000] since the phase masks are radially symmetric. By considering a

complex �lter with radial dependence of the amplitude and spiral structure in the

phase, the combination of a smoothing operation and directional �rst derivative can

again allow to achieve omnidirectional edge-enhancement [Mazzaferri and Ledesma,

2007, Mazzaferri et al., 2010].

1.2.1.2 Coherent correlators

The highest SNR is achieved for a �lter whose transfer function corresponds to

the complex conjugate of the Fourier transform of the signal we are looking for

[Das, 2012, Iizuka, 2008]. The correlation between observed and reference image is

obtained by placing in the Fourier plane of the processor, a mask corresponding to

the transfer function of this �lter. In this case, a maximum in the ratio between

image peak intensity and rms of noise (supposed additive and white) is achieved and

the light meter at the output plane in Fig. 1.4 detects a maximum.

As we have seen for the case of edge enhancement, in the early developments

of optical processors the transfer function was achieved by inserting independent

amplitude and phase masks which only allowed for very simple patterns for matched

�lters. In 1963, van der Lugt synthesized frequency-plane masks that were able

to control both amplitude and phase simultaneously. These masks were realized by

means of a modi�ed Mach-Zender interferometer where the complex input signal was

combined with a known reference wave [van der Lugt, 1964] to render the matched

�lter.
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1.2 Coherent and incoherent processors

Figure 1.4: 4f processor with matched �lter (from [Iizuka, 2008]).

Later, in 1966 Weaver and Goodman [Weaver and Goodman, 1966] presented

a new correlator architecture know as Joint Transform Correlator (Figure 1.5) in

which reference and signal images are presented side by side in the input plane

before Fourier transforming and two peaks of cross-correlation of interest are present

in the output plane, with the great advantage that no correlation �lter is needed.

Figure 1.5: Joint Transform Correlator (from [Ambs,
2010]).

1.2.2 Incoherent architectures for image processing

We will now deal with completely spatially incoherent systems which are linear in

light intensity [Rhodes and Sawchuk, 1981, Bartelt et al., 1982]. Image processing in

incoherent systems cannot rely on the manipulation of Transfer function at Fourier

plane. Those systems instead might be developed by the application of the Van

Cittert-Zernike theorem [Goodman, 1985] to coherent systems operating on objects
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1. OPTICAL IMAGE PROCESSING

which do not change the phase of the coherent beams that pass through them.

Through this approximation it has been possible to develop devices such as entrance

pupil �lters and spatial frequency �lters. The general approach would be to consider

the response to each element of the extended source and, as the elements are mutually

incoherent, their system responses add on intensity basis.

As a result of intensity adding, one of the main advantages concerning the use

of incoherent sources in optical processing is the freedom from noise arising from

speckle and dust specks on the optical components. Due to the extended nature

of the incoherent source (LED arrays for example), light from a single pixel of the

input passes through the optical system along many di�erent spatial channels, and

this redundancy is responsible for the absence of coherent noise in the system. How-

ever, the result of incoherent adding at imaging plane light scattered by specks is a

reduction in image contrast.

By relaxing the requirements in spatial and/ or temporal coherence, the resulting

increase of degrees of freedom [Lohmann et al., 1996] in the optical system may be an

advantage. For example, as pointed out in [Bartelt et al., 1982] the gain in SNR in

comparison to coherent counterpart is proportional to the square root of the number

of optical channels, up to the limit of SBP of the object. For an SBP of 106 (typical

number of pixels of a CCD sensor) an increase in 103 in SNR is to be expected.

Another advantage stems from the fact that the Optical Transfer Function of the

system corresponds to the autocorrelation of the pupil function of the system (see

Appendix A), so any defect in the pupil plane may be absorbed in the integration

process.

1.2.2.1 Incoherent edge-enhancement

Based on quasi-monochromatic spatially incoherent light it is possible to achieve

selective edge-enhancement. In a modi�ed Fresnel incoherent correlation holography

(FINCH) setup, Bouchal and Bouchal [Bouchal and Bouchal, 2012] use a LED source

and an spectral �lter to achieve the quasi-monochromatic source (see Figure 1.6).

By means of optical scanning holography (OSH), isotropic [Pan et al., 2014] as well

as anisotropic (directional) [Dobson et al., 2016] edge-enhancement has also been

achieved.

An advantage of incoherent optical processors is that the nature of the input

and the output is the same (intensity distribution). A coherent processor relies

on a complex wave distribution processed through the system, but what we detect

at the output is in the form of intensity. In incoherent processors information is

carried by intensity wave distributions which constitute real, nonnegative signals.
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1.2 Coherent and incoherent processors

Figure 1.6: (Top) Experimental setup for edge-
enhancement in modi�ed FINCH. SF, spectral �lter; CL,
collimating lens; D, diaphragm; P, polarizer; BS, beam
splitter; SLM, spatial light modulator. (Bottom) Isotropic
and anisotropic edge contrast enhancement: (a) standard
FINCH reconstruction,(b) isotropic spiral FINCH, (c)-(e)
anisotropic spiral FINCH with preferred directions (from
[Bouchal and Bouchal, 2012])

This gives rise to another source of contrast reduction in incoherent imaging since a

bias needs to be added in order to achieve negative signals. Early attempts to spatial

�ltering with incoherent light might be found in the use of the photographic Herschel

e�ect [Kelly, 1961] or bipolar aperture masks [Trabka and Roetling, 1964] where

high-pass �ltering of images is obtained by using the quenching characteristics of a

�uorescent screen. Alternatively, the use of hybrid systems to perform electronically

those coherent operations not available through incoherent illumination is suggested

in [Stoner, 1978].

Most of the preprocessing e�orts in incoherent optics are directed towards the

enhancement of edges in images [Flores et al., 2010, Flores et al., 2011] rather than

its detection on a zero background. This enhancement can be achieved by the com-

bination of a positive input image and its negative shifted version; let us take as an

example the directional enhancement worked out in [Fernández et al., 2011]. The pos-

itive image is the one observed in a Liquid Crystal Display (LCD) under its standard

con�guration, i.e. liquid crystal placed between an analyzer (in front of the LCD)

and the back polarizer of the display in cross con�guration with the analyzer. The

orthogonally polarized replica of this image is the negative image or complementary

color image which is absorbed by the front polarizer. If the analyzer is removed both
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positive and negative images are available for processing. Figure 1.7 shows a setup

for directional edge enhancement where a calcite prism is used to separate rays of

crossed polarization. When both images are superimposed laterally displaced across

the image plane, one obtains an image with enhanced �rst-order derivatives along

a speci�c direction. Figure 1.8 shows, along with the positive and negative origi-

nal images, the edge enhancement that results from a vertical displacement between

them.

Figure 1.7: Directional edge enhancement setup. LCD, liquid crystal
display (whose analyzer �lm has been removed); C, calcite prism pro-
ducing a lateral separation δ between cross-polarized beams; A, analyzer
(at 45o with respect to the polarization of positive and negative image,
in order to give a superimposition at the image plane); L, lens system;
I±: positive (negative) image.

Figure 1.8: Directional edge enhancement with the setup from Figure 1.7.
(a) Positive image (b) Negative image (c) Edge enhancement.

For non-directional edge-enhancement of images, in [Flores et al., 2011] a pupil

mask formed with concentric apertures and orthogonal polarizers (Figure 1.9) is

placed in front of the same modi�ed LCD (i.e. with analyzer removed) allowing to

simultaneously image a well-focused positive replica (due to the circular aperture)

superimposed to a slightly defocused negative one (due to the annular aperture).
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Through the combination of the positive input and a its blurred negative, a Laplacian

(second derivative) edge-enhancement is obtained. Figure 1.10 shows the laplacian-

enhanced image along with the original image and its defocused negative.

Figure 1.9: Setup for non-directional edge enhancement. The compound
analyzer (M) has a central circular region of radius R1 and an annular region
(with inner and outer radius R2 and R3, respectively) with transmission
direction orthogonal to that of the central region. The di�erence in depth
of focus between central and annular regions allows to combine di�erently
focused positive and negative images.

Figure 1.10: Laplacian edge enhancement with the setup from Figure 1.9.
(a)Positive image (b)Defocused negative image (c)Non-directional edge en-
hancement

1.2.2.2 Incoherent correlators

Lohmann proposed the extension of coherent matched �lters to the incoherent regime

where monochromatic extended sources or self-luminous objects can be used in what

is known as quasi -monochromatic correlation, since spatially incoherent light cannot

be totally monochromatic for the relative phase of the light emitted by two di�erent

points of the source to change in time and yield spatial incoherence. As in the

coherent case, the image forming system can be considerer linear but in the intensity
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instead of the complex amplitude of the �eld. The matched �lter is again the complex

conjugate of the Fourier transform of the signal that we want to detect. Although

the general synthesis problem [Lohmann, 1968] might result di�cult, in character

recognition applications [Armitage and Lohmann, 1965] the matched �lters can be

realized by means of binary masks at the pupil plane of the optical system.

For the use of totally incoherent light in optical correlators, achromatic compen-

sation [Bouchal et al., 2014, Morris and Zweig, 1987] needs to be performed. Appro-

priate combinations of refractive and di�ractive elements have resulted in achromatic

Fourier processors in which it is possible to use white light input signals in correlation

optics [Yu, 1987, Pe'er et al., 1999] or data encryption [Tajahuerce et al., 2001, Ta-

jahuerce et al., 2005] (see Figure 1.11 where an incoherent encryption system using

a white light source and dispersion compensators is depicted).

Aside from incoherent extensions of Fourier processors, optical correlation can

be achieved in the geometric optics limit. Early attempts to obtain autocorrelation

of random patterns can be found in [Kovasznay and Arman, 1957] while a review

of incoherent correlators based in scanning or defocusing can be found in [Monahan

et al., 1977] and [Knopp and Becker, 1978], respectively. Another type of geometric

incoherent correlators are based on the shadow casting principle (Figure 1.12) and

have been proposed for image segmentation by active contours [Hueber et al., 2001,

Hueber et al., 2003] as well as for the parallel implementation of logic operations

[Tanida and Ichioka, 1983] by means of a lensless technique.

Our proposal for an optical implementation of the GHT falls under the cate-

gory of geometric incoherent correlators. In Chapter 3 we develop, based on linear

optical systems theory, the idea that led us to implement the aforementioned trans-

formation in a severely defocused system where scale and orientation parameters can

be controlled. Previously, we would need to introduce in Chapter 2 the main con-

cepts related �rst to the linear HT, then to its generalized version to treat arbitrary

geometrical features.
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1.2 Coherent and incoherent processors

Figure 1.11: (Top) Dispersion-compensated processor for optical encryption with
incoherent light (Bottom) (a) original image (b) encrypted image at the output of
the processor (c) digitally decrypted image (from [Tajahuerce et al., 2005]).

Figure 1.12: Multichannel incoherent shadow-casting correlator
with four channels. Correlation is performed between scene (S)
and window (W) (from [Hueber et al., 2003]).
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Chapter 2

Hough transform and its optical

implementation

One of the most important tasks in automated image analysis is the recognition

of geometrical features. This high-level feature extraction task [Nixon et al., 2012]

involves using shape information from the image (in comparison, low-level tasks like

edge-enhancement are accomplished without any knowledge of the shapes involved).

Even for the recognition of the simplest feature like a straight line, the direct search

and detection in an entire image is computationally costly. While trying to detect

the track of subatomic particles in bubble chamber photographs, Hough faced the

problem of detecting the presence of groups of collinear dots on an homogeneous

background. He devised and patented what nowadays is known as Hough Transform

[Mukhopadhyay and Chaudhuri, 2015, Leavers, 1993, Illingworth and Kittler, 1988],

a transformation that exchanges the global line detection for a more easily solved

peak detection problem in a parameter space dual to the original binary image.

The resulting Linear Hough Transform and its extensions to other shapes (like

the Circular Hough Transform) are among the most popular techniques for shape

detection in images. A search on Scopus from 2000 to 2015 returns over 7000 articles

related to Hough transform; its widespread use is due to its robustness against noise

[Lu et al., 2015, Lu and Tan, 2008] , incompleteness of the target shape [Cauchie

et al., 2008, Blanco et al., 2006] or low resolution of the image [Wang et al., 2009, Loce

et al., 2013].

Applications of the Linear Hough Transform can be found in text line extraction

from skewed document images [Shivakumar et al., 2005], detection of tra�c symbols

from low resolution images [Tai and Chen, 2014] or robust lane detection [Niu et al.,

2015], line detection in large images [Song and Lyu, 2005], building detection in aerial

imaging [Cha et al., 2006], surgical instruments tracking [Climent and Hexsel, 2012],
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2. HOUGH TRANSFORM AND ITS OPTICAL IMPLEMENTATION

general recognition of lines in natural scenes [Fernandes and Oliveira, 2008] among

others (Figure 2.1). Recent applications of the Circular Hough Transform include

improvement in Shack-Hartmann wavefront sensing [Chia et al., 2016], detection of

a common center in X-ray di�raction images [Cauchie et al., 2008] and detection of

optical disk in fundus images [Blanco et al., 2006] (Figure 2.2).

The Generalized Hough Transform -an extension of the Hough Transform to

nonparametric features- has in turn proven to be useful, for example, in automated

satellite imagery navigation [Chen and Deng, 2015], medical imaging [Ricca et al.,

2015], identi�cation of chips [Ulrich et al., 2003] or tag devices [Yang et al., 2016] in

assembly lines and �ngerprint recognition [Qi et al., 2004] for biometric authentica-

tion (Figure 2.3).

Figure 2.1: Applications of the Linear Hough Transform. (a) Line detection in nat-
ural scenes (from [Fernandes and Oliveira, 2008]) (b) robust lane detection in tra�c
images (from [Niu et al., 2015]) (c) surgical instruments tracking (from [Climent and
Hexsel, 2012]).

Figure 2.2: Applications of the Circle Hough Transform. (a) Optical disk extraction
in fundus images (from [Blanco et al., 2006]) (b) Center detection in Debye-Scherrer
rings in crystallography imaging (from [Cauchie et al., 2008]) (c) iris segmentation
in infrared images (image from UTIRIS repository (https://utiris.wordpress.
com/2014/03/04/university-of-tehran-iris-image-repository) processed by
the author).
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2.1 Linear Hough transform

Figure 2.3: Applications of the Generalized Hough Transform. (a) Piece-wise approx-
imation of vertebra in X-ray CT image (from [Ricca et al., 2015], template in red) (b)
�ngerprint authentication (from [Qi et al., 2004]) (c) radio frequency identi�cation
device tag positioning (from [Yang et al., 2016]).

We start this chapter by describing the fundamentals of the Hough Transform.

In his patent [Hough, 1962] Hough disclosed a key idea that survives to the present

formulation of the Linear Hough Transform: collinear points in a binary image can

be identi�ed by mapping them into geometric constructions that intersect in an

accumulator space.

2.1 Linear Hough transform

In the original formulation Hough considered a geometrical construction [Hart, 2009]

that was later put into analytical form as a point to line transformation using the

slope-intercept parametrization of a line:

f(x, y) = y −mx− c = 0 (2.1)

where m represents the slope parameter and c the interception of the line with the

y axis. Equation (2.1) is symmetric in the role of (x, y) and (m, c) an so it can also

be seen as the equation for a line in {m, c} plane with slope −x and intercept −y
so that we can map every point of the original image in {x, y} space to parameter

space {m, c} under the dual of Equation (2.1)

g(m, c) = y′ −mx′ − c = 0 (2.2)

where (x′, y′) is the coordinate of pixel being mapped. Collinear pixels in the im-

age space are mapped to concurrent lines in the parameter space but this space is

unbounded when considering mapping of points lying on a vertical line. Following

the work of Duda and Hart [Duda and Hart, 1972] a straight line can be more use-
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fully parameterized in terms of the algebraic length ρ and orientation θ of the vector

normal to the line passing through the image origin (Figure 2.4)

f(x, y) = x cos(θ) + y sin(θ)− ρ = 0. (2.3)

For this normal parametrization to de�ne a unique line we need to restrict parameter

θ: θ ∈ (−π/2, π/2]. Besides, parameter ρ is bounded by the maximum point distance

in the original image (for example, the diagonal of a M × N image). It is also

noticeable that function ρ(θ) = x cos(θ) + y sin(θ) veri�es ρ(θ + π) = −ρ(θ).
Each point of the original image is mapped under Equation (2.3) to a sinusoidal

curve in a bounded parameter space {ρ, θ} where the point cast a vote for every

parameter combination that gives rise to a line passing through it. The intersection

of this voting curves indicates points belonging to a common line in the original

image. Accumulation of votes over the di�erent parameter combinations gives rise

to the Linear Hough Transform (LHT) of the original image. The computational

complexity for the LHT of an N × N image is O(N4) [Feng and Fainman, 1992,

Hollitt, 2013] since the transform needs to accumulate votes on a two-dimensional

surface for every of the N2 points of the image.

As a simple illustration of this parametrization consider the three point image of

Figure 2.5(a) with the possible lines passing through two points marked in di�erent

colors. Figure 2.5(b) shows the accumulator space, where the coordinates of the

intersection point of two sinusoidal curves are the parameters of two-point concurrent

line in the original image. For binary images with n non null points we will have n

di�erent curves in the accumulator space and a threshold should be established in

order to sort out the most voted lines.

Figure 2.4: Normal Parameters (ρ, θ) for the rep-
resentation of a line in the Hough transform.
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2.2 Circle Hough Transform (and other analytic curves)

Figure 2.5: LHT of three point image. (a) Original image (b) Accumulator space
{ρ, θ} (θ in degrees) where the intersection points follow the color of the correspond-
ing line in the original image.

2.1.1 The Radon connection

Deans [Deans, 1981] pointed out the close connection between the HT and the Radon

Transform -whose mathematical formalism will be presented in the next chapter (see

Section 3.1)- which corresponds to the representation of an arbitrary (not exclusively

binary) function over the {x, y} plane by means of the integrals along di�erent di-

rections on the plane [Radon, 1986]. This type of image representation has proven

to be useful in di�erent pattern recognition tasks and especially in medical imag-

ing [Herman, 2009], where the development of e�cient methods for approximating

the inversion of the transform is fundamental to computarized tomography. The

connection is worth noticing since early attempts at optical Hough transform im-

plementation (see Section 2.4) were based on rotating inputs and integrating along

narrow slits in order to give the signal in terms of its line integrals.

2.2 Circle Hough Transform (and other analytic curves)

We can easily extend the ideas for line detection to other analytical curves for which

we have a parametric representation. The points (x, y) that lie on a circle of center

(x0, y0) and radius R satisfy this constraint equation

f(x, y) = (x− x0)2 + (y − y0)2 −R2 = 0, (2.4)
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2. HOUGH TRANSFORM AND ITS OPTICAL IMPLEMENTATION

and the parameters {x0, y0, R} span a three-dimensional accumulator space where

each point of the original image cast a vote for every parameter combination giving

a circle whose center coincides with it. In this way, a point under the Circle Hough

Transform (CHT) is mapped to a cone in {x0, y0, R} (accumulator) space, which can

be easily seen by �xing x and y in (2.4) and letting x0, y0, R vary. For �xed values of

R let us consider the 2D slices of the accumulator space spanned by the remaining

parameters x0, y0; for a given value R every point of the original image is mapped

under CHT to a circle with this radius. Consider for example the three point image

depicted in Figure 2.6(a) corresponding to three of the vertices of a square of side

L. In the corresponding accumulator space slice for R = 3L
5 (Figure 2.6(b)) each of

the original points is mapped to a circle of radius R = 3L
5 ; the intersection of these

circles in the accumulator space indicates the center of each of the four di�erent

circles passing through two points in the original image. For R = L√
2
(Figure 2.6(c))

the corresponding accumulator space slice (Figure 2.6(b)) shows, besides di�erent

two-circles intersection points- a triple intersection corresponding to the center of

the circle that passes through every of the three points of the original image.

A variation of the basic mapping under the CHT to include scale invariant detec-

tion can be found in [Atherton and Kerbyson, 1999] while a convolution approach to

the transformation is implemented in [Hollitt, 2013] with the advantage of reducing

the computational complexity of the transform from O(N4) to O(N3log(N)).

Another analytical feature of interest is the ellipse, whose constraint equation

reads

f(x, y) =
(x− x0)2

a2
+

(y − y0)2

b2
− 1 = 0, (2.5)

where (x0, y0) is the center of the ellipse and a and b the semi-axis that we assume

to coincide with the x and y axis. To handle the possible rotation of the ellipse we

need to introduce a rotation parameter θ and the �ve-dimensional parameter space

is {x0, y0, a, b, θ}. Similar approaches can be introduced to other analytical, para-

metric geometrical features like parabolas where we need to span a four-dimensional

parameter space.

2.2.1 Circle matching

For a given radius R we have interpreted the CHT as the mapping of each point of the

original image to a circle of radius R in accumulator space, where votes accumulate

over a given parameter space point according to the number of circles that intersect

at this point. Alternatively, we can consider the matching of the circle of radius R to

the complete original image by tracing the circle with its reference (x0, y0) over every

point (x, y) in the image and computing the number of points of the image that lie on
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2.2 Circle Hough Transform (and other analytic curves)

Figure 2.6: CHT of three point image. (a) Original image of 3 vertices of
a square of side L (b) Slice of accumulator space for R = 3L

5 where the
intersection points follow the color of the corresponding circle in the original
image (a) (silhouette of the original points superimposed). (c-d) same as
(a,b) for R = L√

2
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2. HOUGH TRANSFORM AND ITS OPTICAL IMPLEMENTATION

the shape. This gives the same vote sum and would prove to be an useful approach

when we consider the matching of a non-analytical template in the next section.

As an example, consider the image formed by three points in Figure 2.7 where for

the center of a circle of radius R = L√
2
coinciding with

(
x
(1)
0 , y

(1)
0

)
,
(
x
(2)
0 , y

(2)
0

)
and(

x
(3)
0 , y

(3)
0

)
we obtain 1,2 and 3 votes, respectively.

Figure 2.7: (a) Matching of a circle of radius R = L√
2
to a 3 point image

of the vertices of a square of side L (the number of votes corresponding

to the circle centers
(
x
(1)
0 , y

(1)
0

)
,
(
x
(2)
0 , y

(2)
0

)
and

(
x
(3)
0 , y

(3)
0

)
has been

superimposed in light blue) (b) Resulting CHT with the points of the
original image superimposed.

2.3 Generalized Hough transform

Pattern recognition tasks involve in many cases the matching of a template of more

general geometry than lines or circles to a given target image. Besides, this template

can seldom be represented through an analytical constraint equation. In order to

handle non-analytical features, Ballard [Ballard, 1981] proposed a four parameter

space {x0, y0, s, θ} for an arbitrary �gure (Figure 2.8), where (x0, y0) is a reference

point, s is the (isotropic1) scale parameter and θ the orientation of the shape (as

given for example by the gradient orientation at a certain point).

1a general treatment should include a scale factors vector s = (sx, sy) to take into account
anisotropic transformations but the experimental implementation of the Generalized Hough Trans-
form will consider isotropic scale variations and handle anisotropy by changing the template.
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2.3 Generalized Hough transform

Figure 2.8: Parameters {x0, y0, s, θ} for an arbitrary shape.

The constraint equation for the shape of interest can be written as

f(x− x0, y − y0; s, θ) = 0. (2.6)

For a given orientation and scale (i.e. (s, θ) �xed), the Generalized Hough Trans-

form (GHT) algorithm will proceed [Merlin and Farber, 1975, Sklansky, 1978] by

tracing the shape with its reference (x0, y0) over every point (x, y) in the image,

and computing the number of points of the image that lie on the shape (as it was

previously introduced for the case of a circle in Section 2.2.1). Figure 2.9 shows a

very simple example of the procedure for the shape depicted in Figure 2.8 traced

over a four point image (depicted as squares) where for reference coinciding with(
x
(1)
0 , y

(1)
0

)
(see solid line in Figure 2.9), the shape matches all the four points while

for
(
x
(2)
0 , y

(2)
0

)
,
(
x
(3)
0 , y

(3)
0

)
we get a partial matching.

The �nal step for pattern recognition is to �nd for which reference point we

obtain the maximum coincidence. To account for a change in scale or orientation the

corresponding parameters need to be varied and the procedure repeated, yielding a

four-dimensional accumulator space. Alternatively to the previous algorithm, general

shapes can be piecewise represented by means of line segments or composite �gures

including parametric features such as circles or ellipses [Ricca et al., 2015]. In the

next section we will review optical approaches to the GHT which make use of such

approximations.
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2. HOUGH TRANSFORM AND ITS OPTICAL IMPLEMENTATION

Figure 2.9: Matching of the arbitrary shape of Figure 2.8 to a four
point image. Best �t in solid line.

2.4 A review of optical approaches

The principal drawback for a standard shape recognition algorithm based in the

Linear Hough Transform (LHT) is its large computational requirements which makes

its real-time implementation di�cult. On the other hand, as we saw in Chapter 1,

optical architectures o�er parallel computing capability and are therefore inherently

suitable for real-time applications.

2.4.1 LHT and CHT in the coherent regime

Steier and Shori [Steier and Shori, 1986] proposed an implementation of the LHT

that takes advantage of the close relation of this transform to the Radon Transform

(RT) (see Section 2.1.1). Using a Dove prism to rotate the input image (Figure 2.10)

and projecting on a line detector by means of a cylindrical lens they were able to

obtain the LHT of an image. A similar coherent approximation and rotating input

to the LHT can be found in the work of Gindi and Gmitro [Gindi and Gmitro, 1984].

Following the same connection to the RT, Eichmann and Dong [Eichmann and

Dong, 1983] proposed the use of a narrow slit at the Fourier plane (P2 in Figure 2.11)

of a 4f system while rotating the input image at P1 and translating the output record-

ing material in P3. A more e�cient implementation of the RT in a 4f system has

recently been proposed in [Ilovitsh et al., 2014], where a vortex-like mask is placed

at the Fourier plane and no rotation of the input is needed in order to obtain the

transformation. Stern [Stern, 2007] explored the optical implementation of RT for

few angular directions, which resulted suitable for real-time low-resolution tasks like
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2.4 A review of optical approaches

motion detection [Kashter et al., 2012] or image restoration when combined with

super-resolution [Farber et al., 2013]. Seth and Datta [Seth and Datta, 1996] imple-

mented the LHT also in a coherent setup via an optical matrix-vector multiplication

technique combined with a two-layer neural network. The peak strength of a neuron

in the Hough space is detected by a winner-take-all optoelectronic circuit.

Ambs et al. [Ambs et al., 1986] proposed the use of a 2D array of holograms

with varying impulse response, constituting a space-variant �lter. In their setup

(Figure 2.12) each hologram of the �lter reconstructs a di�erent sinusoidal curve

according to the parametrization given by Equation (2.1) or (2.3). Alternatively,

they consider the detection of a circle of given radius (CHT) and include in each

hologram the center coordinate. Mori and Ohba [Mori and Ohba, 1994] also explored

the use of an array of computer generated holograms for the implementation of the

LHT. Shin and Jang considered rotationally multiplexing holograms [Jang and Shin,

1996, Shin and Jang, 1998] of a line feature at discrete orientation angles for the

implementation of the LHT under coherent light.

For the detection of the (�ve) parameters of a general ellipse, Feng and Fainman

[Feng and Fainman, 1992] proposed an extension of the holographic method of Ambs

et al. [Ambs et al., 1986] and consider the envelope of the sinusoidal lines that result

from the mapping of the points of the ellipse under the normal line parametrization

in Equation (2.3). The case of a line segment is also covered as a particular case

with one of the semi-axis of the ellipse equal to zero.

Figure 2.10: Setup for optical implementation of the LHT
under coherent light and rotating input (from [Steier and
Shori, 1986]).
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2. HOUGH TRANSFORM AND ITS OPTICAL IMPLEMENTATION

Figure 2.11: Setup for optical implementation of the LHT
in a 4f-system (from [Eichmann and Dong, 1983]).

Figure 2.12: Setup for optical implementation of the LHT
with a holographic array �lter (from [Ambs et al., 1986]).
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2.4 A review of optical approaches

2.4.2 LHT in the incoherent regime

With the advantage of achieving larger signal-to-noise ratio, Steier and Shori pro-

posed a variation of the scheme of Figure 2.10 that allows to obtain an incoherent

transformation but again only for a line (LHT). In the same regard, Stern [Stern,

2007] proposed besides the coherent compressed RT, an incoherent variant whose

setup is depicted in Figure 2.13. Koppelhuber and Bimber [Koppelhuber and Bim-

ber, 2015] recently proposed a classi�cation scheme based in the optical RT with

incoherent illumination. They developed a thin �lm sensor capable of measuring the

RT of an image focused on it and they later implemented a classi�cation scheme in

Radon space from few projections. Schmid et al. [Schmid et al., 1998] also made

use of incoherent light but with a microlens array processor that can detect lines

with di�erent positions and orientations. Their optical architecture works indeed as

a preprocessor for the LHT and a classi�cation scheme based in neural network is

implemented afterwards.

Figure 2.13: Setup for incoherent optical implementation of the
compressed RT. L1, cylindrical lens; S, vector sensor located in the
image plane. The system performs an integral projection of the
intensity distribution f(x′, y′) on y′. The linear sensor S, aligned
with the y′ axis, captures the line integral g(r = y′) which can be
recognized as a Radon transform (from [Stern, 2007]).

2.4.3 GHT in the coherent regime

For the optical implementation of the Generalized Hough Transform (GHT), the use

of acousto-optically modulated lasers and the piece-wise representation of the tem-

plate through analytical curves was proposed by Casasent and Richards [Casasent

and Richards, 1993]. Javadpour and Keating [Javadpour and Keating, 2000] gener-
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alized the method of Seth and Datta [Seth and Datta, 1996] to handle non analytical

shapes by considering a look-up table that de�nes the shape and also speeded up

the basic con�guration introducing an acousto-optical implementation of the matrix-

vector multiplication. Shin and Jang [Shin and Jang, 2000] proposed an implementa-

tion of the GHT with a matrix of holograms (Figure 2.14). They accomplished scale

(for the CHT) and rotation (for the LHT) -variant detection by means of recording

van der Lugt �lters (see Section 1.2.1.2) with scale or orientation variations of the

reference pattern. Although the shift-invariance of the van der Lugt processor allows

to overcome the need of di�erent references in the shape, non-analytical templates

can be handled by this method but this issue was not proved in the experiments.

In the next chapter we will introduce our proposal for the implementation of the

GHT in the incoherent regime.
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2.4 A review of optical approaches

Figure 2.14: Coherent optical implementation of the GHT (a) Op-
tical setup for recording; di�erent van der Lugt �lters are recorded
in a holographic medium by use of rotational multiplexing; R, ref-
erence beam; PF , photopolymer �lm for hologram recording. L1

lens performs the Fourier transform of the input pattern that is
displayed in the spatial light modulator SLM . (b) When the in-
put is applied to the multiplexed �lters the cross-correlation terms
between the input pattern and the stored patterns are obtained in
parallel at the output plane (u, v) behind another Fourier transform
lens L2 (from [Shin and Jang, 2000]).
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Chapter 3

Generalized Hough transform with

incoherent light

The key of the proposed optical implementation of the Generalized Hough Transform

(GHT) with incoherent light can be found in the integral representation of the trans-

formation. In order to arrive at the integral representation of the GHT we start this

chapter with a brief review of the Radon Transform (RT), closely related to the Lin-

ear Hough Transform (LHT). The RT is a representation of a given image in terms of

integrals along di�erent directions in the image plane (Radon projections). We can

follow the generalization of this integral transformation to kernels corresponding to

more complex shapes (see [Hendriks et al., 2005] and references therein) and connect

this integral transformation for continuous functions with the GHT operating over

binary images.

Based on this integral representation we propose a correlator [Fernández et al.,

2015a] whose point-spread function corresponds to a highly blurred optical system.

Focal setting along with the orientation of the pupil can be e�ciently controlled

by means of an electrical lens with variable focal length and a rotating pupil mask

matching the pattern to be found. This correlator works under fully (i.e., both

spatially and temporally) incoherent illumination and can handle orientation changes

or scale variations in the pattern. Real-time is achieved (as limited by the frame rate

of the device used to capture the GHT), allowing -besides static images- for the

processing of video sequences.
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3.1 Integral representation of the LHT: the Radon pro-

jections

Let I(x, y) be an arbitrary function on the {x, y} plane. The RT of I(x, y) is de�ned

as [Deans, 1981]

L(ρ, θ) = R{I} =
+∞∫∫
−∞

I(x′, y′)δ(x′ cos(θ) + y′ sin(θ)− ρ)dx′dy′, (3.1)

and one has a sample of the transform for each (ρ, θ) pair. To obtain the full trans-

form we need to let (ρ, θ) vary so that L can be determined for arbitrary values of

the normal parameters. It is worth noticing that the presence of the Dirac delta

function forces the integration of I(x, y) along a line whose normal form is given

by (2.3): ρ = x cos(θ) + y sin(θ), so a single point (ρ0, θ0) in Radon space is asso-

ciated to a line in original space: ρ0 = x cos(θ0) + y sin(θ0). It is also easy to see

from the de�nition in Equation (3.1) that for the case of a single point image, i.e.

I(x, y) = δ(x− x0, y− y0), direct substitution gives a non-null value for L along the

sinusoidal curve ρ = x0 cos(θ)+ y0 sin(θ). From these particular cases it is clear that

when we deal with a binary image, the Radon Transform includes as a special case

the Linear Hough Transform.

For the Circular Hough Transform (CHT) presented in Section 2.2 it is also

possible to obtain an integral form. If I(x, y) is the original binary image, its CHT

C(x, y,R) will be given by:

C(x, y;R) =

+∞∫∫
−∞

I(x′, y′)δ((x′ − x)2 + (y′ − y)2 −R2)dx′dy′. (3.2)

As an example of this integral transform consider the three circle binary image

of Figure 3.1 in which as the radius parameter R increases the maximum of the

transformation is attained at the center of the di�erent circles in the image.

3.2 Integral representation of the GHT

If we look at the integral representation in Equation (3.2) for the CHT and compare

with the corresponding constraint Equation (2.4), a generalization for an arbitrary

shape satisfying a constraint equation of the form of Equation (2.6) can be given by
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Figure 3.1: CHT of a three circle binary image for di�erent values
of parameter R.
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[Hendriks et al., 2005]

H(x, y; s, θ) =

+∞∫∫
−∞

I(x′, y′)δ(f(x′ − x, y′ − y; s, θ))dx′dy′. (3.3)

Merlin and Farber [Merlin and Farber, 1975] and later Sklansky [Sklansky, 1978]

noted the close connection between the GHT and the template matching algorithm

as shown in the preliminary outlook of Section 2.3. A direct connection to this

issue can be seen by noting that the integral representation of the GHT of a binary

image I(x, y) given in Equation (3.3), corresponds to a correlation whose kernel is

given by the Dirac delta function δ(f(x, y; s, θ)). That is, the GHT corresponds to a

correlation between the image and a template represented by the following constraint

equation

f(x, y; s, θ) = 0, (3.4)

which only di�ers from the original Equation (2.6) in taking the origin as a reference

point. In order to proceed into the optical implementation of the GHT, we consider

a π rotation of the template, whose constraint equation is

fπ(x, y; s, θ) = f(−x,−y; s, θ), (3.5)

and we can rewrite Equation (3.3) as

H(x, y; s, θ) =

+∞∫∫
−∞

I(x′, y′)δ(fπ(x− x′, y − y′; s, θ))dx′dy′, (3.6)

which is exactly in the form of a convolution between the image I(x, y) and the π-

rotated template. As an example consider a simple test binary image of three points

shown in Figure 3.2(a). For illustrative purpose, the triangle whose vertices are these

points is overlaid in Figure 3.2(a-d) as dotted line. It can be clearly seen that for

the kernel in the inset of Figure 3.2(d), corresponding to the π-rotated triangle, the

GHT exhibits a maximum at the center of the dotted triangle, which corresponds

to exact matching with the template. Figure 3.2(b-c) show partial matching cases

corresponding to the π-rotated triangle but 1.5 times bigger and the triangle with

the correct size but incorrect orientation, respectively.

The convolution form in Equation (3.6) is suitable for an optical implementation

since the incoherent systems with which we will work are linear and invariant in

the input intensity thus, by characterizing the response of the system to a point-like

source, we will be able to obtain the overall response.
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3.2 Integral representation of the GHT

Figure 3.2: GHT of a three point binary image using a triangle template.
(a) Three point test image. (b-d) GHT of (a) for the kernel shown in each
inset. The triangle whose vertices are these points has been overlaid for
illustrative purposes as dotted line in �gures (a-d).
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3.3 Shift invariant linear systems in optics

Analysis of optical systems in the space domain [Iizuka, 2008] is carried out consid-

ering the response u(xi, yi) of the system to an input (in our case intensity input)

in the object plane, where (xi, yi) are the coordinates in the image or capture plane

and we will assume unit magni�cation, i.e. we will not take into account the possible

inversion or change in scale (see further details in Appendix A). Consider an intensity

point-like source placed at the origin of the input plane: δ(x, y) (Figure 3.3(a)). The

response function or Point Spread Function (PSF) of the system is given by h(xi, yi),

that is

u(xi, yi) = h(xi, yi). (3.7)

Consider now that the point source is moved from the origin to a point (x0, y0) in

the object plane (Figure 3.3(b)). If the system is shift-invariant the response to this

shifted source will only change its location but not its functional form, so the new

response of the system is

u(xi, yi) = h(xi − x0, yi − y0) (3.8)

(note that this condition does not generally hold for the entire input plane and we

usually work in a small region of the input close to the optical axis, i.e. we work

under the paraxial approximation). Let us �nally consider an spatially extended

source (Figure 3.3) g. This extended source can be regarded as a collection of point

sources with an amplitude for the point at (x0, y0) given by g(x0, y0). The response

to this point source would correspond to

u(xi, yi) = g(x0, y0)h(xi − x0, yi − y0). (3.9)

Considering that the system is linear in the input, the response to the complete

source will be given by

u(xi, yi) =

+∞∫∫
−∞

g(x0, y0)h(xi − x0, yi − y0)dx0dy0, (3.10)

which is exactly in the form of a convolution (∗) between the source g(x, y) and the

PSF h(x, y)

u(xi, yi) = g(xi, yi) ∗ h(xi, yi). (3.11)

Once the PSF of a shift-invariant linear system is known, the response of the system

to an arbitrary source can be obtained through the convolution in Equation (3.11).
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3.3 Shift invariant linear systems in optics

Figure 3.3: Point Spread Function of an Optical System.
(a) Delta input at the origin (b) Shifted input (c) Spatially
extended source (from [Iizuka, 2008]).
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3.3.1 The search for a PSF

At this point, since the GHT for �xed scale and orientation can be expressed as

a convolution, the comparison between Equation (3.11) and Equation (3.6) shows

that that it is possible to achieve an optical implementation of the GHT by tak-

ing h(x, y) = δ(fπ(x, y; s, θ)) since in that case one generates an optical response

u(x, y) = H(x, y; s, θ):

H(x, y; s, θ) = g(x, y) ∗ δ(fπ(x, y; s, θ)). (3.12)

A physically reasonable approximation to the desired PSF can be achieved, for exam-

ple, by means of a severely defocused optical system with a pupil whose transmittance

is di�erent from zero only along the desired template, since in a severely defocused

incoherent system the (intensity) PSF is essentially the geometrical projection of the

pupil onto the output plane (see Appendix A.2.2).

3.4 Incoherent Optical GHT

In order to obtain the desired PSF we propose the setup shown in Figure 3.4(a). The

edge image to be processed is displayed in the object plane O and is illuminated by a

totally (both temporal and spatial) incoherent source. The imaging lens system (L)

is placed at distance d1 from O. The aperture of this system is an opaque mask (M)

with signi�cant light transmission only across a thin curve emulating the desired (π

rotated) edge template. The GHT is obtained at distance dC from L on plane C

which lies beyond the in-focus plane F .

As an example of the working principle, consider Figure 3.5(top) where the GHT

of a three-point image (Figure 3.2(a)) is optically achieved. The triangle whose ver-

tices are these points is overlaid at the object plane while its (in-focus) image is

overlaid at the capture plane; note that the in-focus image is inverted (see Equa-

tions (A.2) and (A.3)) with respect to the object itself. As the capture plane C lies

beyond the in-focus plane F , the geometrical projection of the pupil is also inverted

with respect to the pupil itself, so it does not appear inverted to the in focus object

over which the GHT is to be applied. Then, for Equation (3.12) to be valid we would

need the pupil to represent the π rotated edge template.

Alternatively, we can work with a non-rotated pupil as shown in Figure 3.4(b)

but the GHT is obtained before the in-focus plane as the example for a triangular

pupil shows in Figure 3.5(bottom). An application of this con�guration can be found

in Section 5.1 and its implementation in Section 5.3).

In our experimental setup the O plane is a liquid-crystal display (LCD) illumi-
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Figure 3.4: (a) Optical implementation of the GHT on plane C after in
focus plane. O: object plane; M : rotating binary mask; L: imaging lens
system; F : in-focus plane. (b) Alternative implementation of the GHT on
plane C before in-focus plane F . Note that the pupil represents the desired
template (no rotation).

Figure 3.5: Optical implementation of the GHT of Figure 3.2(a) following the
con�guration of Figure 3.4(a) (top) and the con�guration of Figure 3.4(b) (bot-
tom).
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nated by an array of white LEDs. The imaging system (L) is a doublet formed by

an electrically tunable lens (Optotune EL-10-C1 focal range 80 − 230mm for cur-

rents between 300mA and 10mA) with variable focal length f placed in contact with

a fC = 16mm �xed focal length lens. For an arbitrary focal length f the Gaus-

sian imaging equation [Iizuka, 2008, Goodman, 1996] determines the in-focus plane

position d2(f)
1

d1
+

1

d2(f)
=

1

feff (f)
∼ 1

f
+

1

fC
, (3.13)

where feff (f) is the e�ective focal length of the doublet combination (see for example

[Jenkins and White, 1957]). For the focal length f that veri�es d2(f) = dC , the in-

focus plane F coincides with C. For the capture plane to always lie beyond the

in-focus plane (i.e. to always work under the con�guration of Figure 3.4(a)) we

choose d2(fmax) = dC (which is achieved for the minimal current through the lens)

so that for increasing currents the capture plane still lies beyond2. The e�ective size

of the rotated template on the C-plane increases as d2(f) decreases (i.e. F moves

towards L) so we can control the scale parameter s by varying the focal distance f .

Parameter θ is controlled by mounting the aperture mask M on a rotatory stage

as shown in Figure 3.6(b) (or by using a rotating Dove prism placed in front of

the LCD as in [Steier and Shori, 1986] or by displaying the rotated mask in a high

contrast LCD as will be shown later in Section 4.3.2). The aperture mask M of the

order of 5mm in size was printed as a binary pattern on a glass cover [alternatively

it might be displayed on a high contrast LCD, see Section 4.3.1 and Section 4.3.2].

Images were acquired at �xed distance dC ∼ fC = 16mm with a digital camera

DC310 (Thorlabs), 1024× 768 pixels, 4.7µm pixel size.

3.4.1 Preliminary results

Although the proposed setup might be used for any template of interest (i.e. an

arbitrary template including scale variation and orientation at the same time), in

the next we show the working principle of the proposed method with circles and

triangles.

3.4.1.1 Circle Hough transform

To test the feasibility of our optical approach we started by considering a simple,

symmetric pupil and implemented the CHT [Fernández and Ferrari, 2015]. The

1http://www.optotune.com/products/focus-tunable-lenses/electrical-lens-el-10-30-

c
2alternatively, we might allow the system to operate as in Figure 3.4(b) and take into account

the change in pupil orientation when passing through the focal plane
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3.4 Incoherent Optical GHT

Figure 3.6: Pictures of the experimental setup (a) Lateral view of the setup with
the LCD and its illumination source; (b) Front view of the setup where the rotating
pupil mask M can be clearly seen; (c) detail of the imaging system L and CCD
acquisition camera.
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3. GENERALIZED HOUGH TRANSFORM WITH INCOHERENT LIGHT

analytical expression for this transformation follows Equation (3.2). Figure 3.7(a)

shows an image of three binary circles in which we want to detect a circle of speci�c

radius (and rule out those with di�erent radii) by applying the optical CHT. The

results of transforming the image under CHT for di�erent radii are shown in Figures

3.7(b-d) and represent the actual capture on the camera of the system with no post-

processing. Note the close resemblance with the simulation results in Figure 3.1. It

can also be clearly seen that the CHT exhibits an intensity peak at the center of

the circle whose radius coincides with the radius R of the transformation template,

which in turn can be varied by changing the focal length of the tunable lens, i.e. by

changing the size of the projection of the pupil mask. By conveniently thresholding

the GHT we can separate the center of any circle of radius R (within scaling error,

see Section 3.4.2.2) from the original image, which could be potentially useful for

segmenting (and eventually tracking) the desired contour.

Figure 3.7: Recognition of a circle of given radius R in an image
of three binary circles of radius R1, R2 = 3R1, and R3 = 5R1.
(a) original image; (b-d) transformed image on the plane C (as
captured by the camera, no post-processing) detecting as bright
points the centers of circles in original image with R = R1, R2, and
R3, respectively
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3.4.1.2 Orientation variant detection

We tested our setup with an orientation-dependent template as it is the case of

a triangle. Figure 3.8(a) shows the test image in which the desired template is

to be found (all triangles considered are of the same size just to select a given

orientation). The upper left corner of Figure 3.8(b-e) shows the orientation of the

template (pointing down, up, right and left, respectively) used to detect a triangle

pointing up, down, left or right in the original image. From the symmetry of the

original image the GHT for each orientation is expected to be a rotation of any of

the other. The results obtained in Figure 3.8(b-e) show that this is actually the

case. The reference point of each triangle is a clear bright spot that might be easily

thresholded. So, under the appropriate orientation, the system is capable of detecting

an arbitrary template (within the error in orientation, see Section 3.4.2.2).

3.4.2 Performance study

We will �rstly assess the real-time performance capability of our system. Then we

are going to determine the error in scale and orientation parameters for a detected

peak under an optimal input. Finally, we test the method for a real scene.

3.4.2.1 Real-time execution

A real-time demonstration of scale variation in GHT can be seen over the moving

circles of Visualization: 3Circles, where we illustrated the possibility of varying the

scale parameter and obtaining at the same time the GHT. The bottleneck for the

real-time realization is imposed by the maximum acquisition rate of the camera

used in the setup, which in our case is 30Hz at full resolution (1024 × 768). In

comparison, the execution time for the circle HT implemented on a GPU [Ujaldón

et al., 2008] is 123ms for a 1024 × 1024 image with optimum angle discretization

(i.e. computation of votes at full resolution); thus, a real-time application based

on this computationally implemented HT is limited at best to 8Hz video operation

rate. Then, the proposed optical processor seems to be especially advantageous for

real-time processing of high-speed video sequences.

3.4.2.2 Parameter error

Parameter θ is well de�ned within the precision δθ ∼ 1o of the rotatory stage. On the

other hand, the primary source of error in our setup comes from the possibly incorrect

determination of focal distance f which a�ects the scale parameter s. Following the

geometric optics construction of Appendix A.2.2.1, the scale factor (i.e. the ratio
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3. GENERALIZED HOUGH TRANSFORM WITH INCOHERENT LIGHT

Figure 3.8: Recognition of a triangle in di�erent orienta-
tions. (a) original image; (b-e) transformed image (as cap-
tured by the camera, no post-processing) detecting refer-
ence points of triangles pointing in the up, down, left and
right orientations, respectively. Upper left corner of (b-e)
shows the corresponding pupil mask.
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3.4 Incoherent Optical GHT

between the size of the image of the pupil and its actual size) can be obtained from

Equation (A.21)

s = dC

∣∣∣∣ 1f − 1

d1

∣∣∣∣ , (3.14)

so its relative error results
δs

s
=

∣∣∣∣ d1
d1 − f

∣∣∣∣ δff , (3.15)

e.g., for f = d1
2 the relative error in the scale parameter is twice the relative error

in the focal distance
δf

f
, which in our setup can be kept below 5% according to the

manufacturer.

3.4.2.3 Natural scenes

To test the proposed method in natural images we considered next the circle detection

in Figure 3.9(a). The circle we wanted to detect (a pencil holder viewed from above)

is partially occluded and the background is textured. Over the luminance image

we perform a previous edge enhancement transformation (Sobel operator [Sobel and

Feldman, 1968]) which renders the grayscale image in Figure 3.9(b). In this regard,

as the image itself is not binary, the transformation that we perform corresponds to

a generalized Radon transform [Hendriks et al., 2005]. The result obtained on the

plane C is shown in Figure 3.9(c), where the radius parameter was set to detect the

circle with its center marked by a green arrow. A bright spot marks the center of the

circle and might be easily separated from the image by thresholding in Figure 3.9(c).
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3. GENERALIZED HOUGH TRANSFORM WITH INCOHERENT LIGHT

Figure 3.9: Recognition of a circle in a natural image (a)
original image (partially occluded circle of interest marked
by green arrow); (b) edge enhanced version of the gray scale
image under Sobel operator; (c) GHT acquired on plane C:
detection of the circle of interest (as captured on camera, no
post-processing) with its center marked by the green arrow.
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Chapter 4

Pattern recognition using the

optical generalized Hough

transform

It is expected from a pattern-recognition device to be able to recognize any given

template, regardless of its position in the image, its orientation or its size or scale of

magni�cation [Bone et al., 2006]. By combining the Fourier Transform capability of

a 4f system and convenient geometrical transforms, Casasent and Psaltis [Casasent

and Psaltis, 1976] were able to perform scale and rotation invariant detection in a

coherent optical correlator. However, the result of this Fourier-Mellin correlator is

independent of the form factor of the template, so a square appears to be the same

as a rectangle to this transform.

As in any correlation optics application, the shift-invariance of the system pre-

sented in Chapter 3 allows for parallel processing of all the parts of an image at a

time. However, the system is scale-variant and orientation-variant. So, research ef-

forts should be directed towards the development of multiplexing (spatial, temporal)

strategies to overcome these issues.

The robustness of our method under di�erent perturbations of the input: noise,

low contrast, and degradation of the feature of interest is another key point to validate

its pattern recognition capability. We will so start by considering an ensemble of

di�erent perturbations over synthetic input images in order to study the performance

of the Generalized Hough Transform (GHT).
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4. PATTERN RECOGNITION USING THE OPTICAL GENERALIZED HOUGH TRANSFORM

4.1 Performance under noise, low contrast or image degra-

dation

An intensity peak can be clearly seen at the center of the geometrical feature that

coincides with the template in shape, size and orientation. To test the robustness of

the detection capability of our method [Fernández, 2016b] we simulate noisy inputs at

the object plane considering for example Additive White Gaussian Noise (AWGN) of

null mean (see Figure 4.1). Even under strong noise conditions like in Figure 4.1(c)

(where noise standard deviation is 40% of the maximum value of the signal) the

intensity peak of the transformation can still be clearly seen. This is due to the

incoherent nature of the implementation of the GHT for which noise at the input is

averaged over the entire �eld of view of the image plane.

Besides noise we can also consider how the performance of the method would be

a�ected by a contrast loss in the input. Figure 4.2 shows the e�ect of noise for an

image with a contrast loss of 75% with respect to Figure 4.1(a).

Figure 4.1: (a) Original binary image with no noise
(black=0, white=1); (b) GHT of (a) with annular template;
(c) degraded version of (a) with AWGN of null mean and
σnoise = 0.4; (d) GHT of (c).

Another issue to take into account in the assessment of robustness of the method

is its performance under degradation in the input. We simulated this degradation

by considering "pepper" noise, i.e. with probability p each edge (white) point is

substituted by background (black). In Figure 4.3 the e�ect for p = 0.2 is shown.
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4.1 Performance under noise, low contrast or image degradation

Figure 4.2: (a) Original binary image with no noise
(black=0, grey=0.25); (b) GHT of (a) with annular tem-
plate; (c) degraded version of (a) with AWGN of null mean
and σnoise = 0.4; (d) GHT of (c).

Figure 4.3: (a) Original binary degraded image with p = 0.2
(b) GHT of (a).
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We can give a quantitative assessment of the previous issues by measuring the

sharpness of the peak of GHT. This is done by means of the Peak-to-Correlation

Energy (PCE) of the system [Kumar and Hassebrook, 1990]

PCE =
max(GHT )2∫ +∞

−∞
∫ +∞
−∞ GHT 2(x, y)dxdy

. (4.1)

(alternatively, other indicators of correlation accuracy under matched �ltering can be

found in [Awwal, 2010]). The results for the PCE under di�erent levels of noise in the

input and full contrast are depicted in Figure 4.4. We can see that the performance of

the method is almost invariant for noise levels up to roughly 20% of signal level. For

a contrast loss of 75% (Figure 4.5) the performance is almost invariant for noise up

to 15% of signal level. In Figure 4.6 the result for the performance under degradation

of the input is shown and it can be seen that the performance is almost invariant for

substitution probabilities up to p = 0.5 approximately (similar dependence of PCE

against p holds for contrast loss up to 50%).

The robustness of the peak detection capability under di�erent perturbations

is a key step for its validation as a pattern recognition tool. In the following we

present some pattern recognition applications [Fernández et al., 2015b] and temporal

multiplexing strategies for dynamic scale and orientation- variant detection. For the

sake of simplicity we show scale and orientation changes in separated examples but

of course the strategies can be combined.

4.2 Multiple target recognition

4.2.1 Red blood cells counting

In a �rst series of experiments we show the capability of the proposed system to

achieve multiple target detection. We used an image of red blood cells (RBCs)

shown in Fig. 4.7(a) , with the purpose of obtaining automated cell counting. RBC

counting is an important task [Tomari et al., 2014] since RBCs contain hemoglobin,

which in turn carries oxygen to the body's tissues, so the number of RBCs (per liter

blood) is a measure of how much oxygen the tissues are receiving. As input to our

optical system we generated an edge image (see Figure 4.7(b)) by applying an edge

enhancement operator, e.g. Sobel operator , to the original image (the preprocessing

of the original image to achieve an edge-image is a necessary operation also for

the computational implementation of the Hough transform). Normal RBCs have

minimal anisocytosis, i.e., they have approximately the same size (normal RBCs are

in the range 6.2 − 8.2µm) and deviates slightly from a perfect round appearance.
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4.2 Multiple target recognition

Figure 4.4: PCE against σnoise for full contrast in the input (1000
rounds average)
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Figure 4.5: PCE against σnoise for a 75% contrast loss in the input
(1000 rounds average)

Figure 4.6: PCE against p (1000 rounds average)
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4.2 Multiple target recognition

Thus, for simultaneous detection of multiple RBCs we can utilize a single annular

aperture whose diameter is adapted to the mean diameter of the RBCs under study.

The required diameter of the projection of the pupil can be adjusted with the help

of the Electrically Tunable Lens (ETL).

Figure 4.7(c) shows the optical Hough transform obtained with our setup and

Figure 4.7(d) shows the binarization of the local maxima by using adaptive intensity

thresholding. Since there is one local point-like maximum per cell, from the binarized

image in Figure 4.7(d) it is easy to count cells utilizing standard image tools, e.g. by

labeling the connected regions and counting the number of labels. In our case the

cell counting gives 21±2 units. The relatively large number uncertainty is due to the

fact that some cells are at the borders of the image (and/or only partially included

in the image) so their centers do not fall within the �eld of view of the system.

Figure 4.7: (a) Red blood cells; (b) edge image; (c) optical Hough
transform; (d) binarization of the Hough transform maxima by in-
tensity thresholding.
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4.2.2 Real-time droplet velocimetry in micro�uidics

The main advantage of an optical GHT in comparison with computational ap-

proaches is that it works in real-time (i.e. only limited by the frame rate of the

acquiring camera). Thus, the proposed GHT is in principle a useful tool to study

dynamic processes, e.g. droplets velocimetry in micro�uidics. Figure 4.8(a) is an

excerpt from the video kindly provided by Th. Cubaud which is related to the work

described in [Jose and Cubaud, 2012]. It shows a train of droplets (with a character-

istic diameter 250µm) coming out from a microchannel that is connected to a di-

verging chamber. Droplets are made of a water/glycerol mixture and the continuous

phase is composed of silicone oils. The complete micro�uidic setup and an analy-

sis of the droplets dynamic are described in [Jose and Cubaud, 2012]. Figure 4.8(b)

shows an edge image obtained by applying an edge enhancement operator, e.g. Sobel

operator, to the original image shown in Figure 4.8(a). Figure 4.8(c) (which is an

excerpt from Visualization: Droplets) shows the optical Hough transform obtained

with an annular aperture whose diameter (projected on the C-plane) matches the

droplet diameter. In the same �gure the inset depicts a plot of the mean light inten-

sity (over the area enclosed by a white square) in terms of frame number. The peak

of intensity in the plot indicates the passage of a maximum of the Hough transform

(i.e. the center of a droplet). By obtaining the time delay between peaks we are able

to give an estimation of the change in droplet �ux in the chamber. The �ux varies

between 1 droplet every 23 frames at the beginning to 1 droplet every 13 frames at

the end of the sequence. This roughly twofold increase in particle �ux is in good

agreement with the change in droplet �uid �ow rate from 14 to 30µl/min reported

in [Jose and Cubaud, 2012].

4.3 Temporal multiplexing strategies

We introduce some improvements (see Figure 4.9) over the optical setup originally

presented in Section 3.4. These improvements allow for the continuous variation

over time of the scale and orientation parameters of the template to be matched and

consequently allow for the implementation of e�cient schemes of varying scale or

orientation detection under temporal multiplexing.

4.3.1 Scale variant detection

In the present experiment we controlled the electrical lens with a ramp generator, so

that we generate a continuous change of the template scale. The control of the focal

length of the ETL allows adjusting the scale of the pupil projected on the C-plane,
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Figure 4.8: (a)Droplet chamber; (b)edge-image; (c)optical
Hough transform and intensity peak detection (excerpt cor-
responding to frame No51 from Droplets).
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Figure 4.9: Modi�ed setup in the optical implementation
of the GHT on plane C. O: object plane; SLM : Spatial
Light Modulator; ETL: Electrically Tunable Lens system;
F : in-focus plane.

and the temporal variation of the template scale can be used to follow the evolution

of a dynamic process, or equivalently, to determine the relative size of several targets

at a �xed time.

In order to illustrate this application, we performed a series of experiments with

an image of a cell-culture (bacteria) in presence of di�erent antibiotics in a Petri

dish. Several 6mm �lter paper disks impregnated with a known concentration of

di�erent antimicrobial compounds are placed in the cell-culture. The purpose of

the procedure called Kirby-Bauer disk di�usion susceptibility test1 is to determine

the sensitivity of bacteria to various antimicrobials by measuring the radius of the

inhibition disks generated around the impregnated paper disks. The measure of the

di�erent radii is usually done manually.

The purpose of our experiment is to achieve an automated determination of

the diameters of the di�erent di�usion disks using the GHT with an annular pupil.

Figure 4.10(a) shows the original image of the Petri dish with the cell-culture and

the impregnated paper disks. Figure 4.10(b) shows the corresponding edge image

(generated by Canny operator [Canny, 1986]) which is displayed in the LCD placed

in the O-plane of our experimental setup. Figure 4.10(c) shows the GHT for the

minimum radius considered, that is the paper disk radius. In the inset, the PSF

(whose radius equals the minimum radius, i.e. the radius of the paper disks) is

depicted. Bright spots in Figure 4.10(c) identify the centers of all the paper disks.

As the pupil radius varies with time, one obtains a maximum of the Hough transform

1http://www.microbelibrary.org/component/resource/laboratory-test/3189-kirby-

bauer-disk-diffusion-susceptibility-test-protocol
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at the center of the culture whose radius matches the radius of the PSF at that time.

Figure 4.10(d) shows the result for the biggest inhibition disk (in the inset, PSF with

the corresponding radius). As this match corresponds to a PSF four times bigger

in radius than the minimum, we inferred that the culture has a 24−mm inhibition

disk. In this way, di�erent measures over a given image are codi�ed in the time

sequence of the experiment (Visualization: Disk Di�usion), i.e. we achieve scale

variant detection through temporal multiplexing.

4.3.2 Orientation variant detection

We can also vary the orientation of the template in order to obtain orientation variant

detection as a function of time. This is achieved by displaying a video sequence (with

a di�erent orientation of the target in each frame) on the LCD which acts as pupil

in the setup of Figure 4.9.

To illustrate this application we consider a static image of 3 unicellular organisms

called diatoms, of nearly triangular shape and similar size but di�erent orientation

(Fig. 4.11(a)1). Figure 4.11(b) shows the result of applying Sobel operator to gen-

erate the edge image. The scale parameter is set to match the size of any of the

diatoms and we vary the orientation of the template in the di�erent frames of a video

sequence. The inset of Figure 4.11(c) shows the PSF of the system for a given orien-

tation, which matches the diatom in the upper right corner of Figure 4.11(a). The

video in Visualization: Diatoms includes a temporal sequence covering the matching

of every diatom of the original image. The matching orientations give a bright spot

at the center of the corresponding object in di�erent frames of the sequence. In this

way, rotation-variant detection can be achieved by extracting the di�erent matches

from the video.

Through the previous series of experiments, it can be clearly seen the applicability

of the optical generalized Hough transform in pattern recognition tasks. By temporal

multiplexing, we are able to achieve scale and orientation changes and we can extract

the matching results for di�erent parameters from a video sequence which is only

limited by the frame rate of the display and capturing devices.

1http://ancientpoint.com/imgs/a/g/c/i/j/3_x_early_diatom_microscope_slides_4_lgw.

jpg
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Figure 4.10: (a) Disk di�usion original image; (b) edge-image; (c-d) optical Hough
transform for the minimum and maximum radius in the image (excerpts from Visu-
alization: Disk Di�usion).
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Figure 4.11: (a) Diatoms' original image; (b) edge-image;
(c) optical Hough transform for a given orientation of the
pupil (excerpt from Visualization: Diatoms), detecting the
center of the diatom in the upper right corner of (a).
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Chapter 5

Image segmentation by nonlinear

�ltering

The identi�cation and extraction (i.e. segmentation) of geometrical features is crucial

in many areas such as computer vision, microscopy, medical imaging, automatic

defect inspection and surveillance applications. Segmentation procedure is often

preceded by an image contouring stage, i.e. the identi�cation of edges that serve as

boundaries which delimit regions of the image with di�erent properties (e.g. levels

of gray, textures or colors). This can be performed, for example, by the use of

simple edge detection algorithms (e.g. Canny, Sobel [Gonzalez and Woods, 2002]) or

variational methods [Mitiche and Ayed, 2010] among which active contours are one

of the most widely used [Chan and Vese, 2001, Blake and Isard, 2012].

In order to accelerate time of processing, several optical approaches have been

proposed, which include the opto-electronical implementation of active contours

[Ambs et al., 2004], high-pass �ltering of images using coherent optical processors

(see Section 1.2.1.1) [Situ et al., 2009, Shih et al., 2001, Yelleswarapu et al., 2006]

and contouring by the use of incoherent optical processors (see 1.2.2.1) [Fernández

et al., 2011, Flores et al., 2010]. For the separation of a speci�c feature from the

edge image, a classi�cation scheme may follow. For example, active contours have

been modi�ed to take into account a stopping condition over a speci�c shape [Chen

et al., 2002].

Alternatively, mapping geometrical features to points in a parameter space pro-

vides a good means of classifying and extracting a given feature. As we have seen, the

Linear Hough Transform (LHT) has proven to be an e�cient technique for pattern

recognition on edge images but for the �nal extraction/enhancement of a geometrical

feature of interest, the inverse LHT has to be implemented [Casasent and Krishna-

puram, 1987, McKenzie and Protheroe, 1990]. That is, peaks in the transformation
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need to be mapped back to image space however this peaks represent the most voted

parameter combinations but not the pixels that gave rise to them.

For the inversion of the LHT, an algorithm that is capable of recovering those

pixels of a grayscale image which gave rise to the highest peaks in LHT space has

been proposed [Kesidis and Papamarkos, 1999]. In the closely related Radon Trans-

form (RT) (see Section 2.1.1), the inverse transformation is implemented in order to

recover an image from its projections along di�erent directions in the plane. This is a

common operation, based on the Fourier Slice theorem, which has been successfully

applied, in particular in medical imaging. In [Nishimura et al., 1978] an inversion

method for the RT using coherent light is presented.

In the next we will present the optical extraction of a geometrical feature based on

the nonlinear �ltering of the Generalized Hough Transform (GHT) [Fernández et al.,

2016, Fernández, 2016a]. We start by considering the theory behind the method

along with an assessment of the robustness of the proposal considering synthetic

images with noise, contrast degradation and overlapping. Finally, the experimental

setup and the results obtained are presented.

5.1 Segmentation by nonlinear �lter: theory

5.1.1 Convolution inverse

Let us start by considering the convolution form of the GHT given by Equation (3.12)

H(x, y; s, θ) = I(x, y) ∗ T (π)(x, y; s, θ) (5.1)

where the input to the system is given by I(x, y) and the Point Spread Function

(PSF) by T (π)(x, y; s, θ) = δ(fπ(x, y; s, θ)). As pointed out in Section 3.3.1, a good

approximation to the desired PSF is achieved under severe defocus (i.e. a system

where the dominant aberration is defocus, see Appendix A) where the PSF essentially

corresponds to the normalized geometrical projection of the (rotated) pupil onto the

output plane. The convolution kernel associated to the projected pupil may be given

by [Bracewell, 2004]

T (x, y; s, θ) =
1

`(s)τ
rect (f(x, y; s, θ)) , (5.2)

which represents a narrow strip of width τ around the contour of the template of

length `(s) de�ned by Equation (3.4). This unit-area response approaches δ(f(x, y; s, θ))

in the limit τ → 0 and when rotated through π serves as PSF in Equation (5.1).

A schematic representation of the optical system implementing the GHT is given
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Figure 5.1: Optical setup for GHT and segmentation. f is the lens
focal length; I is the edge enhanced binary image at the object
plane; Tk is the pupil and I ′ is the output image at the in-focus
plane. Iz is the GHT obtained at an intermediate plane z.

in Figure 5.1. The edge-enhanced binary image I to be processed can be considered

as the sum of di�erent unit intensity features Ti (placed at reference points (xi, yi)

), among which the pattern of interest Tk -of given orientation and scale and located

around reference point (xk, yk) - can be found

I = Tk(x− xk, y − yk) +
∑
i 6=k

Ti(x− xi, y − yi) (5.3)

(where for simplicity we have consider only one copy of the pattern of interest, but

the generalization to an arbitrary number of copies is straightforward). Aside from

magni�cation and inversion, geometric optics predicts that at the in-focus plane (at

distance d2 from the lens system, which veri�es d−11 + d−12 = f−1) we will essentially

recover -regardless of the selected pupil- the original image I (see Appendix A)

I ′ = I. (5.4)

If the pupil of the imaging system resembles Tk one obtains at an intermediate plane

between the lens and the in-focus plane (z < d2) the GHT given by Equation (5.1)

Iz = I ∗ T (π)
k (5.5)

with a scale factor for the GHT given by s = 1 − z
d2

in accordance with Equa-

tion (3.14). Between the intermediate plane and the in-focus plane a linear shift-

invariant transformation holds, so the image I ′ at the in-focus plane can be given by
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5. IMAGE SEGMENTATION BY NONLINEAR FILTERING

the convolution of Iz with an operator (A) to be determined

I ′ = Iz ∗A. (5.6)

By means of equation Equation (5.5) the previous expression can be rewritten as

I ′ =
(
I ∗ T (π)

k

)
∗A. (5.7)

From Equation (5.4), it is easy to see that operator A needs to satisfy

T
(π)
k ∗A = δ. (5.8)

Consider now T
(π)
k

(−1) the convolution inverse element of T (π)
k , which satis�es

T
(π)
k ∗ T (π)

k
(−1) = δ. (5.9)

and which is commonly found -in its Fourier domain form- in the inverse �lter theory

of image restoration [Gonzalez and Woods, 2002, Goodman, 1996]. Operator A can

so be identi�ed with the convolution inverse element of T (π)
k

A = T
(π)
k

(−1), (5.10)

and I ′ in Equation (5.6) now reads

I ′ = Iz ∗ T (π)
k

(−1). (5.11)

Between the GHT plane and the in-focus plane, convolution with T (π)
k

(−1) acts as an

inverse GHT that allows to recover the original image.

5.1.2 Thresholding

Let us now recall the GHT and write it in its explicit form, which results from the

substitution of Equation (5.3) into Equation (5.5):

Iz = Tk(x− xk, y − yk) ∗ T
(π)
k +

∑
i 6=k

Ti(x− xi, y − yi) ∗ T (π)
k , (5.12)

and consider the superposition of a mask across the GHT plane in order to �lter the

region around the maximum of the transformation. According to the normalization

of the PSF as given by Equation (5.2), this maximum of the GHT equals the unit

intensity and will be located at reference point (xk, yk) (the region around this max-

imum is determined by those points whose GHT value is above a certain intensity
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threshold). Let Ithz be the result of thresholding Iz, so from Eq. Equation (5.12) we

keep only the term corresponding to (xk, yk) and its vicinity:

Ithz = Tk(x− xk, y − yk) ∗ T
(π)
k . (5.13)

Considering Ithz instead of Iz , Equation (5.11) results in

I ′th = Tk(x− xk, y − yk) ∗ T
(π)
k ∗ T (π)

k
(−1), (5.14)

and using the inverse de�ned in Equation (5.9), the previous equation simpli�es to

I ′th = Tk(x− xk, y − yk). (5.15)

Thus, the image I ′th at the in-focus plane only retains from the original image the

template we wish to segment. As an illustrative case of the proposed segmentation

method, consider the synthetic example of Figure 5.2. The feature of interest to be

segmented is the circle in Figure 5.2(a). Figure 5.2(b) is the result of the GHT of

Figure 5.2(a), using an annular pupil resembling the target. Figure 5.2(c) corresponds

to thresholding of Figure 5.2(b), and �nally Figure 5.2(d) shows the result of inverse

�ltering of Figure 5.2(c).

5.2 Segmentation under noise, contrast loss and overlap-

ping

In order to provide an assessment of the robustness of our proposal we study how

the performance of our method would be a�ected by

(i) presence of noise in the input,

(ii) low contrast of the binary image,

(iii) overlapping between the feature of interest and other features

To address Item (i) we consider the degradation of an ideal synthetic image [see

Figure 5.2(a)] with strong additive white Gaussian noise of null mean and standard

deviation of noise σnoise = 100 [Figure 5.3(a1)] with the ideal binary image between

0 (black) and 255 (white). We then perform the GHT of the noisy image using the

circle in Figure 5.2(a) as a template and obtain the result of Figure 5.3(a2) where is

worth noticing that original noise has been averaged over the entire �eld of view (as

might then be expected in a system linear in intensity). Finally, after thresholding
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5. IMAGE SEGMENTATION BY NONLINEAR FILTERING

Figure 5.2: Segmentation method. (a) Edge-enhanced binary image I (the
feature of interest is the circle); (b) GHT of (a); (c) Thresholding of (b); (d)
result obtained after inverse �ltering of (c).
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5.3 Experimental results

and inverse �ltering, the segmented circle is obtained (Figure 5.3(a3)). If we normal-

ize this result by the highest intensity and compare it to the expected normalized

template we obtain a Root Mean Square Error (RMSE) of 0.0457, i.e., even under

strong noise the system is capable of segmenting a �gure that only di�ers in roughly

a 5% from the expected one. We also perform the same study for di�erent levels of

noise and an ensemble of 100 sample realizations of the noise process (Figure 5.4).

The results show that the performance is almost independent of the degree of noise

in the image due to the averaging -under the GHT- of noise over the entire �eld of

view. The selection of a maximum even under great amount of noise is a robust

operation (see the bright spot in Figure 5.3(a2)).

We also test the robustness of the method against a contrast loss in the original

image (Item (ii)). Figure 5.3(b1) shows a version of Figure 5.2(a) where the intensity

of edges has been reduced in 70%. In spite of this reduction, the RMSE for the

reconstructed circle in Figure 5.3(b3) is still around 5%.

Finally we test the robustness against overlapping of the feature of interest with

other features in synthetic images. We address Item (iii) in two parts: �rst we con-

sider the overlapping with features of di�erent shape and same size and then we

consider the same feature with di�erent size. Figure 5.3(c1) shows the feature of in-

terest (circle) overlapped by a square of the same size whose center is 10 pixels away

from the circle's center. The reconstruction of the circle (Fig 3(c3)) is accomplished

with RMSE=0.0503, in agreement with the expected template. We then consider

a circle di�ering in size from the template (1.5 times larger) and whose center is

separated in d = 20 pixels from the feature of interest's center. The result of the

segmentation corresponds to RMSE=0.0501. It is also interesting to see the perfor-

mance of the method under di�erent degrees of overlapping. Figure 5.5 shows the

results of varying distance (d) between centers from the case where centers coincide

to circles with no overlap Even when d coincides with the di�erence of circles' radii

and maximum overlapping is attained, reconstruction error is still around 5%.

From the above results it can be clearly seen that our segmentation method is

robust against di�erent error sources.

5.3 Experimental results

We experimentally validate the procedure of segmentation previously presented using

the setup depicted in Figure 5.6. The template we are looking for is set as pupil (P)

of the lens system of our setup and it consists of a binary pattern printed on a

glass cover (note that since the GHT is obtained before the in-focus plane, we are

in the situation depicted in Figure 3.4(b) and the pupil represents the template
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5.3 Experimental results

Figure 5.4: Performance under Gaussian additive noise of null mean.
RMSE (averaged over 100 realizations) for di�erent values of σnoise
(standard deviation of noise) showing an almost uniform perfor-
mance from weak (σnoise = 0, RMSE=0.0446) to strong noise
(σnoise = 100, RMSE=0.0459).
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5. IMAGE SEGMENTATION BY NONLINEAR FILTERING

Figure 5.5: Performance under overlapping of the feature of interest
(circle) and a 1.5 times bigger circle. RMSE for di�erent degrees
of overlapping distance between centers in pixel units (d) is shown
and attains a maximum of RMSE=0.0514 when d coincides with
the di�erence of the radii of the circles (red border inset).
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5.3 Experimental results

without rotation in π). The lens system is an electrically tunable lens (ETL) with

controllable focal length in the range 210 − 80mm (same as in Section 3.4) which

allows to change the scale of the GHT. By means of a beam splitter (BS) the same

GHT is simultaneously imaging at C1 and LCD planes (note that equal length in

each path needs to be achieved). In C1 plane the sensor of a CCD camera (Thorlabs

DC310, 1024x768 pixels)is placed and used to acquire a digital image. In order to

�lter the maxima of the GHT, a binary mask is displayed in the liquid crystal display

(LCD)(Holoeye LC2002, 600x800 pixels).

From the image acquired at C1 we can easily detect the maxima. After a simple

step of spatial calibration between the camera and the LCD (see Appendix B), we

set unit transmittance for those pixels in the LCD which correspond in the camera

C1 to intensity values above a certain threshold (typically 90-95% of Imax) and zero

for the rest. According to Equation (5.15) this would let us capture at C2 only the

information corresponding to the template we are looking for in the original image.

At object plane O a binary transmittance image is displayed that contains the shape

we were looking for -along with other shapes- and it is illuminated with green (in

order to maximize the contrast in the LCD) incoherent light (illumination is obtained

from an LCD projector, so a rugged dispersive material was placed along with the

binary image in order to enhance spatial incoherence of the source). The in-focus

image at plane C2 is captured by means of a digital camera (Pentax K − χ) whose
sensor is located at C2.

5.3.1 Segmentation by shape

In the �rst experiment series we test the capability of our system to di�erentiate be-

tween patterns that are di�erent in shape and similar in size. Orientation variants of

the same shape can be thought as di�erent shapes of the same size so we concentrate

in a particular case of detection among simple curves: a circle, a square, and a tri-

angle. Figure 5.7(c0) shows the image to be processed, as captured at C2 under full

transmittance of the LCD (i.e., before �ltering is implemented). Figures 5.7(a1−3)

show the GHT (images as captured by the camera at C1) using a circle, square and

triangle as template pupil, respectively. After thresholding the GHT captured at C1

and displaying the corresponding binary mask on the LCD (Figs. 5.7(b1−3)), one

obtains the �ltered results at C2 plane. The results are depicted in Figs. 5.7(c1−3)

and show that it is possible to extract from the original image those regions matching

the template used for the GHT (circle, square and triangle, respectively).
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5. IMAGE SEGMENTATION BY NONLINEAR FILTERING

Figure 5.6: Experimental setup for optical GHT with nonlinear �ltering. O:
object plane; P : pupil; ETL: electrically tunable lens; BS: beam-splitter;
LCD: liquid crystal display; C1,2: capture planes. Transmittance (T ) of the
pixels in the LCD is set to one for those corresponding to intensity I above
threshold It in C1.

5.3.2 Segmentation by size

We can also consider the segmentation of a pattern of certain size out of a scene

that contains replicas which di�er in scale from it. Figure 5.8(a) shows the test

image as captured at C2 under full transmittance of LCD (i.e., before the �ltering is

implemented). It consists of a triangular shape with a given orientation but in three

di�erent sizes. Using a triangle as template, we adjust the scale of the GHT (by

controlling the ETL) to match the medium size triangle, as shown in Figure 5.8(b)

(as captured at C1). Figure 5.8(d), corresponding to the capture after �ltering, shows

that our system is capable of extracting a given pattern by size.

78



5.3 Experimental results

Figure 5.7: Feature extraction by shape. (c0) Capture at image plane C2 under
full transmittance of LCD; (a1−3) GHT (as obtained on the camera C1) for pupil
resembling a circle, square and triangle, respectively (lower left inset). (b1−3) Binary
masks displayed on the LCD. (c1−3) Capture at the image plane C2 after �ltering
(same contrast enhancement operation as in (c0)).
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5. IMAGE SEGMENTATION BY NONLINEAR FILTERING

Figure 5.8: Feature extraction by size. (a) Capture on the image
plane (C2) under full transmittance (contrast enhanced); b) GHT
as obtained by the camera at C1, lower left corner showing the pupil
template (note the inversion in the GHT of the small triangle with
respect to the large one); (c) binary mask at LCD (d) Capture at
the image plane (C2) after �ltering (same contrast enhancement
operation as in (a)).
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Chapter 6

Conclusions

In the present thesis we proposed an optical implementation of the GHT using a setup

working under incoherent illumination, which can handle the real-time detection of a

given shape in static binary images or video sequences. Unlike computer-based GHT,

in principle, our system has no restriction in execution time due to the resolution of

the images or frame rate of the videos to be processed.

We demonstrated through a series of experiments the applicability of the optical

GHT in pattern recognition tasks. As we worked on a linear invariant system the re-

sulting optical image processing is inherently parallel which resulted extremely useful

in the simultaneous detection of targets of a given scale and orientation, which makes

the proposed optical implementation of the GHT suitable for real-time applications.

We also assessed the robustness of the detection capability of the method against

noise and contrast loss.

By temporal multiplexing, we were able to achieve scale and orientation changes

and extract the matching results for di�erent parameters from a video sequence

that it is only limited by the frame rate of the display and capturing devices. The

variations in scale and orientation were achieved by adjusting the focal setting and

the angle of the template of our system, respectively.

Through another series of experiments we also demonstrated the capability of the

proposed system (with a suitable modi�cation) to perform image segmentation. By

applying nonlinear �ltering over the generalized optical HT we were able to segment

a given pattern from an edge-enhanced binary scene containing di�erent shapes as

well as copies of the pattern di�ering in size. The segmentation scheme resulted

robust against the presence of noise in the input, low contrast of the binary image,

and possible overlapping between the feature of interest and other features in the

image.
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6. CONCLUSIONS

6.1 Future lines of work

The optical implementation of the GHT o�ers the possibility for di�erent direct

applications or improvements of the existing setups for pattern recognition.

6.1.1 Pattern recognition in scattering media

Based on the robustness of the GHT under noise (see ??) it is feasible to consider

the detection of given targets in noisy or turbid environments, e.g. scattering media

where, for example, polarization-di�erence imaging has proven useful [Tyo et al.,

2006, Tyo et al., 1996].

6.1.2 Pattern recognition of phase objects

An unique feature (as compared with purely digital) of optical processing is the

possibility of operating on the light wave previous to digital capture. In many mi-

croscopy applications the specimens of interest only modify the phase of light and

di�erent techniques like Di�erential Interference Constrast [Chen et al., 2013, Trat-

tner et al., 2014], Di�erential Phase Constrast [Mehta and Sheppard, 2009, Tian

et al., 2014] or Transport of Intensity Equation [Martinez-Carranza et al., 2015, Zuo

et al., 2015] need to be applied in order to visualize and retrieve the phase pertur-

bation. The combination of the previous techniques with GHT would expand the

horizon of pattern recognition into phase objects.

6.1.3 All-optical processing

An interesting future line of work would be exploring the implementation of the

segmentation method in an all-optical architecture, replacing the digital thresholding

with the use of a nonlinear optical material like Bacteriorhodopsin [Thoma et al.,

1991, Downie, 1995]. This may allow us to reduce the bulk of the segmentation device

to a single imaging and thresholding plane where the nonlinear material would be

placed.

6.1.4 Space multiplexing and template-variant detection

Parallel feature extraction has been explored in [Shin and Jang, 2000, Mori and Ohba,

1994]. An interesting future line of work would be considering space multiplexed scale

and orientation-invariant pattern recognition by means of a mask (template matrix

with variable scale and orientation) in front of a micro-lens array. Each elemental

image would correspond to the GHT for di�erent combinations of orientation and

scale of the same or di�erent templates, i.e. we exchange the time-multiplexing where
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the di�erent combinations are recorded in a video sequence for a single-shot spatially

multiplexed transformation at lower resolution.
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Appendix A

Defocus aberration in geometric

optics.

Let us start by considering an object like the arrow in Figure A.1 whose intensity

distribution in the object plane is given by g(xo, yo). An ideal image of this object

is to be obtained through a lens of focal length f at an image plane conjugated with

the object plane, i.e. zo and zi satisfy the Gaussian imaging Equation (3.13):

1

zo
+

1

zi
=

1

f
. (A.1)

In this ideal case we obtain at the image plane a scaled replica of the object's intensity

distribution g(x, y)

u(xi, yi) =

(
1

M

)2

g
( xi
M
,
yi
M

)
(A.2)

where the lateral magni�cation factor M is given by

M = − zi
zo
. (A.3)

From now on we will simply absorb the scale change and note by g(xi, yi) the object's

intensity distribution as seen in the image plane so Equation (A.2) reads

u(xi, yi) = g(xi, yi), (A.4)

which compared with the convolution form of the response of a shift-invariant linear

system Equation (3.11)

u(xi, yi) = g(xi, yi) ∗ h(xi, yi), (A.5)
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A. DEFOCUS ABERRATION IN GEOMETRIC OPTICS.

shows that the (normalized) intensity PSF h(xi, yi) of the ideal optical system cor-

responds to a Dirac delta function δ(xi, yi). Thus, the Fourier transform of the PSF

is constant and equal to unity at all spatial frequencies. In this way, all spatial fre-

quencies of the original object would be reproduced with the same weight and any

detail of the object clearly imaged.

Figure A.1: Ideal image formation for object and image planes con-
jugated through Gauss imaging equation.

A.1 Optical Transfer Function

In order to proceed into the non ideal cases let us consider the Fourier transform (F)
of (A.5)

F(u(xi, yi)) = F(g(xi, yi) ∗ h(xi, yi)) (A.6)

which by means of the convolution theorem [Goodman, 1996] can be written as:

F{u(xi, yi)} = F{g(xi, yi)}F{h(xi, yi)}, (A.7)

where each Fourier transform is a function of the frequency pair (fX , fY ). De�ning

U/G/H(fX , fY ) = F{u/g/h(xi, yi)}, Equation (A.7) takes this form

U(fX , fY ) = G(fX , fY )H(fX , fY ) (A.8)
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A.1 Optical Transfer Function

whereH(fX , fY ) is the Optical Transfer Function (OTF). As a very simple case, from

the Fourier transform of Equation (A.4) we can identify H(fX , fY ) = 1 which is the

Geometrical OTF (GOTF) Hg(fX , fY ) for ideal imaging (see [Mahajan and Díaz,

2016] and references therein). In image formation under geometrical ideal conditions

we are not taking into account the di�ractive e�ects due to the �nite aperture of the

lens.

If we instead consider a di�raction-limited optical system (i.e. a system free

from aberrations under Gauss imaging condition) the ideal image (scaled replica of

the object) is convolved with the Fraunhofer di�raction pattern of the lens pupil

[Goodman, 1996]. The smoothing operation in the image formation process will be

re�ected in the loss of details of the object which can be much easily analyzed in the

frequency domain of the system by means of the Di�raction OTF (DOTF).

The DOTF for an incoherent, di�raction-limited system is given by the normal-

ized autocorrelation of the Pupil Function P (unity inside the aperture of the lens,

zero outside)

Hd(fX , fY ) =

+∞∫∫
−∞

P (ξ, η)P (ξ − λzifX , η − λzifY )dξdη

+∞∫∫
−∞

P (ξ, η)dξdη

. (A.9)

The DOTF for a given frequency (fX , fY ) can also be interpreted as the fractional

area of overlap of two pupils whose centers are located at (0, 0) and (λzifX , λzifY ),

respectively. For a circular pupil of radius R we can exploit the revolution symmetry

of the system and work with the frequency radial distance ρ =
√
f2X + f2Y .

As it can be clearly seen in Figure A.2 there exists a cuto� frequency ρco (absent

in the geometrical case) satisfying ρcoλzi = 2R (limit case of non-zero overlapping)

above which Hd(ρ) vanishes:
ρco =

2R

λzi
, (A.10)

which represents the maximum resolvable spatial frequency in the output image

under incoherent illumination. For ρ ≤ ρco, the radially symmetric DOTF satis�es

[Goodman, 1996]:

Hd(ρ) =
2

π

arccos( ρ

ρco

)
− ρ

ρco

√
1−

(
ρ

ρco

)2
 . (A.11)

The dependence of Hd with normalized frequency ρ
ρco

is depicted in black in Fig.

A.4.
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Figure A.2: Area of overlap (shaded) of two displaced cir-
cles.

A.2 Defocus aberration

A.2.1 Aberrated DOTF

Let us now treat with a system subject to a wave aberration by considering a phase

error 2π
λ W (x, y) introduced in the aperture plane by means of an e�ective path-length

error function W (x, y) (see [Mahajan, 1998, Mahajan, 2011] for further details). We

can then de�ne a generalized pupil function P [Goodman, 1996]:

P(x, y) = P (x, y)exp

(
j
2π

λ
W (x, y)

)
(A.12)

which will give rise to a DOTF given by

Hd(fX , fY ) =

+∞∫∫
−∞
P(ξ, η)P(ξ − λzifX , η − λzifY )∗dξdη

+∞∫∫
−∞
|P(ξ, η)|2 dξdη

(A.13)

which is a generalization of (A.9) for phase variation in the pupil.

For a defocus aberration, which is introduced when the image is observed in an

image plane other than that conjugated to the object plane, W (x, y) takes the form:

W (r) =Wm

( r
R

)2
, (A.14)

where Wm is the maximum path-length error (attained at the edge of the aperture
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A.2 Defocus aberration

r = R)

Wm =
1

2

∣∣∣∣ 1zi − 1

za

∣∣∣∣R2, (A.15)

and za (Fig. A.3) is conjugated to zo through the Gaussian imaging equation (3.13):

1

zo
+

1

za
=

1

f
. (A.16)

Considering the form of (A.14) in (A.12) and then substituting the generalized pupil

P in (A.13), the results of Hd(ρ) for di�erent values of Wm
λ are the ones depicted in

Fig. A.4.

Figure A.3: Geometrical PSF for defocus aberration.

A.2.2 Aberrated GOTF

On the other hand, defocus also a�ects the geometrical OTF (GOTF). The response

for a given point of the object corresponds to the projection of the pupil on the

imaging plane, which for a circular pupil is a uniformly illuminated disk of radius

rg. The radius of this disk can be determined following the construction of Fig. A.3

(for similar construction and details see [Alonso et al., 2015] and references therein).

For a point in the object plane we obtain a circle of radius rg in the imaging plane
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whenever zf 6= zo. Similarity between triangles gives:

rg
zi − za

=
R

za
, (A.17)

which can be rearranged as

rg = R

∣∣∣∣zi − zaza

∣∣∣∣ = Rzi

∣∣∣∣ 1za − 1

zi

∣∣∣∣ , (A.18)

where we include the case zi < za by taking the absolute value.

A.2.2.1 Blurring radius for the optical GHT

Alternatively to (A.18) we can equate the left hand sides of (A.1) and (A.16)

1

zo
+

1

za
=

1

zf
+

1

zi
. (A.19)

Substituting in (A.18) we �nally obtain

rg = Rzi

∣∣∣∣ 1zf − 1

zo

∣∣∣∣ , (A.20)

which according to the parameters of the optical implementation of the GHT (Fig.

3.4) takes the form

rg = RdC

∣∣∣∣ 1f − 1

d1

∣∣∣∣ . (A.21)

Returning to (A.18), we can compare now the geometric radius with the maxi-

mum path-length error (A.15), resulting by the use of (A.10) in

rg = 4
Wm

λ

1

ρco
. (A.22)

The corresponding (normalized) intensity PSF associated to this blurring disk is

given by:

hg(ri) =
1

πr2g
circ

(
ri
rg

)
, (A.23)

where the circle function is given by:

circ

(
ri
rg

)
=


1, ri =

√
x2i + y2i ≤ rg

0, ri > rg

(A.24)
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A.2 Defocus aberration

The GOTF is so given by the Fourier transform of (A.23):

Hg(ρ) = F{hg(ri)} =
2J1

(
8πWm

λ
ρ
ρco

)
8πWm

λ
ρ
ρco

, (A.25)

where J1(.) is the �rst-order Bessel function of the �rst kind and we made use of

(A.22). Comparison between the di�ractive and geometric OTFs is shown in the

inset of Fig. A.4 where is clear that better agreement is achieved for increasing

blurring degree.

Figure A.4: Modulation Transfer Function (MTF=|OTF|) for cir-
cular pupil against defocus for wm/λ = 0, 0.5, 1, 2. In the inset,
the cases wm/λ = 2, 10 and the comparison against the geometric
optics aproximation.

According to the comparison in [Mahajan and Díaz, 2016] there is a threshold

value Wm
λ ∼ 1.4 above which GOTF di�ers from the corresponding DOTF within

5% for the normalized frequency in the range 0 ≤ ρ
ρco

< 0.11. Since for our system

R = 6mm, λ ≈ 550nm and zi = dC ∼ 16mm: ρco ≈ 1400lines/mm . However, the

�nite size p of the pixel of the capture system imposes an e�ective cuto� frequency

ρeff = 1
p which for a pixel size of 4.7µm gives ρeff ≈ 200lines/mm. That is, our

e�ective range of normalized frequencies of interest lies below ρeff
ρco
≈ 0.14 so the

approximation of the response of the system by the geometric PSF is good for high
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blurring.
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Appendix B

A�ne transformation.

For the calibration between the camera and the LCD in 5.3 we need to consider the

geometric transformation [Gonzalez et al., 2009] between image pixels in each device.

Let (x, y) be the coordinate points in the �rst image and (x′, y′) in the second one.

The transformation of the coordinates can be expressed as

(x′, y′) = T{(x, y)} (B.1)

A common spatial transformation is the so called a�ne transform (Fig. B.1) which

preserves parallelism, ratio of areas and ratio of lengths on collinear or parallel lines

(e.g. midpoints).

Figure B.1: Examples of a�ne transformations over a
square: shear, rotation and scaling.
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B. AFFINE TRANSFORMATION.

The a�ne transformation equation can be written in matrix form as x′

y′

1

 = T

 x

y

1

 ,T =

 t11 t12 t13

t21 t22 t23

0 0 1

 . (B.2)

For the special case of scale change, matrix T takes the form

Tscale =

 sx 0 0

0 sy 0

0 0 1

 , (B.3)

whereas for a translation the matrix reads

Ttranslation =

 0 0 δx

0 0 δy

0 0 1

 . (B.4)

The combination of these transformations can be put in matrix form considering for

the transformation matrix the product of (B.3) and (B.4) x′

y′

1

 =

 sx 0 δx

0 sy δy

0 0 1


 x

y

1

 . (B.5)

Assuming this type of transformation between the displays, {sx, sy, δx, δy} need to be
determined. Let us start by considering the correspondence [Hartley and Zisserman,

2003] between coordinates (xi, yi) and (x′i, y
′
i) of a given point i known to be the same

in each display (e.g. a maximum in the GHT in the camera and full transmittance

in the LCD) and rewrite (B.5) as

(
x′i
y′i

)
=

(
xi 0 1 0

0 yi 0 1

)
sx

sy

δx

δy

 . (B.6)
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For (at least) n = 2 correspondences, (B.7) reads
x′1
y′1
x′2
y′2

 =


x1 0 1 0

0 y1 0 1

x2 0 1 0

0 y2 0 1




sx

sy

δx

δy

 , (B.7)

and {sx, sy, δx, δy} can be found by inversion of the previous system. These param-

eters give the a�ne transformation that needs to be applied to every image in the

�rst display to be correctly shown in the second, in particular to the maximum in

the GHT shown in the camera C1.
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