ESTUDIOS DE TIEMPOS Y EVALUACIÓN DE RENDIMIENTO DE MAQUINARIA DE COSECHA FORESTAL

por

Fernando RIVAS
Rodrigo SUÁREZ

TESIS presentada como uno de los requisitos para obtener el título de Ingeniero Agrónomo

MONTevideo
URUGUAY
2014
Tesis aprobada por:

Director:
Ing. Agr. Gustavo Daniluk

Ing. Agr. Guillermo Moras

Ing. Agr. Federico Lussich

Fecha: 13 de mayo de 2014

Autor:
Robert Fernando Rivas Rivero

Rodrigo Hernán Suárez Lavega
AGRADECIMIENTOS

A nuestro tutor de tesis Ing. Agr. Gustavo Daniluk, por su apoyo en todo momento, y la aclaración a nuestras dudas durante la realización de la tesis.

A Ing. Agr. Guillermo Moras por su colaboración y aportes en la realización de este trabajo.
TABLA DE CONTENIDO

<table>
<thead>
<tr>
<th>Página de Aprobación</th>
<th>II</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agradeamientos</td>
<td>III</td>
</tr>
<tr>
<td>Lista de Cuadros e Ilustraciones</td>
<td>VII</td>
</tr>
</tbody>
</table>

1. Introducción

1.1. Objetivos

1.1.1. Objetivos generales

1.1.2. Objetivos específicos

2. Revisión Bibliográfica

2.1. Cosecha Forestal

2.1.1. Sistemas de cosecha forestal

2.1.1.1. Sistema de árboles enteros

2.1.1.2. Sistema de árboles completos

2.1.1.3. Sistema de astillado

2.1.1.4. Sistema de trozas cortas

2.1.1.5. Sistema de trozas largas

2.2. Máquinas utilizadas en la cosecha

2.2.1. Principales máquinas

2.2.1.1. Harvester

2.2.1.2. Feller buncher

2.2.1.3. Forwarder

2.2.1.4. Skidder

2.2.2. Variables que afectan la productividad de la cosecha forestal

2.2.2.1. Variables que afectan la productividad en harvester

2.2.2.2. Variables que afectan la productividad en forwarder

2.3. Disponibilidad de los equipos

2.4. Planificación

2.5. Estudio de tiempos y movimientos

2.5.1. Métodos de medición de tiempos

2.5.1.1. Método vuelta a cero

2.5.1.2. Método multimomento

2.5.1.3. Método continuo

2.5.2. Clasificación de tiempos para cosecha
2.6. TERMINOLOGÍA PARA ESTUDIOS DE TIEMPOS ..30
 2.6.1. Tiempo de Trabajo u Operativo (TT) ...30
 2.6.1.1. Tiempo de Trabajo Productivo o Directo (TTP)30
 2.6.1.2. Tiempo de Trabajo Indirecto (TTI)31
 2.6.2. Tiempo No Operativo (TNO) ..32
 2.6.2.1. Tiempo de Interrupción (TInterrupción)32
 2.6.2.2. Tiempo de Demora Relacionada con el Trabajo (TDT)33
 2.6.2.3. Tiempo de comida (fuera del lugar de trabajo)33

2.7. RENDIMIENTOS EN COSECHA ..33

3. MATERIALES Y MÉTODOS ..38
 3.1. CARACTERÍSTICAS DEL ÁREA BAJO ESTUDIO38
 3.1.1. Ubicación ...38
 3.1.2. Suelos ..38
 3.1.3. Clima ..39
 3.1.4. Características de la masa forestal ..40
 3.2. MATERIALES UTILIZADOS ...43
 3.3. MÁQUINAS UTILIZADAS ...43
 3.3.1. Características de las cosechadoras45
 3.3.2. Características de los forwarder ..48
 3.3.3. Características de los cabezales ..49
 3.4. SISTEMA DE TRABAJO DE LAS MÁQUINAS50
 3.4.1. Sistema de trabajo del harvester ...51
 3.4.2. Sistema de trabajo del forwarder ..51
 3.5. DESCRIPCIÓN DEL ESTUDIO ..52
 3.5.1. Colecta de datos ..52
 3.5.2. Análisis técnico ..53
 3.5.2.1. Estudio de tiempos y movimientos53
 3.5.2.2. Determinación de la productividad54
 3.5.2.3. Determinación de la disponibilidad de los equipos55

4. RESULTADOS Y DISCUSIÓN ...56
 4.1. DISPONIBILIDAD DE LOS EQUIPOS ..56
 4.1.1. Disponibilidad en harvester ..56
 4.1.2. Disponibilidad en forwarder ...57
 4.2. PRODUCTIVIDAD ...58
 4.2.1. Productividad de los harvester ...58
 4.2.2. Productividad de los forwarder ...60
4.3. FRECUENCIA DE LAS ACTIVIDADES ..62
 4.3.1. Frecuencia para harvester ...62
 4.3.2. Frecuencia para Forwarder ..64
5. CONCLUSIONES ..66
6. RESUMEN ..67
7. SUMMARY ..68
8. BIBLIOGRAFÍA ...69
9. ANEXOS ...75
<table>
<thead>
<tr>
<th>Cuadro No.</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Coordenadas geográficas de los predios</td>
<td>38</td>
</tr>
<tr>
<td>2. Detalles de los rodales estudiados en el establecimiento 1</td>
<td>41</td>
</tr>
<tr>
<td>3. Detalles de los rodales estudiados en el establecimiento 2</td>
<td>42</td>
</tr>
<tr>
<td>4. Detalles de los rodales estudiados en el establecimiento 3</td>
<td>42</td>
</tr>
<tr>
<td>5. Marca, modelo y horas de uso de las máquinas del frente 1</td>
<td>43</td>
</tr>
<tr>
<td>6. Marca, modelo y horas de uso de las máquinas del frente 2</td>
<td>44</td>
</tr>
<tr>
<td>7. Marca, modelo y horas de uso de las máquinas del frente 3</td>
<td>44</td>
</tr>
<tr>
<td>8. Datos técnicos del harvester Komatsu 941.1</td>
<td>45</td>
</tr>
<tr>
<td>9. Datos técnicos del harvester John Deere 1270 D</td>
<td>46</td>
</tr>
<tr>
<td>10. Datos técnicos del harvester John Deere 1470 D</td>
<td>46</td>
</tr>
<tr>
<td>11. Datos técnicos del harvester John Deere 1270 E</td>
<td>47</td>
</tr>
<tr>
<td>12. Datos técnicos del harvester John Deere 1470 E</td>
<td>47</td>
</tr>
<tr>
<td>13. Datos técnicos del forwarder Komatsu 890.3</td>
<td>48</td>
</tr>
<tr>
<td>14. Datos técnicos del forwarder John Deere 1710 D</td>
<td>49</td>
</tr>
<tr>
<td>15. Datos técnicos del cabezal Waratah H270</td>
<td>49</td>
</tr>
<tr>
<td>16. Datos técnicos del cabezal Komatsu</td>
<td>50</td>
</tr>
<tr>
<td>17. Etapas del ciclo para harvester y para forwarder</td>
<td>54</td>
</tr>
<tr>
<td>18. Disponibilidad mecánica para harvester por frente de cosecha</td>
<td>56</td>
</tr>
<tr>
<td>19. Disponibilidad mecánica para harvester según servicio mecánico</td>
<td>57</td>
</tr>
<tr>
<td>20. Eficiencia operacional para harvester por frente de cosecha</td>
<td>57</td>
</tr>
<tr>
<td>21. Disponibilidad mecánica para forwarder por frente de cosecha</td>
<td>57</td>
</tr>
<tr>
<td>22. Disponibilidad mecánica para forwarder según servicio mecánico</td>
<td>58</td>
</tr>
<tr>
<td>23. Eficiencia operacional para forwarder por frente de cosecha</td>
<td>58</td>
</tr>
<tr>
<td>24. Productividad promedio para harvester en m3.he$^{-1}$ según frente</td>
<td>58</td>
</tr>
<tr>
<td>25. Productividad en m3.horan$^{-1}$ para cada frente</td>
<td>59</td>
</tr>
<tr>
<td>26. Productividad en m3.he$^{-1}$ en función de volumen.árbol$^{-1}$</td>
<td>59</td>
</tr>
</tbody>
</table>
27. Productividad promedio para forwarder en viajes\(\text{he}^{-1}\) según frente61
28. Productividad del forwarder en viajes\(\text{he}^{-1}\) según distancia recorrida.61
29. Frecuencia de las actividades parciales del ciclo para harvester por frente.62
30. Frecuencia de las actividades parciales del ciclo para forwarder64

Figura No.

1. Productividad en función del volumen por árbol ..60
2. Frecuencia de las actividades para harvester ..63
3. Frecuencia de las actividades para forwarder ..65
1. INTRODUCCIÓN

En los últimos años el rubro forestal ha tenido un gran desarrollo, convirtiéndose en uno de los más importantes dentro del sector agropecuario en nuestro país, superando sus exportaciones los 1.000 millones de dólares y con una superficie plantada de 990.030 hectáreas (URUGUAY. MGAP. DGF, s.f.).

La industria uruguaya de productos forestales está caracterizada por una fuerte integración vertical de sus empresas, abarcando la actividad agraria, la actividad propiamente industrial, y todos los procesos intermedios hasta la comercialización final.

La madera con destino a celulosa es uno de los principales productos que Uruguay exporta actualmente, impulsado por las multinacionales, en un contexto donde está instalada la planta finlandesa UPM en Fray Bentos, que consume anualmente más de 3.500.000 m3, y con una segunda planta de celulosa correspondiente a la empresa Montes del Plata recientemente instalada en la localidad de Conchillas, que se estima que consumirá alrededor de 5.000.000 m3 anuales.

Hay que tener en cuenta que la cosecha es una de las actividades más importantes que inciden en el costo final de la madera, por lo tanto es necesario analizar nuevos métodos que contribuyan a realizar esta fase de forma más óptima y eficiente, obteniendo así un mayor beneficio y aprovechamiento maderero (Da Silva, 2012).

Con el fin de optimizar los procedimientos de mecanización en las faenas de cosecha, es importante una buena planificación previa, y para esto una opción interesante sería realizar estudios de tiempos y de productividad, con lo cual se pueden generar nuevos y mejores métodos para llevar a cabo una tarea, así como también desarrollar los métodos ya existentes.

Tanto en nuestro país como a nivel internacional, la cosecha manual está siendo desplazada cada vez más por la mecanización. Esta tendencia a la mecanización está explicada por las siguientes causas:

- Aumento de los costos de mano de obra.
- Disminución de la mano de obra, debido al rechazo por parte de los operarios a la realización de trabajos dificultosos y pocos remunerados.
- Modificación de la demanda de productos, que conduce en particular para maderas de longitudes de trozas cada vez mayores.
- Incremento de la cantidad de madera aprovechada anualmente.
- Mayor autonomía, debido a que se puede trabajar tanto en el día como en la noche.
- Se consigue mayor volumen de madera en menor tiempo.
- Creciente preocupación e importancia a los aspectos de seguridad laboral y a la ergonomía.

Este trabajo consistió en el estudio de la distribución de tiempo de las diferentes actividades de cosecha forestal mecanizada y la evaluación de los rendimientos, en tres frentes de cosecha de la empresa UPM Forestal Oriental.

El sistema de cosecha utilizado es el de “cut-to-length” o de trozas cortas con destino a pulpa, en el cual los árboles son procesados y cortados en trozas de largo variable, para después ser transportados hasta el borde del camino y dejarlos apilados prontos para la carga, siendo las máquinas intervinientes harvester y forwarder.

1.1 OBJETIVOS

1.1.1 Objetivos generales

El trabajo realizado pretende estudiar los tiempos de maquinaria de cosecha forestal, y evaluar el rendimiento de faena en tres frentes de cosecha teniendo en cuenta las variables existentes que inciden en estos procesos.

1.1.2. Objetivos específicos

Calcular la disponibilidad mecánica y la eficiencia operacional de los equipos.

Determinar y comparar la productividad de las máquinas en tres frentes de cosecha, observando cómo inciden las diferentes variables.
Evaluar las frecuencias en que se dan las actividades realizadas por las cosechadoras así como también por los forwarder aplicando el método de medición multimomento.
2. REVISIÓN BIBLIOGRÁFICA

2.1. COSECHA FORESTAL

Se entiende por cosecha forestal al conjunto planificado de actividades relacionado con la corta, procesamiento, extracción y carga de trozas u otras partes aprovechables de los árboles, para su posterior transformación final, considerando sus efectos a corto, mediano y largo plazo sobre los recursos naturales (Daniluk, 2002).

Según Arce et al., citados por Machado de Assis (2010) la cosecha forestal representa la operación final de un ciclo de producción forestal, en la cual son obtenidos los productos más valiosos, constituyendo uno de los factores que determinan la rentabilidad forestal y es también la actividad que más sufre el proceso de mecanización.

La cosecha mecanizada es un proceso continuo de mejorías en las condiciones de trabajo, de reducción del costo final de la madera puesta en planta, de regular el abastecimiento y reducir los índices de accidentes de trabajo (Da Silva, 2012).

La cosecha forestal es una de las actividades que demanda mayor importancia económica en el costo final de producción de madera, siendo que su productividad operacional varía en función de la pendiente del terreno, volumen por árbol entre otros (Da Silva, 2012).

Jakovine et al., citados por Leonello et al. (2012) señalan que la cosecha junto con el transporte en forestación, representan el 50% o más de los costos totales de la madera puesta en la industria, por lo tanto es necesario un constante interés por nuevas técnicas, que desarrollen esta actividad de forma más eficiente y apuntando a un mayor aprovechamiento del material leñoso.

Según Machado de Assis (2010), la cosecha es una actividad que envuelve las etapas necesarias para retirar la madera del bosque, estas son corte, extracción, carga y transporte. A continuación se describen dichas etapas, según el mismo autor:
- **Corte**: incluye las operaciones de apeo, desrame, trozado y preparación de la madera para el apilado. El apeo puede ser manual (hacha), semi-mecanizado (motosierra) o mecanizada (cosechadoras forestales). El desrame y trozado es la retirada de las ramas remanentes y la reducción del fuste en trozas menores respectivamente. Puede ser manual (hacha o motosierra), semi-mecanizada o mecanizada (harvester). El descortezado es la retirada del súber del árbol, para esta actividad los equipos utilizados pueden ser descortezador mecánico portátil, descortezador mecánico de tambor rotativo o con harvester.

- **Extracción**: es el movimiento de la madera del local de corte hasta el borde de los caminos, esta etapa puede ser hecha de forma suspendida, es decir apoyada en una plataforma o un tractor auto cargable, también puede ser realizada mediante arrastre, la cual puede ser mediante guinches o tractores arrastradores.

- **Carga**: actividad que coloca la madera sobre el vehículo de transporte, pudiendo ser el principal o el de extracción.

- **Transporte**: es la actividad que lleva la madera del área de cosecha para el patio de las industrias.

Estas actividades y sus variantes son integradas entre sí formando los sistemas de cosecha forestal.

2.1.1. Sistemas de cosecha forestal

Un sistema es definido como un conjunto formado por elementos y procesos, un conjunto de actividades relacionadas entre sí, que contribuyen para un objetivo común, y es caracterizado por una secuencia, un lugar y un objetivo de trabajo, que engloban toda la cadena de producción, o sea todas las actividades parciales (Malinovski et al., 2006).

El sistema de cosecha de madera está basado en herramientas, en equipamientos, en máquinas y en personas involucradas en el área de cosecha. El método de cosecha depende de cuál es la forma en que la madera es depositada en el camino de acceso, y de la cantidad de procesos que ocurren después del corte final del árbol (Pulkki, citado por Malinovski, 2007).
En la cosecha de madera no falta diversidad de sistemas operacionales, siendo que la implementación de uno u otro sistema está íntimamente relacionada a la disponibilidad de los recursos tecnológicos y financieros así como también la calidad de los bosques (Seixas, citado por Bantel, 2006).

Machado (2002) define al sistema de cosecha como un conjunto de actividades integradas entre sí, que permiten el flujo constante de madera, evitando los puntos de estrangulamiento y llevan los equipos a su máxima utilización.

Según Machado, citado por Malinovski (2007), existen básicamente 5 sistemas de cosecha los cuales se clasifican de acuerdo al largo de las trozas y a la forma como son extraídas hasta el local de procesamiento, estas serían:

- sistemas de árboles enteros (“full-tree”)
- sistema de árboles completos (“whole-tree”)
- sistema de astillado (“chipping”)
- sistema de trozas cortas (“cut-to-length”)
- sistema de trozas largas (“tree-length”)

2.1.1.1. Sistema de árboles enteros

En el sistema de árboles enteros el árbol es volteado y arrastrado para afuera del rodal, donde el procesamiento completo es hecho en locales previamente elegidos (Machado, 2002).

Las máquinas que componen este sistema son feller-buncher, skidder, y un procesador, la primera máquina realiza el trabajo de apeo y el skidder el arrastre para el posterior procesamiento (Boanerges, 2011).

En este sistema se requiere un elevado índice de mecanización y puede ser utilizado tanto en terrenos planos o accidentados. En caso de utilización de biomasa para energía, este sistema es indicado debido a la potencialidad del uso de la corteza, ramas y acículas u hojas, sin embargo con grandes restricciones ambientales, en virtud de la extracción de gran parte de los potenciales nutrientes para futuras rotaciones (Malinovski et al., citados por Malinovski, 2007).
2.1.1.2. Sistema de árboles completos

El sistema de árboles completos tiene como estrategia retirar el árbol con parte de su sistema radicular y llevarlo para los borde de los caminos, o para patios temporarios donde procesarlos (Machado, 2002).

Este sistema se vuelve interesante solamente en los casos en que la raíz tiene valor comercial, esto sería el caso de árboles con alta concentración de resina en sus raíces o árboles considerados medicinales. No existe mucha tecnología para el uso de este sistema, lo cual retira biomasa pudiendo perjudicar la futura productividad de los sitios (Malinovski, citado por Malinovski, 2007).

2.1.1.3. Sistema de astillado

En este sistema los árboles son apeados, desramados, descortezados y transformados en chips o astillas en el lugar de corte. Posteriormente son extraídos y transportados para la industria (Machado, 2002).

2.1.1.4. Sistema de trozas cortas

El sistema de cosecha de trozas cortas o cut to length (CTL), es el más utilizado en los países escandinavos y en Uruguay. Es caracterizado por la realización de todos los trabajos complementarios al corte, desramado, descortezado y trozado en el mismo lugar donde el árbol fue apeado. El largo de las trozas utilizadas es variable, y las máquinas con las que se trabajan en conjunto son el harvester y forwarder (Manisse y Sarries, 2010).

Entre las ventajas de este sistema, están la facilidad de desplazamiento y la baja agresividad al medio ambiente, principalmente en relación al reciclado de los nutrientes en el suelo y la menor compactación (Linhares et al., 2012).

Los métodos de cosecha mecanizada de madera de trozas cortas son ampliamente utilizados en muchos países, como Suecia (98%), Irlanda (95%), Finlandia (91%), en comparación con el método semi-mecanizado (Karjalainen et al., citados por Da Silva, 2012).
2.1.1.5. Sistema de trozas largas

En el sistema de trozas largas, luego que el árbol es cortado se realiza el desrame y descortezado en el lugar. Está diseñado para terrenos accidentados, en comparación con el sistema de trozas cortas, se puede decir que presenta menores costos por tonelada de madera y que causa mayores daños sobre el terreno. En general las máquinas que se utilizan son feller para la corta y skidder para el arrastre (Machado, 2002).

En cuanto a la mecanización en cosecha, el escenario mundial y nacional muestra una tendencia a la sustitución de sistemas de cosecha de trozas largas (feller buncher-skider) por sistemas de cosecha denominados de troza corta (harvester-forwarder), esto es debido a una concientización por el cuidado del medio ambiente y conservación de los recursos naturales, a cambio de un menor rendimiento productivo (Manisse y Sarries, 2010).

2.2. MÁQUINAS UTILIZADAS EN LA COSECHA

Clasificados como de gran porte, los tractores forestales usados en las diversas etapas de la cosecha mecanizada son pesados, con elevada potencia en el motor y mayor velocidad de desplazamiento. Estas características permiten movilidad y proporcionan aumento significativo en la capacidad operacional, una vez que realizan mayor cantidad de trabajo en menos tiempo. Sin embargo el exceso de tráfico en el área de cosecha, puede provocar daños a cepas y comprometer futuros rebrotes, además de contribuir a los procesos de compactación del suelo (Lima y Leite, citados por Bantel, 2006).

2.2.1. Principales máquinas

2.2.1.1. Harvester

La cosechadora harvester es un tractor forestal definido como automotriz constituido de una máquina base automotriz con rodado de neumáticos de baja presión y alta flotabilidad (BPAF), con una lanza hidráulica para alcanzar los árboles y un cabezal que puede ejecutar simultáneamente las operaciones de apeo, desrame, descortezado, trozado y apilado de la madera (Da Silva, 2012).
Máquina con la finalidad de cortar y procesar árboles dentro del monte, posee un conjunto motriz de alta movilidad y buena estabilidad que puede ser de neumáticos o de orugas. Posee un cabezal con múltiples funciones que está acoplado a un brazo hidráulico o lanza. El cabezal tiene las funciones de apeo, desrame, descortezado, trozado y apilado. La potencia del motor varía de acuerdo al modelo, entre 70 y 170 kw, y el peso total entre 8500 y 16500 kg (Machado de Assis, 2010).

La utilización de máquinas de alta tecnología, como el harvester, aumenta considerablemente los rendimientos operacionales de la cosecha y la seguridad en el trabajo, en virtud de que esta máquina es 880% más productiva que una motosierra (Magalhaes, citado por Da Silva, 2012).

En general la vida útil de los cabezales es de aproximadamente 12500 horas (2 años y medio), siendo que el tiempo de vida de la máquina base es aproximadamente 25000 horas (Linhares et al., 2012).

Los harvester son máquinas de avanzada tecnología y muy bien aceptadas por la capacidad que poseen de trabajar en condiciones variables y situaciones adversas. La situación ideal de operación es encontrada en plantaciones (por ejemplo 3x3m) con árboles de volúmenes entre 0,25 y 0,35 m3 por árbol, no siendo indicados el uso de estas máquinas para cosecha en montes con producciones por debajo de los 150 m3.ha$^{-1}$ (metros cúbicos por hectárea). Son máquinas adecuadas para operaciones con trozas desde 2 hasta 6 metros de largo (Burla, 2008).

Según Lorenzo, citado por Ibarra y Rodríguez (2010) la vida útil de los harvester es de 20 a 25 mil horas que corresponderían a 4 años programando las 24 horas de los 365 días de trabajo. Según la experiencia de unos de los pioneros en cosecha mecanizada de nuestro país, en 30 meses, sus máquinas han trabajado unas 17 mil horas. Con este rendimiento se lograría una amortización total de la inversión en el periodo esperado.

Según Burla (2008), los harvester producen entre 15 a 22 m3.h$^{-1}$ (metros cúbicos por hora). En bosques de baja calidad (árboles entre 0,10 a 0,15 m3) la productividad cae entre 8 a 12 m3.h$^{-1}$, completamente inadecuada para las inversiones con estas máquinas.
En el mercado existen innumerables marcas y modelos, algunos de estos pueden ser adaptaciones de retroexcavadoras (Machado, citado por Borges, 2011).

El cabezal se constituye de un sistema de corta que puede ser una sierra de cadena o disco cortador (menos frecuente) encargado de realizar los cortes; un sistema de sujeción de brazos acumuladores que tienen la finalidad de asegurar y levantar el árbol luego del corte; un sistema de rodillos dentados encargados de desplazar el árbol horizontalmente de un lado al otro; unas estructuras metálicas curvas encargadas de desramar y descortezar; y un sistema de medición en forma de rodillo dentado comunicado a un computador (Machado, citado por Borges, 2011).

El movimiento y el accionamiento de los dispositivos que componen el cabezal, es realizado por el operador a través de un joystick. La cabina es cerrada con sistema de aire acondicionado y protección contra caída de ramas y árboles (Lima y Leite, citados por Jacques, 2008).

Bramucci (2001) asegura que en relación al sistema de cosecha de trozas cortas, el harvester es la principal máquina utilizada en el apeo y procesamiento, el cual consiste en el desrame, descortezado y el corte del fuste en trozas de largo predeterminado.

2.2.1.2. Feller buncher

Tractor forestal derrumbador-acumulador, con función de cortar y acumular varios árboles, formando paquetes de trozas o árboles. Posee rodado de neumáticos, de dos ejes motrices, chasis articulado con cuatro neumáticos, o también la versión triciclo. La potencia del motor varía entre 50 a 90 kw y el peso total sin carga puede llegar a 20 toneladas, cuando es adaptado con rodado de orugas. Forma paquetes con ángulos de 45 a 90 grados en relación a la línea de plantación (Machado de Assis, 2010).

El cabezal es una pieza de constitución rígida, donde está localizado el órgano de corte que puede ser compuesto por un disco dentado, una tijera de doble acción, una sierra o un sable y los brazos acumuladores, todos accionados por un sistema hidráulico (Machado, 2002).
2.2.1.3. Forwarder

Esta máquina tiene como finalidad retirar la madera dentro del rodal hacia el borde de los caminos. Es utilizada en los sistemas de trozas cortas, en conjunto con el harvester. Su peso puede variar de 9 a 12 toneladas, y la potencia del motor entre 70 a 120 kw (Machado de Assis, 2010).

Los tractores forestales autocargables o “forwarder” originalmente fabricados en Canadá y perfeccionados en Escandinavia son en su mayoría, máquinas articuladas con capacidad de carga entre 5 y 20 toneladas. La velocidad no es una característica esencial de este tractor pues la mayor parte de su tiempo es empleado en la carga y la descarga. Se destaca por superar las condiciones adversas encontradas en el campo (Seixas, citado por Da Silva y Fenner, 2009).

Los forwarder modernos son constituidos básicamente de un tractor forestal con cabina de comando, un carro y una grúa. El carro cuenta con estaqueros y sistema de freno independiente del tractor. La grúa está formada por rotor, columna, brazo, lanza telescópica, garra y comandos, con un alcance de 3 a 12 m. La capacidad de transporte de esta máquina varía con la potencia del motor y las dimensiones del carro. Generalmente son dotados con neumáticos anchos del tipo de flotabilidad o de baja presión, pudiendo tener entre 2 a 4 ejes motrices. Poseen una velocidad máxima de 25 km.h\(^{-1}\), en general algunos modelos pueden alcanzar hasta 45 km.h\(^{-1}\) desplazándose en caminos y sin carga (Da Silva y Fenner, 2009).

Forwarder operando con fustes enteros pueden transportar cargas de 22 toneladas. Este tipo de máquinas tiene la habilidad de mover madera cosechada hasta una distancia de 8 km (Stokes y Schilling, citados por Da Silva y Fenner, 2009).

Stokes y Schilling, citados por Da Silva y Fenner (2009) señalan que en la región este de Canadá forwarder con neumáticos anchos especiales presentan: mayor acceso a las áreas forestales sin necesidad de construcción de caminos; mejora en la estabilidad, seguridad y comodidad; adaptabilidad a la cosecha forestal en estaciones húmedas; menor mantenimiento y mayor productividad debido a su habilidad de flotabilidad; y reducción pero no eliminación de los daños residuales al medio ambiente.
2.2.1.4. Skidder

Es un tractor forestal arrastrador, articulado con tracción 4x4, desarrollado exclusivamente para el arrastre de la madera. Generalmente presenta una garra trasera telescópica que es accionada por sistemas hidráulicos o presenta cables de acero para el arrastre de los paquetes de las trozas. Es una máquina indicada para trabajar en conjunto con el feller buncher (sistema de trozas largas). La potencia del motor puede variar de 100 a 130 kw, y el peso entre 10 a 16 toneladas (Machado de Assis, 2010).

El skidder es un tractor comúnmente empleado en la saca de árboles en bosques tropicales, debido al elevado peso de las trozas. Está máquina realiza el transporte de árboles desramados, para posterior procesamiento en los márgenes de los caminos o patios intermediarios (Machado de Assis, 2010).

2.2.2. Variables que afectan la productividad de la cosecha forestal

Andersson y Laestadius, citados por Lima y Oliveira (2012) afirman que la eficiencia de un sistema de cosecha de madera es altamente dependiente del ambiente en que se está operando, siendo los principales factores a ser considerados: clima, terreno, especie vegetal, infraestructura, nivel de desarrollo, tradición del sistema utilizado y estructura de la industria.

El desempeño de las máquinas es afectado por diversas variables operacionales y por condiciones del monte, del relieve, del clima, siendo que las mejores condiciones operacionales aumentan la productividad y consecuentemente disminuyen los costos. De esta manera el aumento de la pendiente del terreno, el aumento de la distancia de extracción y la disminución del volumen de madera por árbol reducen la productividad de las máquinas de cosecha (Da Silva, 2012).

La productividad de las poblaciones forestales presenta influencia directa sobre la eficiencia de varias máquinas, siendo mayor en aquellas que operan en poblaciones de mayor productividad volumétrica por unidad de área (Moreira et al., citados por De Oliveira et al., 2009b).

Las características del bosque donde se realizan los servicios de cosecha interfieren directamente en el costo final del m³ de madera entregada al cliente. Esto es debido a la variación en la productividad, como consecuencia...
del mayor o menor volumen por árbol procesado y por las diferentes distancias de transporte en la actividad de extracción (De Souza et al., 2011).

2.2.2.1. Variables que afectan la productividad en harvester

Por trabajar en régimen de campo, la capacidad productiva del harvester es fuertemente influenciada por un gran número de factores ambientales y técnicos. Los principales factores que influyen en la cosecha mecanizada son: clima (lluvia y viento, capacidad de soporte del terreno, topografía, característica de los árboles (diámetro, tamaño de ramas en copa), y el peso y calidad de la madera (Seixas, citado por Bramucci, 2001).

Desde el punto de vista de la cosecha, un aumento en la densidad de la plantación implica una reducción directamente en el volumen individual de los árboles, ocasionando también una reducción de la capacidad productiva del harvester. Esa reducción puede ser atribuida a la mayor dificultad de movilidad de la máquina y a la disposición de los árboles talados, siendo que a medida que el volumen por árbol aumenta, la productividad crece y los costos de producción consecuentemente disminuyen (Burla, 2008).

El aumento de la densidad de plantación, implica directamente en la reducción del volumen individual de los árboles, esta reducción resulta en una caída considerable de la capacidad productiva de los harvester, en función del aumento del número de árboles por hectárea, principalmente en los casos donde se descorteza. Esta reducción en la capacidad productiva también puede ser atribuida a la mayor dificultad en la movilidad de los equipos, y del arreglo de los árboles apeados. Desde el punto de vista de la productividad de los equipos de cosecha, el rango ideal está entre 800 a 1200 árboles por hectárea (Bramucci, 2001).

Sin embargo Eliasson, citado por Burla (2008) desarrollando un modelo estadístico para simulación de cosecha forestal con harvester observó que el tiempo empleado por esta máquina para moverse a derribar los árboles prácticamente no se altera en función del aumento de la distancia entre los árboles. Lo que indica que la densidad de plantación tendría poca influencia sobre la productividad de la máquina.
El ancho operativo de trabajo, puede interferir en la productividad en función de las características del equipo como el alcance de la grúa, el giro, etcétera (Burla, 2008).

Para la actividad de cosecha con harvester, existe una variación de la productividad en función de las diferentes condiciones del bosque, siendo características distintas para cada empresa (Burla, 2008).

Según Akay et al. (2004) el rendimiento operacional de harvester está muy relacionado al tamaño del árbol, ya que conforme disminuye el volumen de estos, disminuye también el rendimiento operacional.

Simões et al. (2010a) encontró que el diámetro a la altura del pecho (DAP) influencio en aproximadamente 50% la productividad del harvester, explicando los menores costos de cosecha forestal para aquellas parcelas experimentales con árboles de mayor diámetro. Es posible observar que existe un aumento de la productividad de forma lineal en función del DAP representado por un coeficiente de regresión de 0,52.

El volumen de madera por hectárea está fuertemente relacionado al volumen individual de los árboles, por lo que es natural que se encuentre una influencia de esta variable sobre la productividad de los harvester (Bramucci, 2001).

Bramucci (2001) encontró que la productividad en harvester realizando el descortezado es prácticamente lineal a medida que aumenta el volumen hasta estabilizarse en 0,5 m³ por árbol. Esta variable representa en promedio cerca de 55% de la variación de la capacidad productiva del harvester.

Este mismo autor comparando la productividad de harvester con o sin descortezado, obtuvo como resultado que para árboles con volúmenes entre 0,1 y 0,3 m³, el sistema sin descortezado es ligeramente superior.

Según Burla (2008) la operación de descortezado disminuye la productividad de un harvester en un 10 a 30%.

Holtzcher y Lanford, citados por Burla (2008), encontraron que el volumen medio por árbol es la variable que mejor explica la capacidad operacional del harvester. También Da Silva (2012) en su estudio encontró que
la variable con mayor influencia en la productividad fue el volumen por árbol, representado por un 58%.

Según Burla (2008) el volumen y la pendiente del terreno son los factores que más influyen en el rendimiento operacional del harvester en la cosecha de eucalipto.

Bramucci (2001) encontró que la productividad en función del DAP aumentó ligeramente hasta los 24 cm a partir de donde se notó una fuerte tendencia en la caída de la productividad. Sin embargo, Makkonen, citado por Jacques (2008), estudiando la misma variable encontró que la productividad aumenta linealmente hasta los 22 cm, disminuyendo luego por problemas de remoción de ramas gruesas. Este comportamiento indica que en promedio los cabezales procesadores utilizados son más adecuados para trabajar con árboles que presenten DAP iguales a los citados por los autores (Burla, 2008).

Según Burla (2008), resumiendo, la capacidad productiva de un harvester aumenta con el incremento en diámetro (DAP) hasta que este alcanza valores tales que la máquina no dispone de fuerza mecánica e hidráulica para continuar el procesamiento.

De la misma forma que el DAP, la altura también tiene una fuerte influencia sobre la productividad de los equipos de cosecha, observándose un aumento de la misma hasta los 40 m donde se estabiliza. Esto explicado porque un aumento en la altura, no implica sobrepasar los límites operacionales de los equipos, lo que sí sucede con el DAP (Bramucci, 2001).

Spinelli et al., citados por Burla (2008) estudiando el rendimiento en harvester procesando trozas de 2 y 4 metros concluyó que la productividad es mayor cuanto mayor es el largo de las trozas.

Estudios indican que la cosecha de madera de 6 metros presenta los mejores rendimientos operaciones y los menores costos de producción (Burla, 2008). Machado y López, citados por Burla (2008), concluyeron que el largo de la madera afecta significativamente la productividad y el costo de la madera procesada.

Según Foelkel, citado por Burla (2008) cuanto mayor largo de troza mayor la productividad, cuando las trozas son cortas (2 a 2,5 m) la operación pierde de 20 a 30% de productividad en relación a las trozas largas (5,5 a 6 m).
En general algunas empresas optan por largos intermedios y otras por largos variables, para optimizar la manipulación y las operaciones subsecuentes.

Según Wagner (2006), las bifurcaciones del fuste generan un aumento en el tiempo de procesado, dado que el cabezal se tranca y en algunos casos se ve obligado a trozar y continuar el trabajo con dos tallos, lo que lleva a pérdidas de tiempo.

En cuanto a la edad de corte Bramucci (2001) encontró que existe una tendencia natural al aumento de volumen de los árboles con el aumento de la edad. En función de esto se verifica un aumento de la productividad de los harvester con el aumento de la edad de corte, este aumento es bastante evidente en el rango de 6 a 10 años.

En cuanto a la experiencia del operador se verifica una tendencia al aumento de la productividad con el aumento del número de horas, sin embargo con un efecto relativamente pequeño (Bramucci, 2001). Es de esperarse que el aumento sea pequeño, ya que según Parker et al., citados por Bramucci (2001), el gran aumento de la productividad del operador de harvester ocurre en los primeros 30 días de trabajo.

El efecto del tiempo de experiencia en la capacidad de trabajo de los operadores, o sea la evolución del rendimiento operacional en relación al tiempo de experiencia, fue mayor en los primeros meses de trabajo. En forma global se observa que después de los 44 meses de experiencia como maquinista de harvester, el rendimiento disminuye por lo que son necesarias medidas de incentivo, entrenamiento, motivación y otras, con el fin de estimular a esos operadores, dándoles las condiciones para permanecer en el cargo y mantener o aumentar el rendimiento operacional (Leonello et al., 2012).

Richardson y Makkonen, citados por Burla (2008) concluyeron que cuanto mayor el tiempo de experiencia del operador mayor es la productividad alcanzada, alcanzando incrementos de 45% después de 2 años de experiencia.

El tiempo de posicionamiento del cabezal, disminuye conforme aumenta el volumen por hectárea ya que el operador tiene mayor facilidad de posicionar el cabezal en árboles más gruesos (Burla, 2008).
Da Silva (2012) encontró que la caída de la productividad del harvester fue de 8.26% cuando se operaba con pendiente de hasta 36%, con un volumen medio por árbol de 0.30 m3. En los casos de pendientes mayores a 26° la máquina provocó la formación de depresiones en el suelo, formando surcos.

Da Silva (2012) estudiando el harvester John Deere 1270D en cosecha de eucalipto encontró una tendencia de mayores tiempos gastos en las operaciones cuando aumenta la pendiente del terreno y el volumen por árbol. En los casos que la máquina estaba operando pendiente abajo se encontró un mayor tiempo en la actividad de corte de los árboles, reduciendo de esta manera la productividad de la máquina. Esto se debió al campo visual del operador y a la incomodidad biomecánica del operador, en virtud del asiento y de la visibilidad de operación. Cuando la máquina trabajaba pendiente arriba la visión general del operador fue mejorada, obteniendo una visión clara de las operaciones, sin necesidad de adoptar posturas incorrectas de trabajo, proporcionando de esta forma un mejor control operacional de las actividades.

Como ejemplo un límite máximo aceptable para trabajar con tractores de orugas estaría entre 50 y 60% de pendiente del suelo, por encima de eso es desaconsejable (Conway, citado por Bantel, 2006).

Según Akay et al. (2004), el harvester en condiciones de pendientes elevadas aumenta el tiempo de procesamiento de los árboles y por consiguiente disminuye su productividad.

Burla (2008) estudiando harvester encontró que no fue posible que las máquinas operaran en terrenos con pendientes superiores a los 25°. También observó que en situaciones de pendiente superiores a 20° y con árboles mayores a 0,35 m3 el harvester no tuvo condiciones de continuar operando.

El volumen por árbol, altura media, volumen por hectárea y tipo de equipo utilizado representan en conjunto aproximadamente el 80% de la capacidad productiva del harvester (Bramucci, 2001).

En lo que tiene que ver con las precipitaciones, esta eleva la humedad del suelo lo cual teóricamente dificulta el desplazamiento de los equipos de cosecha interferiendo en su productividad, en especial en los terrenos de mayor pendiente. Estudiando este efecto Bramucci (2001) encontró que la humedad en el suelo afecta de forma significativa la productividad de los harvester.
apenas en terrenos con mayor pendiente, siendo que en terrenos planos el efecto no fue significativo.

2.2.2.2. Variables que afectan la productividad en forwarder

Según Machado et al., citados por Da Silva y Fenner (2009) los principales factores que afectan la productividad del forwarder son la capacidad volumétrica de carga, la distancia media de transporte, número de líneas en operación de saca, el desempeño del operador, las características del ramero, el largo de troza, volumen de las gavillas, volumen de madera por hectárea, la capacidad de agarre de la garra, la velocidad de operación, el tiempo del ciclo de operación de la lanza hidráulica, la disponibilidad mecánica, el porcentaje de utilización de la máquina y el procedimiento operacional adoptado.

Según Malinovski, citado por Da Silva y Fenner (2009) los factores condicionantes en la operación de saca de madera con forwarder son: tipo de suelo, pendiente del terreno, presencia e intensidad de sotobosque, espaciamiento en la entrelinea de plantación, tipo de intervención en el monte, altura de los tocones de la cosecha anterior, características de las pilas de madera, altura de la cabina y turno de trabajo.

Minette et al., citados por Da Silva y Fenner (2009) consideran que los factores que más influyen en la etapa de extracción son el largo de trozas, el peso específico de la madera, coeficiente de apilamiento, la capacidad de la grúa y el volumen de las gavillas.

Según Nurminen et al. (2006) el tamaño de la garra y de la pila de trozas, tal vez son las variables más importantes en la productividad de la carga. Siendo así que la operación de corte efectuada por el operador del harvester, tiene influencia significativa en la eficiencia de la operación de extracción.

Santos y Machado, citados por De Oliveira (2009b) estudiando la operación del forwarder concluyeron que el tiempo de carga fue el elemento que consumió la mayor parte del tiempo del ciclo operacional, siendo que la productividad creció a medida que el volumen por árbol aumentó y la distancia de extracción disminuyó.
De Oliveira et al. (2009a) demostraron en su estudio, que la disponibilidad de trozas y la dispersión de las gavillas en el interior del rodal son las variables que influyen directamente el desempeño del forwarder, y consecuentemente, la productividad y los costos de extracción forestal.

Martins y Cardoso (2001), estudiando la productividad del forwarder, encontraron que esta crece inversamente proporcional a la distancia de extracción para un mismo largo de troza.

La productividad está muy influenciada por la distancia de extracción, pues cuanto mayor la distancia recorrida menor la productividad (Minette et al., 2008).

La elección de un sistema más adecuado a una empresa puede condicionar la caminería necesaria, una vez que el costo de la caminería es inversamente proporcional a la distancia de extracción. Debe ser determinado un punto de equilibrio que considere el costo total mínimo resultante de la combinación de los costos de extracción y los costos de caminos por m3 de madera (Seixas, citado por Bantel, 2006).

Según Minette et al. (2008) otro factor que influye en el tiempo de carga y la productividad del forwarder es el largo de trozas pues cuando se está cargando trozas demasiado cortas como por ejemplo 2,80 m, el operador trabaja cargando 2 paquetes de madera, duplicando el número de ciclos de la garra, y disminuyendo el volumen de madera extraído, debido al espacio vacío existente entre los 2 paquetes.

En los casos en que la madera luego de la cosecha queda desorganizada en el campo o cuando las cosechadoras utilizan pocas líneas para la cosecha, la productividad del forwarder se ve afectada ya que así se obtienen mayores gastos de tiempos en el desplazamiento durante la carga (Minette et al., 2008).

Según Seixas, citado por Bantel (2006) cuanto más organizado el engavillado, arreglo y alineado de la madera, en los locales donde se efectúa la carga, mayores son los rendimientos de las máquinas.

En la extracción es importante definir la disposición de las gavillas y su ángulo en relación al eje del ramal de extracción (Bantel, 2006).
Minette et al. (2004) describe un sistema en que las gavillas, con trozas de 6 metros fueron direccionadas aproximadamente a 30° en relación a la línea de plantación, realizando la carga apenas por un lado de la máquina, por el hecho de que la distancia entre las pilas de cada línea de saca es mayor que el alcance máximo de la grúa.

Estas máquinas pueden trabajar en terrenos accidentados, en subida con pendientes de hasta 30%, y en bajada con pendientes de hasta 60%. Se trata de un equipo con costos de adquisición elevados que exige bosques de buena productividad y operador calificado. La distancia media de extracción se sitúan de 200 a 300 metros y los rendimientos operacionales en torno a los 30 m³ por hora (Seixas, citado por Bantel, 2006).

El número de trozas por carga de la garra es siempre menor para la carga en comparación con la descarga, especialmente si las gavillas son pequeñas (Wenger, citado por Bantel, 2006).

En los resultados encontrados por Da Silva (2012) estudiando forwarder, fue que la distancia de extracción y la pendiente del terreno afecta significativamente la productividad del forwarder, variando el tiempo de la extracción de la madera.

La inclinación del terreno limita los equipos a ser utilizados, influenciando directamente el rendimiento operacional de la máquina elegida. Debe ser respetada para cada equipo su capacidad máxima de trabajo, de acuerdo con la pendiente y los accidentes del terreno (Seixas, citado por Bantel, 2006).

Minette et al. (2008) comparando forwarder con tractores agrícolas autocargables, encontró que la productividad de los primeros fue mayor.

El uso de piezas de madera mayores significa necesariamente un menor número de ciclos para completar la carga lo que aumenta la productividad. El incremento en el tamaño de los árboles por encima de un determinado valor puede estar limitando la capacidad de la máquina empleada. La densidad del rodal está relacionada con el número de árboles cosechado por área y el volumen de madera que afecta directamente la operación de carga. En bosques con baja densidad el tiempo de viaje de la máquina aumenta, la
productividad baja y los costos se vuelven elevados (Seixas, citado por Bantel, 2006).

2.3. DISPONIBILIDAD DE LOS EQUIPOS

La eficiencia operacional es definida como el porcentaje de tiempo de las actividades efectivas, o sea engloba todas las actividades parciales que ocurren repetitivamente durante el transcurso del trabajo y que resultan en producción (Simões y Fenner, 2010b).

Da Silva (2012) define eficiencia operacional, como el porcentaje del tiempo efectivamente trabajado en relación al tiempo total programado para el trabajo.

Disponibilidad mecánica se le llama al porcentaje de tiempo de trabajo programado en que la máquina está mecánicamente apta para desarrollar sus tareas, sin considerar el tiempo perdido en el que se efectúan reparaciones y mantenimiento (Simões y Fenner, 2010b).

Marcon, citado por Lima y Oliveira (1998) establece que la eficiencia operacional de la maquinaria involucrada en la cosecha de madera como mínimo debe ser 70%. Una de las formas de mantener elevado el índice de disponibilidad mecánica, que influencia directamente en el aprovechamiento de tiempo disponible para el trabajo, es un programa de mantenimiento preventivo eficiente. El mismo autor señala que la adopción de planos para la sustitución de flotas y reformas, así como la racionalización del uso de los equipamientos asegura una mayor vida útil y seguridad operacional.

Aumentar la disponibilidad de una máquina implica reducir el número de fallas ocurridas, aumentar la rapidez con que estas son corregidas y mejorar los procedimientos de trabajo y logística, así como la independencia de estos factores (Fontes y Machado, citados por Linhares et al., 2012).

Según Lima y Oliveira (1998) estudiando el descortezado de trozas de eucalipto, mencionan que la mayor causa de interrupciones se debe a los problemas mecánicos, seguidos por pausas y esperas técnicas, y demoras, que juntas llegan a un 87,46% del total de las interrupciones en esta operación, equivaliendo a un 17% del tiempo de trabajo efectivo para una eficiencia operacional de 81%, que puede ser considerada satisfactoria, pues está por encima de los porcentajes para cosecha mecanizada.
Los mismos autores en su estudio obtuvieron una disponibilidad mecánica de 90,4%, este elevado porcentaje de la disponibilidad mecánica puede ser justificado en función de que el harvester evaluado tenía aproximadamente 4700 horas de uso, es decir que era relativamente nuevo.

La disponibilidad mecánica de las máquinas forestales está en torno al 92% para equipos nuevos y 85% para equipos con mayor tiempo de uso (Fontes y Machado, citados por Linhares et al., 2012).

Borges (2011) estudiando 8 harvester de distintas marcas y modelos en sistemas de cosecha de troza corta, establece que gran parte de las pérdidas de las horas productivas de las máquinas, se debieron a paradas por decisiones de la gestión y reuniones, no siendo consideradas esenciales para el proceso productivo. En cuanto a la disponibilidad mecánica encontró que los factores que más la afectaron fueron problemas en el sistema eléctrico de las máquinas. Las interrupciones relativas a la espera por piezas y mecánicos representan grandes pérdidas de los tiempos productivos de los equipos, principalmente en las máquinas base.

En un estudio sobre la productividad y el costo en la extracción con forwarder, realizado por De Oliveira (2009a), la eficiencia operacional media en forwarder fue relativamente baja (70%), explicada por la necesidad de paradas para la realización de mantenimiento correctivo y traslados constantes entre los rodales cosechados.

2.4. PLANIFICACIÓN

Para obtener mayores beneficios económicos, las empresas necesitan una planificación coherente y que lleve a la obtención de productos múltiples y maximizar las ganancias, buscando también la sostenibilidad considerando los puntos de vista social, económico y ambiental. Para lograr los objetivos, la planificación es la clave, esto significa pensar con antelación, los objetivos y las acciones, en busca de actos basados en algún método, plan o estrategia (Machado de Assis, 2010).

La planificación es la elaboración, por etapas, con bases técnicas de planes y programas con objetivos definidos. Es el arte y la ciencia de proyectar, con una base racional, el transcurso futuro de la acción de las actividades para
individuos, grupos o corporaciones, y su implementación efectiva requiere el uso combinado de medidas cuantitativas y cualitativas. Es un proceso de decisión con características propias, porque define el futuro deseado para la organización y traza los posibles caminos para alcanzarlo (Machado y López, citados por Bantel, 2006).

Según Mendoza, citado por Machado de Assis (2010) la planificación debe tener información confiable sobre el rodal (m3.ha$^{-1}$, DAP, altura comercial), las máquinas a ser utilizadas (capacidad productiva, consumo de combustible y lubricantes), sobre la mano de obra a ser empleada (horas de trabajo, condición de los operarios y capacitación de los mismos), sobre la productividad de la operación (m3.h$^{-1}$, horas trabajadas, tiempo de máquinas trabajadas y no trabajadas), además de los factores que influyen en el costo de la actividad.

La planificación operacional de las actividades forestales tiene como objetivo establecer alternativas que proporcione el cumplimiento de las metas de producción que son determinadas por la planificación global de la empresa, por medio del conocimiento de la eficiencia y el desempeño operacional de las máquinas y equipos usados en la cosecha forestal (Cechin, citado por Linhares, 2012).

En virtud de la existencia e interacción de innumerables y complejos factores técnicos, económicos, ambientales y ergonómicos que interfieren de forma dinámica en las operaciones de cosecha hay que considerar que la planificación es esencial para la identificación, previsión y control de los aspectos adversos y con debida anticipación. Es esencial tener el conocimiento y el control de los factores, permitiendo establecer estrategias y prácticas operacionales para la ejecución de las operaciones dentro de criterios establecidos (Machado y López, citados por Bantel, 2006).

Para intervenir en un sistema productivo y adoptar estrategias de racionalización, es necesario conocer detalladamente todo el proceso, pues solo así será posible actuar en los puntos deficientes (Minette et al., citados por Da Silva, 2012).

Assumpção, citado por Malinovski (2007) clasifica al planeamiento en tres tipos: estratégico, táctico y operacional. El planeamiento estratégico, manipula los datos y genera informaciones a nivel de la empresa, sin dejar de considerar su interface con el mercado y de analizar alternativas de inversiones.
para alcanzar sus objetivos a largo plazo. Por otro lado el planeamiento táctico, tiene que ver con decisiones que conducen a la elección de los proyectos a ser implementados, y los operativos que analizan las estrategias y las metas de producción además de ser responsables de los planes de las operaciones u órdenes de producción.

En lo que tiene que ver con la cosecha de madera, la falta de planeamiento detallado de las actividades asociada a factores como: nivel cultural de los empleados, normalización de las actividades operacionales del sistema de extracción, definición de manejo de los bosques plantados, adecuación de las máquinas de extracción, y la falta de competitividad de los equipamientos, son algunos de los aspectos que llevan a la ineficiencia de la cosecha de madera, teniendo reflejo en la sustentabilidad del medio ambiente y en su costo final (Zagonel, 2008).

En el campo la planificación debe ser ejecutada por el supervisor o el encargado, por poseer el conocimiento detallado del área y por lo tanto con mejores condiciones de realizarla. Es fundamental que tenga un buen conocimiento de las operaciones, de las actividades interdependientes, de los recursos disponibles, de las normas y las metas para el área (Machado y López, citados por Bantel, 2006).

Los análisis operacionales, son herramientas esenciales para una buena planificación del proceso productivo, ya que estos tienen como objetivo analizar el comportamiento de los equipos en el sistema de cosecha (Borges, 2011).

Los sistemas de control desempeñan una importante función en el gerenciamiento de las operaciones de cosecha. Las informaciones obtenidas a través de los sistemas de control son la base para la toma de decisiones operacionales, para el acompañamiento de las operaciones, de acuerdo con sus objetivos, conocimiento de los costos y rendimientos y para la planificación general de la empresa (Machado y López, citados por Bantel, 2006).

Según Machado y López, citados por Bantel (2006), los objetivos del sistema de control son: asegurar el abastecimiento de la industria, proveer información para fines gerenciales y operacionales, alimentar el sistema de control de costos y de presupuestos a la empresa, mantener la integración entre las diversas operaciones de cosecha, componer base de datos del sistema de...
planificación forestal, proporcionar información para el pago del personal, generar información para capacitación operacional y finalmente asegurar el cumplimiento del plan estratégico de la empresa.

Akay et al. (2004), hace hincapié en la necesidad de conocer a fondo cada una de las actividades de una operación forestal, y en que la recopilación de la información debe servir de base para toda intervención que se quiera hacer.

2.5. ESTUDIO DE TIEMPOS Y MOVIMIENTOS

Es la medición, clasificación y posterior análisis sistemático y crítico del consumo de tiempo en el trabajo con el fin de aumentar la eficiencia del objeto de estudio mediante la eliminación de consumo de tiempo inútil (IUFRO, 1995).

López, citado por López (2010), afirma que esta actividad implica la técnica de establecer un estándar de tiempo permisible para realizar una tarea determinada, con base en la medición del contenido de trabajo del método prescrito, con la debida consideración de la fatiga, las demoras personales y los retrasos inevitables.

Tolosana et al. (2004), definen el estudio de tiempos, como un estudio detallado de la distribución del uso del tiempo en las diversas tareas que componen un determinado esquema de trabajo, incluyendo también el estudio del tiempo consumido por otros eventos ajenos en principio al objetivo del trabajo como retrasos, pausas, incidentes, etc.

La utilidad de los modelos o estudios de tiempos y rendimientos en el aprovechamiento forestal excede la previsión de éstos por el ejecutor del aprovechamiento, alcanzando otros objetivos más o menos alejados, como por ejemplo:

- Mejora de los sistemas o métodos de trabajo.
- Ensayo o comparación de los medios o técnicas de trabajo no conocidas.
- Valoración económica del propio trabajo en función de la evolución de la productividad, para la fijación de salarios fijos e incentivos.
Estos mismos autores mencionan que para que el estudio de tiempos cumpla su objetivo de mejorar los sistemas de trabajo, deberían precederse o acompañarse de estudios de métodos (en ocasiones denominados “estudios de movimientos”), en que se establecen los sistemas idóneos de trabajo no sólo desde el punto de vista del rendimiento, sino también de la ergonomía y seguridad.

Según López, citado por López (2010) el estudio de movimientos puede aplicarse en dos formas, el estudio visual de los movimientos y el estudio de los micro movimientos, el primero se aplica más frecuentemente por su mayor simplicidad y menor costo, el segundo solo resulta factible cuando se realiza labores de mucha actividad y que cuya duración y repetición son muy elevadas.

En la investigación forestal la mayoría de los estudios se refieren al producto, a una unidad de producción donde intervienen también tiempos de personal y de máquinas. Se tiene que distinguir si el estudio se refiere a: tiempos del personal, tiempos de máquinas o de los medios de producción, o a tiempos de materiales o productos (Tuset, 1987).

Descomponer el ciclo de trabajo en sus respectivas acciones, llamadas elementos o momentos, lleva a poder realizar un análisis completo del proceso, y más aún, detectar aquellos elementos críticos del ciclo que consumen proporcionalmente mayor cantidad de tiempo y que son motivo de un menor rendimiento (Parra y Carrey, 2000).

Tuset (1987) en su publicación, menciona que las actividades parciales deben ser definidas y delimitadas claramente, fijando el comienzo y el fin de cada una para ubicar lo que se conoce como “puntos de medición”, que es el momento en el cual termina una actividad y a la vez comienza el tiempo de la actividad siguiente.

Según Andrade, citado por Borges (2011), el estudio de tiempos y movimientos es una técnica utilizada para planificar y optimizar la actividad de cosecha forestal. El método de cronometrado puede ser utilizado para medición del tiempo e indicar los ciclos operacionales porque con este método se determina el tiempo de las actividades parciales que hacen parte de una operación. De forma conjunta, se hace necesario el estudio de los movimientos, el cual tiene la finalidad de proporcionar condiciones más propicias para llevar adelante la operación.
El enfoque del estudio del tiempo para la medición del trabajo utiliza un cronómetro o algún otro dispositivo de tiempo, para determinar el tiempo requerido para finalizar tareas determinadas. Suponiendo que se establece un estándar, el trabajador debe ser capacitado y utilizar el método prescrito mientras el estudio se está llevando a cabo (Cisterna e Insunza, citados por López, 2010).

Para Simões y Fenner (2010b) la realización de estudios sobre las variables que afectan la productividad de la cosecha de madera se torna imperativa, buscando la minimización de los costos y la optimización operacional.

2.5.1. Métodos de medición de tiempos

De los métodos de control de tiempos existentes, tales como: vuelta a cero (control por momento), multimomento (frecuencia de cada momento en un período de tiempo determinado) y cronometraje continuo (control continuo en un período de tiempo), resulta más conveniente el uso de este último, principalmente porque es un método que permite reconstruir el ciclo de trabajo, y por consiguiente, detectar posibles errores de lectura. Cabe indicar que este método es ventajoso, pero se debe ser muy riguroso al controlar un equipo, cuyo ciclo de trabajo se caracteriza por presentar algunos elementos o momentos de corta duración, como ocurre por ejemplo en el caso del harvester: volteo y proceso de la primera troza (Parra et al., citados por Parra y Carey, 2000).

2.5.1.1. Método vuelta a cero

En el método vuelta a cero o de tiempo individual, según Tuset (1987) el cronómetro es detenido en cada punto de medición y se le hace retornar de inmediato a cero, seguidamente se comienza a medir el tiempo parcial siguiente.

Tiene como ventajas, que los tiempos se obtienen directamente sin la necesidad de sustracciones, no necesita descripción de secuencias y se adaptan mejor a estudios de ciclo largo. Mientras que sus desventajas son: requiere un cronómetro especial, solamente se puede observar un operario o máquina por vez, y una vez que el observador ha medido repetidas veces un
tiempo para una actividad parcial, tiende a ser menos preciso en las lecturas anticipando el valor correspondiente.

2.5.1.2. Método mutimomento

En el método multimomento se registra la actividad que se realiza en un determinado instante, casi siempre seleccionado por un procedimiento sistemático (por medio de un cronómetro que emita un pitido a intervalos regulares, por ejemplo cada 60 segundos). Los períodos de cronometraje deben estar compuestos por jornadas completas, o bien cubrir homogéneamente todos los intervalos que componen una jornada dada la existencia de variaciones en los tiempos y los rendimientos a lo largo de la misma (Tolosana et al., 2004).

Tuset (1987) establece que en este método no se hace el registro del tiempo que se aplica a cada actividad parcial, sino que se fija un intervalo para hacer observaciones, se pone en marcha un cronómetro, luego cada vez que suena el cronómetro se anota en una planilla, y se obtienen como resultado las frecuencias porcentuales de cada actividad.

Como principal ventaja que presenta, es que se pueden observar varios operarios o máquinas a la vez, además se puede registrar secuencias de corta duración siempre que se realice los estudios durante un período suficientemente largo y no es necesaria una observación precisa de los puntos de medición. La desventaja es que no se puede reconstruir la secuencia del trabajo.

2.5.1.3. Método continuo

Según Tuset (1987), se mide el tiempo sin detener el cronómetro, cada vez que la acción pasa por un punto de medición, el operador anota la posición de los punteros sin detenerlos, junto con el nombre de la actividad recién terminada. El tiempo abarcado por cada actividad parcial se calcula por diferencia.

Dentro de las ventajas de este método están: puede reconstruirse la secuencia del trabajo, pueden identificarse los errores de lectura o de registro, requiere un cronómetro sencillo, registra demoras y elementos extraños al
trabajo, junto con los tiempos directamente productivos y se adapta mejor a los estudios de ciclos cortos que el método vuelta a cero.

Las desventajas que tiene el método continuo son: que los tiempos de cada actividad parcial deben ser calculados por diferencia, las secuencias cortas se anotan con cierta dificultad, para cada valor de tiempo se debe describir la secuencia a que corresponde y solamente se puede observar un operario o máquina por vez.

2.5.2. Clasificación de tiempos para cosecha

Según Tolosana et al. (2004), la elaboración de un estudio de tiempos incluye los siguientes pasos:

- Definición de las operaciones en cuanto a los tiempos que las componen. Se trata de separar las fases del trabajo propiamente dicho de otros elementos que no forman parte de las operaciones (por ejemplo: trabajos auxiliares, interferencias, descansos, averías, etc.) que también deben ser tenidos en cuenta en tanto condicionan los rendimientos y costes.

- Disgregación de las fases de trabajo directo en operaciones elementales. Por ejemplo, la fase de “apeo y elaboración con motosierra” se podría descomponer en apeo, desramado, tronzado, despunte y apilado. A su vez estas operaciones pueden subdividirse (por ejemplo, el apeo puede descomponerse en “preparación del árbol, corte de entalladura, corte de tumbado, derribo, desenganche, etc.”)

- Seguimiento del trabajo descompuesto en estos elementos y sub-elementos que se hayan definido.

- Análisis e interpretación de los resultados obtenidos.

Muchas de las empresas, Universidades e Institutos de investigación que se dedican al análisis del trabajo en el aprovechamiento forestal han venido llevando a cabo esta descomposición, a partir de definiciones particulares, no estandarizadas de las diversas componentes de los tiempos de trabajo, por lo que resulta difícil comparar los resultados de los distintos estudios que se presentan (Tolosana et al., 2004).

El desarrollo y uso de una nomenclatura internacionalmente aceptada, y las prácticas de estudios y trabajos es fundamental para la compatibilidad y la
utilidad final de la información de los estudios forestales sobre trabajo (IUFRO, 1995).

2.6. TERMINOLOGÍA PARA ESTUDIOS DE TIEMPOS

Se ha propuesto a nivel internacional una terminología común por parte de IUFRO, para de esta manera definir cada una de las operaciones que conforman un determinado ciclo de trabajo y poder estudiar el tiempo productivo en cada una de ellas (Tolosana et al., 2004). A continuación se presenta la terminología utilizada internacionalmente para los estudios de tiempo:

2.6.1. Tiempo de Trabajo u Operativo (TT)

Parte del tiempo total medido en que el sistema de producción considerado o una parte del mismo, contribuye directa o indirectamente en la consecución de una tarea específica del trabajo. Se divide en:

2.6.1.1. Tiempo de Trabajo Productivo o directo (TTP)

Parte del TT que es empleado en contribuir directamente en la consecución de una tarea específica del ciclo de trabajo (por ejemplo, apeo de un árbol, ciclo o viaje de desembosque). Dentro de este se puede considerar:

- Tiempo de Trabajo Principal (TTPrinc)

Parte del TTP usado en cambiar el objeto de trabajo (en el caso de aprovechamiento forestal de madera, las piezas maderables, árboles, fustes, troza o astillas) en lo que respecta a su forma, posición o estado dentro de las definiciones de las tareas de trabajo, por ejemplo apeo, desramado, apilado, arrastre, carga.

- Tiempo de Trabajo Complementario (TTComp):

Parte del TTP en que no ocurre lo anterior, pero que es necesario para completar la tarea y que es parte integral del ciclo de trabajo como posicionamiento de la maquinaria o el trabajador, limpieza del área de trabajo, etc.
2.6.1.2. Tiempo de Trabajo Indirecto (TTI)

Parte del TT que no es empleado directamente en la consecución de una tarea específica del ciclo de trabajo, pero que se desarrolla como apoyo necesario a la misma.

- Tiempo de Preparación (TPrep): parte del TTI que se emplea para la preparación de las máquinas y las condiciones de la zona de trabajo. Se divide a su vez en:
 - Tiempo de traslado (TTrasl): parte del TPrep que se emplea para el transporte de maquinaria, trabajadores, etc, a un nuevo sitio de trabajo.
 - Tiempo de Planificación (TPlan): parte del TPrep que se emplea en el desarrollo de una estrategia operacional como por ejemplo recorrer y planificar el área de aprovechamiento, marcando calles de tractor, áreas sensibles, etc.
 - Tiempo de Preparación Operacional (TPOp): parte del TPrep usada para preparar el sistema de aprovechamiento con el fin de que siga trabajando en un sitio en particular, como por ejemplo, cambio de turno, desplazamiento del personal por el monte, etc.
 - Tiempo de Cambio de Posición (TCP): parte del TPrep empleado en instalar y desinstalar el sistema productivo. Se divide en:
 - Tiempo de Instalación (TIns): parte del TCP que se emplea en poner a punto el sistema de producción para que sea operativo en una nueva área de trabajo, como por ejemplo estacionamiento y anclaje del tractor para comenzar el arrastre (“cableo”) desde una pista, montaje de un cable aéreo, etc.
 - Tiempo de Desmontaje (TDesm): parte del TCP que se emplea para poner a punto el sistema de producción para un traslado a un área de trabajo, como por ejemplo liberación de anclaje y puesta en marcha de un tractor al finalizar el arrastre (“cableo”) desde una pista en una cierta posición, desmontaje de un cable aéreo previo al cambio de “calle” etc.
– Tiempo de Servicio (TServ): parte del TPrep que se emplea para mantener la capacidad de trabajo de las máquinas en el sistema de producción. Se divide en:

 • Tiempo de Reparación (TRepar): parte de TServ que se emplea en la reparación de daños o desgaste de elementos del sistema de trabajo, que ocurren como interrupciones no críticas, como por ejemplo una pequeña avería, las espera de un mecánico, el traslado de una pieza dañada para su reparación.

 • Tiempo de Mantenimiento (TMant): parte de TServ que se emplea para reparar la degradación progresiva de las herramientas y maquinaria, constituyendo una interrupción cíclica, como por ejemplo el mantenimiento normal de las piezas y maquinaria, la espera a un mecánico de mantenimiento, el transporte de la maquinaria para una revisión periódica, la comprobación diaria del funcionamiento del equipo.

– Tiempo de Repostado (T Repost): parte del TServ que se emplea para repostado de la máquina, incluyendo el traslado de la máquina para repostar, o el transporte del combustible desde su lugar de almacenamiento tanto como el propio repostado.

– Tiempo de Trabajo Auxiliar (TTA): parte del TTI que se emplea para realizar tareas auxiliares que permiten que el trabajo continúe en un sistema productivo, como por ejemplo, ayudar a otro trabajador en dificultades, amontonar residuos en las áreas húmedas, etc.

2.6.2. Tiempo No Operativo (TNO)

No se realizan tareas directas ni auxiliares que contribuyan a la consecución de los objetivos de trabajo.

2.6.2.1. Tiempo de Interrupción (TInterrupción)

Parte TNO que se considera como una interrupción en el trabajo sin conexión directa o indirecta con las tareas que lo componen, como por ejemplo recabar información, parar por inclemencias del tiempo, porque se haya producido accidente o incidente laboral, por visitas, etc. Aquí se debe también incluir las interrupciones injustificadas en una categoría aparte.
2.6.2.2. Tiempo de Demora Relacionada con el Trabajo (TDT)

Parte del TNO que está relacionado con la organización del trabajo. Se divide en:

- Tiempo de Descanso y Necesidades Personales (TDNP): parte del TDT que se emplea en la alimentación de los trabajadores, en el descanso que se estima necesario, las necesidades fisiológicas, etc.

- Tiempo de Interferencia (TInterf): parte del TDT en la cual no ocurre ninguna actividad debido a la interferencia de una operación necesaria dentro del sistema de producción como por ejemplo esperar a que terminen otras tareas de las que dependa la que se analiza, etc.

- Tiempo de Desplazamiento al lugar de trabajo (TDespl): parte del TDT en la cual los operarios se desplazan desde su lugar de residencia al trabajo al principio de la jornada, o en sentido contrario cuando ésta finaliza.

2.6.2.3. Tiempo de comida (fuera del lugar de trabajo)

Parte del TDT invertido, en el caso de que los operarios se desplacen para comer fuera del lugar de trabajo por ejemplo, a un pueblo cercano en los traslados y en la propia comida.

2.7. RENDIMIENTOS EN COSECHA

Martins et al., citados por Da Silva (2012) trabajando con una cosechadora John Deere 1270 D en un monte de eucalipto, con un volumen medio de 0,32 m3 sin corteza por árbol y pendiente en terreno de 11,25° obtuvieron una productividad de 30,74 m3.h$^{-1}$.

Minette et al. (2008), comparando la extracción de trozas de eucalipto de 2,80 metros, con forwarder y tractor agrícola auto cargable (máquina adaptada) encontró que el tiempo total del ciclo de trabajo del forwarder es menor que el del tractor agrícola, siendo la productividad de estos de 25,65 m3.h$^{-1}$ y 23,83 m3.h$^{-1}$, y las distancias medias de extracción de 153 y 321 metros respectivamente.
En el ciclo de trabajo encontró que los elementos que consumieron mayor parte del tiempo fue la carga con 44,54% y 49,6% del tiempo total del ciclo, para forwarder y el tractor adaptado respectivamente (Minette et al., 2008).

Minette et al. (2004) estudiando la extracción con forwarder para tres subsistemas de cosecha (cosechas con distintos tipos de máquina) encontró que el ciclo operacional total de la máquina en promedio fue de 17,28, 16, 24,68 minutos para cada subsistema (feller buncher, slingshot, motosierra respectivamente). La distancia para cada subsistema fue de 130 m aproximadamente.

Este mismo autor encontró que el porcentaje de tiempo para la carga fue mayor a 50% para los tres subsistemas, y también que los elementos carga más descarga juntos correspondían a más del 80% del tiempo total del ciclo operacional del forwarder. Las productividades fueron de 35,47, 40,15 y 24,38 m³ sin corteza.h⁻¹ para el subsistema con feller buncher, slingshot y motosierra respectivamente.

De Oliveira et al. (2009b) estudiando la extracción de trozas de pino con forwarder encontró que los elementos parciales carga y descarga consumieron el mayor porcentaje de tiempo total del ciclo operacional, este fue de 55,4% del tiempo total (27,1 minutos.ciclo⁻¹), y la productividad media encontrada fue de 31,3 m³ con corteza.he⁻¹ para una distancia media de extracción de 121 m. La eficiencia operacional fue de 70% y la disponibilidad mecánica de 89%.

Los tiempos de viaje vacío y viaje cargado consumieron en promedio 7,9 y 7,7% respectivamente del tiempo total, siendo afectado por la distancia media de extracción (De Oliveira et al., 2009b)

Bantel (2006) estudiando tres subsistemas de extracción de madera en montes de eucaliptos, con una distancia de extracción de 150 m para cada subsistema. El primer subsistema consistía en que las gavillas estaban sobre troncos y dispuestas a ambos lados del camino de extracción, en el subsistema 2 las gavillas estaban sobre troncos pero a un solo lado del camino de extracción, y el tercer subsistema era con gavillas directamente sobre el suelo a ambos lados del camino de extracción. Para este estudio se encontró que el menor tiempo total del ciclo fue para el subsistema 2 seguido por el 1 y el 3. Esto se debió a que en el subsistema 2 gracias al arreglo y al mayor volumen
de madera por gavilla, se necesitaron menos números de ciclos de la grúa para la carga del forwarder. Los rendimientos encontrados para el subsistema 1, 2 y 3 fueron de 77,65, 109,29 y 84,26 m³.h⁻¹ respectivamente.

Simões et al. (2010a) estudiando la cosecha de madera de eucalipto con harvester Caterpillar (CAT 320 CL) y cabezal Valmet encontró una productividad de 183 árboles.h⁻¹, y en m³.h⁻¹ la productividad fue de 41,4.

Borges (2011) estudiando 8 marcas de harvester, encontró un rango de productividad de 15,5 a 17,7 m³.h⁻¹.

Burla (2008) estudiando harvester (John Deere 1270 D) en la cosecha de eucalipto encontró a través del estudio de tiempo que las actividades de descortezado, trozado y posicionamiento del cabezal representaron 28,3%, 23,1% y 22,0% respectivamente totalizando 73,4% del tiempo total del ciclo. El tiempo de desplazamiento represento el 7% del tiempo total del ciclo. El rendimiento medio fue de 109 árboles.he⁻¹ y 28 m³.sc.he.

Linhares et al. (2012) estudiando la eficiencia y el desempeño operacional de harvester y forwarder, encontró una eficiencia operacional promedio fue de 73,2% para harvester y la disponibilidad mecánica de 86,6%. Mientras que en el forwarder la eficiencia operacional fue de 84,7% y la disponibilidad de 92%.

Da Silva (2012) estudiando la productividad de un sistema de trozas cortas encontró que el ciclo operacional total promedio del forwarder fue de 28 minutos, para una distancia de extracción de 150 m. Al duplicarse la distancia este tiempo aumento un 33%. La actividad de carga fue la que demando mayor porcentaje del tiempo total del ciclo seguida por la descarga, y juntas representaron en promedio 66% del tiempo total. Los porcentajes de las etapas del ciclo fueron en promedio los siguientes: 41,1% en la carga, 18,6% en el traslado con carga, 0.76% en limpieza, 24,58% en la descarga y 15.04% en el traslado cargado.

Minette et al. (2004) estudiaron el forwarder timberjack (1210 B) en extracción de madera de eucalipto con trozas de 6 m para una distancia media de extracción de 132 m, observando los siguientes porcentajes: 7,38% en el viaje sin carga, 53,28% en la carga, 5,96% en el viaje con carga y 28,33% en la descarga, completando un ciclo operacional de 16 minutos en promedio.
López et al., citados por Da Silva (2012) estudiando la operación de cosecha de pino con un harvester Caterpillar (CAT 320 short tail) con rodo de orugas metálicas en un terreno con pendiente 3,06° y un volumen por árbol de 0,42 m³.arbol⁻¹ obtuvo una productividad promedio de 32,2 m³.h⁻¹.

Da Silva (2012) encontró para harvester John Deere (1270 D), una productividad de 36,9 m³.h⁻¹, para una pendiente de 3°.

Paula, citado por Da Silva (2012), estudiando dos harvester Komatsu modelos PC200 y PC280 trabajando con árboles de 0,18 y 0,22 m³ encontró productividades de 18,57 y 19,88 m³sc.h⁻¹ respectivamente, para una pendiente máxima de hasta 6,5%.

Jacques (2008), estudiando espaciamientos y arreglos de los árboles en cosecha con harvester (1270 D), establece que la mayor proporción de tiempo medio del ciclo de cosecha por árbol fue el de trozado con 41,4% del tiempo total, seguido de la fase de descortezado-desramado con 30%.

Según Simões, citado por Ibarra y Rodríguez (2010), durante el estudio con el harvester, fueron procesados 11.638 trozas con un largo de 6 metros y volumen medio de 0,0822 m³, que correspondió a un volumen total de 895,93 m³ de madera procesada. El rendimiento operacional efectivo fue de 183 árboles apeados, que resultó en 41.45 m³ de madera con cáscara apeada y procesada por hora.

Ibarra y Rodríguez (2010) estudiando la productividad de un harvester PROSILVA, modelo 910 con cabezal Kesla en cosecha de Eucalyptus globulus maidenii de 0,26 m³sc.árbol⁻¹ obtuvo un rendimiento promedio de 187 árboles.h⁻¹ y 22,8 m³.he⁻¹, con un mínimo absoluto de 19,1 y un máximo absoluto de 27,7 m³.he⁻¹.

Este autor encontró que las etapas del ciclo de trabajo del harvester fueron de: 57% el descortezado, 17% el apeo, 12% trozado, 13% posicionamiento y 1% desplazamiento.

Cussano et al. (2009) estudiando la cosecha de Eucalyptus grandis con retroexcavadora de orugas JCB JS200LC adaptada con cabezal Kesla 30RHS obtuvo un rendimiento para árboles de 1,08 m³.árbol⁻¹ en promedio, de 26,5 m³.he⁻¹, con un máximo de 28,2 y un mínimo de 24,8 m³.he⁻¹.
Cussano et al. (2009) estudiando la extracción con forwarder Ponsse K100 Buffalo King encontró los siguientes porcentajes para el ciclo operacional: 47% para la carga, 38% la descarga, 8% viaje vacío y 7% viaje cargado, en una distancia de 210 m con un rendimiento de 25,6 m³.he⁻¹. Y para una distancia de 466 m los porcentajes fueron de 52% carga, 27% descarga, 13% viaje cargado y 8% viaje vacío.

Martins dos Santos, citado por Cussano et al. (2009) obtuvo un rendimiento del forwarder, de 26.88 m³sc.h⁻¹ con un volumen medio por árbol de 0,18 m³, trozas de 5,50 m de largo y una distancia de extracción de 300 m.

Wagner (2006) comparando dos harvester Timberjack 1270 D con cabezal 762 C encontró un rendimiento para este de 28,58 m³sc.he⁻¹ cosechando Eucalyptus saligna de 0,58 m³.árbol⁻¹. En cuanto al ciclo operacional de trabajo, el cual consumió en promedio 67 segundos por árbol, encontró que el descortezado fue la fase que consumió la mayor parte del tiempo seguido por el trozado, corte, avance y acomodo de residuos.
3. MATERIALES Y MÉTODOS

3.1. CARACTERÍSTICAS DEL ÁREA BAJO ESTUDIO

El estudio fue realizado en tres establecimientos, dentro de los cuales estaban operando tres frentes de cosecha de la empresa UPM Forestal Oriental.

3.1.1. Ubicación

Los primeros 3 días del estudio se realizaron en el establecimiento “El Rosario” ubicado en el departamento de Rio Negro sobre la Ruta No. 24 Km 49,5.

El segundo establecimiento visitado fue “Santa Matilde” en el departamento de Rio Negro a unos 12 km de la localidad de Algorta por camino vecinal, también propiedad de UPM Forestal Oriental.

El último establecimiento donde se realizó el estudio fue “Gadner S.A.” ubicado en el departamento de Rio Negro sobre la Ruta No. 25 Km 58,5.

Las coordenadas geográficas de los predios son:

Cuadro No. 1. Coordenadas geográficas de los predios

<table>
<thead>
<tr>
<th>Predio</th>
<th>Longitud</th>
<th>Latitud</th>
</tr>
</thead>
<tbody>
<tr>
<td>El Rosario</td>
<td>57°56'56” O</td>
<td>32°48'39” S</td>
</tr>
<tr>
<td>Santa Matilde</td>
<td>57°30'02” O</td>
<td>32°28'33” S</td>
</tr>
<tr>
<td>Gadner S.A.</td>
<td>57°24'35” O</td>
<td>32°30'53” S</td>
</tr>
</tbody>
</table>

3.1.2. Suelos

Los tipos de suelos presentes según clasificación CONEAT en el establecimiento 1 (“El Rosario”) son 09.3 y en las zonas más bajas e inundables 03.52. Los suelos corresponden a Brunosoles Subéutricos de textura franco arenosa o franco arcillo arenosa, fertilidad media y drenaje moderadamente bueno a imperfecto y en las áreas de texturas más arenosas están Argisoles y Planosoles.
En el establecimiento 2 ("Santa Matilde") los tipos de suelos presentes corresponde a los suelos 9.3 y asociado a las vías de drenaje están los suelos 9.1 según la clasificación CONEAT. El relieve en general es suavemente ondulado con pendientes de 1 a 3% y los suelos predominantes son los Planosoles Dístricos y Argisoles Dístricos. Son suelos de fertilidad baja e imperfectamente drenados.

Los tipos de suelos presentes en el establecimiento 3 ("Gadner S.A.") corresponden a los suelos 03.2, 10.15, 11.5, 9.1, 9.3 según la clasificación CONEAT. Los suelos 03.2 están en zonas de relieve plano y los suelos predominantes son Gleysoles Hápicos Melánicos de color negro a gris muy oscuro, arcillo limosos, fertilidad muy alta y drenaje pobre, y Fluvisoles Isotexturales Melánicos (Suelos Aluviales), de color negro, franco limosos a franco arcillo limosos, fertilidad muy alta y moderadamente bien drenados. El área es inundable en forma rápida y por cortos periodos.

En las laderas están los suelos 10.15 con relieve corresponde a laderas ligeramente convexas, de pendientes de alrededor de 2%. Los suelos dominantes son Brunosoles Subéutricos Típicos y Lúvicos.

Los suelos 11.5 se presentan en zonas de relieve suavemente ondulado, con pendientes de alrededor de 2%. Los suelos dominantes corresponden a Brunosoles Éutricos Típicos moderadamente profundos y superficiales, y en las concavidades, Planosoles Éutricos Melánicos.

En las áreas suavemente onduladas están los suelos 9.3 los cuales presentan como suelos dominantes a Planosoles Dístricos y Argisoles Dístricos los cuales son de fertilidad baja e imperfectamente drenados.

Durante las jornadas de estudio, las condiciones del suelo no presentaron inconvenientes para el tráfico de las máquinas.

3.1.3. Clima

Al territorio del Uruguay le corresponde en la Clasificación Climática de Koeppen la clasificación "Cfa", UdelaR (URUGUAY). FC (s.f.). Que presenta las siguientes características:

- Clima templado, moderado y lluvioso (temperatura del mes más frío entre -3° y 18°C): "tipo C".
• Clima de temperie húmeda (La lluvia es irregular, condiciones intermedias entre el w y el s de Koeppen):“Tipo f”.

• Variedad específica de temperatura (Temperatura mes más cálido superior a 22 grados Celsius):“tipo a”

Según los registros de la dirección nacional de meteorología, tomando datos promedio de la precipitación acumulada anualmente para la estación de Paysandú, la precipitación es de 1218 mm por año.

En cuanto a la temperatura de la zona, la temperatura media máxima anual es de 23,8 °C, mientras que la media mínima anual es de 12,2 °C (URUGUAY. MDN. DNM, s.f.).

Cabe aclarar que durante las jornadas de medición, no se registraron precipitaciones, el cielo estuvo despejado y sin vientos que afectaran la actividad de cosecha.

3.1.4. Características de la masa forestal

El establecimiento 1 cuenta con 28 rodales a cosechar, de los cuales 15 son de Eucalyptus grandis y 13 de Eucalyptus dunnii.

El área total a cosechar es de 546 ha, las cuales cuentan con 945 árboles en promedio por hectárea, con un volumen promedio de 0.31 m³ por árbol y 290 m³ por hectárea, totalizando 157.731 m³ a cosechar.

El estudio de tiempos se llevo a cabo en 6 rodales que se detallan a continuación.
Cuadro No. 2. Detalles de los rodales estudiados en el establecimiento 1

<table>
<thead>
<tr>
<th>No. Cuadro</th>
<th>Área (ha)</th>
<th>Especie</th>
<th>Edad (años)</th>
<th>vol.ha1</th>
<th>Árboles.ha$^{-1}$</th>
<th>vol.Árbol1</th>
<th>Vol. TOTAL</th>
<th>IMA*</th>
</tr>
</thead>
<tbody>
<tr>
<td>A064</td>
<td>21.9</td>
<td>E. grandis</td>
<td>11</td>
<td>253</td>
<td>866</td>
<td>0.29</td>
<td>5545</td>
<td>23</td>
</tr>
<tr>
<td>A066</td>
<td>21.5</td>
<td>E. grandis</td>
<td>12</td>
<td>250</td>
<td>854</td>
<td>0.29</td>
<td>5375</td>
<td>21</td>
</tr>
<tr>
<td>A037</td>
<td>26.9</td>
<td>E. grandis</td>
<td>11</td>
<td>203</td>
<td>1347</td>
<td>0.15</td>
<td>5462</td>
<td>18</td>
</tr>
<tr>
<td>A068b</td>
<td>26.3</td>
<td>E. grandis</td>
<td>12</td>
<td>251</td>
<td>698</td>
<td>0.36</td>
<td>6596</td>
<td>21</td>
</tr>
<tr>
<td>A067</td>
<td>29.6</td>
<td>E. dunnii</td>
<td>10</td>
<td>208</td>
<td>926</td>
<td>0.22</td>
<td>6143</td>
<td>21</td>
</tr>
<tr>
<td>A070</td>
<td>41.2</td>
<td>E. grandis</td>
<td>12</td>
<td>246</td>
<td>783</td>
<td>0.31</td>
<td>10130</td>
<td>21</td>
</tr>
<tr>
<td>Total</td>
<td>167</td>
<td></td>
<td>11</td>
<td>235</td>
<td>912</td>
<td>0.27</td>
<td>39251</td>
<td>21</td>
</tr>
</tbody>
</table>

*Incremento medio anual
Fuente: elaborado en base a datos aportados por UPM Forestal Oriental1

El establecimiento 2 dispone de 8 rodales a cosechar, 3 de *Eucalyptus dunnii* y los restantes de *Eucalyptus grandis*. Disponiendo en total de 118 hectáreas para cosechar, con árboles de 0.21 m3 en promedio, 251 m3.ha$^{-1}$ en promedio, 1158 árboles.ha$^{-1}$ en promedio, lo cual da un total de 29.664 m3 a cosechar.

Los rodales en los cuales se llevó a cabo el estudio de tiempos se detallan a continuación.

Cuadro No. 3. Detalles de los rodales estudiados en el establecimiento 2

<table>
<thead>
<tr>
<th>No. Cuadro</th>
<th>Área (ha)</th>
<th>Especie</th>
<th>Edad (años)</th>
<th>vol.ha⁻¹</th>
<th>Árboles.ha⁻¹</th>
<th>vol.Árbol⁻¹</th>
<th>Vol. TOTAL</th>
<th>IMA*</th>
</tr>
</thead>
<tbody>
<tr>
<td>G179</td>
<td>12.7</td>
<td>E. grandis</td>
<td>9</td>
<td>253</td>
<td>1153</td>
<td>0.22</td>
<td>3209</td>
<td>28</td>
</tr>
<tr>
<td>G081</td>
<td>26.7</td>
<td>E. dunnii</td>
<td>10</td>
<td>252</td>
<td>1131</td>
<td>0.22</td>
<td>6718</td>
<td>25</td>
</tr>
<tr>
<td>G178</td>
<td>31.9</td>
<td>E. grandis</td>
<td>9</td>
<td>256</td>
<td>1133</td>
<td>0.23</td>
<td>8169</td>
<td>28</td>
</tr>
<tr>
<td>G175</td>
<td>7.3</td>
<td>E. dunnii</td>
<td>9</td>
<td>261</td>
<td>1204</td>
<td>0.22</td>
<td>1906</td>
<td>29</td>
</tr>
<tr>
<td>Total</td>
<td>78.6</td>
<td></td>
<td>9</td>
<td>255</td>
<td>1155</td>
<td>0.22</td>
<td>20002</td>
<td>28</td>
</tr>
</tbody>
</table>

*Incremento medio anual
Fuente: elaborado en base a datos aportados por UPM Forestal Oriental

El establecimiento 3 presenta 19 rodales de *Eucalyptus grandis* y un rodal de *Eucalyptus globulus maidenii* para cosechar. La superficie de estos da un total de 364 ha para cosechar con un volumen promedio por ha de 385 m³, 943 árboles.ha⁻¹ con volúmenes promedio por árbol de 0.4 m³, con los cuales se cuenta con 125.902 m³ para cosechar.

A continuación se detallan los rodales en los cuales se realizó el estudio de tiempos.

Cuadro No. 4. Detalles de los rodales estudiados en el establecimiento 3

<table>
<thead>
<tr>
<th>No. Cuadro</th>
<th>Área (ha)</th>
<th>Especie</th>
<th>Edad (años)</th>
<th>vol.ha⁻¹</th>
<th>Árboles.ha⁻¹</th>
<th>vol.Árbol⁻¹</th>
<th>Vol. TOTAL</th>
<th>IMA*</th>
</tr>
</thead>
<tbody>
<tr>
<td>GGA 3</td>
<td>22.4</td>
<td>E. grandis</td>
<td>14</td>
<td>505</td>
<td>983</td>
<td>0.51</td>
<td>11310</td>
<td>36</td>
</tr>
<tr>
<td>GGA 4</td>
<td>17.0</td>
<td>E. grandis</td>
<td>13</td>
<td>310</td>
<td>1044</td>
<td>0.30</td>
<td>5270</td>
<td>24</td>
</tr>
<tr>
<td>GGA 7</td>
<td>24.9</td>
<td>E. grandis</td>
<td>14</td>
<td>506</td>
<td>1055</td>
<td>0.48</td>
<td>12603</td>
<td>36</td>
</tr>
<tr>
<td>GGA 30</td>
<td>14.9</td>
<td>E. grandis</td>
<td>10</td>
<td>280</td>
<td>893</td>
<td>0.31</td>
<td>4176</td>
<td>28</td>
</tr>
<tr>
<td>Total</td>
<td>79.2</td>
<td></td>
<td>12</td>
<td>400</td>
<td>993</td>
<td>0.40</td>
<td>33359</td>
<td>31</td>
</tr>
</tbody>
</table>

*Incremento medio anual
Fuente: elaborado en base a datos aportados por UPM Forestal Oriental

En general el estado de los árboles cosechados durante las jornadas de medición en los tres predios era bueno y no se encontró sotobosque. Desde el
punto de vista cualitativo todos los rodales son de origen fustal y de composición de edades coetáneo.

3.2. MATERIALES UTILIZADOS

Los materiales utilizados fueron:

- Fotografías Satelitales.
- Cámara fotográfica.
- GPS.
- Dos cronómetros digitales con señal auditiva.
- Planillas de campo.

3.3. MÁQUINAS UTILIZADAS

En el frente 1 se observaron 5 harvester, 3 forwarder, y una sexta cosechadora utilizada como back-up, es decir utilizada como suplente cuando alguna de las otras máquinas no estaba disponible para trabajar. A continuación se muestran los modelos y las horas de uso de cada máquina.

Cuadro No. 5. Marca, modelo y horas de uso de las máquinas del frente 1

<table>
<thead>
<tr>
<th>Máquina</th>
<th>Marca y modelo</th>
<th>Horas de uso</th>
<th>Promedio Horas de uso</th>
</tr>
</thead>
<tbody>
<tr>
<td>Harvester</td>
<td>John Deere 1470D</td>
<td>14499</td>
<td></td>
</tr>
<tr>
<td></td>
<td>John Deere 1270E</td>
<td>5792</td>
<td></td>
</tr>
<tr>
<td></td>
<td>John Deere 1270E</td>
<td>4801</td>
<td></td>
</tr>
<tr>
<td></td>
<td>John Deere 1270E</td>
<td>6082</td>
<td></td>
</tr>
<tr>
<td></td>
<td>John Deere 1270E</td>
<td>4517</td>
<td></td>
</tr>
<tr>
<td>Forwarder</td>
<td>John Deere 1710D</td>
<td>16798</td>
<td>7138</td>
</tr>
<tr>
<td></td>
<td>John Deere 1710D</td>
<td>15172</td>
<td></td>
</tr>
<tr>
<td></td>
<td>John Deere 1710D</td>
<td>10252</td>
<td>14074</td>
</tr>
</tbody>
</table>
El segundo frente visitado cuenta con 5 harvester, 1 retroexcavadora adaptada para la cosecha, y para la extracción 2 forwarder. A continuación se muestran los modelos y las horas de uso de cada máquina.

Cuadro No. 6. Marca, modelo y horas de uso de las máquinas del frente 2

<table>
<thead>
<tr>
<th>Máquina</th>
<th>Marca y modelo</th>
<th>Horas de uso</th>
<th>Promedio Horas de uso</th>
</tr>
</thead>
<tbody>
<tr>
<td>Harvester</td>
<td>John Deere 1270D</td>
<td>20743</td>
<td></td>
</tr>
<tr>
<td></td>
<td>John Deere 1270D</td>
<td>23371</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hitachi</td>
<td>14411</td>
<td></td>
</tr>
<tr>
<td></td>
<td>John Deere 1270D</td>
<td>14140</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Komatsu 941</td>
<td>5990</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Komatsu 941</td>
<td>4653</td>
<td>13885</td>
</tr>
<tr>
<td></td>
<td>Komatsu 890.3</td>
<td>5279</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Komatsu 890.3</td>
<td>4645</td>
<td>4962</td>
</tr>
</tbody>
</table>

Las máquinas que se observaron en el frente 3, fueron 4 harvester, una retroexcavadora adaptada para la cosecha, y 4 forwarder. A continuación se muestran los modelos y las horas de uso de cada máquina.

Cuadro No. 7. Marca, modelo y horas de uso de las máquinas del frente 3

<table>
<thead>
<tr>
<th>Máquina</th>
<th>Marca y modelo</th>
<th>Horas de uso</th>
<th>Promedio Horas de uso</th>
</tr>
</thead>
<tbody>
<tr>
<td>Harvester</td>
<td>John Deere 1270D</td>
<td>22308</td>
<td></td>
</tr>
<tr>
<td></td>
<td>John Deere 1270D</td>
<td>20132</td>
<td></td>
</tr>
<tr>
<td></td>
<td>John Deere 1270D</td>
<td>21139</td>
<td></td>
</tr>
<tr>
<td></td>
<td>John Deere 1270D</td>
<td>20480</td>
<td>20376</td>
</tr>
<tr>
<td></td>
<td>Hitachi Zx 200</td>
<td>17819</td>
<td></td>
</tr>
<tr>
<td>Forwarder</td>
<td>John Deere 1710D</td>
<td>19247</td>
<td></td>
</tr>
<tr>
<td></td>
<td>John Deere 1710D</td>
<td>18915</td>
<td></td>
</tr>
<tr>
<td></td>
<td>John Deere 1710D</td>
<td>18078</td>
<td></td>
</tr>
<tr>
<td></td>
<td>John Deere 1710D</td>
<td>19530</td>
<td>18943</td>
</tr>
</tbody>
</table>
3.3.1. **Características de las cosechadoras**

A continuación se muestra las características de cada una de las cosechadoras que se estudiaron.

Cuadro No. 8. Datos técnicos del harvester Komatsu 941.1

<table>
<thead>
<tr>
<th>Marca</th>
<th>Modelo</th>
<th>Peso</th>
<th>Motor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Komatsu</td>
<td>941.1</td>
<td>23500 kg</td>
<td>84 CTA, 6 cilindros</td>
</tr>
<tr>
<td>Cilindrada</td>
<td>Depósito de combustible</td>
<td>Ancho</td>
<td>Largo</td>
</tr>
<tr>
<td>8,4 l</td>
<td>550 l</td>
<td>2990 mm</td>
<td>8075 mm</td>
</tr>
<tr>
<td>Cabezal</td>
<td>Rodado</td>
<td>Grúa</td>
<td>Alcance de grúa</td>
</tr>
<tr>
<td>Komatsu 370.2</td>
<td>700/70 x 34</td>
<td>CRH 24</td>
<td>10 m</td>
</tr>
<tr>
<td>Sistema hidráulico</td>
<td>Caudal</td>
<td>Depósito de aceite hidráulico</td>
<td>Presión del sistema</td>
</tr>
<tr>
<td>Bomba de pistón variable</td>
<td>346 l/min a 1650 rpm</td>
<td>235 l</td>
<td>280 bar</td>
</tr>
</tbody>
</table>

Fuente: adaptado de Komatsu (s.f.)
Cuadro No. 9. Datos técnicos del harvester John Deere 1270 D

<table>
<thead>
<tr>
<th>Marca</th>
<th>Modelo</th>
<th>Peso</th>
<th>Motor</th>
</tr>
</thead>
<tbody>
<tr>
<td>John Deere</td>
<td>1270 D</td>
<td>17500 kg</td>
<td>John Deere 6081 HTJ, 6 cilindros</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cilindrada</th>
<th>Depósito de combustible</th>
<th>Ancho</th>
<th>Largo</th>
</tr>
</thead>
<tbody>
<tr>
<td>9,0</td>
<td>480 l</td>
<td>2860 mm</td>
<td>7580 mm</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cabezal</th>
<th>Rodado</th>
<th>Grúa</th>
<th>Alcance de grúa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Waratah H270</td>
<td>700/70 x 34</td>
<td>210H</td>
<td>9,7 m</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sistema hidráulico</th>
<th>Caudal</th>
<th>Depósito de aceite hidráulico</th>
<th>Presión del sistema</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bomba de pistón variable</td>
<td>Sd</td>
<td>220 l</td>
<td>24-28 Mpa</td>
</tr>
</tbody>
</table>

Fuente: adaptado de John Deere (s.f.)

Cuadro No. 10. Datos técnicos del harvester John Deere 1470 D

<table>
<thead>
<tr>
<th>Marca</th>
<th>Modelo</th>
<th>Peso</th>
<th>Motor</th>
</tr>
</thead>
<tbody>
<tr>
<td>John Deere</td>
<td>1470 D</td>
<td>19700 kg</td>
<td>John Deere 6081 HTJ, 6 cilindros</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cilindrada</th>
<th>Depósito de combustible</th>
<th>Ancho</th>
<th>Largo</th>
</tr>
</thead>
<tbody>
<tr>
<td>9,0</td>
<td>480 l</td>
<td>2860 mm</td>
<td>7715 mm</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cabezal</th>
<th>Rodado</th>
<th>Grúa</th>
<th>Alcance de grúa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Waratah H270</td>
<td>700/70 x 34</td>
<td>210H</td>
<td>11 m</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sistema hidráulico</th>
<th>Caudal</th>
<th>Depósito de aceite hidráulico</th>
<th>Presión del sistema</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bomba de pistón variable</td>
<td>Sd</td>
<td>220 l</td>
<td>24-28 Mpa</td>
</tr>
</tbody>
</table>

Fuente: adaptado de John Deere (s.f.)
Cuadro No. 11. Datos técnicos de harvester John Deere 1270 E

<table>
<thead>
<tr>
<th>Marca</th>
<th>Modelo</th>
<th>Peso</th>
<th>Motor</th>
</tr>
</thead>
<tbody>
<tr>
<td>John Deere</td>
<td>1270 D</td>
<td>19250 kg</td>
<td>John Deere 6090, 6 cilindros</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cilindrada</th>
<th>Depósito de combustible</th>
<th>Ancho</th>
<th>Largo</th>
</tr>
</thead>
<tbody>
<tr>
<td>9,0 l</td>
<td>435 l</td>
<td>2960 mm</td>
<td>7550 mm</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cabezal</th>
<th>Rodado</th>
<th>Grúa</th>
<th>Alcance de grúa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Waratah H270</td>
<td>700/70 x 34</td>
<td>CH7</td>
<td>9,7 m</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sistema hidráulico</th>
<th>Caudal</th>
<th>Depósito de aceite hidráulico</th>
<th>Presión del sistema</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bomba de pistón variable</td>
<td>Sd</td>
<td>300 l</td>
<td>24-28 Mpa</td>
</tr>
</tbody>
</table>

Fuente: adaptado de John Deere (s.f.)

Cuadro No. 12. Datos técnicos de harvester 1470 E

<table>
<thead>
<tr>
<th>Marca</th>
<th>Modelo</th>
<th>Peso</th>
<th>Motor</th>
</tr>
</thead>
<tbody>
<tr>
<td>John Deere</td>
<td>1470 D</td>
<td>20000 kg</td>
<td>John Deere 6090, 6 cilindros</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cilindrada</th>
<th>Depósito de combustible</th>
<th>Ancho</th>
<th>Largo</th>
</tr>
</thead>
<tbody>
<tr>
<td>9,0 l</td>
<td>435 l</td>
<td>2990 mm</td>
<td>7690 mm</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cabezal</th>
<th>Rodado</th>
<th>Grúa</th>
<th>Alcance de grúa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Waratah H270</td>
<td>700/70 x 34</td>
<td>CH8</td>
<td>10 m</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sistema hidráulico</th>
<th>Caudal</th>
<th>Depósito de aceite hidráulico</th>
<th>Presión del sistema</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bomba de pistón variable</td>
<td>Sd</td>
<td>300 l</td>
<td>24-28 Mpa</td>
</tr>
</tbody>
</table>

Fuente: adaptado de John Deere (s.f.)
3.3.2. **Características de los forwarder**

A continuación se describen los forwarder.

Cuadro No. 13. Datos técnicos del forwarder Komatsu 890.3

<table>
<thead>
<tr>
<th>Marca</th>
<th>Modelo</th>
<th>Capacidad de carga</th>
<th>Sistema rodante</th>
</tr>
</thead>
<tbody>
<tr>
<td>Komatsu</td>
<td>890.3</td>
<td>18 toneladas</td>
<td>Neumático 8x8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Peso</th>
<th>Motor</th>
<th>Potencia nominal</th>
<th>Depósito de combustible</th>
</tr>
</thead>
<tbody>
<tr>
<td>19100 kg</td>
<td>Sisu diesel 74 CTA, tubo de 6 cilindros</td>
<td>230 hp</td>
<td>210 l</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sistema hidráulico</th>
<th>Caudal</th>
<th>Depósito de aceite hidráulico</th>
<th>Presión de trabajo máxima</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 circuito con bomba de piston variable</td>
<td>0-340 l/min a 2000 rpm</td>
<td>130 l</td>
<td>23,5 Mpa</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modelo de garra</th>
<th>Modelo grúa</th>
<th>Alcance de grúa</th>
<th>Velocidad de desplazamiento</th>
</tr>
</thead>
<tbody>
<tr>
<td>Komatsu G36</td>
<td>Komatsu CRF 14</td>
<td>8,5 m</td>
<td>0-25 km/h</td>
</tr>
</tbody>
</table>

Fuente: adaptado de Komatsu (s.f.)
Cuadro No. 14. Datos técnicos del forwarder John Deere 1710 D

<table>
<thead>
<tr>
<th>Marca</th>
<th>Modelo</th>
<th>Capacidad de carga</th>
<th>Sistema rodante</th>
</tr>
</thead>
<tbody>
<tr>
<td>John Deere</td>
<td>1710 D</td>
<td>17 toneladas</td>
<td>Neumático 8x8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Peso</th>
<th>Motor</th>
<th>Potencia nominal</th>
<th>Depósito de combustible</th>
</tr>
</thead>
</table>
| 19500 kg | John Deere 6081 JTJ02 | 215 hp | 181,7 l

<table>
<thead>
<tr>
<th>Sistema hidráulico</th>
<th>Caudal</th>
<th>Depósito de aceite hidráulico</th>
<th>Presión de trabajo</th>
</tr>
</thead>
<tbody>
<tr>
<td>bomba de pistón variable</td>
<td>210 l/min</td>
<td>189,3 l</td>
<td>23,99 Mpa</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modelo de garra</th>
<th>Modelo grúa</th>
<th>Alcance de grúa</th>
<th>Velocidad de desplazamiento</th>
</tr>
</thead>
</table>
| Super grip | Timberjack CF 885 | 8,5 m | 0-23 km/h

Fuente: adaptado de John Deere (s.f.)

3.3.3. Características de los cabezales

Cuadro No. 15. Datos técnicos del cabezal Waratah H270

<table>
<thead>
<tr>
<th>Modelo</th>
<th>Peso</th>
<th>Diámetro de corte</th>
<th>Velocidad de alimentación</th>
</tr>
</thead>
<tbody>
<tr>
<td>H270</td>
<td>1180 kg</td>
<td>650 mm</td>
<td>5,5 m/s</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fuerza de alimentación</th>
<th>Apertura de cuchillos</th>
<th>Apertura máx. de rodillos</th>
<th>Rotor</th>
</tr>
</thead>
<tbody>
<tr>
<td>21-30,8 kN</td>
<td>640 mm</td>
<td>600 mm</td>
<td>Corona giro, con motor hidráulico</td>
</tr>
</tbody>
</table>

Fuente: adaptado de Waratah (s.f.)
Cuadro No. 16. Datos técnicos del cabezal Komatsu

<table>
<thead>
<tr>
<th>Modelo</th>
<th>Peso</th>
<th>Diámetro de corte</th>
<th>Velocidad de alimentación</th>
</tr>
</thead>
<tbody>
<tr>
<td>370E</td>
<td>1600 kg</td>
<td>700 mm</td>
<td>0-5 m/s</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fuente de alimentación</th>
<th>Apertura de cuchillos</th>
<th>Apertura máx. de rodillos</th>
<th>Rotor</th>
</tr>
</thead>
<tbody>
<tr>
<td>21-30,8 kN</td>
<td>640 mm</td>
<td>600 mm</td>
<td>Corona giro, con motor hidráulico</td>
</tr>
</tbody>
</table>

Fuente: adaptado de Komatsu (s.f.)

3.4. SISTEMA DE TRABAJO DE LAS MÁQUINAS

El sistema de cosecha utilizado es de troza corta ("cut-to-length"), donde el harvester apea y procesa los árboles hasta los 5 cm de diámetro en punta fina, obteniendo trozas de 7.2 m y trozas de largo variable con un largo mínimo de 4 m. En cuanto al descortezado el tratamiento que se aplica consiste en descortezar el 100% de la base (1 m), en el resto realizar una sola pasada de descortezado y al 20% de los individuos de menor diámetro no se descorteza.

La madera procesada es depositada al costado de la máquina formando gavillas de madera, las cuales serán recogidas por el forwarder. Este último utiliza como caminos de saca los rameros formados por el harvester lo cual amortigua la compactación del suelo.

El régimen de corta fue el de tala rasa con distribución de residuos por delante de la máquina.

Las máquinas son operadas en 2 turnos de 9.6 horas, utilizándose las 2.8 horas entre los turnos para realizar el mantenimiento y el repostado. A diferencia del harvester la autonomía de combustible del forwarder no le permite trabajar todo un turno sin hacer el repostado, por lo cual es necesario hacer una recarga durante la jornada de trabajo.
3.4.1. **Sistema de trabajo del harvester**

La secuencia de trabajo consiste en:

- posicionamiento del cabezal: etapa en la cual se extiende la grúa y mueve el cabezal hacia el árbol a ser apeado y que finaliza con el cierre de las cuchillas y los brazos del cabezal.

- apeo y direccionamiento: etapa en la cual se activa la sierra para cortar la base del árbol, haciéndolo caer hacia una dirección previamente elegida. Esta etapa finaliza cuando la copa del árbol entra en contacto con el suelo.

- desrame y descortezado: etapa en la cual se activan los rodillos del cabezal haciendo que el árbol se desplace entre estos y las cuchillas, por los cuales se va separando la corteza y las ramas del tronco principal.

- trozado del fuste: etapa que comienza con el cabezal en posición horizontal y con la marcación del cero en la base del árbol, para luego realizar los cortes cada 7.2 m, más algunas trozas de largo variable.

- desplazamiento: etapa en la cual la máquina avanza hacia adelante o hacia atrás para alcanzar un nuevo árbol, en general se da cuando la grúa ya no tiene más alcance a los árboles.

- interrupciones: aparte de la secuencia normal de trabajo se pueden dar otros hechos como pueden ser las interrupciones operacionales y no operacionales, por ejemplo: chequeo, mantenimientos preventivos o correctivos, repostado, esperas de piezas, traslados internos y externos del personal, necesidades personales etc., esto se da tanto para harvester como para forwarder.

3.4.2. **Sistema de trabajo del forwarder**

La secuencia de trabajo consiste en:

- Carga: dentro de esta etapa está la carga propiamente dicha, los desplazamientos en busca de nuevas gavillas y acomodos de la carga sobre el carro. En todos los casos la carga se efectuó por un solo lado de la máquina.

- Viaje cargado: es la etapa que comienza luego que la máquina está con la carga completa y con la grúa sobre la carga, finalizando al momento en que la
máquina se posiciona en la pila para iniciar la descarga. Este viaje siempre se efectúa marcha adelante y sobre los rameros.

-Descarga: es la etapa que comienza con el primer movimiento de la grúa para descargar y finaliza cuando se posiciona la grúa sobre el carro vacío. También dentro de esta etapa se pueden dar nuevos posicionamientos al costado de la pila y acomodos de la pila.

-Viaje vacío: etapa que comienza con el desplazamiento de la máquina desde el costado de la pila, hasta que llega a la primera gavilla a ser cargada.

3.5. DESCRIPCIÓN DEL ESTUDIO

El estudio consiste en comparar tres frentes de cosecha forestal mecanizado, los cuales utilizan un sistema de cosecha de troza corta con destino a pulpa. Las variables estudiadas y cuantificadas para la comparación, son los tiempos de las actividades particulares de cada máquina así como las productividades, disponibilidad mecánica y eficiencia operacional de cada máquina para cada frente.

3.5.1. Colecta de datos

La colecta de datos fue realizada en el mes de abril de 2013, tuvo una duración de nueve días, de los cuales se repartieron tres días por cada frente de cosecha. La jornada de medición comenzaba a las siete de la mañana (horario que inicia el turno de trabajo del frente de cosecha) y finalizaba a las 17:36 (horario de finalización del turno). Durante la jornada de medición se busco hacer dos tomas de tiempo a todas las máquinas que estuvieran operando.

El tiempo estimado para cada medición fue de cuarenta minutos, esto porque en general las máquinas estaban operando en zonas diferentes del rodal lo que en algunos casos no permitió medir más de una máquina a la vez, por lo que el resto de tiempo que no se estuvo midiendo se utilizo para traslado de una máquina a la otra.

La colecta de datos de tiempos y movimientos fue efectuada mediante el método de cronometraje multimomento. Este método se caracteriza por tener que realizar observaciones sistemáticas a través del tiempo, cada observación
se efectuó utilizando un intervalo de tiempo preestablecido (2.4 s para harvester y 12 s para forwarder) y así de esta manera se registra el tipo de actividad que se está llevando a cabo en ese momento. Estos datos se fueron registrando de forma ordenada en una planilla de campo, generando así una planilla con frecuencias, las cuales se procesaron posteriormente obteniendo el porcentaje de tiempo empleado en cada tarea.

Para esto se utilizó un cronómetro que emitía un sonido según el tiempo programado, el muestreo tenía inicio cuando comenzaba la primera etapa del ciclo y finalizaba en la última etapa del ciclo.

Además de la toma de datos se contó con los partes diarios de cada máquina, los cuales brindan información precisa en cuanto a los tiempos productivos e inproductivos que existieron durante el jornal de trabajo junto con el número de viajes o de árboles por jornal. En base a estos datos se pudieron realizar los cálculos de productividades (m³.he⁻¹ y m³.jornal⁻¹) así como también la disponibilidad de los equipos (disponibilidad mecánica y eficiencia operacional).

3.5.2. Análisis técnico

3.5.2.1. Estudio de tiempos y movimientos

Con los datos del muestreo multimomento es posible obtener las frecuencias porcentuales de cada actividad parcial del ciclo. Con estos también es posible analizar el proceso de producción en detalle, lo que permite corregir o mejorar la eficiencia del proceso productivo, a través de la optimización de los recursos (personal, máquina, combustible, tiempo, etc.).

Al tomar los datos de forma ordenada es posible calcular los tiempos de cada ciclo de trabajo, además de disponer de una secuencia ordenada del trabajo.
Los ciclos operacionales de cada máquina se muestran a continuación.

Cuadro No. 17. Etapas del ciclo para harvester y para Forwarder

<table>
<thead>
<tr>
<th>Etapas del ciclo</th>
<th>Harvester</th>
<th>Forwarder</th>
</tr>
</thead>
<tbody>
<tr>
<td>Posicionamiento</td>
<td></td>
<td>Carga</td>
</tr>
<tr>
<td>Apeo</td>
<td></td>
<td>Traslado cargado</td>
</tr>
<tr>
<td>Desrame y Descortezado</td>
<td></td>
<td>Descarga</td>
</tr>
<tr>
<td>Trozado</td>
<td></td>
<td>Traslado vacío</td>
</tr>
<tr>
<td>Desplazamiento</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3.5.2.2. Determinación de la productividad

La productividad del harvester fue calculada en: metros cúbicos de madera sin corteza procesada por jornal (m³sc.jornada⁻¹) y metros cúbicos de madera sin corteza procesada por hora efectiva (m³sc.he⁻¹).

Para la productividad en m³sc.jornada⁻¹ se multiplico el volumen medio por árbol (información brindada por UPM Forestal Oriental) y el número de árboles cosechados en el jornal.

La productividad en m³sc.he⁻¹ se calculo dividiendo la producción en metros cúbicos por jornada sobre la cantidad de horas efectivas de trabajo.

La productividad del forwarder fue determinada en viajes por hora efectiva, no siendo posible un cálculo exacto del volumen por hora efectiva, ya que el volumen que se carga en cada viaje es variable, determinarlo en cada viaje no sería del todo practico y además alteraría el sistema de trabajo.

Teniendo los datos de productividad y volúmenes de los árboles cosechados se analizaron en el software infostat a través de un análisis de varianza.
3.5.2.3. Determinación de la disponibilidad de los equipos

Para el cálculo de la disponibilidad mecánica se utilizó la siguiente fórmula:

\[
D_m = \left(\frac{HT - HM}{HT} \right) \times 100
\]

Siendo:
- \(D_m\) = Disponibilidad mecánica (%)
- \(HM\) = Horas de interrupción para efectuar reparaciones o mantenimiento
- \(HT\) = Horas totales de trabajo

Y para el cálculo de la eficiencia operacional se utilizó la siguiente fórmula:

\[
E_o = \left(\frac{HE}{HE + HP} \right) \times 100
\]

Siendo:
- \(E_o\) = Eficiencia operacional
- \(HE\) = Horas efectivas de trabajo
- \(HP\) = Horas de paradas

Luego de obtenidas las disponibilidades para cada equipo, se realizaron análisis de varianza para estos datos usando el software infostat versión 2013, con el fin de observar si se encuentran diferencias significativas entre máquinas, frentes, servicios mecánicos y antigüedad de las máquinas. También se buscaron las interacciones entre los parámetros antes mencionados y las distintas variables que los pueden estar afectando, totalizando 35 cruzamientos. Los cruzamientos que se realizaron en el infostat fueron los siguientes:

- Disponibilidad mecánica y eficiencia operacional con: máquina, frente de cosecha, volumen por árbol, servicio mecánico, horas de uso.

- Productividad (árboles.jornal\(^{-1}\), m\(^3\).jornal\(^{-1}\); m\(^3\).he\(^{-1}\)) por: máquina, frente, servicio mecánico, horas de uso, volumen por árbol.

- Disponibilidad mecánica en función de horas de uso de la máquina, servicio mecánico y volumen por árbol.
4. RESULTADOS Y DISCUSIÓN

4.1. DISPONIBILIDAD DE LOS EQUIPOS

4.1.1. Disponibilidad en harvester

A continuación se presentan las disponibilidades mecánicas para harvester por frente de cosecha.

Cuadro No. 18. Disponibilidad mecánica para harvester por frente de cosecha

<table>
<thead>
<tr>
<th>Frente</th>
<th>DM</th>
<th>N</th>
<th>E.E.</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>0.85</td>
<td>15</td>
<td>0.05</td>
</tr>
<tr>
<td>1</td>
<td>0.83</td>
<td>15</td>
<td>0.05</td>
</tr>
<tr>
<td>2</td>
<td>0.79</td>
<td>15</td>
<td>0.05</td>
</tr>
</tbody>
</table>

De acuerdo con estos resultados, las diferencias entre las medias de disponibilidad mecánica de los frentes no son significativas entre sí, ya que en el análisis de varianza (ANAVA) el p valor obtenido fue mayor a 0.05 (ver anexo No. 1).

El frente 3, que trabaja con máquinas con mayor horas de uso (máquinas próximas a las 20000 horas), estaría llegando al valor mencionado por Fontes y Machado, citados por Linhares et al. (2012), quienes señalan que la disponibilidad mecánica aceptable para máquinas con más horas de uso es de 85%. Mientras que para máquinas nuevas la disponibilidad aceptable es de 92%, valor el cual no es alcanzado por el frente 1 que posee máquinas nuevas, es decir cercanas a las 5000 horas.

En la comparación de la disponibilidad mecánica según el servicio mecánico tampoco se encontró diferencias significativas a través del análisis de varianza (ver anexo No. 2), para un nivel de significancia de 0.05, esto se puede ver en el cuadro No. 19 donde cada servicio está representado por una letra.
Cuadro No. 19. Disponibilidad mecánica para harvester según servicio mecánico

<table>
<thead>
<tr>
<th>Mecánico</th>
<th>DM</th>
<th>N</th>
<th>E.E.</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>0.83</td>
<td>15</td>
<td>0.05 A</td>
</tr>
<tr>
<td>R</td>
<td>0.82</td>
<td>30</td>
<td>0.03 A</td>
</tr>
</tbody>
</table>

En cuanto a la eficiencia operacional de los equipos por frente de cosecha se encontró que las diferencias entre estos no son significativas entre sí (ver anexo No. 3), como se aprecia a continuación.

Cuadro No. 20. Eficiencia operacional para harvester por frente de cosecha

<table>
<thead>
<tr>
<th>Frente</th>
<th>EO</th>
<th>N</th>
<th>E.E.</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>0.73</td>
<td>15</td>
<td>0.05 A</td>
</tr>
<tr>
<td>1</td>
<td>0.72</td>
<td>15</td>
<td>0.04 A</td>
</tr>
<tr>
<td>2</td>
<td>0.66</td>
<td>15</td>
<td>0.04 A</td>
</tr>
</tbody>
</table>

4.1.2. Disponibilidad en forwarder

En el siguiente cuadro se muestran las disponibilidades mecánicas de los forwarder para cada frente.

Cuadro No. 21. Disponibilidad mecánica para forwarder por frente de cosecha

<table>
<thead>
<tr>
<th>Frente</th>
<th>DM</th>
<th>N</th>
<th>E.E.</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0.87</td>
<td>6</td>
<td>0.08 A</td>
</tr>
<tr>
<td>1</td>
<td>0.84</td>
<td>9</td>
<td>0.07 A</td>
</tr>
<tr>
<td>3</td>
<td>0.78</td>
<td>12</td>
<td>0.06 A</td>
</tr>
</tbody>
</table>

Observando el cuadro No. 21 se puede apreciar que hay diferencias entre las disponibilidades mecánicas de las máquinas, pero no son diferencias significativas desde el punto de vista estadístico (ver anexo No. 4).

El frente 2 que estaba trabajando con máquinas nuevas, no alcanzó la disponibilidad mecánica establecida por Fontes y Machado, citados por Linhares et al. (2012) de 92% para equipos nuevos.

Tampoco se encontró diferencias significativas entre los servicios mecánicos en cuanto a disponibilidad mecánica de las máquinas (ver anexo No. 5), como lo muestra el cuadro No. 2.
Cuadro No. 22. Disponibilidad mecánica para forwarder según servicio mecánico

<table>
<thead>
<tr>
<th>Mecánico</th>
<th>DM</th>
<th>N</th>
<th>E.E.</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>0.84</td>
<td>9</td>
<td>0.07 A</td>
</tr>
<tr>
<td>R</td>
<td>0.81</td>
<td>18</td>
<td>0.05 A</td>
</tr>
</tbody>
</table>

Con respecto a la eficiencia operacional se puede observar que los valores son menores a los de la disponibilidad mecánica, esto se explica porque la disponibilidad mecánica es la máxima eficiencia operacional que se puede alcanzar, esto se lograría no habiendo interrupciones por motivos no mecánicos. Como se observa en el siguiente cuadro tampoco se observaron diferencias significativas entre las eficiencias operacionales de los distintos frentes (ver anexo No. 6).

Cuadro No. 23. Eficiencia operacional para forwarder por frente de cosecha

<table>
<thead>
<tr>
<th>Frente</th>
<th>EO</th>
<th>N</th>
<th>E.E.</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0.78</td>
<td>6</td>
<td>0.08 A</td>
</tr>
<tr>
<td>1</td>
<td>0.72</td>
<td>9</td>
<td>0.06 A</td>
</tr>
<tr>
<td>3</td>
<td>0.65</td>
<td>11</td>
<td>0.06 A</td>
</tr>
</tbody>
</table>

4.2. PRODUCTIVIDAD

4.2.1. Productividad de los harvester

La productividad en m3.he$^{-1}$ obtenida para los frentes por harvester desde el punto de vista estadístico fue mayor en el frente 3, en comparación con el frente 1 y 2, los cuales no presentaron diferencias significativas entre sí (ver anexo No. 7).

Cuadro No. 24. Productividad promedio para harvester en m3.he$^{-1}$ según frente

<table>
<thead>
<tr>
<th>Frente</th>
<th>m3.he$^{-1}$</th>
<th>N</th>
<th>E.E.</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>24.55</td>
<td>15</td>
<td>1.26 A</td>
</tr>
<tr>
<td>2</td>
<td>17.38</td>
<td>15</td>
<td>1.21 B</td>
</tr>
<tr>
<td>1</td>
<td>16.19</td>
<td>15</td>
<td>1.21 B</td>
</tr>
</tbody>
</table>
A continuación se muestran las productividades en metros cúbicos por jornal para cada frente.

Cuadro No. 25. Productividad en m3.jornal$^{-1}$ para cada frente

<table>
<thead>
<tr>
<th>Frente</th>
<th>m3.jornal$^{-1}$</th>
<th>N</th>
<th>E.E.</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>173.61</td>
<td>15</td>
<td>13.32 A</td>
</tr>
<tr>
<td>1</td>
<td>118.68</td>
<td>15</td>
<td>12.87 B</td>
</tr>
<tr>
<td>2</td>
<td>110.33</td>
<td>15</td>
<td>12.87 B</td>
</tr>
</tbody>
</table>

Según el cuadro anterior el frente que tiene mayor productividad es el 3 con 173.61 m3 cosechados por jornal. Para el frente 1, la productividad por jornal se podría ver aumentada, en el caso de mejorar la disponibilidad mecánica, ya que se está trabajando con una disponibilidad por debajo de lo aceptable, trabajando así menos horas por jornal.

La mayor productividad alcanzada por el frente 3, tanto en m3.jornal$^{-1}$ como en m3.he$^{-1}$ puede ser explicada por el mayor volumen individual de los árboles que estaban siendo cosechados. Esta tendencia se puede observar en el siguiente cuadro.

Cuadro No. 26. Productividad en m3.he$^{-1}$ en función de volumen.árbol$^{-1}$

<table>
<thead>
<tr>
<th>Volmen.árbol$^{-1}$ (m3)</th>
<th>m3.he$^{-1}$</th>
<th>N</th>
<th>E.E.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.51</td>
<td>33.10</td>
<td>2</td>
<td>1.79 A</td>
</tr>
<tr>
<td>0.43</td>
<td>29.65</td>
<td>2</td>
<td>1.79 AB</td>
</tr>
<tr>
<td>0.48</td>
<td>25.17</td>
<td>3</td>
<td>1.46 BC</td>
</tr>
<tr>
<td>0.3</td>
<td>24.80</td>
<td>2</td>
<td>1.79 BC</td>
</tr>
<tr>
<td>0.41</td>
<td>23.50</td>
<td>1</td>
<td>2.52 BCD</td>
</tr>
<tr>
<td>0.29</td>
<td>23.20</td>
<td>3</td>
<td>1.46 CD</td>
</tr>
<tr>
<td>0.26</td>
<td>21.30</td>
<td>1</td>
<td>2.52 CD</td>
</tr>
<tr>
<td>0.31</td>
<td>17.77</td>
<td>3</td>
<td>1.46 D</td>
</tr>
<tr>
<td>0.22</td>
<td>17.52</td>
<td>17</td>
<td>0.61 D</td>
</tr>
<tr>
<td>0.35</td>
<td>16.30</td>
<td>1</td>
<td>2.52 DE</td>
</tr>
<tr>
<td>0.15</td>
<td>12.74</td>
<td>9</td>
<td>0.84 E</td>
</tr>
</tbody>
</table>

Como se puede ver en el cuadro No. 26, se encontraron diferencias significativas entre los valores de productividad para los diferentes volúmenes individuales (ver anexo No. 8). Los árboles de 0,51 m3 fueron los que
presentaron mayor productividad con 33,10 m3.he$^{-1}$, mientras que los árboles de 0,15 m3.he$^{-1}$ presentaron la menor productividad, siendo esta de 12,74 m3.he$^{-1}$.

De acuerdo a estos resultados, la tendencia de la productividad es aumentar a medida que aumenta el volumen por árbol (Figura No. 1), lo que concuerda con Holtzcher y Lanford, citados por Burla (2008), Da Silva (2012), los cuales encontraron que el volumen medio por árbol es la variable que mejor explica la productividad en harvester.

Figura No. 1. Productividad en función del volumen por árbol

\[y = 43.62x + 7.5654 \]
\[R^2 = 0.6538 \]

4.2.2. **Productividad de los forwarder**

Con respecto a la productividad para los forwarder, se observa en el cuadro No. 27 que en promedio los forwarder del frente 1 realizaron más viajes por hora efectiva (viajes.he$^{-1}$) que los forwarder del frente 3, esto se explica porque la distancia promedio recorrida por los forwarder en el frente 1 fue de 587 m, en tanto que la distancia promedio recorrida por el frente 3 fue de 786 m. Para los forwarder del frente 2, no se encontraron diferencias significativas con respecto a los del frente 1 y 3 (ver anexo No. 9).
Cuadro No. 27. Productividad promedio para forwarder en viajes.he⁻¹ según frente

<table>
<thead>
<tr>
<th>Frente</th>
<th>Viajes.he⁻¹</th>
<th>N</th>
<th>E.E.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2.43</td>
<td>9</td>
<td>0.17 A</td>
</tr>
<tr>
<td>2</td>
<td>2.14</td>
<td>6</td>
<td>0.21 AB</td>
</tr>
<tr>
<td>3</td>
<td>1.77</td>
<td>11</td>
<td>0.16 B</td>
</tr>
</tbody>
</table>

Según Martins y Cardoso (2001), Minette et al. (2008), la productividad está muy influenciada por la distancia de extracción, es decir a menor distancia mayor productividad.

En el cuadro No. 28 se puede ver que además de la distancia lo que está influyendo en la productividad, son las condiciones de los caminos. Es decir que en algunos casos se recorrieron distancias largas pero transitando por caminos de saca secundaria, mientras que en otros casos se recorrieron cortas distancias por rameros por lo que los viajes van a ser más lentos. Los distintos tipos de caminos, implican distintas velocidades de desplazamiento.

Cuadro No. 28. Productividad de forwarder en viajes.he⁻¹ según distancia recorrida

<table>
<thead>
<tr>
<th>Distancia (m)</th>
<th>Viajes.he⁻¹</th>
<th>N</th>
<th>E.E.</th>
</tr>
</thead>
<tbody>
<tr>
<td>630</td>
<td>2.84</td>
<td>3</td>
<td>0.32 A</td>
</tr>
<tr>
<td>650</td>
<td>2.54</td>
<td>1</td>
<td>0.55 AB</td>
</tr>
<tr>
<td>1000</td>
<td>2.44</td>
<td>2</td>
<td>0.39 AB</td>
</tr>
<tr>
<td>450</td>
<td>2.43</td>
<td>1</td>
<td>0.55 AB</td>
</tr>
<tr>
<td>530</td>
<td>2.35</td>
<td>1</td>
<td>0.55 AB</td>
</tr>
<tr>
<td>550</td>
<td>2.31</td>
<td>2</td>
<td>0.39 AB</td>
</tr>
<tr>
<td>330</td>
<td>2.28</td>
<td>1</td>
<td>0.55 AB</td>
</tr>
<tr>
<td>200</td>
<td>2.16</td>
<td>4</td>
<td>0.27 AB</td>
</tr>
<tr>
<td>150</td>
<td>2.06</td>
<td>1</td>
<td>0.55 AB</td>
</tr>
<tr>
<td>730</td>
<td>1.92</td>
<td>1</td>
<td>0.55 AB</td>
</tr>
<tr>
<td>413</td>
<td>1.87</td>
<td>2</td>
<td>0.39 AB</td>
</tr>
<tr>
<td>618</td>
<td>1.54</td>
<td>1</td>
<td>0.55 AB</td>
</tr>
<tr>
<td>1140</td>
<td>1.53</td>
<td>1</td>
<td>0.55 AB</td>
</tr>
<tr>
<td>1035</td>
<td>1.47</td>
<td>1</td>
<td>0.55 AB</td>
</tr>
<tr>
<td>270</td>
<td>1.38</td>
<td>1</td>
<td>0.55 B</td>
</tr>
<tr>
<td>879</td>
<td>1.22</td>
<td>2</td>
<td>0.39 B</td>
</tr>
</tbody>
</table>
4.3. FRECUENCIA DE LAS ACTIVIDADES

4.3.1. Frecuencia para harvester

Cuadro No. 29. Frecuencia de las actividades parciales del ciclo para harvester por frente

<table>
<thead>
<tr>
<th>Frente</th>
<th>s.arbol(^1)</th>
<th>Posicionamiento (%)</th>
<th>Apeo (%)</th>
<th>Descortezado-desrame (%)</th>
<th>Trozado (%)</th>
<th>Desplazamiento (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>37.1</td>
<td>11.7</td>
<td>19.1</td>
<td>30.7</td>
<td>33.1</td>
<td>5.4</td>
</tr>
<tr>
<td>2</td>
<td>40.6</td>
<td>10.5</td>
<td>18.3</td>
<td>30.7</td>
<td>34.7</td>
<td>5.7</td>
</tr>
<tr>
<td>3</td>
<td>48.6</td>
<td>11.0</td>
<td>17.7</td>
<td>30.1</td>
<td>35.0</td>
<td>6.2</td>
</tr>
<tr>
<td>Total general</td>
<td>42</td>
<td>11.0</td>
<td>18.3</td>
<td>30.5</td>
<td>34.4</td>
<td>5.8</td>
</tr>
</tbody>
</table>

De acuerdo con el cuadro No. 29, si bien existieron diferentes tiempos de procesamiento por árbol, los porcentajes de las actividades parciales fueron muy similares entre cada frente. Los diferentes tiempos de procesamiento se pueden deber a los volúmenes promedio de los árboles cosechados por cada frente, siendo el frente 1 y el 2 los que cosecharon árboles de menor volumen (0,18 y 0,22 respectivamente), y el frente 3 el que trabajó con árboles de mayor volumen individual (0,40).

Según Bramucci (2001) el posicionamiento del cabezal en el árbol, es una fase del ciclo que está afectada por la experiencia del operario, sin embargo en este trabajo no se vieron diferencias en el tiempo de posicionamiento entre los frentes, lo que se puede pensar que esto se debe a que la experiencia de los operarios es similar.

En la actividad de descortezado tampoco se observaron diferencias entre los frentes, pues las condiciones de humedad en las que se estaba trabajando eran prácticamente las mismas. Es decir dependiendo de la humedad existente en el ambiente, estará afectando el grado de desprendimiento de la corteza (Jacques, 2008).

El largo de trozas utilizado fue el mismo para los tres frentes (trozas de 7,20m y una de largo variable), lo que puede estar explicando porque no se aprecian diferencias en el porcentaje de trozado.
Las condiciones de humedad del suelo, pendiente y espaciamientos de los rodales podrían estar afectando el desplazamiento de las máquinas, en este caso no se encontraron diferencias entre los frentes para el porcentaje de desplazamiento, lo cual puede estar explicado por las similares condiciones de las variables antes mencionadas.

Figura No. 2. Frecuencia de las actividades para harvester

La figura anterior muestra los porcentajes promedios de los tres frentes, se puede ver que la actividad que mayor tiempo demanda es la de trozado, seguido por el descortezado-desrame, el apeo, posicionamiento y desplazamiento.

Estos datos coinciden con lo dicho por Jacques (2008), en donde establece que la actividad que mayor tiempo demanda en el ciclo es el trozado, con un 41,4% del tiempo total, seguido por el descortezado-desrame con un 30% del tiempo.

Sin embargo estas frecuencias no coinciden con los resultados obtenidos por Burla (2008), en el que encontró que la fase del ciclo que demandó mayor porcentaje del tiempo fue el descortezado-desrame con un 28,3%, seguido por el trozado con un 23,1%.

Lo que hace que la actividad de descortezado-desrame sea menor a la de trozado en este estudio, a diferencia de lo obtenido por Burla (2008) puede estar explicado debido al tratamiento que estaba siendo aplicado, el cual
consistía en solamente una pasada de descortezado, 100% descortezada la base (1m), y al 20% de los individuos de menor diámetro no se los descorteza.

4.3.2. Frecuencia para forwarder

Cuadro No. 30. Frecuencia de las actividades parciales del ciclo para forwarder

<table>
<thead>
<tr>
<th>Frente</th>
<th>Minutos.ciclo(^{-1})</th>
<th>Cargando (%)</th>
<th>Viaje Cargado (%)</th>
<th>Descargando (%)</th>
<th>Viaje Vacío (%)</th>
<th>Promedio de Distancia (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>24.2</td>
<td>37.4</td>
<td>19.0</td>
<td>24.6</td>
<td>18.9</td>
<td>587</td>
</tr>
<tr>
<td>2</td>
<td>21.9</td>
<td>44.1</td>
<td>14.9</td>
<td>24.6</td>
<td>16.4</td>
<td>345</td>
</tr>
<tr>
<td>3</td>
<td>24.7</td>
<td>37.9</td>
<td>27.0</td>
<td>19.7</td>
<td>15.5</td>
<td>786</td>
</tr>
<tr>
<td>Total general</td>
<td>23.6</td>
<td>39.7</td>
<td>19.8</td>
<td>23.3</td>
<td>17.2</td>
<td>554</td>
</tr>
</tbody>
</table>

En el cuadro No. 30, se destaca que la actividad que demanda mayor tiempo del ciclo para los tres frentes es la carga, seguida por la descarga para el frente 1 y 2, y por el viaje cargado para el frente 3. Este último resultado puede deberse a que la distancia de desplazamiento fue de 786 metros en promedio, la mayor distancia recorrida dentro de los frentes.

Al observar las distancias en el cuadro No. 30, se puede ver que la menor distancia recorrida es por el frente 2, lo que hace que en el total del ciclo el porcentaje del tiempo destinado a viajes sea menor, y por lo tanto aumenta el porcentaje de las actividades de carga y descarga.

Para los tiempos por ciclos, no se aprecian diferencias entre los frentes, a pesar de que las distancias sean diferentes, esto porque el frente que estuvo realizando la extracción a mayor distancia utilizó una mayor velocidad de avance debido a que transitaba por un camino de extracción secundaria.

En cuanto a las frecuencias en promedio para los tres frentes hay concordancia con lo encontrado por Da Silva (2012), en donde las actividades de carga y descarga son las que demandan mayor porcentaje del tiempo total del ciclo, y juntas representaron en promedio 66% del tiempo total. En tanto, en el presente estudio entre ambas actividades representaron un 63% en promedio para los tres frentes. Alejándose un poco de los valores obtenidos por Minette et al. (2004), donde se establece que la carga y descarga juntas, representaron más del 80% del tiempo total del ciclo operacional para una distancia promedio
de extracción de 128 metros, siendo la menor distancia recorrida lo que estaría explicando las diferencias en los porcentajes.

En la figura No. 3, se muestra la frecuencia promedio de cada una de las actividades para los tres frentes, en donde la carga fue la actividad que demando mayor tiempo con un 39,7%, seguido por la descarga con 23,3%, el viaje cargado con 19,8% y el viaje vacío con 17,2%.

Figura No. 3. Frecuencia de las actividades para forwarder
5. CONCLUSIONES

No se encontraron diferencias significativas entre los tres frentes de cosecha para la disponibilidad mecánica ni eficiencia operacional, para ninguna de las actividades.

Si bien no hay diferencias significativas, los frentes que trabajaron con máquinas de menos horas de uso no llegaron al mínimo recomendado según la bibliografía (92%), mientras que el frente que presentaba máquinas de mayor horas de uso sí alcanzó el porcentaje de disponibilidad recomendado para ese tipo de máquina (85%).

El frente de cosecha que obtuvo mayor productividad para harvester en m3.jornal$^{-1}$ y m3.he$^{-1}$ fue el frente de cosecha número 3, con 173,6 y 24,5 respectivamente. Esto podría estar explicado por el volumen medio por árbol, ya que este frente estuvo cosechando rodales con árboles de mayor volumen individual, siendo el volumen medio por árbol la variable que mejor explica la productividad de los harvesters.

La mayor productividad en viajes.he$^{-1}$ calculada para forwarder fue obtenida por el frente de cosecha 1 con 2,4 viajes.he$^{-1}$. Esta productividad se vio afectada mayormente por dos variables: la distancia de extracción y las condiciones del camino.

Dentro de los porcentajes del ciclo del harvester, la actividad que demanda mayor tiempo es el trozado con un 34,4% del ciclo en promedio para los tres frentes. No encontrándose diferencias entre los frentes para ninguna de las fases del ciclo.

En forwarder, en promedio para los tres frentes el mayor porcentaje dentro del ciclo se encontró en la carga seguido por la descarga, el viaje con carga y por último el viaje sin carga. La carga junto con la descarga representaron el 63% del tiempo total del ciclo.

Los datos de este trabajo, pueden servir de referencia para otros estudios en condiciones similares o para complementar bases de datos existentes para estudios generales.
6. RESUMEN

El presente trabajo, realiza un estudio de tiempo y rendimiento en cosecha forestal mecanizada, utilizando un sistema de troza corta. Los objetivos fueron evaluar tres frentes de cosecha, en cuanto a la disponibilidad de los equipos (disponibilidad mecánica y eficiencia operacional), la productividad (m^3.he$^{-1}$ y viajes.he$^{-1}$), y la frecuencia de las actividades del ciclo de trabajo para cada tipo de máquina. Para obtener los datos se realizaron mediciones a campo, las cuales posteriormente se analizaron estadísticamente utilizando el software estadístico infostat version 2013. En cuanto a las características de los frentes, el frente 1 presentaba en su mayoría máquinas nuevas con un servicio mecánico distinto al de los demás frentes, el frente 2 presentaba 4 máquinas nuevas y 3 con mayor horas de uso, mientras que el frente 3 presentaba las máquinas con mayor horas de uso. Los resultados de las disponibilidades mecánicas, del frente 1 para harvester y forwarder fueron de 83% y 84% respectivamente, los del frente 2 para harvester y forwarder fueron de 79% y 87% respectivamente, y el frente 3 para harvester y forwarder fue de 85% y 78% respectivamente. No habiendo diferencias significativas entre los frentes para cada tipo de máquina. Si bien no hay diferencias significativas, los frentes que trabajaron con máquinas de menos horas de uso no llegaron al mínimo recomendado según la bibliografía (92%), mientras que el frente que presentaba máquinas de mayor horas de uso si alcanzó el porcentaje de disponibilidad recomendado para ese tipo de máquina (85%). Con respecto a la productividades de los harvester se encontró que los del frente 3 presentaron mayor productividad promedio por hora efectiva de trabajo (24,55 m^3.he$^{-1}$) en relación a los del frente 1 y 2 (17,38 y 16,19 m^3.he$^{-1}$ respectivamente), los cuales no diferían significativamente entre sí. Mientras que las productividades para forwarder fueron de 2,43 viajes.he$^{-1}$ para el frente 1, 2,14 viajes.he$^{-1}$ para el frente 2 y 1,77 viajes.he$^{-1}$ para el frente 3. La distribución de los tiempos del ciclo de trabajo para harvester, para los tres frentes no dierieron, llevándose en promedio el mayor porcentaje del tiempo el trozado con 34,4%, seguido por el descortezado-desrane con 30,5%, apeo con 18,3%, posicionamiento con 11% y desplazamiento con 5,8%. Y los porcentajes promedio de los tres frentes para forwarder fueron de 39,7% para carga, 23,3% para descarga, 19,85% para viaje cargado y 17,2% para viaje vacío.

Palabras clave: Cosecha forestal; Harvester; Forwarder; Estudio de tiempo; Disponibilidad mecánica; Eficiencia operacional.
7. **SUMMARY**

The present work, takes time and performance study of mechanized forest harvesting, using a system of cut to length. The objectives were to evaluate three fronts of harvest, in terms of availability of the devices (mechanical availability and operational efficiency), productivity (trips.he\(^{-1}\) y m\(^3\).he\(^{-1}\)), and the frequency of operation cycle work for each type of machine. Measurements were performed in the field, which were then analyzed statistically using the statistical software infostat version 2013. Regarding the characteristics of the fronts, front 1 had mostly newer machines with differently from the other fronts mechanical service, the front 2 had 4 new machines and 3 more hours of use, while the front 3 had machines more hours. The results of the mechanical availabilities for the front of harvest 1 to harvester and forwarder were 83 % and 84% respectively, for the front of harvest 2 to harvester and forwarder were 79 % and 87% respectively, and for the front 3 to harvester and forwarder was 85 % and 78% respectively, there being no significant differences between the fronts for each type of machine. While there are no significant differences, the fronts machines worked fewer hours of use did not reach the minimum recommended according to the literature (92%), while the front presenting machines more hours of use if reached the recommended service level for that type of machine (85%). With respect to the productivity of the harvester was found that the front 3 had higher average productivity per hour worked (24,55 m\(^3\).he\(^{-1}\)) in relation to the front of harvest 1 and 2 (17,38 and 16,19 m\(^3\).he\(^{-1}\) respectively), which did not differ significantly. While productivities were for forwarder 2,43 trip.he\(^{-1}\) for front 1, 2,14 trips.he\(^{-1}\) for the front 2 and 1,77 trips.he\(^{-1}\) for the front 3. Distribution cycle times for harvester working for the three fronts of harvest did not differ, taking on average the highest percentage of time bucking with 34,4 %, followed by debarking-limbing with 30,5 %, felling with 18,3 %, position with 11 % and displacement 5,8 %. And the average percentages of the three fronts to forwarder were 39,7 % for loading, unloading 23,3%, 19,85 % for trip loaded and trip empty to 17,2%.

Keywords: Forest harvesting; Harvester; Forwarder; Time study; Mechanical availability; Operational efficiency.
8. BIBLIOGRAFÍA

máquinas de colheita de madeira em função das características físicas do terreno, do povoamento e do planejamento operacional florestal. Floresta. 36 (2): 169-182

9. ANEXOS

ANEXO No. 1

Análisis de la varianza

<table>
<thead>
<tr>
<th>Variable</th>
<th>N</th>
<th>R²</th>
<th>R² Aj</th>
<th>CV</th>
</tr>
</thead>
<tbody>
<tr>
<td>DM</td>
<td>44</td>
<td>0.01</td>
<td>0.00</td>
<td>22.54</td>
</tr>
</tbody>
</table>

Cuadro de Análisis de la Varianza (SC tipo III)

<table>
<thead>
<tr>
<th>F.V.</th>
<th>SC</th>
<th>gl</th>
<th>CM</th>
<th>F</th>
<th>p-valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modelo.</td>
<td>0.02</td>
<td>2</td>
<td>0.01</td>
<td>0.30</td>
<td>0.7449</td>
</tr>
<tr>
<td>Frente</td>
<td>0.02</td>
<td>2</td>
<td>0.01</td>
<td>0.30</td>
<td>0.7449</td>
</tr>
<tr>
<td>Error</td>
<td>1.40</td>
<td>41</td>
<td>0.03</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>1.42</td>
<td>43</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Test: LSD Fisher Alfa=0.05 DMS=0.13803

Error: 0.0342 gl: 41

Frente Medias n E.E.

3.00 0.85 15 0.05 A
1.00 0.83 15 0.05 A
2.00 0.79 15 0.05 A

Medias con una letra común no son significativamente diferentes (p > 0.05)

ANEXO No. 2

Análisis de la varianza

<table>
<thead>
<tr>
<th>Variable</th>
<th>N</th>
<th>R²</th>
<th>R² Aj</th>
<th>CV</th>
</tr>
</thead>
<tbody>
<tr>
<td>DM</td>
<td>45</td>
<td>3.1</td>
<td>E-04</td>
<td>0.00</td>
</tr>
</tbody>
</table>

Cuadro de Análisis de la Varianza (SC tipo III)

<table>
<thead>
<tr>
<th>F.V.</th>
<th>SC</th>
<th>gl</th>
<th>CM</th>
<th>F</th>
<th>p-valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modelo.</td>
<td>4.5E-04</td>
<td>1</td>
<td>4.5E-04</td>
<td>0.01</td>
<td>0.9093</td>
</tr>
<tr>
<td>Mecanico</td>
<td>4.5E-04</td>
<td>1</td>
<td>4.5E-04</td>
<td>0.01</td>
<td>0.9093</td>
</tr>
<tr>
<td>Error</td>
<td>1.42</td>
<td>42</td>
<td>0.03</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>1.42</td>
<td>43</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Test: LSD Fisher Alfa=0.05 DMS=0.11506

Error: 0.0339 gl: 42

Mecanico Medias n E.E.

I 0.83 15 0.05 A
R 0.82 30 0.03 A
Medias con una letra común no son significativamente diferentes (p > 0.05)

ANEXO No. 3

Análisis de la varianza

<table>
<thead>
<tr>
<th>Variable</th>
<th>N</th>
<th>R²</th>
<th>R² Aj</th>
<th>CV</th>
</tr>
</thead>
<tbody>
<tr>
<td>EO</td>
<td>45</td>
<td>0.03</td>
<td>0.00</td>
<td>24.44</td>
</tr>
</tbody>
</table>

Cuadro de Análisis de la Varianza (SC tipo III)

<table>
<thead>
<tr>
<th>F.V.</th>
<th>SC</th>
<th>gl</th>
<th>CM</th>
<th>F</th>
<th>p-valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modelo.</td>
<td>0.04</td>
<td>2</td>
<td>0.02</td>
<td>0.59</td>
<td>0.5568</td>
</tr>
<tr>
<td>Frente</td>
<td>0.04</td>
<td>2</td>
<td>0.02</td>
<td>0.59</td>
<td>0.5568</td>
</tr>
<tr>
<td>Error</td>
<td>1.21</td>
<td>41</td>
<td>0.03</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>1.25</td>
<td>43</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Test: LSD Fisher Alfa=0.05 DMS=0.12818

Error: 0.0295 gl: 41

Frente Medias n E.E.
3.00 0.73 15 0.05 A
1.00 0.72 15 0.04 A
2.00 0.66 15 0.04 A

Medias con una letra común no son significativamente diferentes (p > 0.05)

ANEXO No. 4

Análisis de la varianza

<table>
<thead>
<tr>
<th>Variable</th>
<th>N</th>
<th>R²</th>
<th>R² Aj</th>
<th>CV</th>
</tr>
</thead>
<tbody>
<tr>
<td>DM</td>
<td>27</td>
<td>0.04</td>
<td>0.00</td>
<td>24.29</td>
</tr>
</tbody>
</table>

Cuadro de Análisis de la Varianza (SC tipo III)

<table>
<thead>
<tr>
<th>F.V.</th>
<th>SC</th>
<th>gl</th>
<th>CM</th>
<th>F</th>
<th>p-valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modelo.</td>
<td>0.04</td>
<td>2</td>
<td>0.02</td>
<td>0.52</td>
<td>0.5984</td>
</tr>
<tr>
<td>Frente</td>
<td>0.04</td>
<td>2</td>
<td>0.02</td>
<td>0.52</td>
<td>0.5984</td>
</tr>
<tr>
<td>Error</td>
<td>0.95</td>
<td>24</td>
<td>0.04</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>0.99</td>
<td>26</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Test: LSD Fisher Alfa=0.05 DMS=0.19734
Error: 0.0396 gl: 24
Frente Medias n E.E.
2.00 0.87 6 0.08 A
1.00 0.84 9 0.07 A
3.00 0.78 12 0.06 A
Medias con una letra común no son significativamente diferentes (p > 0.05)

ANEXO No. 5

Análisis de la varianza

<table>
<thead>
<tr>
<th>Variable</th>
<th>N</th>
<th>R²</th>
<th>R² Aj</th>
<th>CV</th>
</tr>
</thead>
<tbody>
<tr>
<td>DM</td>
<td>27</td>
<td>0.01</td>
<td>0.00</td>
<td>24.23</td>
</tr>
</tbody>
</table>

Cuadro de Análisis de la Varianza (SC tipo III)

<table>
<thead>
<tr>
<th>F.V.</th>
<th>SC</th>
<th>gl</th>
<th>CM</th>
<th>F</th>
<th>p-valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modelo.</td>
<td>0.01</td>
<td>1</td>
<td>0.01</td>
<td>0.17</td>
<td>0.6842</td>
</tr>
<tr>
<td>Mecánico</td>
<td>0.01</td>
<td>1</td>
<td>0.01</td>
<td>0.17</td>
<td>0.6842</td>
</tr>
<tr>
<td>Error</td>
<td>0.98</td>
<td>25</td>
<td>0.04</td>
<td></td>
<td>0.04</td>
</tr>
<tr>
<td>Total</td>
<td>0.99</td>
<td>26</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Test: LSD Fisher Alfa=0.05 DMS=0.16199
Error: 0.0394 gl: 25
Mecánico Medias n E.E.
I 0.84 9 0.07 A
R 0.81 18 0.05 A
Medias con una letra común no son significativamente diferentes (p > 0.05)

ANEXO No. 6

Análisis de la varianza

<table>
<thead>
<tr>
<th>Variable</th>
<th>N</th>
<th>R²</th>
<th>R² Aj</th>
<th>CV</th>
</tr>
</thead>
<tbody>
<tr>
<td>EO</td>
<td>26</td>
<td>0.08</td>
<td>1.7E-03</td>
<td>26.71</td>
</tr>
</tbody>
</table>

Cuadro de Análisis de la Varianza (SC tipo III)

<table>
<thead>
<tr>
<th>F.V.</th>
<th>SC</th>
<th>gl</th>
<th>CM</th>
<th>F</th>
<th>p-valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modelo.</td>
<td>0.07</td>
<td>2</td>
<td>0.04</td>
<td>1.02</td>
<td>0.3758</td>
</tr>
<tr>
<td>Frente</td>
<td>0.07</td>
<td>2</td>
<td>0.04</td>
<td>1.02</td>
<td>0.3758</td>
</tr>
<tr>
<td>Error</td>
<td>0.81</td>
<td>23</td>
<td>0.04</td>
<td></td>
<td>0.04</td>
</tr>
<tr>
<td>Total</td>
<td>0.88</td>
<td>25</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Test: LSD Fisher Alfa=0.05 DMS=0.18942
Error: 0.0352 gl: 23
Frente Medias n E.E.
2.00 0.78 6 0.08 A
1.00 0.72 9 0.06 A
3.00 0.65 11 0.06 A
Medias con una letra común no son significativamente diferentes (p > 0.05)

ANEXO No. 7

Análisis de la varianza

<table>
<thead>
<tr>
<th>Variable</th>
<th>N</th>
<th>R²</th>
<th>R² Aj</th>
<th>CV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Productividad</td>
<td>45</td>
<td>0.39</td>
<td>0.36</td>
<td>24.42</td>
</tr>
</tbody>
</table>

Cuadro de Análisis de la Varianza (SC tipo III)

<table>
<thead>
<tr>
<th>F.V.</th>
<th>SC</th>
<th>gl</th>
<th>CM</th>
<th>F</th>
<th>p-valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modelo.</td>
<td>586.47</td>
<td>2</td>
<td>293.24</td>
<td>13.26</td>
<td><0.0001</td>
</tr>
<tr>
<td>Frente</td>
<td>586.47</td>
<td>2</td>
<td>293.24</td>
<td>13.26</td>
<td><0.0001</td>
</tr>
<tr>
<td>Error</td>
<td>906.38</td>
<td>41</td>
<td>22.11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>1492.85</td>
<td>43</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Test: LSD Fisher Alfa=0.05 DMS=3.50734
Error: 22.1067 gl: 41
Frente Medias n E.E.
3.00 24.55 15 1.26 A
2.00 17.38 15 1.21 B
1.00 16.19 15 1.21 B
Medias con una letra común no son significativamente diferentes (p > 0.05)

ANEXO No. 8

Análisis de la varianza

<table>
<thead>
<tr>
<th>Variable</th>
<th>N</th>
<th>R²</th>
<th>R² Aj</th>
<th>CV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Productividad</td>
<td>45</td>
<td>0.86</td>
<td>0.82</td>
<td>13.11</td>
</tr>
</tbody>
</table>

Cuadro de Análisis de la Varianza (SC tipo III)

<table>
<thead>
<tr>
<th>F.V.</th>
<th>SC</th>
<th>gl</th>
<th>CM</th>
<th>F</th>
<th>p-valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modelo.</td>
<td>1282.54</td>
<td>10</td>
<td>128.25</td>
<td>20.12</td>
<td><0.0001</td>
</tr>
<tr>
<td>Vol/árbol (m3)</td>
<td>1282.54</td>
<td>10</td>
<td>128.25</td>
<td>20.12</td>
<td><0.0001</td>
</tr>
<tr>
<td>Error</td>
<td>210.31</td>
<td>33</td>
<td>6.37</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>1492.85</td>
<td>43</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Test: LSD Fisher Alfa=0.05 DMS=4.52621
Error: 6.3731 gl: 33

Vol/árboles (m³) Medias n E.E.
0.51 33.10 2 1.79 A
0.43 29.65 2 1.79 A B
0.48 25.17 3 1.46 B C
0.30 24.80 2 1.79 B C
0.41 23.50 1 2.52 B C D
0.29 23.20 3 1.46 C D
0.26 21.30 1 2.52 C D
0.31 17.77 3 1.46 D
0.22 17.52 17 0.61 D
0.35 16.30 1 2.52 D E
0.15 12.74 9 0.84 E

Medias con una letra común no son significativamente diferentes (p > 0.05)

ANEXO No. 9

Análisis de la varianza

Variable N R² R² Aj CV
viajes/he 26 0.26 0.20 24.82

Cuadro de Análisis de la Varianza (SC tipo III)

<table>
<thead>
<tr>
<th>F.V.</th>
<th>SC</th>
<th>gl</th>
<th>CM</th>
<th>F</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modelo.</td>
<td>2.21</td>
<td>2</td>
<td>1.10</td>
<td>4.12</td>
<td>0.0295</td>
</tr>
<tr>
<td>Frente</td>
<td>2.21</td>
<td>2</td>
<td>1.10</td>
<td>4.12</td>
<td>0.0295</td>
</tr>
<tr>
<td>Error</td>
<td>6.16</td>
<td>23</td>
<td>0.27</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>8.37</td>
<td>25</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Test: LSD Fisher Alfa=0.05 DMS=0.52210
Error: 0.2677 gl: 23

Frente Medias n E.E.
1.00 2.43 9 0.17 A
2.00 2.14 6 0.21 A B
3.00 1.77 11 0.16 B

Medias con una letra común no son significativamente diferentes (p > 0.05)