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Resumen

Abstract

Palabras clave: Teoría del arrepentimiento, desigualdades de la covarianza, heuristica del
reconocimiento, contabilidad mentaL

This thesis consists in four essays on behavioral decision making. The first essay analyses
the preferences for diversification of decision makers according to regret theory. The
second essay presents sorne new covariance inequalities of non-monotonic functions of a
random variable. I also show two applications of these new results. The third essay
pro poses an extension of the recognition heuristic. 1 also compare the predictive power of
this heuristic for recognition vectors with three and ten objects. Finally, the fourth essay
analyses the mental accounting principIes when decision makers must decide to integrate or
segregate three or more experiences, outcomes, etc .

Regret theory, covariance inequalities, recognition heuristic, mentalKeywords:
accounting .

Este trabajo de tesis consiste en cuatro ensayos sobre la teoría de la toma de decisiones. El
primer ensayo analiza las preferencias por las ganancias derivadas de la diversificación que
tienen los agentes económicos de acuerdo la teoría del arrepentimiento. El segundo ensayo
presenta nuevas desigualdades de la covarianza de funciones no monótonas de una variable
aleatoria. Se muestran dos aplicaciones de estos nuevos resultados. El tercer ensayo
propone una extensión de la heuristica del reconocimiento. En esta nueva propuesta se
distinguen tres niveles de reconocimiento. Se compara el poder predictivo de ~sta heurística
para vectores con tres y diez objetos. Por último, el cuarto ensayo analiza los principios de
la contabilidad mental cuando los tomadores de decisiones deben integrar o segregar tres o
más experiencias, resultados, etc .
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General introduction

This thesis aims to contribute to the theoreticalliterature on behavioral decision making

by proposing answers to the following questions:

(i) When does a decision maker gains from diversification? More precisely, how should

an investor choose among diffel'ent assets? Should he invest in a single asset or should

he invest in many diffel'ent assets? Could the feeling of regret affect this decision?

(ii) What are the optimal hedging policies of an enterprise? How decision changes

when are considered variation in profits instead of their level?

(iii) Suppose you are driving on a highway and your car is running out of gas. You

see in the highway signal the names of the two next neighborhoods, one of which owns a

very bOOreputation. You have nevel' heard about the second one. How would you decide

which exit to take? and

(iv) Suppose that your doctor schedule a minar surgery for you on the same day of

an exciting concert you would like to attend, what would you do? vVould you postpone

attending the concel't? Or would you do both ?

Von Neumann and Margenstern expected utility theory provides economics with a

powerful model to analyze decision making undel' uncel'tainty. There is, however, an

agreement of two majar lines of critique of expected utility theory. First, despite the wide

acceptance of this theory many empirical studies reveal the inconsistency of its predictions

with curl'ent human behavior. Hence, new models propose alternatives to expected lltility

theary (Starmer, 2000; Sllgden, 2004). These new models use different types of lItility

functions andj or relax the linearity on probabilities. Second, many studies suggest that

laypeople, experts and professional decision makers do not necessarily decide according

3
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to mathematieal models. That is, in eontrast to the use of complex mathematical models,

this approach proposes that decision makers use shortcuts and rules of thumb (usuaUy

refened as heuristies) to decide (Gigerenzer & Selten, 2001).

These new lines of researeh not only allow to pravide answers to old questions, but

they also raise new ones. For instanee: Are human being rational? Do they have bounded

rationality? How these faets influence their decisions? How do feelings like regret and

rejoiee influence their choices? Do humans always use complex models to make decisions

Ol'sometimes they decide according to simple models, sueh as naive rules of thumb?

This thesis contri butes to these two lines of research. More precisely, 1 shall analyze

sorne economic problems, sueh as the aboye mentioned questions, from these perspeetives .

The first two chapters foeus on the study of the first group of eriticism of expected utility

theory. The remaining two chapters analyze human behavior fram the perspective of the

second stream of critiques .

Chapter 1 is based in Egozcue (2012). In this chapter, 1 study the gams from

diversification within regret theOl'Y.This is an important issue that applies to many real

economic problems such as portfolio selection, remuneration schemes and international

trade, among others. This problem has been analyzed within expected utility theory .

However, few studies have approached these problems with regret theory. The aim of

this chapter is to contribute to the literature by: (i) providing conditions under which

a regret averse decision maker wil! diversify between two risky options; (ii) showing the

differences between the optimal choices of regret averse and risk averse individuals; (iii)

analyzing the conditions under which the results fOl'two risky options can be generalized

to many number of alternatives; and finally (iv) proposing two applications of the main

results to existing models of decision making under uncertainty .

In several analytical problems of decision making under uncertainty, it is necessary

to study the sign of a covariance that involves marginal utilities. Chebyschev's integral

inequality is an important tool that helps to elucidate the sign of this covariance. Its

application, however, requires the functions be monotonic. For instance, alternative

theories to expected utility theory, ofien assume non-monotonic marginalutilities .

4
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In Chapter 2, 1 derive sorne new covariance inequalities for utility functions with

non-monotonic marginal utilities. In particular, 1 establish the conditions to determine

the sign of the covariance for utility funetions that start concave and then turn convex

with an infieetion point at the origino 1 also derive conditions for those that are concave

for positive values and convex for negative values. 1 apply these covariances inequalities

to two problems in economics. First, 1 study sorne properties of the indifference curve

in the mean-variance space for Prospeet Theory and for Markowitz utility functions .

Second, 1 analyze the asset'8 hedging policies of an enterprise that behaves as predicted

by Prospect Theory .

In Chapter 3, 1propose a generalization of the recognition heuristic model originally

introduced by Goldstein and Gigerenzer (1999, 2002). The reeognition heuristie surged

to explain why sorne people eould respond eorrectly to questions on sorne topies that

a priori they do not know? In this chapter, instead of considering only two levels of

reeognition, 1 propose a three levels recognition model. 1 derive explicit formulas for all

the parameters of the model. This allows me to study the expected aecuracy rute of

the three levels recognition heuristic and compare it with the performance of the two

levels model. Besides, 1characterize the conditions under which the recognition heuristic

expeeted accuracy rate is equal to .50%. Finally, 1 discuss whether less information could

lead to higher accuracy rates in the three levels of recognition model.

Finally, Chapter 4 is based on a joint project with Sebastien Massoni, Wing Keung

\Vong and Rieardas Zitikis forthcoming in IMA Journal of Management Mathematics

with the title: Integration-segregation decisions under general value funetions: "Create

your own bundle - choose 1, 2, or al! 3!". In this work, we study whether to keep

products segregated (e.g., 1mbundled) or integrate sorne or all ofthem (e.g., bundle). This

problem has been of big interest in areas such as portfolio theory, risk capital al!ocations,

taxation and marketing. Our findings show that the celebrated Thaler's principIes of

mental accounting hold as original!y postulated when the values of all exposure units are

positive (i.e., al! are gains) or al! negative (i.e., al! are losses). In the case of exposure units

with mixed-sign values, deeision rules are rnuch more complex and rely on cataloging the

5
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Bell-number of cases, which grow very fast dependíng on the number of exposure units .

So, in this chapter we provide detailed rules for the integration and segregation decisions

in the case up to three exposure units, and partial rules for the arbitrary number of units .

Also, we show varíous possible applications of mental accounting in different areas such

as: product bundling, legislation and taxation, an10ng others .

6
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Chapter 1

Regret and diversification

1.1 Introduction

The diversification problem is about allocating an individual's initial wealth betwecn

risky prospects (random variables). If the optimal allocation includes many prospects,

there may be gains from diversification .

Usually, this analysis uses expected utility theory, where risk aversion represents de-

cision maker's behavior. Far instance, Samuelson (1967) proves that if two random

variables (i.e., risky prospects) are independent and identically distributed then there

are always gains from diversification. Moreover, he shows that assigning equal shares

of the initial wealth in each asset is the optimal choice. Brumelle (1974) further shows

that assuming negative correlation between two random variables is neither necessary

nar sufficient to assure gains from diversification. In fact, when the two random variables

are identically distributed and have finite mean, then diversification is optimal (Hadar

& Russell, 1971,1974; Tesfatsion, 1976). Nevertheless, this problem has been extended

by relaxing the independent and identically distributed assumption, making the analy-

sis with multiple random variables and so forth (see, for example, Gollier, 2004; Hadar,

Russell & Seo, 1977; Landsberger & Meilijson, 1990; Kira & Ziemba, 1980; Ma, 2010;

Pellerey & Semeraro, 2005; Wright, 1987).

There are, howcver, many experimcnts showing limited predictive accuracy of ex-

7
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pected utility theory. So, these pieces of evidence questioned whether expected utility

theory is a good model of economic behavior, and many altcrnative modcls were pro-

poscd10ne of these alternative theories is regret theory. Originally suggested by Savage

(1951), this theory assumes that decision makers may include in their decision process

the feelings of regret and rejoice2The seminal papers by Bell (1982), Fishburn (1982)

and Loomes and Sugden (1982, 1987) present a formal analysis of regret theory. Sug-

den (1993) gives an axiomatic approach, while Quiggin (1994) extends the analysis to

multiple choices.

There is an extensive body of research that has found empirical support for regret

theory (Loomes & Sugden, 1982; Loomes, Starmer & Sugden, 1992). Since then, it has

been increasingly used as an alternative model for the expected utility theory and it has

been applied to different disciplines such as economics, finance and psychology (see, e.g.,

Braun & Muermann, 2004; lVIuermann, Mitchell & Volkman, 2006; Mulaudzi, Petersen

& Schoeman, 2008: Solnik 2008; Wong , 2011) .

In this chapter, 1 shall assurne that the decision maker takes into account both risk

and regret, instead of considering risk only. Namely, the decision maker is regret averse.

This means that: (i) he experiences regret of having allocated a small portion of his

wealth in a prospect that yields a higher payoff ex-post; and (ii) he experiences regret

of having allocated a large portion of his wealth in a prospect that turns out to have a

lower payoff ex-post. Therefore, the disutility of regret is crucial when decision maker

should select initial shares of their wealth at the beginning of the period and cannot be

modified afterwards .

This chapter contributes with the following. First, 1 study whether a regret averse

decision maker prefers to diversify between two risky prospects rather than to specialize

¡Harless and Camerer (1994) show that expected utility theory accuracy rate does better than other
thcories when the gambles (lotteries) in a pair have the same support, and does poorly when they have
different support. Howcver, in their work they did not specifieally compare expected utility theory with
regret theory .

'Baron (2000) illustrates these feclings with a simple example. For instance, regret is experienced if
we dedde to carry an umbrella and find that it does not rain ar if we decide not to carry au umbrella
and find that it does rain. On the other hand: rejoice is experienced if we carry an umbrella and it raiIlS~
DI ii' we do not carry au umbrella and it finally does not rain .

8
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1.2 A utility function with regret

where v is a canventianal Bernaulli's utility functian and 'P is an increasing function that

reflects the valuatian af the regret-rejoice feelings. The first argument af this utility :E

is the chasen alternative, while the second argument y is the foregone alternative. The

functian 'P serves ta anticipate and incarparate in the decision making process the regret

In this section, I present the regret utility functian. We will see that this utility functian

nat only considers risk, but regret as well. As I have mentioned earlier, in regret theory

individuals compare between what is received after chaosing one option with what might

have been received, under the same states af nature, if they hOOchasen differently. In

ather words, they compare the chasen autcame ",ith the faregane autcames .

Laames and Sugden (1982) propase a utility function represented as fallaws

(2.1)u(x, y) = v(x) + 'P [v(x) - v(y)] ,

and allocate all the initial wealth in one prospecto 1 also show conditions to generalize

the results to multiple random variables. Second, 1 analyze whether regret averse and

risk averse decision makers coincide or difIer in their optimal choices . Last, my results

might be used to extend a series of existing models of decision making under uncertainty .

In fact, 1 explain how my main findings can be used in a variety of applications. For

instance, first, I apply the results to the portfolio selection problem. Here, I generalize

the framewark af a risky asset and a risk-free asset madel studied by Muermann et al.

(2006) and Mulaudzi et al. (2008), but naw considering twa risky assets. Secand, I apply

the main findings ta study the salesman remuneratian scheme (Hildreth &, Tesfatsian,

1977) far a regret avcrse agent .

The rest af the chapter cantinues as fallaws. In Sectian 2, I explain the characteristics

af the regret utility function. In Sectian 3 and 4, I develap the main results of the chapter.

In Section 5, I present the mentianed applicatians, including same illustrative numerical

examples. I finish the chapter with concluding remarks .

•••••••••••••••••••••••••••••••••••••••••••••••••
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cp(x) = f3x -1where ,6> 1.

The parameter e ::::Oin (2.2) measures the weight of the regret attribllte with respect

to the first risk aversion attl'ibute. Naturally, if e = O then the utility function (2.2)

simplifies and becorhes u (W) = v(W), which is the tl'aditional utility function of a

risk-averse decision maker.

where W > Ois the final wealth, and R is a measure of regret. Herein, v is a standard

Bernolllli lltility function with v' > Oand v" < O . The fllnction cp is coined the regret

function. It is continllous and differentiable in its domain, with <p(0) = O, ,¡:/ > Oand

cp" > O. Laciana and Webber (2008) propose a regret fllnction that satisfies certain

properties that helps to explain the preference pattems described in Allais' paradox

(Allais, 1953; Allais & Hagen, 1979). Specifically, their proposal is defined as follows

(2.2)v(W) - ecp [RJ ,

Notice that all assumptions determine that Uw > Oand 1'R < O,which means that

decision makers like more wealth, but dislike more regret. Besides, they also imply that

Uww < Oand URR < O, reflecting risk aversion and regret aversion respectively. Utility

(2.2) considers only regret and does not consider rejoice. Nevertheless, there are many

studies that have found that anticipating rejoice has little influenced in the decision

making (cf.e.g., Beattie, Baron, Hershey, & Spranca, 1994 and references therein) .

or rejoice that the individual would experience as a result of having chosen x and not

y. After the state of nature occurs we have the following cases: (i) if x > y, then the

decision maker would experience the pleasure (rejoice) of having made the correct choice;

(ii) if x < y, then the decision maker would experience regret of not having chosen the

best alternative .

Many different regret utility functions, apart from (2.1), have been proposed (see,

e.g., Paroush & Venezia, 1979; Braun & Muermann, 2004). For instance, Bralln and

l'vluermann (2004) propose the following two attribute additive lltility function u given

by the formula

•••••••••••••••••••••••••••••••••••••••••••••••••



multiple random variables .

ables

1.3 Diversification and regret with two random vari-

From now on, I call regret averse to those decision makers possessing a utility function

as defined in (2.2) with e > O, and risk averse to those having a utility function (2.2)

with e = o .

(3.1)

11

H(o:) ;= E [u (1](0:))],

In the next sectiollS, I develop the main results of the chapter. 1 divide the analysis in

two cases. First, 1 establish some results for two random variables. Second, 1 characterize

the conditions under which the results for two random variables can be extended to

As it is common in the literature on diversification, 1 restrict myself to the case when the

final wealth is the convex combination of two random variables (see, for instance, Hadar,

Russell & Seo, 1977). Thus, without loss of generaIity, the gains from diversification

consists in studying the following mathematical problem .

A decision maker needs to determine 0:, with o: E [0,1], such that maximizes the

following expected utility function:

Remark 1.2.1 Utility function (2.2) has some difJerences with utility (2.1). FiTSt, x

and y in (2.1) are replaced by W and R respectively. Second, as 1 have noticed eaTlier, it

focuses sole/y on regret, an approach similar in spirit to Savage's regret minimax criterion

and to Sarver (2008) utility function representation. Third, utildy function (2.2) is

mathematically more tmctable than utility (2.1). This is one of the reasons that explains

its jTequent use in recent reseD.7'ch(see, e.g., Muermann et al., 2006; Mulaudzi et al., 2008;

Wong, 2011). Finally, utility function (2.2) is consistent with experimental evidence that

supports regret theory (Bleichrodt, Cilio fj Diecidue, 2010; Laciana fj Weber, 2008).

•••••••••••••••••••••••••••••••••••••••••••••••••
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3Throughout this chaptcr, 1 shal! assumc that al! the expcctations exist.

is a* = 1;

In fact, the reason for considering (3.3) can be interpreted as follows:

(i) If X is larger than Y then the best choice the decision maker would have chosen

(3.3)

(3.2)

{
X ifY < X,

1)max = max{X, Y} = -
y ifY::>X.

u (r¡(a)) = v(1)(a)) - O<p (V(1)max) - v(1)(a)),

H'(a) = oE ['1.1(1)(0'))]
oa

= E [t.v'(1)(a))] + BE [t.v'(1)(a))<p' (v(¡rax) - v(1)(a))], (3.4)

where '/.l. is defined as f01l0ws,

with 1) (a) = Y + at. and t. = X - Y, where X and Y are two non-degenerate randorn

variables.3

The terrn 1)max is the ex post optirnal final value if the decision rnaker had chosen the

optimal choice for each state of the world. Note that 1)max is a random variable and is

independent of a. In more detail, for two random variables X and Y, 1)max is defined as

follows:

To solve the aforementioned problem, we need to study the two order conditions. The

first derivative of (3.1) with respect to O' is :

(ii) On the other hand, if Y is larger than X the decision maker would have wanted

to choose only Y, thus a' = O .

There are gains from diversification when the optimal solution of the maximization

of (3.1), denoted by 0'*, is in (0,1). Other"ise, specialization is optimal (Le., 0'* = O or

0'* = 1). (In some parts, 1 shall use the notation ae to denote the optimal a for a given

O) .

•••••••••••••••••••••••••
, .
•••••••••••••••••••••••



and the second derivative is equal to

Proof. For convenience, 1 shall prove this proposition for the continuous case. Let

Proposition 1.3.1 Both regret averse and risk averse decision make1's will allocate theirs

initial wealth equally (i. e. a* = 1/2) among the risky choices provided the two stochastic

variables X and Y are independent and identically distributed .

(3.5)

13

1]", = aX + (1~ a)Y.

Then its distribution function is equal to

f(x)f (y) be the joint density function of X and Y. Let

H" (a) = 5
2
E ['u (1]( a)) 1

O0!2

= E [llV(r¡(O!))] - BE [1l2v'(r¡(0!))2<p" (v(r¡max)~ v(r¡(O!))]

+ BE [llV'(1](a)h/ (v (1]max)~ v(1](a))],

Note, that H"(a) <::: O is guaranteed, since: (i) () ::::O; (ii) v is strictly concave; and

(iii) 'P is strictly convexo Therefore, there is a global solution of (3.1). However, 1 cmIDot

assure that the solution of (3.1) is an interior optimum (Le., diversification is preferred) or

there is a comer solution (Le., specialization is preferred). Since H is a concave function,

a = O is optimal if and only if H' (a) 1,,=0 <::: O Similarly, a = 1 is optimal if and only if

H'(IY)la~l ::::O. Nevertheless, 1 willlater discuss the conditions that assure the existen ce

of an interior optimum .

We lmow that risk-averse decision makers prefer to choose a mixture of equal shares

of independent and identically distrihuted random variables (Samuelson, 1967). Wil! a

regret-averse decision maker also choose this mixture? The follm,ing proposition provides

an answer of it .

•••••••••••••••••••••••••••••••••••••••••••••••••



Therefore, we conclude that (3.5) and (3.6) have the same density function. So that,

In the same manner, we find that its density function (denoted by jD¡_JZ)) is equal to

H(a) = E [u(aX + (1- a)Y)] = E [u ((1 - a) X +O"Y)] = H(l- o). (3.8)

(3.6)

(3.9)

(3.7)

1}¡_a = (1 - o) X + aY.

14

H'(a) = -H'(1 - a)

H'(a)la~1/2 = -H'(I- 0")la~1/2,

jry _ (z) = J ~j(z - (1 - a)t)! (t) di
In a ex

= J ~j(z - (1- a)x)j (x) dx .
a O"

I 100 1 (z - (1 - a)y)
F"o(z) = jryJz) = -00 -;;/ o' j(y)dy .

Hence the density function of (3.5) is the derivative of the distribution function with

respect to z, which is equal to

Now, consider the random variable

Evaluating (3.9) at O" = 1/2 we have that

Changing variables in (3.7) (t = zl-=-'::, with dt = - l~a dx) yields

Differentiating (3.8) with respect to o, we obtain

•••••••••••••••••••••••••••••••••••l.
•••••••••••••
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hence

Therefore we conclude that H'(a)I.,=1/2 = O. The second order condition holds by the

concavity of H(a). _

The conclusion aboye proves that a regret-averse decision maker and a risk-averse

decision maker would coincide in their allocation weights in the special case when the

stochastic variables are independent and identically distributed .

Next, 1 move forward to consider the case when the two random variables X and Y

are independent, but not necessarily identically distributed. But, first, to establish this

and further results, 1 need the following lemma that stlldies the sign of the first derivative

of (3.1) evaluated at a = Oand a = 1.

Lemma 1.3.1 Let X and Y be two random varia.bles. Consider the function (3.1), with

B>Othen

H'(a)la~o > (1 + B<p'(O))[Cov[Ll, v'(Y)] + E [Ll] E [v'(Y)]] (3.10)

and

H'(a)I.,~l < (1 + B<p'(O))[Cov[Ll, v'(X)] + E [Ll] E [v'(X)]] . (3.11)

Proof. Using equation (3.4) evaluated at O' = O,we have:

H/ (O') I.,~o
= E [Llv'(Y)] + BE [Llv'(Y)¡d(v(1]max) - v(Y))]

= E [Llv'(Y)] + BE [Ll1/(Y)C,,/(v(Y) - v(Y))) . 1x<yJ

+ BE [LlvW)<p'(v(X) - v(Y))) . 1X2Y]

= E lLl1/(Y)] + BE [Llv'(Y)<p'(O) . 1x<y]

+ BE [Llv'(Y)<p'(v(X) - v(Y))) . lX2Y] ,

where Ix <y is the indicator function which is equal to 1 if X < Y, and is equal to O

otherwise (similar definition applies to Ix>y) .

15
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Since 2>.= o when lx~y, we can write the following identity

E [2>.v'(Y)cp'(v(X) - v(Y))) .1x~yJ = E [2>.V'(Y)'P'(v(X) - v(Y))) .1x>yJ .

Since we have assumed that: (i) B > O, (ii) v and 'P' are strictly increasing functions,

then

BE [2>.v'(Y)'P'(v(X) - v(Y))Px>y] > BE [2>.V'(Y)'P'(Opx>y] .

Therefore, we obtain

H'(fr)I,,=o > E [2>.v'(Y)] + BE [2>.v'(Y)'P'(O) .1x<Y]

+ BE [(2).v'(Y)'P'(O) . lx>y]

= E [2>.v'(Y)] + BE [2>.v'(Y)¡o'(O)]

= [1+ 11'P'(O)]E [2>.v'(Y)]

= [1 + 11'P'(O)] [COv[2>., v'(Y)J + E [2>.)E [v' (Y)) ] .

This completes the proof of the first parto
I

The praof of the second inequality follows the sarne argument, but now using equation

(3.4) evaluated at fr = 1. •

We are now in a position to relax the assumptions in Proposition 1.3.1. 1 exploit the

results of Lemma 1.3.1 to establish the gains fram diversification considering two inde-

pendcnt random variables. 1 emphasize that thcse random variables are not necessarily

identically distributed .

Proposition 1.3.2 Suppose the random variables X and Y are independent. Then for

a regret a1Jerse decision maker we have:

'f E [X] E [Y) > cov[Y.v'(Y)] th .* O d• ¡ - _ E[v'(Y)] . en a > ,an

• ¡fE [X]- E [YJ' <_ Cov[Xv'(X») th * < 1E[v'(X)] en fr .

Proof. Now, 1 prove the first caSe. Since H is strictly concave function, we need to

check the sign of (3.4) evaluated at fr = O. If it is positive, the decision maker would

16
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preEer to hold some amount oE X. Now, using inequality (3.10) oE Lemma 1.3.1

H'(a) 1,,=0 > (1 + 0\0'(0)) [COV[Do, v'(Y)J + E [Do]E Iv'(Y)]] 2: O

Since X and Y are independent then Cov[X, v'(Y)] = Oand:

COV[Do,V'(Y)] = Cov[X - Y,v'(Y)] = -Cov[Y,v'(Y)] .

So that iE
E [X] _ E [Y] > Cov[Y, v'(Y)]

- E [v' (Y)] ,

then a* > O.

For the second part, in the same manner, we need to study the sign oE Eq. (3.4)

cvaluated at a = 1.H'(a)I,,~l' If it is negative, the decision maker would preEer to

allocate some portion oE rus wealth in Y. Now, using inequality (3.11) oE Lemma 1.3.1

H'(o:)I"=l < (1 + 0\0'(0)) [COV[Do, v'(X)] + E [Do] E [v'(X)]] ::; O.

Again, since X and Y are independent then COV[Do, v'(X)] = Cov[X, v'(X)j. So that, iE

E [X] _ E [Y] < _ Cov[X, v'(X)]
- E [v'(X)]

then 0:* < 1. •

The implications of Proposition 1.3.2 deserve some comments .

Remark 1.3.1 Notiee that by the eoncavity o/ v then co;[~.(~\?::;O'" There/ore, i/
E [X] 2: E [Y] then the decision maker will alloeate some o/ his wealth in X. The inter-

esting case is when E [X] ::; E [Y] and eondition E [X] - E [Y] 2: Co;l\;,(~.~r)Jmay still

hold. This implies that as long E [X] - E [Y] is not suffieiently negative, then the deeision

maker will still allocate some amount o/ his wealth in X .

4 This eovariance inequalityis known as the covarianee rule (Gollíer', 2004). We refer to Lehmann
(1966), Gurland (1961) and Egozcue et.al. (2009, 2010) foro the pTOof and funher inequalities of the
covariance .

17



18

The next examples illustrate the aboye results .

To give a sufficient condition for diversification for regTet averse decision makers,

1 skip the proof of this corollary, since it can be proved invoking Proposition 1.3.2.

(3.12)Cov[Yv/(Y)] < E [X] _ E[Y] < Cov[-X,v/(X)]
E [v/(Y)] - - E [v/(X)]

then a TegTet-ave-rse decision maker would pT'efeT'diver'Sification .

Remark 1.3.2 Notice that for a regret avene decision maker Proposition 1.3.2 does

not always imply that diversification is optimal. In fact, specialization could be the best

choice. Because in the first case the optimal a can rise to 1, ifE [f>] is sufficiently large.

H'heTeas in the second case, the optimal a can faU to O, if E [f>] is sufficiently low.

Corollary 1.3.1 Assume two independent stochastic variables X and Y such that

Example 1.3.1 Let u defined as in (3.2) with v(x) = vÍX, (j = 2 and 'P(:r) = eX - 1.

Consider X and Y two independent mndom variables, with the following pT'Obabílitymass

we need to combine both inequalities (3.10) and (3.11). This shall be done with the

following observation. Since H is strictly concavc, a nccessary and sufficient condition

for diversification to be optimal is that H'(a)I,,=o > O and H/(a)I,,~l < ü hold at the

same time. The follmving corollary uses the facts of this observation .

Remark 1.3.3 Notice that sinee Cov[Y, v/(Y)] is non-positive and 11 is inereasing, then

the lower' bound of (3.12) is non-positive. Using similar arguments, the upper bound

of (3.12) is non-negative. TherefoT'e, it is obvious that inequalities in (3.12) hold for

independent mndom variables with the same mean. Nevertheless, we will lateT' see that

assuming only that X and Y have the same mean is not a sufficient condition to assure

preferences for diversifieation .

•••••••••••••••••••••••••••••••••••••••••••••••••
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funetíon

0.25 íf x = 50,Y = 50

0.25 .if x = a, y = 50

f(x, y) = 0.25 íf x = 50, Y = 80

0.25 íf :1; = a, y = 80

O otherwíse.

Obvíously, both ra.ndom variables aTe índependent. Let

H(o') = 025 [v'50 - 2 [exp {v'50 - y'500:+ 50(1- o:)} -1]]

+ 025 [y' ao: + 50(1 - 0:) - 2 [exp { y'max{ a, 50} - y' ao: + 50(1 - 0:)} - 1]]

+ 025 [y'500: + 80(1- 0:) - 2 [exp {v'sO - y'500: + 80(1- o:)} -1]]

+ 0.25 [y'ao:+ 80(1- 0:) - 2 [exp{ y'max{a,80} - y'ao:+80(1- a)} -1]] .

Let a = 100 whích implies that E [X] = 75 and E [Y] = 65 we are under the assumptions

of Proposítion 1.3.2. Numerical solution of this equation shows ther'e is a ma:rimum at

0'; = 0.73, which can be seen in Fígure 1.

H(a)

,l

+-~~~~~~~~~~~~~ a,
/ 0.2 0.4 0.6 0.8 1.0

Figur'e 1 Function H(o:) when a = 100

The interesting case is when E [X] ::; E [Y] and díversifieatíon ís stíll optimal. Now,

suppose that a = 78 then E [X] - E [Y] = -1, and diversífieatíon ís preferred. Actually,

19
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-------------------------------------~i
!

the maximum DI H(o:) is aehieved at 0:* = 0.46. !Ve display H(o:) in Figu"T"e2.

¡¡(a)

Figu.re 2 Punetion H (o:) when 0.= 78

So far, 1 have rclaxed the idcntica.lly distributed assumption, now 1 sha.ll consider the

case whcn the random variables are stochastical!y dependent. Tb relax the independence

assumption, 1 first need to define thc concept of stochastic dependence. The intuition oí

positive dependence between two random variables X and Y implies that larger values oí

á random variable X are accompanied by larger values oí Y. '\Thile negative dependence

means that larger values of one variable tend to accompany smal! values oí the other vari-

able. However, this basic dependence notion has been improved and more sophisticated

definitions oí stochastic dependence were developed .

.For instance, a wel! known measure oí dependence is defined by Lehmann (1966),

which 1 recall in the next definition .

Definition 1.3.1 Two random variables X and Y are positive (negative) quadmnt de-

pendent if

p (X ::; x, Y ::; y) ~ (::;) p (X::; x) P (Y::; y) for all :r.,y E R .

As it is wel! known, Lehman's dependence measure implies other weaker notions oí

dependence. Esary, Proschan and Walkup (1967) introduce the idea oí associated ran-

dom variables and its relation with quadrant dependence and they derived the íol!owing

20
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inequalities .

Theorem 1.3.1 Let a and (3 be two real functions. If X and Y are positive (negative)

quadmnt dependent then:

1. if a and (3 al'e increasing (01" both decreasing) then Cov[O'(X), (3(Y)] 2> (s:) O, and

2. if one function is inc7-easing and the other decreasing then Cov[O'(X), (3(Y)] s: (2))

o .

In the next Proposition, I prove that when the two stochastic variables are nega-

tive quadrant dependent with the same mean, it is sufficient to assure preferences for

diversification for a regret averse decision maker.

Proposition 1.3.3 Let X and Y be two mndom variables that are negative quadrant

dependent and have the same mean then a Tegret averse individual would prefer diversi-

fieation (i.e., 0< 0'8>0 < 1).

Proof. We need to show that H'(O')la=o is positive and H'(O')ja=l is negative .

Since f (x) = x is an increasing funetion and v' (y), by the concavity assumption, is

decreasing, by Theorem 1.3.1 negative quadrant dependence implies that Cov[X, v'(Y)]

is non-negative. Hence, using inequality (3.10) of Lemma 1.3.1 and the assumption that

E [6.) = O,we conclude that

H'(a)la=o> (1+ e,,J(O))Cov[t>,v'(y)] 2> o .

By the assumption of negative quadrant dependence and since f(y) = -y is a decreasing

fllnction and knovvingthe assumption that v"(x) < O,thus invoking Theorem 1.3.1 implif'B

that Cov[-Y, lJ'(X)] is non positive. Likewise, using ineqllality (3.11) of Lemma 1.3.1,

it follows that

H'(O')la~l < (1 + 61,/(0)) Cov[6., v'(X)] s: O.

This completes the proof. _

21



O other.wise .

22

Let e = 2, as it can be seen in Figure 3 below, H(a) is increasing for all a E [O,lJ .

Figure 3 Functian H(a)when e = 2

aLO
,

08

--------

0.6

if x = 100, Y = 81

if x = 200, Y = 201

0.05

f(x, y) = 095

H(a)

f

::: l' /~-
/-

1382. /

t /"
1380 L /"

13781///
V 02 04

H(a) = 0.05 [VlOOa+ 81(1- a) - e [exp{ vmax{100,81} - VlOOa+81(1- a)} -1]]

+ 0.95 [V200a + 201(1- a) - e [exp {vmax{200, 201} - v200a + 201(1- a)} -1]] .

The random variables are neither independent nor identically distrib.uted. They ha/ve the

same mean equal to 195. One can easily check that both random variables are positive

quadrant dependent. Now,

Example 1.3.2 Let u defined as in (3.2) with v(x) = .¡x and <p(x)= eX - 1. Consider

X and Y two random var.iables with the following probability mass junction

Notice that in Proposition 1.3.3, gains £rom diversification might not be optimaJ for

two stochastic variables with the same mean. The assumption of negative quadrant de-

pendence is crucial to achieve this statement. In the next example, I consider two random

variables with the same mean and I show that speciaJization is optimal, contradicting

the natural intuition that equality in means implies preference for diversification .

•••••••••••••••••••••••••••••••••••••••••••••••••



•••••••••••••••••••••••••••••••••••••••••••••••••

Thus, the maximum 01H(O!) is attained at a = 1.

So far, I have studied when regret averse behavior is similar or differ to the risk

averse behavior. Next, I shall analyze whether the regret averse investar prefers more or

less diversification than its risk averse investor counterpart. In addition, how does the

parameter, e influence the optimal choice, O!*? That is, how is the comparative statics

between 01*and e? To accomplish this answerI present the next proposition .

Proposition 1.3.4 Let X and Y be two random variables .

• JI E [Y] - E [X] > Cov[t>v'('I(,,:»)1 then ddlJ'" 2: O.
J - E[v'(~("'»1

• J', E [yO] _ E [XJ < Cov[t>.v'('I(a'»)J ti oo' < O
J - E[v'(~(a'»l ten de - .

Proof. VVeonly prove the first case, the other case can be proved similarly. Taking

the total differential of the first order condition H' (O!) with respect to 0:* and e yields

da* E [(6.) v'ep']
de E [6.2v"] + eE [6.2 (v"'P' - (v,)2 cp,,)] .

Since (i) v is increasing and concave; and (ii) 'P is increasing and convex, then the

denominator is negative. Thus,

sign {dd~*} = sign {E [6.v'(1)(O!))'P' [v(lr") - v(1)(O!*))]]} .

Now, by the first arder condition, we have that

E [6.v'(1)(O!*)J) + eE [6.v'(1)(O!*))CP'[v(1)n>a") - v(1)(a*))JJ = O.

Bence,

sign {E [6.v' (1)(01'))ep' [ve 1)max) -V(7)( O!*))]]} = -sign {E [6.v' ('1)(O!*))]} .

23
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Corollary 1.3.2 Let X and Y be two random variables. We have tha.t

COy [,6., v'(1)(a*))]
E [v'(1)(a*))J

E [,6.] ::;

Proof. Notice that ifE [,6.]::; co~l~i~(~5));)))then H'(ét)le=o::; O,and thus ao=o = O.

Hence, by Proposition 1.3.4 we conclude that

{
da* }sign de = -8'ign {E [,6.v'(1)(a*))]} .

'fE [yi - E [X] > Covl6.,v'(~(a'))] th • > * - O d
• 2 J _ Elv'(ry(a'))] , en éte>o _ éte=o - , a.n .

f E [y', - E [X] < Coví6.,v'(~(a"))] th * < * - 1• z, _ Elv'(r,(a"))]' en éte>o _ éto=o - .

The conclusion follows upon observing that sign {E [,6.v'(1)(a*))]} ::; o is equivalent to

and the statement follows. _

These results allow us to compare the optimal choices of risk averse and regret averse

decision makers, as I do in the following corollary .

1 skip the proof of the second part since it cau be proved in the same manner. _

This result characterizes the behavior of the optimal choice as the regret term e
changes and compares it with the optimal choice of a risk averse individua1. In other

words, Corollary 1.3.2 establishes the conditions under which regret averse decision mak-

ers prefer to move more towards diversification thau risk averse counterparts .

So far, I have made the aualysis oftwo raudom variables and find the conditions undcr

which both risk averse and regret averse coincide aud differ in their optimal choiccs. In thc

next section, I study the gains from diversification considering many random variables .

•••••••••••••••••••••••••••••••••••••••••••••••••



Proposition 1.4.1 Let 9 be as defined in (4.1). Then 9 is concave.

variables

(4.1 )

E [X~u" (.)]

E [XIXnu" (.)]

E [X2X"u" (.)]

25

E [XIX2U" ()I

E [Xiu" ()]

E [Xfu" (.)]

E [X2XIU" (.)]
lHI=

Proof. Since l' is a convex set, then we only need to prove that the Hcssian of 9

is semidefinite negative (Simon & Blume, 1994 p. 513). The Hessian of the objective

function at any point is

"with l' = {a" 0'2, ... ,an) E R"lai 2: O, ¿ai = 1} as the choice seto
i=l

Our objective is to find a E R" that maximizes (4.1). Since l' is a convex set, and

since 9 is a concave function, the critical point of (4.1) is the global optimum (Simon &

Blume, 1994). Therefore, first, 1 shall prove that 9 is a concave function .

1.4 Diversification and regret with multiple random

Consequently, the optimization problem defined in (3.1) transforms to the following new

objective function

The purpose of this section is to state a generalization of Proposition 1.3.1 with more

than two random variables. The analysis of the portfolio problem with more than two

random variables is, in general, a complex task. The utility function (3.2) can be extended

to multiple random variables. In this case; we consider n random variables denoted by

Xl, X2, ... , X". It is natural to define r¡ma:x of (3.1) as follows

•••••••••••••••••••••••••••••••••••••••••••••••••
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Note that the quadratic form associated with lHIis

n TI.

Q(VI, V2, ... , Yn) = L LYiyjE [XiXju" (.)]
i=l j=l

where (Y1>Y2, ... , Yn) E Rn. Recall that by (2.2) the utility function u is given by

u (x) = v (x) - B'P[v (r¡max) - V (x)] .

Since B :;> O, v is concave and 'P is convex then the utility function u is5 concave. Thus,

(yIX, + Y2X2 + ... + VnXnj2u" (.) :':::O,which implies that Q is negative semidefinitc for

al! ai' This proves that 9 is concave. _

To get consistent results with many variables, we need to restrict the analysis to

certain types of random variables. In the following proposition, I relax the independence

and identically distributed condition studied in Proposition 1.3.1 and consider, instead,

exchangeable random variables. Rigorously, this means that, for every permutation 11,

where !le stands for the equality in distribution. Hence, for example, independent and

identically distributed random variables are exchangeable, but the opposite is not neces-

sarily true .

Proposition 1.4.2 Let 9 defined as in (4.1). Suppose that X" X2, ... , Xn are exchange-

able mndom variables then

5The concavit.'{ follows fram the equation

uf/ex) = vf/(x) - e (v'(x))' 'P" () + e<p' ()vf/(x)

and the properties of e, 11 and 'P .

26



27

with respect to ai .

which is also equivalent to

(4.2)

1.5 Applications

E [XiU1(ta;Xi)] - A= Ofor al! í = 1,2 ...,n,

Proof. The proof is done by maximizing the Lagrangian

The first order condition of (4.2) is equal to

In this section, I show two applications of the main results of this cha.pter. First. I

study the standard portfolio allocation problem within regret theory. Second, I study

the optimal remuneration scheme of an agent that considers risk and regret .

Since Xl, X2, , Xn are exchangeable then a solution of (4.3) is achieved when ai = 1/n

for all í = 1,2, ,n. The reason for this can be inferred by the Salle argument as in the

proof of Proposition 1.3.1.

Moreover, since g is a concave function by Proposition 1.4.1, then the solution of (4.3)

is a global optimum. This completes the proof of this Proposition. _

Proposition 1.4.2 implies that when facing exchangeable random variables, regret

aversc investors prefer to choose equal shares of their initial wealth in every prospect

rather than any other linear combinations of the prospects. Notice that the same optimal

choice holds true for risk averse decision makers .

fOT all (0'1,0'2, ... , an) E 'lI'.

•••••••••••••••••••••••••••••••••••••••••••••••••
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1.5.1 The standard portfolio problem

A main issue in portfolio theory is to study whether diversification is optimal. As noted

earlier, there are many studies that deal with this problem considering risk averse decision

makers. For instance, Arrow (1971), Brumel!e (1974), Hadar and Russel! (1971, 1974),

Hildreth (1974), Pratt (1964), Ross (1981), Samuelson (1967) and Tesfatsion (1976),

among others, analyze the convenience of diversification within the classic von Nemnan

and Morgenstern (1947) expected utility theory. Dekel (1989), Egozcue, Fuentes Ga.rcía,

Wong and Zitikis (2011), among others, study the portfolio diversification problem with-

out expected utility theory. However, the study of the standard portfolio problem ""ithin

regret theory is not very large .

Muermann et al. (2006) and Mulaudzi et al. (2008) study the standard portfolio

problem with a risky asset and a risk-free asset. These works establish conditions for

preferences for diversification when the éhoices consist of one-safe asset and one-risky

asset. Both works use a regret utility function similar to equation (2.2). They show

that if the expected return of the risky asset is equal to the risk free asset return then

a regret averse investor prefers to invest sorne amount of the initial wealth in the risky

asset. Just in case, to prevent regret, it is optimal to purchase sorne amount of the risky

asset. This wil! avoid the feeling of regret if the realized return is larger than the risk

free asset. However, a risk-averse decision maker would invest the entire anl0unt of the

initial wealth in the risk-free asset. On the other hand, when there is a net premimn,

a regret-averse decision makers would invest sorne amount of the initial wealth in the

risk-free asset. Contrary, fOl'a large risk premium, a risk-averse decision maker wOllld

specialized, investing al! the initial wealth in the risky asset (Arrow, 1971; Dalal, 1983).

Since, by definition, the variance of the random return of a risk-free asset is zero, we note

that this result differs from that in Sanmelson (1967), who considers non-degenerated

random variables .

Zeelenberg, Beattie, van der Pligt and de Vries (1996) run some experiments where

the participants must choose between a risky choice and a safe choice. Their results

show that regret agents could promote risk aversion or risk seeking, contrary to the usual
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claim that regret implies risk aversion. Therefore, their findings contradict the claim that

the anticipation of regret only implies risk aversion. Nevertheless, their study does not

involve making a formal analysis of the portfolio choice with two risky options .

The framework with a risk-free asset has several limitations. First, several experi-

ments have shown what is called the asymmetric feedback effect (Zeelenber, 1999; Zee-

lenberg et al., 1996; and Zeelebnerg and Beattie, 1997). That is, the outcome of a certain

option is known in advance, thus by choosing the risky choice you will always know the

foregone choice. This does not happen when the chosen altemative is the certain option .

For this reason, the risk free option might bias the participants' choices reducing the

regret influence in their decisions. Second, one can argue that there is not a risk-free

asset. For instance, usually US Bonds are associated as a risk free asset. Howevcr, since

inflation is random US Bonds real rate of rctum is also random. Thcsc two limitations

justify the portfolio analysis with two stochastic retums .

The model is as follows. Assumc a decision maker must determine the weights of an

initial wealth Wa (Wa > O), to be invested in two assets Al and A2 with random net

returns lRl and lR2. Therefore the final wealth, W, is a function of a E [0,11, and can be

expressed as follows

W(a) = Wa [1+ alRl + (1 - a)ffid .

Therefore, the regret averse decision maker's optimization problem is to maximizc

T (a) = E [u (W(a))1 = E [u (Wa [1+ oJE.l+ (1- a)lR2])], (5.1)

where u defined as in (3.2)."

Nevertheless, my main results can be applied in a similar context and study also the

risk-free asset case. In particular, we can apply Proposition (1.3.2) to get the following

resulto

Proposition 1.5.1 Let lRl and lR2 and be random independent retums. Suppose B> O.

G\Ve do not consider short sales. That iS1 \ve do not allow Q" to be larger than one or less than ~ero.
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1 JI E [lR] E [IR ] > Cov[lR2,v'(Wo(1+R2»] ti * O
. J 1 - 2 _ E[v'(WO(1++iR2»] , ¿en a > .

2. JI E [lRl] - E [IR2] _< Cov[Il"v'(Wo(1+R,)] then 00* < 1
J E[v'(Wo(1+R,)] , .

This result deserves some comments, and a connection with results already known in

the literature .

Remark 1.5.1 First, Proposition 1.5.1 it is a genemlization ofthe main results in 1viuer-

mann et al. (2006) and Mulaudzi et al. (2008). N otice that if lR2 is a degenerate random

variable, then Cov[lR2, v/(Wo(1 + ]l{2))] = O, and the model collapses lo the risk-free and

risky asset modelo Second, Propositi.on 1. 5.1 chamcterizes the conditions under which

Tegret averse will invest in both assets. In the fiTst case, investing all the initial wcalth in

a.sset A2 is suboptimal, while in the second case investing all the initial wealth in asset Al

is suboptimal. In fa.et, the first pa.rt of the proposition says tha.t if the difference between

the expected return of A, and the expected return of A, is large enough, then the regret

averse decision ma.ker would invest sorne arno'unt of its initial wealth in asset Al' Notice

that since Cov[IR2, v/(Wo(1 + IR,))] <::: O then the cond'ition E [IR]] > E [IR,] alone is not

enough for a regret averse decision rnaker to invest sorne arnount in a.sset A]. In other

wOTds, the feel of not having ehosen the asset with largest mea.n retv.m is not suffieient

to assure that decision maker would choose it .

1.5.2 Mixed remuneration scheme

In this subsection, 1 show a second application of the main findings of this chapter. In

this case, 1 apply the results to determine a salesman remuneration scheme. This problem

has been studied among others by Basu, Lal, Srinivasan and Staelin (1985), Farley (1964)

and Hildreth and Tesfatsion (1977) .

The model set up is as follows. Suppose an agent (e.g., salesman) must decide on a

remuneration scheme. To simplify the analysis, 1 am not assuming any salesman costs,

but 1 assume that the salesman's remuneration depends only on the total branches' sale

and not in the agent individual sales. Suppose S] and 132 are the random sales of two

branches of a certain company. The salesman receives a fix percentage A E (0,1) from one
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branch sales or from both. Thus, the salesman problem is to find the optimal branches'

sale weights of his compensation plan. The agent's income J is equal to

where a E [O,IJ is the weight of the branches' sales. Therefore the agent's problem is to

maximize

maxE [u(I (a))]'
C<

where u defined in (3.2) .

1 first assume the case that the branches' sales are independent. Then using the result

in Proposition 1.3.2 we deduce the follov"ing salesman behavior .

Proposition 1.5.2 Assume that 1''l¡ and 32 aTe independeni .

1 JI E [3 ] - E [S ] > CovjS"v'(S,)] th • > O
• J 1 2 _ E[v'(S,)] , en a .

This result characterizes the condition under which the salesman wil! prefer to have

a compensation plan that includes the overall company sales. As expected, the weight

depends on the difference between E [S1] and E [S2]. The remaining results can be applied

similarly. For instance, diversification is optimal if the branches' sales are either: (i)

exchangeable or (ii) negative quadrant dependent having the same mean .

"Ve can give an il!ustration of this application with the following example .

Example 1.5.1 Leiu defined as in (3.2) wiihv(x) = .¡x,e = 2 and<p(x) = exp{x}-1.

Assume ihe sales of S1 and 32 follow ihe bivaTiaie exponeniial disiTibution, which has a

joini disi1'ibuiion fv.nciion

F(x, y) = 1 - e-x - e-Y - e + (eX+ eY - 1)-1, x, y 2' O.
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These mndom variables are positive qu.adrant dependen( bu.t are e.7:changmble (BalakT'-

ishnan fj Lai. 2009, p. 123). The agent objective function is then equa,l to

¡+oo ¡+oo 2ex+y
H(Q) = JQX + (1 - Q) . 3dxdy

O O (ex + eY - 1)

¡+oo ¡+oo ')ex+y
-8 (exp{Jmax{x,y}-JOX+(1-0)}-I) - 3dxdy .

o o (ex + eY - 1)

Bince 3] and 32 are exchangeable then by Proposition 1.4.2 the maximv.m is attained at

Q' = 0.5 as it can be seen in Figure 4 .

H(a)

0.55

0.50

0,8

Figu.re 4 Graph 01H (Q) considering two exchangeable

randorn vm'iables

This example ends the application section. Although, I have limited the applications

to two simple cases, the previous analysis can be applied to similar models of choice

under uncertainty .

1.6 Concluding remarks

In this chapter, I study the preferences for diversification of a regret averse decision

maker, instead of one with the traditional risk averse behavior. First, I study this optimal

allocation problem considering two stochastic variables, instead of considering one risky
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prospect and one risk-free prospect as in the existing literature. For instance, I prove

that if the random variables are independent and identically distributed then complete

diversification is optimal. Moreover, when the random variables are independent, then

their means playa crucial role to determine preferences for diversification. I also provide

conditions to study the diversification behavior of the regret averse decision maker that

faces many random variables. In this case, 1 show that complete diversification is optimal

if the random variables are exchangeable. Second, 1compare the diversfication preferences

behavior of regret averse individuals and that of risk averse counterparts. I do so studying

the dynamic relationship between preferences for diversification and regret. I provide the

conditions when both behaviors coincide and when they may differ. Finally, I illustrate

the practical use of my main findings to two applications: the portfolio seledion and the

optimal salesman remuneration scheme .

This work can be further improved in several directions. First, a more complete

analysis for multiple random variables without the exchangeability assumption is desir-

able. Second, it would be interesting to use utility fundion that cOIlsiders, also, the

feeling of rejoice. These remain as tasks for future research .
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2.1 Introduetion

and applications

non-monotonic functions: theory

(1.1)Cov[a:(X), (3(X)].

Chapter 2

Covariance inequalities for

Many problems of choice under uncertainty involve studying the sign of a covariance. In

particular, many times it is necessary to determine the sign of the covariance of two real

functions a: and (3 of a random variable X:

The sign of (1.1) is deduced with the following argumento If these two functions are

increasing (or both decreasing) the sign of this covariance is non-negative, while if one

function is increasing and the other is decreasing the sign is non-positive (cf., e.g., Gur-

land 1967; Lehmann, 1966; McEntire, 1984; Schmidt, 2003). This argument relies on

Chebyshev's integral inequality (e£., e.g., Mitrinovic & Vasic, 1970; Simonovits, 1995).

We shall see there are sorne economic problems where a or ,8 is a marginal utility

fllnction. For instance, suppose that u is an increasing and concave utility fllnction, then

•••••••••••••••••••••••••••••••••••••••••••••••••
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In this particular case, as x is an increasing function and u.' is a decreasing function (by

the concavity of u.), the sign of (1.2) is deduced to be non-positive, This particular case of

(1.1) has been used in many papers in economics, For instance, Sandmo (1971) studies

the sign of covariance (1.2) to characterize the conditions under which a competitive

firm, that faces an uncertain price, would produce more or less than lillder certainty,

Similarly, Batra and Russell (1974) use this tool to analyze the effect of international

price uncertainty over the social welfare of a small country with two goods, Wllile Mossin

(1968) uses this covariance sign to show that fuIl insurance is optimal at an actuarial fair

price, while partial insurance is optimal if the premium includes a positive loading,

Nevertheless, Chebyshev's integral inequality crucially depends on the monotonicity

behavior of both functions, Sometimes tms assumption does not hold, For instance,

Wagener (2005) studies the sign of an expression similar to (1.2), that involvcs a non

monotonic function, that helps to derive sorne results of comparative statics under un-

certainty, Besides, other types of utility functions, apart from the traditional one with

risk averse behavior, have non-monotonic marginal utilities, For instance, prospect the-

ory proposes a utility function that is S-shaped, which means the marginal utility is

non-monotonic, On the other hand, Markowitz (1952) proposes a utility function that,

in its simplest case, is reverse S-shaped (RS-shaped), implying that the marginal utility is

also non-monotonic, Therefore, Cheyshev's integral inequality doesn't work for marginal

utilities of a S-shaped or RS-shaped utility functions,

This chapter contributes in the following, First, 1 derive sorne new covariance inequal-

ities for non-monotonic functions that covers the cases when the marginalutilities could

be non-monotonic, In particular, 1 study the sign of covariance (1.2) for prospect thcory

and for Markowitz utility functions, Second, 1 apply these new results to two problems

in economics, In the first application, 1 study the shape of the mean variance indifference

curves for S-shaped and RS-shaped utility functions, In this application, 1 shall address

••••••••••••••••••••••••••••••••••'.••••••••••••••

setting a(x) = x and (3(x) = u.'(x) , equation (1.1) can be 'll;Titten as follows

Cov[X, u.'(X)j, (1.2)
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the question of whether the monotonicity of the indifference curve in the (1', (J) still holds

for these types of utility functions. Final!y, 1 establish the optimal strategiesfor hedging

asset price risk within prospect theory. Specifical!y, 1 examine the optimal strategy for a

enterprise that behaves according to prospect theory .

The chapter continues as fol!ows. In the next section, 1 give a brief view of non-

monotomc marginal utility functions. In Section 3, 1 present sorne previous covariance

inequalities. In Section 4, 1 derive the main results of the chapter. In Section 5, 1 present

the mentioned applications. 1 finish the chapter with concluding remarks .

2.2 Non-monotonic marginal utility functions

In this section, 1 give a brief introduction to different types of non-marginal utility func-

tions. As we have seen, a utility function, u, can take on various shapes: concave, convex,

S-shaped and reversed S-shaped, among others. For a further discussion of different forms

of the utility function 1 refer to Gil!en and }.![arko",itz (2009) .

Friedman and Savage (1948) are among the first to propose alternative shapes of the

utility function. Instead of using a utility function that is concave in al! the domain, they

propose a utility function that could have convex and concave sections. This modification

of the utility function would explain, among other things, why individuals buy lotteries

(risk) and insurance at the same time .

Markowitz (1952) criticizes Friedman and Savage's proposal and posits an alternative

model that modifies the shape of the utility function. In particular, he proposes a utility

function where its domain is al! the real line. It starts convex then turns concave with

an infleetion point at the origin turning to convex and finishing concave. The argument

in the utility function is the deviation of the final wealth from the current wealth. For

simplicity, many authors have used a reverse-shaped (RS) type utility function with only

one infleetion point at the origin, (cf., e.g., Egozcue, Fuentes García, \Vong & Zitikis,

2011; Levy, 2006). Although Markowitz's proposal is appealing, there is nevcrtheless

mixed empirical evidence ",ith regard to this theory (e.g., Hershey and Schoemaker,

1980; Louberge and Outrevil!e, 2001; Post and Levy, 2005: Reilly, 1986).
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Figure 2: Corresponding marginal utility

-22

./
./

{

dX3 when x < O,
u(x) =

x3 when X 2: O,

2[
1 L

r
[
l

-1

-2
/
/

-1

Figure 1: Utility function (2.1) for d= 0.1

-2

Egozeue et al. (2011) use a power function to represent a RS-shaped utility function

given by

where d > O. As we see in Figures 1 and 2, the marginal utility of this RS-shaped utility

The marginal utility is deereasing for negative values of x and inereasing for.positive

values of x. This corresponds with the assumption that deeision maker is risk averse in

its negative domain and risk seeker in its positive domain .

Based on some ideas by Edwards (1954a, 1954b, 1955, 1962), prospect themy is one

of the most famous alternative theories to expeeted utility theory (Kahneman & Tversky,

1979: Tversky & Kahneman, 1992). It serves to explain a wide range of phenomena that

are not explained within the traditional expected utility framework. It is used in different

fields sueh as: eeonomies, finanee, marketing and psyehology (e£., e.g., Barberis, Huang

& Santos, 2001: Dalal, 1983; Pennings & Smidts, 2003; Thaler, 1985, 1994, 1999; and

referenees therein). This theory put forward arguments in favor of an S-shaped utility

function is non-monotonie .
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2002) .

Specifically, Kahneman and Tversky (1979) propose the following power function

(2.2)

(2.3)
when x 2'"0,

when x < O,

when x < 0,

when x 2'"0,{

-A(-X)1L
u(x) =

x'YG

function that has as an argument the changes of wealth with respect to a certain reference

point. Now, 1 pause to present a proper definition of a S-shaped utility function (Neilson,

where A > ° is the degree of loss aversion, and IG and IL E (O,1) are degrees of

diminishing sensitivity .

al-Nowaihi, Bradley and Dhami (2008) prove that (2.2) with IG = ~(L is a proper S-

shaped function that accounts for preference homogeneity and loss aversion. Nonethelcss,

this utility function has a mathematical tractability limitation, which is that its first

derivative does not exist at x = O. 1 shall consider this limitation in the main result .

Definition 2.2.1 A eontinuous strietly non-deereasing funetion u : R --+ R is caUed S-

shaped if there is a point Xo such that the funetion is non-positi1Je and con-vex to the left

of Xo and non-negati1Je and eoncave to the right of xo. The point Xo, that separates losses

fmm gains, is frequently caUed the r-eferenee point, OT the status quo. (Thmughout the

chapter, 1set Xo = O) .

Nevertheless, other different types of S-shaped utility functions have been proposed .

For instance, De Giorgi and Hens (2006) suggest to use the following S-shaped functian:

with parameters IL,~(C E [0,1] and AL,AC E (0,00) .

Since we are interested in anaIyzing the marginal utility of an S-shaped utility func-

tion, then we can write them as follows:

•••••••••••••••••••••••••••••••••••••••••••••••••
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'Throughout my thesis, 1 use u' to denote the first derivative (when it exists) of u, and the Radon-
Nykodym derivativc in thc ahsolutely continuous case (whcn thc dcrivative may not exist). Far examplc1

given the marginal utility u'(x) as in (2.2), the utility function u(x) is given by the formula

>. = 2 and A(L = ¡G = 0.5. As we can see in Figures 3 and 4, the marginal ut.ilit.y of a

prospect utility function, as defined in (2.2), is non-monotonic. Indeed, it is increasing

(2.4)

(25)

(2.6)
when x 2: O.

when x < O,

when x 2: O,

when x < O,

u(x) = { - ~ u'(t)dt x < O,
Jo u'(t)dt x> o.

(i) For Kahneman and Tversky (1979)1

Naturally, the marginal utility function u' is non-negative because it is generally

assumed that the underlying utility function u is non-decreasing. Furthermore, u' in

many situations is non monotonic on the entire real lineo Far instance, assume t.hat.

and (ii) for De Giorgi and Hens (2006) as follows

Notice, that u(x) in (2.4) coincides with u(x) in (2.2). This is in line with the frequently used in statistics
notion of absolutely continuous distribution functions. Far example~ the uniform on [O)1] density function
fo(x) is related to the uniform distribution Fo(x) by the equation Fo(x) = J; fo(t)dt, but Fo(x) is not
differcntiablc at the points Oand 1.

•••••••••••••••••••••••••••••••••••••••••••••••••
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Figure 3: Kahneman and Tversky utility
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Figure 5: l)iGiorgi and Hens utility function

Nevertheless, other types of S-shaped utility functions have been little explored in

the literature. For instance, Berhold (1973) and LiCalzi (2000) propose the use of cumu-

lative distribution functions to represent S-shaped utility functions. In particular, Broll,

Egozcue, Wong and Zitikis (2010) and LiCalzi (2000) use S-shaped utilityfunction of the

In Figures 5 and 6, we display the graphs of the utility function and the respective

marginal utility of (2.3) considering AL = 2, AG = 1 and 'h = 'iG = 0.5 .

in the loss domain and decreasing in the gains domain .
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4. Jf u is defined as in Definition (2.2.1) and u'(O-) > u'(O+) .

1. -u( -x) 2: u(x) for all x> O.

5. Jf u is defined as in equation (2.2) with 'fe = 'fL and.A > 1.

(2.7)u(x) = F(x),

form,

2. u~) :s; u~z) for all z < O < Y (weak loss aversion) .

Definition 2.2.2 Let u be an S-shaped utility funetion, with urO) = O. Then u exhibits

loss aversion if it fulfills one of the following conditions:

3. 1l(y):s; u'(z) for all z < O < Y (strong loss aversion) .

where F(x) is the cumulative distribution function of a symmetric random variable. Por

instance, setting u(x) = <l'(x)-1/2, where <l' is the standard normal distribution function,

it has an S-shaped form, with the referente point at the origin, xo = o.
Qne of the innovative features of prospect theory is loss aversion. The basic idea is

that losses 100m larger than similar gains. It can be defined in different ways (d., Neilson,

2002; Kóbberling &; Wakker, 2005). Therefore, 1 present a brief surnmary of the rnost

well known definitions of loss aversion .

Sorne authors also define loss aversion as u'(x) :s; u'( -x) for al! x 2: O, which is a

particular case of the third condition in Dcfinition 2.2.2. Hereafter, 1 shall consider utility

functions that posses this last particular characterization of loss aversion, and 1 shall also

use those utility functions with loss aversion as defined in condition 5.

Nonetheless, the evidence of the presence of loss aversion has received mixed empirical

support (d., e.g., Harinck'yan Dijk, Van Beest &; 1vlersmann, 2007; IVIcGraw, Larsen,

Kahneman, &; Schkade, 2010; Rozin &; Royzman, 2001, and the references therein) .

Indeed, although the idea of loss aversion is appealing, there are recent studies that

have found evidence of opposite effects. Por instance, Harinck et.al. (2007) and McGraw et

al. (2010) find evidence that for smal! outcomes 10ss aversion is reversed, and individuals

•••••••••••••••••••••••••••••••••••••••••••••••••
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COy [ex(X), (3(X)] 2'" O .

Theorem 2.3.1 Let a, (3 : [a, b] ---t R and f(x) : la, b] ---t R+. Then we have:

2.3 Sorne covariance inequalities

(3.1 )lb (b lb lb
a f(x)dx.fa a(x)(3(x)f(x) dx 2'" a ex(x)f(x) dx a (3(x)f(x) dx.

1. Jf a and B are both increasing 01' both decreasing, then

Therefore, the aboye theorern, can be expressed in its rnost usual probabilistic forrn

as follows.

It is common to see this inequality in its probability formo This can be easily done sup-

posing that f(x) is a probability density function. Then Chebyshev's integral inequality

in equation (3.1) can be written as fol!O\vs:

2. Jf one of the functions ex and (3 is increasing and the other is decr.easing, then the

inequality is reversed .

weigh more heavily gains than losses, which is referred as reverse loss aversion. In order

to make the analysis as general as possible, 1 would also consider the case of reversed

loss aversion (i.e., gains 100m larger than losses). 1 shal! cal! reverse loss aversion utility

functions, those with the condition u'(x) 2'"11.'( -x) for al! x 2'"O. Note that for power

utility functions as defined in (2.2), then reversed loss aversion implies that ,\ < 1.

In this section, 1 proceed to present a brief review of sorne wel! known covariance inequal-

ities. 1 begin with the celebrated Chebyshev's integral inequality, which can be stated in

its integral (original) forrn as follows:

Theorem 2.3.2 Let X be a continuo7.lS mndom variable defined 011. [a, b]e R, with well

defined expectations. Consida two real functions a and (3 then:

•••••••••••••••••••••••••••••••••••••••••••••••••
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1. 1f n and ,8 aTe both incr'easing 07' both decrmsing, then COy [n(X), ,8(X)] :::> O.

2. 1f one funetion is non-deer-easing and the other one is non-inereasing, then we have

COy [O'(X), ,8(X)] .::; o.

We note that if the random variable is non-degenerate and both functions are strictly

monotonic then the inequalities in Theorem 2.3.2 are strict. The following Lemma plays

an important role in proving the Chebysehev's ineqllality .

Lemma 2.3.1 Lét n and ,8 be two eontinuous real functions and X be a continuous

mndorn variable defined on [a,b] e R. Then

COy [O'(X), ,8(X)] = E [(O'(X) - O' (e)) (,8(X) - ,8 (e))]

where e E [a,b] is such that O' (e) = E [O'(X)] .

Remark 2.3.1 This result follows direetly frorn applying the Second Mean Value The-

orern for integrals (ej., e.g., Sahoo fj Riedel, 1998), and using the definition of the co-

vario.nee (see, e.g. Ourlo.nd, 1967; Sehrnidt, 2003), Notice that Theor'ern 2.3.2 can be

proved invoking Lernrno. 2.3.1. Por instanee, assurne both functions are incr-easing, then

(i) 1f x > e then as o: and ,8 are both inemasing then (a(x) - a (e))(,8(x) -,8 (e)) is

non-negative. (ii) On the other hand, if x < c then O'(x) .::;a (e) and ,8(x) .::;,8 (e), which

yields the sarne resulto

As 1 have noted earlier, there is an important limitation of the Chebyshev's integral

inequality. It requires that both funetions must be monotonie. This strong assumption

might be violated on several oeeasions. Henee, studying the sign of (1.1) by relaxing the

monotonieity assumption is not only a problem of pure mathematieal interest, but it is

also of interest in applied mathematics .

Steffensen (1925) proposes a non-monotonie version of Chebyshev's integral inequality .

Instead of eonsidering two monotorlle fllnetions, he relaxes the monotonieity of one of

the funetions, however, imposing a speeial eondition on one of the functions. 1 present

this result written with probabilistie notation .
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3Recall that p(x) is an odd Junetion iJ ,B(x) = -,B( -x) Jor' al! x ~ O,

1, iJa(x) 2: a(-x) for all x 2: 0, then Coy[a(X),¡3(X)] 2: (::;)0; and

1. iJ a(x) is incTeasing, then COY [a(X), ¡3(X)] 2: (::;)0; and

(3,2)E [S(X)jX ::;xl ::; C:) E [¡3(X)] for all x E [a, b],

2. 1J a is non-inereasing then COY [a (X), ¡3(X)] ::; (2:) 0,

1. 1f a is non-decreasing then Coy[a (X) ,¡3(X)] 2: (::;) 0,

wher-e E[.I.] is the eonditional e,Tpeetation operatoT, then:

Theorem 2.3.3 Let a and ,8 : [a,b] -+ R , be difJerentiable real junetions, Consider a

random va1'iable X with density funetion J and support on [a, b]. Assume the expectations

exist. 1f

2 Recall that a random variable X is symmetric iJ X 4 - X, equality in distr'ibution

2. iJ a(x) is deereasing, then COY [a(X), ¡3(X)] ::; (2:)0 .

Egozcue et al. (2009, 2011) derive sorne new covariance inequalities relaxing the

rnonotonicity assurnption, but they only work for syrnmetric randorn variables .

Theorem 2.3.4 Let X be a mndorn variable, syrnmetric2 about zem with 8Upport on

[-b, b], and with density Junction J. Consider two continuous real functions a and ,S,

Assume that ¡3 is an odd function3 with ,S(x) 2: (::;)0 for all x 2: O. We have that

Note that to get consistent results, relax:ing the rnonotonicity assurnption of one func-

tions needs the syrnrnetry assurnption of the randorn variable and also the odd function

condition, In the next result, however, we relax the rnonotonicity assurnption of both

randorn variables .

Theorem 2.3.5 Let X be a rondom variable symmetTic about zem. ConsideT two real

functions a(x) and ¡3(x). Let ,S(x) be an odd funetion of bounded 'variation with ¡3(x) 2:

(::;)0 for all x 2: 0, We have that

•••••••••••••••••••••••••••••••••••••••••••••••••
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2. ij a(x) :::;a( -x) jor all x;:: O, then Cov[a(X),3(X)] :::;(;::)0 .

An extension of this result appears for S-shaped utility.function in Broll et al. (2010) .

They show that the mean has an important role to determine the COVari3J1Cesign for a

particular type of S-shaped utility functions, as we can see in the following theorem .

Theorem 2.3.6 Let X be symmetric amund its mean J1 = E [XI. 1f u is an S-shaped

function, with u'(x) = -u'( -x) for all x E R. Then we have the following statements:

1. 1f J.l ;:: O then Cov[K u'(X)] ::;o.

2. Jf J1 ::; O then Cov[X, u'(X)] ;::O.

This theorem characterizes the sign of the covariance (1.2) for a non-monotonic mar-

ginal utility. However, it works only for a utility function that does not consider strict

loss aversion, as it is defined in Definition (2.2.2). In the next section, 1 present a general

result of this theorem for S-shaped with loss aversion and reversed loss aversion as well.

1aLsoextend this theorem considering reverse S-shaped utility functions .

2.4 Main results

In tms section, 1 present the main results of this chapter. We have seen that S-shaped

utility functions have non-monotonic marginal utilities. "Ve have also seen that for sorne

S-shaped utility functions, (e.g. (2.2)), the marginal utility u' does not exist at the

reference point O. Nevertheless, there other S-shaped utility functions with more mathe-

matically tractable behavior such as (2.3) or (2.7). First, 1 shall state a general theorem

where the marginal utility exists in all the realline. Second, 1shall relax the assumption

of existence of the marginal utility at the origino

First, in the next result 1 extend Broll et al. (2010) findings considering general S-

shaped and RS-shaped utility functions. The novelty of this result is that 1shall consider

loss aversion and reversed loss aversion as well.
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1. 11 v is S-shaped, then we have the lollowing two statements:

2. 11 u is RS-shaped utility lunction, then we have the following two statements:

Theorem 2.4.1 Let X be a symmet7'ic mndom variable about its mean fL Let v be a

diffe7'entiable 'utility lunction .

(4.2)u'(¡.¡,+ z) - u'(¡.¡,- z) ::;O .

(a) 11 ¡.¡, 2': O and u'(x)::; u'(-x) 107'all x 2': O, then Cov[X,'u'(X)]::; O.

(b) 11 ¡.¡, ::; O and u'(x) 2': u'( -x) 107'all x 2': O, then Cov[X, u'(X)] 2': O.

Cov[X,n'(X)] = Cov[Z + /1,U'(Z + /1)]

= Cov[Z, u'(Z + ¡.¡,)]

= E[Zu'(/L + Z)]

= E[ZU'(/L + Z). l{Z 2': O}] + E[Zu'(¡.¡,+ Z). l{Z < O}]

= E[Z{u'(¡.¡, + Z) - u'(¡.¡,- Z)) .1{Z 2':O}]], (4.1)

(a) 11 ¡.¡,2': O and u'(x) 2': u'( -x) 101'all x 2': O, then Cov[X, u'(X)] 2': O.

(b) 11 J1::; O and u'(x) ::;u'( -x) 101' all x 2': 0, then Cov[X, v'(X)] ::;O.

Proof. First 1 prove case 1 (a). Define the random variable Z = X - J1.. Therefore,

Z is symmetric about zero with E[Z] = O. Thus, we rewrite the covariance as fol!ows

where 1{Z 2': O} is the indicator function, which is equal to 1 whenever Z 2':° and equal

to O otherwise .

There are two cases to consider: (i) Let J1. - Z 2': O. Since z 2': O implies /J. + z 2': /1- Z

and n' is non-increasing on (O,(0), we have that

(ii) Now assume that ¡.¡, - Z ::; O. Since ¡.¡, 2': O and z > O, we therefore have that

¡.¡, - z ::;O ::; ¡.¡,+ z. Consequently, using the assumption of u'(x) ::;u'( -x) for al! x 2': O,

•••••••••••i.
•••••••••••••••••••••••••••••••••••••
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U'(Ji + z) - u'(z - Ji) :;..u'(Ji + z) - u'(p. - z) .

Notice that z - p. :;.." + z :;..O, thus \Veare in the positive domain of u, implying that it

is convex, thus u' (" + z) ~ u' (z - ,,), therefore, \Veconclude that

(4.4)

(4.3)

(4.5)

u'(" + z) - u'(" - z) ~ u'(" + z) - u'(z - /J,).

u'(p. + z) - u'(Ji - z) ~ Ofor aH Ji ~ Oand z ~ O.

u'(p. + z) - u'(p. - z) ~ u'(p. + z) - u'(z - p.) ~ O.

1 now prove part 2 (b). Starting with equality (4.1), we have, again, two cases:

(i) Assume 11 + z ~ O, then (since p. ~ O and z :;..O) we have " - z ~ Ji + z ~ O.

And, thus, we are in the negative domain of u which as it is RS-shaped it is concave .

Therefore, we conclude that

Therefore, together from (4.2) and (4.4) we conclude that

Multiplying in both sides of (4.5) by l{Z ~ O}, taking expectations in both sides and

using equality (4.1), we obtain that Cov[X, u'(X)] ~ O. This finishes the proof of part

i(a) .

we have that u'(" - z) = u'(-(z - ,,)) ~ u'(z - ,,), and thus

(ii) ~0\V, assume that Ji + z:;.. O. Since we assume that 1J.'(X) ~ u'(-x) for aH:¡;:;.. O

then u'(z - /J) ~ u'(Ji - z). So that,

"Ve exploit the fad that the right-hand side of bound (4.3) is non-positive because u' is

non-increasing on (0,00) and O ~ z -/J. ~ z + ". Consequently, u'(z - ,,) ~ u'(z + p.),

and thus

•••••••••••••••••••••••••••••••••••••••••••••••••
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4 For the meaning of u' and its relationship with u in the absolu.tely continuous case, see fooinote (1j .

h(b) = Cov[X, u'(X)] .

At the end, we condude that for al! z ::>: Oand ¡J, :s; Owe have that
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and the RS-shaped utility function as defined in (2.1). Let h(b) be defined as follows4:

Example 2.4.1 Suppose X is continuous and uniformly distributed on [-1, b] with b > O.

Now, consider- the following S-shaped utility function

Fol!owing the same steps as in the proof ofpart l(a) we condude that Cov[X, u'(X)] :s; O.

This ends the proof of part 2(b). The other parts can be proved in the same way. _

1 shall now present a numerical illustration of Theorem 2.4.1.

In the next figures, we display the gmphs of h(b) for- dijJer-ent values of d and >. .

•••••••••••••••••••••••••••••••••••••••••••••••••
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2, JI p, ::; O and u'(x) ::;> u'( -x) lor all x> O, then Cov[X, u'(X)] ::;> O.
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1. JI p, ::;> O and u'(x) ::;u'( -x) lor all x> O, then Cov[X, u'(X)] ::;O .

Theorem 2.4.2 Let X be a mndom variable symmetric abo'ut its mean I}"and such that

X # O almost surely, Suppose u is an S-shaped utility lunction, as defined in (2.2), then

we have the lollowing two statements:

Figures 7 to 10 display the covariance sign for the fout' cases in Theorem 2.4.1.

The extension of Theorem 2.4,1 to other S-8haped 8uch as (2,2) can be done consid-

ering certain types of symmetric random variables, For example, Theorem 2.4.1 could

be adapted to those random variables, X, 8uch as X # O almost surely. 1 present this

extension in the next theorem .

Proof. 1 only prove the first case, the other case can be proved in the same way.

The proof llÚllÚCS the proof of Theorem 2.4.1. First, with the notation Z = X - p, we

rewrite the covariance Cov[X, u'(X)] as the expectation E[Zu'(p,+Z)]. Since Z # -p, by

assumption, we have also Z # p., by the symmetry of X, Consequently, COV[X,1J.'(X)]

••••••1:
•••••••••••••••••••••••••••••••••••••••••
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/Lx::;' /Ly and O"x:::: O"y,

1 skip the rest of the proof, since it is similar to that of Theorem 2.4.1. •

is equal to E [Zul(¡.l+ Z) .1{Z el ::l:p}J,and thus

(5.1)E [u(X)] > E [u(Y)] ,

2.5.1 Mean variance indifference curves for S-shaped and RS-

shaped utility functions

Cov[X, ul(X)] = E[Zu'(¡.l + Z) .1{Z el ::l:¡.l} .1{Z > O}]

+ E[Zu'(p + Z). I{Z el ::l:p}. I{Z s; O}]

= E(Z(u'(p + Z) - ul(¡.l - Z))1 {Z el ::l:p}1{Z > O}]. (4.6)

2.5 Applications

The expected utility approach and the mean-variance approach, which is known as (IL, 0")

criterion, are in general two different approaches for decision making under uncertainty .

The expected utility approach says that X is preferred to Y if alld only if

This section shows sorne applications of the main results. The range of applications is

broad, but 1 restrict the analysis to two cases. First, 1 study the monotonicity condition

of the mean variance indifference curve for an S-shaped utility function and RS-shaped

utility function. Second, 1 apply the findings to the hedging policies of an enterprise that

behaves according to prospect theory .

where u is a concave utility function. On the other hand, the mean variance approach

(sometimes also called mean variance rule) was introduced by Markowitz (1952) and

states that choice X is preferred over choice Y if

•••••••••••••••••••••••••••••••••••••••••••••••••
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with at least one strict inequality. Here, j.lx and j.ly denote the mean of X and Y, and

CFx and CFy denote their respective standard deviatioIlS. The idea is that decision makers

use only the mean and variance to make decisions. This is a common tool used by

practitioners in finance (Shefrin, 2008). However, it has strong theoretical limitations .

For example, does not satisfy the expected utility independence axiom (e.g., Hens and

Rieger, 2010, p. 50) .

lvIany scholars study when both approaches are equivalent. Tobin (1958) shows that

the two approaches are compatible under normally distributed assets or quadratic utility

functions. Moreover, under the normal distribution assumption, the mean variance rule

also coincides with the expected utility approach (Hanoch and Levy, 1969). Sinn (1983)

and Meyer (1987) show the equivalence of these approaches when the distributions differ

only by a location and scale parameters. That is, suppose that X has a distribution

that belongs to a class í1, then y = ¡.t + aX where, ¡.t E R and CF > O, also belongs to

that class of distribution í1. In other words, if the distribution of X is F( x), then the

distribution of y is equal to F(¡.t + CFX). Some distributions that satisfy the location

scale condition are, among others: thé elliptical distributions; the normal distribution;

the uniform distribution; the Cauchy distribution and the Student's t distribution .

Sinn (1983) and lvIeyer (1987) derive several properties oí the indifference curve in a

(¡.t, CF) space, generated by a general risk averse von Neumann- Morgenstern utility func-

tion. In particular, these studies prove that these indifference curves, represented as a

function CF f-+ ¡.t(CF), are increasing and convex. These conditions are useful when the in-

difference curve is maximized over convex feasible sets. It explained, among other things,

issues such as the existence of the CAPM equilibrium, as elucidated by Ormiston and

Schlee (2001) .

It is important to study the monotonicity of function ¡.t( CF). An increasing function

means that the investor is willing to take more risk in exchange of more expected rcturn .

This is a crucial assumption of portfolio theory, since largcr rcturns associates higher risk

Therefore, as an application oí the main results, 1 will study whether the monotonicity

propcrty still holds for S-shaped and RS-shaped utility functions .
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To keep the analysis as simple as possible, 1 do not consider transformations of the

1987).

S( ) = _ V~(¡.t, J)
¡.t, J 11 ( ) ,V" ¡.t,J

have been extensively investigated in the literature (see, for example, Sinn, 1983; JVIeyer,

distribution function as prospect theory suggests (Kahneman & Tversky, 1979; Tversky

& Kahneman, 1992). Hereafter, 1 assume that the random return Y belongs to the

location-scale family {Il + JX : ¡.t E R, J > O} , where X is a random variable with

mean Oand variance 1, and whose distribution function F does not depend on ¡.t and J .

Hence, the expected utility E[u(Y)] defines a two-argument function

(5.3)

(5.4)

(5.2)

éJ
V,,(¡.t, J) = o¡.t V(p., J),

V,.(j1, J) = : V(Il, J),
OJ

52

V,,(¡.t, J) = E[u'(Y)J

V".(¡.t,J) = ~Cov[Y, u'(Y)],
J

V(j1., J) = E[u(¡d JX)] = J u(p + Jx)dF(x).

and especially of

Various properties of V (¡.t, J), its partial derivatives

The quantity S(¡.t, J) has played a particularly prominent role. For instance, it can

be viewed as the derivative with respect to the standard deviation J of the indifference

nmction J f-> ¡.t(J), which, for a given constant a, can be viewed as the curve {(J, ¡1) :

V(¡.t,J) = a} drawn on the (J,¡.t)-plane .

Hence, if S(¡.t, J) is positive, then the indifference function J f-> ¡.t(J) is increasing,

whereas if S(¡.t, J) is negative, then the indifference function is decreasing. Assuming

that the utility function u is differentiable and sorne integrability conditions are satisfied,

we have the equations

•••••••••••••••••••••••••••••••••••••••••••••••••
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inereasing and eonvex .

ereasing and eoncave .

2. Jf the utility function u is convex then the indifferenee funetion a f-> p(a) is de-

(5.5)S( a) = _~ Cov[Y, u'(Y)]
p, a E[u'(Y)J .

where Y = t' + aX. Since S (P. a) = - Va(t", a) /V", (P. a), we therefore have that

1. Jf the 'utility funetion u is eoneavc then the indiffcrcnec funetion a f-> p.(a) is

Theorem 2.5.1 Jf the distribution of Y with mean p and var'iance a2 belongs to a

location-seale family, and the twiee differentiable utility funetion u is inereasing on its

domain of definition, then we have the following two statements:

\Ve may view V¡.Jp, a) as the expected marginal utility 01', in other words, the slope of

the expected utility V (p, a) "lVithrespect to p. Like"IVise,we may view Va(p, a) as the

expected marginal utility V(p, a) "lVithrespect to (J. Finally, we may view 8(p, a) as the

slope of the indifference function a f-> p( a) .

This indifference curve and its various properties (e.g., monotonicity, convexity, con-

cavity, and so forth) have received considerable attention in the literature. As we have

noted aboye, sorne of the properties follow from the corresponding ones of the indifference-

function a f-> S(p, a). In particular, the following general property is well known (see, for

example, Eichner, 2008; Eichner & \Vagener, 2009; Meyer, 1987; and references thcrein) .

It is now natural to extend formulas (.5.3)-(.5.5) to the case of general marginal utility

functionsu' and random variables Y. As before, I use the notation p = E[Y] and

a2 = Var[Y] .

Determining the sign of (5.5) is obviously equivalent related the sign of Cov[Y, v!(Y)J .

\Vhen the marginal utility is monotonic, then we know that Cov[Y, u'(Y)] 2 O for every

non-decreasing u' and Cov[Y, u'(Y)] ::; O for every non-increasing u'. However, the

marginal utility may be non-monotonic, as noted earlier. To cover such functions, I

establish the following theorem that studies thc monotonicity of the indifference curve

generatedby S-shaped utility functions .

•••••••••••••••••••••••••••••••••••••••••••••••••
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Theorem 2.5.2 Suppose the utility function u is S-shaped. Let Y = p+aX be a random

variable whe¡'e X is a syrnmetric random variable with zero mean and unit variance.

Assume the location scale condition hold.

1. Jf Jl. ?: O and u'(x) :S u'( ~x) for any x > O, then \lo-(Jl., a) < O and thus the

indifference funciion a f-> jl( a) is increasing.

2. Jf Jl.:S O and U'(.7;) ?: u'(-x) for any x> O, then \lo-(jJ.,a) > O and thus the

indifference function a f-> jJ.( a) .is decreasing.

Proof. 1 only prove Part (1) of the theorem by considering the case 11 ?: O. We

have seen that the slope of the indifference function a f-> Jl.( a) is determined by the sign

of Cov[Y,u'(Y)]. Since X is symmetric about zero, then y is also symmetric about JI.

Therefore, invoking the first part of Theorem 2.4.1, we deduce that Cov[Y, vl(Y)] :S O

and thus S(Jl., a) ?: O,which implies that the assertion in Part (1) of Theorem 2.5.2 holds .

Part (2) can be proved in the same way. _

Next, 1 study the monotonicity property of the indifference curve for RS-shaped lltility

functions .

Theorem 2.5.3 Consider the utility function as defined in (2.1), in which case is RS-

shaped. Let Y = Jl. + aX be a random variable where X is a symmetr-ic mndom variable

with zero mean and unit variance.

1. Jf Jl. ?: O and .u'(x) ?: u'(-x) for all x > O, then \lo- (11, 0') > O and thus the

indifference function O' f-> Jl.(a) is decreasing.

2. Jf Jl. :S O and u'(x) :S u'(-x) for a.ll x > O, then \lo- (Jl., O') < O and thus the

indifference function a f-> jJ.( 0') is increasing.

Proof. The proof is analogous to the one in Theorem 2.5.2, but now invoking the

results in the second part of Theorem 2.4.1. _
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2.5.2 Hedging policies within prospect theory

Continual!y changing volatilities on financial markets coupled with rises in interest rates,

foreign exchange rates, and prices for goods and services have led to the developrnent

of various futures markets. These risk-oriented markets have experiep.ced a remarkable

rate of growth throughout the world and resulted in the creation of many new financial

hedging instruments. These hedging instruments al!ow a better control of risk exposure

faced by an enterprise (see, for example, Bessis, 2009; Freixas & Roehet 2008; ]'vIeyer&

Robinson, 1988).

In an important contribution to the literature on futures markets and hedging, Ben-

ninga, Eldor and Zilcha (1983) address the issue of optimal hedging in the presenee of

unbiased futures prices. They derive conditions for the optimal hedge to be a fixed

proportion of the cash position, regardless of the agent's utility function. This result

is important because of the sizeable research on theoretical and empirical hedging that

abstracts from the particular utility functions of risk-averse, expected utility maximizers

(see, for example, Battermann et al. 2000; Brol! & Eckwert, 2006; Dewatripont & Tirole,

1994; Freixas & Rochet, 2008 and references therein). The novelty of my application is

to incorporate prospect theory into the utility function of a firrns. The enterprise has a

prospect utility function defined over its end-of-period profit. To hedge its risk exposurc,

the firm trades futures contracts. 1 show that when the utility function is S-shaped,

the main results of the previous section plays a pivotal role in determining the optimal

hedging of the firmo

In this application, 1 follow Broll and Wahl (2006) model of a firm with one-period

planning horizon .

The model set up is as follows. The enterprise that has risky assets with random return

(future spot price) r. The assets are financed partially with external funds (deposits),

denoted by ID, which pays a certain return (price) rül > O. The enterprise also finances

5r am assuming that Fisher's separation thcorem does not hold. Th.is implics that thc firm might
maximize the expected utility oí profits, instead of ma..ximizing just profits. Beyond enterprises: my
developed theory could be widely applicable to model and analyze decisions oE individual agents, such
as farmers and other individual entrepreneurs .
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its assets with a fixed equity IK > O. Therefore we can write the firm's balance sheet

constraint as follows,

As we shall see, the value of the mean, fol' the reasons studicd in the previous section,

has an important role in determining the optimal hedging decision .

Therefore, the firm manager's problem is to find the optimal hedging that maximizes

the expected utility of profits. However, instead of considering a traditional Bernoulli

utility function, the firm uses an S-shaped utility function u as defined in Definition 2.2.1.

Thus, the firm wants to m&ximize its expected utility of profit

There are operational costs that depends on the deposits leve!. 'Ve represent these

costs with a function C (IDJ), which we assume to be increasing and convexo In part of the

uncertainty, the risky assets, A, can be hedged in the forward market at a certain pl'ice

rA' Let H denote the amount of the hedged assets that is determined at the beginning

of the periodo \Vhen H is positive means that the firm is selling assets in the future

market. On the other hand, if H is negative it means that firm is purchasing assets in

the future market. It is said that speculation is involved if H ~ [O, A]; otherwise the

assets are hedged without speculation. For instance, H < ° it means that the firm is

purchasing assets in the forward market, while H > A means that the firm is selling in

the future mal'ket an amount greater than its current assets .

Since A = IDJ+ I{ is known, in this scenario, next period enterprise's profit is given by

•••••••••••••••••••••••••••••••••••••••••••••••••

A = ]jj)+IK .

II(H) = r (A - H) - rj)IDJ - C(IDJ) + TAH .

Firm's profit is uncertain and its mean is given by

j.1.(H) = E [II(H)J = E [T] (A - H) - TaIDJ - C(IDJ) + TAH.

m:xE[u(II(H))j = E [u(rA - rn;J!]) - C(IDJ) + Hh - r))].
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In other words, we want to find the H that maximizes the expected utility of profits .

1 denote by H* the solution of (5.9). Since u is an S-shaped function, then there is

no guarantee that E[u(IT(H))J wil! be concave respect to H. Therefore, 1 restrict the

analysis to those cases where the first order condition holds and there is a global solution

•••••••••••••••••••••••••••••••••••••••••••••••
' .
•

of (5.9) .

Proposition 2.5.1 1f the first order condition of (5.9) holds then we have

( _ E [ ]) (A _ H*) = Cov[IT(H*), u'(IT(H*))] .
rA r E[v'(IT(H*))]

Proof. Taking the first order condition of (5.9), evaluated at H*, we have

E[(TA - r)u'(IT(H*))] = O

The latter equation can be rewritten as follows:

E [ru'(IT(H*))]
E [u'(IT(H*))] = rA .

Now, using the covariance function we have

r -E[r] = Cov[r,u'(IT(H*))J
A E[u'(IT(H*))J .

After subtracting (5.7) with (5.8) we get

(r - E [r])(A - H*) = IT(H*) - E[IT(H*)J,

which implies that
_ IT(H*) - E[IT(H*)] E [.]

r - (A _ H*) + r .
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Substituting (5.12) in the covariance term oí (.5.7) \Vehave

Note 2.5.1 Notice that using the spot-jutuTes parity Telationship (which states that mtio

of 1"eturn on pCTfectly hedged stocks eq11.alsthe risk-fTce inte1"est mte) we can write

(
1 + r¡)"

TA = E [r] 1+ k '

(5.13)(
1" - E [Tj) (A _ H*) = Cov[II(H*), u'(II(H*»] .

A E[v/(II(H*»)j

•

Therefore \Vehave from equation (5.11) that

wher-e l'¡ is the risk fTee interest mte, k the Teq11.iTedmte of Tet11.mand n is the numbel'

of peTiods (Bodie, Kane and MaTeus, 1996 p. 708). Thus, r;" will be less than E [1']

wheneveT k > TI (i.e., the asset has a positive beta). ¡,v'hen the expected price equals the

Cov[1", u'(II(H*»] = Cov [II(H~~ -_E~~)(H*)j + E [rj, u'(II(H*»]

= A ~ H* Cov [II(H*), u'(II(H*»] .

Finding H* is generally a complex task. Nevertheless, equation (5.13) has important

derivations. Since E[u'(II(H'»j > 0, the sign of the covariance Cov[II(H*), u'(II(H*»j

determines the sign ofthe product (TA -E [r])(A-H*). When u is more complexly shaped

than being concave, then determining the sign of the covariance Cov[II(H*), u'(II(H*»]

is a challenging task.

The relation bet\Veen the expected spot price and the future price wil! also determine

the sign of (A - H*). 'l:Vhen there are more hedgers taking short positions in the future

market than those that are going long then, to reach a balance, speculators must enter

the market taking long positions. The speculators \Vil! do so, only if TA < E[T] (a

condition named normal backwardation). Conversely, if there are more hedgers taking

long positions than those that are short, speculators \Vil! enter the market if TA > E [r]
(a condition named contango) .

•••••••••••••••••••••••••••••••••••••••••••••••••
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in (5.10) .

Next, 1 present an application of Theorem 2.4.1 that studies the sign of the covariance

Cov[II(H), u'(II(H))] ::;O .

(5.14)

p(H*) = (E[r] - 1'11.)(A - H*) + rA.ID- rlIDID- C(ID)

Cov[II(H*), u'(II(H*))] A _ . ID_ C(ID)
E[u/(II(H*))J + 1'11. rjj¡ .

1. Jf 1'11. < E [1'], then H* ::;A .

Proposition 2.5.2 Let the distributian af r be symmetric a;TOundits mean E [r]. Let u

be an S-shaped utility funetian, with lass aversian defined as d (x) ::; u' ( - x) fOT al! x > O.

Jf p( H) ::::O then

2. Jf 1'11. > E [1'], then H* ::::A.

Using Proposition 2.5.2, we obtain the following corollary, which guides the firm in de-

ciding whether to speculate or noto More precisely, it will tell us whether H* is smaller

or greater than A, depending on whether the expected price E[r] is smaller or greater

than the forward rate 1'11..

Corollary 2.5.1 Let the distributian af1' be symmetric araund its mean E [1']> O. Let u

be S-shaped, with lass ave1'sian defined in (2.2.2) u/(a;) ::; u/( -x) f01' al! x > O. Assume

that H* is a salutian of (5.13) such that p(H*) = E [II(H*)] ::::O , then we have the

fol!owing statements:

Proof. The proof follows directly by invoking Theorem 2.4.1. •

We see that 11(H) plays a decisive role in determining the sign of the covariance

Cov[II(H),u'(II(H))]. When H = H*, note that we have the following expressions for

the mean:

jorwaTd pTice then the price isunbiased, this is the case whcn Tf = k. Final!y, TA > E [T],

whenever k < l' f (i.e., the asset has a negative beta) .

•••••••••••••••••••••••••••••••••••••••••••••••••



60

"1 havo left the case TA = E Ir] as a task for future research, because it is more involved. It requires
to prave that COy [X,u'(aX + b)] = O implies a = O, where a and b are real numbers .

( . _ E [ ]) ( _ W) = Cov[II(H'), u'(II(H'))]
rjj, r A E[u'(II(H*))] .

if x 2' O,

ifx < O .
u(x) = {

Proof. Now, 1prave the first parto The third part can be praved similarly. Prom the

first order condition of (5.9) we have

Since jJ.(H*) 2' Ousing Proposition 2.5.2 then Cov[II(H*),u'(II(H*))] ~ O.Therefore, the

sign of (rA - E [r]) is the opposite to the sign of (A - H*). Therefore, since

Cov[II(H*),l/(II(H*))] < O
E[u'(II(H*))] -,

Example 2.5.1 Consider A = 10, ID= 1, rll = 0.1, C(l) = 2, and r could be egual to 1

or O with egual probability. Let

and rA < E [r] we have H* ~ A. •

This result has the fol!owing intuition6 In the first case, if the forward price is less

than the expected spot price, then the firm will hedge an amount less than its current

assets. However, if the gap between the forward price and the expected prices is large

enough, then it could purchase asSets in the future market. The firm will exped to sel!

them at a greater price in the future. In the second case, if the forwal'd price is greater

than the expected price, then the firm will speculate selling an amount greatel' than its

assets, expecting to purchase the additional assets in the future at a lower price.

These are wel! known results for decision makers ",ith stl'ict risk aversion (Feder, Just

and Schmitz, 1980; Houlthasen, 1979). At the end, undel' these conditions, the enterprise

hedging policies with an S-shaped utility are similar as if it uses an incl'easing and concave

utility function .

1 finish this section, giving a numerical example of the entel'pl'ise hedging policies .

•••••••••••••••••••••••••
' .
•••••••••••••••••••••••



•••••••••••••••••••••••••••••••••••••••••••••••••

1. Suppose that r" = 0,25 < E [r) = 0,5. Then

E[u(IT(H))] = ~ /(7.9 - 0.75H) (sgn(7.9 - 0.75H) + 1)
2 V 2

_ V(7.9 - 0,75H) (Sgn;7.9 - 0.75H) - 1)

1V(0,25H - 2.1) (sgn(0,25H - 2,1) + 1)+ - ------------
2 2

_ /(0.25H - 2.1) (sgn(0,25H - 2.1) -1)
V 2 '

where sgn(x) is the sign function that takes on values: 1 when x > 0, -1 when

x < 0, and ° when x = O. Below, 1display the plot of E[u(IT(H))] .
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Figure 11

One can check numerically that the maximum is attained at H* = 8,93 < A = 10.
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In Figure 12, I show the graph 01E[u(II( H))lo which attains a maximum value at

H* = 11.37 > A. = lO .

2. Now 1assume tlwt r'A = 0.55 > E [r]= 0.5. Then

2.6 Concluding remarks

In this chapter, 1 establish new covaj-iance inequalities that involve non-monotonc func-

tions. In particular, 1 derive new results to study the sign of Cov[X, u'(X)], when the

marginal utility is non-monotonic. This is the case when the utility functions are ac-

cording to 1I.1arkowitzutility functions or behaves as prospect theory utility functions. 1

show that the sign depends on the mean of the random variable and on the degrec of loss

•••••••••••••••••••••••••••••••••••••••••••••••••
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Two applicatiollS illustrate the main results of this chapter. First, I study the

monotonicity properties of the indifference curves on the (o-, J1)-plane for S-shaped and

RS-shaped utility functions, My results show that the indifference curve of S-shaped

utility are increasing when there i8 10s8aversion and J1 2>O. Similar results are derived

considering reverse loss avension and using RS-shaped utility fllnctions as wel!. Finally,

I study hedging policies of a fum that uses a utility function as postulated by prospect

theory. I examine the behavior of a firm whose utility function varies with gains and

losses in firm's profits. Even though, the analysis with prospect theory is more complex

than assuming risk aversion, I demonstrate that similar behavior hold for symmetric

random variables .

The chapter can be extended in several directiollS. For instance, it would be interest-

ing to generalize Theorems (2.4.1) and (2.4.2) for skewed distributions and especially for

skewed-normal distribution (Azzalini, 1985). This remains a task for future studies .
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Chapter 3

Three-Ievel recognition heuristic

3.1 Introduction

In many reallife situations, individuals compare (two) objects and then choose one of

them. How do individuals decide? Goldstein and Gigerenzer (1999, 2002) propase a

method ealled the recognition heuristic. This theory explains sorne experimental rcsults .

Specifically, in one experiment American and German students were asked to rank, in

pairs, German and American cities according to their population (Gigerenzer et al., 1999;

Hoffrage, 1995, 2011). Surprisingly, the German students accuracy rate was higher for

American cities than for German ones. This unexpected result motivatcd an answer to

the following question: How could people have more correct answers on those issues or

topics that they a priori knew less? With this in mind, Goldstein and Gigerenzer (1999,

2002) suggested the mentioned method, whose idea is based on the dictum:

If one of two objects is recognized and the other is not, then infer that the

recognized object has the higher value with respect to the criterion. (Gold-

stein and Gigerenzer, 2002, p.76) .

Furthermore, the recognition heuristic suggests that if neither of the two objects are

recognized, then the subject must decide randomly, with equal probabilities; and if both

objects are recognized then the subject should decide ",ith the help of sorne additional

illformation .
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The chapter aims are fourfold. First, 1 extend the rnodel by Goldstein and Gigerenzer

considering three levels of recognition judgement. Goldstein and Gigerenzer's model

implicitly assumes there is a direct association between higher value and recognition .

Indeed, the recognition heuristic is a non-compensatory heuristic, since subjects do not

use further information to decide between a recognized and an unrecognized object. In my

proposal, however, the recognized objects are classified into two categories: recognizable

satisfying and recognizable unsatisfying. Namely, a person might recognize an object,

but the object is categorized as unsatisfying with respect to the criterion of interest and

within the sample of objects. Moreover, 1 shal! assume that unrecognized objects are

preferred to recognized but unsatisfying ones. The fol!owing example shal! clarify thc

logic behind this proposal.

Suppose Sherlock Holmes makes pairwise comparisons of the 'nicest' person

among different individuals one of whorn i8 Professor Moriarty. 1 believe that

Sherlock Holmes would view Professor Moriarty as a 'recognizable unsatis-

fying person', and thus even an unrecognizable person would be eonsidered

nicer than Professor Moriarty .

Moreover, my proposal is a generalization of the two levels recognition model. Indeed,

when the person does not identify any recognizable unsatisfying objects and al! the

recognized objects are satisfying, we are within the original model of Goldstein and

Gigerenzer (2002) .

Second, 1 provide mathematical formulas of al! the parameters involved in the model.

Contrary to previous works that simply estimate the accuracy rates of the recognition

heuristic (see, for instance, Goldstein & Gigerenzer, 2011, and references therein), these

explicit formulas al!ow me to calculate exactly the accuracy rates for the two and three

levels recognition heuristic. Third, 1 characterize the conditions under which the predic-

tive power of the recognition heuristic is equal to choosing the objects randomly. Final!y,

1 address the question whether less information associates with higher probability of suc-

cess. In this sense, 1 assess whether the less is more effect (LIME) still holds within the

three levels recognition heuristic .
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1 have organized the chapter as follows. Section 3.2, gives a brief introduction to

heuristics. In Section 3.3, 1 put forward the three-levels model and express the proba-

bility of éorrect guesses. Section 3.4, gives the explicit formulas of all the pararneters in

the probability of correct guesses. Finally, Section 3.5, provides the calculations of the

accuracy rates of both the two-levels and three-levels recognition heuristic considering a

sample of three and ten objects. In addition, 1study the less is more effect elucidating

its implications. Concluding remarks finish the chapter.

3.2 A brief introduction to heuristics

First, we need to distinguish between various definitions of heuristic. In mathematics,

Pólya (1954) uses the term heuristic as a method to solve sorne problems. In this science,

it is also referred as a computationally fast method to get a good feasible solution to a

problem (Hillier, Lieberman & Hillier, 1990). Other interpretations come from psychology

and are referred as cognitive heuristics. Here, we can distinguish two different views.

On one hand, Kahneman, Slovic and Tversky (1982) define heuristics as a psycholog-

ical process that might be useful, but tends to deviate from rationality, which involves

what are known as biases. Thus, their use leads to siguificant deviations from the (math-

ematically) optimal (Gilboa, 2010; Gilovich &, 2002; Kahneman, Slovic & Tversky, 1982;

Kahneman & Tversky, 1979; Tversky & Kahneman, 1974). Indeed, heuristics has a neg-

ative meaning, with errors in judgment and biased behavior that should be avoided (or

that should be taken into account) .

On the other hand, many scholars argue that individuals are not completely rationa1.

This means that individuals do not have complete and stable preferences, and have suf-

ficient skills that enable them to achieve the highest attainable point on their preference

scale (Simon, 1955 p. 99). Moreover, rationality is limited by the information gathering

¡'¡rocess, the cognitive limitations of the mind and the available amount of time to decide,

which is usually known as bounded rationality (Gigerenzer & Selten, 2001; Conlisk, 1996;

Todd & Gigerenzer, 2003). For this, Gigerenzer et.al. (1999) define heuristics as con-

scious or unconscious fast and frugal strategies that search for minimal information and
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consist of building blocks that exploit evolved capacities and environmental structures .

Furthermore, this stream of research questioned the emphasis on biases. They advo-

cate that heuristics are faster, more frugal and more accurate methods than standard

benchmark strategies (Gigerenzer & Todd, 2008). The following definition shall clarify

its meaning .

Definition 3.2.1 (Gigerenzer CJGaissmaier, 2011) Heurist-ic is a strategy that ignores

par.t of the information, with the goal of making decisions more quickly, frugally, andj oY"

accurately than more complex methods. In summary, to this view, heuristics are shortcuts

. that simplify the complex methods of ealculating the pTObabilitiesand u.tilities that are

required to make decisions under uncertainty, and this simple rules lead to better decisions

than more complex models.

However, as pointed out by Gilovieh and Griffin (2002), the eontroversy between

proponents and skeptics in the use of heuristies, arises as these two approaehes answer

different questions. For instanee, Kahneman, Slovie and Tversky (1982) are interested in

answering if deeision makers use heuristies in their decision proeess. Meanwhile, Gigeren-

zer et al. (1999) are interested in finding if they performed better than other deeision

strategies .

Nevertheless, it is well-knuwn that laypeople and practitioners often resist to use

eomplex mathematieal models sueh as the ones proposed by economies 01' finance, and

instead use heuristics. Sorne of these heuristics appear in economie theory. For instance,

Graham (1949) reeommends simple investing rules to obtain abn'ormal returns (see also,

Oppenheimer, 1984; Oppenheimer & Schlarbaum, 1981). Benartzi and Thaler (2001)

show that investors do not use sophistieated models to ehoose their portfolio, and usually

allocate their wealth with a naive strategy, which eonsist in investing equal shares of

their wealth in eaeh asset. Furthermore, Friedman's rule (Friedman, 1969) and Taylor's

rule (Taylor, 1993) are simple interest rate strategies examples of heuristies in monetary

poliey.

There are many'reasons why individllals use heuristies. First, deeision makers may

be unable to obtain all the information neeessary to solve, eonsciously or uneonseiously,
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a given problem. Second, even obtaining such information, they may be unaware of the

optimal method to solve it. Third, often delay is not an option and decisions nced to

be made fasto For other reasons of the convenience of using heuristics 1 refer to Payne,

Bettman & Johnson, 1993; Schwartz, 2010: and Thaler & Sunstein, 2008.

For a long time, it was believed that simple heuristics performed worse than more com-

plex models. It is, however, necessary to compare whether this assumption empirically

holds. Recently, these two methods have been compared in a number of problems such as

forecasting the commercial success of patents (Ástebro and Elhedhli, 2006), diversifying

financial portfolios (DeMiguel, Garlappi and Uppal, 2009; DeMiguel, Garlappi, Nogales,

& Uppal, 2009; Huberman & Jiang, 2006; lvlonti, Boero, Berg, Gigerenzer, & Martignon,

2012), predicting the future purchasing behavior of past customers (Wuebben and von

Wangenheim, 2008), prescribing antibiotics to children (Fischer et al., 2002), geographi-

ca]]y profiling criminals (Benne]], Emeno, Snook, Taylor & Goodwill, 2010; $nook, Zito,

Benne]] & Taylor, 2005); predicting political elections (Gaissmaier & Marewski, 2011);

predicting the stock and exchange market (Zaleskiewicz, 2011) and so forth .

In surnmary, these studies conclude that: (i) heuristics have higher predictive accuracy

than optimization models when information is scarce; (ii) the opposite appears to be trile

when information is not scarce and (iii) each one of heuristics and more complex models

can outperform the other (for a survey of these comparisons, the interested reacler is

referred to Katsikopolous, 2011) .

As 1 have noted earlier, in this chapter I sha]] extend the two-levels recognition heuris-

tic (Goldstein & Gigerenzer, 2002). This heuristic was proposed to explain sorne intrigu-

ing experiments results. Specifically, these experiments set up is as follows.

Let us posit a test in which pairs of objects are drawn randomly from the class

of N objects, with n among them recognizable and N-n unrecognizable by the test

taker. The individual must pairwise compare and choose the object with higher value

according to sorne criterion of interest. The objects of each pair can be: both recognized,

both unrecognized, or one is recognized and the other one is noto The test score is the

proportion of pairs in which the test taker has correctly identified the larger object. The
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recognition heuristic suggests: (i) if one object is recognized and the other is not, choose

the recognized object; (ii) if neither of the two objects is recognized, then choose one of

them randomly, with equal probabilities; and (iii) if both of them are recognizable, then

employ a cue to decide which one to choose .

The concept of recognition is a crucial element in this heuristic, which has generated

a considerable debate (e.g., Davis-Stober, Dana, & Budescu, 2010; Dougherty, Fl'anco-

Watkins, & Thomas, 2008: Marewski, Pohl, & Vitouch, 2010, 2011a, 2011b: Pohl, 2011;

Tomlinson, Marewski, & Dougherty, 2011). There is, however, a certain consensllS that

its meaning refers to the ability of individuals to discriminate between known objects

from novelones (Pachur, Broder and Marewski, 2008). The set of objects splits in two

subsets: one with recognizable objects and another one with unrecognizable objects. This

framework has been criticized by Broder & Eichler 2006; Dougherty et al, 2008: Hilbig

and Pohl 2008, 2009; Newell & Fernandez, 2006; Newell & Shanks, 2004; Oppenheimer,

2003: Pachur, Broder & Marewski, 2008: Pohl, 2006; Richter & Spiíth, 2006; among

others. Consequently, some authors have proposed distinguishing between recognizable

objects (e.g., Hilbig & Pohl, 2008, 2009: Oppenheimer, 2003) .

We also need to clarify the meaning of the cue. According to the recognition heuristic,

a cue consists in additional information that could help the individuals to choose between

recognized object. For instance, in experiments involving ranking cities according to their

population, whether the the city has: an international airport, significant industries, a

team in the major national soccer league, were examples of possible additional informa-

tion .

The recognition heuristic has been applied for different purposes, such as eomparing

cities with respect to their populations (Hoffrage, 1995), choosing stocks (Andersson &

Rakow, 2007: Borges, Goldstein, Ortmann & Gigerenzer, 1999; Boyd, 2001: Newell &

Shanks, 2004: Ortmann, Gigerenzer, Borges & Goldstein, 2008), sports results (Ander-

sson, Edman & Ekman., 2005; Seheibehenne & Broder, 2007; Snook & Cullen, 2006)

and ehoosing consumer goods ( Hauser, 2011; Herzog & Hertwig, 2011: Hoffrage, 1995:

Oeusoonthornwattana & Shanks, 2010: Paehur and Biele, 2007: Thoma & Williams,
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2013). For instance, Borges et al. (1999) and Ortmann, et al. (2008) find evidence

that constructing portfolios, in a bull market, based solely on the names of the recog-

nized companies yields better returns than the market indexo They conducted laboratory

experiments where participants construet their portfolios with the most frequently recog-

nized shares. In most of the cases, the selected portfolios outperformed the market indexo

These results were surprising as they are opposed to the efficient market hypothesis (Fama

1970). That is, simple investment strategies cannot consistently beat the market indexo

A reason of this stunning result is that recognized companies may yield higher average

returns than unrecognized ones .

Boyd (2001) replicates the Borges et al. (1999) test, but, now, in a bear market,

reaching different conclusions. He finds that recognition heuristic as a strategy for se-

lecting stocks does not outperform the market as the referred work showed. A possible

explanation of these opposite conclusions can be deduced fram the model by Merton

(1987). In this model it is assumed that investors construet their optimal portfolios only

with known securities. Vvhich implies that recognized firms will have higher demand and

value. Yet, this model prediets a negative correlation between stock returns and recogni-

tion. This implies that recognized companies will yield lower returns than average, which

gives a possible exp1anation of the results found by Boyd (2001) .

Neverthe1ess, however, whether the recognition heuristic is a descriptive behavior in

these experiments is still in debate (d. e.g. Pachur et.al., 2008) .

Finally, the recognition heuristic challenged the idea that accuracy involves effort .

As experiments have shown, there are situations where a high level of accuracy is ob-

tained with less information (recognition) (Go1dstein & Gigerenzer, 1999, 2002). Indeed,

more information instead of increasing the accuracy rate can decrease it. Contrary, 1ess

information might lead to higher accuracy rates .

3.3 Three-levels recognition heuristic

In this section, 1 put forward a three-levels recognition heuristic model. In my appraach,

the recognized objects are classified into two categories: recognizable satisfying and recog-
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nizable unsatisfying. My approaeh serves to explain sorne empirieal evidenee. For in-

stanee, in a series of experiments eomparing eities populations, Oppenheimer (2003)

reports that partieipants sometimes prefer unreeognized objeets over reeognized ones .

Speeifieally, eontrary to the two-level heuristie proposal, the experiments showed that

partieipants tend to ehoose an unreeognized eity than a reeognized small one. Therefore,

my proposal assumes that individuals will prefer unreeognizable objects over reeogniz-

able unsatisfying ones. 1 also suppose that individuals ehoose randomly (with equal

probability) between reeognizable and unsatisfying objeets .

For c1arity, and to keep the analysis as simple as possible, 1 restriet the study to

the reeognition heuristie with perfect memory (e.g., Smitshon, 2010) and thus, 1 do not

eonsider the imperfect memory version (e.g., Katsikopoulos, 2010; Erdfeider, .Küpper-

Tetzel & Mattern, 2011). 1 also follow Smithson (2010), eonsidering the use of a single

eue with ranks and no tieso

Given two objects, we set the following reeognition heuristie rules for the three-levels

model:

• If one objeet is reeognizable satisfying and the other is reeognizable unsatisfying,

then ehoose the former one .

• If both objeets are reeognizable satisfying, then decide aceording to a eue .

• If One objeet is reeognizable satisfying and the other One is unreeognizable, then

ehoose the reeognizable one.

• If one objeet is recognizable unsatisfying and the other One is unreeognizable, then

ehoose the unreeognizable One.

• If both objects are unrecognizable, then choose randomly \\;ith equal probabilities .

• If both objects are recognizable unsatisfying, then choose randomly with equal

probabilities.1

ITa make my theory as simple as possible, which is one of the goals of the recognition heurisitc, 1
would not assume the use of any eue to choose any of the two recognized unsatisfying objccts .
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3.3.1 Model

Now, 1 present the formal model of the three levels recognition heuristic model. Suppose

that we are dealing with N objects, represented them as an N-dimensional vector, x =
(Xl, X2, ... , XN), called the recognition vector. The position of each coordinate of x, and

thus of the underlying object to be ranked, is based on the criterion ranking, denoted by

e = (Cl, C2, ... , CN) _ (1,2, ... ,N), which is an arrangement of the underlying objects in

the decreasing order with respect to their 'size' or 'value.' FOr instance, according to the

criterion ranking, the ith object is larger in value than the j'h object whenever i < j. Each

coordinate Xi of the vector can be equal to 1 if the i-th object is recognizable satisfying,

O if the object is unrecognizable and -1 if it is recognizable unsatisfying. Hereafter, 1

shall use the following notation:

• Ni is the number of recognizable satisfying objects .

• No is the number of unrecognizable objects .

• N_] is the number of recognizable unsatisfying objects .

• n is the number of recognizable objects, either satisfying or unsatisfying, that is,

n = Nl+ N_l'

For a recognition vector x we would have 2:::~1xi = Ni, 2:::;~lxi = N_i and

2:::;:l(I-lxill = No, where xi = max{x¡, O}, xi = -min{xi,O} and IXil denotes

the absolute value of Xi .

The vector q = (ql, q2, ... , qN) represents the cue ranking (hereafter, also the cue

vector). This cue vector is used only when both objects are recognizable satisfying .

Similar to Egozcue, Fuentes García, Katsikopolous and Srnithson (2013) and Smithson

(2010) models, the cue vector indicates the ranking of the underlying objects, which may

or may not coincide with the above noted criterion ranking .

Notice that subjects must compare (~) possible pairs combinations. That is, the

comparisons are between the follO\vingpairs
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Correct answers are those when the subject chooses the 1eft object of each pair. The

fol!owing examp1e wil! he1p to clarify the previous notation .

Example 3.3.1 Consider the vector x = (1, O,1, -1, O), which means that there are N =

5 objects, and the (default) criterion ranking is c = (1,2,3,4,5). Hence, objects Xl, X3

and X4, have been recognized.. and X2 and X5 have not been recognized. However, object X4

has an unsatisfying recognition. In addition, suppose the cue ranking is q = (3,1,2,5,4),

which gives information about the mnking objects. This cue ranking is used only when

the two objects have been satisfying recognized. Thus, we would only compare the first and

the third element of vector q. That is, when we compare objects Xl and X3, the individual

would follow the cue ranking and "erroneously" will choose X3 as the highest value of the

pair, as the cue vector indicates so.

3.3.2 The probability of success for three levels of recognition

1 am interested in finding the probability of correct guesses. Let A be the event of correct

guessing, and so the expected proportion of correct inferences is the pro bability P (A). In

other words, P(A) is the proportion of correct answers in al! of the pairwise comparisons .

To calculate this probabi1ity, we first introduce the fol!owing mutual!y exclusive and

exhaustive sets:

• Eoo consists of al1 the pairs of different objects which are unrecognizab1e. The

proportion of such pairs is

(NO) (N) .P(Eoo) = 2 / 2 = (N - n) (N - n - 1) /N(N - 1) .

• EOl consists of al! the pairs of different objects one of which is unrecognizab1e and

the other one is recognizable satisfying. The proportion of such pairs is

P(EOl) = (~O)C~I)/C~)=2NI(N-n)/N(N-1) .
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• En consists of al! the pairs of difIerent objects which are recognizable satisfying .

The proportion of such pairs is

(N) (IV)P(En) = 21 /.2 = NI (NI -1) /N(N -1) .

• E-lO consists of al! the pairs of different ob jects such as one of them is llnrecogniz-

able and the other one is recognizable unsatisfying. The proportion of such pairs

is

• E_n consists of al! the pairs of different objects one of which is recognizable unsat-

isfying and the other one is recognizable satis(ying. The proportion of sllch pairs

lS

• E-1-1 consists of al! the pairs of different objects which are recognizable unsatisfy-

ing. The proportion of such pairs is

( (N-1) / (N). /, .P Kl-l) = 2 2 = N_1 (N_1 - 1) JI¡(N - 1).

Now, using the rule of total probability, we have that

prAl = p(AnEoo)+ P(AnEOl)+ p(AnEn) + p(AnE_n) + p(AnE_lO) + p(AnE_1_1) .

(3.1)

This reduces our main goal, which is calculating prAl, to calculating the six 'marginal'

probabilities p(AnEij) on the right-hand side of equation (3.1). Of course, the probabil-

ity P(A n Eij) is equal to O when Eij = 0, the empty seto When, however, Eij # 0, then

the probability can be expressed in terms of conditional probabilities by the formula

(3.2)
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Given the aboye formulas for the probabilities P(Eij), our task reduces to calculating

the conditional probabilities P(AIEij), which I denote them as follows:

• When Eoo l' 0, then 130:= P(AIEoo), caBed the knowledge validity for unrecogniz-

able objects. Throughout this chapter, I set 130 = 1/2, because when facing two'

unrecognizable objects, we choose one of them by flipping a falr coin .

• When E01 l' 0, then as := P(AIEOl), called the recognition validity, which is the

probability of scoring a correct answer when one object is satisfying recognized and

the other one is noto

• When En l' 0, then 13s := P(AIEn), called the knowledge validity, which is the

probability of scoring a correct answer when both objects are recognized via an

additional cue (knowledge cue) .

• When E_n l' 0, then "IR := P(AIE_ll), called the satisfying-llnsatisj~ying recogni-

tion validity for recognizable objects .

• vVhen E-lO l' 0, then au := P(AIE_lO), ealled the unsatisfying recognition validity

for recognizable unsatisfying objects .

• When E-1-1 l' 0, then .Su ;= P(AIE_1-d, called the knowledge validity for llnsat-

isfying objects. Throughout this chapter, I set 13u = 1/2, because when facing two

recognizable unsatisfying objects, we choose one of them by flipping a fair coin.

• W'hen Eij = 0 for i, j = -1, O,1 the aboye parameters are undefined .

Note that llnder the aboye specified assumptions ofrecognition heuristics, ,Ss depends

on x and q, while as, au, and IR depend only on X. To indicate these dependencies

on x and/or q, from now on I shall write as(x), 13s(x, q), au(x), and 'fR(x). In view

of the aboye, and using the notation g(x, q) ;= prAl to highlight our interest in the

dependence of the Sllccess probability prAl on the recognition vector x and the cue q,
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where .60 = 1/2, o: = o:s(x) and ;3 = .6s(x, q) .

3.4 Explicit formulas for the parameters

_ (N - n)(N - n - 1) . n(N - n) n(n - 1)
¡(x,q) - ;30 N(N _ 1) + 20:N(N _ 1) +.6 N(N _ 1)' (3.4)

(3.3)

(N - n) (N - n -1) NI(N - n) N] (NI - 1)
g(x, q) = ,60 N(N _ 1) + 20:s(x) N(N _ 1) +;3s N(N - 1)

2 N_I(lv - n) 2 NIN_I N_I (N_I - 1)
+ o:u(x) N(N _ 1) + 'YR(X) N(N _ 1) +;3u N(N - 1) ,

with the values ;30 = 1/2 and ;3u = 1/2 as noted earlier.

As 1 have already noted, when the set Eij is empty, then by definition, the conditional

probability P(AIEij) is undefined. Consequently, sorne of the parameters in equation

(3.3) might be undefined. Nevertheless, the right-hand side of equation (3.3) is always

wel! defined, because if any of the parameters are undefined, then the corresponding term

in the equation vanishes. Indeed, this fol!ows from equations (3.1) and (3.2), with the

latter implying in particular that if P(AIEij) is undefined, which implies that P(Eij) is

equal zero, and thus the probability P(A nEij) must be zero .

Indeed, when the there are not distinction between recognizable satisfying or unsat-

isfying objects, then N_I = Oand thus n = NI, so the last three terms on the right-hand

side of equation (3.3) vanish. Thus, the three level recognition heuristic col!apses to the

two levels recognition heuristic. Hence, we obtain the equation of Goldstein and Gigeren-

zer (2002, p.78) stating that the success probability, which in this two-Ievels case 1 denote

by ¡(x, q), is equal to

In this seetion, 1 extend Egozeue et al. (2013) and establish closed form solutions of the

parameters in equation (3.3). These findings would al!ow me to ealculate exactly the

accuraey rate for al! possible reeognition and eue vectors. In addition, these ealculations

would be helpful in understanding a number of effects related to the reeognition heuristie

équation (3.1) reduces to

•••••••••••••••••••••••••••••••••••••••••••••••••
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(Gigerenzer & Goldstein, 2011), as wel! to clarify some arguments that have arisen with

respect to, e.g., the observed inference accuracy and the number of recognized objects

(e.g., Snook & Cul!en, 2006; Pohl, 2006;, Pachur & Biele, 2007; Pleskac, 2007; Hertwig

et al, 2008; Pachur et al, 2009; Katsikopoulos, 2010) .

Since two of these parameters /30 and ,8u are assumed to be 1/2, we need to find

the four remaining parameters, which are as, ,8s, 'YR and au2 "Ve shall see from the

derived formulas that, as noted by Katsikopoulos (2010), Smithson (2010), none of these

parameters remain constant when n varies, and none of them is a simple function of n.

Now, I proceed to derive the explicit formulas of the parameters in equation (3.3) .

3.4.1 The recognition validity CYs(x)

In the next theorem I derive the explicit formula for the recognition validity .

Theorem 3.4.1 For N objects represented by their 'recognition vector' x, we have that

(4.1)

Proof. We need to ealeulate the proportion of eorrectly guessed pairs among those

with one reeognized-satisfying and one unreeognized objects. Since there are N1 recog-

nized and satisfying objects and No unreeognized objects, using the multiplieation rule

of eounting, we obtain N1No pairs with one recognized-satisfying and one unrecognized

objeets. This gives the denominator bn the right-hand side of the first equation of (4.1) .

The numerator must be equal to the number of eorrectly guessed pairs. To eonfirm the

a.'3sertion,we recal! that we are comparing pairs where one object which is recognized and

satisfying, i.e. Xi = 1 (1 note that this element ",il! also coincide with the same element. . .

21 note the re8Sons behind the notations:

• S stands for llsatisf:yingll

• R stands fOI Itrecognition"

• U stands fOI lIunsatisfyinglt
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•
Remark 3.4.1 In the classical case with two levels of Tecognition, Goldstein and Gigeren-

zer (2002) define the recognition validity CIó = Cló8(X)by the equation

(4.2)

(4.3)

of x+, say xi = 1), with another one which is not recognized, i.e., Xj = O. According to

the heuristic, we shall guess correctly only the pairs of the form (1, O); while the pairs of

the form (0,1) will be guessed incorrectly. We start out our cOllnting in vector x of the

pairs (1, O) with the coordinate Xl: if it is eqllal to O or -1, we discard the case and con-

tinlle discarding until we reach the first recognized object, that is, the left-most 1among

the coordinates of x; let Xi = xi = 1 be this object. There are ¿j""i+¡ (1 - I.Tj1) zeros

(i.e., unrecognized objects) to the right of Xi. Hence, so far, we have correctly guessed

xi ¿f=i+J(1 - IXjl) pairs. Tú pick Í1pthe remaining correctly-gnessed pairs, we proceed

with the next 1 and count all the O's to the right of this 1, and we proceed in the same

fashion until no 1 remains. In this way, we have arrived at ¿;:¡ xi ¿f=i+J(1 - Ix,l)
correctly gllessed pairs, which are of the form (1, O). This establishes the equation

The following coroIlary to Theorem 3.4.1 \ViIIaIlow us (details in the next subsec-

tion) to easily connect formulas in the three-levels case to those already available in the

literature in the two-Ievels case .

where R¡ is the nu.mber of COT'T'ectinferences u.sing the Tecognition heu.nstic and com-

pu.ted across all pairs in which one object is recognized and another one is not, and

W¡ is the nu.mber of incorrect inferences u.nder the same circu.mstances. I can now

extend this formu.la to the tiLTee-ou.tcome case. Namely, equ.ation (4.1) implies that

R¡ = ¿;:¡ xi ¿j""i+¡ (1 - IXj j) and W¡ = ¿;:¡ xi ¿;~~(1 - IXj1). Bince ¿;:¡ xi = N¡

and ¿~:¡(l-lxjl) = No, we have that W¡ = N¡No - R¡ .

•••••••••••••••••••••••••••••••••••••••••••••••••



Proof. 8tarting with the earlier noted formula R1= 2:::::1x;2::~:¡+l(1-lxjl),we

have the follo\\iing equalities:

Since, 2:::1 x; 2::~i+lX; is the combination of pairs with recognized-satisfying objects
. (N ) N (N -1)then lS equal to 1 = 1 1 and. 2 2'

Hence, equation (4.5) can be rewritten as follows

Corollary 3.4.1 The recognition validity Gs(x) can be expressed by the formula

(4.4 )

(4.6)

(4.5)

j=i+1i=l
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[
NI (NI - 1) 'VN _..f!-.. ~ + -]

2 +" 1 -1 ¿ ¿ Xi Xj .

i=1 j=1

N N N ( i)
~x; j~l xj = ~x; N_1- ~Xj

ih"r

= N1N_1- ¿¿X;Xj
i=1 .i=l

i=1 )=i+1

= ~X;(N - i) - ~X; (~1x; + j~l xi)
N N ]\l JV N

= ¿x;(N-i)- ¿x; ¿ x;- ¿x; ¿ xj
1=1 i=1 j=1+1 i=1 j=i+1

( ) _ 1 1 [Nl(Nd No+ 1) ..f!-.. ~ + _ ..f!-... ¡ ]as x - - + " " +¿ ¿ .'E¡ xj - ¿ ¡Xi .2 1V]lVO 2 ,
i=1 j=1 i=1

N N

R1= ¿J;; ¿ (1-lxjl)
1=1 j=i+1

N N N N

= ¿x; ¿ 1- ¿x; ¿ IXjl

N N

R - ,,'" + "'. +1 - lV LXi - L 2.Ti -
i=1 i=1

•••••••••••••••••••••••••••••••••••••••••••••••••



Corollary 3.4.2 When there are no recognizable 'U-nsatisfyingobjects in x..whose all co-

ordinates are non-negative in this case, which implies that Z:1 Z~~l X;xj = O. There-

The follO\ving special case of Corollary 3.4.1 facilitates order relatioilships of the recogni-

tion validity cts(x) for different recognition vectors, and it also connects our results with

those of Pachur (2010) when there are no recognizable unsatisfying objects .

•••••••••••••••••••••••••••••••••••••••••••••••••

Consequently,

]

N N i

N1N-1 - ~iX;+ ~~XtTj

N N i

["(1\T 'T N-) N1(Nl-1) '"N'] "'. + "'''' +-1v1 1+1\0+ -1 - 2 -N1 -1 -¿¡Xi +¿~XiXj
1.=1 t=l J~l

N (N 1) N N i

_ 'T N" 1 1+ "'. + + '" '" + --1\1 0+ 2 - ¿¡Xi ¿¿XiXj'
i=l i=1 j=l

Substituting (4.7) into (4.3) we get

1 (_ N1(N1 + 1) N Ni)
etS(X) = -1\' N1No + ---- - '" ix; + '" '" X; XiN1 'o 2 ¿ ¿¿.

i=1 i=1 j=l

N1 (l'¡1 + 1) 1 (N i + _ N.)
= 1+ 2N1No + N1No ~ ~ Xi Xj - ~ 2X

1 1 N (N 1) 1 (N iN)
1 1+ "'''' + _ "'.= 2" + 2" + 2N¡NO + N¡NO i:i' ~ Xi Xj - i:i'!X

1 N1No+ N1(N1 + 1) 1 (~N~i ~ ~ ~N.)= - + ------- + -- X' x. - 2X
2 ~~ M~ .. 'J .

1.=1]=1 1.=1

1 N¡ (N¡ + No + 1) 1 (~~ + _ ~.)= -+-------+-- ¿¿xx - ¿2X2 2N¡No N¡No...• J .
1.=1)=1 '1,=1

•
When there are no recognizable unsatisfying objects
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Theorem 3.4.2 The knowledge validity f3 s(x, q) can be expressed by the formula

where sgn(x) is the sign function that takes on the va/ues: 1 when x> O, -1 when x < O,

and O when x = O .

(4.8)

(4.9)

(4.10)
"N "N + + { }B (x ) = L..,i~1 L..,j=i+1 x¡ xj . 1 q¡ < qj

. s ,q "N "N .+ + '
6i=1 LJj=i+l Xi Xj

(x) = ~ _1_ [N1(N1 + No + 1)_ ~ .. ]as ? + 'T " L...J ~x, ._ "1'VO 2 .
z=l

Which is the equation that appears in Pachur (2010, p.598) .

3.4.2 The knowledge validity f3s(x, q)

As far as 1 know, there are no explicit formulas for the knowledge validity f3s(x, q) in the

literature, apart from its relation with the Goodman and Kruskall measure (Goodman

& KruskalI954; Smithson, 2010). 1 wil! give more details of this relationship in Section

(3.5). As 1 have noted earlier, individuals decide with the help of the cue veetor q when

both objects are recognizable satisfying .

jore, equation (4.4) can be written as jollo-ws

Proof. Note that here we deal with the pairs of both recognized satisfying objects,

that is, with pairs of the form (1,1). Rence, the knowledge validity f3s(x, q) can be

written as the ratio

where the indieator 1{qi < qJ} is equal to 1 if the inequality qi < qj holds, and is equal

toO otherwise, that is, when q¡ > qJ' (By assumption, there cannot be equality between

the elements of the eue vector q, i.e., qi el qj ) .

•••••••••••••••••••••••••••••••••••••••••••••••••
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which is the desired equation. _

3.4.3 The satisfying-unsatisfying recognition validity ~fR(X)

.

(4.12)

(4.13)

(4.14)

N N

2.: 2.: X{xj = N¡(N1 - 1)/2,
i=1 j='i+l

In the numerator we eount those pairs (1,1) that have been eorreetly reeognized by

the eue ranking, and this number is

=t j~l X{xj (sgn(% ~ qi) + 1)
lNN

lNN"

= 2"2.: 2.: x{xjsgn(qj - qi) + 2"2.: 2.: xixj. (4.11)
i=l j=1+1 i=1 j=1+1

N N N N

2.: 2.: X{xj .1{qi < qj} = 2.: 2.: X{xj .1{qj - qj > O}
i=l j=i+l 1=1 j=i+l

Substituting the numerator on the right-hand side of equation (4.10) by the right-hand

side of equation (4.11) and then, after a little simplification, we obtain the equation

The denominator on the right-hand side of equation (4.10) is the total number of pairs

(1,1) that we have to deal with. We observe that

As 1 have noted earlier, the satisfying-unsatisfying recognition validity is the probability

of correct guessing when both objects are recognized, but one of them is satisfying and

whieh follO\vsfrom the fact that this is the number of unordered satisfactory recognized

pairs, which is ("~l).After replacing (4.13) in (4.12) we obtain

•••••••••••••••••••••••••••••••••••••••••••••••••
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the other one is unsatisfying .

(4.15)

(4.16)

(4.17)

1 .N ( N )
rR(X) = N N_ L xi L xj .

1 1 i=l j=i+l

3.4.4 The unsatisfying recognition validity eYu(x)

•

Theorem 3.4.3 The satisfying-1msatisfying recognition va.lidity "IR(x) can be expTessed

bythe formula

Theorem 3.4.4 The unsatisfying recognition validity au(x) can be expressed by the for-

mula:

Proof. First we check that there are N,l"L, pairs of recognized satisfying and un-

satisfying objects. Rere we deal with the pairs of the form (1, -1) or (-1,1). Similar,

to the proof in Theorem 3.4.1 there are 2:::, 2:~:Hlxixj correct guesses of 1 and -1

pairs. This gives the following proportion of correct guesses

The unsatisfying recognition validity is the probability of correct guessing when one

object is unrecognizable and the other is recognized and unsatisfying. The formula for

this parameter is similar to the recognition validity and 1 derive it as follows.

Proof. The proof resembles somewhat the proof of Theorem 3.4.1, \Ve need to cal-

eulate the proportion of correct guesses of pairs, when one object is unrecognized and

the other is recognized-unsatisfying, that is, pairs of the fonn (O,-1) 01' (-1, O). The

denominator is easily deduced as follows, sinee there are 2:::, (1 - IXil) = No unrecog-

nized objects and 2:;:, xj = N_1, we obtain N_tNo pairs of this type and using the

multiplication rule. For the numerator, we need to count the pairs that are correctly

guessed. Since 1 assume that the individual consider as more "valued" an unrecognized

•••••••••••••••••••••••••••••••••••••••••••••••••
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object over a recognized-unsatisfying object, then we need to count al! the pairs of the

form (O,-1), which are the correctly guessed. The number of pairs of this form is equal

to L~l (1 - IXil) L~:i+lxj. Therefore,

(4.18)

•
So far I have derived the explicit formulas of al! the parameters in equation (3.3). This

permits me to calculate (3.3) for any vector x and q. Instead of running simulations that

estimates the proportion of correct guesses, this formulas allows me calculate the exact

accuracy rate of the recognition heuristic. These calculations and an assessment of the

"Iess is more" effect is the objective of the next section .

3.5 Discussion

In this part of the chapter, I calculate (3.3) in different scenarios. I also compare the

effectiveness of the three-Ievels recognition heuristic against Goldstein and Gigerenzer's

proposa!. First, I pause to present Goodman & Kruskal (1954) measure of association

between vectors. This measure is used in determining the correlation between the cue

vector and the criterion vector. Afterwards, I characterize the conditions under which

the recognition heuristic expected probability of success is equal to 1/2. I also calculate

the expected value ¡(x, q) and g(x, q) for different scenarios of the recognition and cue

vector. Finally, I study the conditions under which the less is more effect can occur in

the three levels recognition heuristic .

3.5.1 Goodman-Kruskal correlation measure

Goodman-Kruskal (iGIK) measure of correlation between the criterion vector e and the

cue vector q is commonly used in the recognition heuristic literature (see, for example,

Gaissmaier & Marewski, 2011; Smithson, 2010). The values of this association measure
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ranges £rom -1 (perfect negative association) to 1 (perfect positive association). Next,

1 shall explain how this measure works. Suppose we have two vectors a= (a" a2, ... , an)

and b= (b
"
b2, ... , bn), where ai and bj for i, j = 1,2, , n, are positive real numbers. \"le

compare each pair (ai, aj) with (b;, bj) for i,j = 1,2, , n and i < j. Then pairs (a;, a])

and (b;, bj) are said to be:

• Concordant if and only if ai < aj and bi < bj or ai > aj and bi > bj .

• Discordant if and only if ai < aj and b; > bj or ai > aj and b.j < bj .

Note that the pairs with the same element's valnes are discarded, (i.e. those where

ai = aj or bi = bj). Finally, the Goodman and Kruskal measure, ls calculated as follows

iGlI{ = C - D
C+D

where C ls the number of eoncordant pairs and D is the number of discordant pairs. The

following example shall clariry-its use .

Example 3.5.1 Suppose we have the following veetors e = (1,2,3,4), x = (1, L O,1) and

q = (2,1,4,3), which 1display in Table 1.

Table 1

e x q

112

211

3 O 4

413

To ealculate the iGlI{ measure we conform two vectors a (which represents the criterion

vector) and b (representing the cv.e vector) of three elements each one (after elim.inat-

ing the third row that corresponds to the unrecognized object) yielding: a = (1,2,4) and

b= (2, L 3). Then, we have C~ = 3 possible pairs com.parisons. Table 2 shows the res'ults
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01 these comparísons
Table2

(aí, aj) (bi,bj) Result

(1,2) (2,1) Discor'dant,

(1,4) (2,3) Concordant,

(2,4) (1,3) Concordant.

Therefore, C = 2, D = 1 and thus iGIK= 1/3 .

Remark 3.5.1 As 1 have noted earlier, the aeeuraey of the reeognition heuristic is

stTOngly linked with the correlation between the ranking vector e and the cue vectoT q.

Another reason why iGIK is a convenient association measure is its relation with the knowl-

edge validity. As pointed out by Smithson (2010, p.232), the iGIK can be expressed as a

function of f38(x, q) as follows

iGIK= 2f38(x, q) - L (5.1)

Note that since the cue vectoT q is used only when both objects are recognized, the Good-

man and Kruskal gamma coefficient is estimated diseaTding the eOTTespondingvalues of

the unTeeognized objects. FOTinstance, if q = c~I=(eN, eN-I, ...C2, CI), then iGIK = -1

and hence ,B8(x, q) yields its minimum value, whieh is equal to O. On the other hand,

when e = q then iGIK= 1, and thus f38(x,q) yields its maTimum value, which is equal to

L For intermediate levels of iGIK we would, of wurse, have O < f38(x, q) < L

3.5.2 Expected probability of success

In this part, 1 discuss the expected accuracy rate of the recognition heuristic in the two

versions. My aim is to find the expected probability of success of the recognition heuristic

both in the two-levels and the three-levels recognition heuristic for different recognition

vectors. This is done considering al! the possible combinations of x and q for a fix N .

As 1 have pointed out, equations f(x, q) and g(x, q) are both functions of vectors x and

q. Also, as 1 have noted earlier, for each q, we would have different values of f(x, q) and
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g(X, q) .

Now, I pause to present sorne new notation. I shaU denote with X a discrete randorn

variable with support on al! possible recognition vectors, and denote with Q a randorn

variable with support on al! possible cue vectors. For instance, if N = 2 then we have

9 possible recognition vectors, say Xl, X2, ... , Xg. Specifical!y, suppose X is uniforrn dis-

tributed then, obviously, P(X = x¡) = P(X = X2) = ... = P(X = Xg) = 1/9. In the

sarne manner, we have 2! possible eue vectors, say ql and Q2. Thus, if Q is also uniform

distributed then P(Q = ql) = P(Q = q2) = 1/2 .

• As a benehmark, I shall assurne the simple case when X and Q are independent

random variables .

I shal! denote with E ig(X, Q)] the expected aceuracy rate when X and Q are random .

On the other hand, I denote with E [g(X, Q)IQ = q] the expected aeeuracy rate when X

is randorn and Q is a degenerated random variable whieh takes value q. I consider the

fol!mving permutations of x and q: x-I = (XN, XN-1, ... , XI) and q-l = (qN, qN-1, ... , ql)'

Likewise, X-I and Q-I are randorn variables of, respeetively, al! possible vectors x-I and

q-I, as defined before .

Note 3.5.1 Notice that a double series 2:;:12:~1a;j can be written as the sum o/ the
elements of a finite square matrix

1 shall use this fact to pro ve some differ-ent expr-essions o/ double senes in the next propo-

sitions .

The fol!mving assertions have irnportant irnplications for the expected accuracy rate

of the recognition heuristic .
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Proposition 3.5.1 Por any x and q the following holds:

Note that

88

Proof. 1 only prove the first two cases, the other statements can be proved in the

same way .

Now changing variables i = N + 1 - k and j = N + 1 - 1 we obtain

Using the notation suggested in Note 3.5.1 define aíj = xt(1 -Ixjl), then

and

Joining the facts that 2..=:1 ajj = O and 2..=::12..=~1aíj = N1No then the conclusion

follows .

Now the second case. Let biJ = xix}. First, we write
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(.1.3)

(5.4)

jV N

2:= 2:= bij = b'2 + +b'3 + ...+ b'N + b23 + ...+ bN-1N
i=l j=i+l

89

N i-1

2:= 2:= bij = b21 + b31 + b32 + ...+ bNl + ...+ bNN-1 .
i=2 j=l

"N "lV b { } "N ,,'-1 { }
(3 ( ) (3 ( -1 -1) _ 0,=1 0J='+1 'J' 1 q, < % + 0,=2 0J=1 b'J . 1 q, < qJs x, q + s x .q - N N

¿,~1¿J=H1b'J
(5.2)

Thus,

Notice that

"N-1 "N + + 1{ }(3 (-1 -1)= 20k=1 01=k+1 XN+1-kXN+1-1' qN+1-k < qN+1-1
Sx ,q N,(N,~l)

So that, changing variables i = N + 1 - k and j = N + 1 - 1, we obtain

and

Since each element of q are different (because I have assumed there are no ties in the cue

vector), we have

Together with the fact that bij = bji we obtain
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This shows that the nurnerator and the denorninator in (5.2) are equal, thus the assertion

follows.•

This concludes the proof of Proposition 3.5.2. •

Finally, a striking irnplication for the expected accuracy rate of the recognition heuris-

(5.5)g(x, q) + g(x-1, q-l) = 1

(N - n) (N - n - 1) NI (N - n)
(1-80) N(N ~ 1) +2 (1 - eYs(x)) N(N _ 1)

NI(NI - 1) 1'.LI(N- n)
+ (1 - ¡Js(x, q)) N(N _ 1) +2 (1 - au(x)) N(N _ 1)

N1N_1 ( ) }'L¡ (N_¡ - 1)
+2 (1 -!R(X)) N(N _ 1)+ 1 - ¡Ju N(N _ 1) .

Pro o£. By Proposition 3.5:1 w,ehave

= bI2. l{qI < q2} + b2I . 1{q2 < qI} + ...+ bN-1N. l{qN-I < qd

+ bNN-1 . l{qN < qN-¡}

N N

= 2:: 2:: bij .
i=l j=i+l

90

= bl2 + +b13 + ...+ bIN + b23 + ...+ bN-IN

]V' N 1\1 i-l2:: 2:: bij. 1{qi < qj} + 2:: 2:: bij . 1{qi < qj}
i=l j=i+ 1 i=2 j=1

Therefore, o'king to the equalities (5.3) and (5.4), the nurnerator is equal to

Proposition 3.5.2 Let x and q. Then

With the aid of Proposition (3.5.1), 1 next establish a connection with the overall

accuracy rate as it is expressed in equation (3.3) .

Now, after sorne algebra, we arrive at
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tic emerges £rom Proposition 3.5.2 which 1 show next .

E [g(X, Q)J = 1/2.

(5.6)

Proof. Since X is uniformly distributed and X and X-l are bijective, it follows

that X and X-I are identically distributed. Likewise, we deduce that Q and Q-I are

identically distributed as well. Together with the fact that X and Q are independent, we

obtain that the distribution function of (X, Q) is equal to that of (X-I, Q-I). Hence

Therefore, taking expectations in both sides of (5.5) we obtain

Proposition 3.5.3 Suppose X and Q are independent and uniformly distributed mndorn

variables. Then

By equality (5.6), the assertion follows. •

This result has interesting implications for the expected probability of success of the

recognition heuristic. It implies that, if recognition vectors are equally likely and each cue

vector is available with the same probability, then the expected accuracy rate is equal to

1/2. Thus, under this condition the three levels and the two levels recognition heuristic

are strategies that in, average, cannot improve the strategy of choosing pairs randomly .

However, it is a strong assumption that each recognition vector is equally likely in

the class of all recognition vectors, and also each cue vector is equally likely in the class

of all cue vectors. For instance, a more plausible assumption is to expect a positive

correlation between e and q. A reasonable assllmption is to suppose that individuals

would recognize the best and the worst objects in the criterion ranking. Indeed, in real

life, we are usllally aware of the best and the worst objects for different categories. Based

on this assumption, 1 define the following subsets, namely S = {x: Xl = 1,.'EN = 1}

and T = {x: Xl = 1,XN = -1}. The elements of set S are those x such that the first
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and the last objeets in the eriterion ranking are reeognized. In addition, the elements of

set T eonsist in al! reeognition veetors where the first element of the eriterion ranking

is satisfactorily reeognized and the last object of the eriterion ranking is unsatisfactorily

reeognized .

Final!y, 1 denote with S a discrete random variable with support on al! possible x such

that x ES and with T a discrete random variable with support on al! possible x sueh

that x ET. Hereafter, 1 shal! assume that X, S and Tare uniformly distributed and are

independent with Q.

Now, 1ealculate the expectation of (3.3) for vectors with three and ten objects. Notice

. that the number of possible combinations inereases significantly with N. In the first case

for N = 3, we would have twenty seven possible x vectors, and six possible q vectors .

On the other hand, for N = 10 we would have 310 = 59,049 possible x vectors, and

lO! = 3,628,800 possible eue veetors q.3

First, 1 start \Vith reeognition vectors with N = 3. As noted earlier, there are 6

possible eue vectors and 27 possible recognition veetors. As 1 have previously assurned,

eaeh one of the recognition vectors are ehósen with the sarne probability. 1 shal! also

consider the cases when the recognition vectors belong to the sets S and T.

1 surnrnarize the ealculations of the expected probability of suecess for different see-

naríos in Table 3.

Table 3: The expected probability of success for N = 3 (%)

q

(1,2,3) (1,3,2) (2,1,3) (2,3,1) (3,1,2) (3,2,1)

E [g(X, Q)IQ = q] 55.56 51.85 51.85 48.15 48.15 44.44

E [g(T, Q)IQ = q] 94.44 94.44 83.33 94.44 83.33 83.33

E [f(X, Q)IQ = q] 62.50 54.17 54.17 45.83 45.83 37.50

E [f(S, Q)IQ = q] 83.33 66.67 6667 33.33 33.33 16.67

81 have used \~rolfram :rvlathematiea software. I note that computer memory was the main limitation
to run caJculations with more than 10 objects .
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When we eonsider al! the possible reeognition vectors, we see that E [g(X, Q)IQ = q]

ranges from 65.56% when q = e to 44.44% when q = e-l. The expected aceuraey

rates improves signifieantly when we restriet our analysis to al! X ET, yielding a min-

imum of E [g(T, Q)IQ = q] equal to 83.33%. For the two level reeognition heuristie

E [j(X, Q)IQ = q] ranges from 62.50% when q = e to 37.50% when q = e-l. However,

fur x ES the values of E [j(S, Q)IQ = q] varies from 83.33% to 1667% .

Now, Ido the same ealculations, but now eonsidering reeognition veetors with N = 10.

In this case, the number of eue veetors inereases signifieantly. vVith this in mind, I have

ealculated the expeeted aeeuraey rate considering three different eue vectors:

1. When q = e, whieh implies iGlK= 1.

2. Vifhen q = eO = (10,9,3,4,1,2,5,7,6,8), which gives a correlation measure of

iGlK= 1/45 .

I present a summary of the results in (%) in Table 4.

Table 4

The expeeted probability of success, N = 10

q=e q = CO q = e-1

E [g(X, Q)IQ = q] 55.56 50.12 44.44

E [g(T, Q)IQ = q] 69.38 60.49 56.54

E [j(X, Q)IQ = q] 62.50 50.27 37.50

E [j(S Q)IQ = q] 83.33 48.88 32.22

The results show that on average both the three level and the two-level reeognition

heuristic effectiveness is larger than 1/2 when there is a positive iGlKmeasure. In addition,

in the three-Ievels reeognition heuristic when the first objeet is reeognized satisfying and

the last object is reeognized unsatisfying, then the accuracy rate in average is larger than

ehoosing random1y even when the eorrelation measure is by perfect negatively correlated .

This is not the case in the two-Ievels recognition heuristie, where this heuristie does better
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when there is a perfect positive correlation between c and q, but does worse when the

q = e-1 When q = eO, the average accuracy of the three levels recognition heuristic

improves slightly the strategy of choosing randomly. However, the accuracy rate in the

three levels recognition heuristic improves significantly if the first and the last objcct of

the ranking are recognized. For instance, if e and q are perfect negatively correlatcd,

which is the minimum expected probaibility of success, then E [g(T, Q)IQ = q] equals

56.54%. Meanwhile, when q = e the expected accuracy rate is equal to 69.38%. If we now

consider al! x ES, the two levels recognition heuristic probability of succcss are 37.50%

and 62.50% respectively .

In surnmary:

• The three-level recognition heuritic outperforms the two-level recognition heuristic

when the first and the last objects of x are recognized. For N = 3 the minimum

expected accuracy rate for the three levels recognition heuristic is equal to 83.33%,

whereas for N = 10 this minimum equals 56.54%.

• For q = e and q = eO, in average the two-Ievel and three-Ievel recognition heuristic

outperforms the strategy of choosing randomly .

3.5.3 Less is more effect

In this subsection, I shall discuss the less is more effect. Katsikopoulos (2010) and

Smithson (2010) study the LIME and characterize the conditions under which this effect

could occur. 4

This effect occurs when the recognition vector that maximizes g(x, q), which I denote

with x* has sorne unrecognized objects. That is, for this vector we will have n < N .

Thus, subjects benefit from recognizing fewer objects. This is a controversial implication

of the recognition heuristic. There is mixed empirical evidence on this effeet. On the one

hand, sorne have reported evidence of its occurrence (Goldstein and Gigerenzer, 2002;

.IThe less is more effecl happens lo occur also in probabilislic models lhal rely on lhe use of ,,-algebras
to model informalion (Dubra & Echenique, 2004) .
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Serwe and Frings, 2006; Seheibehenne and Broder, 2007). Qn the other hand, others

have not identified its occurrence (e.g., Paehur and Biele, 2007). Nevertheless, most of

these works tested the LlIvIE in experiments andJor computer simulations. The explicit

formulas of the parameters derived above allow me to find exact numerical calculations .

For this purpose, 1 find the recognition vectors x that maximizes g(x, q) for N = 10

considering the three iGK that 1 have used before. Here 1 find the optimal x* that solves

g(x*,q) = maxg(x,q)
x

for three different values of q. 1 summarize the results in Table 5.

Table 5: Less is more effect (LIME)

q x* q g(x, q) (%) Nl No 1\'_1 n

e (1,1,1,1,1, L 1, 1, 1, 1) e 100.00 10 ° ° 10

e (1,1,1,1,1,1,1,1,1, O) e 100.00 9 1 ° 9

e (1,1,1,1,1,1,1,1,1, -1) e 100.00 9 ° 1 10

e (1,1,1,1,1,1,1,1,0, -1) e 100.00 8 1 1 9

eO (L 1,O,0, O,0, -1, -1, -1, -1) eO 84.44 2 4 4 6

e-l (1,1,0,0,0,0, -1, -1, -1, -1) e-l 84.44 2 4 4 6

Qne can see in Table 5 that when q = e there are four vectors (second eolumn) that

yields a 100% of aecuracy rate, two of these vectors have 10 recognized objects, the other

two have 9 recognized objects. Thus, we would expect that the LIME effect appears with

a probability of 50%. Meanwhile, there is a unique recognition vector that maximizes

g(x, q) for q = eO and for q = e-l. This recognition vector has 6 recognized objects .

Hence, in these cases the LIME appears with probability L

This results show that the LIME occurs (for these cue vectors) when iGK < 1. The

intuition of this conclusion can be explained as follows. Since the cue vector is not

perfectly correlated with the criterion vector, then the more objects we recognize the

more (1,1) comparison mistakes we make. Thus, when eues are not reliable, reeognizing
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more objects does more harm than good. In summary, the LIME appears to have greater

effect when the correlation between the recognition vector and the cue vector decreases .

3.6 Concluding remarks

In this chapter, 1 extend Goldstein and Gigerenzer (2002) recognition heuristic model.

In my proposal, instead of considering two levels of recognition, 1 posit three levels of

recognition. To this purpose, 1 introduce an additionallevel of recognition that categorize

those recognized but unsatisfying objects. This new class permit individuals to prefer

an unrecognizable object over a recognizable but unsatisfying one. AIso, my proposal

includes as a special case the two-level recognition heuristic model.

1 also derive the explicit formulas of all the parameters involved in the probability of

success. These formulas allow me, instead of doing estimations of this probability, to find

exact calculations of (3.3). In addition, 1 show that when the reeognition vectors and the

eue vectors are equally likely then the recognition heuristic accuracy rate is equal to 1/2 .

1 eharacterize the eonditions under which the three-level recognition heuristie Ollt-

performs the two-Ievel recognition heuristic. The three-level recognition heuristie out-

performs Goldstein and Gigerenzer model when reeognition includes the first and the

last objeets of the ranking. Finally, calculations show that less is more effeet is likely to

appear when the cue vector is negatively correlated ",ith the criterion vector .

This ehapter can be extended in several directions. First, one can relax the assumption

of perfect memory and eonsider a framework of imperfect memory. Second, it eould be

interesting to study the heuristie expeeted aeeuraey rate for random veetors without the

independence and uniform distribution assumptions. Finally, whether this heuristie is a

descriptive behavior in real eeonomie contexts remains as a task for future researeh .
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Chapter 4

Mental accounting for multiple

outcomes1 .

4.1 Introduction

Whether to keep, say, n E N products segregated (e.g., unbundled) or integrate sorne

or all of thern (e.g., bundle) has been a problern of profound interest in areas such

as portfolio theory in finance, risk capital allocations in insurance, and marketing of

consumer products. Such decisions are inherently complex and depend on factors such

as the underlying product values and consumer preferences, the latter being frequently

described using value functions, also knm•...n as utility functions in econorrUcs. Quite ofien

we want, or are required, to decide whether to combine al! or only sorne products, objects,

subjects, etc., which we call exposure units throughout the chapter - a convenient terrn

that we borrow frorn the actuarial credibility theory (d., e.g., Klugrnan et al., 2008) .

Al! n E N exposure units have attached to them experience values, wmch we sirnply

cal! experiences and denote by x, y, Z, Xi, and so forth. Given a value/utility function, we

want to determine if al! or only some exposure units should be integrated (e.g., bundled,

etc.) or segregated (e.g., unbundled, etc.) .

Tms topic is closely related to the concept of mental accounting introduced by Thaler

lJointly with Sebastien Massoni, Wing Keung Wong and Ricardas Zitikis.
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where v_ , v+ : [O,(0) ---t [O,(0) are continuous, increasing, and concave funetions such

It has been noted (d. al-Nowaihi ct al., 2008; Tversky and Kahnernan, 1992) that

within prospect theory, the value function v takes on the special forrn

that v_rO) = O= v+(O), v_ex) > O and v+(x) > Ofor al! x > O. Bence, we are dealing

with S-shaped functions, which are concave for gains and convex for losses. \Ve refel' to

Gillen and Mal'kowitz (2009) for a taxonomy of value/utility functions with illuminating

discussions .

(1.1)

(1.2)
x 2': O,

x < O,

when

when

{
v+(x) when x 2': O,

v(x) =
-v_e-x) when x < O,

{

xC<

vA,C<,p(x) =
-).( -x)p

The actual or perceived experiences are refleeted by a value funetion v : R ---t R, which

is increasing and is also frequently assumed to be convex for non-positive experiences

(x :s: O) and, in order to refleet the degree of risk aversion, concave for non-negative

experiences (x 2': O). In'addition, we assurne that v i8 continuous, which is a standard

assumption. That is, unless explicitly noted otherwise, we deal with the 8-shaped vallle

funetion

(1980, 1985). Specifically, mental accounting (Thaler, 1999) is "the set of cognitive

operations used by individuals and households to organize, evaluate, and keep track of

financial activities." Thaler (1980, 1985) defined a pattern of optimal behaviors depending

on the type of exposure units with positive and negative experiences, concentrating on

the case of two units .

provided that the so-cal!ed preference homogeneity holds, whel'e a, f3 E (O,1] and ). > O

are sorne parameters. "Ve refer to Wakker (2010) for a compl'ehensive treatment of the

prospect theory .

al-Nowaihi et al. (2008) have proved that the condition of preference homogeneity is

necessary and sufficient for the value function to be of the fol'm (1.2). Furthermore, al-

Nowaihi et al. (2008) have shown that undel' the additional and quite natural assumption

•••••••••••••••••••••••••••••••••••••••••••••••••
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PI. Segregate (two) exposure units with positive experiences .

P2. Integrate (two) exposure units with negative experiences .

P3. Integrate an exposure unit carrying a smaller negativc cxperience with that carrying

a larger positive experience .

(1.3)
,7: :2: O,

x < O,when

when
{

v,(x)
v>.(x) =

-AV,( -x)

P.4 Segregate an exposure unit carrying a larger negative experience from that carrying

a smaller positive experience .

of loss aversion, the parameter A must necessarily be greater than 1, and the other two

parameters o!, ,8 E (0,1] must be identical, i.e. O! = 8. Thus, in this (;hapter we call A

the loss aversion parameter.

A natural generalization of function (1.2) under the assumption of IOBSavcrsion is

therefore the following value function

positive real number.

Now coming back to our main discussion, we note that Thaler (1985) postulates four

basic principIes, known as hedonic editing hypotheses, for integration and segregation:

which features prominently in the literature (e.g., Abdellaoui et al., 2008; Broll, et al.,

2010; Egozcue et al., 2011; Jarnebrant et al., 2009; Kobberling and Wakkcr, 2005;

Wakker, 2010; and references therein), where we also find discussions concerning the

loss aversion parameter A and the base utility function v, : [O, (0) ---+ [O, (0). The present

research also follows this line of research, and we thus mainly deal with value function

(1.3). "Ve assume that the base utility function v, is continuous, increasing, concave, and

such that v,(O) = O and v,(x) > O for all x> O. The loss avcrsion parameter A can be any

Rere we recall a footnote in Thaler (1985) saying that "[flor simplicity 1will deal only

with two-outcome events, but the principIes generalize to cases with several outcomes."

"Vhen there are only two exposure units, then there can only be two possibilities: either

•••••••••••••••••••••••••••••••••••••••••••••••••
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integrate or segregate. Mathematical!y, if the two exposure units with experiences x

and y are integrated, then their value is v(x + y), but if they are kept separately (Le.,

segregated), then the value is v(x) + v(y), For detailed analyses of this case, we refer to

Fishburn and Luce (1995), Egozcue and Wong (2010), and references therein. For exam-

pie, Egozcue and Wong (2010) have found that when facing small positive experiences

and large negative ones, loss averters (see, e.g., Schmidt and Zank, 2008, and references
,

therein) sometimes prefer to segregate, sometimes to integrate, and at other times stay

neutral. For a detailed analysis of the principie P4, which is known as the 'silver lining

effeet,' we refer to Jarnebrant et al. (2009).

In this chapter we develop decision rules for multiple products, which we general!y

cal! 'exposure units' to naturally cover manifold scenarios spanning wel! beyond 'prod-

uets.' Our findings show, for example, that the celebrated Thaler's principies of mental

accounting hold as original!y postulated when the values of al! exposure units are posi-

tive (Le., al! are gains) or al! negative (i.e., al! are losses). In the case of exposure units

with mixed-sign values, decision rules are much more complex and rely on cataloging the

Bel!-number of cases that grow very fast depending on the number of exposure units .

Consequently, in the present paper we provide detailed rules for the integration and

segregation decisions in the case up to three exposure units, and partial rules for the

arbitrary number of units .

We have organized the rest of the chapter as fol!ows. In Section 4.2, we give a complete

solution of the integration-segregation problem in the case of two exposure units, with

experiences of any sign, whereas in Section 4.3 , we accomplish the task in the case

of three exposure units. In Section 4.4, we discuss the case of the arbitrary number

of exposure units by setting, natural!y, more stringent assumptions than those in the

previous sections. In Section 4.5 we present some ap~lications to economics and show

some illustrative examples as wel!. Section 4.6 finishes the chapter with the concluding

remarks .
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expe7'iences .

(2.1)

Theorem 4.2.1 The value maximizer with any value function v defined in (1.1) p'refer-s

to segrego.te two exposure units with positi.'UeexpeTiences and integmte those with negat-i've

4.2 Case n = 2: integrate or not?

When we deal with only two experiences of same sign, then integration-segregation

decisions are simple, as the following theorern shows. Throughout the rest of the chapter,

the value maximizer means the value maximizing decision maker.

Even in the case of two exposure ullits (i.e., when n = 2), decisiollS whether 1.0 integrate

01' segrcgate - and therc can only be these two cases - crucially depend not only on the

experience values but also on the value function v. This problem has been investigated

by Egozcue and Wong (2010) and Jarnebrant el. al. (2009), but we shall give here a more

eornplete picture of the matter. For illustrating examples, we refer 1.0, e.g., Lim (2006),

Gilboa (2010), and Kahneman (2011) .

VI/eskip the proof of Theorem 4.2.1 sincc it can be proved using majorization. Here-

afier, we shall frequently use a special case of the Hardy-Littlewood-Pálya (HLP) rna-

jorization principIe (e.g., Kuczma, 2009, p. 211). Namely, given two vedors (.TI,J'2) and

(Yl, Y2), and algo a continuous and concave fundion v, we have the implication:

To exemplify, we may view Theorem 4.2.1 as saying that the value ma.ximizer prefers

1.0 enjoy two positive experiences on, say, two different days, but if he faces two negative

experienees and has a choice over the timing, then he prefers 1.0 gel. ayer the experiences

as quickly as possible, say on the same day. Note that Theorem 4.2.1 does not impose

any restriction on the value nrnctioll1J, except those specified in definition (1.1). Finally,

we note that Theorem 4.2.1 is a special case of Theorem 4.4.1 to be established later in

the chapter.

/' .
••••••••••••••••••••••••••••••••••••••••••••••••
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Then the value maximizeT pTefeTs integrating the two experiences if and only if T(x) :::;A

. and segTegating them if and only if T(x) 2': A.

The following theorem specifies those values of the parameter A in the value-function

vA for which integration or segregation is preferred in the ease of two exposure units

having experiences of different signs .

(2.2))
. u(x+)-u(max{O,x-+x+})T(x = -----------
u(-x-)-u(max{O,-(x-+x+)}) .

Theorem 4.2.2 With the value function VA defined in (1.3), assume that one expOSUTe

unit has a positive expeTience x+ > O and anotheT one has a negative expeTience x_ < O .

Letx=(x+,x_) anddenote

Gilboa (2010), and Kahneman (2011) .

vVeare now in the position to elaborate on 'our' threshold T(x) and compare it wit.h

that used by Jarnebrant et al. (2009). In short, the two thresholds delineate two different

but closely related regions: T(x) concerns with the integration-segregat.ion region wit.h

respecto to the loss aversion parameter A, whereas the threshold llsed by Jarnebrant et al .

(2009) concerns with the gain region by dividing it. into two parts: in one, segregat.ion'

is preferred, and in t.he other part, integration is preferred. In more detall, J arnebrant

For an illustration oI Theorem 4.2.2, we suggest to think of a situation when, say, the

root-canal of one of our teeth has to be done and we try to decide whether this procedure

should be done on the day oI an exciting eoneert (whieh would hopefully help us to Iorget

the unpleasant experienee) or on a different day (so that we would not be bothered during

the eoncert by the earlier unpleasant experience). Personally, we find this a non trivial

choice, and this is indeed reflected by the increased mathematieal eomplexity of Theorem

4.2.2 if compared to that of Theorem 4.2.1. For more examples, one may reIer to, e.g.,

Theorem 4.2.2 has been established by Egozeue and vVong (2010). We shall sec in

Seetion 4.4, whieh deals with an arbitrary number of exposure units, that Theorem 4.2.2

is a eorollary to our more general Theorem 4.4.2. Henee, we do not give a proof oI

Theorem 4.2.2 here .

•••••••••••••••••••••••••••••••••••••••••••••••••
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et al. (2009) specify conditions under which the 'silver lining effect' occurs, assuming

the same value-function VA as in the present chapter. They show, for example, that if a

gain is smaller than a certain gain-threshold, then segregation is preferred. In contrast,

our .\-based threshold is related to a certain value of the loss aversion parameter .\: if

it is smaller than the threshold, then segregation is preferred; othenvise integrabon is

preferred. Note also that the threshold T(x) has an explicit formula, whereas a formula

for the threshold used by Jarnebrant et al. (2009) is more difficult to arrive ato Moreover,

their definition is not yet clear for more than two exposure units, even for three units,

because in this case we could have, for example, two gains and a loss and would thus be

required to use a threshold-set of some kind, instead of just a threshold-parameter.

We next provide an insight into the magnitude of the threshold T(x); namely, whether

it is below or above 1. Knowing the answer is useful because if, for example, under the

assumption of Theorem 4.2.2, T(x) ::; 1 and the decision maker is loss averse, that is,

.\ 2': 1, implies that the value maximizer prefers integration .

Theorem 4.2.3 Assume that the conditions o/ Theorem 4.2.2 are satisfied, and thus

a.rnong Xl and X2 there is one positive and one nega.t-ive va./ue. If Xl + X2 2': O, titen

T(x) ::; 1, a.nd if Xl + X2 ::; O, titen T(x) 2': 1.

Proof. We start with the case Xl + .');2 2': o. Then T(x) ::; 1 is eqllivalent to

u(x+) - u(x_ + x+) ::; U(~L), which using the notation YI = -x_ 2': O and Y2 =

x_ +x+ 2':Ocan be rewritten as the bound U(YI +Y2) ::; U(YI) +U(Y2). By Theorem 4.2.1,

the latter bound holds, which establishes T(x) ::; 1. vVhen Xl + X2 ::; O, then T(x) 2': 1 is

equivalent to the bound1J.(.');+)+u(-x_-x+) 2':U(-L). With thenotation Zl = .');+2':O

and Z2 = -x_ - x+ 2': O, the above bound becomes U(ZI + Z2) ::; U(ZI) + U(Z2). By

Theorem 4.2.1, the latter bOllnd holds, and so we have T(x) 2': 1. This completes the

proof of Theorem 4.2.3. •
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4.3 Case n = 3: which ones to integrate, if any?

Hence, we now see that neither complete segregation nor complete integration of

three (or more) experiences with mixed exposures may lead to maximal values. FOr this

the following inequality implies the opposite: V~,-f(¿ Xk) = 0.1584 < ¿V.>.-y(J;k) =
0.2039 .

when x::O: O,

when x < O .{

x~
V~,_I(X) =

-A(-XP

Example 4.3.1 Assume the value function

Countering P3: Suppose that .\ = 1.4 and O( = 0.4. Let x = (2,2, -3.99). The sum

of the experiences is ¿Xk = 0.01. Hence, a stmightfor-ward extension of PrincipIe

P3 with n = 3 would suggest integrating the three expOSUTeunits into one, but

Countering P4: Suppose that .\ = 2.25 and oy = 0.88. Let x = (0.5, -10, -20). Thc

sum of the experiences is ¿Xk = -29.5. Hence, a stmightfor-ward extension of

PrincipIe P4 with n = 3 would suggest segregating the three exposure units, but

the following inequality says the opposite: v.>.,_/¿ Xk) = -44.2207 > ¿V'>',-I(Xk) =
-47.9361.

Complete integration or complete segregation may not tesult in the maximal value whcn

there are more than two exposure units, and thus a partial integration-segregation deci-

sion could be better. In this section we shall give a complete solution to this problem in

the case of three exposure units (i.e., n = 3) .

We begin with a note that the value maximizer with the value function v defined in

(1.1) prefers to segregate three exposure units with positive experiences, and integrate

three exposure units with negative experiences (we refer to Theorem 4.4.1 to be estab-

lished later). \Vhen there are mixed experiences (i.e., at least one positive and at least

one negative), then integration-segregation decisions are complexo To illustrate, we next

give an example (in two parts) violating principIes P3 and P4 .

•••••••••••••••••••••••••••••••••••••••••••••••••



• TV + Internet: $94.95/month (regular $110.95)

• Internet + Bome Phone: $69.95/month (regular $91.95)

• TV + Internet + Bome Phone: $99.00/month (regular $135.95)

(3.2)

(3.1)x + y + z :>: O .

x:>:y:>:Z,

Furthermore, without loss of generality, we assume that

• TV + Bome Phone: $64.9.5/month (regular $98.95)

reason, we next develop an exhaustive integration-segregation theory for three exposure

units, which is a fairly frequent case in praetice. Tü illustrate, the following example is

borrowed from the telecommunications industry (Bell Aliant, 2012):

Note £rom the prices that depending on factors such as the prices of individual prod-

uets as well as (likely unknown but guessed) underlying value funetions, there are pos-

sibilities for discounts due to bundling. Another popular example of bundling would be

vacation packages (e.g., Orbitz, 2012) that usually involve flight, hotel, and car: in various

combinations. Yet another popular bundle would be the office software suit, which among

possibly many 'auxiliary' components, usually has the following three base components:

word processor, spreadsheet, and presentation programo Note that the above examples

concern with three different products, as is generally the case throughout the current

chapter, but there can also be, for example, 'volume bundling' of identical products, in

which case we would deal with identical Xl, ... ,Xn or, specifically to this seetion, with

identical x, y, and z, that is, x = y = Z •

Unless explicitly noted otherwise, we shall work with the value funetion VA defined by

equation (1.3). The three experiences are x, y and z, and we assume that they satisfy

•••••••••••••••••••••••••••••••••••••••••••••••••
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(3.3)x # O, Y # O, z # O,

E. v>,(x + Y + z) .

Note 4.3.1 The reason for including the minimal values when only the maximal ones

seem to be of inter'est, is due to the fact that finding the maximal oncs in thc case x +

y + z ::;Ü can be reduced to finding the minimal ones under the condition x + y + z 2: O .

Indeed, note that x + y + z ::;O is equivalent to x- + y- + [ 2: O with the notation

,'C = -x, y- = -y, and z- = -z. Bince A > O, the equation

assume, without 1088of generality, that

because if at least one of the three experiences is zero, then the currently investigated

case n = 3 reduces to n = 2, which has been discussed earlier in this chapter and also

investigated by Egozcue and Wong (2010) .

Finally, we note that there are five possibilitie8 for integration and segregation in the

case of three exposure units:

In summary, our goal in this section is to determine which of the aboye five possibilities

produces the largest value (maximal). We also want to know, and Note 4.3.1 below wil!

explain why, whicb of the five cases and under what conditions produces the smallest

value (minimal). This is exactly what Theorems 4.3.1-4.3.5 wil! establish .

with A* = l/A implies that finding the maximal value among (A)-(E) is equivalent to

finding the minimal value among the following five cases:

•••••••••••••••••••••••••••••••••••••••••••••••••
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Vl/>'(X-) + Vl/>.(Y-) + Vl/>'(Z-),

V,/>,(X-) + Vl/>.(Y- + Z-),

Vl/>.(Y-) + V]/>.(X- + Z-),

Vl/>.(Z-) + Vl/>'(X- + y-),

Vl/>'(X- + Y- + Z-) .

The minimal values among the latter five cases will be easily derived from Theorems

4.3.1-4.3.5, where we only need to replace x, y, and z by x-, Y-, and z-, respectively,

and also replace the parameter .\ by 1/.\ .

Since £rom now on we are only concerned with the case x+y+ Z :::: O,we therefore know

that at least one of the three exposure units has a non-negative experience. Furthermore,

every triplet (x, y, z), falls into one of the following five cases:

x::::y::::z::::O (3.4)

x::::y::::O::::z and y:::: -z (3.5)

x::::y::::O::::z and x:::: -z:::: y (3.6)

x::::y::::O::::z and -z::::x (3.7)

x:::: O:::: y:::: z (3.8)

In the proofs of Theorems 4.3.1-4.3.5 below, we use notation such as ":y." To darify

its meaning, we take, e.g. the statement (A) :P (E), which means that v>.(x) + v>.(y) +
v>.(z) ::::V>.(x + Y + z). Hence, (A) :P (E) says in a concise way that the value maximizer

prefers (A) to (E). Naturally, the value minimizer - and we consider this case due to

the reason given in Note 4.3.1 - prefers (E) to (A) whenever the relationship (A) :P (E)

holds .

Theorem 4.3.1 Let the valve fvnction be v>., and let (3.4) hold. Then we ha.ve the

following two statements:

Max: (A) gives the maximal valve among (A)-(E) .

Min: (E) gives the minima.l valve a.mong (A)-(E) .
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Theorem 4.3.2 Let the value function be VA' and let (3.5) hold .

Max: With the threshold TAC = T(x, z), the follo'UJingstatements speeify the two possible

maximal values among (A)-(E):

Min: With the threshold TDE = T(x + y, z), the following statements speeify the two

possible minimal values among (A)-(E):

(3.9)vA(y) + vA(x + z) 2: vA(x) + vA(y + z),

• \~Then x + z s: y, then we apply the HLP principIe on the vectors (y, x + z) and

(x, y + z), and get vA(Y) + vA(x + z) 2: vA(x) + vA(Y + z), which is (3.9) .

• When x + z 2: y, then we apply the HLP principIe on the vectors (.];+ z, y) and

(x, y + z) and get vA(x + z) + vA(y) 2: vA(x) + vA(y + z), which is (3.9) .

- lfTDE 2: A, then (E) .

- lf TDE s: A, then (D) .

- lfTAC 2: A, then (A) .

- lfTAC s: A, then (C) .

Proof. Since the three exposure units have non-negative experiences x, y, and z,

Theorem 4.4.1 implies that complete segregation maximizes the value. Hence, (A) attains

the maximal value among (A)-(E). Same theorem also implies that complete integration,

which is (E), attains the minimal value. _

The following analysis of cases (3.5)-(3.8) is much more complex. Now we are ready

to formulate and prove our next theorem .

which we establish as follows:

Proof. Since x and y are non-negative, from Theorem 4.4.1 we have that (A) "" (D),

and since x and y + z are non-negative, the same theorem implies that (E) "" (E). The

proof of (C) "" (E) is more complex. Note that (C) "" (B) is equivalent to

•••••••••••••••••••••••••••••••••••••••••••••••i.L.
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This completes the proof of inequality (3.9). Hence, in order to establish the 'max'

part of Theorem 4.3.2, we need to determine whether (A) or (C) is maximal, and for the

'min' part, we need to determine whether (D) or (E) is minima!.

The 'max' parto

Since x 2: Oand z :S O,whether (A) or (e) is maximal is determined by the threshold

TAC: when TAC :s; A, then (e) ?o (A), and when TAC 2: A, then (A) ?o (e). This

concludes the proof of the 'max' parto

The 'min' parto

Since x + y 2: Oand z :S O, the threshold TDE = T(x + y, z) plays a decisive role: if

TDE :S A, then (E) ?o (D), and if TDE 2: A, then (D) ?o (E). This concludes the proof of

the 'min' part and of Theorem 4.3.2 as wel!. _

Theorem 4.3.3 Let the value funetion be VA' a.nd let (3.6) holds.

Max: With the thresholds TAC = T(x, z) a.nd TAs = T(y, z), the following statements

specify the two possible maximal va.lues among (A)-(E):

- lfTAC 2: A, then (A) .

- lfTAC :S A, then (e).

Min: With the thresholds TBE = T(x,y+ z), TDE = T(x+y,z), and

T _ u(x+y)-u(x)
BD - u(-z) - u(-y - z)'

the following statements speeify the three possible minimal va.lues among (A)-(E):

- lf TBE :S A and TBD 2: A, then (E) .

- lf TDE :S A and TBD :S A, then (D) .

- lfTBE 2: A and TDE 2: A, then (E) .

Proof. Since x and y are non-negative, we have (A) ?o (D), and since y and x + z

are non-negative, we have (e) ?o (E). Hence, it remains to consíder only cases (A), (B),

and (e) for the 'max' part of the theorem, and only (B), (D), and (E) for the 'min' parto

109



•••••••••••••••••••••••••••••••••••••••••••••••••

The 'max' pan .

First we show that TAC :s 1'.4B. Since x+z ;:::0, from Theorem 4.2.3 we ha:veTAC :s 1,

and since y + z :s O, the same theorem implies TAE ;:::1. Hence, 1'.4C :s TAB.
To establish that (A) is maximal when TAC ;::: A, we check that (A) :p (E) and

(A) :p (C). The former statement holds when TAE = T(y,z) ;:::A, and the latter when

TAC = T(x, z) ;:::A. But we already know that TAC :s TAE. Therefore, when 1'.4C ;:::A,

then TAE ;:::A. This pro:ves that when TAC ;:::A, then (A) gives the maximal value among

(A), (B), (C), and thus, in turn, among al! (A)-(E) .

To establish that (C) is the maximal when TAc :s A, we need to check that (C) :p (A)

and (C) :p (E). First we note that when TAc :s A, then (C) :p (A). Furthermore,

where TEc is defined by the equation

T _ u(x) - u(x + z) - u(y)
EC - u(-y - z) .

Hence, when TEC :s A, then (C) :p (E). Simple algebra shows that the bound TEc :s TAE
is equivalent to 1'.4C :s TAE, and we already know that the latter holds. Hence, TEc :s 1'.4E
and so TEC :s A when 1'.4C :s A. In summary, when TAC :s A, then (C) gives thc maximal

value among al! cases (A)-(E). This concludes the proof of the 'ma.x' parto

The 'min' parto

We first establish conditions under which (B) is minimal. We have (E) :p (E) when

TEE :s A. To have (D) :p (E), we need to employ the threshold TED, which is defined

in the formulation of the theorem. The role of the threshold is seen from the fol!owing

equivalence relations:

no
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Hence, if TBD ::: A, then (D) :;" (E). In summary, when TBE <::: A and TBD ::: A, then (B)

gives the minima! va!ue among al! (A)-(E) .

We next establish conditions under which (D) is ininimal. First, we have (E) :;o (D)

when TDE <::: A, Next, we have (E) :;" (D) when TBD <::: A, Insummary, when TVE <::: A

and TBD <::: A, then (D) gives the minima! va!ue among al! (A)-(E) .

Final!y, we have (E) :;" (E) when TBE ::: >., and (D) :;" (E) when TDE ¿ >., Hence,

when TBE ¿ >. and TDE ¿ >., then (E) is minima! among al! (A)-(E). This finishes the

proof of the 'min' part, and thus of Theorem 4.3,3 as wel!, _

Theorem 4.3.4 Let the value funetion be VA' and let (3.7) holds.

Max: With the thTeshold
T _ u(x) +u(y) -'U(x+y+z)
AE - () ,u -z

the following statements speeify the two possible maximal value" among (A)-(E):

- 1f TAE ::: >., then (A) .

- 1fTAE <::: >., then (E) .

Min: With the thTesholdsTAC = T(x, z), TBE = T(x, y + z), TCE = T(y, x + z), TDE =
T(x + y, z), and

T
BC

= u(x) - u(y) ,
u(-y - z) - u(-x - z)

T _ u(x + y) -u(x)
BD - u(-z) - u(-y - z)'
T
CD

= u(x + y) - u(y) ,
u( -z) - u( -x - z)

the following statements speeify the fOUTpossible minimal values among (A)-(E):

- 1fTBE <::: A, TBC <::: A, andTsD::: >., then (E),

- 1f TCE <::: A, TBC ::: >., and TCD ¿ A, then (e) .

- 1f TDE <::: A, TBD <::: A, and TCD <::: A, then (DJ,
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- lfTsE ;::: A, TCE ;::: A, and TDE ;::: A, titen (E) .

Proof. Since both x and y are non-negative, we have (A) :y (D). This eliminates

(D) from the 'max' part of Theorem 4.3.4 and (A) from the 'min' parto

Tite 'max' parto

We first eliminate (B). When TSE ::; A, then (E) :y (B). If, however, TBE ;::: A, then

by Theorem 4.4.2 we have (B) :y (E). AIso when TAs ;:::A, then (A) :y (B). On the

other hand, if TAS ::; A, then (B) :y (A). We have fram Theorem 4.2.3 that TSE ::; 1.

Theorem 4.2.3 also implies that TAS ;::: 1 because x + z ::; O. Bence, TEE ::; TAS. Thus,

we have two cases: (i) ¡'Vhen TEE ;::: A, we conclude that T4E ;::: A and thus (A) :y (B)

and (ii) when TEE ::; A then (E) :y (B). In either case, (B) is discarded as an optimal

option. Therefore, the value maximizing decision maker wil! not choose (B). Analogous

arguments, but with TCE and TAc instead of TEE and TAE, respectively, show that the

value maximizing decision maker wil! not choose (e) either. Bence, in summary, we

are left with only two cases: (A) and (E). Which of the two maximizes the value is

determined by the equivalence relations:

v>.(x) + v>.(y) + v>.(z) ::; v>.(x + y + z) ~ 11.(X) + u(y) - AU( -z) ::; u(x + y + z)

This concludes the proof of the 'max' parto

The 'min' parto

To prove the 'min' part, we only need to deal with (B)-(E), because we already

know that (A) :y (D). Case (E) gives the minimal value when TEE ;::: A, TeE ;::: A, and

TDE ;::: A. If, however, there is at least one among TBE, TCE, and TDE not exceeding A,

then the minimum is achieved by one of (B), (C), and (D). To determine which of them
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Theorem 4.3.5 Let the value function be VA' and let (3.8) holds .

Min: With the th1'esholds TAC = T(x, z), T.4D= T(x, y),

and when is minima1, we employ simple algebra and obtain the equivalence relationships:

(E) ?= (C) ~ TBC :;> A

(D) ?= (C) ~ TCD :;> A

(E) ?= (C) ~ TCE ~ A

(E) ?= (E) ~ TBE :;> A

(C) ?= (E) ~ TCE :;> A

(D) ?= (E) ~ TDE :;> A

,u(x) - u(x + Y + z)TAE = ~~~-~-.
- u(-y)+u(-z)'

T
BC

= u(x) - u(x + z) ,
u( ~y - z) - u( ~y) ,

TBD = u(x) - u(x + y) .
u( ~y - z) - u( ~z)'

T
CD

= u(x + y) - '11(.1:+ z)
u(~z)-u(-y) ,

T _ u(x+y)-u(x+y+z)
DE - (,) .u -z

(C) ?= (E) ~ TBC ~ A

(D) ?= (E) ~ TBD :;> A

(E) ?= (E) ~ TBE ~ A

(E) ?= (D) ~ TBD ~ A

(C) ?= (D) ~ TCD ~ A

(E) ?= (D) ~TDE ~ A

- lfTBE :;> A, TBC :;> A, and TBD :;> A, then (E) .

- lfTcE :;> A, TBC ~ A, and TCD ~ A, then (C) .

- lfTDE :;> A, TnD ~ .\, and TCD :;> A, then (D) .

- lf TnE ~ A, TCE ~ A, and TDE ~ A, then (E) .

the following statements specify the fou1' possible maximal values among (A)-(E):

This finishes the proof of Theorem 4.3.4. •

Max: With the thresholds TBE = T(x, y + z), TCE = T(x + z, y), TDE = T(x + y, z), and

•••••••••••••••••••••••••••••••••••••••••••••••••



Pro o£. The 'max' parto

and the other ones defined in the 'max' part of this theoTem, the following statements

speeify the four possible minimal values among (A)-(E):

This finishes the proof of the 'ma.x' parto

The 'min' parto

To prove the 'min' part of the theorem, we verify the following four sets of orderings:

(D) >,= (E) =TBD :s; .\
(D) >,= (C) =TCD 2 ..\

(D) >,= (E) =TVE 2 .\

(A) >,= (C) = T.4C 2 ).

(D)~ (C)=TcD 2).

(E) >,= (e) =TCE :s; ).

(C) >,= (E) =Tnc :s; .\
(C) >,= (D) =TCD :s; .\
(C) >,= (E) =TCE 2 .\
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(E) >,= (C) =TBC 2 ..\

(E) >,= (D) =TBD 2 ..\

(E) >,= (E) =TnE 2 .\

(C) ~ (A) =TAc :s; ).
(D) ~ (A) =TAD :s; ..\
(E) ~ (A) =T.4E :s; ).

- lf TAC :s; ..\, TAD :s; .\, and Tú :s; .\, then (A) .

- lf TAC 2 .\,TCD 2 .\, and TCE :s; .\, then (C) .

- lfTAD 2 ..\,TCD :s; ..\, and TDE :s; ..\, then (D).

- lfTAE 2 ..\,TCE 2 .\, and TDE 2 .\, then (E) .

Since -y 2 O and -z 2 O, we have from inequality (4.1) that u(-y) + u(-z) >
u( -(y + z)) and thus -.\u( -y) - ..\u(-z) :s; -..\u( -(y + z)). The latter is equivalent to

v>,(y)+ v>,(z) :s; V>, (y + z), which means that (E) >,= (A) .

We have four cases (E)-(E) to deal with. To determine which of them and when is

maximal among (E)-(E), we employ simple algebra and obtain the equivalence relation-

ships:

•••••••••••••••••••••••••••••••••••••••••••••••••
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and we shall next discuss sorne of them. For this we first observe that fram the math-

(4.1)

(A) ~ (E) ~ TAE 2: >..

(C) ~ (E) ~ TCE 2: >..

(D) ~ (E) ~ TDE 2: >..

(A) ~ (D) ~ TAD 2: >..

(C) ~ (D) ~ TCD :::; >..

(E) ~ (D) ~ TDE :::;>..

4.4 Arbitrary number of exposure units

Various partial scenarios, however, are quite reasonable to look at even for general n,

This concludes the proof of the 'min' part and of Theorem 4.3.5 as well. _

Bn+! = LCrBk'
. k~O

We already know that when n = 3, then we have five cases to analyze. This number 5

- in the context of the present chapter - turns out to be the fourth member of the Bell

sequence. Indeed, the number of possible cases to integrate or segregate n outcomes is

related to the Bell number (Bell, 1934). This number is denoted by Bn, and is defined

as the number of partitions of a set with n members. It satisfies the following recursion

formula,

The sequence of the first Bell numbers is Bo = BI = 1,B2 = 2,B3 = 5,B4 = 15, B5 =

52, B6 = 203,B7 = 877, Bs = 4.140, ...

holds for all Xl, ... , xn E [0,00). In other words, inequality (4.1) says that the value

ematical point of view, the integration-segregation rules are about the super- and sub-

additivity of value functions. Decision makers, however, tend to 'visualize' the functions

in terms of their shapes, such as concavity or convexity. A link between the additivity and

concavity notions is accomplished by functional inequalities, such as Petravié's inequality

(see, e.g., Kuczma, 2009), which says that for every n 2: 2 and for every continuous and

concave function v : [0,00) -4 R such that v(O) = O, the inequality

•••••••••••••••••••••••••••••••••••••••••••••••••
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function v is subadditive on [0,(0). This implies that the value maximizer prefers to

segregate positive experiences. In the domain (-00, O]of losses, the roles of integration

and segregation are reversed. Collecting the aboye observatiollS, we have the following

general theorem .

Theorem 4.4.1 The value maximizer with any value function v defined in (1.1) prefers

to segregate any n'll.mber of exposure units with positive experiences, and integrate any

numbeT of expos'llre units with negative experiences .

Theorem 4.4.1 rules out rrllxed experiences. We shall next relax this assumption, but

at the expense of generality. First, we restrict ourselves to the value function v),. Second,

we restrict our attention to learning if it is preferable to integrate aH exposure units or

to keep them all segregated, and no other option is available, or of interest, to uso The

number of exposure units n 2': 2 remains arbitrary .

Theorem 4.4.2 With x = (Xl,' .. , xn), we define the threshold T(x) by

L U(Xk) -u( max {O, f>k})
T(x) = kEK:T• k~l

k'f_ u( -Xk) - u( max {O, - tXk} )

which is always non-negative, where K.+ = {k : Xk > O} and K._ = {k : Xk < O} are two

subsets of {1, ... , n}. The threshold T(x) splits the values of the loss aversion parameter ,\

into two regions - integration and segregation - as follows: assuming that there is at least

one exposure unit with a positive experience and at leost one with a negative experience,

and given that either complete integration 01' complete segregation of all exposure units is

possible, then the value maximizel' pl'efeTS

• integrating the exposure units if and only if T (x) :S ,\, and

• segregating the exposure units if and only if T(x) 2': '\ .
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which, in turn, is equivalent to

Since the function u : [0,00) -> R is continuous, concave, and urO) = 0, the right-hand

(4.2)

(4.4)),L u( -Xk) - '\u( - i:>k) ~ L 1l,(Xk)'
kEK_ k=! kEK+

L u( -Xk) - u ( - t Xk) = L 11.(-Xk) - 11.(- L Xk - L Xk)
kEK_ k=! kEK_ kEK_ kEK+

2:: L U(-Xk)-11.( - L Xk) (4.5)
kEK_ kEK_

L U(Xk) -1l( f>k) = L U(Xk) - U( L xd L Xk)
kEK+ k=1 kEK+ kEK+ kEK_

2:: L U(Xk) - U( L Xk)' (4.3)
kEK+ kEK+

Proof. We start with the case ¿~=!Xk 2::O. The inequality 'I)',,(¿;=1 Xk) ~ ¿~=!V,,(Xk)
is equivalent to

U(i>k) ~ -,\ L U(-Xk)+ L U(Xk),
k=! kEK_ kEK+

Since ¿~=JXk 2::0, we have T+(x) = T(x). To show that T(x) is non-negative, we first,

note that since the function u is non-decreasing and ¿kEL Xk ~ 0, we have

In addition, since the function u : [0,00) -> R is continuous, concave, and 71,(0)= 0, the

right-hand side oí bound (4.3) is non-negative. Hence, T+(x) 2::O.

Considering now the case ¿~=!Xk ~ 0, we find that V>'(¿~=1 Xk) ~ ¿~=!V>.(Xk) is

equivalent to

Since the function u is non-decreasing and ¿kEK+ Xk 2::0, we have that

•••••••••••••••••••••••••••••••••••••••••••••••••
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side of bound (4.5) is non-negative. Hence, inequality (4.4) is equivalent to

(4.6)

Given the above, we have T_(x) ;::O. Furthermore, since ~~=1 Xk ~ O, we have T_(x) =

T(x). This completes the proof of Theorem 4.4.2 .•

4.5 Applications and numerical illustrations

In this section, we give a brief account of possible practical applications of our results

to a variety of disciplines such as economics, finance, marketing, polítical science and

taxation. Numerical examples that we shall present in the second subsection below are

designed to illustrate om earlier theoretical results, especially their optimality .

Shefrin and Statman (1984) address the question why firms pay dividends. Since

dividends have been ta.xed at a higher rate than capital gains, an investOl' would prefer

that the firm repurchase shares instead of paying dividends. They propose a mental

accounting explanation of this behavior. The rationale fOl'dividends is that this will

make easier for investors to segregate gains from losses, hence increasing their value

function. For example, suppose a stock has increased in value by $10. If there are no

dividends the investor "il! code this gain as v(lO). Alternatively, suppose the firm pays a

dividend 0£$2, with a capital gain of $8, this 'vil! be segregated as v(2) +v(8), which will

be result in a higher value, because of the concavity of the value function in the domain

of gains. Similarly, consider the case of a stock that has lost $10 in its value, against

a loss of $12 and a dividend of $2, the investors will mental!y compare v( -10) against

v( -12) +v(2), which by Thaler's fourth principIe, will enable investors to show the silver

J1ning,would be preferred to the no dividend loss option .

Linville and Fischer (1991) extend mental integration and segregation and examine

the hedonic editing rules not only for outcomes in the financial domain, but also outcomes
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i;' non-financial domain and across different domains. For example, they consider events

such as: having a nice dinner with a friend, losing a $10 bill or receiving a traffic ticket .

They find evidence for mental accounting to occur within and across different domains .

Hirst, Joyce and Schadewald (1994) show how segregating and integrating the utility

of purchased goods and the disutility of how this purchased are financed affect consumer

borrowing decision. Indeed, financing a good creates a stream of benefits and losses.

Integrating or segregating these streams of gains and losses affects the utility of credit

purchases. They find that consumers would prefer to associate loans with long-lived

assets. For example, most subjects prefer to finance a furniture purchase (long-lived

asset) over a two week vacation (short lived asset). They find evidence that supports

that loan repayment is associated with the existence of future asset benefits which could

be integrated with the loanpayments. This means that a consumer would be willing to

prepay a loan that relates to an expired asset than a loan that relates to an unexpired

asset. Finally, they find evidence that individuals would be willing to incur in additional

costs to enhance the likelihood that loan costs and benefits would co-occur in time .

Another application relates investors' selling and purchasing stocks strategy. There is

a rrllxed evidence whether investors realize gains and losses jointly or separately (Lim

2006; Lehenkari 2009). Lim (2006) documents that investors prefer to bundle sales

of stocks that are trading below their purchase price (Iosers) on the same day than

sales of stocks aboye their purchase price (winners). The reason is that selling losers

on the same day allow investors to integrate their losses. On the other hand, selling

winners on different days makes easier to segregate gains. Contrary to Lim's findings,

Lehenkari (2009) finds that investors in the Finnish stock market do not integrate losses

and segregate gain as Thaler's principies predict. The bias toward concentration might

be a possible explanation of this inconclusive evidence (Koszegi and Szeidl, 2013) .

Sul, Kim and Choi (2013) investigate the relationship between subjective well-being

and hedonic editing for mixed events. They find that happy individuals displayed a

stronger preference for integrating a positive social event against a loss. That is, social

gains are used as a cross domain buffers, where happy individuals displayed stronger
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preferences for social events .

Milkman et al. (2012) propose a policy bundling technique in which related bills

involving both losses and gains are combined to offset separate bills' cost while preserving

their net benefits. For instance, Stiglitz (1998) has pointed out the failure of passing

legislation \vith high net positive expected value. Thus, this method can transform

unpopular individual pieces of legislation into more popular choices. For example, a

legislation can be seen as bundling spending cuts (gains) with spending increases (Iosses)

with a net spending cut. The next example, taken £rom Milkman et al. (2012), might

clarify this point .

Example 4.5.1 Suppose a legislative faces two unpopulaT pieees of legislation dUTing an

eeonomie downturn peTiod:

A. A bill that inCTeases government spending by 10 million dollaTs at a time when the

defieit is soaTing but would er-eate 100 new per-manent jobs .

B. A bill elirninating 90 governrnent jobs that would Teduce the deficit by 12 million

dollaTs .

Now suppose that both bills aTe combined into one single bílZ:

c. A bill Tedueing the defieit in 2 rnillion dollaTs and an ineTease of 10 new per-manent

jobs .

Milkman et al. (2012) have found evidence that supports the eombined bill (option

C) better than either oí its eomponent bilis (option A or B). Henee, bundling together

two unpopular bilis eould indeed beeome popular.

Mental accounting has also reeeived great attention in Marketing science (Drumwright,

1992; Heath, Chatterjee and Franee, 1995). Bundling an attractive produet with a less

attractive product, is a direct application oí Thaler's third principIe. The reason is that

the seller bundles these products so that the eonsumer surplus oí the attractive product

will compensate the consumer deficit with the less attractive producto
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The follo\'.<ingtwo examples show that principies P3 and P4 can be violated .

o

(5.1)
x 2 O,

x < O.when

when

Example 4.5.4 (illustrating principie' P3) Let the value funetion be v>',-,with the

pammeteTs .A= 2.25 'and I = 0.88. Suppose that we have thTee expOSUTeunits with mú:ed

Obviously, vÁ:y= v>.with u(x) = x-' .

The following two numerical examples illustrate the validity of principies PI and P2 .

Example 4.5.2 (illustrating principie PI) Let the value function be v>',-, with the

parametcrs .A = 2.25 and I = 0.88. Suppose that we have three exposll,re units with

positive experiences 5, 10, and 20. PrincipIe P 1 suggests segregating them, and this

is mathematieally confirmed by the inequality: V>.,')'(2.: Xk) = 22.8444 < 2.: 'U>.,-,(Xk)=
25.6683. (We use 2.: instead of 2.:~~1to simplify notation.) OUTgeneral resu.lts say that

the value maximizing deeision maker prefers segregating any number' of positive expOSUTes.

Finally, OUT results can alBobe applied to taxation. For instance, a typical framework

of mental accounting appears when there is a tax refund at the end of a fiscal year. In

this case, mental accounting is a useful theory to analyze whether taxpayers shall prefer

having a tax refund at the end of the fiscal year, but making, in advance, large monthly

tax payments against making smaller monthly tax payments, but with no tax refundo

We shall next give some numerical illustrations of our earlier developed theory. In

the following examples we use the S-shaped value function (al-Nowaihi et al., 2008)

Example 4.5.3 (illustrating principie P2) Let the value funetion be v>','( with thc

parameteTs .A = 2.25 and -f = 0.88. Suppose that we have three exposure units with

negative expeTienees -5, -10, and -20. PTineiple P2 suggests integrating them, and

this is confiTmed by the inequality: v>.,-,(2.:Xk) = -51.3999 > 2.: v>.",(Xk) = -57.7537 .

OUTgeneral Tesults say that the value maximizing decision maker' pTefeTs integrating any

number of negative expOSUTes. O
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experiences -0.5, 10, and 20, whose total (positive) experience is 2::: Xk = 29.5. Principie

P3 would suggest integruting the exposure 'units into one, but the following inequality

implies the opposite: v-",,,(2::: Xk) = 19.6537 <¿v-",,,(x¡,J= 20.3239. In fad, we see fmm

our theoretical analysis of the case n = 3 that neither complete segregation nor complete

integrution of three (01" more) experiences with mixed exposures may lead to a maximal

value, which may be achieved only by a parlial integrution and segregation. O

Example 4.5.5 (illustrating principie P4) Let the value function be v-",'rwith the

parumeter-s.A= 2.25 and! = 0.88. Suppose that we have three exposure units with mixed

experiences 0.5, -10, and -20, whose total (negative) experience is ¿Xk = -29.5 .

Principie P4 suggests segr-egatingthe exposure units, but the following inequality says the

opposite: V\,,,(¿ Xk) = -44.2207 > ¿V\,,,(Xk) = -47.9361. Our theory developed above

says that neither complete segr-egationnor complete integrution may lcad to a maximal

value when n ;:::3. O

Now we shall provide sorne nurnerical illustrations of our rnain theorerns .

Example 4.5.6 (illustrating Theorem 4.3.2) Assume that the value function is vA,,,

with '¡' = 0.88. With the experiences x = 5, Y = 3, and z = -2, we have TAC = 0.8109

and TED = 0.7575. Hence, the following statements hold:

Max: W7len.A -S 0.8109, then (A) is maximal, and when 0.8109 -S A, then (C) is maxi.

mal .

Min: When A -<:: 0.7575, then (E) is minimal, and when 0.7575 -<:: A, then (D) is minimal .

Example 4.5.7 (illustrating Theorem 4.3.3) Assume that the value funetion is VA,'!

with! = 0.88. With the expe7'iencesx = 10, Y = 1, and z = -2, we have TAC = 0.7349,

TBD = 0.7897, and TBE = 0.6717. Hence, the following statements hold:

Max: When A -S 0.7349, then (A) is maximal, and when 0.7349 -S A, then (C) i8 maxi .

mal.
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Min: T1!hen>. <::: 0.6717, then (E) is minimal, when 0.6717 <::: >. <::: 0.7897, then (E) is

minimal, and when 0.7897 <::: >., then (D) is minimal.

Example 4.5.8 (illustrating Theorem 4.3.4) Assume that the value function is vA,~

with ~(= 0.88. With the expe'riences x = 4, Y = 3, and z = -5, we have TAE = 0.8404,

TBD = 0.9446, TCE = 0.7890, and TCB = 0.9014. Hence, the following statements hold:

Max: When >. <::: 0.8404, then (A) is maximal, and when 0.8404 <::: >., then (E) is maxi-
mal.

Min: When >. <::: 0.7890, then (E) is minimal, when 0.7890 <::: >. <::: 0.9014, then (C)

is minimal, when 0.9014 <::: >. <::: 0.9446, then (E) is minimal, and finally when

0.9446 <::: >., then (D) is minimal .

Example 4.5.9 (illustrating Theorem 4.3.5) Assume that the value junction is vA,-!

with '( = 0.88. With the expe'riences x = 36, Y = -2, and z = -14, we have TBE =
0.8243, TAc = 0.8074, and TCE = 0.6636. Hence, the following statements hold:

Max: When>' <::: 0.8243, then E is maximal, and when 0.8243 ::; >., then E is maximal.

Min: When >. ::; 0.6636, then E is minimal, when 0.6636 < >. < 0.8074, then C is

minimal, and when 0.8074::; >., then A is minimal .

The following two examples illustrate Theorem 4.4.2 in the case of three exposure

units and assuming that the decision maker iti given only two options: either integrate

all exposure units or keep them segregated .

Example 4.5.10 (illustrating Theorem 4.4.2) Let Xl = 25, X2 = 10, and X3 =

-0.5, with the positive total sum Xl + X2 + X3 = 34.5. Let the value function be vA,-,

with ~(= 0.88. The threshold T(x) = 3.7149. Thus, facing the dilemma of integrating or

segregating all exposure units (we are not dealing with any partial integration 07' partial

segregation in this example), the decision maker prefers segregatingthem when >. ::; 3.7149

and integmting them when >. :;:.. 3.7149 .
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4.6 Concluding remarks

Our theoretical study has shown that within the class of value functions specified by

prospect theory, the validity of Thaler's principIes can be established rigorously in the

case of only non-negative experiences, or only non-positive experiences, and irrespectively

of the number of exposure units. vVhen exposure units carry both negative and posi-

tive experiences, then the principIes may break down. Our theory provides a complete

solution to the integration/segregation problem in the case of three exposure units and

demonstrates in particular that the transition from two to three, or more, exposure units

increases the complexity of decisions enormously, thus showing the challenges that the

decision maker encounters when dealing with multiple exposure units .

As far as we know, there has not been a detailed theoretical analysis of decision maker's

behavior in the case of multiple exposure units. In this chapter, we have provided such an

analysis, concentrating on two and three exposure units, and we have also noted possible

results in the case of an arbitrary number of exposure units. Our theoretical analysis has

shown that the number of integration-segregation options for more than three exposure

units is so large that, generally, a well-informed integration-segregation decision becomes

quite an unwieldy task.

Naturally, under such circumstances, we may think of employing computer-based

search algorithms, but this computational approach would require us to specify the un-

derlying value function, which is usually unknown in practice, except that it belongs to

a certain class of functions depending on the problem. Hence, in this chapter we have

aimed at deriving integration and segregation decisions that are qualitative in nature and

applicable to classes of value functions pertaining to fairly general groups of individuals .

The present work can be extended in several directions. First, we have considered only

a special case of S-shaped utility functions, which is conveniently linear in A. \Vhether

segregating or integrating multiple outcomes, but considering utility functions that are

not linear on this parameter remains as an interesting line of future research. Second, we

study a special case for any arbitrary number of exposure units. A more general analysis

with multiple outcomes remains as a task for future studies .
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