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Resumen

Este trabajo de tesis consiste en cuatro ensayos sobre la teoria de la toma de decisiones. El
primer ensayo analiza las preferencias por las ganancias derivadas de la diversificacidon que
tienen los agentes econdmicos de acuerdo la teoria del arrepentimiento. El segundo ensayo
presenta nuevas desigualdades de la covarianza de funciones no monétonas de una variable
aleatoria. Se muestran dos aplicaciones de estos nuevos resultados. El tercer ensayo
propone una extensién de la heuristica del reconocimiento. En esta nueva propuesta se
distinguen tres niveles de reconocimiento. Se compara el poder predictivo de esta heuristica
para vectores con tres y diez objetos. Por ultimo, el cuarto ensayo analiza los principios de
la contabilidad mental cuando los tomadores de decisiones deben integrar o segregar tres o
mas experigncias, resultados, etc.

Palabras clave: Teoria del arrepentimiento, desigualdades de la covarianza, heuristica del
reconocimiento, contabilidad mental.

Abstract

This thesis consists in four essays on behavioral decision making. The first essay analyses
the preferences for diversification of decision makers according to regret theory. The
second essay presents some new covariance inequalities of non-monotonic functions of a
random variable. 1 also show two applications of these new results. The third essay
proposes an extension of the recognition heuristic. T also compare the predictive power of
this heuristic for recognition vectors with three and ten objects. Finally, the fourth essay
analyses the mental accounting principles when decision makers must decide to integrate or
segregate three or hore experiences, outcomes, etc.

Keywords:  Regret theory, covariance inequalities, recognition heuristic, mental
accounting.
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General introduction

This thesis aims to contribute to the theoretical literature on behavioral decision making
by proposing answers to the following questions:

(i) When does a decision maker gains from diversification? More precisely, how should
an investor choose among different assets? Should he invest in a single asset or should
he invest in many different assets? Could the feeling of regret affect this decision?

(ii) What are the optimal hedging policies of an enterprise? How decision changes
when are considered variation in profits instead of their level?

(iii) Suppose you are driving on a highway and your car is running out of gas. You
see in the highway signal the names of the two next neighborhoods, one of which owns a
very bad reputation. You have never heard about the second one. How would you decide
which exit to take? and ‘

(iv) Suppose that your doctor schedule a minor surgery for you on the same day of
an exciting concert you would like to attend, what would you do? Would you postpone
attending the concert? Or would you do both 7

Von Neumann and Morgenstern expected utility theory provides economics with a
powerful model to analyze decision making under uncertainty. There is, however, an
agreement of two major lines of critique of expected utility theory. First, despite the wide
acceptance of this theory many empirical studies reveal the inconsistency of its predictions
with current human behavior. Hence, new models propose alternatives to expected utility
theory (Starmer, 2000; Sugden, 2004). These new models use different types of utility
functions and/or relax the linearity on probabilities. Second, many studies suggest that

laypeople, experts and professional decision makers do not necessarily decide according




to mathematical models. That is, in contrast to the use of complex mathematical models,
this approach proposes that decision makers use shortcuts and rules of thumb (usually
referred as heuristics) to decide {Gigerenzer & Selten, 2001).

These new lines of research not only allow to provide answers to old questions, but
they also raise new ones. For instance; Are human being rational? Do they have bounded
rationality? How these facts influence their decisions? How do feelings like regret and
rejoice influence their choices? Do humans always use complex models to make decisions
or sometimes they decide according to simple models, such as naive rules of thumb?

This thesis contributes to these two lines of research. More precisely, I shall analyze
some economic problems, such as the above mentioned questions, from these perspectives.
The first two chapters focus on the study of the first group of criticism of expected utility
theorv. The remaining two chapters analyze human behavior from the perspective of the
second stream of critiques.

Chapter 1 is ba;;;ed in Egozcue (2012). In this chapter, I study the gains from
diversification within regret theory. This is an important issue that applies to many real
economic problems such as portfolio selection, remuneration schemes and international
trade, among others. This problem has been analyzed within expected utility theory.
However, few studies have approached these problems with regret theory. The aim of
this chapter is to contribute to the literature by: (i) providing conditions under which
a regret averse decision maker will diversify between two risky options; (ii) showing the
differences between the optimal choices of regret averse and risk averse individuals; (iii}
analyzing the conditions under which the results for two risky options can be generalized
to many number of alternatives; and finally (iv) proposing two applications of the main
results to existing models of decision making under uncertainty.

In several a,na,lytical problems of decision making under uncertainty, it is necessary
to study the sign of a covariance that involves marginal utilities. Chebyschev’s integral
inequality is an important tool that helps to elucidate the sign of this covariance. Its
application, however, requires the functions be monotonic. For instance, alternative

theories to expected utility theory, often assume non-monotonic marginal utilities.



In Chapter 2, I derive some new covariance inequalities for utility functions with
non-monotonic marginal utilities. In particular, I establish the conditions to determine
the sign of the covariance for utility functions that start concave and then turn convex
with an inflection point at the origin. I also derive conditions for those that are concave
for positive values and convex for negative values. [ apply these covariances inequalities
to two problems in economics. First, I study some properties of the indifference curve
in the mean-variance space for Prospect Theory and for Markowitz utility functions.
Second, I analyze the asset’s hedging policies of an enterprise that behaves as predicted
by Prospect Theory.

In Chapter 3, I propose a generalization of the recognition heuristic mode! originally
introduced by Goldstein and Gigerenzer (1999, 2002). The recognition heuristic surged
to explain why some people could respond correctly to questions on some topics that
a priori they do not know? In this chapter, instead of considering only two levels of
recognition, I propose a three levels recognition model. I derive explicit formulas for all
the parameters of the model. This allows me to study the expected accuracy rate of
the three levels recognition heuristic and compare it with the performance of the two
levels model. Besides, I characterize the conditions under which the recognition heuristic
expected accuracy rate is equal to 50%. Finally, I discuss whether less information could
lead to higher accuracy rates in the three levels of recognition model.

Finally, Chapter 4 is based on a joint project with Sebastien Massoni, Wing Keung
Wong and Ricardas Zitikis forthcoming in IMA Journal of Management Mathematics
with the title: Integration-segregation decisions under general value functions: “Create
your own bundle — choose 1, 2, or all 3!". In this work, we study whether to keep
products segregated (e.g.. unbundled) or integrate some or all of them (e.g., bundle). This
problem has been of big interest in areas such as portfolio theory, risk capital allocations,
taxation and marketing. Our findings show that the celebrated Thaler’s principles of
mental accounting hold as originally postulated when the values of all exposure units are
positive (i.e., all are gains) or all negative (i.e., all are losses). In the case of exposure units

with mixed-sign values, decision rules are much more complex and rely on cataloging the
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Bell-number of cases, which grow very fast depending on the number of exposure units.
So, in this chapter we provide detailed rules for the integration and segregation decisions
m the case up to three exposure units, and partial rules for the arbitrary number of units.
Also, we show various possible applications of mental accounting in different areas such

as: product bundling, legislation and taxation, among others.



Chapter 1

Regret and diversification

1.1 Introduction

The diversification problem is about allocating an individual’s initial wealth betwecn
risky prospects (random variables). If the optimal allocation includes many prospects,
there may be gains from diversification.

Usually, this analysis uses expected utility theory, where risk aversion represents de-
cision maker’s behavior. For instance, Samuelson {1967) proves that if two random
variables (i.e., risky prospects) are independent and identically distributed then there
are always gains from diversification. Moreover, he shows that assigning equal shares
of the initial wealth in each asset is the optimal choice. Brumelle (1974) further shows
that assuming negative correlation between two random variables is neither necessary
nor sufficient to assure gains from diversification. In fact, when the two random variables
are identically distributed and have finite mean, then diversification is optimal (Hadar
& Russell, 1971, 1974; Tesfatsion, 1976). Nevertheless, this problem has been extended
by relaxing the independent and identically distributed assumption, making the analy-
sis with multiple random variables and so forth (see. for example, Gollier, 2004; Hadar,
Russell & Seo, 1977; Landsberger & Meilijson, 1990; Kira & Ziemba, 1980; Ma, 2010;
Pellerey & Semeraro, 2005, Wright, 1987).

There are, however, many experiments showing limited predictive accuracy of ex-




pected utility theory. So, these pieces of evidence questioned whether expected utility
theory is a good model of economic behavior, and many alternative models were pro-
posed.'One of these alternative theories is regret theory. Originally suggested by Savage
(1951), this theory assumes that decision makers may include in their decision process
the feelings of regret and rejoice.?The seminal papers by Bell (1982}, Fishburn (1982)
and Loomes and Sugden (1982, 1987) present a formal analysis of regret theory. Sug-
den (1993) gives an axiomatic approach, while Quiggin (1994) extends the analysis to
multiple choices.

There is an extensive body of research that has found empirical support for regret
tﬁeory (Loomes & Sugden, 1982; Loomes, Starmer & Sugden, 1992). Since then, it has
been increasingly used as an alternative model for the expected utility theory and it has
been applied to different disciplines such as ecénomics, finance and psychology (see, e.g.,
Braun & Muermann, 2004; Muermann, Mitchell & Volkman, 2006; Mulaudzi, Petersen
& Schoeman, 2008; Solnik, 2008; Wong , 2011).

In this chapter, I shall assurne that the decision maker takes into account both risk
and regret, instead of considering risk only. Namely, the decision maker is regret averse.
This means that: (i) he experiences regret of having allocated a small portion of his
wealth in a prospect that yields a higher payofl ex-post; and (ii) he experiences regret
of having allocated a large portion of his wealth in a prospect that turns out to have a
lower pavoff ex-post. Therefore, the disutility of regret is crucial when decision maker
should select initial shares of their wealth at the beginning of the period and cannot be
modified afterwards.

This chapter contributes with the following. First, I study whether a regret averse

decision maker prefers to diversify between two risky prospects rather than to specialize

*Harless and Camerer (1994) show that expected utility theory accuracy rate does better than other
theories when the gambles (lotteries) in a pair have the same support, and does poorly when they have
different support. However, in their work they did not specifically compare expected utility theory with
regret, theory.

“Baron (2000) illustrates these feclings with a simple example. For instance, regret is expericnced if
we decide to carry an umbrella and find that it does not rain or if we decide not to carry an umbrella
and find that it does rain. On the other hand, rejoice is experienced if we carry an umbrella and it rains,
or if we do not carry an umbrella and it finally does not rain.



and allocate all the initial wealth in one prospect. I also show conditions to generalize
the results to multiple random variables. Second, I analyze whether regret averse and
risk averse decision makers coincide or differ in their optimal choices . Last, my results
might be used to extend a series of existing models of decision making under uncertainty.
In fact, I explain how my main findings can be used in a variety of applications. For
instance, first, I apply the results to the portfolio selection problem. Here, 1 generalize
the framework of a risky asset and a risk-free asset model studied by Muermann et al.
(2006) and Mulaudzi et al. (2008), but now considering two risky assets. Second, I apply
the main findings to study the salesman remuneration scheme (Hildreth & Tesfatsion,
1977} for a regret averse agent.

The rest of the chapter continues as follows. In Section 2, I explain the characteristies
of the regret utility function. In Section 3 and 4. I develop the main results of the chapter.
In Section 5, I present the mentioned applications, including some illustrative numerical

examples. I finish the chapter with concluding remarks.

1.2 A utility function with regret

In this section, I present the regret utility function. We will see that this utility function
not only considers risk, but regret as well. As I have mentioned earlier, in regret theory
individuals compare between what is received after choosing one option with what might
have been received, under the same states of nature, if they had chosen differently. In
other words, they compare the chosen outcome with the foregone outcomes.

Loomes and Sugden (1982) propose a utility function represented as follows

u(z,y) = v(z) + @ o(z) — o(y)] ey

where v is a conventional Bernoulli’s utility function and ¢ is an increasing function that
reflects the valuation of the regret-rejoice feelings. The first argument of this utility z
is the chosen alternative, while the second argument y is the foregone alternative. The

function ¢ serves to anticipate and incorporate in the decision making process the regret




or rejoice that the individual would experience as a result of having chosen z and not
y. After the state of nature occurs we have the following cases: (i) if z > y, then the
decision maker would experience the pleasure (rejoice) of having made the correct choice;
(it) if z < y, then the decision maker would experience regret of not having chosen the
best alternative.

Many different regret utility functions, apart from (2.1}, have been proposed (see,
e.g., Paroush & Venezia, 1979; Braun & Muermann, 2004). For instance, Braun and
Muermann (2004) propose the following two attribute additive utility function u given

by the formula
v(W) — b [RI, (2.2)

where W > 0 is the final wealth, and R is a measure of regret. Herein, v is a standard
Bernoulli utility function with v > 0 and v < 0 . The function ¢ is coined the regret
function. It is continuous and differentiable in its domain, with @(0) = 0, ¢’ > 0 and
" > 0. Laciana and Webber {2008) propose a regret function that satisfies certain
properties that helps to explain the preference patterns described in Allais’ paradox

(Allais, 1953; Allais & Hagen, 1979). Specifically, their proposal is defined as follows
wlz) = 3% — 1 where 3 > 1.

The parameter # > 0 in (2.2) measures the weight of the regret attribute with respect
to the first risk aversion attribute. Naturally, if § = 0 then the utility function (2.2)
simplifies and becomes u (W) - »(W), which is the traditional utility function of a
risk-averse decision maker.
| Notice that all assumptions determine that uy > 0 and up < 0, which means that
decision makers like more wealth, but dislike more regret. Besides, they also imply that
uww < 0 and upr < 0, reflecting risk aversion and regret aversion respectively. Utility
(2.2} considers only regret and does not consider rejoice. Nevertheless, there are many
studies that have found that anticipating rejoice has little influenced in the decision

making (cf.e.g., Beattie, Baron, Hershey, & Spranca, 1994 and references therein).
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From now on, I call regret averse to those decision makers possessing a utility function
as defined in (2.2) with § > 0, and risk averse to those having a utility function (2.2)
with § = 0.

Remark 1.2.1 Utility function (2.2) has some differences wz'th- utility (2.1). First, x
and y in (2.1) ave replaced by W and R respectively. Second, as I have noticed earlier, it
focuses solely on regret, an approach similar in spirit to Savage’s regret minimax criterion
and to Sarver (2008) utility function representation. Third, utility function (2.2) is
mathematically more tractable than utility (2.1). This is one of the reasons thot explains
its frequent use in recent research (see, e.g., Muermann et al., 2006; Mulaudzi et al., 2008;
Wong, 2011). Finally, utility function (2.2) is consistent with experimental evidence that
supports regret theory (Bleichrodt, Cillo € Diecidue, 2010; Laciana & Weber, 2008).

In the next sections, I develop the main results of the chapter. I divide the analysis in
two cases. First, I establish some results for two random variables. Second, I characterize
the conditions under which the results for two random variables can be extended fto

multiple random variables.

1.3 Diversification and regret with two random vari-
ables

As it is common in the literature on diversification, I restrict myself to the case when the
final wealth is the convex combination of two random variables (see, for instance, Hadar,
Russell & Seo, 1977). Thus, without loss of generality, the gains from diversification
consists in studying the following mathematical problem.

A decision maker needs to determine «, with o € [0,1], such that maximizes the

following expected utility function:

H{a) = Eu(n(o))]. (3.1)

11




where u is defined as follows,

u(n(e)) = v{n(a)) - b (v(n™) = v(n(e)) . (3.2)

withn(a) =Y +aA and A = X Y, where X and Y are two non-degenerate random
variables.? o

The term n™** is the ex post optimal final value if the decision maker had chosen the
optimal choice for each state of the world. Note that ™ is a random variable and is
independent of «. In more detail, for two random variables X and ¥, n™* is defined as

follows:

X #Y <X,
P — max{X,Y} = (3.3)
Y ifY > X

In fact, the reason for considering (3.3) can be interpreted as follows:

(i) If X is larger than Y then the best choice the decision maker would have chosen
s o = 1;

(i) On the other hand, if ¥ is larger than X the decision maker would have wanted
to choose only Y, thus o* = 0.

There are gains from diversification when the optimal solution of the maximization
of (3.1), denoted by ¢*, is in (0,1). Otherwise, specialization is optimal (i.e‘., a* =0 or
o = 1). (In some parts, I shall use the notation ¢, to denote the optimal ¢ for a given
8}

To solve the aforementioned problem, we need to study the two order conditions. The

first derivative of (3.1} with respect to a is :

IE [u(n(a))]
dex

= E[Ad(n{e))] + BE[Av (n(a))¢ (v(n™™) — v(n(e))] (3.4)

H'(a) =

3Throughout this chapter, I shall assume that all the expectations exist.

12




and the second derivative is equal to

H”(Oj) — 52E [ru‘ (n(&})]

ooy
= E [A%"(n(a))] — 6E [A%(n(2))*¢” (v(n™>) — v(n(a))]
+0E [A™"(n(a))¢’ (v(n™) — v(n(a))] .

Note, that H"(«} < 0 is guaranteed, since: {i) 8 > 0; (ii) v is strictly concave; and
(iii} ¢ is strictly convex. Therefore, there is a global solution of (3.1). However, T cannot.
assure that the solution of (3.1) is an interior optimum (i.e., diversification is preferred) or
there is a corner solution (i.e., specialization is preferred). Since H is a concave function,
o = 0 is optimal if and only if H'(a)|,=¢ < 0. Similarly, o = 1 is optimal if and only if
H'(a){a=1 = 0. Nevertheless, T will later discuss the conditions that assure the existence
of an interior optimum.

We know that risk-averse decision makers prefer to choose a mixture of equal shares
of independent and identically distributed random variables (Samuelson, 1967). Will a
regret-averse decision maker also choose this mixture? The follo“dr_lg proposition provides

an answer of it.

Proposition 1.3.1 Both regret averse and risk averse decision makers will allocate theirs
initial wealth equally (i.e. o = 1/2) among the risky choices provided the two stochastic

variables X and Y are independent and identically distributed.

Proof. For convenience, I shall prove this proposition for the continuous case. Let

f(z)f (y) be the joint density function of X and Y. Let
N, = aX + (1 —a)Y. (3.5)

Then its distribution function is equal to

z—(1—c)y

Fao= [ [ 5@)s)dedy - /Zf(y) U B f(m)da:} dy.

azr+({l-ajy<z

13




Hence the density function of (3.5) is the derivative of the distribution function with

respect to z, which is equal to

Fo=h@=[ 11 (M) Py

oo o

Now, consider the random variable
Moo= (1—-a)X +aY (3.6)

In the same manner, we find that its density function (denoted by f, _ (z)) is equal to

Fro(2) = / I - i (z - ‘”) f(=)ds. (3.7)

1—o

Changing variables in (3.7) (t = =22 with di = —2_dx) yields

for(2) = f lf'(ﬂ) F 0 d

- [ 2= g
Therefore, we conclude that (3.5) and (3.6) have the same density function. So that,
Ha)=Eu(aX+(1-a)Y)=E[u((l-a) X +aY)]=H(l - a). (3.8)
Differentiating (3.8) with respect to «, we obtain
H(a)=-H(1-a) (3.9)
Evaluating (3.9) at & = 1/2 we have that

H’(a}[azl/z = _H’(]- - a)|a:1,f2;

14




hence

H'(a)]a=1/2 = 0.

Therefore we conclude that H'(a){g=1/2 = 0. The second order condition holds by the
concavity of H{a). =

The conclusion above proves that a regret-averse decision maker and a risk-averse
decision maker would coincide in their allocation weights in the special case when the
stochastic variables are independent and identically distributed.

Next, I move forward to consider the case when the two random variables X and Y
are independent, but not necessarily identically distributed. But, first, to establish this
and further results, I need the following lemma that stndies the sign of the first derivative

of (3.1) evaluated at « =0 and @ = 1.

Lemma 1.3.1 Let X and Y be two random variables. Consider the function (3.1), with
8 >0 then

H'(@)|ao > (1+ 0/(0)) [CoviA, v'(Y)] + E [A]E[v/(V)]] (3.10)

and

H'(a)]as < (1 8¢(0)) [Cov[A, /(X)) + E [A] E [ (X)]. (3.11)

Proof. Using equation (3.4) evaluated at « = 0, we have:

H(o)la—o

= E[Av(Y)] + 0E [Av'(Y )¢ (u(n™) — o(Y))]

= E[AV(Y)] + 0E [A (V) ((Y) — v(Y))) - Ix<y]
+ 0B [AV (V) (u(X) — v(Y))) - Lxoy]

= E[AV(Y)] 4+ 0E [AV'(Y)¢'(0) - 1xoy]

+ OE[AV (V) (w(X) — v(Y))) - Lxav],

where 1x.v is the indicator function which is equal to 1 if X < Y. and is equal to 0

otherwise (similar definition applies to 1xsy).

15




Since A = 0 when 1x_y, we can write the following identity

E[Av(Y)p' (v(X) —0(¥))) - Lxzv] = B [A(Y)e (0(X) — w(Y))) - Lsy] .

Since we have assumed that: (i) 8 > 0, (it) v and ¢’ are strictly increasing functions,

then
OE [AY' (Y )¢ (v(X) — v(Y) ) 1xsy] > 0E[AV (V) (0) 1xsv].

Therefore. we obtain

H'(0)]a=0 > BE[AV(Y)] + 0E[AY(Y)¢'(0) - 1y ]
+ OB [(AV(Y)'(0) - Lx»y]
= E[AY(Y)] + 0E [Av/(Y)¢'(0)]
= [1+6¢'(0)) E[A(Y)]

= [1+6¢'(0)] |Cov[A, ' (V) + E[AIER(Y)] .

This completes the proof of the first part. _

The proof of the second inequality follows the same a,rgumerllt, but now using equation
(3.4) evaluated at a=1. m

We are now in a position to relax the assumptions in Proposition 1.3.1. T exploit the
results of Lemma 1.3.1 to establish the gains from diversification considering two inde-
pendent random variables. I emphasize that these random variables are not necessarily

identically distributed.

Proposition 1.3.2 Suppose the random variables X and Y are independent. Then for

a regret averse decision maker we have:

o fE[X]-E[y] > “GEE then o > 0, and

o fE[X]-E[Y] < -5 then ot < 1.

Proof. Now, I prove the first case. Since H is strictly concave function, we need to

check the sign of (3.4) evaluated at & = 0. If it is positive, the decision maker would

16




prefer to hold some amount of X. Now, using inequality (3.10) of Lemma 1.3.1
H'(@)|o=0 > (1 +04(0)) [Cov[A, v/ (V)] + EJA]ER/(Y)]] 2 0
Since X and Y are independent then Cov[X,?'(Y)] = 0 and:
Cov[A,v'(Y)] = Cov[X = Y,v'(Y)] = —Cov[Y, v (Y)].

So that if

Cov[Y,v'(Y)]
EX|-ElY]> TR

then a* > 0.
For the second part, in the same manner, we need to study the sign of Eq. (3.4)
evaluated at o = 1, H'(a}|.—;. If it is negative, the decision maker would prefer to

allocate some portion of his wealth in Y. Now, using inequality (3.11) of Lemma 1.3.1
H'(0) s < (1 +0'(0)) [Cov]A, v/(X)] + B[A] B [/(X)]] < 0.

Again, since X and Y are independent then Cov[A,+'(X)] = Cov[X,v'(X)]. So that, if

Cov[X,v'(X)]

BB T )

theno* < 1. m

The implications of Proposition 1.3.2 deserve some comments.

Remark 1.3.1 Notice that by the concavity of v then CL];[%,—(%’,L)]Y—H < 0.* Therefore, if

E [X] > E[Y] then the decision maker will allocate some of his wealth in X. The inter-
esting case is when E[X] < E[Y]| and condition E[X] — E{Y] > CO—E‘:’ET%?’H may still
hold. This implies that as long E [ X|—E[Y] is not sufficiently negative, then the decision

maoker will still allocate some amount of his wealth in X.

8 This covariance inequolity is known as the covariance rule (Gollier, 2004). We refer to Lehmann
{1966, Gurland (1967) and Egozcue el.al. (2009, 2010) for the proof and further inequalities of the
COTATIONCE.
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Remark 1.3.2 Notice that for a regret averse decision maker Proposition 1.3.2 does
not always imply that diversification is opltimal. In fact, specialization could be the best
choice. Because in the first case the optimal o can rise to 1, if E[A] is sufficiently large.

Whereas in the second case, the optimal o can fall to 0, if E [A] 4s sufficiently low.

To give a sufficient condition for diversification for regret averse decision makers,
we need to combine both inequalities (3.10) and (3.11). This shall be done with the
following observation. Since H is strictly concave, a necessary and sufficient condition
for diversification to be optimal is that H'(a){aee > 0 and H'(a)]e_s < 0 hold at the

same time. The following corollary uses the facts of this observation.

Corollary 1.3.1 Assume two independent stochastic variables X and Y such that

MSE[X]—E[HS

E['(Y)]

Cov[-X,v'(X)]
E [v'(X)]

(3.12)

then o regret-averse decision maker would prefer diversification.
I skip the proof of this corollary, since it can be proved invoking Praposition 1.3.2.

Remark 1.3.3 Notice that since Cov|Y,v'(Y)] is non-positive and v is increasing, then
the lower bound of (5.12) is non-positive. Using similar arguments, the upper bound
of (8.12) is non-negative. Thercfore, it is obvious that inequalities in (5.12) hold for
independent random variables with the same mean. Nevertheless, we will later see that
assumang only that X and Y have the same mean is not a sufficient condition to assure

preferences for diversification.
The next examples illustrate the above results.

Example 1.3.1 Let v defined as in (3.2) with v(zx) = /z, 0 = 2 and ¢(z) = ¢® — L.

Consider X andY two independent random variables, with the following probability mass
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function

flz,y) = <

[ 0.25
0.25
0.25
0.25

-+ 0.25

-+ 0.25

+0.25

0

\

if £ = 50,y = 50
ifz =a,y =50
if x =50,y = 80
ifx =a,y =280

otherunse.

Obuviously, both random variables are independent. Let

o = 0.73, which can be seen in Figure 1.

H(a) = 0.25 [\/5‘ —2 [exp { V30 — /500 + 50(1 - 2} -1]]
Vaa+50(1 = a) = 2 [exp { \/max{a, 50} — v/aa+50(1 - a) } - 1]
:\/5001 F80(1—a) -2 [exp { VB0~ /500 + 801 — a) | - 1“

:\/CLOf+ 80(1 — o) — 2 {exp{\/max{a,SU} — oo+ 80(1 — a)} - 1:

—_

| S

Let a = 100 which implies that E [X] = 75 and E [Y] = 65 we are under the assumptions

of Proposition 1.5.2. Numerical solution of this equation shows there is o mazimum at

suppose that a = 78 then E[X] — F

0000000000000 000000000000000000000000000000000000

0.4

: P T
0.6 0.8

Figure 1 Function H(a) when a = 100

The interesting case is when E[X| < E Y] and diversification is still optimal. Now,

Y

—1, and diversification is preferred. Actually,




the mazimum of H(a) is achieved at o* = 0.46. We display H{a) in Figure 2.

e

6.6F o~
.

6.4} / \

6.2F

sob  / \\

5.8+ / \

s.6E \

544

02 0.4 0.6 0.8 1.0

Figure 2 Function H(c) when o0.= 78

So far, I have rclaxed the identically distributed assumption, now I shall consider the
case when the random variables are stochastically dependent. To relax the independence
assumption, I first need to define the concept of stochastic dependence. The intuition of
positive dependence between two random variables X and Y implies that larger values of
d random variable X are accompanied by larger values of Y. While negative dependence
means that larger values of one variable tend to accompany small values of the other vari-
able. However, this basic dependence notion has been improved and more sophisticated
definitions of stochastic dependence were developed.

For instance, a well known measure of dependence is defined by Lehmann (1966),

which I recall in the next definition.

Definition 1.3.1 Two random variables X and Y are positive (negative) quadrant de-

pendent if
P(X<2,Y<y)2(<) P(X<z)P(Y <y) forallz,y € R.

As it is well known, Lehman’s dependence measure implies other weaker notions of
dependence. Esary, Proschan and Walkup (1967) introduce the idea of associated ran-

dom variables and its relation with quadrant dependence and they derived the following
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inequalities,

Theorem 1.3.1 Let o and 3 be two real functions. If X and Y are positive (negative)

quadrant dependent then:

1. if a and B are increasing (or both decreasing) then Covia(X), 8(Y)] > (<) 0, and

2. if one function is increasing and the other decreasing then Cov|a(X), 3(Y)] < (=)
0.

In the next Proposition, I prove that when the two stochastic variables are nega-
tive quadrant dependent with the same mean, it is sufficient to assure preferences for

diversification for a regret averse decision maker.

Proposition 1.3.3 Let X and Y be two random variables that are negative quadrant
dependent and have the same mean then a regret averse individual would prefer diversi-

fication (1.e., 0 < ag g < 1),

Proof. We need to show that H'(a)|a=o is positive and H'(a)|,=1 Is negative.
Since f(x) = z is an increasing function and v/{y), by the concavity assumption, is
decreasing, by Theorem 1.3.1 negative quadrant dependence implies that Cov[X, v'(Y)]
is non-negative. Hence, using inequality (3.10) of Lemma 1.3.1 and the assumption that

E [A] = 0, we conclude that
H'(a)lamp > {14 6'(0)) CoviA, ' (Y]] > 0.

By the assumption of negative quadrant dependence and since fly) = —y is a decreasing
function and knowing the assumption that v (z) < 0, thus inveking Theorem 1.3.1 implies
that Cov[~Y,+'(X}] is non positive. Likewise, using inequality (3.11) of Lemma 1.3.1;
it follows that

H'(a)|a=1 < (1+ 8¢'(0)) CovA,v'(X)] < 0.

This completes the proof. =
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Notice that in Proposition 1.3.3, gains from diversification might not be optimal for
two stochastic variables with the same mean. The assumption of negative quadrant de-
pendence is crucial to achieve this statement. In the next example, I consider two random
variables with the same mean and I show that specialization is optimal, contradicting

the natural intuition that equality in means implies preference for diversification.

Example 1.3.2 Let u defined as in (3.2) with v(x) = /z and p(x) = e — 1. Consider

X andY two random variables with the following probability mass function

0.05 if =100,y =81
Hz,p) =< 095  ifz =200,y = 201

0 otherwise.

The random variables are neither independent nor identically distributed. They have the
same mean equal to 195. One can easily check that both random variables are posifwve

quadrant dependent. Now,

H(a) = 0.05 [\/10001 T8Il a) -0 [exp {\/max{l()[), 811 — /1000 + 81(1 — a)} - 1“

+0.95 /2000 +201(1 — ) — [exp {V/max{200,201} - /2002 + 201(1 - o)} -1]].
Let @ =2, as it can be seen in Figure 3 below, H{a) is increasing for all o € [0, 1.

Hia)
1386 L —

V 0z 0s 06 08 16 ®

Figure 8 Function H (&) when 8 = 2
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Thus, the mazimum of H(«) is attained at o = 1.

So far, I have studied when regret averse behavior is similar or differ to the risk
averse behavior. Next, I shall analyze whether the regret averse investor prefers more or
less diversification than its risk averse investor counterpart. In addition, how does the
parameter, # influence the optimal choice, @*? That is, how is the comparative statics

between o and 67 To accomplish this answer I present the next proposition.

Proposition 1.3.4 Let X and Y be two random variables.

o FE[Y]-E[X] > SF0 850 then 25 > 0.

. Cov[A v (n(e’) da™
o FE[Y]-B[X] < S5EEUO fhen &8 < 0.

Proof. We only prove the first case, the other case can be proved similarly. Taking

the total differential of the first order condition H'(cr) with respect to a* and 8 yields

do* E{(A)v'y]

i E[Aw]+ B[ (v — () ¢")]

Since (i) v is increasing and concave; and (i1} ¢ is increasing and convex, then the

denominator is negative. Thus,

sign { %25} = sion (B 8w/ (e ™) — o@D}

Now, by the first order condition, we have that

E[Av'(n(e")]) + 6E [A' (n(a")¢ [v(n™™) = v(n(a”))] = 0.

Hence,

sign {B [A'(n(a”))¢’ [v(n™) — v(n(a" D]} = —sign {E [Av'(n(a"))]} .
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Thus,

sign { b = —sign (B LAV}

The conclusion follows upon observing that sign {E [Av'(n(a*))]} < 0 is equivalent to

. Cov [A, v/ (n(a*))]
E[A <~ ,
B R it
and the statement follows. =

These results allow us to compare the optimal choices of risk averse and regret averse

decision makers, as I do in the following corollary.
Corollary 1.3.2 Let X andY be two random variables. We have that
e ifEY| —E[X]| > Cﬂ% then agpog > g =0, and

« fE[Y]-E[X] < SO then oy ) <oy =1.

Proof. Notice that if E[A] < — co;[[f (tr;f((r;?(;;) then H'(a)|g=o < 0, and thus aj_, = 0.

Hence, by Proposition 1.3.4 we conclude that
Opsg = gy = 0.

I skip the proof of the second part since it can be proved in the same manner. m

This result characterizes the behavior of the optimal choice as the regret term #
changes and compares it with the optimal choice of a risk averse individual. In other
words, Corollary 1.3.2 establishes the conditions under which regret averse decision mak-
ers prefer to move more towards diversification than risk averse counterparts.

So far, I have made the analysis of two random variables and find the conditions under
which both risk averse and regret averse coincide and differ in their optimal choices. In the

next section, I study the gains from diversification considering many random variables.



1.4 Diversification and regret with multiple random

variables

The purpose of this section is to state a generalization of Proposition 1.3.1 with more
than two random variables. The analysis of the portfolio problem with more than two
random variables is, in general. a complex task. The utility function (3.2) can be extended
to multiple random variables. In this case, we consider n random variables denoted by

X1, Xo, ..., X,,. It is natural to define ™ of (3.1) as follows
77 = max{ Xy, Xz, ..., Xu}.
Consequently, the optimization problem defined in (3.1) transforms to the following new

u (Zn:O!iX{>} s (41)

T
with T = {0y, aa,...,0m) € R*a; > 0, > a; = 1} as the choice set.
i=1

objective function

Q(QISQQ:"':aﬂ) :E

QOur objective is to find & ¢ R™ that maximizes (4.1). Since T is a convex set, and
since ¢ is a concave function, the critical point of (4.1) is the global optimum (Simon &

Blume, 1994). Therefore, first, I shall prove that g is a concave function.
Proposition 1.4.1 Let g be as defined in ({.1). Then g is concave.

Proof. Since T is a convex set, then we only need to prove that the Hessian of g
is semidefinite negative (Simon & Blume, 1994 p. 513). The Hessian of the objective

function at any point is

[ E[X2"()] E[XiXuw ()] .. E[XiXuw ()] |
L | BaXwr O] ERR()] . EXu ()
| E[X X ()] . BRI
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Note that the quadratic form associated with H is

Qyr,¥2, ) = Z vty B (X Xu" ()]

i=1 j=1

=E [(le1 FoypXot ...+ Yn X )0 ()] ,

where (y1,y2, ..., yn) € R™. Recall that by (2.2} the utility function u is given by

u(z) = v(z) - Opfo (™) — v (z)].

Since # > 0, v is concave and ¢ is convex then the utility function u is® concave. Thus,
(1 Xa +12Xs + ...+ yuXn) 2" (1) €0, which implies that Q is negative semidefinite for
all a;. This proves that g is concave. m

To get consistent results with many variables, we need to restrict the analysis to
certain types of random variables. In the following proposition, I relax the independence
and identically distributed condition studied in Proposition 1.3.1 and consider, instead,

exchangeable random variables. Rigorously, this means that, for every permutation .
d
(Xrys Xe@ys s Xagny) = (X1, X2, oo Xn)

where 2 stands for the equality in distribution. Hence, for example, independent and
identically distributed random variables are exchangeable, but the opposite is not neces-

sarily true.

Proposition 1.4.2 Let g defined as in (4.1). Suppose that X;, X,, ..., X,, are exchange-

able random variables then

"The concavity follows from the equation

w(z) = v"(z) = (v (2))" " () + 04 (0" ()

and the properties of 8, v and .
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for all (o, a0, ...,an) € T.

Proof. The proof is done by maximizing the Lagrangian

L(aln G2, ---:an) = 9(011,0,'2, s :an) + A I:l - Za{l (42)
=1 ’

with respect to a;.

The first order condition of (4.2) is equal to

E [X-,‘,'u-’ (ZCH?X,)} —A=0foralli= 1. 2.....m,
i=1

which is also equivalent to

E =E

X (iaiXi)jl . (4.3)

Xl?.tf (iaqu)
i=1

Xgu’ (Xn:&’iXi):| =..=EK
i=1

Since X3, X, ..., X,, are exchangeable then a solution of (4.3) is achieved when a; = 1/n
forall=1,2,....n. The reason for this can be inferred by the same argument as in the
proof of Proposition 1.3.1. ;

Moreover, since g is a concave function by Proposition 1.4.1, then the solution of (4.3)
is a global optimum. This completes the proof of this Proposition. m |

Proposition 1.4.2 implies that when facing exchangeable random variables, regret
averse investors prefer to choose equal shares of their initial wealth in every prospect
rather than any other linear combinations of the prospects. Notice that the same optimal

choice holds true for risk averse decision makers.

1.5 Applications

In this section, I show two applications of the main results of this chapter. First, I
study the standard portfolio allocation problem within regret theory. Second, I study

the optimal remuneration scheme of an agent that considers risk and regret.
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1.5.1 The standard portfolio problem

A main issue in portfolio theory is to study whether diversification is optimal. As noted
earlier, there are many studies that deal with this problem considering risk averse decision
rﬁakers. For instance, Arrow {1971}, Brumelle (1974), Hadar and Russell (1971, 1974),
Hildreth (1974), Pratt (1964), Ross (1981), Samuelson (1967) and Tesfatsion (1976),
among others, analyze the convenience of diversification within the classic von Neuwman
and Morgenstern (1947) expected utility theory. Dekel (1989), Egozcue, Fuentes Garcia,
Wong and Zitikis (2011), among others, study the portfolio diversification problem with-
out expected utility theory. However, the study of the standard portfolio problem within
regret theory is not very large.

Muermann et al. (2006) and Mulaudzi et al. (2008) study the standard portfolio
problem with a risky asset and a risk-free asset. These works establish conditions for
preferences for diversification when the choices consist of one-safe asset and one-risky
asset. Both works use a regret utility function similar to equation (2.2). They show
that if the expected return of the risky asset is equal to the risk free asset return then
a regret, averse investor prefers to invest some amount of the initial wealth in the risky
asset. Just in case, to prevent regret, it is optimal to purchase some amount of the risky
asset. This will avoid the feeling of regret if the realized return is larger than the risk
free asset. However, a risk-averse decision maker would invest the entire amount of the
initial wealth in the risk-free asset. On the other hand, when there is a net premium,
a regret-averse decision makers would invest some amount of the initial wealth in the
risk-free asset. Contrary, for a large risk premium, a risk-averse decision maker would
specialized, investing all the initial wealth in the risky asset (Arrow, 1971; Dalal, 1983).
Since, by definition, the variance of the random return of a risk-free asset is zero, we note
that this result differs from that in Samuelson (1967), who considers non-degenerated
random variables.

Zeelenberg, Beattie, van der Pligt and de Vries (1996) run some experiments where
the participants must choose between a risky choice and a safe choice. Their results

show that regret agents could promote risk aversion or risk seeking, contrary to the usual
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claim that regret implies risk aversion. Therefore, their findings contradict the claim that
the anticipation of regret only implies risk aversion. Nevertheless, their study does not
involve making a formal analysis of the portfolio choice with two risky options.

The framework with a risk-free asset has several limitations. First, several experi-
ments have shown what is called the asymmetric feedback effect {(Zeelenber, 1999; Zee-
lenberg et al., 1996; and Zeelebnerg and Beattie, 1997). That is, the outcome of a certain
option is known in advance, thus by choosing the risky choice you will always know the
foregone choice. This does not happen when the chosen alternative is the certain option.
For this reason, the risk free option might bias the participants’ choices reducing the
regret influence in their decisions. Second, one can argue that there is not a risk-free
asset. For instance, usually US Bonds are associated as a risk free asset. However, since
inflation is random US Bonds real rate of return is also random. These two limitations
justify the portfolio analysis with two stochastic returns.

The model is as follows. Assume a decision maker must determine the weights of an
initial wealth Wy (W > 0), to be invested in two assets A, and As with random net
returns R, and R,. Therefore the final wealth, W, is a function of & € [0, 1], and can be

expressed as follows

Wia) =Weil 4+ oR; + (1 — a)Rs).

Therefore, the regret averse decision maker’s optimization problem is to maximize

T(o) =E[u(W(e))] = Efu(W [1+ ok + (1 - a)Ry])], (5.1)

where u defined as in (3.2).%
Nevertheless, my main results can be applied in a similar context and study also the
risk-free asset case. In particular, we can apply Proposition (1.3.2) to get the following

result.

Proposition 1.5.1 Let R, and Ry and be random independent returns. Suppose 6 > 0.

®We do not consider short sales. That is, we do not allow o to be larger than one or less than zero.
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Cov|[RBo, v (Wo(14+1R *
1. fFER)] - E[Ry] > E[,[j},a(givo((lﬁii})z}m: then a* > 0.

Cov|RB),v' (Wa (143, *

This result deserves some comments, and a connection with results already known in

the literature.

Remark 1.5.1 First, Proposition 1.5.1 it is a generalization of -the main results in Muer-
mann et al. (2006) and Mulaudzi et ol. (2008). Notice that if Ry is a degenerate random
variable, then Cov[Ray, v’ (Wy(1 + Ro))] = 0, and the model collapses to the risk-free and
risky asset model. Second, Proposition 1.5.1 characterizes the conditions under which
regret averse will invest in both assets. In the first case, investing all the initial wealth in
asset Ao is suboptimal, while in the second case investing all the initiol wealth in asset A,
is suboptimal. In fact, the first part of the proposition says that if the difference between
the expected return of Ay and the expected return of A, is large enough, then the regret
averse decision maker would invest some amount of its initial wealth in asset A,. Notice
that since Cov[Rq, v'(Wy(1 + Ry))] < 0 then the condition E[R;] > E[R;] alone is not
enough for a regret averse decision maker to invest some amount in asset AL In other
words, the feel of not hoving chosen the asset with largest mean refurn is not sufficient

to assure that decision maker would choose it.

1.5.2 Mixed remuneration scheme

In this subsection, I show a second application of the main findings of this chapter. In
this case, I apply the results to determine a salesman remuneration scheme. This problem
has been studied among others by Basu, Lal, Srinivasan and Staelin (1985), Farley (1964)
and Hildreth and Tesfatsion (1977).

The model set up is as follows. Suppose an agent (e.g., salesman) must decide on a
remuneration scheme. To simplify the analysis, I am not assuming any salesman costs,
but I assume that the salestan’s remuneration depends only on the total branches’ sale
and not in the agent individual sales. Suppose S; and S, are the random sales of two

branches of a certain company. The salesman receives a fix percentage A € (0, 1) from one
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branch sales or from both. Thus, the salesman problem is to find the optimal branches’

sale weights of his compensation plan. The agent’s income / is equal to
I'la) = adS; + (1 — a)AS,,

where o € [0, 1] is the weight of the branches’ sales. Therefore the agent’s problem is to
maximize

max E {u(7 (o))},

&

where u defined in (3.2).
I first assume the case that the branches’ sales are independent. Then using the result

in Proposition 1.3.2 we deduce the following salesman behavior.

Proposition 1.5.2 Assume thet S; and S, are independent.

1. FES) -E[S] > %w, then a* > 0.

E[v/(8:}]

2. IfE[S;]| -E[Sy < —C%E}(’%—;g?l—ﬂ; then o < 1.
3 IfE[S)=E[Sy), then0<a* <1

This result characterizes the condition under which the salesman will prefer to have
a compensation plan that includes the overall company sales. As expected, the weight
depends on the difference between E [S;] and E [S;]. The remaining results can be applied
similarly. For instance, diversification is optimal if the branches’ sales are either: (i)
exchangeable or {ii) negative quadrant dependent having the same mean.

We can give an illustration of this application with the following example.

Example 1.5.1 Let u defined as in (3.2) with v(z) = /2,8 =2 and p(z) = exp{z} — 1.
Assume the sales of S1 and Sy follow the bivariate exponential distribution, which has a

joint destribution function
Flz.y)=1—-e"—eV—e+(e+e¥-1) "' z,y>0.
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These random variables are positive gquadrant dependent, but are exchangeable (Balakr-

wshnan & Lai, 2009, p. 125). The agent objective function is then equal to

+oo +oc Qem—l—y
/ voz+ (1 —a)—————dzdy
e — 1)
8/~+oc /+oo \/ \/ .)exq-y
- ex max{x ar + l—a}—l)_————dmd,.
p tey} - (e +ev — 1) v

Since Sy and Sy are exchangeable then by Proposition 1.4.2 the mazimum is attained at

o = 0.5 as i can be seen in Figure 4.
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Figure 4 Graph of H(&) considering two exchangeable

random voriohles

This example ends the application section. Although, I have limited the applications
to two simple cases, the previous analysis can be applied to similar models of choice

under uncertainty.

1.6 - Concluding remarks

In this chapter, I étudy the preferences for diversification of a regret averse decision

maker, instead of one with the traditional risk averse behavior. First, I study this optimal

- allocation problem considering two stochastic variables, instead of considering one risky
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prospect and one risk-free prospect as in the existing literature. For instance, T prove
that if the random variables are independent and identically distributed then complete
diversification is optimal. Moreover, when the random variables are independent. then
their means play a crucial role to determine preferences for diversification. I also provide
conditions to study the diversification behavior of the regret averse decision maker that
faces many random variables. In this case, I show that complete diversification is optimal
if the random variables are exchangeable. Second, I compare the diversfication preferences
behavior of regret averse individuals and that of risk averse counterparts. I do so studying
the dynamic relationship between preferences for diversification and regret. I provide the
conditions when both behaviors coincide and when they may differ. Finally, I illustrate
the practical use of my main findings to two applications: the portfolio selection and the
optimal salesman remuneration scheme.

This work can be further improved in several directions. First, a more complete
analysis for multiple random variables without the exchangeability assumption is desir-
able. Second, it would be interesting to use utility function that considers, also, the

feeling of rejoice. These remain as tasks for future research.
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Chapter 2

Covariance inequalities for
non-monotonic functions: theory

and applications

2.1 Introduction

Many problems of choice under uncertainty involve studying the sign of a covariance. In
particular, many times it is necessary to determine the sign of the covariance of two real

functions ¢ and 3 of a random variable X:
Covla(X),8(X). (1)

The sign of (1.1) is deduced with the following argument: If these two functions are
increasing (or both decreasing) the sign of this covariance is non-negative, while if one
function is increasing and the other is decreasing the sign is non-positive (cf., e.g., Gur-
land 1967; Lehmann, 1966; McEntire, 1984; Schmidt, 2003). This argument relies on
Chebyshev’s integral inequality (cf., e.g., Mitrinovic & Vasic, 1970; Simonovits, 1995).
We shall see there are some economic problems where o or 3 is a marginal utility

function. For instance, suppose that « is an increasing and concave utility function, then
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setting a(z) = z and S(x) = w/(z), equation (1.1) can be written as follows
Cov[X,u' (X)}. (1.2)

In this particular case, as z is an increasing function and v is a decreasing function {by
the concavity of ), the sign of (1.2) is deduced to be non-positive. This particular case of
(1.1} has been used in many papers in economics. For instance, Sandmo (1971) studies
the sign of covariance (1.2) to characterize the conditions under which a competitive
firm, that faces an uncertain price, would produce more or less than under certainty.
Similarly, Batra and Russell (1974) use this tool to analyze the effect of international
price uncertainty over the social welfare of a small country with two goods. While Mossin
(1968) uses this covariance sign to show that full insurance is optimal at an actuarial fair
price, while partial insurance is optimal if the premium includes a positive loading.
Nevertheless, Chebyshev’s integral inequality crucially depends on the monotonicity
Behavior of both functions. Sometimes this assumption does not hold. For instance,
Wagener (2006) studies the sign of an expression similar to (1.2), that involves a non
monotonic function, that helps to derive some results of comparative statics under un-
certainty. Besides, other types of utility functions, apart from the traditional one with
risk averse behavior, have non-monotonic marginal utilities. For instance, prospect the-
ory proposes a utility function that is S-shaped, which means the marginal utility is
non-monotonic. On the other hand, Markowitz (1952) proposes a utility function that,
in its simplest case, is reverse S-shaped (RS-shaped), implying that the marginal utility is
also non-monotonic. Therefore, Cheyshev’s integral inequality doesn’t work for marginal
utilities of a S-shaped or RS-shaped utility functions.
| This chapter contributes in the following. First, I derive some new covariance inequal-
ities for non-monotonic functions that covers the cases when the marginal utilities could
be non-monotonic. In particular, I study the sign of covariance (1.2) for prospect theory
and for Markowitz utility functions. Second, I apply these new results to two problems
in economics. In the first application, I study the shape of the mean variance indifference

curves for S-shaped and RS-shaped utility functions. In this application, I shall address
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the question of whether the monotonicity of the indifference curve in the (g, o) still holds
for these types of utility functions. Finally, I establish the optimal strategies for hedging
asset price risk within prospect theory. Specifically, T examine the optimal strategy for a
enterprise that behaves according to prospect theory.

The chapter continues as follows. In the next section, I give a brief view of non-
monotonic marginal utility functions. In Section 3, I present some previous covariance
inequalities. In Section 4, I derive the main results of the chapter. In Section 5, I present

the mentioned applications. I finish the chapter with concluding remarks.

2.2 Non-monotonic marginal utility functions

In this section, I give a brief introduction to different types of non-marginal utility func-
tions. As we have seen, a utility function, u, can take on various shapes: concave, convex,
S-shaped and reversed S-shaped, among others. For a further discussion of different forms
of the utility function I refer to Gillen and Markowitz (2009). |

Friedman and Savage (1948) are among the first to propose alternative shapes of the
utility function. Instead of using a utility function that is concave in all the domain, they
propose a utility function that could have convex and concave sections. This modification
of the utility function would explain, among other things, why individuals buy lotteries
(risk) and insurance at the same time.

Markowitz (1952) criticizes Friedman and Savage’s proposal and posits an alternative
model that modifies the shape of the utility function. In particular, he proposes a utility
function where its domain is all the real line. It starts convex then turns concave with
an inflection point at the origin turning to convex and finishing concave. The argument
in the utility function is the deviation of the final wealth from the current wealth. For
simplicity, many authors have used a reverse-shaped {RS) type utility function with only
one inflection point at the origin, (cf., e.g., Egozcue, Fuentes Garcia, Wong & Zitikis,
2011; Levy, 2006). Although Markowitz’s proposal is appealing, there is nevertheless
mixed empirical evidence with regard to this theory (e.g., Hershey and Schoemaker,

1980; Louberge and Outreville, 2001; Post and Levy, 2005; Reilly, 1986).
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Egozcue et al. (2011) use a power function to represent a RS-shaped utility function

given by

dz® when z <0, .

2> when z >0,

where d > 0. As we see in Figures 1 and 2, the marginal utility of this RS-shaped utility

function is non-monotonic.

-1
-1t

-2

-z L

Fj 1: Utility £ ] 2. =0.1
1Bure ility function (2.1) for d=10 Figure 2: Corresponding marginal utility

The marginal utility is decreasing for negative values of z and increasing for positive
values of z. This corresponds with the assumption that decision maker is risk averse in
its negative domain and risk seeker in its positive domain.

Based on some ideas by Edwards (1954a, 1954b, 1955, 1962), prospect theory is one
of the most famous alternative theories to expected utility theory (Kahneman & Tversky,
1979; Tversky & Kahneman, 1992). It serves to explain a wide range of phenomena that
are not explained within the traditional expected utility framework. Tt is used in different
fields such as: economics, finance, marketing and psychology (cf., e.g., Barberis, Huang
& Santos, 2001;: Dalal, 1983; Pennings & Smidts, 2003; Thaler, 1985, 1994, 1999; and

references therein). This theory put forward arguments in favor of an S-shaped utility
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function that has as an argument the changes of wealth with respect to a certain reference

point. Now, I pause to present a proper definition of a S-shaped utility function (Neilson,

2002).

Definition 2.2.1 A continuous stm'cﬂy non-decreasing function u @ R — R is called S-
shaped if there 1s a point x4 such that the function is non-positive and convez to the left
of ¢ and non-negative and concave to the right of xy. The point xp, that separates losses
from gains, is frequently called the reference point, or the status quo. (Throughout the

chapter, I set 2q = 0).

Specifically, Kahneman and Tversky (1979} propose the following power function

—A(—=2z)" when =z <0,
u(z) = (2.2)

xre when « > 0,

where A > 0 is the degree of loss aversion, and vy, and v, € {0,1) are degrees of
diminishing sensitivity.
al-Nowaihi, Bradley and Dhami (2008) prove that (2.2) with v, = ~; is a proper S-
shaped function that accounts for preference homogeneity and loss aversion. Nonetheless,
this utility function has a mathematical tractability limitation, which is that its first
derivative does not exist at & = 0. I shall consider this limitation in the main result.
Nevertheless, other different types of S-shaped utility functions have been proposed.

For instance, De Giorgi and Hens (2006) suggest to use the following S-shaped function:

Ar(e’® —1)  when =<0,
u(z) = : (2.3)
Ag{l —e™e*) when =z >0,

with parameters v, v4 € [0,1] and Ar, Ag € (0, 00).
Since we are interested in analyzing the marginal utility of an S-shaped utility func-

tion, then we can write them as follows:
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(i) For Kahneman and Tversky (1979}

Avp{—2)"27! when 2z <0,
u'(z) = (=) (2.5)
rorie ! when x> 0,

and (ii) for De Giorgi and Hens (2006) as follows

Ay v when z <0,
dzy=4 """ (2.6)

A¢Tce 6" when 2z > 0.

Naturally, the marginal utility function ' is non-negative because it is generally
assumed that the underlying utility function u is non-decreasing. Furthermore, # in
many situations is non monotonic on the entire real line. For instance, assume that

= 2 and v; = 75 = 0.5. As we can see in Figures 3 and 4, the marginal utility of a

prospect utility function, as defined in (2.2), is non-monotonic. Indeed, it is increasing

'Throughout my thesis, I use u' to denote the first derivative (when it exists) of u, and the Radon-
Nykodym derivative in the absolutely continuous case (when the derivative may not exist). For example,
given the marginal utility «'(z) as in (2.2), the utility function u(z) is given by the formula

0
_ ) = wtdt = <0,
Mﬂ‘{ %%mﬁ z>0. 24

Notice, that u(z) in (2.4) coincides with u(z) in (2.2). This is in line with the frequently nsed in statistics
notion of absolutely continuous distribution functions. For example, the uniform on [0, 1} density function
Jo(z) is related to the uniform distribution Fy{z) by the equation Fo{z) = [ fo(t)dt, but Fy(z) is not
differcntiable at the points 0 and 1.
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in the loss domain and decreasing in the gains domain.
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Figure 3: Kahneman and Tversky utility L ‘
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function Figure 4: Corresponding marginal utility |
|
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In Figures 5 and 6, we display the graphs of the utility function and the respective , |

marginal utility of (2.3) considering Ay, = 2, g = 1 and 7, = v, = 0.5.
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Figure 5: DiGiorgi and Hens utility function  Figure 6: Corresponding marginal utility

Nevertheless, other types of S-shaped utility functions have been little explored in
the literature. For instance, Berhold {1973) and LiCalzi (2000) propose the use of cumu-
lative distribution functions to represent S-shaped utility functions. In particular, Broll,

Egozcue, Wong and Zitikis (2010) and LiCalzi {2000) use S-shaped utility function of the
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form,

u(z) = F(x), ' (2.7)

where F(x) is the cumulative distribution function of a symmetric random variable. For
instance, setting u{x) = &(x)—1/2, where ® is the standard normal distribution function,
it has an S-shaped form, with the reference point at the origin, xo = 0.

Onme of the innovative features of prospect theory is loss aversion. The basic idea is
that losses loom larger than similar gains. It can be defined in different ways (cf., Neilson,
2002; Kobberling & Wakker, 2005). Therefore, I present a brief summary of the most

well known definitions of loss aversion.

Definition 2.2.2 Let u be an S-shaped utility function, with u(0) = 0. Then u exhibits

loss aversion if it fulfills one of the following conditions:
1 —u(—z) > u(x) for allz > 0.
2 =4 < % for all z < 0 < y (weak loss aversion).

8. u'(y) <u'(z) for all z < 0 <y (strong loss aversion).

4. If u is defined as in Definition (2.2.1) and v'(07) > o/(07).

G

If u 15 defined as in equation (2.2) with vo = v, and X > 1.

Some authors also define loss aversion as v/(z) < v/(—z) for all z > 0, which is a
particular case of the third condition in Deﬁniti‘on 2.2.2. Hereafter, I shall consider utility
functions that posses this last particular characterization of loss aversion, and I shall also
use those utility functions with loss aversion as defined in condition 5.

Nonetheless, the evidence of the presence of loss aversion has received mixed empirical
support (cf., e.g., Harinck, Van Dijk, Van Beest & Mersmann, 2007; McGraw, Larsen,
Kahneman, & Schkade, 2010; Rozin & Royzman, 2001, and the references therein).

Indeed, although the idea of loss aversion is appealing, there are recent studies that
have found evidence of opposite effects. For instance, Harinck et.al.(2007) and McGraw et

al. (2010) find evidence that for small outcomes loss aversion is reversed, and individuals
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weigh more heavily gains than losses, which is referred as reverse loss aversion. In order
to make the analysis as general as possible, I would also consider the case of reversed
loss aversion (i.e., gains loom larger than losses). I shall call reverse loss aversior utility
functions, those with the condition v/(z) > v/'(—z) for all z > 0. Note that for power

utility functions as defined in (2.2), then reversed loss aversion implies that A < 1.

2.3 Some covariance inequalities

In this section, I proceed to present a brief review of some well known covariance inequal-
ities. I begin with the celebrated Chebyshev’s integral inequality, which can be stated in

its integral (original) form as follows:
Theorem 2.3.1  Leto, 8 : [a,b] — R and f(z) : [0,b] — R... Then we have:

1. If o and 3 are both increasing or both decreasing, then
b b b b
[ 1@ [ e s> [ o) e [ p@iw a6

2. If one of the functions a and 3 is increasing and the other is decreasing, then the

inequality is reversed.

It is common to see this inequality in its probability form. This can be easily done sup-
posing that f(z) is a probability density function. Then Chebyshev's integral inequality

in equation (3.1) can be written as follows:
Cov [a(X), B(X)] > 0.

Therefore, the above theorem, can be expressed in its most usual probabilistic form

as follows.

Theorem 2.3.2 Let X be a continuous random variable defined on [a, b] C R, with well

defined expectotions. Consider two real functions o and B then:
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1. If o and B are both increasing or both decreasing, then Cov (X ), B8(X)] > 0.

8. If one function is non-decreasing and the other one is non-increasing, then we have

Cov [o(X), B(X)] < 0.

We note that if the random variable is non-degenerate and bhoth functions are strictly
monotonic then the inequalities in Theorem 2.3.2 are strict. The following Lemma plays

an important role in proving the Chebyschev’s inequality.

Lemma 2.3.1 Lét o and 8 be two continuous real functions and X be a continuous

random variable defined on [a,b] C R. Then
Cov [alX), B(X)] = E [(a(X) — a(c)) (8(X) — B(c))]

where ¢ € [a,b] is such that a (¢) = E{a{X))].

Remark 2.3.1 This result follows directly from applying the Second Mean Value The-
orem for integrals (cf., e.q., Schoo & Riedel, 1998), and using the definition of the co-
varionce (see, e.g. Gurland, 1967; Schmidt, 2003). Notice that Theorem 2.8.2 can be
proved invoking Lemama 2.8.1. For instance, assume both functions are increasing, then
(i) If z > c then as a and 3 are both increasing then (a(z) — a(c)) (B(z) — 8(¢)) is
non-negative. (i) On the other hand, if z < ¢ then o(x) < o (¢) and 8(x) < B (¢}, which

yiclds the same result.

As T have noted earlier, there is an important limitation of the Chehysheyv’s integral
inequality. It requires that both functions must be monotonic. This strong assumption
might be violated on several occasions. Hence, studying the sign of (1.1} by relaxing the
monotonicity assumption is not only a problem of pure mathematical interest, but it is
also of interest in applied mathematics.

Steffensen (1925) proposes a non-monotonic version of Chebyshev’s integral inequality.
Instead of considering two monotonic functions, he relaxes the monotonicity of one of
the functions, however, imposing a special condition on one of the functions. I present

this result written with probabilistic notation.
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Theorem 2.3.3 Let o and 5 : [a,b] — R, be differentiable real functions. Consider a
random wvariable X with density function f and support on {a, b]. Assume the expeciations

cuist. If
E[B(X)|X <2] < {(Z)E[B(X)] for allz € [a,0], (3.2)

where E[-|-} is the conditional expectation operator, then:
1. If o is non-decreasing then Covia (X),5(X)] > (<) 0.
2. If o is non-increasing then Covia (X), B(X)] < (>) 0.

Egozcue et al. (2009, 2011) derive some new covariance inequalities relaxing the

monotonicity assumption, but they only work for symmetric random variables.

Theorem 2.3.4  Let X be o random variable, symmetrict about zevo with support on
[~b,0], and with density function f. Consider two continuous real functions ¢ and 5.

Assume that B is an odd function® with 8(zx) > (<)0 for all z > 0. We have that

1. if a(z) is increasing, then Cov [a(X), B(X)] > (£)0; and

H

2. if a(z) is decreasing, then Cov [a(X), 8(X)] < ()0,

Note that to get consistent results, relaxing the monotonicity assumption of one func-
tions needs the symmetry assumption of the random variable and also the odd function
condition. In the next result, however, we relax the monotonicity assumption of both

random variables.

Theorem 2.3.5 Let X be a random variable symmetric about zero. Consider two real
Functions afz) ond B(z). Let 8{z) be an odd function of bounded variation with B(z) >
(<)0 for all x > 0. We have that

1. if a(z) > a(—z) for all z > 0, then Covia(X), 3(X)] > (L)0; and

% Recall thot a random variable X is symmetric if X 2_x . equality in distribution.

3 Recall that 3(z) is an odd function if B(z) = —B(—2) for all z > 0.
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2. if a(z) < a(—x) for all z > 0, then Covia(X),3(X)] < (=)0.

An extension of this result appears for S-shaped utility. function in Broll et al. (2010).
They show that the mean has an important role to determine the covariance sign for a

particular type of S-shaped utility functions, as we can see in the following theorem.

Theorem 2.3.6 Let X be symmetric around its mean p = E[X]. If v is an S-shoped

function, with u/(z) = v/(—z) for all x € R. Then we have the following statements:

L Ifp>0 then Cov[X, v (X)) <0.

2. If pn <0 then CoviX, v (X)] > 0.

This theorem characterizes the sign of the covariance (1.2) for a non-monotonic mar-
ginal utility. However, it works only for a utility function that does not consider strict
loss aversion, as it is defined in Definition (2.2.2). In the next section, I present a general
result, of this theorem for S-shaped with loss aversion and reversed loss aversion as well.

I also extend this theorem considering reverse S-shaped utility functions.

2.4 Main results

In this section, I present the main results of this chapter. We have seen that S-shaped
utility functions have non-monotonic marginal utilities. We have also seen that for some
S-shaped utility functions, (e.g. (2.2)), the marginal utility +' does not exist at the
reference point 0. Nevertheless, there other S-shaped utility functions with more mathe-
matically tractable behavior such as (2.3} or (2.7). First, I shall state a general theorem
where the marginal utility exists in all the real line. Second, I shall relax the assumption
of existence of the marginal utility at the origin. _

First, in the next result I extend Broll et ol (2010) findings considering general 5-
shaped and RS-shaped utility functions. The novelty of this result is that I shall consider

loss aversion and reversed loss aversion as well.



Theorem 2.4.1 Let X be o symmetric random variable about its mean p. Let u be a

differentiable utility function.
1. If w is S-shoped, then we have the following two statements:

(o) If p>0 and v'(z) < u'(—2) for all z > 0, then Cov{X,u'(X)] < 0.

(b) If 1 <0 and v'(z) > u'(—2z) for all z > 0, then Cov[X,v'(X)] > 0.
2. If u is RS-shoped utility function, then we have the following two statements:

(a) If 1> 0 and v'(z) > v'(—2) for all z > 0, then Cov[X,w'(X)] > 0.

() If u <0 andv'(z) <u/(~z) for allz > 0, then Cov[X, v/ (X)] < 0.

Proof. First I prove case 1 (a). Define the random variable Z = X — p. Therefore,

Z is symmetric about zero with E[Z] = 0. Thus, we rewrite the covariance as follows

Cov|X, 4 (X)] = Cov[Z + w,4/'(Z + )]
= Cov[Z,v(Z + p)]
= E[Zv/(u + Z)]
=E[Zv/(p+Z)-1{Z > 0} - E[Zu/(n+ Z) - 1{Z < O}]
=E[Z{/(p+Z) —u(p—2)) - 1{Z = 0}]], (4.1)

where 1{Z > 0} is the indicator function, which is equal to 1 whenever Z > 0 and equal
to 0 otherwise.
There are two cases to consider: (i) Let g — 2z > 0. Since z > 0 implies pp+ 2 > p— z

and ' is non-increasing on {0, oo), we have that
U(p+z)—u'(p—2) <0 (4.2)

(ii) Now assume that 4 — 2z < 0. Since g > 0 and z > 0, we therefore have that

i —z <0 < p+ 2. Consequently, using the assumption of v'(z) < w/'(—=2) for all x > 0,
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we have that u'(p — 2} = ¥/(— (2 — pu)) > v/(z — u), and thus
wip+z)—ulp—2) <u{ptz) o'z —p). (4.3)

We exploit the fact that the right-hand side of bound (4.3) is non-positive because v’ is
non-increasing on (0,00) and 0 < z — g < z + p. Consequently, v'(z — u) > v/'(z + p),

and thus

Wt 2) = (p— 2) S U+ 2) — (s - ) SO (4.4

Therefore, together from (4.2) and (4.4) we conclude that
w(p+z) - u'(p—2z)<O0forall p>0andz>0. (4.5)

Multiplying in both sides of (4.5) by 1{Z > 0}, taking expectations in hoth sides and
using equality (4.1), we obtain that Cov[X,«'(X)] < 0. This finishes the proof of part
1(a).

I now prove part 2 (b). Starting with equality (4.1), we have, again, two cases:

(i) Assume p 4+ 2z < 0, then (since p < 0and 2 > 0) we have u — 2 < p+ z < 0.
And, thus, we are in the negative domain of « which as it is RS-shaped it is concave.

Therefore, we conclude that

w'(p—2) 2 u'(p+2).

(ii) Now, assume that p + z > 0. Since we assume that v/(z) < v'(—z) for all z > 0

then u'{z — p) <u/'(u — z). So that,

Wlp+z)—u(z—p) 20/ (p+2) —w'(p—2)

Notice that z — p > g+ 2 > 0, thus we are in the positive domain of «, implying that, it

is convex, thus v'(p + z) < /(z — 1), therefore, we conclude that

u{p+2) —u'(u—2) <0.



At the end, we conclude that for all z > 0 and 2 < 0 we have that

wp+z)—u(p—2)<0

Following the same steps as in the proof of part 1(a) we conclude that Cov[X,w' (X)] < 0.

This ends the proof of part 2(b). The other parts can be proved in the same way. ®

I shall now present a numerical illustration of Theorem 2.4.1.

Example 2.4.1 Suppose X is continuous and uniformly distributed on [—1, b] with b > 0.

Now, constder the following S-shaped utility function

Ae®5T — 1) when z <0,
us(z) =
1—e %% when 2z>0,

and the RS-shaped utility function as defined in (2.1). Let h(b) be defined as follows*:
hib) = Cov[X, u'(X)].

In the next figures, we display the graphs of h(b) for different values of d and .
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Figure 7: Case 1 (a) with A =2 Figure 8: Case 1 (b) with A = 1/2

- 4 For the meaning of v and its relationship with u in the absolutely continuous case, see footnote (1).
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Figure §: Case 2 (o) withd =1/2 Figure 10: Case 2 (b) with d = 2

Figures 7 to 10 display the covariance sign for the four cases in Theorem 2.4.1.

The extension of Theorem 2.4.1 to other S-shaped such as (2.2) can be done consid-
ering certain types of symmetric random variables. For example, Theorem 2.4.1 could
be adapted to those random variables, X, such as X # 0 almost surely. I present this

extension in the next theorem.

Theorem 2.4.2 Let X be a random variable symmetric about its mean p, and such that
X # 0 almost surely. Suppose u is an S-shaped utility function, as defined in (2.2), then

we have the following two statements:
1 If >0 and w'(z) < w'(—zx) for all x > 0, then Cov[X,u'(X)] < 0.
2. If 1 <0 and w/(z) > v'(-z) for all z > 0, then Cov]X,v/(X)] > 0.

Proof. I only prove the first case, the other case can be proved in the same way.
The proof mimics the proof of Theorem 2.4.1. First, with the notation Z = X — p we
rewrite the covariance Cov[X, /(X)) as the expectation E[Zv'(u+ Z)]. Since Z # —pu by
assumption, we have also Z # p, by the symmetry of X. Consequently, Cov[X, «/(X)]
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is equal to B[Zv/ (g + Z) - 1{Z # +u}], and thus

Cov[X, W' (X)|=ElZu'(u+ Z) - 1{Z # £u} - 1{Z > 0}]
+EZu'(p+ 2Z) - 1{Z # +p} - 1{Z < 0}]
=EZ((p+2) —v(p- 2)H{Z £ p}1{Z>0}].  (46)

I skip the rest of the proof, since it is similar to that of Theorem 2.4.1. m

2.5 Applications

This section shows some applications of the main results. The range of applications is
broad, but I restrict the analysis to two cases. First, I study the monotonicity condition
of the mean variance indifference curve for an S-shaped utility function and RS-shaped
utility function. Second, I apply the findings to the hedging policies of an enterprise that

behaves according to prospect theory.

2.5.1 Mean variance indifference curves for §-shaped and RS-

shaped utility functions

The expected utility approach and the mean-variance approach, which is known as (, )
criterion, are in general two different approaches for decision making under uncertainty.

The expected utility approach says that X is preferred to Y if and only if
E[u(X)] > E[u(Y)], (5.1)

where u is a concave utility function. On the other hand, the mean variance approach
(sometimes also called mean variance rule) was introduced by Markowitz (1952) and

states that choice X is preferred over choice Y if

px = py and ox < oy,




with at least one strict inequality. Here, uy and p, denote the mean of X and ¥, and
ox and gy denote their respective standard deviations. The idea is that decision makers
use only the mean and variance to make decisions. This is a common tool used by
practitioners in finance (Shefrin, 2008). However, it has strong theoretical limitations.
For example, does not satisfy the expected utility independence axiom (e.g., Hens and
Rieger, 2010, p. 50).

Many scholars study when both approaches are equivalent. Tobin (1958) shows that
the two approaches are compatible under normally distributed assets or quadratic utility
functions. Moreover, under the normal distribution assumption, the mean variance rule
also coincides with the expected utility approach (Hanoch and Levy, 1969). Sinn (1983)
and Meyer (1987) show the equivalence of these approaches when the distributions differ
only by a location and scale parameters. That is, suppose that X has a distribution
that belongs to a class Q, then ¥ = p+ 0X where, 1 € R and & > 0, also belongs to
that class of distribution 0. In other words, if the distribution of X is F(z), then the
distribution of Y is equal to F(p + ¢X). Some distributions that satisfy the location
scale condition are, among others: the elliptical distributions; the normal distribution;
the uniform distribution; the Cauchy distribution and the Student’s t distribution.

Sinn (1983) and Meyer (1987) derive several properties of the indifference curve in a
(1, o) space, generated by a general risk averse von Neumann-Morgenstern utility func-
tion. In particular, these studies prove that these indifference curves, represented as a
function o — p(c), are increasing and convex. These conditions are useful when the in-
difference curve is maximized over convex feasible sets. It explained, among other things,
issues such as the existence of the CAPM equilibrium, as elucidated by Ormiston and
Schlee (2001).

It is important to study the monotonicity of function p(e). An increasing function
means that the investor is willing to take more risk in exchange of more expected return.
This is a crucial assumption of portfolio theory, since larger returns associates higher risk.
Therefore, as an application of the main results, I will study whether the monotonicity

property still holds for S-shaped and RS-shaped utility functions.
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To keep the analysis as simple as possible, I do not consider transformations of the
distribution function as prospect theory suggests (Kahneman & Tversky, 1979; Tversky
& Kahneman, 1992). Hereafter, I assume that the random retwrn Y belongs to the
location-scale family {z +¢X : p € R, ¢ > 0} , where X is a random variable with
mean 0 and variance 1, and whose distribution function F does not depend on p and .

Hence, the expected utility E[u(Y)] defines a two-argument function
Vg, o) = Blu(p+ ¢ X)| = fu(,u, + ox)dF(x). (5.2)

Various properties of V{y, o), its partial derivatives

J
V“(j,t,,(}') 8_#V(nu U))
Valit,0) =~V (10)
[«2 )u J) — ao_ 'L’“- ¥
and especially of
Volp, o)
S(p,0) = — —/——,
(“ ) VP’-(JU’:O-)

have been extensively investigated in the literature (see, for example, Sinn, 1983; Meyer,
1087).

The quantity S{u, o) has played a particularly prominent role. For instance, it can
be viewed as the derivative with respect to the standard deviation ¢ of the indifference
function @ — p(o), which, for a given constant «, can be viewed as the curve {{o, 1) :
V(p,o} = a} drawn on the (o, )-plane. —

Hence, if 5(p, o) is positive, then the indifference function & — (o) is increasing,
whereas if S(u, o) is negative, then the indifference function is decreasing. Assuming
that the utility function u is differentiable and some integrability conditions are satisfied,

we have the equations

V() = ER/(Y)] (5.3)

V,(p0) = i—Cov[Y, WY, (5.4)
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where Y = p + o X, Since S(p, o) = =V, (u,0)/V,.(1, o), we therefore have that

1 Cov[Y,u(Y)]
S(p, o) = T By (5.5)

We may view V,(u, o) as the expected marginal utility or, in other words, the slope of
the expected utility V (i, o) with respect to p. Likewise, we may view V,(u, o) as the
expected marginal utility V(p, o} with respect to o. Finally, we may view S(u, o) as the
slope of the indifference function o — p{e).

This indifference curve and its various properties {e.g., monotonicity, convexity, con-
cavity, and so forth) have received considerable attention in the literature. As we have
noted above, some of the properties follow from the corresponding ones of the indifference-
function o + S(p, o). In particular, the following general property is well known (see, for

example, Hichner, 2008; Eichner & Wagener, 2009; Meyer, 1987; and references therein).

Theorem 2.5.1 If the distribution of Y with mean p and variance o belongs to o
location-scale family, and the twice differentiable utility function u is increasing on its

domain of definition, then we have the following two statements:

1. If the utility function w is concove then the indifference function o + p(o) is

mereasing and Conver.

2. If the utility function w is conver then the indifference function o v (o) s de-

creasing and concave.

It is now natural to extend formulas (5.3)—(5.5) to the case of general marginal utility
functions u' and random variables Y. As before, I use the notation g = E[Y] and
o? = Var(Y].

Determining the sign of (5.5) is obviously equivalent related the sign of Cov[Y, v/(Y)].
When the marginal utility is monotonic, then we know that Cov{Y, v'(Y)] > 0 for every
non-decreasing v’ and Cov|Y,w(Y)] < 0 for every non-increasing u'. However, the
marginal utility may be non-monotonic, as noted earlier. To cover such functions, 1
establish the following theorem that studies the monotonicity of the indifference curve

generated by S-shaped utility functions.
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Theorem 2.5.2 Suppose the utility function u is S-shaped . LetY = p+ocX be a random

variable where X is a symmetric random veriable with zero mean and unit variance.

Assume the location scale condition hold.

1. If p > 0 and v'(z) < ¥/(-zx) for any = > 0, then V,(u,0) < 0 and thus the

indifference function o — p(o) is increasing.

2. If p <0 and v (z) > v (-z) for any z > 0, then V,(p,0) = 0 and thus the

indifference function o — p{o) is decreasing.

Proof. I only prove Part (1) of the theorem by considering the case p > 0. We
have seen that the slope of the indifference function ¢ — p{o) is determined by the sign
of Cov[Y, v/ (Y)]. Since X is symmetric about zero, then Y is also symmetric about .
Therefore, invoking the first part of Theorem 2.4.1, we deduce that Cov[Y,u/(Y)] < 0
and thus S{u, o) > 0, which implies that the assertion in Part (1) of Theorem 2.5.2 holds.
Part (2) can be proved in the. same way. W

Next, I study the monotonicity property of the indifference curve for RS-shaped utility

functions.

Theorem 2.5.3 Consider the utility function as defined in (2.1), in which case is RS-
shaped. LetY = p+0X be a random variable where X is o symmetric random variable

with zero mean and unit variance.

1.If p 2 0 and w(z) > u(—2z) for oll x > 0, then Vi{(u,0) > 0 and thus the

mdifference function o~ p(c) is decreasing.

2. If u <0 and v'(z) < W(—z) for all x > 0, then V;(u,5) < 0 and thus the

ndifference function o — (o) is increasing.

Proof. The proof is analogous to the one in Theorem 2.5.2, but now invoking the

results in the second part of Theorem 2.4.1. =




2.5.2 Hedging policies within prospect theory

Continually changing volatilities on financial markets coupled with rises in interest rates,
foreign exchange rates, and prices for goods and services have led to the development
of various futures markets. These risk-oriented markets have experienced a remarkable
rate of growth throughout the world and resulted in the creation of many new financial
hedging instruments. These hedging instruments allow a better control of risk exposure
faced by an enterprise (see, for example, Bessis, 2009; Freixas & Rochet 2008; Meyer &
Robinson, 1988).

In an important contribution to the literature on futures markets and hedging, Ben-
ninga, Eldor and Zilcha (1983) address the issue of optimal hedging in the presence of
unbiased futures prices. They derive conditions for the optimal hedge to be a fixed
proportion of the cash position, regardless of the agent’s utility function. This result
is important because of the sizeable research on theoretical and empirical hedging that
abstracts from the particular utility functions of risk-averse, expected utility maximizers
(see, for example, Battermann et al. 2000; Broll & Eckwert, 2006; Dewatripont & Tirole,
1994; Freixas & Rochet, 2008 and references therein). The novelty of my application is
to incorporate prospect theory into the utility function of a firm®*. The enterprise has a
prospect utility function defined over its end-of-period profit. To hedge its risk exposure,
the firm trades futures contracts. I show that when the utility function is S-shaped,
the main results of the previous section plays a pivotal role in determining the optimal
hedging of the firm.

In this application, I follow Broll and Wah! (2006) model of a firm with one-period
planning horizon.

The model set up is as follows. The enterprise that has risky assets with random return
(future spot price) r. The assets are financed partially with external funds (deposits),

denoted by D, which pays a certain return {price) 75 > 0. The enterprise also finances

°l am assuming that Fisher’s separation thcorem does not hold. This implica that the firm might
maximize the expected utility of profits, instead of maximizing just profits. Beyond enterprises, my
developed theory could be widely applicable to model and analyze decisions of individual agents, such
as farmers and other individual entrepreneurs.
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its assets with a fixed equity KK > 0. Therefore we can write the firm’s balance sheet

constraint as follows,

A=D+K ' (5.6)

There are operational costs that depends on the deposits level. We represent, these
costs with a function C(ID), which we assume to be increasing and convex. In part of the
uncertainty, the risky assets, A, can be hedged in the forward market at a certain price
rs. Let H denote the amount of the hedged assets that is determined at the beginning
of the period. When H is positive means that the firm is selling assets in the future
market. On the other hand, if H is negative it means that firm is purchasing assets in
the future market. It is said that speculation is involved if H ¢ [0,A]; otherwise the
assets are hedged without speculation. For instance, H < 0 it means that the firm is
purchasing assets in the forward market, while H > A means that the firm is selling in
the future market an amount greater than its current assets.

Since A = D+ K is known, in this scenario, next period enterprise’s profit is given by
II{H) =r(A— H)—rpD— C(D) +r  H. (5.7)

Firm’s profit is uncertain and its mean is given by
p(HY=E[Il{H))=E[r|(A—-H)—rD - C(D) +7r, H. (5.8)

As we shall see, the _va.lue of the mean, for the reasons studied in the previous section,
has an important role in determining the optimal hedging decision.

Therefore, the firm manager’s problem is to find the optimal hedging that maximizes
the expected utility of profits. However, instead of considering a traditional Bernoulli
utility function, the firm uses an S-shaped utility function u as defined in Definition 2.2.1.

Thus, the firm wants to maximize its expected utility of profit

max Eu(II{H))] = Eu(rA —rpD — C(D) + H(ry ~1))]. (5.9)

o6



In other words, we want to find the H that maximizes the expected utility of profits.

I denote by H* the solution of (5.9). Since u is an S-shaped function, then there is

no guarantee that E[u(II(H)}] will be concave respect to H. Therefore, I restrict the

analysis to those cases where the first order condition holds and there is a global solution

of (5.9).
Proposition 2.5.1 If the first order condition of (5.8) holds then we have

Cov|[II(H*), o (II(H"))]
E[w/(TI{H*))]

(ra — Efr]) (A~ H") =
Proof. Taking the first order condition of (5.9). evaluated at H*, we have
E[{(ra — r)/(II(H*))] = 0

The latter equation can be rewritten as follows:

E[ro/(TI(H7)] _
E [w (IL(H*))]

= Ta.

Now, using the covariance function we have

Cov|r, v/ (II{(H*))]
Efu/(II(H*})]

res —Er] =

After subtracting (5.7) with (5.8) we get

(r —E[r])(A - H*) =TI(H") - E[I(H")],

which implies that
_ H(H*) — E[II(H*)] _
T = D +E[r].

(5.10)

(5.11)

(5.12)
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Substituting (5.12) in the covariance term of (5.7) we have

H{H") — B{II(H")]
(A - H")

Cov [II{H*), 2/ (TI{H*})] .

Cov|r, v/ (TI{(H*))] = Cov + E[r], v/ (TI(H*))

. 1
A H*

Therefore we have from equation (5.11) that

m-EbD -y = SRS 61

Finding A* is generally a complex task. Nevertheless, equation (5.13) has important
derivations. Since E[u/(II(H*))] > 0, the sign of the covariance Cov|[I{H*), «'(f{I(H*)))
determines the sign of the product (74 —E [r])(A— H*). When u is more complexly shaped
than being concave, then determining the sign of the covariance Cov|[II(*), ' (IL(H*))]
is a challenging task.

The relation between the expected spot price and the future price will also determine
the sign of (A — H*). When there are more hedgers taking short positions in the future
market than those that are going long then, to reach a balance, speculators must enter
the market taking long positions. The speculators will do so, only if r, < E[r] (a
condition named normal backwardation). Conversely, if there are more hedgers taking
long positions than those that are short, speculators will enter the market if 7, > E[r]

(a condition named contango).

Note 2.5.1 Notice that using the spot-futures parity relationship (which states that ratio

of return on perfectly hedged stocks equals the risk-free interest rate) we can write

B 1+?‘f n
?"AE[T](I_i_k) ,

where Ty 15 the risk free interest rate, k the required rate of return and n 1s the number

of periods (Bodie, Kane and Marcus, 1996 p. 708). Thus, rs will be less than Er]

whenever k > r; (i.e., the asset has a positive beta). When the expected price equals the
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Jorward price then the price is unbiosed, this is the case whenry = k. Finally, r4 > E[r],

whenever k < 1y (i.e., the asset has a negative beta,).

Next, I present an application of Theorem 2.4.1 that studies the sign of the covariance

in (5.10).

Proposition 2.5.2 Let the distribution of r be symmetric around its mean Er]. Let u

be an S-shaped utility function, with loss aversion defined os w'(z) < v/'(—z) for allz > 0.

If W{H) > 0 then '
Cov[II(H),« (II(H))] < 0.

Proof. The proof follows directly by invoking Theorem 2.4.1. =
We see that p(H) plays a decisive role in determining the sign of the covariance
Cov[lI(H), v (II(H))]. When H = H*, note that we have the following expressions for

the mean:

p(H*) = (E[r] —ra)(A — H) + 73D — rpD — C(D)
_ _ Cov[II(H*), ' (I1(H"))]
Eflw/ (TII{H"))]

+ rad —rpl — C(D). (5.14)

Using Proposition 2.5.2, we obtain the following corollary, which guides the firm in de-
ciding whether to speculate or not. More precisely, it will tell us whether H* is smaller
or greater than A, depending on whether the expected price Efr| is smaller or greater

than the forward rate 7.

Corollary 2.5.1 Let the distribution of r be symmetric around its mean Efr] > 0. Letu
be S-shaped, with loss aversion defined in (2.2.2) v/(z) < v/(—z) for all z > 0. Assume
that H* is a solution of (5.13) such that w(H*) = E{II{H*)] > 0, then we have the

following statements:

1. Ifra <E[r], then H* < A.

2. If ry > Er], then H* > A.
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Proof. Now, I prove the first part. The third part can be proved similarly. From the

first order condition of {5.9) we have

Cov|[II{H*), v (II{H*)}] _

(re —Elr)(A—H") = El/(TI(H*))]

Since p(H*) > 0 using Proposition 2.5.2 then Cov[II(H*), ' (TI{H*))] < 0.Therefore, the
sign of {ry — E[r}) is the opposite to the sign of (A — H*). Therefore, since

Cov[[I(H*), v/ {II{ H*)}] <0
E[v/(II(#*))] -
and 74 < Er] we have H* < A. m»

This result has the following intuition.® In the first case, if the forward price is less
than the expected spot price, then the firm will hedge an amount less than its current
assets. However, if the gap between the forward price and the expected prices is large
enough, then it could purchase assets in the future market. The firm will expect to sell
them at a greater price in the future. In the second case, if the forward price is greater
tlha.n the expected price, then the firm will speculate selling an amount greater than its
assets, expecting to purchase the additional assets in the future at a lower price.

These are well known results for decision makers with strict risk aversion (Feder, Just
and Schmitz, 1980; Houlthasen, 1979). At the end, under these conditions, the enterprise
hedging policies with an S-shaped utility are similar as if it uses an increasing and concave
utility function.

I finish this section, giving a numerical example of the enterprise hedging policies.

Example 2.5.1 Consider A = 10,D = 1,75 = 0.1,C(1) = 2, and r could be equal 1o 1
or O with equal probability. Let

VT ifz >0,
—2v—z ifz <.

u{z) =

°T have left the case 74 = E(r] as a task for future research, because it is more involved. It requires
to prove that Cov [X,4'(aX + b)] = 0 implies a = 0, where a and b are real numbers.
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1. Suppose that ry = 0.25 < E[r] = 0.5. Then

E[u(TI(H))] = % \/ (7.9—0.75H) (sgn2(7.9 —0.75H) + 1)

_ \/ (7.9 = 0.75H) (sgn(7.9 — 0.75H) — 1)
2
1\/(0.251{ —2.1) (sgn

T

1 0.25H —2.1) + 1)

2

\/(0.25H — 2.1} (sgn{
- 2

[l

2%H —2.1)— 1)

where sgn(x) is the sign function that takes on values: 1 when x > 0, —1 when

z <0, and 0 when x = 0. Below, I display the plot of E[u{II(H))].

Eu(iT)

Figure i1

One can check numerically that the mazimum is attained at H* = 8.93 < A = 10.
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2. Now I assume that ry = 0.55 > Efr] = 0.5. Then

1 \/ (7.9 — 0.45H) (sgn(7.9 — 0.45H) + 1)

Elu(ll(H))] = 5 5
B \/(7.9 — 0.45H) (sgn(7.9 — 0.45H) — 1)
2
1 \/ (0.55H — 2.1) (sgn(0.55H — 2.1} -+ 1)
2 2
- \/(0.55}{ —2.1) (sgn(0.55H — 2.1) — 1)
; _

In Figure 12, I show the graph of E[u(II(H))], which aftains o mazimum value ot
H*=11.37 > A =10.

Eu{T)
T T
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/ Y
f |
| 4
1.0 i |
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r
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-10 5 10 15 20
Figure 12

2.6 Concluding remarks

In this chapter, I establish new covariance inequalities that involve non-monotone func-
tions. In particular, I derive new results to study the sign of Cov[X, v'(X)], when the
marginal utility is non-monotonic. This is the case when the utility functions are ac-
cording to Markowitz utility functions or behaves as prospect theory utility functions. 1
show that the sign depends on the mean of the random variable and on the degree of loss

AVErsion.
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Two applications illustrate the main results of this chapter. First, I study the
monotonicity properties of the indifference curves on the (o, u)-plane for S-shaped and
RS-shaped utility functions. My results show that the indifference curve of S-shaped
utility are increasing when there is loss aversion and p > 0. Similar results are derived
considering reverse loss avension and using RS-shaped utility functions as well. Finally,
I study hedging policies of a firm that uses a utility function as postulated by prospect
theory. I examine the behavior of a firm whose utility function varies with gains and
losses in firm’s profits. Even though, the analysis with prospect theory is more complex
than assuming risk aversion, I demonstrate that similar behavior hold for symmetric
random variables.

The chapter can be extended in several directions. For instance, it would be inferest-
ing to generalize Theorems (2.4.1) and (2.4.2) for skewed distributions and especially for

skewed-normal distribution (Azzalini, 1985). This remains a task for future studies.

63




Chapter 3

Three-level recognition heuristic

3.1 Introduction

In many real life situations, individuals compare (two) objects and then choose one of
them. How do individuals decide? Goldstein and Gigerenzer (1999,7 2002) propose a
method called the recognition heuristic. This theory explains some experimental results.
Specifically, in one experiment American and German students were asked to rank, in
pairs, German and American cities according to their population (Gigerenzer et al., 1999;
Hoffrage, 1995, 2011). Surprisingly, the German students accuracy rate was higher for
American cities than for German ones. This unexpected result motivated an answer to
the following question: How could people have more correct answers on those issues or
topics that they a priori knew less? With this in mind, Goldstein and Gigerenzer (1999,

2002) suggested the mentioned method, whose idea is based on the dictum:

If one of two objects is recognized and the other is not, then infer that the
recognized object has the higher value with respect to the criterion. (Gold-

stein and Gigerenzer, 2002, p.76).

Furthermore, the recognition heuristic suggests that if neither of the two objects are
recognized, then the subject must decide randomly, with equal probabilities; and if both
objects are recognized then the subject should decide with the help of some additional

information.
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The chapter aims are fourfold. First, I extend the model by Goldstein and Gigerenzer
considering three levels of recognition judgement. Goldstein and Gigerenzer’s model
implicitly assumes there is a direct association between higher value and recognition.
Indeed, the recognition heuristic is a non-compensatory heuristic, since subjects do not
use further information to decide between a recognized and an unrecognized object. In my
proposal, however, the recognized objects are classified into two categories: recognizable
satisfying and recognizable unsatisfying. Namely, a person might recognize an object,
but the object is ca,tegorized- as unsatisfying with respect to the criterion of interest and
within the sample of objects. Moreover, I shall assume that unrecognized objects are
preferred to recognized but unsatisfying ones. The following example shall clarify the

logic behind this proposal.

Suppose Sherlock Holmes makes pairwise comparisons of the ‘nicest’ person
among different individuals one of whom is Professor Moriarty. I believe that
Sherlock Holmes would view Professor Moriarty as a ‘recognizable unsatis-
fying person’, and thus even an unrecognizable person would be considered

nicer than Professor Moriarty.

Moreover, my proposal is a generalization of the two levels recognition model. Indeed,
when the person does not identily any recognizable unsatisfying objects and all the
recognized objects are satisfying, we are within the original model of Goldstein and
Gigerenzer (2002).

Second, I provide mathematical formulas of all the parameters involved in the model.
Contrary to previous works that simply estimate the accuracy rates of the recognition
heuristic (see, for instance, Goldstein & Gigerenzer, 2011, and references therein), these
explicit formulas allow me to calculate exactly the accuracy rates for the two and three
levels recognition heuristic. Third, I characterize the conditions under which the predic-
tive power of the recognition heuristic is equal to choosing the objects randomly. Finally,
I address the question whether less information associates with higher probability of suc-
cess. In this sense, I assess whether the less is more effect (LIME) still holds within the

three levels recognition heuristic.
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I have organized the chapter as follows. Section 3.2, gives a brief introduction to
heuristics. In Section 3.3, I put forward the three-levels model and express the proba-
bility of correct guesses. Section 3.4, gives the explicit formulas of all the parameters in
the probability of correct guesses. Finally, Section 3.5, provides the calculations of the
accuracy rates of both the two-levels and three-levels recognition heuristic considering a
sample of three and ten objects. In addition, I study the less is more effect elucidating

its implications. Concluding remarks finish the chapter.

3.2 A brief introduction to heuristics

First, we need to distinguish between various definitions of heuristic. In mathematics,
Pélya (1954) uses the term heuristic as a method to solve some problems. In this science,
it is also referred as a computationally fast method to get a good feasible solution to a
problem (Hillier, Lieberman & Hillier, 1990). Other interpretations come from psychology
and are referred as cognitive heuristics. Here, we can distingnish two different views.

On one hand, Kahneman, Slovic and Tversky (1982) define heuristics as a psycholog-
ical process that might be useful, but tends to deviate from rationality, which involves
what are known as biases. Thus, their use leads to significant deviations from the {math-
ematically) optimal (Gilboa, 2010; Gilovich &, 2002; Kahneman, Slovic & Tversky, 1982;
Kahneman & Tversky, 1979; Tversky & Kahneman, 1974). Indeed, heuristics has a neg-
ative meaning, with errors in judgment and biased behavior that should be avoided (or
that should be taken into account).

On the other hand, many scholars argue that individuals are not completely rational.
This means that individuals do not have complete and stable preferences, and have suf-
ficient skills that enable them to achieve the highest attainable point on their preference
scale (Simon, 1955 p. 99). Moreover, rationality is limited by the information gathering
process, the cognitive imitations of the mind and the available amount of time to decide,
which is usually known as bounded rationality (Gigerenzer & Selten, 2001; Conlisk, 1996;
Todd & Gigerenzer, 2003). For this, Gigerenzer et.al (1999) define heuristics as con-

scions or unconscious fast and frugal strategies that search for minimal information and
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consist of building blocks that exploit evolved capacities and environmental structures.
Furthermore, this stream of research questioned the emphasis on biases. They advo-
cate that heuristics are faster, more frugal and more accurate methods than standard
benchmark strategies {Gigerenzer & Todd, 2008). The following definition shall clarify

its meaning.

Definition 3.2.1 (Gigerenzer & Gaissmaoier, 2011) Heuristic is o strategy that ignores
part of the information, with the goal of making decisions more quickly, frugally, and/or
accurately than more complex methods. In summary, to this view, heuristics are shortcuts
‘that simplify the complex 'ﬁzethods of calculating the probabilities and utilities that are
required to make decisions under uncertainty, and this simple rules lead to better decisions

than more complexr models.

However, as pointed out by Gilovich and Griffin (2002), the controversy between
proponents and skeptics in the use of heuristics, arises as thése two approaches answer
different questions. For instance, Kahneman, Slovic and Twversky (1982) are interested in
answering if decision makers use heuristics in their decision process. Meanwhile, Gigeren-
zer et al. (1999) are interested in finding if they performed better than other decision
strategies.

Nevertheless, it is well-known that laypeople and practitioners often resist to use
complex mathematical models such as the ones proposed by economics or finance, and
instead use heuristics. Some of these heuristics appear in economic theory. For instance,
Graham (1949) recommends simple investing rules to obtain abnormal returns (see also,
Oppenheimer, 1984; Oppenheimer & Schlarbaum, 1981). Benartzi and Thaler (2001)
show that investors do not use sophisticated models to choose their portfolio, and usually
allocate their wealth with a naive strategy, which consist in investing equal shares of
their wealth in each asset. Furthermore, Friedman’s rule (Friedman, 1969) and Taylor’s
rule (Taylor, 1993) are simple interest rate strategies examples of heuristics in monetary
policy.

There are many -reasons why individuals use heuristics. First, decision makers may

be unable to obtain all the information necessary to solve, consciously or unconsciously,
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a given problem. Second, even obtaining such information, they may be unaware of the
optimal method to solve it. Third, often delay is not an option and decisions need to
be made fast. For other reasons of the convenience of using heuristics I refer to Payne,
Bettman & Johnson, 1993; Schwartz, 2010; and Thaler & Sunstein, 2008.

For a long time, it was believed that simple heuristics performed worse than more com-
plex models. Tt is, however, necessary to compare whether this assumption empirically
holds. Recently, these two methods have been compared in a number of problems such as
forecasting the commercial success of patents (Astebro and Elhedhli, 2006), diversifying
financial portfolios (DeMiguel, Garlappi and Uppal, 2009; DeMiguel, Garlappi. Nogales,
& Uppal, 2009; Huberman & Jiang, 2006; Monti, Boero, Berg, Gigerenzer, & Martignon,
2012), predicting the future purchasing behavior of past customers (Wuebben and von
Wangenheim, 2008), prescribing antibiotics to children (Fischer et al., 2002), geographi-
cally profiling criminals (Bennell, Emeno, Snook, Taylor & Goodwill, 2010; Snook, Zito,
Bennell & Taylor, 2005); predicting political elections (Gaissmaier & Marewski, 2011);
predicting the stock and exchange market (Zaleskiewicz, 2011) and so forth.

In summary, these studies conclude that: (i) heuristics have higher predictive accuracy
than optimization models when information is scarce; (ii) the opposite appears to be true
when information is not scarce and (iii) each one of heuristics and more complex models
can outperform the other (for a survey of these comparisons, the interested reader is
referred to Katsikopolous, 2011).

As I have noted earlier, in this chapter I shall extend the twp—levels recognition heuris-
tic (Goldstein & Gigerenzer, 2002). This heuristic was proposed to explain some intrigu-
ing experiments results. Specifically, these experiments set up is as follows.

Let us posit a test in which pairs of objects are drawn randomly from the class
of N objects, with n among them recognizable and N — n unrecognizable by the test
taker. The individual must pairwise compare and choose the object with higher value
according to some criterion of interest. The objects of each pair can be: both recognized.
both unrecognized, or one is recognized and the other one is not. The test score is the

proportion of pairs in which the test taker has correctly identified the larger object. The
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recognition heuristic suggests: (i) if one object is recognized and the other is not, choose
the recognized object; (ii) if neither of the two objects is recognized, then choose one of
them randomly, with equal probabilities; and (iii) if both of them are recognizable, then
employ a cue to decide which one to choose.

The concept of recognition is a crucial element in this heuristic, which has generated
a considerable debate (e.g., Davis-Stober, Dana, & Budescu, 2010; Dougherty, Franco-
Watkins, & Thomas, 2008; Marewski, Pohl, & Vitouch, 2010, 2011a, 2011b; Pohl, 2011;
Torlinson, Marewski, & Dougherty, 2011). There is, however, a certain consensus that
its meaning refers to the ability of individuals to discriminate between known objects
from novel ones (Pachur, Broder and Marewski, 2008). The set of objects splits in two
subsets: one with recognizable objects and another one with unrecognizable objects. This
framework has been criticized by Broder & Eichler 2006; Dougherty et al, 2008; Hilbig
and Pohl 2008, 2009; Newell & Fernandez, 2006; Newell & Shanks. 2004; Oppenheimer,
2003; Pachur, Broder & Marewski, 2008; Pohl, 2006: Richter & Sp#th. 2006; among
others. Consequently, some authors have proposed distinguishing between recognizable
objects (e.g., Hilbig & Pohl, 2008, 2009; Oppenheimer, 2003).

We also need to clarify the meaning of the cue. According to the recognition heuristic,
a cue consists in additional information that could help the individuals to choose between
recognized object. For instance, in experiments involving ranking cities according to their
population, whether the the city has: anrinternational airport, significant industries, a
team in the major national soccer league, were examples of possible additional informa-
tion,

The recognition heuristic has been applied for different purposes, such as comparing
cities with respect to their populations (Hoffrage, 1995), choosing stocks (Andersson &
Rakow, 2007; Borges, Goldstein, Ortmann & Gigerenzer, 1999; Boyd, 2001; Newell &
Shanks, 2004; Ortmann, Gigerenzer, Borges & Goldstein, 2008), sports results (Ander-
sson, Edman & Ekman., 2005; Scheibehenne & Broder, 2007; Snook & Cullen, 2006)
and choosing consumer goods ( Hauser, 2011; Herzog & Hertwig, 2011; Hoffrage, 1995;
Oeusoonthornwattana & Shanks, 2010; Pachur and Biele, 2007; Thoma & Williams,
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2013). For instance, Borges et al. (1999) and Ortmann, et al. (2008) find evidence
that constructing portfolios, in a bull market, based solely on the names of the recog-
nized compaﬁies yields better returns than the market index. They conducted laboratory
experiments where participants construct their portfolios with the most frequently recog-
nized shares. In most of the cases, the selected portfolios outperformed the market index.
These results were surprising as they are opposed to the efficient market hypothesis (Fama
1970). That is, simple investment strategies cannot consistently beat the market index.
A reason of this stunning result is that recognized companies may yield higher average
returns than unrecognized ones. _

Boyd (2001} replicates the Borges et al. (1999) test, but, now, in a bear market,
reaching different conclusions. He finds that recognition heuristic as a strategy for se-
lecting stocks does not outperform the market as the referred work showed. A possible
explanation of these opposite conclusions can be deduced from the model by Merton
(1987). In this model it is assumed that investors construct their optimal portfolios only
with known securities. Which implies that recognized firms will have higher demand and
value. Yet, this model predicts a negative correlation between stock returns and recogni-
tion. This implies that recognized companies will vield lower returns than average, which
gives a possible explanation of the results found by Boyd (2001).

Nevertheless, however, whether the recognition heuristic is a descriptive behavior in
these experiments is still in debate (cf. e.g. Pachur et.al., 2008).
| Finally, the recognition heuristic challenged the idea that accuracy involves effort.
As experiments have shown, there are situations Va.rhere a high level of accuracy is ob-
tained with less information (recognition) (Goldstein & Gigerenzer, 1999, 2002). Indeed,
more information instead of increasing the accuracy rate can decrease it. Contrary, less

information might lead to higher accuracy rates.

3.3 Three-levels recognition heuristic

In this section, I put forward a three-levels recognition heuristic model. In my approach,

the recognized objects are classified into two categories: recognizable satisfying and recog-
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nizable unsatisfying. My approach serves to explain some empirical evidence. For in-
stance, in a series of experiments comparing cities populations, Oppenheimer (2003)
reports that participants sometimes prefer unrecognized objects over recognized ones.
Specifically, contrary to the two-level heuristic proposal, the experiments showed thaf;
participants tend to choose an unrecognized city than a recognized small one. Therefore,

my proposal assumes that individuals will prefer unrecognizable objects over recogniz-

able unsatisfying ones. I also suppose that individuals choose randomly (with equal |

probability) between recognizable and unsatisfying objects.

For clarity, and to keep the analysis as simple as possible, I restrict the study to
the recognition heuristic with perfect memory (e.g., Smitshon, 2010} and thus, I do not
consider the imperfect memory version (e.g., Katsikopoulos, 2010: Erdfelder, Kiipper-
Tetzel & Mattern, 2011). I also follow Smithson (2010), considering the nse of a single
cue with ranks and no ties.

Given two objects. we set the following recognition heuristic rules for the three-levels

model:

e If one object is recognizable satisfying and the other is recognizable unsatisfying,

then choose the former one.
e If both objects are recognizable satisfying, then decide according to a cue.

o [f one object is recognizable satisfying and the other one is unrecognizable, then

choose the recognizable one.

o If one object is recognizable unsatisfying and the other one is unrecognizable, then

choose the unrecognizable one.
e If both objects are unrecognizable, then choose randomly with equal probabilities.

o If both objects are recognizable unsatisfying, then choose randomly with equal

probabilities.

!To make my theory ss simple as possible, which is one of the goals of the recognition heurisite, 1
would not assume the use of any cue to choose any of the two recognized unsatisfying objects.
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3.3.1 Model

Now, I present the formal model of the three levels recognition heuristic model. Suppose
that we are dealing with N objects, represented them as an N-dimensional vector, x =
(x1,Z2, ..., 2n), called the recognition vector. The position of each coordinate of x, and
thus of the underlying object to be ranked, is based on the criterion ranking, denoted by
c = {c1,¢-...en) = (1,2,..., N), which is an arrangement of the underlying objects in
the decreasing order with respect to their ‘size’ or ‘value.” For instance, according to the
criterion ranking, the i** object is larger in value than the j** object whenever i < j. Each
coordinate z; of the vector can be equal to 1 if the i-th object is recognizable satisfying,
0 if the object is unrecognizable and —1 if it is recognizable unsatisfying. Hereafter, I

shall use the following notation:

N is the number of recognizable satisfving objects.

Ny is the number of unrecognizable objects.

N_; is the number of recognizable unsatisfying objects.

n is the number of recognizable objects, either satisfying or unsatisfying, that is,

'J’Z,=N1+N_1.

For a recognition vector x we would have S°% 2t = N, SV 27 = N_; and
SN (1= |zl) = No, where 2 = max{z;,0}, 27 = —min{z;,0} and |z;| denotes
the absolute value of z;.

The vector g = (g1, 9o, ..., gn) represents the cue ranking (hereafter, also the cue
vector). This cue vector is used only when both objects are recognizable satisfying.
Similar to Egozcue, Fuentes Garcfa, Katsikopolous and Smithson {2013) and Smithson
(2010) models, the cue vector indicates the ranking of the underlying objects, which may
or may not coincide with the above noted criterion ranking.

Notice that subjects must compare ({j) possible pairs combinations. That is, the

comparisons are between the following pairs

($1,$2) . (331,.’1‘.3) P (.'Iilij) 3 eeny (IN_l,SL‘N) .
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Correct answers are those when the subject chooses the left object of each pair. The

following example will help to clarify the previous notation.

Example 3.3.1 Consider the vector x = (1,0,1, —1,0), which means that there are N =
5 objects, and the (default) criterion ranking is ¢ = (1,2,3,4,5). Hence, objects x,,z3
and x4, have been recognized, and xo and z5 have not been recognized. However, object x4
has an unsatisfying recognition. In addition, suppose the cue ranking is q = (3, 1,2, 5,4),
which gives information ebout the ranking objects. This cue ranking is used only when
the two objects have been satisfying recognized. Thué, we would only compare the first and
the third element of vector q. That is, when we compare objects T, and x3, the individual
would follow the cue ranking and "erroneously” will choose x5 as the highest value of the

parr, as the cue vector indicates so.

3.3.2 The probability of success for three levels of recognition

I am interested in finding the probability of correct guesses. Let A be the event of correct
guessing, and so the expected proportion of correct inferences is the prabability P(A4). In
other words'J P(A) is the proportion of correct answers in all of the pairwise comparisons.
To calculate this probability, we first introduce the following mutually exclusive and

exhaustive sets:

e Fjyy consists of all the pairs of different objects which are unrecognizable. The

proportion of such pairs is
N
P(E) = (J\;")/(;) =(N—-n)(N-—n-1)/N(N-1).

e [y consists of all the pairs of different objects one of which is unrecognizable and

the other one is recognizable satisfying. The proportion of such pairs is

P(Ey) = (’X 0) (1Y1> / @) = 2Ny(N — n)/N(N = 1),
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s [ consists of all the pairs of different objects which are recognizable satisfying.

The proportion of such pairs is
N N .
Pz = (5)/(3) - w s - /v -,

o F_yp consists of all the pairs of different objects such as one of them is unrecogniz-

able and the other one is recognizable unsatisfying. The proportion of such pairs

P(E_y) = (Nl“) (Nl‘l) / ("Z ) = 2N_ (N —n)/N(N — 1),

e FE_,; consists of all the pairs of different objects one of which is recognizable unsat-

is

isfying and the other one is recognizable satistying. The proportion of such pairs

P(E_y) = ("\f) (‘N;) / (;’) = IN_,N,/N(N — 1).

¢ E_;_; consists of all the pairs of different objects which are recognizable unsatisfy-

is

ing. The proportion of such pairs is

N_;

P(E_,_,) — ( ; ) /@ ) = N (N - 1) /N(N = 1),

Now, using the rule of total probability, we have that

P(A) = P(ANEw}+P(ANEN)+P(ANEL) +P(ANE_1)) + P(ANE_j))+P(ANE__)).
(3.1)
This reduces our main goal, which is calculating P(A), to calculating the six ‘marginal’

probabilities P(AM Ej;) on the right-hand side of equation (3.1). Of course, the probabil-

ity P(AN Ej;) is equal to 0 when E;; = 0, the empty set. When, however, E;; # 0, then

the probability can be expressed in terms of conditional probabilities by the formula
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Given the above formulas for the probabilities P(E;;), our task reduces to calculating

the conditional probabilities P(A|E;;}, which I denote them as follows:

e When Ey # @, then Bo = P(A|Ey), called the knowledge validity for unrecogniz-
able objects. Throughout this chapter, I set 3, = 1/2, because when facing two -

unrecognizable objects, we choose one of them by flipping a fair coin.

e When Fpy # 0, then ag = P(A{Ey), called the recognition validity, which is the
probability of scoring a correct answer when one object is satisfying recognized and

the other one is not,

o When FE;; # 8, then 3 := P(A|E;), called the knowledge validity, which is the

probability of scoring a correct answer when both objects are recognized via an

additional cue (knowledge cue).

e When £ 11 # @, then v, := P(A|E_}), called the satisfying-unsatisfying recogni-

tion validity for recognizable objects.

o When E_jp # 0, then oy := P{A|E_p), called the unsatisfying recognition validity

for recognizable unsatisfying objects.

e When F_;_; # 0, then 3, := P(A|E_1_1), called the knowledge validity for unsat-
isfying objects. Throughout this chapter, I set 3;; = 1/2, because when facing two

recognizable unsatisfying objects, we choose one of them by flipping a fair coin.

L ]

When E;; = 0 for i, j = —1,0,1 the above parameters are undefined.

Note that under the above specified assumptions of recognition heuristics, 3¢ depends
on x and q, while ag, ay;, and v depend only on x. To indicate these dependencies
on x and/or g, from now on I shall write as(x), Sg(x,q), av(x), and yz(x). In view
of the above, and using the notation g(x,q) := P(A4) to highlight our interest in the

dependence of the success probability P(A) on the recognition vector x and the cue q,
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équation (3.1) reduces to

SN (N-n-1)  _  N(N-n) NN -1
) =f—xmw oy TRsFETY PR oD
N_I(AN - n) J\‘rll\r,1 J\T_]_ (l\r_l - ].)
. - . 3.

with the values 35 = 1/2 and f; = 1/2 as noted earlier.

As I have already noted, when the set E;; is empty, then by definition, the conditional
probability P(A|E;;) is undefined. Consequently, some of the parameters in equation
(3.3) might be undefined. Nevertheless, the right-hand side of equation (3.3} is always
well defined, because if any of the parameters are undefined, then the corresponding term
in the equation vanishes. Indeed, this follows from equations (3.1) and (3.2), with the
latter implying in particular that if P(A|E;;) is undefined, which implies that P(E;;) is
equal zero, and thus the probability P(A4 N E;;) must be zero.

Indeed, when the there are not distinction between recognizable satisfving or unsat-
isfying objects, then N_; = 0 and thus n = Ny, so the last three terms on the right-hand
side of equation (3.3) vanish. Thus, the three level recognition heuristic collapses to the
two levels recognition heuristic. Hence, we obtain the equation of Goldstein and Gigeren-
zer (2002, p.78) stating that the success probability, which in this two-levels case I denote
by f(x,q), is equal to

(N-n)(N-n-1) _ n(N-—n) n(n — 1)
N(N - 1) ZaN(N t 'BN(N —1)’

fxa) =5, (3.4)

where 8y = 1/2, a = ag(x) and 5 = F4(x, q).

3.4 Explicit formulas for the parameters

In this section, I extend Egozcue et al. (2013) and establish closed form solutions of the
parameters in equation (3.3). These findings would allow me to calculate exactly the
accuracy rate for all possible recognition and cue vectors. In addition, these calculations

would be helpful in understanding a number of effects related to the recognition heuristic
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(Gigerenzer & Goldstein, 2011), as well to clarify some arguments that have arisen with

respect to, e.g., the observed inference accuracy and the number of recognized objects
(e.g., Snook & Cullen, 2006; Pohl, 2006;, Pachur & Biele, 2007; Pleskac, 2007; Hertwig
et al, 2008; Pachur et al, 2009; Katsikopoulos, 2010).

Since two of these parameters 8, and 3, are assumed to be 1/2, we need to find
the four remaining parameters, which are «g, B¢, v and ay.? We shall see from the
derived formulas that, as noted by Katsikopoulos (2010), Smithson (2010), none of these
parameters remain constant when n varies, and none of them is a simple function of n.

Now, I proceed to derive the explicit formulas of the parameters in equation (3.3).

3.4.1 The recognition validity ag(x)

In the next theorem I derive the explicit formula for the recognition validity.

Theorem 3.4.1 For N objects represented by their ‘recognition vector’ x, we have that

N N
as(x) = 53 O ( Y- ml)) . R
i=1 j=it+1

Proof. We need to calculate the proportion of correctly guessed pairs among those
with one recognized-satisfying and one unrecognized objects. Since there are N, recog-
nized and satisfying objects and Ny unrecognized objects, using the multiplication rule
of counting, we obtain N, N pairs with one recognized-satisfving and one unrecognized
objects. This gives the denominator on the right-hand side of the first equation of (4.1).
The numerator must be equal to the number of correctly guessed pairs. To confirm the
assertion, we recall that we are comparing pairs where one object which is recognized and

satisfying, i.e. z; = 1 (I note that this element will also coincide with the same element

21 note the reasons behind the notations:

e § stands for "satisfying"
» R stands for "recognition"

o U stands for "unsatisfying"




of x*, say 2} = 1), with another one which is not recoguized, i.e., z; = 0. According to
the heuristic, we shall guess correctly only the pairs of the form (1,0); while the pairs of
the form (0,1} will be guessed incorrectly. We start out our counting in vector x of the
pairs (1, 0) with the coordinate x;: if it is equal to 0 or —1, we discard the case and con-
tinue discarding until we reach the first recognized object, that is, the left-most 1 among
the coordinates of x; let z; = 7 = 1 be this object. There are Z;\q 411 = |z4]} zeros
(i.e., unrecognized objects) to the right of z;. Hence, so far, we have correctly guessed
.1:;* Z?’m +1(1 = |z;]} pairs. To pick up the remaining correctly-guessed pairs, we proceed
with the next 1 and count all the 0's to the right of this 1, and we proceed in the same
fashion until no 1 remains. In this way, we have arrived at Zf\:l x Zj\f:l 2 (= |z

correctly guessed pairs, which are of the form (1,0). This establishes the equation

N N
_ i1 2 i a (1 )
NNy .

as(x) (42)

Remark 3.4.1 In the classical case with two levels of recognition, Goldstein and Gigeren-

zer (2002) define the recognition validity o = ag(z) by the equation

Ry

as() = 5

(4.3)

where Ry is the number of corvect inferences using the recognition heuristic and com-
puted across all pairs in which one object is recognized and another one is not, and
W, is the number of incorrect inferences under the same circumstances. I can now
extend this formula to the three-outcome case. Namely, equation (4.1) implies that
Ru=300 Yl (U= o)) end Wy = 8 o 7701~ |gy). Since S 2 = N,
and Z;.V:l(l - |z,]) = Ny, we have that Wy = Ny Ny — Ry.

The following corollary to Theorem 3.4.1 will allow us (details in the next subsec-

tion} to easily connect formulas in the three-levels case to those already available in the

literature in the two-levels case.
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Corollary 3.4.1 The recognition validity ag(x) can be expressed bé; the formula

N N -

11 [N+ Ny 1) . .

1 stz =S iz, | 44
ag(x) 5t NN 5 + E E GER ;_1 iz (4.4)

=1 j=1

Proof. Starting with the earlier noted formula R; = E:’Tl x; Z}L (L= z5), we

have the following equalities:

=3 a Y-z

i=1 j—i-;—l

D IR D o

i=1 J=i+l i=1 J=i+1
N N N
:ZxT(N—? Zx (Z-*%—Zx;)
q=1 F=i+1 j=1+1
N
:fo(N Za: Z Z:c Z z; (4.5)
i=1 j=it1 j=it+1

Since, SN aF E{V_Hl £ is the combination of pairs with recognized-satisfying objects

then is equal to () = 21821 ang

=i+l

N 1
>t > zx (- 2)
i=1
N i

= N\N_; — Z Zmi T3 (4.6)

Hence, equation (4.5) can be rewritten as follows

N N
=1 =1

. N i

Ni(N; -1 . _

JL%_J+NW4_§:EﬁﬁJ.
i=1 j=1
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Consequently,
i Ny (N — 1) Al
_ ivivr + +
R = _NN1 B NIN_I] Zm,’ -+ ; ;'xi z;
_ N i
. Nl(Arl - 1) Y OAT
- _1\;1(1\ 1 N+ No) = == = NNy sz +sz 7

=1 j=1

N [

= N{ Ny + MM +1) iw + Z Z:c 3. (4.7)

i=1 j=1

Substituting (4.7) into {4.3) we g

ag(x) = N11N0 (NIND Nl +1) Zm +ZZ$ T; )

=1 j3=1
oMy ' .
=1+ SN, NG ]\ Ny ; JZ;:E T Zq.a:
1 1 MM+ 1 al
—— _ 1 1 ™
“3ta T NN, TN, (Z:«JZI‘E % Z w)

i N
1 NiNg+ Ni(N; +1 al
=37 2N; No N'INO > ata; - Z“”

i=1 j=1 =1

L MMMt NotD) <. _
B 2 + 2N117\T0 N]_J\‘D (ZZIE2 33 ;355

i=] j=1

When there are no recognizable unsatisfying objects

The following special case of Corollary 3.4.1 facilitates order relationships of the recogni-
tion validity as{x) for different recognition vectors, and it also connects our results with

those of Pachur (2010) when there are no recognizable unsatisfying objects.

Corollary 3.4.2 When there are no recognizable unsatisfying objects in x, whose all co-

ordinates are non-negative in this case, which implies that 3 | S ie1 %72y = 0. There-
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fore, equation ({.4) can be written as follows

. i N
1 N (N N 1
N1+ Ny + )_Zni

1
- 4.8
2 NNy 2 (48)

Which 1s the equation that appears in Pachur (2010, p.598).

3.4.2 The knowledge validity 54(x,q)

As far as I know, there are no explicit formulas for the knowledge validity 3¢(x, q) in the
literature, apart from its relation with the Goodman and Kruskall measure (Goodman
& Kruskal 1954; Smithson, 2010). I will give more details of this relationship in Section
(3.5). As I have noted earlier, individuals decide with the help of the cue vector g when

both objects are recognizable satisfying.

Theorem 3.4.2 The knowledge validity 8¢(x. q) can be expressed by the formula

1 N
Bs(x,q) = 5 L —1) Z Z ) 5!3 son(a; — G:),s ' (4.9)
i=1 j=i+1
where sgn(x) is the sign function that takes on the values: 1 whenz > 0, —1 whenz < 0,

and 0 when x = Q.

Proof. Note that here we deal with the pairs of both recognized satisfying objects,
that is, with pairs of the form {1,1). Hence, the knowledge validity B¢(x,q) can be

written as the ratio

ZN E—H—l i + 1{Qt<qa}
Z’l 123 e+1

Bs(x,q) = (4.10)

where the indicator 1{g; < q;} is equal to 1 if the inequality ¢ < g; holds, and is equal

to 0 otherwise, that is, when ¢; > ¢,. (By assumption, there cannot be equality between

the elements of the cue vector q, i.e., ¢; # ¢; ).
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In the numerator we count those pairs (1, 1) that have been correctly recognized by

the cue ranking, and this number is

N N N N
Z Z of Ua<gy=> > afzf 1{g g >0}

=1 f=i+1
N N SC"I]_ q)+ 1
— + + 2
"% ()
N N N N
——ZZm ztsen(g; — ¢:) + sz zi. (4.11)
i=1 j=i+1 i=1 j=i+1

Substituting the numerator on the right-hand side of equation (4.10) by the right-hand

side of equation (4.11) and then, after a little simplification, we obtain the equation

The denominator on the right-hand side of equation (4.10) is the total number of pairs

(1,1) that we have to deal with. We observe that
S S et = MV - D)2, 1)
i=1 j=:+1

which follows from the fact that this is the number of unordered satisfactory recognized

pairs, which is (*}'}. After replacing (4.13) in (4.12) we obtain

l' _!V
1
Bs(x,q) = 5t mz Z )z sgn(g; — 4, {4.14)
=1 j=i+1

which is the desired equation. m

3.4.3 The satisfying-unsatisfying recognition validity v,(x)

As I have noted earlier, the satisfying-unsatisfying recognition validity is the probability

of correct guessing when both objects are recognized, but one of them is satisfying and
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the other one is unsatisfying.

Theorem 3.4.3 The satisfying-unsatisfying recognition validity vg(x) can be expressed

by the formula

Yr(x) = le}\f Z( Za;) | (4.15)

j=i-+1
Proof. First we check that there are N; N _; pairs of recognized satisfving and un-
satisfying objects. Here we deal with the pairs of the form (1, —-1) or (-1,1). Similar,

to the proof in Theorem 3.4.1 there are Zil Ej\zq 4127z correct guesses of 1 and —1

J
pairs. This gives the following proportion of correct gnesses

N N
1
+_ 4
Ye(x xlxs : 4.16
= e > ()

3.4.4 The unsatisfying recognition validity ay(x)

The unsatisfying recognition validity is the probability of correct guessing when one
object is unrecognizable and the other is recognized and unsatisfying. The formula for

this parameter is similar to the recognition validity and I derive it as follows.

Theorem 3.4.4 The unsatisfying recognition validity oy (x) can be expressed by the for-

maula:

O:UX

N o Z ((1 EA) Z z; ) (4.17)

=i+l
Proof. The proof resembles somewhat the proof of Theorem 3.4.1. We need to cal-
culate the proportion of correct guesses of pairs, when one object is unrecognized and

the other is recognized-unsatisfying, that is, pairs of the form {0, —1) or (—1,0). The

~ denominator is easily dednced as follows, since there are Z‘\; (1~ |z;|) = Ng unrecog-

nized objects and Z = N_;, we obtain N_| N, pairs of this type and using the

j=1 j
multiplication rule. For the numerator, we need to count the pairs that are correctly

guessed. Since I assume that the individual consider as more "valued" an unrecognized
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object over a recognized-unsatisfying object, then we need to count all the pairs of the
form (0, —1), which are the correctly guessed. The number of pairs of this form is equal

to 3o (1 — |ml) o0 25 . Therefore,

N N -

: (4.18)
N 1Ny

xr; (X] =

So far I have derived the explicit formulas of all the parameters in equation (3.3). This
permits me to calculate (3.3) for any vector x and q. Instead of running simulations that
estimates the proportion of correct guesses, this formulas allows me calculate the exact
accuracy rate of the recognition heuristic. These calculations and an assessment of the

"less is more" effect is the objective of the next section.

3.5 Discussion

In this part of the chapter, I calculate (3.3) in different scenarios. I also compare the
effectiveness of the three-levels recognition heuristic against Goldstein and Gigerenzer's
proposal. First, I pause to present Goodman & Kruskal (1954) measure of association
between vectors. This measure is used in determining the correlation between the cue
vector and the criterion vector. Afterwards, I characterize the conditions under which
the recognition heuristic expected pr'oba,bility of success is equal to 1/2. I also calculate
the expected value f(x,q) and g(x, q) for different scenarios of the recognition and cue
vector. Finally, I study the conditions under which the less is more effect can occur in

the three levels recognition heuristic.

3.5.1 Goodman-Kruskal correlation measure

Goodman-Kruskal (GK) measure of correlation between the criterion vector ¢ and the
cue vector q is commonly used in the recognition heuristic literature (see, for example,

Gaissmaier & Marewski, 2011; Smithson, 2010). The values of this association measure
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ranges from —1 (perfect negative association) to 1 (perfect positive association). Next,
I shall explain how this measure works. Suppose we have two vectors a= (a1, as, ..., a,)
and b= (b1, by, ..., by}, where a; and b; for i, j = 1,2, ..., n, are positive real numbers. We
compare each pair (a;, a;) with (b;, ;) for 4,7 = 1,2, ...,n and i < j. Then pairs (a;. a;)

and (b;, b;) are said to be:

o Concordant if and only if g; < a; and b; < by or a; > a; and b; > b;.
¢ Discordant if and only if o; < a; and b; > b; or a; > a; and b; < b;.

Note that the pairs with the same element’s values are discarded, (i.e. those where
a; = a; or b; = b;). Finally, the Goodman and Kruskal measure, is calculated as follows

C—-D

GK = .
C+D

where C' is the number of concordant pairs and D is the number of discordant pairs. The

following example shall clarify its use.

Example 3.5.1 Suppose we have the following vectors ¢ = (1,2,3,4),x = (1,1,0,1) and
q = (2,1,4,3), which I display in Table 1.

Table 1

c X q
1 1 2
2 1 1
3 0 4
4 1 3

To calculate the GIK measure we conform two vectors a (which represents the criterion
vector) and b (representing the cue vector) of three elements each one (after eliminat-
ing the third row that corresponds to the unrecognized object) yielding: a =(1,2,4) and

b=(2,1.3). Then, we have C§ = 3 possible pairs comparisons. Table 2 shows the results
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of these comparisons

Table 2

(a;, a;) (b, b5) Result
(1,2) (2,1) Discordant,
(1,4) (2,3) Concordant,
(2,4 (1,3) Concordant.

Therefore, C =2, D =1 and thus GK = 1/3.

Remark 3.5.1 As I have noted earlier, the accuracy of the recognition heuristic is
strongly linked with the correlation between the ranking vector ¢ and the cue vector q.
Another reason why GK is o convenient association measure is its relation with the knowl-
edge validity. As pointed out by Smithson (2010, p.232), the GK can be expressed as o
function of B4(x.q) as follows

GK = 284(x,q) — 1. (5.1)

Note that since the cue vector q is used only when both objects are recognized, the Good-
man and Kruskal gamma coefficient is estimated discarding the corresponding values of
the unrccognized objects. For instance, if q = ¢ '=(cy,cn_1,...co,¢1), then GK = —1
and hence 84(x,q) yields its minimum value, which is equal to 0. On the other hand,
when ¢ = q then GK = 1, and thus Bg(x,q) yields its mazrimum value, which is equol to

1. For intermediate levels of GK we would, of course, have 0 < Bg(x,q) < 1.

3.5.2 Expected probability of success

In this part, [ discuss the expected accuracy rate of the recognition heuristic in the two
versions. My aim is to find the expected probability of success of the recognition heuristic
both in the two-levels and the three-levels recognition heuristic for different recognition
vectors. This is done considering all the possible combinations of x and q for a fix N.
As I have pointed out, equations f(x, q) and g(x,q) are both functions of vectors x and

q. Also, as I have noted earlier, for each q, we would have different values of f(x,q) and

86



9(x, q). |
Now, I pause to present some new notation. I shall denote with X a discrete random
variable with support on all possible recognition vectors, and denote with Q a random
variable with support on all possible cue vectors. For instance, if N = 2 then we have
9 possible recognition vectors, say xq, Xs, ..., Xg. Specifically, suppose X is uniform dis-
tributed then, obviously, P(X = x;) = P(X = %) = ... = P(X = xg) = 1/9. In the
same manner, we have 2! possible cue vectors, say ¢, and ¢p. Thus, if Q is also uniform

distributed then P{(Q = q1) = P(Q = q2) = 1/2.

e As a benchmark, I shall assume the simple case when X and Q are independent

random variables.

I shall denote with E [g(X, Q}] the expected accuracy rate when X and Q are random.
On the other hand, I denote with E [g(X, Q}|Q = q] the expected accuracy rate when X
is random and Q is a degenerated random variable which takes value q. I consider the
following permutations of x and q: x™' = (zn,zy_1,...,21) and q ! = (gn. qv—1, .., Q1)
Likewise, X ' and Q= are random variables of, respectively, all possible vectors x ! and

q~!, as defined before.

Note 3.5.1 Notice that a double series Zf:':] Zj\;l a;; can be written as the sum of the

elements of a finite square maotriz

( 211 Q12 13 ... 01N \
Qg1 Q22 G23 ... Qan
Q31 G3z G33 ... dasN

\ oN1 ANz GN3 ann- |

I shall use this faét te prove some different expressions of double series in the next propo-

sitions.

The following assertions have important implications for the expected accuracy rate

of the recognition heuristic.




Proposition 3.5.1 For any x and q the following holds:

1. as(x)+as(x™t) =1
2. Bs(x, q)+Bs(x7.q7!) =
9. ay(x) +ap(x 1) — 1
4 yr(x) T yp(x ") =1

Proof. 1 only prove the first two cases, the other statements can be proved in the

same way.
Note that
as(x) = NN Zﬂ“ Z (1~ |=;)
=i+l
and

aS(X le\f Z 1\—{—1 k z 1—I33}\_|_1 l|

1=k+1

Now changing variables ¢ = N+ 1 — k and j = N + 1 — [ we obtain

N =1

ag(x ™) =W N ijz 1—|z;]).

Jj=

Using the notation suggested in Note 3.5.1 define a;; = 2 (1 ~ |2;]), then

as(x) +ag(x™) = N, N (Zia” + Z Z G,U)

=2 j=1 i=1 j=i+1
= E E a; E a .
JVO ( 17 = n)
i=1 j=1

Joining the facts that $™¥. 0, = 0 and SN Zj‘;la@- = NNy then the conclusion
follows.

Now the second case. Let b,; = 7z . First, we write

S St by M@ < g5}

.BS(X) q) = 2 1V1 (l\rl _ 1)
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.N

Zz o1 a1 xTRa1or - Hanvs1-x < gvgr-1}

JBS(X_lsq_l) =2 N (N1 . 1)

So that, changing variables i = N+ 1—kand j=N +1 -1, we obtain

Z 22 bij 1{q%<‘?)}'

Bs(xa™) =2 N (1\' 1)

Since S, Z —ir1 Dy = N1(Ny — 1)/2, we have

Z z im0 - M@ < g5} + Z Z;jl bij - 1{g; < g;}

Bs(x,q) + Bs(x",q7 ") =
o ; Zi=1 Zj=i+l ij

(5.2)
Notice that .
i N N
Z Z big =bua+ +biz+ ... F by +bas+ ... +byoy
i=1 j=i+l

and

o3,
[ay

N
Z b?"? = b21 -+ b31 + b32 + ...+ bN] + ...+ bN:’VLl'

=2 j=1

Since each element of q are different (because I have assumed there are no ties in the cue

vector), we have

g < g} + g > g5} = 1 for i # j. - (5.3)

Together with the fact that b;; = b;; we obtain

bij - Ha < gz} +bsi - Mgy < @i} = by (5.4)
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Therefore, owing to the equalities (5.3) and (5.4), the numerator is equal to

N Noi-1
> Z bi; - 1{a: <%}+Zzbw Hai < g5}
i=1 j=i+1 =2 j=1

=bp-Ha<@}+bn H{a<al+.. +oyav-1{gv_1 <an}
+byni gy < gn_1}
=bia++bis+ ...t bhiv L bag + ..+ by

N N
=22 b

i=1 j=i+1l

This shows that the numerator and the denominator in (5.2) are equal, thus the assertion

follows. m

With the aid of Proposition (3.5.1), I next establish a connection with the overall

accuracy rate as it is expressed in equation (3.3).

Proposition 3.5.2 Lei x and q. Then

glx.a) +olxha ) =1 (5.5)
Proof. By Proposition 3.5.1 we have

(N—n)(N-n—-1) Ni(N —n)

.g(xiluq—l) = (1 - 80) !V(AT . 1) +2 (1 - QS(X)) N(N _ 1)
+{1-Bs(x,q)) ——*j‘:il,-((j.:‘:l__l)) +2(1 — ay(x)) ‘N'f;z§<>r__l?; )
#2112 iy (- ) T

Now, after some algebra, we arrive at

gx"ha Yy =1-g(x,q).

This concludes the proof of Proposition 3.5.2. =

Finally, a striking implication for the expected accuracy rate of the recognition heuris-
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tic emerges from Proposition 3.5.2 which I show next.

Proposition 3.5.3 Suppose X and Q are independent and uniformly distributed random

variables. Then

E[y(X, Q) = 1/2.

Proof. Since X is uniformly distributed and X and X! are bijective, it follows
that X and X! are identically distributed. Likewise, we deduce that Q and Q™! are
identically distributed as well. Together with the fact that X and Q are independent, we
(;btain that the distribution function of (X, Q) is equal to that of (X1, Qfl). Hence

E[g(X, Q] =E[g(X,Q™"]. (5.6)

Therefore, taking expectations in both sides of (5.5) we obtain

Eg(X,Q]+E[g(X Q] =1

By equality (5.6), the assertion follows. ®

This result has interesting implications for the expected probability of success of the
recognition heuristic. It implies that, if recognition vectors are equally likely and each cue
vector is available with the same probability, then the expected accuracy rate is equal to
1/2. Thus, under this condition the three levels and the twb levels recognition heuristic
are strategies that in, average, cannot improve the strategy of choosing pairs randomly.

‘However, it is a strong assumption that each recognition vector is equally likely in
the class of all recognition vectors, and also each cue vector is equally likely in the class
of all cue vectors. For instance, a more plausible assumption is to expect a positive
correlation between ¢ and q. A reasonable assnmption is to suppose that individuals
would recognize the best and the worst objects in the criterion ranking. Indeed. in real
life, we are usually aware of the best and the worst objects for different categories. Based
on this assumption, I define the following subsets, namely S = {x: z; = 1,2y = 1}

and 7' = {x: z; = 1,2y = —1}. The elements of set S are those x such that the first
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and the last objects in the criterion ranking are recognized. In addition, the elements of
set 1" consist in all recognition vectors where the first element of the criterion ranking
is satisfactorily recognized and the last object of the criterion ranking is unsatisfactorily
recognized.

Finally, I denote with S a discrete random variable with support on all possible x such
that x €5 and with T a discrete random variable with support on all possible x such
that x €T. Hereafter, I shall assume that X, S and T are uniformly distributed and are
independent with Q.

Now, I calculate the expectation of (3.3) for vectors with three and ten objects. Notice

- that the number of possible combinations increases significantly with N. In the first case

for N = 3, we would have twenty seven possible x vectors, and six possible q vectors.
On the other hand, for N = 10 we would have 3'° = 59,049 possible x vectors, and
10! = 3,628,800 possible cue vectors g.3

First, I start with recognition vectors with N = 3. As noted earlier, there are 6
possible cue vectors and 27 possible recognition vectors. As I have previously assumed,
each one of the recognition vectors are chosen with the same probability. I shall also
consider the cases when the recognition vectors belong to the sets S and 7.

I summarize the calculations of the expected probability of success for different sce-

narios in Table 3.

Table 3: The expected probability of success for N = 3 (%)

q

(1,2,3) (1,3,2) (2,1,8) (2.3,1) (3,1,2) (3.2,1)
Eg(X,Q)|Q=q 5556 5185 51.85 4815 4815  44.44
E{g(T,Q)|Q=q] 9444 9444 8333 9444 8333  83.33
E[f(X,Q)|Q=q 6250 5417 5417 4583 4583  37.50
E[f(S,Q)IQ=q 8333 6667 66.67 3333 3333  16.67

1 have used Wolfram Mathematica software. I note that computer memory was the main limitation
to run calculations with more than 10 objects.
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When we consider all the possible recognition vectors, we see that E [¢(X, Q)|Q = q]
ranges from 55.56% when q =c¢ to 44.44% when q = c¢™!. The expected accuracy
rates improves significantly when we restrict our analysis to all x €7, yielding a min-
imum of E[g(T,Q)|Q = q} equal to 83.33%. For the two level recognition heuristic
E[f(X,Q}|Q = q] ranges from 62.50% when q = ¢ to 37.50% when q = ¢!. However,
for x €85 the values of E[f(S,Q)|Q = q] varies from 83.33% to 16.67%.

Now, I do the same calculations, but new considering recognition vectors with N = 10.
In this case, the number of cue vectors increases significantly. With this in mind, I have

calculated the expected accuracy rate considering three different cue vectors:
1. When q = ¢, which implies GK = 1.

2. When q =¢® = (10,9,3,4,1,2,5,7,6,8), which gives a correlation measure of
GK = 1/45,

3. When q = ¢~ !(en, en—1, ..o, ¢1) which implies GK = —1.

I present a summary of the results in (%) in Table 4,

Table 4

The expected probability of success, N = 10

0 1

gq=c¢ q=c¢' gq=c¢”
E[g(X.Q)Q=q] 5556 5012 44.44
E[g(T,Q)Q=q] 6938 6049  56.54
E[f(X,Q)iQ—q] 62.50 5027  37.50

Eif(S,Q)Q=gq] 8333 4888 3222

The results show that on average both the three level and the two-level recognition
heuristic effectiveness is larger than 1/2 when there is a positive GK measure. In addition,
in the three-levels recognition heuristic when the first object is recognized satisfying and
the last object is recognized unsatisfying, then the accuracy rate in average is larger than
choosing randomly even when the correlation measure is by perfect negatively correlated.

This is not the case in the two-levels recognition heuristic, where this heuristic does better
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when there is a perfect positive correlation between ¢ and q, but does worse when the

q=-cL

When q = c°, the average accuracy of the three levels recognition heuristic
mmproves slightly the strategy of choosing randomly. Ho‘wever, the accuracy rate in the
three levels recognition heuristic improves significantly if the first and the last object of
the ranking are recognized. For instance, if ¢ and q are perfect negatively correlated,
which is the minimum expected probaibility of success, then E{g(T, Q)|Q = q] equals
56.54%. Meanwhile, when q = c the expected accuracy rate is equal to 69.38%. If we now
consider all x €85, the two levels recognition heuristic probability of success are 37.50%

and 62.50% respectively.

In summary:

¢ The three-level recognition heuritic outperforms the two-level recognition heuristic
when the first and the last objects of x are recognized. For N = 3 the minimum
expected accuracy rate for the three levels recognition heuristic is equal to 83.33%,

whereas for N = 10 this minimum equals 56.54%.

0

e For q = c and q = ¢”, in average the two-level and three-level recognition heuristic

outperforms the strategy of choosing randomly.

3.5.3 Less is more effect

In this subsection, I shall discuss the less is more effect. Katsikopoulos (2010) and
Smithson (2010) study the LIME and characterize the conditions under which this effect
could occur.*

This effect occurs when the recognition vector that maximizes g(x, q), which I denote
with x* has some unrecognized objects. That is, for this vector we will have n < N.
Thus, subjects benefit from recognizing fewer objects. This is a controversial implication

of the recognition heuristic. There is mixed empirical evidence on this effect. On the one

hand, some have reported evidence of its occurrence (Goldstein and Gigerenzer, 2002;

. 1The less is more effect happens to occur also in probabilistic models that rely on the use of g-algebras
to model information (Dubra & Echenique, 2004).
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Serwe and Frings, 2006; Scheibehenne and Broder, 2007). On the other hand, others
have not identified its occurrence (e.g., Pachur and Biele, 2007). Nevertheless, most of
these works tested the LIME in experiments and Jor computer simulations. The explicit
formulas of the parameters derived above allow me to find exact numerical calculations.

For this purpose, I find the recognition vectors x that maximizes g(x,q) for N = 10

considering the three GK that I have used before. Here I find the optimal x* that solves

*

9(x",q) = max g(x,q)

for three different values of q. I summarize the results in Table 5.

Table 5: Less is more effect (LIME)

q x* q gxq (%) N Ny N1l n
c (1,1.1,1,1,1,1,1,1,1) c 10000 10 0 0 |10
c (1,1,1,1,1,1,1,1,1,0) c 100060 9 1 0 |9
c (1,1,1,1,1,1,1,1,1,—1) c 10000 9 0 1 |10
c (1,1,1,1,1,1,1,1,0, 1) c 10000 8 1 1|9
c® |(1.1,0,0,0,0,—-1,-1,—1,-1) c° 84.44 2 4 4 |6
¢! [ (1,1,0,0,0,0,-1, 1, 1,-1) ¢! 8444 5 4 4 |6

One can see in Table 5 that when q = c there are four vectors (second column) that
yields a 100% of accuracy rate, two of these vectors have 10 recognized objects, the other
two have 9 recognized objects. Thus, we would expect that the LIME effect appears with
a probability of 50%. Meanwhile, there is a unique recognition vector that maximizes

g(x,q) for q=c® and for g=c1.

This recognition vector has 6 recognized objects.
Hence, in these cases the LIME appears with probability 1.

This results show that the LIME occurs (for these cue vectors) when GK < 1. The
infuition of this conclusion can be explained as follows. Since the cue vector is not
perfectly correlated with the criterion vector, then the more objects we recognize the

more (1,1} comparison mistakes we make. Thus, when cues are not reliable, recognizing
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more objects does more harm than good. In summary, the LIME appears to have greater

effect when the correlation between the recognition vector and the cue vector decreases.

3.6 Concluding remarks

In this chapter, I extend Goldstein and Gigerenzer (2002) recognition heuristic model.
In my proposal, instead of considering two levels of recognition, [ posit three levels of
recognition. To this purpose, I infroduce an additional level of recognition that categorize
those recognized but unsatisfying objects. This new class permit individuals to prefer
an unrecognizable object over a recognizable but unsatisfying one. Also, my proposal
includes as a spectal case the two-level recognition heuristic model.

I also derive the explicit formulas of all the parameters involved in the probability of
success. These formulas allow me, instead of doing estimations of this probability, to find
exact calculations of (3.3). In addition, I show that when the recognition vectors and the
cue vectors are equally likely then the recognition heuristic accuracy rate is equal to 1/2.

I characterize the conditions under which the three-level recognition heuristic out-
performs the two-level recognition heuristic. The three-level recognition heuristic out-
performs Goldstein and Gigerenzer model when recognition includes the ﬁrst and the
last objects of the ranking. Finally, calculations show that less is more effect is likely to
appear when the cue vector is negatively correlated with the criterion vector.

This chapter can be extended in several directions. First, one can relax the assumption
of perfect memory and consider a framework of imperfect memory. Second, it could be
mteresting to study the heuristic expected accuracy rate for random vectors without the
independence and uniform distribution assumptions. Finally, whether this heuristic is a

descriptive behavior in real economic contexts remains as a task for future research.
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Chapter 4

Mental accounting for multiple

outcomes!

4.1 Introduction

Whether to keep, say, n € N products segregated (e.g., unbundled) or integrate some
or all of them (e.g.. bundle) has been a problem of profound interest in areas such
as portfolio theory in finance, risk capital allocations in insurance, and marketing of
consumner products. Such decisions are inherently complex and depend on factors such
as the underlying product values and consumer preferences, the latter being frequently
described using value functions, also known as utility functions in economics. Quite often
we want, or are required, to decide whether to combine all or only some products, objects,
subjects, étc., which we call exposure units throughout the chapter — a convenient term
that we borrow from the actuarial credibility theory (cf., e.g., Klugman et al., 2008).

All n € N exposure units have attached to them experience values, which we simply
call experiences and denote by x, ¥, z, z;, and so forth. Given a value/utility function, we
want to determine if all or only some exposure units should be integrated (e.g., bundled,
etc.) or segregated (e.g., unbundled, etc.).

This topic is closely related to the concept of mental accounting introduced by Thaler

!Jointly with Sebastien Massoni, Wing Keung Wong and Ritardas Zitikis.
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(1980, 1985). Specifically, mental accounting (Thaler, 1999) is “the set of cognitive

operations used by individuals and households to organize, evaluate, and keep track of
financial activities.” Thaler (1980, 1985) defined a pattérn of optimal behaviors depending
on the type of exposure units with positive and negative experiences, concentrating on
the case of two units.

"The actual or perceived experiences are reflected by a value function v : R — R, which
is increasing and is also frequently assumed to be convex for non-positive experiences
(z < 0) and, in order to reflect the degree of risk aversion, concave for non-negative
experiences (r > 0). In addition, we assume that v is continuous, which is a standard
assumption. That is, unless explicitly noted otherwise, we deal with the S-shaped value

function

h >0,
o(z) = vy (2) when =z > 0, (L.1)
—v_(—z) when z <0,

where v_, vy : [0,00) > [0, 00} are continuoﬁs, increasing, and concave fuhctions such
that v_(0) = 0 = v, (0), v_(z) > 0 and v, (x) > 0 for all z > 0. Hence, we are dealing
with S-shaped functions, which are concave for gains and convex for losses. We refer to
Gillen and Markowitz (2009) for a taxonomy of value/utility functions with illuminating
discussions.

It has been noted (cf. al-Nowaihi et al, 2008; Tversky and Kahneman, 1992} that

within prospect theory, the value function v takes on the special form

z¥ when z >0,
Ura8(T) = (1.2)
—M~2)® when z <0, ‘
provided that the so-called preference homogeneity holds, where o, 3 € (0, 1] and A > 0
are some parameters. We refer to Wakker (2010) for a comprehensive treatment of the
prospect theory.
al-Nowaihi et al. (2008) have proved that the condition of preference homogeneity is
necessary and sufficient for the value function to be of the form (1.2). Furthermore, al-

Nowaihi et al. (2008) have shown that under the additional and quite natural assumption
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of loss aversion, the parameter A\ must necessarily be greater than 1, and the other two
parameters «, 5 € (0, 1] must be identical, i.e. & = 8. Thus. in this chapter we call A
the loss aversion parameter., -
A natural generalization of function (1.2} under the assumption of loss aversion is
therefore the following value function
oa(2) = u{x) when 2 >0, (1.3)
—Au(—z) when z <0,
which features prominently in the literature {e.g., Abdellacui et al., 2008; Broll, et al.,
2010; Egozcue et al., 2011; Jarnebrant et al., 2009; Kébberling and Wakker, 2005;
Wakker, 2010; and references therein), where we also find discussions concerning the
loss aversion parameter A and the base utility function u : [0, 0c) — [0, 0¢). The present
research also follows this line of research, and we thus mainly deal with value function
(1.3). We assume that the base utility function v is continuous, increasing, concave, and
such that u(0) = 0 and u(x) > 0 for all z > 0. The loss aversion parameter A can be any

positive real number.
Now coming back to our main discussion, we note that Thaler (1985) postulates four

basic principles, known as hedonic editing hypotheses, for integration and segregation:
P1. Segregate (two) exposure units with positive experiences.
P2. Tntegrate (two) exposure nnits with negative experiences.

P3. Integrate an exposure unit carrying a smaller negative experience with that carrying

a larger positive experience.

P.4 Segregate an exposure unit carrying a larger negative experience from that carrying

a smaller positive experience.

Here we recall a footnote in Thaler (1985) saying that “|fjor simplicity I will deal only
with two-outcome events, but the principles generalize to cases with several outcomes.”

When there are only two exposure units, then there can only be two possibilities: either

99



integrate or segregate. Mathematically, if the two exposure units with experiences x
and y are iﬁtegrated, then their value is v(z + y), but if they are kept separately (i.e.,
segregated), then the value is v(z) 4+ v(y}): For detailed analyses of this case, we refer to
Fishburn and Luce {1995}, Egozcue and Wong (2010), and references therein. For exam-
ple, Egozcue and Wong (2010) have found that when facing small positive experiences
and large negative ones, loss averters (see, ¢.g., Schmidt and Zank, 2008, and references
therein) sometimes prefer to segregate, sometimes to integra,te: and at other times stay
neutral. For a detailed analysis of the principle P4, which is known as the ‘silver lining
effect,” we refer to Jarnebrant et al. (2009).

In this chapter we develop decision rules for multiple products, which we generally
call ‘exposure units’ to naturally cover manifold scenarios spanning well beyond ‘prod-
ucts.” Our findings show, for example, that the celebrated Thaler’s principles of mental
accounting hold as originally postulated when the values of all exposure units are posi-
tive {i.e., all are gains) or all negative (i.e., all are losses). In the case of exposure units
with mixed-sign values, decision rules are much more complex and rely on cataloging the
Bell-number of cases that grow very fast depending on the number of exposure units.
Consequently, in the present paper we provide detailed rules for the integration and
segregation decisions in the case up to three exposure units. and partial rules for the
arbitrary number of units.

We have organized the rest of the chapter as follows. In Section 4.2, we give a complete
solution of the integration-segregation problem in the case of two exposure units, with
experiences of any sign, whereas in Section 4.3 , we accomplish the task in the case
of three exposure units. In Section 4.4, we discuss the case of the arbitrary number
of exposure units by setting, naturally, more stringent assumptions than those in the
previous sections. In Section 4.5 we present some applications to economics and show
some illustrative examples as well. Section 4.6 finishes the chapter with the concluding

remarks.

- 100



7

4.2 Case n = 2: integrate or not?

Even in the case of two exposure units (i.e., when n = 2), decisions whether to integrate
or segregate — and there can only be these two cases ~ crucially depend not only on the
experience values but also on the value function v. This problem has been investigated
by Egozcue and Wong (2010) and Jarnebrant et al. (2009), but we shall give here a more
complete picture of the matter. For illustrating examples, we refer to, e.g., Lim (2006)

Gilboa (2010), and Kahneman (2011).

7

When we deal with only two experiences of same sign, then integration-segregation
decisions are simple, as the following theorem shows. Throughout the rest of the chapter,

the valuc maximizer means the value maximizing decision maker.

Theorem 4.2.1 The volue mazimizer with any value function v defined in (1.1) prefers
to segregate two exposure units with positive experiences and integrate those with negative

ELPETIENCES.

We skip the proof of Theorem 4.2.1 since it can be proved using majorization. Here-
after, we shall frequently use a special case of the Hardy-Littlewood-Pélya (HLP) ma-
jorization principle (e.g., Kuczma, 2009, p. 211). Namely, given two vectors (z7,.4) and

(¥1.2), and also a continuous and concave function », we have the implication:

X1 > Ta, Y1 2 Y
Tyt e =1+ = v(z1) +v(z2) > v(1n) + v(1). (2.1)

I <y

To exemplify, we may view Theorem 4.2.1 as saying that the value maximizer prefers
to enjoy two positive experiences on, say, two different days, but if he faces two negative
experiences and has a choice over the timing, then he prefers to get over the experiences
as quickly as possible, say on the same day. Note that Theorem 4.2.1 does not impose
any restriction on the value function v, except those specified in definition (1.1}, Finally,
we note that Theorem 4.2.1 is a special case of Theorem 4.4.1 to be established later in

the chapter.
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The following theorem specifies those values of the parameter A in the value-function

- vy for which integration or segregation is preferred in the case of two exposure units

having experiences of different signs.

Theorem 4.2.2 With the value function vy defined in (1.3), assume that one exposure
unit has a positive experience xy. > 0 and another one has a negative experience x.. < (.

Let x = (z4,z.) and denote

" ulzy) —u(max {0,z +z4})

T(x) = u(—z_) — u(max {0, —(z- +$+)}) .

(2.2)

Then the value mazimizer prefers integrating the two experiences if and only if T(x) < A

- and segregating them if and only +f T'(x) > A

Theorem 4.2.2 has been established by Egozcue and Wong (2010). We shall see in
Section 4.4, which deals with an arbitrary number of exposure ‘units, that Theorem 4.2.2
is a corollary to our more general Theorem 4.4.2. Hence, we do not give a proof of
Theorem 4.2.2 here.

For an illustration of Theorem 4.2.2, we suggest to think of a situation when, say, the
root-canal of one of our teeth has to be done and we try to decide whether this procedure
should be done on the day of an exciting concert {which would hopefully help us to forget
the unpleasant experience) or on a different day {so that we would not be bothered during
the concert by the earlier unpleasant experience). Personally, we find this a non trivial
choice. and this is indeed reflected by the increased mathematical complexity of Theorem
4.2.2 if compared to that of Theorem 4.2.1. For more examples, one may refer to, e.g.,
Gilboa (2010), and Kahneman (2011).

We are now in the position to elaborate on ‘our’ threshold T(x) and compare it with
that used by Jarnebrant et al. (2009). In short, the two thresholds delineate two different
but closely related regions: T'(x) concerns with the integration-segregation region with

respect to the loss aversion parameter A, whereas the threshold used by Jarnebrant et al.

(2009) concerns with the gain region by dividing it into two parts: in one, segregation’

is preferred, and in the other part, integration is preferred. In more detail, Jarnebrant
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et al. (2009) specify conditions under which the ‘silver lining effect’ occurs, assuming
the same value-function v, as in the present chapter. They show, for example, that if a
gain 18 smaller than a certain gain—threshold, then segregation is preferred. In contrast,
our A-based threshold is related to a certain value of the loss aversion parameter A: if
it is smaller than the threshold, then segregation is preferred; otherwise integration is
preferred. Note also that the threshold T(x) has an explicit formula, whereas a formula
for the threshold used by Jarnebrant et al. (2009) is more difficult to arrive at. Moreover,
their definition is not yet clear for more than two exposure units, even for three units,
because in this case we could have, for example, two gains and a loss and would thus be
required fo use a threshold-set of some kind, instead of just a threshold-parameter.

We next provide an insight into the magnitude of the threshold T(x); namely, whether
it 1s below or above 1. Knowing the answer is useful because if, for example, under the
assumption of Theorem 4.2.2, T'(x)} < 1 and the decision maker is loss averse, that is,

A > 1, implies that the value maximizer prefers integration.

Theorem 4.2.3 Assume that the conditions of Theorem 4.2.2 are satisfied, and thus
emong z1 and Ty there 15 one positive and one negative value. If 1 + z2 > 0, then

T(x) <1, and if 21 + 25 < 0, then T(x) > 1.

Proof. We start with the case z; + 23 > 0. Then T(x) < 1 is equivalent to
u(zy) — u(z- + 25) < u{—=z ), which using the notation y;, = —2_ > 0 and yy =
z_+z4 2z 0 can be rewritten as the bound u(y; +v2) < u{y1) +u(y2). By Theorem 4.2.1,
the latter bound holds, which esta,blishes T(x) < 1. When z;+25 <0, then T'(x) > 11s
equivalent to the bound u(z )+ u(—z_ —x.) > u(—2_). With the notation z; = 2. > 0
and zp = —2_ — 2, > 0, the above bound becomes u(z; + z) < u(z) + u(z). By
Theorem 4.2.1, the latter bound holds, and so we have T(x) > 1. This completes the
proof of Theorem 4.2.3. =
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4.3 Case n = 3: which ones to integrate, if any?

Complete integration or complete segregation may not result in the maximal value when
there are more than two exposure units, and thus a partial integration-segregation deci-
sion could be better. Tn this section we shall give a complete solution to this problem in
the case of three exposure units (i.e., n = 3).

We begin with a note that the value maximizer with the value function v defined in
(1.1) prefers to segregate three exposure units with positive experiences, and integrate
three exposure units with negative experiences (we refer to Theorem 4.4.1 to be estab-
lished later). When there are mixed experiences (i.e., at least one positive and at least
one negative), then integration-segregation decisions are complex. To illustrate, we next

give an example (in two parts) violating principles P3 and P4.

Example 4.3.1 Assume the value function

x” when x > 0,

Uy (z) =
f —M—2)Y when z<O.

Countering P3: Suppose that A = 1.4 and v = 0.4. Let x = (2,2,-3.99). The sum
of the experiences is > zx = 0.01. Hence, a straightforward extension of Principle
P3 with n = 3 would suggest integrating the three exposure units into one, but
the following inequality implies the opposite: vy, (3] zx) = 0.1584 < > uy,{2x) =
0.2039.

Countering P4: Suppose that \ = 2.25- and v = 0.88. Let x = (0.5,—10,—20). The
sum of the experiences is 3 xy = —29.5. Hence, a straightforward extension of
Principle P4 with n = 3 would suggest segregating the three exposure units, but
the following inequality says the opposite: v, (3. x,) = —44.2207 > Z’U,\(.'Bk) =
—47.9361.

Hence, we now see that neither complete segregation nor complete integration of

three {or more) experiences with mixed exposures may lead to maximal values. For this
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reason, we next develop an exhaustive integration-segregation theory for three exposure
units, which is a fairly frequent case in practice. To illustrate, the following example is

borrowed from the telecommunications industry (Bell Aliant, 2012):

o TV + Internet + Home Phone: $99.00/month (regular $135.95)
e TV + Home Phone: $64.95/month (regular $98.95)
e TV + Internet: $94.95/month {regular $110.95)

‘o Internet + Home Phone: $69.95/month (regular $91.95)

Note from the prices that depending on factors such as the prices of individual prod-
ucts as well as (likely unknown but guessed) underlying value functions, there are pos-
sibilities for discounts due to bundling. Another popular example of bundling would be
vacation packages (e.g., Orbitz, 2012) that usually involve flight, hotel, and car; in various
combinations. Yet another popular bundle would be the office software suit, which among
possibly many ‘auxiliary’ components, usually has the following three base components:
word processor, spreadsheet, and presentation program. Note that the above examples
concern with three different products, as is generally the case throughout the current
chapter, but there can also be, for example, ‘volume bundling’ of identical products, in
which case we would deal with identical z,...,z, or, specifically to this section, with
identical x, y, and z, that is, z = y = 2.

Unless explicitly noted otherwise, we shall work with the value function v, defined by

equation (1.3). The three experiences are z, y and z, and we assume that they satisfy
z+y+2>0 | | (3.1)
Furthermore, without loss of generality, we assume that
T2y 2>z, (3.2)

since every other case can be reduced to (3.2) by simply changing the notation. We also
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assume, without loss of generality, that

70, y#0, z#0, (3.3)

because if at least one of the three experiences is zero, then the currently investigated
case n = 3 reduces to n = 2, which has been discussed earlier in this chapter and also
investigated by Egozcue and Wong (2010).

Finally, we note that there are five possibilities for integration and segregation in the

case of three exposure units:
A. ox(x) +oaly) +oalz),
. B.oua2) + oy + 2),
C. uly) + oz + 2),
D. uy(z) +w(z +v),
E. wxz+y+2).

In summary, our goal in this section is to determine which of the above five possibilities
produces the largest value (maximal). We also want to know, and Note 4.3.1 below will
explain why, which of the five cases and under what conditions produces the smallest

value (minimal). This is exactly what Theorems 4.3.1-4.3.5 will establish.

Note 4.3.1 The reason for including the minimal values when only the mazimal ones
seem to be of interest, is due to the fact that finding the maximal ones in the case x +
y+z <0 can be reduced to finding the minimal ones under the condition x +y + z > 0.

Indeed, note that x +y + z < 0 48 equivalent to z~ +y~ =+ 2z~ > 0 with the notation

T =2,y =y, and 27 = —z. Since A > 0, the equation
1
ui(z) = —3F vyt (—2)

with A = 1/X implies that finding the mazimal value among (A)—~(E) is equivelent to

finding the minimal volue among the following five cases:
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vipdsT ) ey + ega(z),

via(eT) Hoaly™ +27),

vialyT) ol 4+ 27),

nn(z7) Fuple +y7),
unle™+y +z7).

The minimal values among the latter five cases will be easily derived from Theorems
4.3.1-4.3.5, where we only need to replace z, y, and 2 by z—, y~, and 2™, respectively,
and also replace the parameter A by 1/).

Since from now on we are only concerned with the case 2-+y+2 > 0, we therefore know

that at least one of the three exposure units has a non-negative experience. Furthermore,

every triplet (z.y. z), falls into one of the following five cases:

z>y>z20 (3.4)
z>y>02>2 and y> -z | (3.5)
z>2y>20>2z and z2>-2z>y (3.6)
x>y>0>2z and —z>z (3.7)
t>20>y>z (3.8)

In the proofs of Theorems 4.3.1-4.3.5 below, we use notation such as “3=.” To clarify
its meaning, we take, e.g. the statement (A4) = (F), which means that vy(z) + va(y) +
ta(2) 2 va{z +y+ 2). Hence, (A) 3= (E) says in a concise way that the value maximizer
prefers (A} to (E). Naturally, the value minimizer — and we consider this case due to
the reason given in Note 4.3.1 - prefers (E) to (A) whenever the relationship (A) = (F)
holds.

Theorem 4.3.1 Let the value function be vy, and let (5.4) hold. Then we have the

following two statements:
Maz: (A) gives the mazimal value among (A)-(E).
Min: (E) gives the minimal value among (A)-(E).

107



i

Proof. Since the three exposure units have non-negative experiences z, y. and z,
Theorem 4.4.1 implies that complete segregation maximizes the value. Hence, {A) attains
the maximal value among (A)—(E). Same theorem also implies that complete integration,
which is (E), attains the minimal value. m
* The following analysis of cases (3.5)—(3.8) is much more complex. Now we are ready

to formulate and prove our next theorem.
Theorem 4.3.2 Let the value function be vy, and let (3.5) hold.

Maz: With the threshold Tac = T'(x, z), the following statements specify the two possible

mazimal values among (A)-(E):
— IfTAC > )\, then (A)

- IfTAC S )\, then (C)

Min: With the threshold Tpp = T(z + y,2), the following statements specify the two

possible minimal values among (A)-(E):
— If Tpg > A, then (E).

— If Tpg < A, then (D).

Proof. Since 2 and y are non-negative, from Theorem 4.4.1 we have that (A) » (D),
and since r and y + z are non-negative, the same theorem implies that (B) = (F)}. The

proof of (C} = (B) is more complex. Note that (C) = (B) is equivalent to

u(y) + oz + 2) > ua(z) +ua(y + 2), (3.9)

which we establish ags follows:

» When z + z > y, then we apply the HLP principle on the vectors (z + 2,9} and
(z,y + 2) and get vy(z + 2) + v(y) > wa(2) + ua(y + 2), which is (3.9).

¢ When z + z < y, then we apply the HLP principle on the vectors {y, z + 2} and
(z.y + 2), and get v;(y) + valz + 2) > vr(2) + vx(y + 2), which is (3.9).
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This completes the proof of inequality (3.9). Hence, in order to establish the ‘max’

part of Theorem 4.3.2, we need to determine whether (A) or {C} is maximal, and for the
‘min’ part, we need to determine whether (D) or (E) is minimal.

The ‘maz’ part.

Since £ > 0 and z < 0, whether (A) or (C) is maximal is determined by the threshold
Tac: when Tac < A, then (C) » (A), and when Tye > A, then (A) = (C). This
concludes the proof of the ‘max’ part.

The ‘min’ part.

Since 2 +y > 0 and z < 0, the threshold Tpz = T'(z + v. z) plays a decisive role: if
Tpe < A, then (E) = (D), and if Tpg > A, then (D) 3= (E). This concludes the proof of

the ‘min’ part and of Theorem 4.3.2 as well. m
Theorem 4.3.3 Let the value function be vy, and let (3.6) holds.

Maz: With the thresholds Tae = T'(z,z) and Tup = Tly,z), the following statements

specify the two possible maximal volues among (A)—(E):

— If Tae = A, then (A)
- IfTAC < )\, then (C)

Min: With the thresholds Tpg = T{(z,y+ 2), Tprp = T{x +y, z), and

u(z + y) — u(z)
u(—z) —ul~y - 2)’

TBD -

the following statements specify the three possible minimal values among (A)—~(E):

— If Tgeg < A and Tgp > A, then (B).
— IfTpp < A and Tp < A, then (D).

- IfTBE > A and TDE > ,\, then (E)

Proof. Since z and y are non-negative, we have (A) 3 (D), and since y and z + 2
are non-negative, we have (C) »» (E). Hence, it remains to consider only cases (A), (B)

3

and (C) for the ‘max’ part of the theorem, and only (B). (D), and (E) for the ‘min’ part.
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The ‘maz’ part.

First we show that Ty < T4p. Since x+2z > 0. from Theorem 4.2.3 we have Tyo < 1,
and since y + z < 0, the same theorem implies Tyg > 1. Hence, Tue < Tap.

To establish that (A) is maximal when T4c > A, we check that (A) = (B) and
(4) = (C). The former statement holds when Typ = T'(y,z) > A, and the latter when
Tac = T(z,z) > A. But we already know that Tue < Tap. Therefore, when Tae > A,
then T4p > A. This proves that when T4 > A, then (A) gives the maximal value among
(A), (B}, (C), and thus, in turn, among all (A)—(E).

To establish that (C) is the maximal when Tsc < A, we need to check that (C) = {A)
and (C) = (B). First we note that when Tur < A, then (C) = (A). Furthermore,

uz) +ualy + 2) <ualy) + oz + 2) <= ulz) — du(—y — 2) < uly) +ulz + 2)
< The < A,
where Tpe is defined by the equation

u(z) — u(z + 2) — uly)
u(—y ~ 2) '

Tpe =

Hence, when T < A, then (C} &= (B). Simple algebra shows that the bound Tge < Txp
1s equivalent to T'ae < Typ, and we already know that the latter holds. Hence, Tae < Tan
and so Tpc < A when Ty < A, In summary, when Ty < A, then (C) gives the maximal
value among all cases (A)—(E). This concludes the proof of the ‘max’ part.

The ‘min’ part.

We first establish conditions under which (B) is minimal. We have (E) = (B) when
Tee < A To have (D) = (B), we need to employ the threshold Tgp, which is defined
in the formulation of the theorem. The role of the threshold is seen from the following

equivalence relations:

n(z) + oy + 2) S ul(z) +tualz +y) <= ulz) - du(—y — 2) < =du(—2z) + u(z + y)
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Hence, if Tsp > A, then (D) = (B). In summary, when Tgr < A and Tsp > A, then (B)
gives the minimal value among all (A)—(E). '

‘We next establish conditions under which (D) is minimal. First, we have (£) &= (D)
when Tpp < A, Next, we have (B) »= (D) when Tgp < A In'sumﬁlar}r, when Tpe < A
and Tgp < A, then (D) gives the minimal value among all {A)—(E).

Finally, we have (B) 3= (E) when Tgg > A, and (D) = {E) when Tpr > A. Hence,
when Tpe > A and Tpg > A, then (E) is minimal among all (A)-(E}. This finishes the

proof of the ‘min’ part, and thus of Theorem 4.3.3 as well. =
Theorem 4.3.4 Let the value function be vy, and let (3.7) holds.

Maz: With the threshold
u(z) +uly) —ulz+y+ 2)
w(—z) '

the following statements specify the two possible mazimal values among (A)—(E):

Tap =

- IfTAE > /\: then (A)

- IfTAE < /\,. then (E)

Min: With the thresholds Tac = T(z,2), Tgr = T{z,y+ 2), Teg =Ty, z + 2), Tpe =
T(x+y,z)}, and

u(z) — u(y)
B g e gy
. u(z +y) — u(z)
PP w2 —u(-y -2
T — ulz +y) — uly)
D =

the following statements specify the four possible minimal values among {A)—(E):

— IfTge < A\, Tee < A, and Tgp > A, then (B).
- IfTGE <A Tpe > A, and Top > A, then (C)

- IfTDE S A, TBD § }«, and TCD S A, then (D}
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— IfTBE 2 )\, TCE > A, and TDE 2 /\, then (E)

Proof. Since both r and y are non-negative, we have (A) » (D). This eliminates
(D) from the ‘max’ part of Theorem 4.3.4 and (A) from the ‘min’ part.

The ‘mazx’ part.

We first eliminate (B). When Tgr < A, then (E) 5= (B). If, however, T > A, then
by Theorem 4.4.2 we have (B) = (F). Also when T4p > A, then (A) = (B). On the
other hand: if Typ < A, then (B) = (A). We have from Theorem 4.2.3 that Tzg < 1.
Theorem 4.2.3 also implies that T4p > 1 because z + z < 0. Hence, Tpr < T4r. Thus,
we have two cases: (i) When Tpr > A, we conclude that Typ > X and thus (A4) = (B)
and (ii) when Tgg < A then (E) 3= (B). In either case, (B) is discarded as an optimal
option. Therefore, the value maximizing decision maker will not choose (B). Analogous
arguments, but with T and Tae instead of Tre and T4p, respectively, show that the
value maximizing decision maker will not choose (C) either. Hence, in summary, we
are left with only two cases: (A) and (E). Which of the two maximizes the value is

determined by the equivalence relations:

ualz) +ua(y) +ualz) Swnlz+y+2) &= u(z) +uly) - Mu(-2) <ulz+y+2)

This concludes the proof of the ‘max’ part.

The “min’ part.

To prove the ‘min’ part, we only need to deal with (B)—(E), because we already
know that (A) = (D). Case (E) gives the minimal value when Tsg > A, Tor 2 A, and
Tpe > A If, however, there is at least one among Trg, Tri, and Tphg not exceeding X,

then the minimum is achieved by one of (B), (C), and (D). To determine which of them
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and when is minimal, we employ simple algebra and obtain the equivalence relationships:

(O (B =Too<r | [ (B)»(C)e=Tooz ) |
(D)= (B) <= Tpp > A (D) 5 (C) < Tep > A
| (B) > (B)=Tee<A | | (B)» (C)e=Tep <X |
—uﬂkﬂnﬁéﬂm<k-—(m¢0ﬂ¢¢ﬂm>k_
C)Vr D)= Top <A |, | (O) = (B) <= Tog > )
| (B)F (D) e=Top <A | | (D)= (B) <= Top 2\ |

This finishes the proof of Theorem 4.3.4. m
Theorem 4.3.5 Let the value function be vy, and let (3.8) holds.
Maz: With the thresholds Tpp = T(x.y + 2), Top = T(z + 2,9), Tpg = T{z + vy, 2), and

w(z) — ulz + 2)

To0 = Uy =) —ul=p)’
_ u(z) — ulx + y)
Too = Sy - a2
_u{rty) —ulr 4+ 2)
Ter = =y (=)
Top — u(a:+y)?:(ﬁ(:§+y+z)'

the following statements specify the four possible mazimal values among (A)-(E):

— IfTpe > A, Tac > A, and Tgp > A, then (B).
— IfTep = X, Tpe < A, and Tep < A, then (C).
- IfTDE 2 )\, TBD g /\’. and TC'D 2 )\, then (D)

— IfTpe < X\, Tcp € A, and Tpg < A, then (E).
Min: With the thresholds Tac =Tz, z), Tap = T{z,y),

m)—u(w—l—y%z).

I
B e
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and the other ones defined in the ‘max’ part of this theorem, the following statements

specify the four possible minimal values among (A)—(E):

— IfTAC < A, TAD < )\, and TAE < /‘\, then (A)
— IfTac 2 A, Tep > A, and Tpg < A, then (C}.
— IfTap >N Tep < A, and Tpg < A, then (D)

- IfTAE 2 /\, TCE 2 A, and TDE 2 )\, then (E)

Proof. The ‘mazx’ part.

Since —y > 0 and —z > 0, we have from inequality (4.1) that w(—y) + u(—2) >
u(—(y + 2)) and thus —Au(—y) — Mu(—2) < —Au(—(y + 2)). The latter is equivalent to
u(y) +va(2) < va(y + 2), which means that (B) = (4).

We have four cases (B)—(E) to deal with. To determine which of them and when is

maximal among (B)—(E), we employ simple algebra and obtain the equivalence relation-

ships:
(B) = (C) <= Tpc > A (C) = (B) <= Tpc < A
(B) = (E) <= T > A (C) » (E) = Top 2 A
(D) = (B) <= Tsp < )

(D)= (C) &= Tcp > A
(D)= (B) <= Tprg > A
This finishes the proof of the ‘max’ part.
The ‘min’ part.

To prove the ‘min’ part of the theorem, we verify the following four sets of orderings:

(C) = (A) <= Tac < A (A) = (C)y <= Tac = A
(E) % (A) <= Tup < A (E) = ()<= Teeg < A
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(@)= (D) e=Tep <A |- | (O (B) = Top 2 A
(E) = (D) <= Tpg < A (D) (E) <= Tpi > A

This concludes the proof of the ‘min’ part and of Theorem 4.3.5 as well. =

4.4 Arbitrary number of exposure units

We already know that when n = 3, then we have five cases fo analyze. This number 5
— in the context of the present chapter — turns out to be the fourth member of the Bell
sequence. Indeed, the number of possible cases to integrate or segregate n outcomes is
related to the Bell number (Bell, 1934). This number is denoted by B, and is defined
as the number of partitions of a set with n members. It satisfies the following recursion

formula,

Bn-{—l = Z CJ?B]C
' k=0

The sequence of the first Bell numbers is By = B; — 1, By = 2. B, - 5, By =15, B; =
32, B =203, B; = 877, Bg =4.140, ...

Various partial scenarios, however, are quite reasonable to look at even for general n,
and we shall next discuss some of them. For this we first observe that from the math-
ematical point of view, the integration-segregation rules are about the super- and sub-
additivity of value functions. Decision makers, however, tend to ‘visualize’ the functions
int terms of their shapes, such as concavity or convexity. A link between the additivity and
concavity notions is accomplished by functional inequalities, such as Petrovié’s inequality
(see, e.g., Kuczma, 2009}, which says that for every n > 2 and for every continuous and

concave function v : [0,0c) — R such that »(0) = 0, the inequality

v ( Z mk) < Z e N

k=1 k=1

holds for all x;,...,2, € [0,0¢). In other words, inequality (4.1) says that the value
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function v is subadditive on [0,20). This implies that the value maximizer prefers to
segregate positive experiences. In the domain (—co, 0] of losses, the roles of integration
and segregation are reversed. Collecting the above observations, we have the following

general theorem.

Theorem 4.4.1 The value mazimizer with any volue function v defined in (1.1) prefers
to segregate any number of exposure units with positive experiences, and integrate any

number of exposure units with negative experiences.

Theorem 4.4.1 rules out mixed experiences. VVe shall next relax this assumption, but
at the expense of generality. First, we restrict ourselves to the value function v,. Second,
we restrict our attention to learning if it is preferable to integrate all exposure units or
to keep them all segregated, and no other option is available, or of interest, to us. The

number of exposure units 7 > 2 remains arbitrary.

Theorem 4.4.2 With x = (21,....x,), we define the threshold T(x) by

S ulz) - u(ma,x{[],gxk})

T(x) =" ; ,
k; w(—zy) — u(ma.x {o,- gmk})

which is always non-negative, where K, = {k: zp > 0} and K_ = {k: z; < 0} are two
subsets of {1,...,n}. The threshold T(x) splits the volues of the loss aversion parameter A
into two regions — integration and segregation — as follows: assuming that there is ot least
one exposure unit with o positive experience and of least one with a negative experience,
and given that either compleie integration or complete segregation of all exposure units is

possible, then the value maximizer prefers

» integrating the exposure units if and only if T(x) < A, and

o segregating the exposure units if and only if T(x) > A.
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Proof. We start with the case >}, 2 > 0. The inequality va (37, zx) < Dopey va(5x)
1s equivalent to
n
o( L) <=2 3w+ T e
k=1 kelk_ kel

which, in turn, is equivalent to

> ulz) - u( znjxk)
A< T (x) = = (4.2)

Z u(—zx)

ke

Since ¢ _, 2 > 0. we have T.(x) = T(x). To show that T(x) is non-negative, we first

note that since the function u is non-decreasing and 5 rex. e < 0, we have

> u(zy) -u.(f:xk) =Y ulz) -—u( ozt Yy xk>

=3 o k=1 keK ., kel ke
> Z u(zy) —u( Z .’L‘k)- - (43)
kely kel

In addition, since the function % : [0, 00) — R is continuous, concave, and »(0) = 0, the
right-hand side of bound (4.3) is non-negative. Hence, T'.(x) > 0.
Considering now the case > ;_, zx < 0, we find that va(3 -, zx) < D ho; valze) 18

equivalent to

Ay u(—:r:'k) — ,\u( - Z“) <) ulz). (4.4)

" okek- k=1 keky

Since the function u is non-decreasing and Zkem zx > 0, we have that

37 u(-ai) —u(— sz) =" u(-a) —u(— Sz > :ck)

kel _ k=1 kel - kek keK
> Y u(—a) - u( - > :rk). (4.5)
kek_ kel

Since the function u : [0,00) — R is continuous, concave, and u(0) = 0, the right-hand
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side of bound (4.5) is non-negative. Hence, inequality (4.4) is equivalent to

Z u(zy)

A< T (x):= ki _ . (4.6)

D ul—ax) - u( - Zxk)

ke k=1

Given the above, we have T_(x} > 0. Furthermore, since y_,_, zx < 0, we have T (x) =

T(x). This completes the proof of Theorem 4.4.2. =

4.5 Applications and numerical illustrations

In this section, we give a brief account of possible practical applications of our results
to a variety of disciplines such as economics, finance, marketing, political science and
taxation. Numerical examples that we shall present in the second subsection below are
designed to illustrate our earlier theoretical results, especially their optimality.

Shefrin and Statman {1984) address the question why firms pay dividends. Since
dividends have been taxed at a higher rate than capital gains, an investor would prefer
that the firm repurchase shares instead of paying dividends. They propose a mental
accounting explanation of this behavior. The rationale for dividends is that this will
make easier for investors to segregate gains from losses, hence increasing their value
function. For example, suppose a stock has increased in value by $10. If there are no
dividends the investor will code this gain as v(10). Alternatively, suppose the firm pays a
dividend of $2, with a capital gain of $8, this will be segregated as v(2) +v(8), which will
be result in a higher value, because of the concavity of the value function in the domain
of gains. Similarly, consider the case of a stock that has lost $10 in its value, against
a loss of $12 and a dividend of $2, the investors will mentally compare v{—10) against
v(—12) 4 v(2), which by Thaler’s fourth principle, will enable investors to show the silver
lining, would be preferred to the no dividend loss option. '

Linville and Fischer (1991) extend mental iniegration and segregation and examine

the hedonic editing rules not only for outcomes in the financial domain, but also cutcomes
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in non-financial domain and across different domains. For example, they consider events
such as: having a nice dinner with a friend, losing a $10 bill or receiving a traffic ticket.
They find evidence for mental accounting to occur within and across different domains.

Hirst, Joyce and Schadewald (1994) show how segregating and integrating the utility
of purchased goods and the disutility of how this purchased are financed affect consumer

borrowing decision. Indeed, financing a good creates a stream of benefits and josses.

- Integrating or segregating these streams of gains and losses affects the utility of credit

purchases. They find that consumers would prefer to associate loans with long-lived
assets. For example, most subjects prefer to finance a furniture purchase (long-lived
asset) over a two week vacation (short lived asset). They find evidence that supports
that loan repayment is associated with the existence of future asset benefits which could
be integrated with the loan payments. This means that a consumer would be willing to
prepay a loan that relates to an expired asset than a loan that relates to an unexpired
asset. Finally, they find evidence that individuals would be willing to incur in additional
costs to enhance the likelihood that loan costs aﬁd benefits would co-occur in time.

Another application relates investors’ selling and purchasing stocks strategy. There is
a mixed evidence whether investors realize gains and losses jointly or separately (Lim
2006; Lehenkari 2009). Lim (2006) documents that investors prefer to bundle sales
of stocks that are trading below their purchase price (losers) on the same day than
sales of stocks above their purchase price (winners). The reason is that selling losers
on the same day allow investors to integrate their losses. On the other hand, selling
winners on different days makes easier to segregate gains. Contrary to Lim’s findings,
Lehenkari (2009) finds that investors in the Finnish stock market do not integrate losses
and segregate gain as Thaler’s principles predict. The bias toward concentration might
be a possible explanation of this inconclusive evidence (Koszegi and Szeidl, 2013).

Sul, Kim and Choi (2013) investigate the relationship between subjective well-being
and hedonic editing for mixed events. They find that happy individuals displayed a
stronger preference for integrating a positive social event against a loss. That is, social

gains are used as a cross domain buffers, where happy individuals displayed stronger
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preferences for social events.

Milkman et al. (2012) propose a policy bundling technique in which related bills
involving both losses and gains are combined to offset separate bills’ cost while preserving
their net benefits. For instance, Stiglitz (1998) has pointed out the failure of passing
legislation with high net positive expected value. Thus, this method can transform
unpopular individual pieces of legislation into more popular choices. For example, a
legislation can be seen as bundling spending cuts (gains) with spending increases (losses)

with a net spending cut. The next example, taken from Milkman et al. (2012), might
clarify this point.

Example 4.5.1 Suppose a legislative faces two unpopular pieces of legislation during an

economac dounturn period:

A. A bill that increases government spending by 10 million dollars at o time when the

deficit is soaring but would create 100 new permanent jobs.

B. A bill eliminating 90 government jobs that would reduce the deficit by 12 million

dollars.

Now suppose that both bills are combined into one single bill:

C. A bill reducing the deficit in 2 million dollars and an increase of 10 new permanent

jobs.

Milkman et al. (2012) have found evidence that supports the combined bill (option
C) better than either of its component bills (option A or B). Hence, bundling together
two unpopular bills could indeed become popular.

Mental accounting has also received great attention in Marketing science (Drumwright,
1992; Heath, Chatterjee and France, 1995). Bundling an attractive product with a less
attractive product, is a direct application of Thaler’s third principle. The reason is that
the seller bundles these products so that the consumer surplus of the attractive product

will compensate the consumer deficit with the less attractive product.
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Finally, our results can also be applied to taxation. For instance, a typical framework
of mental accounting appears when there is a tax refund at the end of a fiscal year. In
this case, mental accounting is a useful theory to analyze whether taxpayers shall prefer
having a tax refund at the end of the fiscal year, but making, in advance, large monthly
tax payments against making smaller monthly tax payments, but with no tax refund.

We shall next give some numerical illustrations of our earlier developed theory. In

the following examples we use the S-shaped value function (al-Nowaihi et al., 2008)

x? when =z >0, :
van(2) = (5.1)
—A(~z)¥ when =z <0.

Obviously. vx., = vy with u{z) = z".

The following two numerical examples illustrate the validity of principles P1 and P2.

Example 4.5.2 (illustrating principle P1) Let the value function be vy, with the
parameters A = 2.25 and v = 0.88. Suppose that we have three e:cjaosu.re units with
positive experiences 5, 10, and 20. Principle P1 suggests segregating them, and this
is mathematically confirmed by the inequality: vy ()" xx) = 22.8444 < Y vy ,(z) =
25.6683. (We use Y instead of 2i_, to simplify notation.) Our general results soy that

the value mazimizing decision maker prefers segregating any number of positive exposures.
O

Example 4.5.3 (illustrating principle P2) Let the value function be vy, with the
poarameters A = 2.25 and v = 0.88. Suppose that we have three exposure units with
negative experiences —98, —10, and —20. Principle P2 suggests integrating them, and
this is confirmed by the inequality: vy, (3 ze) = —51.3999 > 5wy (z,) = —57.7537.

Our general results say that the value mazimizing decision maker prefers integrating any

number of negative exposures. [
The following two examples show that principles P3 and P4 can be violated.

Example 4.5.4 (illustrating principle'PS) Let the value function be vy . with the

parameters A = 2.25 and vy = 0.88. Suppose that we have three exposure unils with mized
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experiences —0.5, 10, and 20, whose total (positive) experience is 3 x;, = 29.3. Principle
P3 would suggest integrating the erposure units into one, but the following inequality
implies the opposite: vy (> ) = 19.6537 < Y vy ,(z,) = 20.3239. In fact, we see from
our theoretical analysis of the case n = 3 thal neither complete segregation nor complete
integration of three (or more) experiences with mired exposures may lead to a mazimal

value, which may be achieved only by a partial integration and segregation. [

Example 4.5.5 (illustrating principle P4) Let the value function be vy . with the
parameters A = 2.25 and v = 0.88. Suppose that we have three exposure units with mized
ezperiences 0.5, —10, and —20, whose total (negative) experience is Y x = —29.5.
Principle P4 suggests segregating the exposure units, but the following inequality says the
épposite.' Uny (Do wr) = —44.2207 > 3wy 4 (z) = —47.9361. Qur theory developed above
says that neither complefe segregation nor complete integration may lead to a moeximal

value when n >3 U
Now we shall provide some numerical illustrations of our main theorems.

Example 4.5.6 (illustrating Theorem 4.3.2) Assume that the value function is v
with v = 0.88. With the experiences x = 5, y = 3, and z = —2, we have Tyc = 0.8109

and Tgp = 0.7575. Hence, the following statements hold:

Maz: When X < 0.8109, then (A) is mazimal, and when 0.8109 < A, then (C) is maowi-

mal.
Min: When X < 0.7575, then (F) is minimal, and when 0.7575 < X, then (D) is minimal.

Example 4.5.7 (illustrating Theorem 4.3.3) Assume that the value function is 1y,
with «y = 0.88. With the experiences z = 10, y = 1, and 2 = —2, we have Tac = 0.7349,
Tgp = 0.7897, and Tgg = 0.6717. Hence, the following statements hold:

Maz: When A < 0.7349, then (A) is mazimal, and when 0.7349 < A, then (C) is maxi-

mal.
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Min: When X < 0.6717, then (E) is minimal, when 0.6717 < A < 0.7897, then (B) is

minimal, and when 0.7897 < A, then (D) is minimal.

Example 4.5.8 (illustrating Theorem 4.3.4) Assume that the value function is v
with -y = 0.88. With the ezperiences x = 4, y = 3, and z = —5, we have Typ = 0.8404,
Tpp = 0.9446, Top = 0.7890, and Top = 0.9014. Hence, the following statements hold.:

Maz: When A < 0.8404, then (A) is mazimal, and when 0.8404 < X, then (E) is maxi-

mal.

Min: When A < 0.7890, then (E) is minimal, when 0.7890 < X < 0.9014, then (C)
is minimal, when 0.9014 < X < '0.9446, then (B) is minimal, and finally when
0.9446 < X, then (D) is minimal. '

Example 4.5.9 (illustrating Theorem 4.3.5) Assume that the value function is v
with v = 0.88. With the experiences x = 36, y = -2, and z = —14, we have Tpr =

0.8243, Tac = 0.8074, and Tog = 0.6636. Hence, the following statements hold:

Maz: When A < 0.8243, then B is mazimal, and when 0.8243 < X, then E is mazimal.

Min: When X < 0.6636, then E is minimal, when 0.6636 < X < 0.8074, then C is

mintmal, and when 0.8074 < X, then A is minimal.

The following two examples illustrate Theorem 4.4.2 in the case of three exposure
units and assuming that the decision maker is given only two options: either integrate

all exposure units or keep them segregated.

Example 4.5.10 (illustrating The_orem 4.4.2} Let x; = 25, zo = 10, and z3 =
—0.5, with the positive total sum x1 + z2 + x3 = 34.5. Let the value function be vy
with v = 0.88. The threshold 7'(x) = 3.7149. Thus, facing the dilemma of integrating or
segregating all exposure units (we are not deoling with any partial integration or partial
segregation in this example), the decision maker prefers segregating them when A < 3.7149

and integrating them when X > 3.7149.
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4.6 Concluding remarks

Our theoretical study has shown that within the class of value functions specified by
prospect theory, the validity of Thaler’s principles can be established rigorously in the
case of only non-negative experiences, or only non-positive experiences, and irrespectively
of the number of exposure units. When exposure units carry both negative and posi-
tive experiences, then the principles may break down. Our theory provides a complete
solution to the integration/segregation problem in the case of three exposure units and
demonstrates in particular that the transition from two to three, or more, exposure units
increases the complexity of decisions enormously, thus showing the challenges that the
decision maker encounters when dealing with multiple exposure units.

As far as we kniow, there has not been a detailed theoretical analysis of decision maker’s
behavior in the case of multiple exposure units. In this chapter, we have provided such an
analysis, concentrating on two and three exposure units, and we have also noted possible
results in the case of an arbitrary number of exposure units. Our theoretical analysis has
shown that the number of integration-segregation options for more than three exposure
units is so large that, generally, a well-informed integration-segregation decision becomes
quite an unwieldy task.

Naturally, under such circumstances, we may think of employing computer-based
search algorithms, but this computational approach would require us to specify the un-
derlying value function, which is usually unknown in practice, except that it belongs to
a certain class of functions depending on the problem. Hence, in this chapter we have
aimed at deriving integration and segregation decisions that are qualitative in nature and
applicable to classes of value functions pertaining to fairly general groups of individuals.

The present work can be extended in several directions. First, we have considered only
a special case of S-shaped utility functions, which is conveniently linear in A. Whether
segregating or integrating multiple outcomes, but considering utility functions that are
not linear on this parameter remains as an interesting line of future research. Second, we
study a special case for any arbitrary number of exposure units. A more general analysis

with multiple outcomes remains as a task for future studies.

124




References

Abdellaoui, M., Bleichrodt, H. & L'Haridon, O. (2008}. A tractable method to measure
utility and loss aversion nnder prospect theory. Jowrnal of Risk and Uncertainty, 36,
245-266.

Allais, M. (1953). Le comportement de "homme rationnel devant le risque: Critique
des postulats et axiomes de Iécole Américaine. Econometrica: Jowrnal of the Economet-
ric Society, 21, 503-546.

Allais, M., & Hagen, G. M. (Eds.). (1979). Expected Utility Hypotheses and the Al-
lais Paradox: Contemporary Discussions of the Decisions Under Uncertainty with Allais’
Rejoinder (Vol. 21). Springer.

al-Nowaihi, A., Bradley, 1., & Dhami, S. (2008). A note on the utility function under
prospect theory. Economics Letters, 99, 337-3539.

Anderéson, P., Edman, J. & Ekman, M. (2005). Predicting the World Cup 2002 in
soccer: Performance and confidence of experts and non-experts. International Journal of
Forecasting, 21, 565-576.

- Andersson, P., & Rakow, T. (2007). Now you see it now you don’t: The effectiveness
of the recognition heuristic for selecting stocks. Judgment and Decision Making, 2(1),
29-39.

Arrow, K. J. (1971). Essays in the theory of risk-bearing (Vol. 1). Chicago: Markham
Publishing Company.

Astebro, T., & Elhedhli, S. (2006). The effectiveness of simple decision heuristics:
Forecasting commercial success for early-stage ventures. Management Science, 52(3),

385-404.




Azzalini; A. (1985) A class of distributions which includes the normal ones. Scandi-
navian Journal of Statistics 12, 171-178.

Balakrishnan, N., & Lai, C. D. (2009). Continuous bivariate distributions: Theory
and Methods, Springer-Verlag, New York. -

Barberis, N., Huang, M., & Santos, T. (2001). Prospect theory and asset prices.
Quarterly Journal of Economics, 116(1), 1-53.

Baron, J. (2000). Thinking and deciding. Cambridge University Press.

Battermann, H. L., Braulke, M., Broll, U., & Schimmelpfennig, J. (2000). The pre-
ferred hedge instrument. Economics Letters, 66(1), 85-91.

Basu, A. K., Lal, R., Srinivasan, V., & Staelin, R. (1985). Salesforce compensation
plans: An agency theoretic perspective. Marketing Science, {(4), 267-291. |

Batra, R. N., & Russell, W. R. (1974). Gains from trade under uncertainty. American
Economic Review, 64(6), 1040-1048. |

Beattie, J., Baron, J., Hershey, J. C., & Spranca, M. D. (1994). Psychological deter-
minants of decision attitude. Journal of Behavioral Decision Making, 7(2), 129-144.

Bell Aliant (2012). Bundle options: choose the bundle that meets your needs. Viewed
on 25 June 2012 at the web address
http://productsandservice.bellaliant.net/PS/en/shop/bundles/bundles. jsp?prov=ns

Bell, D.E.,(1982). Regret in decision making under uncertainty. Operafions Research
30(5), 961-981.

Bell, E. T. (1934). Exponential numbers. American Mathematical Monthly, 41(7),
411-419.

Benartzi, 5., & Thaler, R. H. (2001). Naive diversification strategies in defined con-
tribution saving plans. American Economic Review, 79-98.

Bennell, C., Emeno, K., Snook, B., Taylor, P., & Goodwill, A. {2009). The precision,
accuracy and efficiency of geographic profiling predictions: a simple heuristic versus
mathematical algorithms. Crime Maopping: A Journal of Research and Practice, 1{2),
65-84.

Benninga, S., Eldor, R., & Zilcha, 1. (1983). Optimal hedging in the futures market

126

.



http://productsandservice.bellaliant.net/PS/en/shop/bundles/bundles.jsp?prov;ns

under price uncertainty. Economics Letters, 13(2), 141-145.

Berhold, M. H. (1973). The use of distribution functions to represent utility functions.
Management Science, 19(7), 825-829.

Bessis J (2009). Risk management in banking. Chichester, England, 3/e.

Bleichrodt, H., Cillo, A., & Diecidue, E. (2010). A guantitative measurement of regret
theory. Management Science, 56(1), 161-175.

Bodie, Z.. A. Kane, & A. J. Marcus, (1996). Investments, 8rd ed. New York, Boston,
London.

Borges, B., Goldstein, D. G., Ortmann, A., & Gigerenzer, (2.(1999). Can ignorance
beat the stock market? In G. Gigerenzer, P. M. Todd, & the ABC Research Group
(Eds.), Simple heuris- '

tics that make us smart (pp. 59-72). New York: Oxford University Press.

Boyd, M. (2001). On ignorance, intuition, and investing: A bear market test of the
recognition heuristic. Journal of Psychology and Financial Markets, 2(8), 150-156.

Braun, M., & Muermann, A. (2004). The impact of regret on the demand for insur-
ance. Journal of Risk and Insurance, 71(4), 737-767.

Brader, A., & Eichler, A. (2006). The use of recognition information and additional
cues in inferences from memory. Acta Psychologica, 121, 275-284.

Broll U, & Eckwert B (2006). Transparency in the interbank market and the volure
of bank intermediated loans. International Journal of Economic Theory 2, 1253-158

Broll, U., Egozcue, M., Wong, W. K., & Zitikis, R. {2010). Prospect theory, in-
difference curves, and hedging risks. Applied Mathematics Research Express, 2010(2),
142-153.

Broll U & Wahl, J.E. (2006). Banking and the advantage of hedging. Annals of
Financial Economics 1, 24-41

Brumelle, S., (1974}, When does diversification between two investments pay? Jour-
nal of Financial and Quantitative Analysis , 9: 473-483.

Conlisk, J. (1996). Why bounded rationality? Journal of Fconomic Literature, 8,
669-700.

127




Dalal, J.A.{ 1983} On the use of a covariance function in a portfolio model. Journal
of Financial and Quantitative Analysis, 18, 2, 225-227.

Davis-Stober, C. P., Dana, J., & Budescu, D. V. (2010). Why recognition is rational:
Optimality results on single-variable decision rules. Judgment and Decision Making, 5.
216-229.

De Giorgi, E., & Hens, T. (2006). Making prospect theory fit for finance. Financial
Markets and Portfolio Management, 20, 339-360.

Dekel, E. (1989). Asset demand without the independence axiom. FEeonometrica:
Journal of the Econometric Society, 57, 163-169. ,

DeMiguel, V., Garlappi, L., and Uppal, R. (2009). Optimal versus naive diversifica-
tion: How inefficient is the 1/N portfolio strategy? Review of Financial Studies, 22(5),
1915-1955. |

-DeMiguel, V., Garlappi, L., Nogales, ¥. J., & Uppal, R. (2009). A generalized ap-
proach to portfolio optimization: Improving performance by constraining portfolio norms,
55, Management Science, T98-812.

Dewatripont M, & Tirole J (1994). The prudential requlation of banks. Cambridge,
Mass., London, England.

Drumwright, M.E. (1992). A demonstration of anomalies in evaluations of bundling.
Marketing Letters, 3, 311-321. |

Dougherty, M. R., Franco-Watkins, A. M., & Thomas, R. {2008). Psychological
plausibility of the theory of probabilistic mental models and the fast and frugal heuristics.
Psychological Review, 115(1), 199-213.

Dubra, J., & Echenique, F. (2004). Information is not about measurability. Mathe-
matical Social Sciences, 47(2), 177-185.

Edwards, W. {1954a). The theory of decision making. Psychological Bulletin, 51,
250-417.

Edwards, W. (1954b). Probability-preferences among bets with differing expected
values. American Journal of Psychology, 67(1), 56-67.
 Edwards, W. (1955). The prediction of decisions among bets. Journal of Experimental

128



Psychology, 50(3), 201.

~ Edwards, W. (1962). Subjective probabilities inferred from decisions. Psychological
review, 69(2),109.

Egozcue, M. (2012). Gains from diversification: a regret theory approach. Economics
Bulletin, 32 (1), 204-219. '

Egozcue, M., Fuentes Garcia, L. & Wong, W. K. (2009). On some covariance in-
equalities for monotonic and non-monotonic functions. Journal of Inequalities in Pure
and Applied Mathematics, 10, 1-7.

Egozcue, M., Fuentes Garcfa, L., Wong, W. K., & Zitikis, R. (2010). Gruss-Type
Bounds for the Covariance of Transformed Random Variables. Journal of Inegualitics
and Applications, 2010 (1}.

Egozcue, M., Fuentes Garcia, L., Wong, W. K., & Zitikis, R. (2011). Do investors
like to diversify? A study of Markowitz preferences. Buropean Journal of Operational
Research, 215(1), 188-193.

Egozcue, M, Fuentes Garcia, L., Katsikoupolos, K. & Smithson, M. {2013) A mathe-
matical analysis of the two levels recognition heuristic (mimeo).

Egozcue,’l\/,[. & Wong, W.K. (2010). Segregation and integration: a study of the
behaviors of investors with extended value functions. Advances in Decision Sciences,
2010, Article 1D 502895, 8 pages.

Eichner, T. (2008). Mean variance vulnerability. Management Science, 54, 586-593.

Eichner, T., & Wagener, A. (2009). Multiple risks and mean-variance preferences.
Operations Research, 57, 1142-1154.

Erdfelder; E., Kiipper-Tetzel, C. E., & Mattern, §. D. (2011). Threshold models of
recognition and the recognition heuristic. Judgment and Decision Making, 6, 7-22.

Esary, J. D., Proschan, F., & Walkup, D. W. (1967). Association of random variables,
with applications. The Annals of Mathemalical Statistics, 38(5), 1466-1474.

Fama, E., 1970. Effcient capital markets: a review of theory and empirical work.
Jo-u.mdl of Finance 25, 385-417.

Farley, J. U. (1964). An optimal plan for salesmen’s compensation. Journal of Mar-

129



keting Research, 1 (2), 39-48.

Feder, G., Just, R. E., & Schmitz, A. (1980). Futures markets and the theory of the
firm under price uncertainty. Quarterly Journal of Economics, 94(2), 317-328.

Fischer, J. E., Steiner, F., Zucol, F., Berger, C., Martignon, L., Bossart, W., Al-
twegg, M., & Nadal, D. (2002). Use of simple heuristics to target macrolide prescription
in children with community-acquired pneumonia, Archive of Pediatrics and Adolescent
Medicine, 156, 1005-1008.

Fishburn, P. C. (1982). Nontransitive measurable utility. Journal of Mathematical
Psychology, 26(1), 81-67.

Fishburn P.C. & Luce, R.D. (1995). Joint receipt and Thaler’s hedonic editing rule.
Mathematical Social Science, 29, 35-76.

Freixas X., & Rochet J.C. (2008). Microeconomics of banking. Cambridge, Mass.,
London, England, 2/e.

I'riedman, Milton (1969). The Optimum Quantity of Money. In The Optimum Quan-
tity of Money and Other Essays. Chicago: Aldine, 1969, pp. 1-50

Friedman, M., & Savage, J.L. (1948). The utility analysis of choices involving risk.
Journal of Political Economy, 56, 279-30.

Gaissmaier, W., & Marewski, J. N. (2011). Forecasting elections with mere recogni-
tion from small, lousy samples: A comparison of collective recognition, wisdom of crowds,
and representative polls. Judgment and Decision Making, 6(1), 73-88.

Gigerenzer, G., & Gaissmaier, W. (2011). Heuristic decision making. Annual Review
of Psychology, 62, {51-482.

Gigerenzer, G., & Goldstein, D. G. (2011). The recognition heuristic: A decade of
research. Judgment and Decision Making, 6, 100-121.

Gigerenzer, G.. & Selten, R. (2001). Bounded rationality: the adaptive toolboz. Lon-
don: MIT Press

Gigerenzer, G., Todd, P. M., & The ABC Research Group (Eds.). (1999). Simple

v

heuristics that make us smart. New York: Oxford University Press.

Gigerenzer, G., & Todd, P. M. (2008). Rationality the fast and frugal way: introduc-

130



tion. Handbook of Experimental Economics Results, 1, 976-986.

Gilboa, I. (2010). Making better decisions: decision theory in practice. Wiley-
Blackwell, Chichester. '

Gillen, B. & Markowitz, H.M. (2009). A taxonomy of utility functions. In: Variations
in economic analysis: Essays in honor of Eli Schwartz (Eds.. J.R. Aronson, H.L. Parmet,
and R.J. Thornton). Springer, New York.

Gilovich, T., & Griffin, D. (2002). Introduction-heuristics and biases: Then and nOw,
1-18. in Gilovich, T., Griffin, D., & Kahneman, D. (Eds.). (2002). Heuristics and biases:
the psychology of intuitive judgment. Cambridge University Press.

Goldstein, D. & Gigerenzer, G. (1999) The recognition heuristic: How ignorance
makes us smart. in Gigerenzer, Gerd Todd, Peter M. , (1999). Simple heuristics that
make us smart. Evolution and cognition., (pp. 37-58). New York, NY, US: Oxford
University Press, The ABC Research Groupxv.

Goldstein, D. G. & Gigerenzer, G. (2002). Models of ecological rationality: The
recognition heuristic. Psychological Review, 109, 75-90.

Goldstein, D. G. & Gigerenzer, G. (2011). The beauty of simple models: Themes in
recognition heuristic research. Judgment and Decision Making, 6, 5, 392-395.

Gollier, C. (2004). The economics of risk and time. The MIT Press.

Goodman,L.A. & Kruskal, W. H. (1954). Measures of association for cross classifica-
tions. Journal of the American Statistical Association, 49, 752-764.

Graham, B. (1949). The intelligent investor: The definitive book on value investing.
HarperBusiness.

Gurland, J. (1967). The Teacher’s Corner: An Inequality Satisfied by the Expectation
of the Reciprocal of a Random Variable. American Statistician, 21(2), 24-25.

Hadar, J., & Russell, W. R. (1971). Stochastic dominance and diversification. Journal
of Economic Theory, 3(3), 288-305.

Hadar, J., & Russell, W. R. (1974). Diversification of interdependent prospects.
Journal of Economic Theory, 7(3), 231-240.

Hadar, J., Russell, W.R., & Seo, T.K., (1977}. Gains from diversification. Review of

131




Economic Studies, 44 (2), 363-368.

Hanoch, G., & Levy, H. (1969). The efficiency analysis of choices involving risk. The
Review of Fconomic Studies, 36(3), 335-8486.

Harless, D. W., & Camerer, C. F. (1994). The predictive utility of generalized ex-
pected utility theories. Feconometrica: Journal of the Econometric Society, 62, 6, 1251-
12589.

Harinck, F., Van Dijk’ E., Van Beest, 1., & Mersmann, P. (2007). When gains loom
larger than losses reversed loss aversion for small amounts of money. Psychological Sci-
ence, 18(12), 1099-1105.

Hauser, J. (2011). A marketing science perspective on recognition-based hewristics
(and the fast-and-frugal paradigm). Judgment and Decision Making, 6, 5, 396-408.

Heath, T.B., Chatterjee, S. & France, K.R. (1993). Mental accounting and changes
in price: the frame dependence of reference dependence. Journal of Consumer Research,
282, 80-97. |

Hens, T, & Rieger, M. O. (2010). Financial economics: A concise introduction to
classical and behavioral finance. Springer.

Hershey, J. C., & Schoemaker, P. J. (1980). Risk taking and problem context in
the domain of losses: An expected utility analysis. Journal of Risk and Insurance, 46,
111-132.

Hertwig, R., Herzog, S. M., Schooler, L. J., & Reimer, T. (2008). Fluency heuristic:
A model of how the mind exploits a by-product of information retrieval. Journel of
Experimental Psychology: Learning, Memory, & Cognition, 34, 1191-1206

Herzog, S. M., & Hertwig, R. (2011). The wisdom of ignorant crowds: Predicting
sport outcomes by mere recognition. Judgment and Dgc-;ision Maoking, 6, 58-72.

Hilbig, B. E. (2010). Precise models deserve precise measures: A methodological
dissection. Judgment and Decision Making, 5, 300-309.

Hilbig, B. E., Erdlelder, E., & Pohl, R. F. (2010). One-reason decision-making un-
veiled: A measurement model of the recognition heuristic. Journal of Experimental

Psychology: Learning, Memory, and Cognition, 36, 123-134.

132




Hilbig, B. E., & Pohl, R. F. (2008). Recognizing users of the recognition heuristic.
Experimental Psychology, 55, 394-401.

Hilbig, B. E., & Pohl, R. I. (2009). Ignorance- vs. evidence-based decision making: A
decision time analysis of the recognition heuristic. Journal of Fxperimental Psychology:
Learning, Memory, and Cognition, 85, 1296-1305.
~ Hilbig, B. E., Pohl, R. F., & Broder, A. (2009). Criterion knowledge: A moderator
of using the recognition heuristic? Journal of Behavioral Decision Making, 22, 510-523.

Hillier, F. S., Lieberman, G. J., & Hillier, M. (1990). Introduction to operations re-
search (Vol. 6). New York: McGraw-Hill.

Hildreth, C. (1974). Expected utility of uncertain ventures. Journal of the American
Statistical Association, 69(845), 9-17.

Hildreth, C., & Tesfatsion, L. (1977). A note on dependence between a venture and
a current prospect. Journal of Economic Theory, 15(2), 5381-391.

Hirst, D. E., Joyce, E. J., & Schadewald, M. S. (1994). Mental accounting and out-
come contiguity in consumer-borrowing decisions. Organizational Behavior and Human
Decision Processes, 58(1), 156-152.

Hoffrage, U. (1995). Zur Angemessenheit subjektiver Sicherheits-Urteile. Eine Explo-
ration der Theorie der probabilistischen mentalen Modelle. (The adequacy of subjective
confidence judgmeﬁts: Studies concerning the theory of probabilistic mental models).
Doctoral dissertation, University of Salzburg, Austria.

Hoffrage, U. (2011). Recognition judgments and the performance of the recognition
heuristic depend on the size of the reference class. Judgment and Decision Making, 6,
43-57. ‘

Holthausen, D.M. (1979). Hedging and the competitive firm under price uncertainty
hedging and the competitivefirm under price unfcertainty. American Economic Review,
69, 989-995.

Huberman, G., & Jiang, W. (2008). Offering versus choice in 401 (k) plans: Equity
exposure and number of funds. Journal of Finance, 61(2), 765-801.

Jarnebrant, P., Toubia, O. & Johnson, E. (2009). The silver lining effect: formal

133




analysis and experiments. Management Science, 55, 1832-1841.

Kahneman, D. (2011) Thinking, Fast and Slow. New York: Farrar, Straus & Giroux.

Kahneman, D., Tversky, A. (1979). Prospect theory of decisions under risk. Econo-
metrica, 47, 263-291.

Kahneman, D., Slovic, P., & Tversky, A. (Eds.). (1982). Judgment under unceriainty:
Heuristics and biases. Cambridge University Press.

Katsikopoulos, K. V. (2010} The less-is-more effect: Predictions and tests. Judgment
and Decision Making, 5, 244-257.

Katsikopoulos, K. V. (2011). Psychological heuristics for making inferences: Defini-
tion, performa.ﬁce, and the emerging theory and practice, Decision Analysis, 8, 10-29.

Klugman, S.A., Panjer, HH. & Willmot, G.E. {2008). Loss models: from data to
decisions. (Third edition.) Wiley, New Jersey.

Kira, D., & Ziemba, W. T. (1980). The demand for a risky asset. Management
Science, 26(11), 1158-1168.

Kobberling, V. & Wakker, P.P. {2005). An index of loss aversion. Journal of Economic
Theory, 122, 119-131. , ‘

Koszegi, B., & Szeidl, A. (?013). A model of focusing in economic choice. Quarterly
Journal of Economics, 128(1), 55-104.

Kuczma, M. (2009). An introduction to the theory of functional equations and inegqual-
ities. Cauchy’s equation and Jensen’s inequality. Second edition. Birkhiuser, Basel.

Laciana, C. E., & Weber, E. U. (2008). Correcting expected utility for comparisons
_between alternative outcomes: A unified parameterization of regret and disappointment.
Journal of Risk and Uncertainty, 36(1), 1-17.

Landsberger, M., & Meilijson, 1. (1990). Demand for risky financial assets: A portfolio
analysis. Journal of Economic Theory, 50(1), 204-213.

Lehenkari, M. (2009). The hedonic editing hypothesis: Evidence from the Finnish
stock market. Journal of Behavioral Finance, 10(1), 9-18.

Lehmann, E.L. (1966). Some concepts of dependence. Annals of Mathematical Sta-
tistics, 87, 1137-1155.

134




Levy, H. (Ed.). (2006). Stochastic dominance: investment decision making under
uncertainty (Vol. 12). Springer. .
 LiCalzi, M. (2000). Upper and lower bounds for expected utility. Economic Theory,
16(2), 489-502.

Lim, S.S. (2006). Do investors integrate losses and segregate gains? Mental account-
ing and investor trading decisions. Journal of Business, 79, 2539-2575.

Linville, P. W., & Fischer, G. W. (1991). Preferences for separating or combining
events. Journal of Personality and Social Psychology, 60(1), 5.

Loomes, G., & Sugden, R. (1982). Regret theory: An alternative theory of rational
choice under uncertainty. Eeconomic Journal, 92(368), 805-824.

Loomes, G., & Sugden, R. (1987). Some implications of a more general form of regret
theory. Journal of Economic Theory, 41(2), 270-287.

Loomes, G., Starmer, C., & Sugden, R. (1992). Are preferences monotonic? Testing
some predictions of regret theory. Fconomica, 59, 17-33.

Loubergé, H., & Outreville, J. ¥. (2001). Risk taking in the domain of losses: Exper-
iments in several countries. Journal of Risk Research, 4(3), 227-256.

Ma, C. (2010). Advanced Asset Pricing Theory (Vol. 2). World Scientific.

Marewski, J. N., Pohl, R. F., & Vitouch, O. {(2010). Recognition-based judgments
and decisions: Introduction to the special issue (I). Judgment and Decision Making, 5.
4, 207-215

Marewski, J. N., Pohl, R. F., & Vitouch, O. {2011a). Recognition-based judgments
and decisions: Introduction to the special issue (II}. Judgment and Decision Making. 6,
1-6.

Marewski, J. N., Pohl, R. F., & Vitouch, O. (2011b). Recognition-based judgments
and decisions: What we have learned (so far). Judgment and Decision Making, 6, 359~
380.

Markowitz, H. {(1952). The utility of wealth. Journal of Political Economy, 60, 151-
156.

McEntire, P. L. (1984). Portfolio theory for independent assets. Management Science,




30(8), 952-965.

McGraw, A. P., Larsen, J. T., Kahneman, D., & Schkade, D. (2010). Comparing
gains and losses. Psychological science, 21 (10), 1438-1445.

Merton, R. C. (1987). A simple model of capital market equilibrium with incomplete
information. Journal of Finance, 42(3), 485-510.

Megyer, J. (1987). Two-moment decision models and expected utility maximization.
American Economic Review, 77, 421-430. |

Meyer, J., & Robison, L. J. (1988). Hedging under output price randomness. Amer-
tcan Journal of Agricultural Economics, 70(2), 268-272.

Milkman, K. L., Mazza, M. C., Shu, L. L., Tsay, C. J., & Bazerman, M. H. (2012).
Policy bundling to overcome loss aversion: A method for improving legislative outcomes.
Organizational Behavior and Human Decision Processes, 117(1), 158-167.

Mitrinovie, D. S., & Vasic, P.(1970). Analytic Inequalities. Springer-Verlag Berlin,
Heidelberg. New York.

Monti, M., Boero, R., Berg, N., Gigerenzer, G., & Martignon, L. (2012). How do com-
mon investors behave? Information search and portfolio choice among bank customers
and university students. Mind & Society, 11{2), 203-233.

Mossin, J. (1968). Aspects of rational insurance purchasing. Journal of Political
Economy, 553-568.

Muermann, A., Mitchell, O. S., & Volkman, J. M. (2006). Regret, portfolio choice,
and guarantees in defined contribution schemes. Insurance: Mathematics and Economics,
39(2), 219-229.

Mulaudzi, M. P., Petersen, M. A., & Schoeman, I. M. (2008). Optimal allocation
between bank loans and treasuries with regret. Optimization Letters, 2(4), 555-566.

Neilson, W. 8. (2002). Compa,ratiife risk sensitivity with reference-dependent prefer-
ences. Journal of Risk and Uncertainty, 24(2), 181-142.

Newell, B. R. & D. Fernandez (2006). On the binary quality of recognition and the
inconsequentiality of further knowledge: Two critical tests of the recognition heuristic.

Journal of Behavioral Decision Making, 19, 353-846.

136




Newell, B. R. & Shanks, D. R. (2004). On the role of recognition in decision making.
Journal of Experimental Psychology: Learning, Memory, and Cognition, 30, 923-935.

Oeusoonthornwattana, O., & Shanks, D. R. (2010). I like what I know: Is recognition
a noncompensatory determiner of consumer choice? Judgment and Decision Making, 5,
310-525. |

Orbitz (2012). Vacation Packages: Packages Save You Moolah. Viewed on 25 June
2012 at the web address http://wuw.orbitz.com/shop/packageSearch?type=ahc

Ormiston, M. B., & Schlee, E. E. (2001). Mean-Variance Preferences and Investor
Behaviour. Economic Journal, 111(474), 849-861.

Ortmann, A., Gigerenzer, G., Borges, B., & Goldstein, D. G. (2008). The recognition
heuristic: A fast and frugal way to investment choice? In C. R. Plott & V. L. Smith
(Eds.), Handbook of experimental economics results: Vol. 1 (Handbooks in Economics
No. 28) (pp. 993-1003). Amsterdam: North-Holland.

Oppenheimer, H. R. (1984). A test of Ben Graham’s stock selection criteria. Financial
Analysts Journal, 40, 5, 68-74.

Oppenheimer, D. (2003). Not so fast! (and not so frugal!): Rethinking the recognition
heuristic. Cognition, 90, B1-B9.

Oppenheimer, H. R., & Schlarbaum, G. G. (1981). Investing with Ben Graham: an
ex ante test of the efficient markets hypothesis. Journal of Financial and Q-uani@'tat?lve
Analysis, 16(03), 341-360.

Pachur, T. (2010). Recognition-based inference: When is less more in the real world?
Psychonomic Bulletin and Review, 17, 589-598.

Pachur, T. (2011). The limited value of precise tests of the recognition heuristic.
Judgment and Decision Making, 6, 413-422.

Pachur, T. & Biele, G. {2007). Forecasting from ignorance: the use and usefulness of
recognition.in lay predictions of sports events. Acta Psychologica, 125, 99- 116.

Pachur, T., Broder, A., & Marewski, J. N. (2008). The recognition heuristic in
memory-based inference: is recognition a non-compensatory cue?. Journal of Behovioral

Decision Making, 21(2), 183-210.

137



http://www.orbitz.com/shop/packageSearch?type=ahc

Pachur, T, Mata, R., & Schooler, L. J. (2009). Cognitive aging and the adaptive use
of recognition in decision making. Psychology and Aging, 24(4). 901.

Pachur; T., Todd, P. M., Gigerenzer, G., Schooler, L. J. & Goldstein, D. G. (2012).
\.'Vhen is the recognition heuristic an adaptive tool? In: P. Todd, G.Gigerenzer, € the

- ABC Research Group, Ecological rationality: Intelligence in the world. (pp. 113-143)

New York: Oxford University Press.

Paroush, J., & Venezia, I. (1979). On the theory of the competitive firm with a utility
function defined on profits and regret. European Economic Review, 12(3), 193-202.

Payne J. W., Bettman, & Johnson, E. J. (1993). The adaﬁtz’ue decision maker, Cam-
bridge: Cambridge University Press.

Pellerey, F., & Semeraro, P. (2005). A note on the portfolio selection problem. Theory
and Decision, 58(4), 295-306.

‘ Pennings, J. M., & Smidts, A. (2003). The shape of utility functions and organiza-
tional behavior. Management Science, 49(9), 1251-12685.

Pleskac, T. J. (2007). A signal detection analysis of the recognition heuristic. Psy-
chonomic Bulletin and Review, 14, 879-391

Pohl, R. (2006). Empirical tests of the recognition heuristic. Journal of Behavioral
Decision Making, 19, 251- 271.

Pohl, R. (2011). On the use of recognition in inferential decision making: An overview
of the debate. Judgment and Decision Making, 6, 5, {23-438.

Pélya, G. (1954). Mathematics and plausible reasoning: vol 1: Induction and analogy
in mathematics. Oxford University Press.

Post, T., & Levy, H. (2005). Does risk seeking drive stock prices? A stochastic
dominance analysis of aggregate investor preferences and beliefs. Review of Financial
Studies, 18(3), 925-953.

Pratt, J. W. (1964). Risk Aversion in the Small and in the Large. Fconometrica:
Journal of the Fconometric Society, 122-136.

Quiggin, J. (1994). Regret theory with general choice sets. Journal of Risk and
Uncertainty 8(2),153-165. |

138




Reilly, R. J. (1986). The Markowitz Utility Function and Some Experimental Evi-
dence for Small Speculative Risks. Journal of Risk and Insurance, 53(4), 724-783.

Richter, T., & Spiith, P. (2006). Recognition is used as one cue among others in
Judgment and decision making. Journal of Experimental Psychology: Learning, Memory,
and Cognition, 32, 150-162.

Ross, 5.A. (1981). Some stronger measures of risk aversion in the small and the large
with applications. Econometrica 49,621-638.

Rozin, P., & Royzman, E. B. (2001). Negativity bias, negativity dominance, and
contagion. Personality and social psychology review, 5(4), 296-820.

Sahoo, P., & Riedel, T. (1998). Mean value theorems and functional equations. World
Scientific Publishing Company.

Samuelson, P.(1967). Generé,l Proof that Diversification Pays. Journal of Financial
and Quantitative Analysis 2, 1-18

Sandmo, A. (1971). On the theory of the competitive firm under price uncertainty.
American Economic Review, 65-73.

Sarver, T. (2008). Anticipating regret: why fewer options may be better. Economet-
rica, 76, 2, 263-305. |

Savage, L. J. (1951). The theory of statistical decision. Journal of the American
Statistical association, 46(253), 55-67.

Scheibehenne, B. & A. Broder (2007). Predicting Wimbledon 2005 tennis results by
mere player name recognition. International Journal of Forecasting 23, 41 5—426

Schmidt, K. D. (2003). On the covariance of monotone functions of a random variable.
Professoren des Inst. fiir Math. Stochastik.

Schmidt, U. & Zank, H. (2008). Risk aversion in cumulative prospect theory. Man-
agement Science, 54, 208-216.

Schwartz, H. (2010) Heuristics or rules of thumb, in Behavioral finance: investors,
éowpomtz’ons, and markets (eds H. K. Baker and J. R. Nofsinger), John Wiley & Sons,
Inc., Hoboken, NJ, USA. '

Serwe, S., & Frings, C. (2006). Who will win Wimbledon? The recognition heuristic

139




in predicting sports events. Journal of Behavioral Decision Making, 19(4), 321-332.

Shefrin, H. (2008). A behavioral approach to asset pricing. Academic Press.

Shefrin, H. M., & Statman, M. (1984). Explaining investor preference for cash divi-
dends. Journal of Financial Economics, 13(2), 255-282.

Simon, H. A. {1955). A behavioral model of rational choice. Quarterly Journal of
Fconomics, 69;. 99-118.

Simon, C. P., & Blume, L., (1994). Mathematics for economists. Vol. 7. New York:
Norton.

Simonovits, A. (1995). Three economic applications of Chebyshev’s Algebraic In-
equality. Mathematical Social Sciences 30, 207-220.

Sinn, H.-W. (1983). Economic decisions under uncertainty. North-Holland, Amster-
dam.

Smithson, M. {2010). When less is more in the recognition heuristic. Judgment and
Decision Making, 5, 230-244.

Snook, B., & Cullen, R. M. (2006). Recognizing National Hockey League greatness
with an ignorance-based heuristic. Canadian Journal of Experimental Psychology/Revue
canadienne de psychologie expérimentale, 60(1), 35.

Snook, B., Zito, M., Bennell, C., and Taylor, P. J. (2005). On the complexity and
accuracy of geographic profiling strategies, Journal of Quantitative Criminology, 21, 1-
16.

Solnik, B. (2008). Equity home bias and regret: an international equilibrium model.
Working paper HEC, Paris.

Starmer, C. (2000). Developments in non-expected utility theory: The hunt for a
descriptive theory of choice under risk. Journal of Economic Litcrature, 38(2), 552-382.

Steffensen, J.F.,(1925). En Ulighed mellem Middelve edier. Matematisk Tidsskrift
49-58. |

Stiglitz, J. (1998). The private uses of public interests: Incentives and institutions.
Journal of Economic Perspectives, 12, 3-22.

Sugden, R. (1993). An axiomatic foundation for regret theory. Journal of Economic

140




Theory, 60(1), 159-180.

Sugden, R. (2004). Alternatives to Expected Utility: Foundations, in Handbook of
Utility Theory: Volume 2: Extensions, eds Salvador Barbera, Peter Hammond and Chris-
tian Seidl, Kluwer, Dordrecht, pp. 685-755.

Sul, 8., Kim, J., & Choi, L (2013). Subjective Well-Being and Hedonic Editing: How
Happy People Maximize Joint Qutcomes of Loss and Gain. Journal of Happiness Studies,
14, 1409-1430.

Taylor, J. B. (1993). Discretion versus policy rules in practice. In Carnegie-Rochester
conference series on public policy (Vol. 39, pp. 195-214). North-Holland.

Tesfatsion, L. (1976). Stochastic dominance and the maximization of expected utility.
Review of Fconomic Studies, 43(2), 301-315.

Thaler, R. (1980). Towards a positive theory of consumer choice. Journal of Economic
Behavior and Organization 1, 39-60.

Thaler, R. (1985). Mental accounting and consumer choice. Marketing Science, 4,
199-214. | ,

Thaler, R. H. (1994). Quasi rational economics. Russell Sage Foundation.

Thaler, R.H. (1999). Mental accounting matters. Journal of Behavioral Decision
Making, 12, 183-206.

Thaler, R. H., & Sunstein, C. R. (2008). Nudge: Improving decisions aboul health,
weelth, and happiness. Yale University Press.

Thoma, V., & Williams, A. {2013). The devil you know: The effect of brand recog-
nition and product ratings on consumer choice. Judgment and Decision Making, 8(1),
34-44.

Tobin, J. (1958). Liquidity preference and behavior towards risk. Review of Economic
Studies, 25, 65-86.

Todd, PM.& G. Gigerenzer (2003) Bounding rationality to the world. Journel of
Economic Psychology 24, 143-165.

Tomlinson, T., Marewski, J. N., & Dougherty, M. (2011). Four challenges for cognitive

research on the recognition heuristic and a call for a research strategy shift. Judgment

141




and Decision Moking, 6, 89-99.

Tversky, A.& Kahneman, D. (1992). Advances in prospect theory: cumulative rep-
resentation of uncertainty. Journal of Risk and Uncertainty, 5, 297-323.

Tversky, A., & Kahneman, D. (1974). Judgment under uncertainty: Heuristics and
biases. Science, 185, 1124 ~1130.

Tversky, A., Slovic, P., & Kahneman, D. (1990). The causes of preference reversal.
American Economic Review, 204-217.
| Tversky, A., & Thaler, R. H. (1990). Anomalies: preference reversals. Journal of
Economic Perspectives, 4(2), 201-211.

Von Neumann, J., & Morgenstern, O. (1947). Theory of games and economic behavior.
Princeton University Press..

Wagener, A. (2006). Chebyshev’s algebraic inequality and comparative statics under
uncertainty. Mathematical Social Sciences, 52, 217-221.

Wakker, P.P. (2010). Prospect theory: for risk and ambiguity. Cambridge University
Press, Cambridge.

Wright, R. (1987). Expectation dependence of random variables, with an application
in portfolio theory. Theory and Decision 22, 111-124.

Wong, K.P., (2011). Regret theory and the banking firm: The optimal bank interest
margin. Economic Modelling 28, 2483-2487.

Wiibben, M., & Wangenheim, F. V. (2008). Instant customer base analysis: Man-
agerial heuristics often “get it right”. Journal of Marketing, 72(3), 82-93.

Zaleskiewicz, T. (2011). Financial forecasts during the crisis: Were experts more
accurate than laypeople? Journal of Economic Psychology 32, 384-390.

Zeelenberg, M. (1999). Anticipated regret, expected feedback and behavioral decision
making. Journal of Behavioral Decision Making, 12, 93-106.

Zeelenberg, M., & Beattie, J. (1997). Consequences of regret aversion 2: Additional
evidence for effects of feedback on decision making. Organizational Behawior and Human
Decision Processes, 72(1), 63-78.

Zeelenberg, M., Beattie, J., van der Pligt, J., & de Vries, N. K. (1996). Consequences

142



of regret aversion: effects of expected feedback on risky decision making. Organizational

Behovior and Human Decision Processes, 65, 148-158.

143

0000000000000 0000000000000 000000000000000000C°KOCKCKCYYS




	Martin Egonzcue
	TD_EgozcueMartín
	00000001
	00000002
	00000003
	00000004
	00000005
	00000006
	00000007
	00000008
	00000009
	00000010
	00000011
	00000012
	00000013
	00000014
	00000015
	00000016
	00000017
	00000018
	00000019
	00000020
	00000021
	00000022
	00000023
	00000024
	00000025
	00000026
	00000027
	00000028
	00000029
	00000030
	00000031
	00000032
	00000033
	00000034
	00000035
	00000036
	00000037
	00000038
	00000039
	00000040
	00000041
	00000042
	00000043
	00000044
	00000045
	00000046
	00000047
	00000048
	00000049
	00000050
	00000051
	00000052
	00000053
	00000054
	00000055
	00000056
	00000057
	00000058
	00000059
	00000060
	00000061
	00000062
	00000063
	00000064
	00000065
	00000066
	00000067
	00000068
	00000069
	00000070
	00000071
	00000072
	00000073
	00000074
	00000075
	00000076
	00000077
	00000078
	00000079
	00000080
	00000081
	00000082
	00000083
	00000084
	00000085
	00000086
	00000087
	00000088
	00000089
	00000090
	00000091
	00000092
	00000093
	00000094
	00000095
	00000096
	00000097
	00000098
	00000099
	00000100
	00000101
	00000102
	00000103
	00000104
	00000105
	00000106
	00000107
	00000108
	00000109
	00000110
	00000111
	00000112
	00000113
	00000114
	00000115
	00000116
	00000117
	00000118
	00000119
	00000120
	00000121
	00000122
	00000123
	00000124
	00000125
	00000126
	00000127
	00000128
	00000129
	00000130
	00000131
	00000132
	00000133
	00000134
	00000135
	00000136
	00000137
	00000138
	00000139
	00000140
	00000141
	00000142
	00000143
	00000144
	00000145
	00000146
	00000147


