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Resumen 

Esta tesis analiza tres problemas vinculados con el comercio internacional de energía 

eléctrica. La primera parte trata el problema de negociación de precios en el comercio spot 

internacional entre dos países, en el contexto institucional de América del Sur, donde las 

transacciones tienen lugar entre operadores de dos sistemas eléctricos, y el principal 

problema económico es el reparto de los beneficios del comercio entre los países que 

comercian. Se analiza formalmente la ineficiencia de la negociación caso a caso ante cada 

oportunidad de comercio, y las condiciones de sostenibilidad de acuerdos de largo plazo 

para fijar precios. La segunda parte presenta algunas de las reglas de fijación de precios del 

comercio usadas en la región en las transacciones bilaterales que se han realizado hasta el 

presente y, dado que se requerirán acuerdos multilaterales en el futuro, estudia diferentes 

formas de definir transacciones y sus precios, cuando más de dos países comercian. 

Finalmente la tercera parte estudia el efecto de variaciones en los precios del comercio 

internacional de electricidad sobre el diseño óptimo de un sistema de generación, e 

investiga condiciones bajo las cuales las importaciones son complementarias o bien 

sustitutivas de la instalación de capacidad de generación eólica.  

Abstract 

This thesis analyzes three economic problems of international power trade. The first part 

addresses the problem of the negotiation of prices in international power spot trade, in the 

institutional context prevailing for such trade in South America, where the systems’ 

operators of two countries decide the transactions and the main economic problem is the 

share of the benefits of trade between the countries. The analysis explains formally the 

inefficiencies of case by case bargaining, and finds conditions to be fulfilled by long run 

price setting rules to be stable. The second part reviews different price setting rules used in 

the past in the region for bilateral transactions between countries, and as efficient trade will 

require multilateral agreements, studies different methods to define transactions and energy 

prices, when more than two countries participate in trade. Finally the third part studies the 

effect of variations in the prices of international power trade on the optimal design of a 

country’s generation system, and investigates conditions leading to imports to be a 

complement or a substitute of wind capacity.  
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1 GENERAL INTRODUCTION 

In the last twenty years structural and regulatory reforms in many countries led to the 

emergence of competitive electricity markets of national scope: spot markets for short term 

and contract markets for long term supply. Transmission and distribution grids allow third 

party access. Apparently electricity has become another commodity. However this 

simplified view cannot be sustained when the technical singularities and the complexity of 

sectorial regulation to make those markets work are taken into account.  

The electric system requires an instantaneous balance between demand and supply, which 

can only be achieved by a centralized coordination of generation and transmission 

operation. Therefore regulation must ensure this coordination and determines the way the 

load curve is supplied at every moment, and a system operator must perform the function 

of load dispatch.  

The generation capacity to ensure short term reliability is a public good. The development 

of long term supply contracts is burdened with high transaction costs and uncertainty, and 

in many countries there is a reasonable concert that efficient markets for those contracts 

will not spontaneously emerge. These two market failures and the technical reasons 

discussed above justify that with no exception countries regulate power generation. 

International power trade can only take place through interconnections, which require long 

construction periods and heavy investments. In most countries, interconnection capacity 

with neighboring countries is a small fraction of local generation capacity (Uruguay is one 

of the few exceptions), and every country relies mainly or exclusively on its own resources 

to supply its demand.  

The need for regulation in national spot markets makes regulation in international spot 

power trade also a necessity. 

In South America the main form of international power trade is currently spot trade, 

performed by system operators in the framework of bilateral agreements between 

countries. Spot trade consists in transactions decided day by day involving energy 
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surpluses of the selling country, without a long term commitment or any obligation for the 

selling country to have generation capacity to supply the buyer permanently.  

Therefore some of the problems of economic interest that arise in the study of international 

power trade are different depending on the institutional and regulatory context. This thesis 

analyzes three problems related to international power trade in the specific situation of the 

Mercosur region, and regarding the technical singularities of the Uruguayan power system. 

1.1 The modeling of bargain in spot power trade 

The first part of this thesis addresses the problem of the negotiation of prices between 

countries in international spot power trade.  

In some regions of the world, as the European Union, regulations for international spot 

power trade aim at creating a single spot market unifying the national markets of the 

countries involved in trade. The main issue in this case is to ensure equal rights and non-

discriminatory participation in trade in an open market for firms from every interconnected 

country. Among the theoretical economic problems that arise, perhaps the most important 

is the analysis of the effect on market power of a limited capacity interconnection between 

two markets 

By contrast, in South America and specifically in the Mercosur countries, regulation of 

international spot power trade has given place to bilateral trade regimes, where countries 

explicitly determine prices for the energy traded between them. In this case it is essential to 

find long run agreements with rules to determine prices, to avoid a case by case bilateral 

bargain, each time a new trade opportunity appears.  International spot trade in our region 

then raises the problem of the formal analysis of bargaining between countries to 

determine trade prices. The first part of this thesis is in this line of work. 

Electricity production costs in each trading country and therefore the direction of the trade 

and its potential benefit are random, as a consequence of the randomness of hydraulic and 

wind generation, the availability of thermal plants, and in the long run of the unpredictable 

cycles of under and overinvestment in power generation capacity. Consequently the model 

of bargain we develop in the first part of this thesis is based on the existence of a sequence 

of trade opportunities with random duration and benefits. 
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The objectives of our analysis are: i) explaining formally the inefficiencies of case by case 

bargaining in spot power international trade when the direction of the trade flow and its 

potential benefits are random, and ii) finding conditions to be fulfilled by long run price 

setting rules, to be preferable to case by case bargaining. 

1.2 The problem of design of multilateral agreements for international 

spot trade 

In our region international spot power trade has been until now the subject of bilateral 

agreements. 

Sometimes the multilateral nature of trade has hindered bilateral transactions: the 

requirement by Brazil of Argentinean energy in 2005 affected the Argentinean supply to 

Uruguay; the lack of Argentinean agreement to grid access prevented Paraguayan energy 

sales to Uruguay and Chile. 

In 2015 a 500 kV new interconnection between Uruguay and Brazil will be completed, 

raising the total interconnection capacity to 570 MW. Argentine and Uruguay are linked by 

500 kV lines with 2000 MW capacity. Argentine and Brazil have a 2000 MW link. These 

interconnection capacities can be compared with the 1200 MW average Uruguayan 

demand, to perceive the importance of power trade to Uruguay: the whole local demand 

could potentially be supplied by imports. 

This triple strong interconnection requires a multilateral agreement for power trade. The 

mere superposition of independent bilateral agreements between countries could induce 

inefficiency or even worse leave indetermination in the transactions. 

There is ample literature about energy integration and international power trade pursuing 

the ideal of a single energy market, where generators and consumers could trade without 

any country based discrimination. Besides, there are few analysis of spot trade in the South 

American institutional framework, where countries have to settle agreements to determine 

energy prices in trade, and the transactions are decided by power system operators.  

The second part of this thesis aims at describing different methods to define transactions 

and energy prices for them, when more than two countries negotiate how to divide the 

benefits of energy trade, as in the case of the Mercosur countries. The transactions to be 
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defined must implement the optimal power flows between countries, in the sense of 

producing a Pareto optimal allocation. 

Using the fact that the graph formed by optimal flows through the interconnections has no 

cycles, different sets of economically meaningful and consistent transactions are defined, 

resulting in those energy flows, with different criteria to solve the problems of: i) power 

transits through third countries and the intermediation in energy and ii) the split of the 

benefits of trade between countries in these transactions. 

The retribution for the use of grids is beyond the scope of this work. Although it is a 

subject of economic importance, it has a second order impact when compared with the 

prices of energy in trade. 

1.3 The problem of generation portfolio design 

The optimal design of a generation system is a problem of practical importance since in 

many countries, even with competitive markets for generation, the authorities conduct 

planning processes to shape the power system. The goal is to find the amount of capacity 

to be installed for every available kind of generation unit, assuming that capacity will be 

used optimally.  

In Uruguay for both institutional and technical reasons, the expansion of the power 

generation system is strongly influenced by a process of centralized planning. In the last 

few years the national energy policy has set two main goals for generation planning: a 

massive expansion of wind generation capacity, and the construction of a GNL 

regasification plant.  

The country´s energy policy has determined the expansion in wind capacity to reach 25% 

of energy supply from wind energy by 2017 (DNE, 2013). This goal has led to a series of 

competitive biddings performed by the state owned public utility UTE, to award long term 

purchase contracts to private generators, and to the development by the firm of its own 

wind generation projects. The construction of the GNL regasification plant required a 

competitive bidding, and the firm awarded with the construction of the plant received a 

long term contract, with UTE and the state owned oil company ANCAP purchasing the 

capacity. The size of the generation system is too small to allow multiple efficient scale 

thermal generation projects using natural gas to be developed in parallel, competing to 
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supply the increasing needs of the demand, so either franchise biddings to grant power 

purchase agreements can be conducted, or UTE can develop its own projects. The latter is 

the present option of the government. The institutional and technical landscape we have 

described explains the importance of the problem of generation portfolio design in the 

country. 

As Uruguay is a small country with strong interconnections with its neighbors, in this 

process of power generation planning, the conditions of international power trade play an 

important role. 

The aim of the third part of this thesis is to develop an analytical model to study the effect 

of international energy trade on the optimal design of a country’s power generation system.  

As investments in power plants are irreversible, the problem is dynamic, since present 

investment decisions affect the future optimal short run performances of the system. In this 

thesis we will use a simplified static model, with two kinds of local generation resources 

(thermal and wind capacity), and with the possibility of international trade. The country 

can import energy form neighbor countries without restrictions, and export wind energy 

surpluses. In the model the energy imports are fully characterized by a single constant 

price.   

The main subject under analysis is the effect of variations in the prices of international 

energy trade on the optimal amount of wind capacity to be installed, and particularly the 

determination of conditions leading to imports to be a complement or a substitute of wind 

capacity.  
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2 INTERNATIONAL POWER TRADE AS A SEQUENCE OF 

BARGAINING GAMES 

2.1 Introduction 

This chapter studies the negotiation between two risk neutral players to split the benefits in 

an infinite series of trade games developed over an infinite sequence of time periods. Each 

trade game has a random potential benefit per time unit, and a random duration, and the 

objective of the negotiation in each game is to determine the shares of these benefits 

between the players from the moment they reach an agreement to the end of that particular 

trade game.  The potential benefits per time period of a trade game before the moment of 

the agreement are lost. The duration of a trade game results from Bernoulli trials at the end 

of each time period, to determine if the current game survives. After a trade game ends, 

another one starts, with a new potential benefit per period, a new probability of survival in 

Bernoulli trials and a new negotiation. 

The sequence of games described above is motivated by the actual problem of the 

negotiation of prices between countries in international power spot trade, in the 

institutional context prevailing for such trade in South America. Interconnected countries 

face a permanent relationship in which both countries observe the repeated emergence of 

trade opportunities, of random duration. For each trade opportunity prices have to be 

determined, resulting in a partition of the benefits per period, as long as the trade 

opportunity survives. 

The formal analysis developed here can be applied to the partition of any kind of benefits 

per period of time, and to the repetition of such games. 

We understand by international power spot trade, the cross-border wholesale transactions 

of electricity between countries or firms on a spot basis, without any long run contractual 

obligation for the seller to supply. International spot power trade has two singularities 

when compared to the trade of almost any other good. First, electricity production costs in 

each trading country and therefore the direction of the trade and its potential benefit are 

random, as a consequence of the randomness of hydraulic and wind generation, the 

availability of thermal plants, and the cycles of under and overinvestment in power 

generation capacity. Consequently a model of international spot trade should be based on 
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the existence of a sequence of trade opportunities with random duration and benefits. This 

randomness has been an essential feature of international electricity trade in the region in 

the past years. Second, for technical reasons power trade always requires some kind of 

regulation. 

In some regions of the world, as the European Union, regulations for international power 

trade aim at creating a single spot market unifying the national markets of the countries 

involved in trade. A vast literature describes the institutional and economic problems of 

designing and implementing this single market for electricity in the EU, for instance 

Boucher and Smeers (2001), Glachant and Lévêque (2005), ERGEG (2006), and Meeus, 

Belmans and Glachant (2006). The main issue in this institutional setting is to ensure equal 

rights and non-discriminatory participation in trade in an open market for firms from every 

interconnected country. Among the theoretical economic problems that arise, perhaps the 

most important are the analysis of the effect on market power of a limited capacity 

interconnection between two markets (for instance Borenstein, Bushnell and Stoft (1999), 

Parisio and Bosco (2006)) and the assignation among competitors of the scarce 

transmission capacity (Joskow and Jean Tirole (2000)). 

By contrast in South America, regulation has given place most frequently to bilateral trade 

regimes, where countries explicitly determine prices for the energy traded between them. A 

description of such regimes can be found in CIER (2004). In this case it is essential to find 

long run agreements with rules to determine prices, to avoid a case by case bilateral 

bargain, each time a new trade opportunity appears. To our knowledge, the formal analysis 

of bargaining between countries to determine prices in spot power trade, which is 

addressed in this chapter, has few references in the literature. An exception is an interesting 

paper by Moitre and Rudnick (2000) that studied prices for spot trade between Argentina 

and Chile, in the framework of the Nash bargaining solution.  

The objectives of this chapter are: i) explaining formally the inefficiencies of case by case 

bargaining, when the players face an infinite sequence of trade games, and ii) finding 

conditions to be fulfilled by long run agreements with price setting rules, in order to be 

preferable for both players to case by case bargaining in each trade game. 

In section 2 of this chapter, the formal model for each trade game (TG) is presented. The 

main result is that there is a correspondence between this TG, and the classic model of 
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bargaining over a single amount or “pie” presented in Rubinstein (1982). Therefore the 

conclusions obtained by Rubinstein about the subgame perfect Nash equilibria (SPNE) can 

be extended to trade games. 

In section 3, the correspondence between trade games and Rubinstein games is extended to 

the case described by Avery and Zemsky (1994), when in a Rubinstein game, a player can 

worsen the result of possible agreements each time his offer is rejected (an action of 

“money burning”), to improve his bargaining position. We will consider one form of 

money burning consisting of a player delaying the game when his offer is rejected. Avery 

and Zemsky show that such games have infinite SPNE with partitions belonging to a 

segment and with agreement in any period t between 0 and a higher bound depending on 

the parameters of the problem. Therefore there is theoretical support for the evidence that 

real bilateral negotiations will probably produce inefficient delayed outcomes. Using the 

correspondence between the extended games, we prove in this section that the existence of 

multiple inefficient SPNE found by Avery and Zemsky for Rubinstein games with money 

burning (RGM), can be extended to the trade games with money burning (TGM) we are 

interested in. 

In section 4 we study a super game SG consisting of an infinite sequence of TGMs. In the 

nth trade game ���� there is an assignment of the roles of buyer and seller, a benefit per 

time unit �� to split between the two players (equal to the difference between the avoided 

cost of the buyer and the incremental cost of the seller if trade takes place) and a 

probability �� of the game surviving to the next period of time. The set of these parameters 

is a random variable denoted by ��. When ���� ends, nature generates �����	 with 

parameters resulting from a new random variable ���	. This sequence of trade games 

represents the repeated interaction of countries facing a practically infinite series of trade 

opportunities. We prove in section 4 that a SPNE of game SG consists in both players 

using in each ���� the strategies of an inefficient SNPE of this trade game. As this result 

of repeated inefficient delayed agreement seems undesirable for both players, we study the 

possibility of an efficient rule to play the TGMs, to be sustainable as a SNPE of SG. Such a 

rule should determine right away the split of the benefits (the energy price in international 

spot power trade) as a function of the observed parameters of the TGM. We find conditions 

for such a rule to be sustainable with certainty, and give an intuitive interpretation of the 

conditions in the context of our problem of international power trade.  
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2.2 Correspondence of a trade game with a Rubinstein game 

In this section we will prove that each TG with risk neutral players having the same 

discount rate, can be put in correspondence with another game first defined by Rubinstein 

(1982) and widely studied by the literature: the bilateral bargaining for the partition of a 

fixed amount B, in which each player has to make in turn a proposal as to how it should be 

divided. After one player has made an offer the other must decide to accept it or reject it 

and continue the bargaining with the roles reversed. The sequence of offers and rejections 

can last infinitely if agreement is never reached. Both players have discounting rates so the 

delay to achieve an agreement is inefficient. Let us call this game Rubinstein game (RG).  

Using the biunivocal correspondence between subgames, strategies and equilibria in both 

games (a TG and a certain RG), we will prove that the expected benefits for the players in 

a TG discounted to the beginning of any subgame when they play a pair of strategies, are 

respectively equal to the sure benefits in the corresponding RG when they play the 

corresponding strategies. Therefore the subgame perfect Nash equilibria (SPNE) of both 

games can also be put in a biunivocal correspondence. This allows us to employ the results 

found in the literature about SPNEs in RGs to the analysis of the TGs defined in this paper. 

Rubinstein obtained a very interesting result for RGs: there is a single SPNE in any RG, 

consisting of players reaching an immediate efficient agreement in the first period of time, 

with the partition close to one half for each player if discount rates are equal, with a small 

advantage to the player who makes the first proposal. The subsequent literature extended 

Rubinstein games to allow for the existence of inefficient delayed agreements, and is 

addressed in section 3 of the paper. 

2.2.1 The trade game (TG) 

Let us first describe more precisely the TG. Panel A) from Diagram 1 in the next page 

represents a trade game. The game develops through a potentially infinite sequence of 

equal duration periods of time, = 0,1, … . Let us call instant � the beginning of period �.   
In a TG there is a benefit � per period to split between players 1 and 2. Both players are 

risk neutral, and have discount factors per time unit �	 and ��.  The game starts at period � = 0 with an offer � made by player 1, about how to split the benefits. As long as no 

agreement is reached, at the beginning of each time period, one player � makes an offer � 
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to player �, that � can either accept or reject. If the offer is accepted, player 1 has a share � 

in the subsequent flow of benefits, and player 2 a share (1 − �). The benefit � of time 

period � is dated at instant �, the beginning the period. If the offer is rejected, in the 

following period � + 1 the roles are reversed and j makes an offer to i. 

 

 

 

 

Therefore if the agreement is delayed for one period its benefit � is lost. When an offer � is 

accepted the players begin to receive benefits �� and (1 − �)� respectively per period in 

each of the following periods, as long as the game survives. The possibility of 

renegotiation is not considered. At the end of each period there is a probability � of the 

game surviving at least another period, and (1 − �) of its ending. This random result, 

1 

2 accepts 

offer st  

rejects 

2 

1 
rejects accepts 

offer st+1  

t even 

2 

t+1 odd 

B) Rubinstein game 

1 

2 accepts 

offer st  

rejects 

2 

1 rejects 
accepts 

offer s  

t even 

1 

t+1 odd 

A) Trade game (TG) 

N 
prob. p continue. 

prob. (1-p) end 

prob. p continue 

prob. (1-p) end 
N 

Diagram 1 
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which we model as a decision taken by a player nature, is the same whether an agreement 

has already been reached previously or not. Decisions by nature in different periods are 

independent random variables and are not affected by the players’ strategies. 

The probability of the TG born at period 0 surviving until period � is equal to ��.  The 

benefits for each player in the TG, discounted to the beginning of � = 0, given an 

agreement at � = 0, are random variables as the duration of the game after the agreement is 

random. 

The expected values of the benefits for each player in a TG with discount factors �	 and ��, benefit per period �, and surviving probability �, discounted to the beginning of period 

0, when agreement is reached at � = 0 with partition �, are: 

�	��(�, �, �	, �) = �� ∑ �	������ = !"	#$%& = ���(�, ��	)     (1) 

����(�, �, ��, �) = (1 − �)�∑ �������� = (	#!)"	#$%' = (1 − �)��(�, ���)  

Where ��(�, () ≔ "	#*  is the value of an infinite flow of benefits � per period, beginning 

at � = 0, discounted to instant � = 0 with a discount factor (  per period. 

Let us introduce the restrictive assumption �	 = �� = �,1resulting in: 

�	��(�, �, �, �) = !"	#$% = ���(�, ��)       (2) 

                                                 
1 This hypothesis is needed to find a correspondence of the trade game with a Rubinstein game in a 

straightforward way. It would be possible to extend the Rubinstein game to consider the negotiation about 

partition s of two “pies” of different size �	 and ��, one intended for each player, so that player 1 gets ��	 

and player 2 gets (1 − �)��. With such and extension, the results of this paper could take into account 

different discount rates for both players. This extension is possible as no interpersonal comparison of benefits 

is needed to develop the results in Rubinstein games; each player only compares the outcomes for himself in 

different strategies, involving different delays to reach agreement.  
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����(�, �, �, �) = !"	#$% = (1 − �)��(�, ��)  
These values �	��(. ) and ����(. ) are also the expected benefits of an agreement with 

partition �, obtained at any period �, discounted to the beginning of this period, given the 

event that the game has survived until period �. 
We will denote by ��(�, �, �) the trade game with benefit per period of time �, probability 

of survival of the game in each period �, and discount factor � equal for both players. 

Let us denote with SSSSTG the sets of subgames of the trade game TG, and with ,	�� and ,��� 

the sets of all possible strategies in trade game TG for each players. 

Let us call ���(-�� , .	�� , .���): STG × ,	�� × ,��� → 01 ∪ ∞4 the function determining 

the period of the agreement in ��(�, �, �) (or infinite, meaning no agreement is ever 

reached) when strategies .	�� , .��� (of the entire game) are played starting at the beginning 

of subgame -��, and nature plays always “continue”. If subgame -�� is dated at �, then ���(-�� , .	�� , .���) ≥ �. 
Let us call 6��(-�� , .	�� , .���): STG × ,	�� × ,���→ 070,18 ∪ 194 the function 

determining the partition reached in ��(�, �, �), when strategies .	��, .��� are played 

starting at the beginning of subgame -��, and nature plays always “continue”, with 19 

meaning no agreement. 

The expected benefits for both players discounted to instant �, in trade game ��(�, �, �), 
given the event of the game having reached the beginning of subgame -�� at instant �, 
when strategies in the entire game are .	�� and .���, can be written as: 

:	��;-�� , .	�� , .���< = ��=>;?=>,@&=>,@'=><#�	��=>;?=>,@&=>,@'=><#�	�	��(6��;-�� , .	�� , .���<, �, �, �) 
:���;-�� , .	�� , .���< = ��=>;?=>,@&=>,@'=><#�	��=>;?=>,@&=>,@'=><#�	����(6��;-�� , .	�� , .���<, �, �, �)
            (3) 

��=>(.)#�	 is the discount factor between instants � and ���(. ) for both players 

��=>(.)#�	 is the probability of the trade game surviving until period ���(. ) when agreement 

happens, given the event of having reached period �. 
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Using (2) to substitute for �	��(. ) and ����(. ) in (3), we have: 

:	��;-�� , .	�� , .���< = (��)�=>;?=>,@&=>,@'=><#�	6��;-�� , .	�� , .���<��(�, ��)   (4) 

:���;-�� , .	�� , .���< = (��)�=>;?=>,@&=>,@'=><#�	B1 − 6��;-�� , .	�� , .���<C��(�, ��) 
2.2.2 The Rubinstein game (RG) 

Panel B) from Diagram 1 represents schematically the Rubinstein game RG. An RG is 

simpler than a TG in two features: first, the benefit to split comes from a single “pie”, 

instead of a sequence of per period “pies”; second the RG ends at the moment of the 

agreement when the benefits are collected, while the TG survival, and the duration of the 

flow of benefits, depends on the random trials at the end of each period. Both games share 

the feature that both players alternate in the role of making proposals about how to divide 

the benefits. 

In the RG there is an amount � to split between players 1 and 2, with discounting rates per 

time unit (	 and (� respectively. As in a TG, bargaining develops through a sequence of 

equal duration periods of time, = 0,1,2…. . As long as no agreement is reached, at the 

beginning of each time period, one player � makes an offer � to player j, that j can either 

accept or reject. If the offer is accepted, player 1 has a single certain benefit �� and player 

2 a single certain benefit (1 − �)�, dated at instant �, the beginning of period �, and the 

game ends. If the offer is rejected, in the following period � + 1 the roles are reversed and j 

makes an offer to i.  

Let us introduce the restrictive assumption (	 = (� = (. We will denote by E�(�, () the 

Rubinstein game with benefit B to divide, and discount factor ( equal for both players. 

Let us denote with SSSSR the set of subgames of the Rubinstein game RG, and with ,	F and ,�F 

the sets of all possible strategies in the game RG for each player. 

Let us call �F(-, .	, .�): SR × ,	F × ,�F → 01 ∪∞4 the function determining the period of 

the agreement (or infinite, meaning no agreement is ever reached), when strategies .	 and .� are played, starting at the beginning of subgame - ∈ SR. If subgame - is dated at �,  �F(-, .	, .�) ≥ �. 
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Let us call 6F(-, .	, .�): SR × ,	F × ,�F → 070,18 ∪ 194  the function determining the 

partition reached, when strategies .	and .� (of the entire game) are played, starting at the 

beginning of a subgame - ∈ SR. 

For any subgame - beginning at instant � the benefits for the players in the E�(�, (), 
discounted to instant �, when players start playing strategies .	and .� at the beginning of 

subgame -, are:  

:	F(-, .	, .�) = (�H(?,@&,@')#�	6F(-, .	, .�)�      (5) 

:�F(-, .	, .�) = (�H(?,@&,@')#�	7	1 − 6F(-, .	, .�)8� 

The following table compares the benefits in an RG with total benefit � and a TG with per 

period benefit � for an agreement reached at period �, with partition �. 

 

Game Player                                         Benefits in 

periods 

preceding the 

agreement 

0, 1, …., t-1 

Benefit in 

period t of the 

agreement  

Benefits in 

periods 

following the 

agreement 

t+1, t+2,…. 

RG 1 Sure benefit 0 sB -- 

2 Sure benefit 0 (1-s)B -- 

TG 1 

 

Current benefit per time 

period as long as the game 

survives 

0 sb sb 

Expected benefit discounted  

to t 

 sB∞(b, pδ)  

2 Current benefit per time 

period as long as the game 

survives 

0 (1-s)b (1-s)b 

Expected benefit discounted  

to t 

 (1-s)B∞(b,pδ)  
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Rubinstein found that there is a single SPNE in any RG, consisting of players reaching an 

immediate efficient agreement in the first period of time, with the partition close to one 

half for each player if discount rates are equal, with a small advantage to the player who 

makes the first proposal. The conclusion that all bilateral negotiations end immediately 

reaching efficient outcomes in rather unrealistic. The subsequent literature extended 

Rubinstein games to allow for the existence of inefficient delayed agreements, and is 

addressed in section 3 of the paper.  

2.2.3 Correspondence between a TG and a RG 

We will show here there is a correspondence between any trade game ��(�, �, �) and the 

Rubinstein game E�(��(�, ��), ��). 
First, there is a biunivocal correspondence BBBBH between the subgames of ��(. ) and the 

subgames of E�(. ) where corresponding subgames have at their beginning the same 

player choosing an action, have in their respective histories the same actions for each of the 

players, and in ��(. ) nature has played always “continue”.  

Second, for each player there is a biunivocal correspondence between his strategies in both 

games, where any strategy .I ∈ ,IF for player � in E�(. ) has a corresponding strategy in ��(. ) which we will denote by .I��: the one that chooses at the beginning of each 

subgame of ��(. ) where � plays the same action as .I at the beginning of the 

corresponding subgame in E�(. ) determined by BBBBH. Those actions refer of course to the 

partition � to be offered and the rule to accept or reject offers.  

Using these correspondences we will prove the following proposition. 

Proposition I:  

Given: 

• A trade game ��(�, �, �) with benefit per period of time �, probability of survival of 

the trade opportunity in each period �, and discount factor � equal for both players. 

• and a Rubinstein game E�(��(�, ��), ��) splitting an amount ��(�, ��) where both 

players have discount factor �� (with ��(�, ��) defined in (2)), 

• then the expected benefits for both players discounted to the beginning of period �, in 
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��(�, �, �), given that the game is at the beginning of subgame -�� ∈ SSSSTG dated at �, 
when strategies .	��, .��� are played 

• are respectively equal to the certain benefits discounted to the beginning of � in E�(��(�, ��), ��) if this game is at the beginning of subgame -, the corresponding 

of -�� in BBBBH, and strategies .	and .� the corresponding in BBBBΣΣΣΣ of .	�� and .���   are 

played.  

• This is valid in particular for the entire games ��(. ) and E�(. ), which are also 

subgames dated at � = 0. 

Proof. 

As .	and .� are the corresponding strategies in BBBBΣΣΣΣ of .	�� and .���, and -�� and - are 

corresponding subgames related by BBBBΗΗΗΗ,  if nature plays “continue” until agreement is 

reached: 

���(-�� , .	�� , .���) = �F(-, .	, .�)       (6) 

6��(-�� , .	�� , .���) = 6F(-, .	, .�) 
This is a result of strategies of both players in both games, prescribing the same rules to 

make offers and to accept or reject offers.   

Using (5) applied to E�(��(�, ��), ��) yields: 

:	F(-, .	, .�) = (��)�H(?,@&,@')#�	6F(-, .	, .�)��(�, ��)    

:�F(-, .	, .�) = (��)�H(?,@&,@')#�	7	1 − 6F(-, .	, .�)8��(�, ��)    (7) 

Using (6) (which states that the resulting partition and time of agreement are equal in both 

games) and comparing (4) and (7), we have: :J��;-�� , .	�� , .���< = :KE(-,.1, .2) for K = 1, 2; the expected benefits in ��(�, �, �) are equal to the sure benefits in E�(��(�, ��), ��)   ∎ 

As a consequence of this proposition, there is also a biunivocal correspondence between 

the SPNEs in ��(�, �, �) and E�(��(�, ��), ��) where sure benefits discounted to � = 0  

in the equilibria in E�(. ) are equal to the expected benefits discounted to � = 0 in the 
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corresponding equilibria in ��(). Moreover as there is only one SNPE in E�(. ) there is 

also a unique equilibrium in the corresponding ��(. ) with the same partition � and with 

immediate agreement.   

Immediate agreement in real life bargaining is rarely obtained. It is therefore necessary to 

explain why inefficient outcomes with delayed agreement occur. In the next section we 

will consider modified Rubinstein games with inefficient outcomes studied in the 

literature, and settle correspondences between them and trade games modified accordingly. 

The correspondences we have found between the subgame sets, strategy sets and SNPEs in 

the RG and TG games, will emerge again between the two new families of extended 

games. 

2.3 Extension to trade games with money burning by delaying the offer 

The result found by Rubinstein (a unique efficient SNPE) contradicts the intuitive 

perception that bargaining often leads to delayed agreements, or no agreement at all, so 

that outcomes are Pareto inefficient. Since then new models were developed with adequate 

changes in the hypothesis of the RG to allow the existence of multiple SPNE with delayed 

agreement. 

Avery and Zemsky (1994) first synthesize the results of some of that literature: “Delayed 

agreements can result from outside options (Shaked, 1987), the ability to postpone 

bargaining (Kambe, 1992), …. We show that all of the cited examples conform to a 

general principle. Multiple equilibria arise because at least one player has the ability to 

take some action that reduces the value of the asset after her own offer is rejected. We refer 

to such an action as money burning” 

The intuition is that when a player can worsen the result of possible agreements each time 

his offer is rejected (an action of “money burning”), there is an incentive to use this threat 

to improve his bargaining position. To our purposes we will consider one form of money 

burning presented by Avery and Zemsky, consisting of a player delaying the game when 

his offer is rejected. 
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Let us call RGM and TGM respectively the Rubinstein and trade games modified to allow 

money burning by delaying negotiation.  In both games there is the possibility for player � 
to delay the game during k periods if his offer is rejected by player j. 

We will show that there exists a correspondence between a TGM and a RGM defined 

adequately, therefore enabling us to use the results found in the literature for RGMs in the 

study of TGMs. Diagrams 2 and 3 try to describe graphically both games. 

 

 

 

 

1 

2 accepts 

offers s1  

rejects 

2 

1 
rejects accepts 

offers s2  

t  

1 

t+1  

2 
no delay delays k periods 

1 
t+2+k  

Diagram 2 - Rubinstein game with the option for 2 to delay the game k periods 
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As in the original Rubinstein and trade games, there is a biunivocal correspondence 

between the subgames in the TGM and the RGM, where corresponding subgames have at 

their beginning the same player choosing an action, have in their respective histories the 

same actions for each of the players, and in TGM nature has played always “continue”. We 

will call this correspondence BBBBHM. Let us also call SSSSTGM and SSSSRM respectively the sets of 

all subgames in the TGM and in the RGM. 

Let us call ,I��M and ,IFM for � = 1,2, the respective sets of strategies for both players in 

both games.  

For each player there is a biunivocal correspondence BBBBΣΜΣΜΣΜΣΜ between the strategies for each 

player in both games, where any strategy .I ∈ ,IFM for player � in the RGM has a 

corresponding strategy .I��M in the TGM: the one that chooses at the beginning of each 

subgame of the TGM the same action as .I at the beginning of the corresponding subgame 

1 

2 accepts 

offers s1  

rejects 

2 

1 rejects 
accepts 

offers s2  

t  

1 

t+1  

Diagram 3 – Trade game with the option for 2 to delay the game k periods 

N 
prob. p continue 

prob. (1-p) end 

prob. p continue 

prob. (1-p) end 
N 

1 

prob. p continue 

prob. (1-p) end 
N 

2 

no delay 
delays k periods 

prob. p continu 

prob. (1-p) end 
N 

. 

. 

. 

t+2+k 



23 
 

in RGM, determined by BBBBHM. Those actions refer to the partition � to be offered, the rule to 

accept or reject offers, and now also the rules to delay the game. Then the following 

proposition (similar to Proposition I but extended to modified games) holds.  

Proposition II 

Given: 

• A modified trade game ���(�, �, �) with the possibility of delaying the game, benefit 

per period of time �, probability of survival of the trade opportunity in each period �, 

and discount factor � equal for both players. 

• and a modified Rubinstein game E��(��(�, ��), ��) with the same possibility of 

delaying the game, splitting an amount ��(�, ��) where both players have discount 

factor �� (with ��(�, ��) defined in (2)), 

• then the expected benefits discounted to the beginning of period �, in ���(�, �, �), 
given that the game is at the beginning of subgame -��M ∈ SSSSTGM dated at �, when 

strategies .	��M, .���M are played 

• are respectively equal to the certain benefits discounted to the beginning of � in E��(��(�, ��), ��) when this game is at the beginning of subgame -, the 

corresponding of -��M in BBBBHM, and strategies .	and .� the corresponding in BBBBΣΣΣΣΜΜΜΜ of 

.	��M and .���M   are played in E��(��(�, ��), ��). This is valid in particular for the 

entire games ���(. ) and E��(. ), which are also subgames dated at � = 0. 

Proof. 

Let 

���M(-��M, .	��M , .���M): STGM × ,	��M × ,���M → 01 ∪ ∞4   
6��M(-��M, .	��M, .���M): STGM × ,	��M × ,���M→ 070,18 ∪ 194 
be the functions determining the period of the agreement and the partition in ���(. ), 
when starting at subgame -��M∈SSSSTGM , the players use strategies .	��M and .���M. 

Subgame -��M is dated at � so ���M(. ) ≥ �. 
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Let 

�FM(-FM, .	FM, .�FM): SRM × ,	FM × ,�FM → 01 ∪∞4   
6FM(-FM, .	FM, .�FM): SRM × ,	FM × ,�FM→ 070,18 ∪ 194 
be the functions determining the period � of the agreement and the partition in E��(. ), 
when starting at subgame -FM∈SSSSRM , and players use strategies .	FM and .�FM. 

The delay for K periods in the game provokes a reduction by a factor (��)J in the sure 

benefits for both players in E��(��(�, ��), ��), due to a discount factor ��. The same 

delay in ���(�, �, �) causes the same reduction in the expected benefits as the combined 

effect of the discount factor per period � and a probability of the game ending after each 

period �. Then the analogues of (1) to (7) hold now, substituting indexes RM and TGM for 

R and TG respectively.   ∎ 

Therefore there is a biunivocal correspondence between the SPNEs of ���(�, �, �) and E��(��(�, ��), ��), where the sure benefits of equilibria in E��() are equal to the 

expected benefits in the corresponding equilibria in ���(). 
Avery and Zemsky show that in a E��() exist infinite SPNEs with partitions � belonging 

to a segment 7�NI�, �NOP8 and with agreement in any period � between 0 and a higher 

bound depending on the parameters of the problem.  

We will assume that the parameters of the problem are such that there exist SPNEs with 

inefficient equilibria in E��(��(�, ��), ��), the correspondent to our ���(�, �, �). As a 

consequence the inefficient equilibria in ���(�, �, �) also exist. The possibility of such 

inefficient outcomes of a case by case negotiation in trade games, is the motivation of the 

following section. 

2.4 Sustainability of efficient rules of trade as an alternative to an 

infinite sequence of inefficient SNPEs  

The following question of prime practical importance arises: would it be possible for both 

parts, knowing in advance they will face a practically infinite series of trade opportunities 

(represented by TGMs), to settle a permanent rule to split benefits without delay, avoiding 

the repetitive case by case bargain in every TGM, and fully exploit the potential benefits of 
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trade? Such a rule should determine right away the energy price and partition of the 

following benefits as a function of the observed parameters of the TGM. 

Therefore the motivation of the present section is to study an infinite sequence of TGMs 

with random parameters and random durations, to find conditions for the emergence of 

efficient rules to trade as alternatives to the inefficient SPNEs of each TGM. 

We will consider a super game SG consisting of an infinite sequence of TGMs, and a rule 

determining strategies for both players to play each TGM. The rule does not induce a 

SPNE in each TGM. However, it is intuitive that the rule could persist in time if: 

• Each player thinks his deviation from the rule would cause the game to fall to an 

infinite sequence of inefficient SPNEs, one for each TGM 

• This sequence of SPNEs is undesirable for both players when compared with the 

survival of the rule. 

The goal of this section is to find a condition for such a rule to be sustainable in this way, 

by ensuring that the pair of strategies consisting of the two players following the rule is a 

SPNE of total game SG. 

2.4.1 Definition of SG 

Let us denote again by � = 0, 1, 2, …., an infinite sequence of periods of time of equal 

duration, and by 0����4, Q = 1, .. , an infinite sequence of TGMs between two players. 

Game �����	 starts as soon as ����ends. 

Let us call �	, ��, … ..	, the infinite sequence of random variables, determining the 

parameters that describe the respective TGMs, all taking values in a set R, with the same 

distribution S(. ) , with �� = (T�, ��, ��), where: 

• T� is the variable describing the roles of the players in ����, who is the seller and who 

the buyer. This last fact can be relevant to determine which of the multiple equilibria is 

played, in other words who has the bargaining power. 

• �� is the benefit per period in ����. 

• �� is the probability of trade opportunity in ���� surviving from one period to the 

next one. 
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Let us call ���(�) the trade game determined by a realization � ∈ R of the random 

variables; therefore ���� = ���(��). 
Definition I 

The game SG is defined by the following: 

1) Initially Q = 1, � = 0. 

2)  Nature chooses the parameters �� = (T�, ��, ��), of the nth game, and a game ���� = ���(��) starts. 

3) At period � the game ���� is played. At � an agreement could have already been 

achieved with partition ��, leading both players 1 and 2 to receive benefits ���� and (1 − ��)�� respectively. Or on the contrary, with no agreement, no benefits are collected 

and the sequence of offers and possibly delays is still going on. 

4) At the end of period � Nature decides whether ���� continues in the following 

period. The choice “continue” has probability ��. 

• If ���� finishes by nature choosing “end”, the game returns to step 2) to 

initiate a new trade game, Q is increased by one, and period � is also increased 

by one. 

• If ���� continues the game returns to step 3) with period � increased by one. 

The following diagram describes the beginning of a realization of SG. 
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The period of time when ���� (the nth TGM) begins, denoted by ��, is not predetermined 

but is a random variable, equal to the addition of Q − 1  waiting times to obtain the first 

failure in Q − 1 sequences of Bernoulli independent trials with success probabilities �U, 

with V = 1,… . , Q − 1. 

At time period �, depending on the previous choices of Nature, the current TGM can be 

any ���� with Q between 1 and � + 1. In the former case Nature has always played 

“continue” and SG is still in ���	. In the latter Nature has played always “end” and SJ is 

in �����	. 

A strategy for player � to play SG should determine an action at the beginning of each of 

the subgames of SG, in other words, for every � and every possible history of the game 

prior to �. 
2.4.2 Inefficient SNPE in SG  

Let us call ,	��M(�) and ,���M(�)  the strategy sets of both players in ���(�), and let us 

define the functions: 

.	∗(�): R → ,	��M(�)   

.�∗(�): R → ,���M(�)    

t = 0 1 

TGM1 

8 9 

TGM2 begins and Nature 

chooses its parameters, 

in particular p2 

TGM1 begins and Nature 

chooses its parameters, in 

particular p1 

Nature determines with 

probability p1 if TGM1 

survives to the next period 

cont. cont. ends 

22 23 

TGM3 begins and Nature 

chooses its parameters, 

in particular p3 

cont cont. ends 

Nature determines with 

probability p2 if TGM2 

survives to the next period 

…… …… 

…… 

cont. ends 
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that for every � ∈ R determine a pair of strategies (.	∗(�), .�∗(�)) constituting a particular 

inefficient SPNE of game ���(�). 
We have supposed there are infinite SPNEs in ���(�), with different partitions and 

delays until agreement. Let us also suppose now that (for any reason, maybe as a result of 

the previous experience playing SG) both parts expect a particular SPNE (.	∗(�), .�∗(�)), 
to be played in ���(�) when they are playing SG. Depending on the value of � the result 

of (.	∗(�), .�∗(�)) could be more or less favorable to one player, for instance benefits can 

be systematically greater for sellers as a result of the weak bargaining position of a country 

relying on imports to avoid energy rationing.  

Definition II 

The pair of strategies 6	∗ and 6�∗ to play SG consist in both players using in trade game ���� = ���(��), their respective strategy .I∗(��), for � = 1,2 , disregarding the 

outcomes of the previous TGMs. 

Proposition III  

The pair of strategies (6	∗, 6�∗) is a SPNE in SG. 

Proof. 

Let us consider any subgame - of SG dated at period �. We must prove that (6	∗, 6�∗) is a 

Nash equilibrium of -. A subgame dated at � is determined by the choices of both players 

and Nature up to period � − 1 (if the subgame begins with an offer) or � (if the subgame 

begins with an acceptance or rejection of an offer). 

Let us denote by ���� the TGM containing the beginning of subgame -. 

Suppose that (6	∗, 6�∗) is not a Nash equilibrium in subgame - of SG. This means that one 

of the players, say player 1, has another strategy 6	Z  to play SG reporting him an expected  

discounted benefit strictly greater than his benefit from 6	∗, given the event of the game 

being at the beginning of subgame -, when player 2 plays 6�∗. The expected discounted 

benefit for 1 is the infinite addition of expected discounted benefits from the games: ���� 

(starting at -), �����	, ������, …..  

Let us call �6N∗  the contribution to player 1 expected discounted benefit corresponding to 
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���N, when 1 plays 6	∗ and 2 plays 6�∗, with [ = Q, Q + 1,…. . Similarly let us call �6NZ  

the contribution to player 1 expected discounted benefit from ���N, when 1 plays 6	Z  and 

2 plays 6�∗. 
As the benefit for 1 in SG with strategy 6	Z  is assumed strictly greater than with strategy 6	∗, 
there exists at least one V ≥ Q so that in ���U, �6UZ  is strictly greater than �6U∗ . 
• If V = Q, this means that 6	Z  is a better strategy than 6	∗ in the subgame � of ���� 

starting with the beginning of -. But when they play 6	∗ and 6�∗ both players are using .	∗(��) and .�∗(��) which form a Nash equilibrium in �. Therefore there cannot exist 

any strategy 6	Z  of SG reporting to player 1 in subgame � of ���� a greater benefit 

than .	∗(��), when confronting with .�∗(��). 
• If V > Q, this means that 6	Z  is better for player 1 than 6	∗ in ���U to confront with 6�∗, 

against the hypothesis of (.	∗(�U), .�∗(�U)), being a SPNE of ���U, for every 

realization of �U.  ∎ 

2.4.3 Sustainability of an efficient rule to play SG by means of a Nash reversion 

strategy 

If benefits for both players in the SPNEs (.	∗(��), .�∗(��)) of the TGMs are poor enough, 

as agreement is badly delayed, other SNPEs in SG different from (6	∗, 6�∗), with a 

cooperative nature, may exist. The following reasoning to explore the existence of other 

SNPEs in SG is of the “Nash reversion strategy” kind, often used to analyze repeated 

games: cooperative results are sustainable in the long run as an alternative to the fall to an 

infinite sequence of inconvenient non cooperative results (in this case the inefficient SPNE 

in each game).  

Definition III 

A rule or agreement 9 = (9	(�), 9�(�)) to play ���(�), is a function 9: R →,	��M(�) 	× ,���M(�) , that for each possible value � of the parameters describing the 

TGM, determines the strategies 9	(�) and 9�(�), to be played by both players in the 

TGM. A rule 9 is Pareto optimal if for any � ∈ R,  both players agree an immediate 

partition �(9, �) in the first period � = 0. 
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Let us call 1(�) the ordinal of the TGM which is being played at period �, starting with 1(0) = 1. 1(�) is a random variable, with 1(�) ≤ � + 1. 

Let us assume there is a Pareto optimal rule = (9	(�), 9�(�)) . Using (1) and (2), the 

expected benefits in ���(�), with � = (T, �, �) discounted to the initial instant of this 

game, if the players use 9	(�) and 9�(�) are respectively equal to �(9, �)	��(�, ��) and 	(1 − �(9, �))	��(�, ��). Agreement is immediate and the discounted expected benefit to 

split is ��(�, ��). 
Definition IV 

Given a Pareto optimal rule 9 = (9	(�), 9�(�)), let �I(9) be the following strategy for 

player �, to play SG. 

• At � = 0, play 9I(�	), where �	 is the set of parameters of ���	 determined by 

Nature. 

• At � > 0: 

o Play 9I(�^(�)), if in the entire previous history of the game SG, both players 

have played their respective 9J(��), for every Q = 1,… . . 1(�), for K = 1,2    

o Play .I∗(�^(�)) in any other case. 

With this definition, when two players are using strategies �	(9) and ��(9) in SG, the 

result when a new ���� is born, in a subgame with a past of both having played 9I(�U) 
for every V < Q, is: 

• If both players abide to 9I(��) in the new TGM, they reach immediate agreement with 

partition �(9, ��). 
• If any of the players � deviates from his respective 9I(��), both players turn in the next 

period to their respective strategies in the SPNE .	∗(��), .�∗(��) and keep on playing .	∗(�N), .�∗(�N) in the infinite sequence of the following ���N, for [ > Q. 

Our problem is to find conditions for the pair of strategies (�	(9), ��(9)) to be a SPNE in 

SG with certainty, that is, for every possible realization of the random variables. We will 
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now find conditions for �	(9) to be a better response to ��(9) in every subgame of SG for 

every possible realization of the random variables ��, Q = 1,…… 

Let us call: 

• :̀	,�(6	Z/�) the expected benefit for player 1 in ����, discounted to the beginning of 

this trade game, if player 1 uses strategy 6	Z  from the beginning of this TGM, against 

strategy ��(9), given a certain observed value of the parameters �, which are revealed 

as soon as ���� begins, before players choose their actions. The expected value takes 

into account the randomness in the survival of ����. 	
• :	(�	, ��) the expected benefit for player 1 in any ����, discounted to the beginning 

of this trade game, if player 1 uses strategy �	(�), against strategy ��(�). Strategy �I(�) provides a way to play each ���(�) as a function of the respective �. The 

expected value takes into account both the randomness of the values of the parameter ��, which has a common distribution for all n, and the fact that game ���� duration is 

a random variable. 	
• b(V, c/�), with V > 0, c ≥ V the conditional probability of game �����U starting c 

periods after period �, given the event that at period � trade game ���� begins and 

given a certain observed value of the parameters � of ����.	
The last two expressions defined above are independent of the ordinal Q of the game, as �	 

and �� behavior depends only on the value of �, and the set R of possible values of �, and 

its distribution S are the same for all Q. 

Let us classify the subgames of SG that start with a move by player 1 into two sets: 

• The set dO of the subgames with a history of both players using always �	(9) and ��(9), that is, both players following rule 9. As rule 9 is efficient they are subgames 

beginning at the first period of a TGM and where player 1 begins the TGM by making 

the first offer.  (In the symmetric for player 2 the first offer in the TGM was made by 

player 1 following rule 9 and player 2 has to decide whether to accept it following rule 9 or to reject it).   

• The set d" of all the other subgames starting with a move by player 1, which have a 

history of deviation from rule 9 by at least one player. 
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Lemma I 

The pair of strategies (�	(9), ��(9)), is a Nash equilibrium for every subgame in d". 

Proof. 

Let - ∈ d", be a subgame of SG starting at period � and belonging to the nth TGM. As the 

rule 9 has been broken, by Definition IV, the players use .	∗(�N) and .�∗(�N) in every ���N for every [ ≥ Q, so in subgame -, �	(9) behaves as 6	∗ and ��(9) behaves as 6�∗. 
Proposition III states that (6	∗, 6�∗) are a SPNE in SG, so (6	∗, 6�∗) is a Nash equilibrium in - 

subgame of SG. Therefore (�	(9), ��(9)) is also a Nash equilibrium in -.       ∎ 

Lemma II 

The following Condition I: 

:̀	,�(6	Z/�) − �(9, �)��(�, ��) 
																+∑ ∑ �eb(V, c/�)7:	(.	∗, .�∗) − :	(9	, 9�)8 ≤ 0�e�U�U�	             

for all � = (T, �, �) ∈ R.   

and its symmetric for player 2) are necessary conditions for (�	(9), ��(9)) to be with 

certainty a Nash equilibrium in every subgame in dO. 

Proof. 

Let us consider a subgame - ∈ dO. - begins at ��, the first period of ����. Let 6	Z  be a 

strategy for player 1 to play SG different from �	(9). For (�	(9), ��(9)) to be with 

certainty a Nash equilibrium in -, the gain for player 1 from using 6	Z  instead of �	(9) 
must be non-positive for any 6	Z , for all � ∈ R.   

The gains ∆ for player 1 if he deviates from �	(9) in ���� with parameters � = (T, �, �) 
can be expressed as the addition  ∆= ∆� + ∆gF, of: 

• An expected “opportunistic” gain ∆� in ����:  ∆�= :̀	,�(6	Z/�) − �(9, �)��(�, ��)       (8) 

• An infinite sequence of long run effects ∆gF resulting from the deviation, and player 2 

response to it, taking place in games �����U , for V = 1, …….. 
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∆gF= ∑ 		∑ �eb(V, c/�)B:	,��U(6	Z) − :	(9	, 9�)C�e�U�U�	     (9) 

Where :	,��U(6	Z) is the expected benefit in �����U if 1 plays 6	Z  and 2 plays ��(9) 
starting in subgame -. On the other side, if both players keep using rule 9 player 1 

earns :	(9	, 9�) as the expected benefit in �����U , for V = 1,……… . 

The summation in V covers all the ���U following ����. The summation in c covers 

all the possible starting periods for game ���U. Both summations take into account all 

the possible events concerning the duration of trade games. 

As .	∗;�U<, .�∗;�U< is a Nash equilibrium in �����U for all V > 0 and given that ��(9) 
plays .�∗;�U< in �����U for all V > 0 as a result of the deviation from rule 9 then: 

 :	,��U(6	Z) ≤ :	(.	∗, .�∗)                       (10) 

Therefore, the condition of non-positivity gains applied only to strategies playing .	∗;���U< for V > 0,  

:̀	,�(6	Z/�) − �(9, �)��(�, ��) + h h�eb(V, c/�)7:	(.	∗, .�∗) − :	(9	, 9�)8 ≤ 0�
e�U

�
U���	  

implies the non positivity of gains for all other dominated strategies.       ∎ 

Condition I has an intuitive interpretation. 

:	(.	∗, .�∗) is the expected value of the benefit for player 1 in the inefficient SPNE  (.	∗(�), .�∗(�)) of game ���(�). 
:	(9	, 9�) is the expected benefit for player 1 if the pair of strategies of the Pareto optimal 

rule 9, (9	(�), 9�(�)) are played in ���(�). 
As the rule 9 is the result of an agreement of both countries to overcome the drawback of 

inefficient SPNEs (.	∗(�), .�∗(�)) it natural to assume:  :	(.	∗, .�∗) 	− :	(9	, 9�) < 0 

Therefore using (10) we have ∆gF< 0: the long run effect (in games �����U , for 

V = 1,……..) of a deviation from rule 9 at the beginning of ����, is negative. 
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Condition I says that for all possible � = (T, �, �) ∈ R the expected opportunistic gain in ����,  :̀	,�(6	Z/�) − �(9, �)��(�, ��) is not big enough to justify a deviation, when 

compared with the long run loses ∆gF. 

The non-fulfillment of Condition I means that there is a chance of player 1, after observing � = (T, �, �) at the beginning of ����, finding both a high value for � (as a result of a 

disadvantage for player 2 in the immediate negotiation determined by �) and a high 

probability � of the current ���� survival, so that deviation from rule 9 becomes 

profitable. A high value for � tends both to prolong the life of the convenient “present” ���� increasing the expected opportunistic gains, and to reduce the discounted value of |∆gF|, and therefore the long run losses caused by opportunism. 

In short, an efficient rule 9 will survive with certainty if there is no possible stroke of good 

luck for any player that compensates the future losses from abandoning the rule and falling 

to an infinite sequence of inconvenient SPNEs, with inefficient case to case negotiations, 

one in each game. 

From Lemmas I and II results immediately the following proposition. 

Proposition IV 

Condition I and its symmetric for player 2) are necessary conditions for (�	(9), ��(9)) to 

be with certainty a SNPE in SG. 

2.5 Conclusions 

This chapter studies the negotiation between two risk neutral players to split the benefits in 

an infinite series of trade games developed over an infinite sequence of time periods. Each 

trade game has a random potential benefit per time unit, and a random duration, and the 

objective of the negotiation in each trade game is to determine the shares of these benefits 

between the players from the moment they reach an agreement to the end of that particular 

bargaining game, with no possibility of renegotiation in that trade game. After a trade 

game ends, another one starts, with a new potential benefit per period, a new probability of 

survival in Bernoulli trial and a new negotiation. 

This sequence of trade games is motivated by the actual problem of the negotiation of 

prices between countries in international power spot trade, where interconnected countries 
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face a permanent relationship in which both countries observe the repeated emergence of 

trade opportunities, of random duration. For each trade opportunity, prices have to be 

determined, resulting in a partition of the benefits as long as the trade opportunity survives. 

We first proved that each trade game with players having the same discount rate, can be 

put in correspondence with another game first defined by Rubinstein (1982). Then we 

showed that if we extend trade games to allow money burning actions, as delaying the 

game when a player’s offer is rejected, there is a similar correspondence between these 

extended trade games (TGMs) and Rubinstein games with the same possibility of money 

burning (RGMs).  

This correspondence let us apply to TGMs the results found in the literature for RGMs 

with money burning by delaying the game: there are infinite inefficient SNPEs. The theory 

then explains a feature of real bilateral negotiations, including international spot power 

trade negotiations: it is likely to find inefficient delayed agreements, or to see a trade 

opportunity vanish without the players having found an agreement. 

We then studied a super game SG, an infinite sequence of TGMs. We proved that a pair of 

strategies (6	∗, 6�∗) for SG consisting in each player using in every TGM with parameters � 

its strategy .I∗(�) from a particular SPNE ;.	∗(�), .�∗(�)< of this TGM, is a SNPE of SG. 

We defined strategies �	(9) and ��(9) for the players, consisting in playing in each TGM 

according to a rule 9, of efficient immediate agreement, as long as both players have 

maintained the rule in the previous TGMs, and to play .I∗(�) otherwise. Such a rule should 

determine right away the partition of the following benefits as a function of the observed 

parameters �. We assumed that the expected benefits for both players in ���(�) if they 

use rule 9 and follow strategies ;9	(�), 9�(�)< are Pareto superior to the results with (.	∗(�), .�∗(�)). 
We found conditions for the pair of strategies (�	(9), ��(9))	to be a SNPE of SG with 

certainty. An intuitive interpretation of these conditions is the following. At the beginning 

of any trade game ���� the expected present opportunist gain obtained by a deviation 

from rule 9  (earned in ����) must be smaller than the future expected losses from the 

fall to the infinite sequence of inefficient equilibria (experienced in �����	, ������, …	), 
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for all possible random values of ��. In other words there must not exist a possible stroke 

of good luck for any player that compensates the future losses from abandoning the rule. 

The results can be applied to assess the feasibility of long run rules to determine prices for 

international energy spot trade: 

• The more inefficient the results from case by case price negotiation (the longer the 

delays to achieve price agreement) the greatest incentive for countries to develop such 

long run rules.  

• A situation of significant asymmetry of bargaining power between countries, as a result 

of one of them suffering a structural underinvestment crisis, with expected duration of 

at least a few years, (meaning a high value of the probability �) would probably 

generate incentives for the other country to avoid setting a rule or to abandon a 

previously existing one.  

• A situation where both power systems have sufficient installed capacities, and trade is 

the consequence of random differences in renewable generation or thermal plant 

availability, seems more suitable for the emergence of trade rules. Wind power 

generation can change in a few hours. Hydroelectric generation conditions of 

abundance of drought can last a few months or a year. The shorter the expected 

duration of periods of good luck, the less probable a country is tempted to prefer 

opportunistic short run gains, to an efficient rule. 
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3 AGREEMENTS FOR INTERNATIONAL SPOT POWER TRADE IN 

SOUTH AMERICA 

3.1 Introduction  

In South America the main form of international power trade is currently spot trade, 

performed by system operators in the framework of bilateral agreements between 

countries. Spot trade consists in transactions decided day by day involving short term 

energy surpluses, without a long run commitment or any obligation for the selling country 

to have generation capacity to supply the buyer permanently.  

In the recent past some power transactions in the region had a multilateral component: for 

instance Uruguay purchased energy from Brazil, through the Argentinean grid. Sometimes 

the multilateral nature of trade has hindered bilateral transactions: the requirement by 

Brazil of Argentinean energy in 2005 affected the Argentinean supply to Uruguay; the lack 

of Argentinean agreement to grid access prevented Paraguayan energy sales to Uruguay 

and Chile. 

The present development of interconnections in South America will require the analysis of 

multilateral trade. In the Mercosur region a 500 kV new interconnection between Uruguay 

and Brazil will be completed in 2015, raising the total interconnection capacity to 570 

MW, and completing an interconnection loop with the existing Argentine- Uruguay 500 

kV lines (with 2000 MW capacity), and Argentine-Brazil 2000 MW link. In the Andean 

region the Ministers and senior officials from the energy sectors of Chile, Colombia, 

Ecuador, Peru, and Bolivia (as an observer) signed a commitment during the Meeting of 

the Council of Ministers for the Andean Electrical Interconnection System (SINEA) in 

September 2012, to move forward in an ambitious electrical interconnection project 

(INTAL, 2012). 

Both cases of multiple strong interconnection between countries, require multilateral 

agreements for power trade. The mere superposition of independent bilateral agreements 

between countries could induce inefficiency or even worse leave indetermination in the 

transactions. 
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There is ample literature about energy integration and international power trade pursuing 

the ideal of a single energy market, where generators and consumers could trade without 

any country based discrimination. Perhaps the main example is the European Union 

(Jamasb y Pollitt, 2005; Nowak, 2010). Besides, there are few analysis of spot trade in the 

South American institutional framework, where countries have to settle agreements to 

determine energy prices in trade, and the transactions are decided by power system 

operators. An important reference is Moitre and Rudnik (2000). 

The present paper aims at describing different methods to define energy transactions and 

their prices, when more than two countries negotiate how to divide the benefits of energy 

trade through a grid with limited capacities.  

The retribution for the use of grids is beyond the scope of this work. Although it is a 

subject of economic importance, its impact is of second order when compared with the 

effect of energy prices in trade. The representation of the interconnection grid is then very 

simplified, retaining only the energy balance. 

This chapter’s contents can be described as follows. In section 2 some singularities of 

international power trade are outlined, leading to the necessity of regulation and 

agreements between countries. It is showed that there is a diversity of institutional 

frameworks to allow trade, and the situation in South America is described. Section 3 

presents the formal definition of optimal flows in a simplified interconnection grid, in the 

sense of flows leading to Pareto optimal allocations for the countries. Section 4 describes 

the bilateral agreements applied in recent years in South America to determine prices for 

international spot trade. In Section 5 the problem of multilateral trade is addressed, and a 

family of methods to define economically meaningful and consistent transactions are 

presented, resulting in the optimal flows, with different criteria to solve the problem of 

power transits through third countries and to split the benefits of trade between countries. 

Section 6 contains the conclusions. 
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3.2 Institutional issues 

3.2.1 The need for regulation in power generation and international power 

trade 

Structural and regulatory reforms in different countries led to the emergence of multiple 

competitive electricity markets of national scope: spot markets for short term and contract 

markets for long term supply. Transmission and distribution grids allow third party access. 

Apparently electricity has become another commodity, even for international trade. 

However this simplified view cannot be sustained when the technical singularities and the 

complexity of sectorial regulation to make those markets work are taken into account.  

The electric system requires an instantaneous balance between demand and supply, which 

can only be achieved by a centralized coordination of generation and transmission 

operation. Therefore regulation must ensure this coordination and determine the 

procedures to supply the load curve at every moment, and a system operator must perform 

the function of load dispatch. As a consequence, the marginal cost of production is known 

at every moment.  

International power trade can only take place through interconnections, which require long 

construction periods and heavy investments. In most countries, interconnection capacity 

with neighboring countries is a small fraction of local generation capacity, and every 

country relies mainly or exclusively on its own resources to supply its demand.  

The generation capacity to ensure short term reliability is a public good. Besides, the 

development of long term supply contracts is burdened with high transaction costs and 

uncertainty, and in many countries there is a reasonable concern that efficient markets for 

those contracts will not emerge spontaneously. These two market failures and the technical 

reasons discussed above justify that with no exception countries regulate power generation. 

Regulation in national spot markets makes regulation in international spot power trade a 

necessity.  

In South America this regulation involves the definition of spot prices. In a spot market 

with inelastic demands, the Pareto optimal prices, different in each node of the 

transmission system, are the so called nodal prices which are equal to the respective 

marginal costs of supply in each node (including the marginal cost of unserved energy). 



40 
 

Nodal prices generate implicit incomes for every transmission line, as a result of the 

difference of the values at nodal prices of outgoing and incoming power flows (Pérez-

Arriaga y Meseguer (1997). When the flow through a line reaches its capacity this 

difference is usually economically significant and receives the name of congestion rent.  

3.2.2 Diversity of institutional models  

In a simplified vision, international spot power trade can follow two quite different 

institutional models, described in Ibarburu y García de Soria (2008). 

In what we can call single market model, there is an economic integration process 

between the countries, and the main issue is to ensure equal treatment and no 

discrimination in a competitive market, to every generator and consumer in whatever 

country. International power trade is intended to be a particular case in a more general 

integration framework. The typical case is the European Union (EU) with its energy single 

market, although such an ideal is difficult to achieve (Comisión Europea, 2005; ETSO, 

2006). Any generator can supply any consumer in another country. In theory the strategic 

interests of countries are subordinated to the logic of market integration. Spot prices result 

from the transactions in power exchanges, and system and market operators have the task 

to iteratively adjust power flows by means of balancing transactions, to achieve a 

technically feasible load dispatch, respecting grid restrictions.  

The main problem to be solved is the allocation of international interconnection capacity 

among the firms demanding it, usually called congestion management problem.  

In what we can call country bargaining model, international trade is performed without 

the existence of multilateral integration institutions and a relevant general framework for 

trade between the countries. The main issue is in this case the split of the gains from power 

trade between the countries and the agreements to set prices for the energy. Each country 

decides independently how to distribute its part of those gains between the national 

market’s participants. That is the most frequent situation in South America.  In each 

country a system operator determines both the load dispatch and the regulated spot prices, 

based on nodal prices. 

In the single market model, restrictions to the exercise of market power by generators 

result from the competitive pressures in the extended multinational market, and the action 
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of multilateral antitrust agencies. In the country bargaining model the restrictions for 

market power exerted by selling generators and countries, come from the rules to 

determine transaction prices. A situation in which no rules to set prices exist, and every 

trade opportunity begins a new bargain between the countries could be grossly inefficient, 

so in the following we will assume countries are determined to establish rules and to abide 

by them in every transaction. 

3.2.3 Security of supply issues 

Any agreement to trade energy between countries must take into account a series of 

problems related to security of supply. The risk of power outages and the way trade is 

performed in a situation of outage require carefully crafted provisions for such cases. 

3.2.3.1 Restrictions to exports 

A country’s authorities may want to restrict energy exports, if they are deemed risky for 

the future local reliability of supply. That may be the case when the exported energy comes 

from hydraulic power plants and require the use of water reserves, but concerns may arise 

also for the wear and future reliability of thermal plants used to export. Trade agreements 

should specify explicitly any a priori restrictions a country may want to impose to its 

exports, based on security of supply issues.  

3.2.3.2 Trade prices when the buyer is in a situation of energy outage 

Rules to set the prices of international power trade frequently depend on the countries’ 

marginal costs or avoided costs. In a situation of energy outage, if the cost of unserved 

energy of the buyer is taken into account, such rules can produce very high prices, many 

times greater than the usual variable costs and market prices in a normal situation, an 

outcome the buyer may consider inequitable and unacceptable. Agreements to set prices 

should take into account and avoid such situations, for instance by setting an upper bound 

to the buyers’ relevant costs when applying the rules.  

3.2.3.3 Priorities of supply in a situation of energy outage 

Countries may have valuations of the cost of unserved energy differing much from each 

other, depending on the ability of the authorities to reduce consumption without affecting 

the country’s production and welfare. In a situation where more than one country is 

rationing the demand, if trade is guided by the criterion of total cost minimization the 
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country with the highest unserved energy cost would receive absolute priority in supply, 

which can be an unfair solution. An agreement for international trade must explicitly 

determine criteria to split energy surpluses from sellers when more than one potential 

buyer is in an outage situation. 

3.3 Optimal flows through the interconnections 

3.3.1 Definitions  

The goal of an ideal multilateral trade system is to achieve power flows through the 

interconnections such that: i) a Pareto efficient allocation between the countries is the 

result of energy transactions, and ii) the split of the gains from trade results acceptable for 

all the countries. 

The informational requirements to perform the calculation of those energy flows are 

reasonable in the institutional context of South America. In almost every country of the 

region the system operator determines a load dispatch minimizing the total cost of supply, 

including outage costs, based on audited generators costs (the exception is Colombia where 

the generators declare prices freely to the dispatch). As a result regulators and system 

operators already have the costs for every generation unit, and can calculate the total cost 

at every moment, as a function of total power generation in the country. 

The Pareto optimal flows for a group of countries at a unit time interval, for instance an 

hour, are the ones minimizing the addition of the countries’ total costs, including 

generation and rationing costs. 

The following is a very simplified analytical formulation of the problem, assuming that: 

• All dynamic problems due to generation unit operational constraints can be neglected 

• The opportunity costs of water in the reservoirs of all hydraulic power plants have been 

determined by each country, in a way consistent with the expected international power 

trade flows. As a result, hydraulic energy has a unit opportunity cost fixed during the 

time period. 

• Each country can be considered a single node in the electric grid, and has a single 

marginal cost at every one of its interconnections. 
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• If two countries have more than one interconnection, they can be simplified with no 

significant error to only one composite interconnection. 

There is a set 1 of countries and each country � ∈ 1 has a set of generation units dI and a 

demand jI ∈ E. Each generation unit k in country � has a maximum generation capacity blNOP, and a non-decreasing marginal cost function ml: 70, blNOP8 → E. Energy rationing 

procedures are included as generation units with a marginal cost equal to the marginal 

social energy outage cost (EOC). The EOC can be many times greater than the variable 

cost of generation units, and is an increasing function of the magnitude of the outage. 

As we are dealing with costs in a unit time period, for instance an hour, the numeric values 

of all energy and average power magnitudes during the period are respectively equal.  

A generation resource T can be defined as a quartet (�n , kn , bn , mn), where �n is a country, kn ∈ dIo is a generation unit in country �n, bn is a power less or equal to the maximum 

generation capacity bloNOP of the unit and mn: 70, bn8 → E is the non-decreasing function of 

the marginal cost of production of the resource. The different forms of rationing and their 

costs are also interpreted here as generation resources. 

The set of country i’s generation resources, �I is the set 

�I = 0(�, k, blNOP , ml) for each k ∈ dI	4  
consisting of all the generation units of the country at its maximum power. 

Given any set p of generation resources we can define: 

• b(p), total power of the resources in p, b(p) = ∑ bnn∈q . 

• d�(p, r), total cost to supply a power r ≤ b(p) during an hour, with generation 

resource set p, d�(p, r): 70, ∑ bnn∈q 8 → E, resulting from the minimum of the 

problem: 

 ��Q0so4,t∈uB∑ v mn(w)rwso n∈q C	      (1)

 �. �:						 ∑ 	xnn∈q ≥ r	; 						0 ≤ xn ≤ bn	mzT	{�{T|	T ∈ p		 
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• d�}(p, r), marginal cost of energy supplied by set p of resources, the derivative 

respect to r of the function d�(p, r). 
Let us call: 

• d�I(}I) the total generation cost in country � to supply energy }I in an hour, using only 

its own generation units, or equivalently d�I(}I) = d�(�I, }I)   
• d�}I(}I) the marginal generation cost of country �; d�}I(}I) is defined as the right 

derivative of total cost d�I(}I). 
• �I~�  the set of resources used in country � without trade 

�I~� = 0(�, k, bl~� , ml):	k ∈ dI , bl~� > 04  
where 0bl~�4 are the solutions to problem (1) when p = �I and r = jI. 

• � ⊆ 00�, �4, � ∈ 1, � ∈ 14 the set of interconnections between countries. 

• cI,�I , cI,�� , respectively the outgoing flow from �, in the direction � → � and the incoming 

flow to � in the direction � → �. Only situations with cI,�I . c�,II = 0 and  cI,�� . c�,I� = 0 are 

economically and physically meaningful. 

Interconnections are subject to: 

• Physical losses that are assumed quadratic with the power transmitted, so that only a 

fraction of outgoing flow cI,�I  from �, arrives at �,  
• Transmission capacity constraints, so that the outgoing flow cI,�I  from �, is limited by an 

upper bound �I,�I	NOP. 
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3.3.2 The case with controllable interconnection flows 

The particular case when there are no 

cycles in the graph of alternate current 

(AC) interconnection links having no 

frequency conversion, allows taking the 

flows through the interconnections as 

control variables of the problem. In the 

Mercosur region, the links between Brazil 

(with 60 Hz frequency) and Argentine, 

Paraguay and Uruguay on the other side (with 50 Hz) require frequency converters, power 

electronics devices that allow to control the power transmitted through them. Besides, 

Chile is interconnected only with Argentine. Graphic 1 shows this situation. In a case like 

this, the flows through the interconnections 

can be chosen freely, subject only to 

maximum capacity constraints. 

The same assumption can be made in the 

Andean region interconnection grid, shown 

schematically in Graphic 2, if we disregard the 

possibility of a direct strong interconnection 

between Peru and Colombia through the 

Amazonian region.  

In this section we will explicitly formulate the problem of determining the optimal flows 

through interconnections, when they can be chosen as controllable variables. 

Let us define the optimal dispatch for a set of countries 1, with their sets of generation 

units dI and demands jI, for every country � ∈ 1 and the set of interconnections �, as the 
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set of powers generated by generation units and flows through every interconnection, that 

solve the following cost minimization problem, Problem (2) 2: 

��Q 														B∑ ∑ v ml(w)rws� l∈��I∈^ C	      (2) 

0πl4, mzT	{�{T|	c ∈ dI, � ∈ 1 

�cI,�I �, �cI,�� �, mzT	{�{T|	0�, �4 ∈ �         

�. �:						 ∑ xll∈�� +∑ c�,II0I,�4∈g� − ∑ cI,JI0I,J4∈g� −jI 	≥ 0; 						mzT	{�{T|	� ∈ 1 (2a) 

0 ≤ xl ≤ blNOP 	mzT	{�{T|	k ∈ dI , mzT	{�{T|	� ∈ 1	   (2b)   

 cI,�� = cI,�I − TI,�(cI,�I )�				       c�,II = cI,�� − T�,I(cI,�� )�					mzT	{�{T|	0i,j4	∈ �	 (2c) 
  cI,�I  ≤cI,�NOP c�,I�  ≤��,INOP mzT	{�{T|	0i,j4	∈ �	 	 	 (2d)	

Where TI,� and T�,I are non-negative constants that determine the energy losses at 

interconnection 0�, �4. 
Let us call: 

• �∗ = (0xl∗4, ��I,�I	∗�, ��I,��	∗�) the optimal solution to problem (2); let us suppose the 

solution is unique. 

• d�}I∗ the dual variable associated to constraint (2a) for node � with optimal 

international trade. 

• �I∗ the set of resources with units from country � used in the optimal dispatch: 

                                                 
2 Problem (2) can be reformulated to show that optimal flows can be obtained from marginal cost functions for each 
country; powers generated by each unit are no longer control variables: 

��Qh � d�}I(w)rw
��
��I∈^ 													 

0πI4, � ∈ 1 �cI,�I �, �cI,�� �, mzT	{�{T|	0�, �4 ∈ �  

�. �:					xI + ∑ c�,II0I,�4∈g� − ∑ cI,JI0I,J4∈g� −jI 	≥ 0; 		�Qr	�z	(2k)	|	(2k)			mzT	{�{T|	� ∈ 1  
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�I∗ = 0(�, k, xl∗, ml∗): k ∈ dI	, bl∗ > 04 where ml∗: 70, xl∗8 → E, so that ml∗(x) = ml(x). 
Countries with ∑ xl∗l∈�� > jI are defined as net exporters and we define the net exports for 

each one of them as }I∗ = ∑ xl∗l∈�� − jI. The other countries are defined as net importers 

and we define the net imports of country i: r�∗ = j� − ∑ xl∗l∈�� . Let us call 1� and 1M the 

sets of net exporters and net importers respectively. 

Let us call graph G G G G the directed graph having a node for each country in 1, and one arc for 

each interconnection with nonzero flow in the optimal dispatch. Each arc has the same 

direction as the associated flow. In Annex I we present the proof of two propositions 

related to the directed graph of optimal flows GGGG: 

Proposition I: For any arc 0�, �4 with positive flow from � to �, d�}I∗ ≤ d�}�∗, 
and its immediate consequence, 

Proposition II: If losses are nonzero GGGG has no cycles. 

3.3.3 Non controllable interconnection flows in meshed AC interconnection 

grids 

In the case of multiple countries linked in alternating current by a non-radial, meshed grid, 

energy flows between countries cannot be chosen arbitrarily. Additionally to active power 

balance constraints in every node and grid losses, another set of constraints determine the 

power flow in the interconnected grid. As a result, if a country A supplies energy to 

country B, and there are multiple possible paths for the energy, through the grid of other 

countries, the flow in each path cannot be controlled arbitrarily. Then the assumption of 

controllable flows through all the interconnections is not valid, neither the simplified 

analysis presented above. 

However Proposition I, and therefore Proposition II, also hold with AC grids. The seminal 

paper by Bohn, Caramanis and Schweppe (1984) show (in their Result 2) that shadow 

prices of energy (the equivalent to our d�}I∗) in an optimal dispatch with an AC 

transmission grid with losses, increase strictly in the direction of the flow: Proposition I is 

valid for optimal flows in AC grids. 



48 
 

3.4 Bilateral price agreements for spot trade in the region 

The ways trade is done currently or has been done in the past in the region, in the 

framework of bilateral trade, are interesting precedents to be taken into account in the 

design of a new multilateral set of rules. Therefore the following is a simplified description 

of the price setting arrangements used in spot bilateral trade in the region. 

3.4.1 Price setting criteria 

3.4.1.1 Nodal prices and split of congestion rents 

This is the system established by Resolution 536 of the Andean Community of Nations for 

international energy trade, and has been applied to trade between Ecuador and Colombia. It 

is also the proposal in CIER (2011) in a study about the subject sponsored by CIER (the 

association of electricity utilities in South America). 

The selling country receives for the energy its own marginal cost after trade (including 

other system charges) plus its share of congestion rents, if present. The buyer pays for the 

energy its own marginal cost after trade and receives the other part of congestion rents. The 

proportions to divide congestion rents are fixed beforehand. For simplicity we will suppose 

here that energy costs are the only relevant ones, excluding other costs and charges.  

If the interconnection is big enough marginal costs after trade in both countries become 

practically equal, and congestion rents 

are negligible. If the interconnection is 

small, the marginal cost of the seller after 

trade remains lower than the buyer’s and 

congestion rents are important. 

Graphic 3 shows an example of optimal 

power trade between countries A and B 

when the interconnection is used at its 

maximum capacity. 
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The horizontal axis measures energy or power produced, demanded and traded. Country A 

is the seller. A’s generation increases from left to right and B’s generation increases from 

right to left. Both demands are j� and j�. d�}� and d�}�, increasing functions in the 

respective generations, are the marginal costs of production in the two countries, assumed 

to be twice differentiable. Let us denote by d the amount of energy traded. 

A receives a price d�}��I�O� = d�}�(j� + d) per unit of energy, plus its share of the 

congestion rent. B pays d�}��I�O� = d�}�(j� − d), per unit of energy and receives the 

rest of the congestion rent. The total unit average price implicit in the transaction is ��� = d�}��I�O� + ��(d�}��I�O� − d�}��I�O�), where �� is the fraction of the congestion 

rent that goes to A. In the graphic: A obtains a benefit in trade equal to area edf, plus its 

share of the total congestion rent bcde. B obtains acb plus the rest of the congestion rent. 

Let us call respectively	�I�F and �I� the benefit for country � before the distribution of 

congestion rent, and the total benefit in trade. Assuming the marginal cost functions are 

twice differentiable, it holds: 

���F = �7	d�}�(j� + d)−d�}�(j� + w)�
 

8rw = 

= v ���M��(����)�� (d − w) − 	� �
'�M��(�����&(P)	�)��' (d − w)�� rw� ,     with  �	(w) ∈ (0,1) 

And therefore:  ���F < ��M��(����)�� ∙ �'� − ¢�I�£(j9, j9 + d)	 ∙ �¤¥      (3) 

where ¢�I�£(j9, j9 + d) is a lower bound of  
�'�M����'   in (j�, j� + d). 

Similarly we can prove:   
��M�¦(�¦#�)�� ∙ �'� + ¢�I�£(j� − d,j�) ∙ �¤¥ < ���F  (4) 

where ¢�I�£(j� − d,j�) is a lower bound of  
�'�M�¦��'   in (j� − d,j�). 

Let us assume that it holds: 

��M���� (j� +  d) < ��M�¦�� (j� −  d)					∀	 ¨70,18	�Qr	0 ≤ d < j�   (5) 

When condition (5) holds it is reasonable to call country A the large country and country B 

the small country, as any power transaction changes more the marginal cost in the small 
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country than in the large one. It is possible to proof two propositions about the advantage 

of small countries in trade. 

Proposition III 

If both marginal cost functions are convex, and (5) holds (A is the large country and B the 

small country) then ���F < ���F. 

Proof 

As both marginal cost functions are convex ¢�I�£and ¢�I�£are nonnegative and (5) holds, 

then using (3) and (4):  ���F < ��M��(����)�� ∙ �'� < ��M�¦(�¦#�)�� ∙ �'� < ���F  ∎ 

Proposition IV 

If the following hypothesis hold, (H1) functions 
	©'ª«¬�©¬'		©ª«¬�©­   for � = 9, � are bounded in 

absolute value (these ratios are measures of the concavity of marginal cost curves) and 

(H2) inequality (5) holds with sufficient slack (that is, the difference in size between the 

countries is large enough), then ���F < ���F. 

Proof 

(H1) and (H2) ensure the following inequality holds: 

−B¢�I�£(j�, j� + d) + ¢�I�£(j� − d,j�)C ∙ d3 < rd�}�(j� − d)r} − rd�}�(j� + d)r}  

Therefore: 

rd�}�(j� + d)r} ∙ d�2 − ¢�I�£(j�, j� + d) ∙ d¯6 < rd�}�(j� − d)r} ∙ d�2 + ¢�I�£(j� − d,j�) ∙ d¯6  

Using (3) and (4) we obtain ���F < ���F .  ∎ 

Similar propositions can be proved if the large country is buying.  

In conclusion, in bilateral international trade using nodal pricing the smaller country tends 

to receive a bigger share of the benefits of trade, before the distribution of the congestion 

rent. 
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Let us consider two extreme situations, an interconnection with an arbitrarily small 

capacity (±²), and another with infinite capacity (±�) between a large and a small country. 

Let us call �gOn�³ and �~NO�� the respective shares of the congestion rent. In the case (±²) 
the change in both marginal costs as a result of trade is negligible and therefore the benefits 

consist almost exclusively in the shares of the congestion rents, so  
�´µ¶··=
�¸¶o¬¹= ≅ »´µ¶··»¸¶o¬¹ . In the 

case (±�) there is no congestion rent and therefore �I� = �I�F for both countries.  

If both shares in congestion rent are equal and either Proposition III or Proposition IV 

holds, �gOn�³� = �~NO���  for ±² , and �gOn�³� < �~NO��� for ±�. A conjecture that arises is that 

if �gOn�³ = �~NO�� = 	� , under reasonable hypothesis the ratio 
�´µ¶··=
�¸¶o¬¹=  will increase with the 

capacity of the interconnection link.  

The nodal price regime has a resemblance with the result of a single competitive market 

integrating both electric systems, if the use of the interconnection is auctioned. The 

congestion rent would be the price in that auction.  

Some of the possible criteria to define the shares for both countries in the congestion rent 

would be: 

a) Divide it in the same proportion of the contributions made by the countries in the 

investment to build the interconnection, suggested in CIER (2011).  

b) Share it in halves, as in the case of the interconnection between Colombia and Ecuador. 

c) Divide it in the same proportion of the demands involved, the whole demand of the 

selling country and the energy purchases of the importing country. This was the 

criterion initially applied between Ecuador and Colombia. 

3.4.1.2 Share in halves of the benefits of trade 

In this mechanism a price for the energy, or one price for each of the resources used 

incrementally by the seller are determined, so that the benefits of trade result equal for both 

countries. This is one of the regimes included in the Interconnection Agreement between 

Argentina and Uruguay, called “substitution”.  
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3.4.1.3 Price of each resource equal to its incremental cost plus a margin 

In this mechanism the price for each of the resources used incrementally by the seller is 

equal to the incremental cost for the seller plus a margin. The margins are limited to 

maximum values, one for each type of resource, determined beforehand. The regimes 

called “power” and “emergency” in the Interconnection Agreement between Argentina and 

Uruguay belong to this kind. In that case, margins were initially fixed equal to the average 

fixed cost of every resource, assuming a high load factor, including a return on the 

investment. With this criterion, the prices of the resources are equal to the total average 

costs and tend to be greater for peak units than for base load units.  

Graphic 4 shows the share of benefits. Margins [	 and [� correspond to two different 

kind of resources.  

Selling prices are the addition of 

marginal costs of the units and margins. 

Let us suppose marginal cost curves are 

continuous, and margin [(. ) is 

increasing with the quantity sold. It may 

happen that the seller has to accept a 

reduction in the margin to sell the 

optimal quantity d (as shown in Graphic 

4). This happens when:  

d�}�(j� + d) < d�}�(j� − d) < d�}�(j� + d) + [(d) 
3.4.1.4 Other price regimes in the region 

Some other price regimes have been used or conceived in the region: 

• The seller offers a fixed price for every resource, valid for a long period, for instance a 

semester, without other restrictions. This was the regime for international trade in 

Argentinean regulation in the 90´s.  

• The seller offers a price, is dispatched according to this price but receives the spot price 

(the marginal cost) of the buying country. This is one of the regimes for imports in the 

Uruguayan regulation, to be applied only if spot trade with the neighbor country 

approximates to market integration, a condition never reached yet. 
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3.4.2 Transfer of rights to a third country 

The following trade situation has happened in Mercosur. The first country A has energy 

surpluses to sell and has a trade agreement with a second country B.  B does not require 

imports and transfers its rights and obligations in spot transactions resulting from the trade 

agreement with A, to a third country C. In the period 2006-2010, a few times Brazil played 

the role of the seller, and Argentina transferred its rights to buy energy to Uruguay.  

3.4.3 Loan with hydraulic reserves 

In this regime a country receives energy generated incrementally by another country using 

hydraulic reserves, and the receiving country commits to return the energy before a 

predetermined date. In the Mercosur region Brazil has acted as energy lender a few times 

(CNPE, 2008), and Argentina and Uruguay as borrowers. 

3.4.4 Value of transactions as a function of seller’s and buyer’s costs 

In the methods we called here nodal pricing, share in halves and cost plus margin, the total 

amount � of the transaction is determined by the set ¼ of resources used incrementally by 

the seller and the set 6 of resources of the buyer substituted as a result of trade. Let us call d the amount of energy sold. 

In nodal pricing: 

� = d × 7d�}(¼, d) 	+ 	α	(d�}(6, 0) 	− 	d�}(¼, d))8 
where α is the share of the seller in the congestion rent. 

This is a result of d�}(¼, d) being equal to the marginal cost of the seller and d�}(6, 0) 
being equal to the marginal cost of the buyer, after trade. 

In cost plus margin: 

� = d�(¼, d) +h� ��Q;[n , d�}(6, 0) − mn(w)<rw
¾o
 n∈¿  

where [n is the margin for resource r of the seller. 

In share in halves of the benefits: 
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� = d�(¼, d) +	12	(	d�(6, d) − 	d�(¼, d)	) 
As the limitation of market power of the selling country is a concern, it is essential for a 

sustainable agreement that the unit costs of resources in ¼ used to determine �, be the 

same as the costs used in the selling country in the local optimum dispatch. An exception 

could be made if the internal cost of the resources in ¼ in the selling country is affected by 

subsidies to benefit the local consumers. 

3.5 Multilateral trade 

3.5.1 Problems arising with multilateral trade 

When three or more countries are linked by interconnections of significant capacity, 

something has to be done to make the preexisting bilateral regimes compatible, or a new 

system must be designed, as the mere aggregation of bilateral agreements leave some 

problems unresolved, for instance: 

• The problem of competition between buyers: when two or more countries are willing to 

buy energy from a selling country ¿how much of every resource of the seller has to be 

sold to every buyer? 

• The problem of energy transits through third countries, and the possibility of 

intermediation in energy trade: ¿how much of the energy incoming to a country can be 

bought by it to be resold with profit, and how much has to be considered a transit of 

energy with destination to another country? 

We can informally define transit as the situation when in the optimal flow with trade, a 

country A generates more energy than in the situation with no trade, and the opposite 

happens to country B, and the flow from A reaches B not only through the direct 

interconnection A-B, but also indirectly through at least another country C.  

The total amount of energy transits through one country is usually defined as the minimum 

between the total amount of energy inflows to the country and the total amount of energy 

outflows from the country. The identification of the countries to be considered origins and 

destinations of the flows provoking the transit is a non-trivial problem, and a vast literature 

addresses the subject. For instance, in the European Union transits must be estimated to 

determine compensations for the use of the grid to countries hosting the transits (FSR, 

2005). In South America, within the institutional framework of country bargains to divide 
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the benefits of power trade, the determination of the responsibility for energy transits can 

be even more important, as the countries hosting transits could claim the right to 

intermediate in energy trade, receiving more than a compensation for the use of their grids.  

3.5.2 Nodal pricing applied in a multilateral setting 

Nodal pricing with distribution of the congestion rent is the mechanism proposed in the 

Mercado Eléctrico Regional (MER) of Central America, the solution chosen in Resolución 

536 of the Andean Community of Nations (but only applied in bilateral transactions until 

now) and is the proposal in CIER (2011). It is apparently the simplest solution for 

multilateral spot trade. At first it seems the neatest solution to the problem of determining 

spot prices in international trade. However, we will show the problem is not so simple, and 

it is worthwhile to explore a more general family of agreements for trade. 

If we assume that only energy costs are relevant, as a result of trade each country � has a 

net income �I from the whole set of transactions with his neighbors: 

�I = d�}I∗ À h �I,�∗ −�∈	!Ál(I) h ��,I∗�∈	$n³�(I) Â + h �I,�I Ãd�}I∗ − d�}�∗Ã�∈	!Ál(I)∪	$n³�(I)  

Where: 

• d�}I∗ is the marginal cost of country � with optimal trade, as defined in before. 

• �Äk(�) and �T{r(�) are respectively the set of nodes receiving energy from node 

(country) � in the optimal flows (the set of node �’s successors in GGGG) and the set of 

nodes sending energy to node � (the set of node �’s predecessors in GGGG). 

• �I,�∗   is the optimal energy flow from � to �  
• �I,�I  is the fraction of the congestion rent in the interconnection between countries � and 

� that goes to country �. 
That result is equivalent to a set of transactions, one for each interconnection where the 

flow goes from � to �, in which country � sells the energy flow to country � at a price:  

�I,� = d�}I∗ + �I,�I (d�}I∗ − d�}�∗). 
In section 4 we proved Propositions III and IV, about the shares of benefits in bilateral 

nodal pricing spot trade. Here we try to investigate whether those propositions still hold 
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when trade with nodal pricing involves three or more countries. A general analytical proof 

seems quite difficult but we can resort to numerical simulation. Annex II shows the results 

of a simulation, where the two following propositions hold3:  

• In multilateral trade, given two of the countries with different sizes, if the topology of 

the grid, interconnection capacities and levels of marginal costs curves are chosen 

randomly, the benefit per unit of energy traded is bigger for the smaller country. 

• In the same context, if congestion rents are shared in halves in every interconnection, 

an increase in the interconnection capacity tends to favor more the smaller countries. 

Another very important feature of nodal pricing in multilateral trade is that countries can 

make a very significant profit from the energy transits they host in their grids. Graphic 5 

shows an example. The graphic presents the topology of the interconnection grid, with the 

maximum capacity �I� of each link, the marginal cost curves of each country, the levels of 

marginal cost before and after optimal trade, and the optimal flows. Losses are supposed 

equal to zero. Congestion rents are shared in halves in each interconnection. 

 

Country B increases its generation in 1.5 units; let us suppose its marginal cost remains 

constant equal to 80. Country C increases its generation in 0.3 units and its marginal cost 

increases from 80 to 180, as a result of trade. Country A reduces its generation in 1.8 and 

its marginal cost is reduced from 200 to 180. Lines BA and BC are loaded to their 

                                                 
3 A more precise formulation for both propositions is presented in Annex II 
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maximum capacities. Line AC has a remaining capacity so marginal costs in A and C are 

both equal to 180.  

Net income for country C as a result of trade is:  

(0.8-0.5) × 180   (value of incoming and outgoing flows at the marginal cost in C) 

+ 0.5 × (180-80) ×0.5  (share of congestion rent in line BC) 

−∆��    (increase in generation cost in C) 

This means that country C, besides the net benefit from selling to A its own incremental 

generation ( 0.3×180−∆�� ), receives one half of the congestion rent in BC for the transit 

of 0.5 units of energy flowing from B to A.  

It is not obvious countries would be willing to agree on a mechanism like nodal pricing 

conceding such gains to intermediation, and an advantage to smaller countries, as shown 

above. 

3.5.3 The definition of bilateral transactions consistent with optimal 

multilateral flows 

The goal of this section is to define a more general family of trade regimes, by allowing 

two degrees of freedom: a) the extent of the advantages a country has due to its location in 

the interconnection grid and b) the way benefits of trade are shared in each transaction. 

In each regime, economically meaningful bilateral transactions are defined based on 

optimal flows. Each transaction trades generation resources, including those resulting from 

incremental generation in net exporting countries due to trade. In 3.5.3.1 an introductory 

example is shown. In 3.5.3.2 algorithms to define bilateral transactions are presented. In 

3.5.3.3 the subject is the rules to share benefits in the transactions. 

  



58 
 

3.5.3.1 Advantages due to location in the grid and energy intermediation 

Advantages due to location and intermediation are illustrated by the following example, 

presented in Graphic 6.  

 

Let us assume there is a trade regime of the cost plus margin kind. Energy is sold by 

exporting countries at a price equal to marginal cost plus a fixed margin [. When 

intermediation of energy takes place, the intermediating country earns a margin [′  
between the buying and selling price. All countries have constant marginal cost curves. 

The capacities of interconnection lines �I�NOP are shown beside each line. Arrows show the 

direction and magnitude of optimal trade flows. In the optimum flows: country C generates 

only 2 of the 5 units it demands (j�) and imports 3; country D generates only 4 and 

imports 6 to supply its demand (j� = 10). All lines are at their maximum capacity. Let us 

assume [ < 50 and [+[Z < 150.  

There is more than one way to define bilateral transactions where net exporters A, B and E 

sell, and net buyers C and D buy. Both C and D would rather buy first from A, the cheapest 

seller (at price 10+	[), then from B (at price 50+	[), and only in the last place from D (at 

price 150+	[). 

One way to split the cheapest energy is a proportional distribution, without considering 

location in the grid: C and D buy energy to A, B and E with proportions 4/9 from A, 2/9 
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from B and 3/9 from E, those of the total exports of the three countries. Flows in the grid 

are not considered. This criterion can be discarded right away as it would lead to the 

absurd of a country (in the example country C) buying at a price (150+	[) greater than its 

own marginal cost to another country (in the example country E).  

A way to define economically meaningful transactions is to build them following the 

directed graph of optimal flows GGGG. In these transactions: 

• The node of the selling country is always a direct or indirect predecessor in GGGG of the 

buying country. 

• The flow through each interconnection is assigned a composition where the 

components are flows originated in each of the net exporting countries.  

• At each node, every component’s balance must close. 

• Let us convene that all the flows outgoing from a node have the same composition. 

 

Two questions that must be answered to define such bilateral transactions are: 

(Q1) ¿How much of the energy flowing into its node can a country buy? 

(Q2) ¿Can a country buy the cheapest inflowing energy with priority (Option Q2.1), or 

should it always buy the same proportion of all components of the inflowing energy 

(Option Q2.2)? 

Let us assume for (Q2) that Option Q2.1 holds. At least three options are possible for 

question (Q1). 

Option Q1.1 – A country buys only the net energy it extracts from the grid. Only net 

importers in the optimal flows buy energy, and they buy precisely the amount of their net 

imports. 

Option Q1.2 – A country buys to supply its own demand at minimum cost. Every 

country, either a net importer or not, can buy energy inflowing into its node, and buys 

precisely the resources that together with its own ones, allow the minimum cost supply of 

the country’s demand. As a result the country can have surpluses of its own resources 

generating at the optimal solution, which can be exported. 
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Option Q1.3 – A country buys all the inflows to its node and intermediates energy. 

Every country buys all the energy flows arriving at its node. With these purchases plus its 

own resources, the country supplies its demand at minimum cost. Surpluses are sold. As a 

result the country can be an intermediary. 

Table 1 shows the application of the three criteria to the example presented above. As a 

result we will find the net cost in trade for both net importers C and D (showed in bold 

type in the table). 

In all cases the transaction in which country E sells D three units at price 150+	[ is 

omitted in the table, as it is performed under all three options. As a result the net imports of 

C and D (from A and B) are both equal to three units. 

In all three options C pays a smaller net amount than D for the same quantity of energy (3 

units), so C has a smaller import unit cost, as a result of its proximity in the grid to 

exporting countries A and B. 

For C option Q1.3 is better than Q1.2 and the latter is better than Q1.1, and exactly the 

opposite happens to D, as a result of the increasing value given to a favorable location in 

the grid (understood as proximity to cheap exporters). In the three options the addition of 

C’s and D’s total net import costs equals 140+6	[, the addition of the incomes required by 

A and B to export. (If for question (Q2) option Q2.2 is taken instead of Q2.1, C’s costs 

would increase and D’s would decrease, but we will not consider this option). 

As generation costs in every country are equal in the three options, only the net costs 

resulting from trade are relevant. 
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Table 1 – Transactions and net costs in trade with option Q2.1 

Option Country C 

   Energy                                         Net cost  

Country D 

   Energy                         Net cost          

Q1.1 Purchases from A = 3  

(3 = net imports of C) 

 

3 (10+m) 

_______ 

30 + 3m 

Purchases from A = 1  

Purchases from B = 2  

1 (10+m) 

2 (50+m)               

110 + 3m 

Q1.2 Purchases from A = 4 

Purchases from B = 1 

(4+1=5= C’s total demand) 

 

Sales to D of C’s own energy =  

2 

(C covers its entire demand with imports 

and sells 2 of its own generation to D) 

4 (10+m) 

1 (50+m) 

 

 

-2 (100+m) 

-110 + 3m 

Purchases from B = 1 

(Of the 6 units entering C, 

only 1 unit originated in B 

is available for D) 

Purchases from C = 2 

1 (50+m) 

 

 

 

2 (100+m) 

250 + 3m 

Q1.3 Purchases from A = 4 

Purchases from B = 2 

(C buys all the incoming energy) 

 

Sales to D of C’s own energy = 

2 

Sales to D of B´s energy= 1 

(C sells the surplus of its own generation 

and 1 unit from B, not used for its own 

demand)  

4 (10+m) 

2 (50+m) 

 

 

-2 (100+m) 

 

-1 (50+m+m’) 

-110+3m–m’ 

Purchases from C = 2 

Purchases from B = 1 

 

 

2 (100+m) 

1 (50+m+m’) 

 

 

 

___________ 

250+ 3m + m’  

 

3.5.3.2 An algorithm to define bilateral transactions  

In what follows an algorithm to define bilateral transactions is presented. The resulting 

transactions are consistent with the optimal flows. Option Q.2.1 is taken: a country has the 

priority in the use of cheap resources flowing into its node. We will assume there are no 

losses, otherwise some corrections should be done as in Bialek (1996). Under the no losses 

hypothesis optimal flows in each interconnection verify:  �I,�I	∗ = �I,��	∗ = �I,�∗ . 

Let us define: 

• �kk(�) the set of all nodes which are directly or indirectly accessible from node � 
following arcs in graph GGGG. It is the union of set �Äk(�) of �´s successors, with the sets of 

the successors of every node in �Äk(�), and so on. 
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• Source, as a node with at least one outgoing arc and no inflowing arcs. Every finite 

digraph without cycles has at least one source. 

• j�(�, j) the optimal dispatch function, given a demand j and a set of generation 

resources � = 0(�n, kn , bn , mn), T = 1, . . �4, so that ∑ bn ≥ jMn�	 , is the function giving 

the set of resources allowing the supply of demand j at minimum cost:  

j�(�, j) = 0(�n, kn , xn , mn), mzT	{�{T|	T			/	xn > 04 
where xn , T = 1, . . �, are the powers minimizing in the problem: 

��Q0�o4 Çh� mn(w)rw
�o
 

M
n�	 È	 

�. �:	hxnM
n�	 ≥ j	;				0 ≤ xn ≤ bn , mzT	T = 1,…�		 

• ÉÊ(�, j) the excedentary resources function given a demand j and the set of 

generation resources � = 0(�n , kn , bn , mn), T = 1, . . �4, is the function giving the set of 

excess resources after using resources from � in the optimal dispatch of demand j:  

ÉÊ(�, j) = 0(�n, kn, bn − xn, }n): }n(w) = m(w + xn), mzT	T		/	xn < bT4 
Where xn are the powers in j�(�, j) 

• �. T, where T = (�T, kT, bT, m: 70, bT[�w8) and �  is a real number with 0 ≤ � ≤ 1, is 

another resource (�n, kn,�bn, }(w) = m(w/�) 
 

• EjI(p	, p�) displaced resources function in a country �, given two set of resources  

p	 = �;�, k, blq& , ml<: k ∈ dI� and p� = �;�, k, blq' , ml<: k ∈ dI�  
such that  blq& ≥ blq& 	∀k ∈ dI,  is the set of resources 

 �T = (�, k, blq& − blq' , mn): k ∈ dI/blq& > blq'�  where 

 mn: 70, blq& − blq'8 → E, mn(x) = ml(x + blq').  
It holds:  b7EjI(p	, p�)8 = b(p	) − b(p�)   (6) 
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The following algorithm defines transactions with generation resources by defining for 

every pair �, � ∈ 1 the sets: 

• ¼I� resources that � sells to �  
• 6I resources from generation units in �, which are used by the country if there is no 

trade, and are displaced as a result of international trade 

• ÉI resources that node � receives from its predecessors in the digraph of optimal flows 

• ËI resources that node � sends to its successors 

 �I∗, �I~� , jI, rI∗ which are also used in the algorithm, are already defined. 

The algorithm is intended to generalize the procedures followed to construct transactions in 

the example of the preceding section, defined by Graphic 6. 

Start of the algorithm  

Set GGGGν = GGGG, ν=1 

Set Ei = Ø for every node iϵN, Vij= Ø, for every pair of nodes i,jϵN, j≠i 

Step 1 

For every source i in graph GGGGν: 

Step 1.1 

With option Q1.1: 

If iϵNX (i is a net exporter):   

Let us define Fi=EX(Gi*, Di)	∪ Ei 

If iϵNM (i is a net importer): 

Let us define Li=DO(Ei, di*), Fi=EX(Ei, di*), Si=RDi(Gi
SC, Gi*) 

For every r=(ir,cr,Pr,fr)ϵLi, r is considered sold by node ir to node i, that is, r 
is added to ¼IoI. (it holds ir≠i for every rϵLi) 

With option Q1.2: 

Let us define Li=DO(Ei∪Gi*, Di), Fi=EX(Ei∪Gi*, Di), Li
i={r=(ir,cr,Pr,fr)ϵLi:ir=i}, 

Si=RDi(Gi
SC, Li

i). 

For every resource r =(ir,cr,Pr,fr)ϵLi so that ir≠i,  r is considered sold by node ir to 
node i, that is, r is added to ¼IoI.  
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With option Q1.3: 

Let us define Li=DO(Ei∪Gi*, Di), Fi=EX(Ei∪Gi*, Di), Li
i={r=(ir,cr,Pr,fr)ϵLi:ir=i}, 

Si=RDi(Gi
SC, Li

i). 

For every node k ϵ pred(i), all resources in Fki are considered sold by k to i, that is, 
they are added to ¼JI. 

Step 1.2 

For every node jϵ suc(i) let us define Fij={αj.r: for every rϵFi} where  �� = ��,�∗∑ ��,�∗�∈ÌÍ�(�)   . 

For every node jϵ suc(i) all resources in Fij are added to Ej. 

Step 2 

Let us define graph GGGG
sig resulting of the deletion in GGGGν of all sources and all the arcs starting 

in sources. 

If GGGGsig has at least one node: 

ν is incremented by 1 

Let us set GGGGν = GGGGsig 

 Go to Step 1.  

If GGGGsig has no nodes the algorithm finishes. 

 

The algorithm has the following features: 

• It is finite and ends after a number 1��{T of iterations, as a consequence of the 

inexistence of cycles and the finite number of nodes in GGGG.  

Graphs GGGGν, for Î = 1, . . 1��{T, don’t have cycles either, as they result from the deletion 

of nodes and arcs in graphs with no cycles. 

 

• Any resource in set ËI� (resources node � sends to the set É� of one of its successors � in 

Step 1.2), comes from �I∗, or from ÉI. Then ¼I� ≠ ∅ only if � ∈ �kk(�). 
 

• As a consequence using Proposition I, for any resource T sold by node � to node �, with 

marginal cost mn(bn) it holds: mn(bn) ≤ d�I∗ ≤ d��∗  (7) 

 

• As in the optimal solution the resources in set 6� are not used, then: 
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d��∗ ≤ d�}(6�, 0)  (8) 

• In Step 1.1: 

o With Q1.1: in the net importing nodes (the buyers):  

∑ b(J∈^ ¼JI) = b(�I) = rI∗ and b(6I) = b7EjI(�I~� , �I∗)]. 
Using (6): b(6I) = b;�I~�< − b(�I∗) = jI − b(�I∗) = rI∗. 

o With Q1.2:  

hb(J∈^ ¼JI) = b(�I) − b;�II< = jI − b(�II) 
and b(6I) = b7EjI;�I~� , �II<8. 
Using (6)  b(6I) = b;�I~�< − b;�II< = jI − b;�II<. 

As a result both with Q1.1 and Q1.2, for every net importing node the amount of power 

it buys is equal to the amount of power displaced by trade:  

hb(J∈^ ¼JI) = b(6I) 
On the contrary with Q1.3: ¼JI = ËJI, and ∑ b(J∈^ ¼JI) = ∑ b(J∈^ ËJI) = b(ÉI), 
which can be greater than b(6I) = b;�I~�< − b;�II< = jI − b;�II<. In the numerical 

example shown above b(É�) = 6 exceeds b(6�) = 5 by the amount of energy 

intermediated by country C, equal to 1. 

3.5.3.3 Rules to share the gains from trade 

With each of the options for Q1, the algorithm defines 0¼I�, 6�4 for � ∈ 1, � ∈ 1 , � ≠ �.  
Let us call dI� = ∑ bnn∈¿�� , the power sold by � to �.  
The amount of money �I� paid by � to �, for the energy ¼I�, depends on the method to 

define transaction prices. We here generalize to the multilateral case the three definitions 

presented in 3.4.4 in a bilateral context: 

With nodal pricing: 

�I� = dI�7d�}(¼I�, dI�) 	+	αZI� 	(d�}(6�, 0) 	− d�}(¼I�, dI�))8 
Where: 



66 
 

• � ∈ �kk(�) and not necessarily � ∈ �Äk(�)  
 

• A generalized congestion rent can be defined as d�}(6� , 0) 	− d�}(¼I�, dI�), for 

� ∈ �kk(�), and the relevant parameters are αZI�, share of seller � in the generalized rent 

with country �, to be negotiated between � and �. Using (7) and (8) results d�}(6� , 0) 	− d�}(¼I�, dI�) ≥ 0. 

With cost plus a margin method: 

�I� = d�;¼I�, dI�< + h � mn(w) + ��Q Ñ[n , d�}(6�, 0) − mn(w)Ò rw
¾o
 n∈ÓÔÕ

 

The parameters are the margins [n for every resource of the seller. bn is the power of 

resource T ∈ V×Ø. 
With share in halves method: 

�I� = d�;¼I�, dI�< 	+		� 	(	d�(6�, d�) ���∑ ����∈Ù 	− 	d�;¼I�, dI�<	)  
where d� = ∑ dI�I  

In this case, the assumption is made that each seller � substitutes the same proportion 

���∑ ����∈Ù  of every resource in 6�. Option Q.1.3 is meaningless for this method as the total 

power bought by � can exceed the country’s demand j� . 
3.6 Conclusions 

The paper shows the diversity of possible agreements for international power spot trade, 

when countries negotiate rules to set energy prices and share the gains from trade, which is 

the institutional framework in South America. 

A family of methods is described to define economically meaningful bilateral transactions, 

based on the digraph of optimal flows through the interconnections, which has no cycles.  

The algorithm to build those transactions iteratively follows the optimal flows. In each 

iteration the source nodes (countries) of the graph are processed. For each of these nodes 

the resources bought from the preceding nodes and the resources sent to the following 
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nodes are determined. At the end of each iteration, those source nodes are removed and a 

new digraph with no cycles results. Three methods to define the transactions are presented 

that differ in two features: the ability of one country to use with priority the cheaper 

resources entering its node, and the possibility of intermediating resources.  

Once the bilateral transactions are defined, prices for the energy can be determined. Three 

different criteria to set prices are described, generalizing the methods used for bilateral 

trade in the recent past in the region: nodal pricing, share in halves of the benefits and cost 

plus margin.  
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3.7 Annexes to Chapter 3 

3.7.1 Annex I – Two properties of optimal flows 

3.7.1.1 Monotonicity of CMgi* following a path in the graph of optimal flows – 

Proposition I 

d�}I∗ is the dual variable associated to constraint (2a), demand supplied at node �.  
We will prove that given two nodes � and �, linked by an interconnection, so that at the 

optimum �I,�I	∗ > 0, �I,��	∗ > 0, then d�}I∗ ≤ d�}�∗ holds. Let us call d�∗ the total cost in �∗, 
the optimal solution of problem (2), and �(�) = � − TI��� the function giving the power 

received at � when power � is injected in �.  
It holds �Z(�) = 1 − 2TI�� < 1, �ZZ(�) < 0. 

Let us suppose d�}�∗ < d�}I∗. We can choose Ú > 0 arbitrarily small and taking problem 

(2) as a base, define a new problem bb²� perturbed in �, which in node � has a demand j� + Ú. By the definition of the dual variable of the demand restriction in �, the optimal 

solution �²� of problem bb²�, has a cost: 

d�∗²� = d�∗ + d�}�∗. Ú +  �(Ú)   (A6) 

where  �(Ú) is an infinitesimal of order greater than 1.  

Assuming the continuity of optimal solutions respect to the demands, in problem bb²� the 

flows from � to � measured at � (�²) and measured at �  (�(�²)) are both positive.  

Let us define a second perturbed problem bb%I, with demand j�  at �, and demand jI +�(Ú), at �, where �(Ú) is defined by:  �(�² − �) = �(�²) − Ú.   (A7) 

It holds:  

• �(Ú) > Ú, as a result of  Ú = �(�²) − �(�² − �) = �′(�² − ��)�, with � ∈ 70,18 and 

�Z < 1.  

• From (A7) � = �² − �#	(�(�²) − Ú) and then as both � and �#	 are continuous at �², 

then �(Ú) → 0, for Ú → 0.  
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A feasible solution 6%I  of bb%I is formed by taking the optimal variables from �²� (optimal 

solution of bb²�) except the flow in arc � − �, which is taken equal to �² − �, measured at �. Then the flow measured at � is taken equal to �(�²) − Ú. Those flows are feasible as by 

hypothesis �² and �(�²) are both positive and Ú and � can be chosen arbitrarily small. 

The cost d�6%I of 6%I is the same as the cost d�∗²� of �²�, as in both of them the 

generation in every node is identical. 

Using (A6):  d�6%I = d�²� = d�∗ + d�}�∗. Ú +  �(Ú) 
Therefore as �(Ú) > Ú, it holds: 

d�6%I < d�∗ + d�}�∗. � +  �(�)  (A8) 

By the definition of dual variable d�}I∗, the optimal solution �%I of problem bb%I has 

cost: d�∗%I = d�∗ + d�}I∗. � +  ��(�)  (A9) 

By (A8) and (A9):  

d�∗%I − d�6%I > ;d�}I∗ − d�}�∗<� +  �̄(�) 
If � is taken sufficiently small it would hold d�∗%I − d�6%I > 0. The feasible solution 6%I 
of problem bb%I would have a smaller cost than the optimal solution �%I. Therefore d�}I∗ > d�}�∗ cannot be true.  

Let us observe that this reasoning applies regardless of arc � − � having or not spare 

capacity at the optimal flows. 

3.7.1.2 Non-existence of cycles in the digraph of optimal flows – Proposition II 

Let us call: �∗ = (0bl∗4, ��I,�I	∗�, 0�I,��	∗4) the optimal solution to problem (2). 

Let us suppose there is a cycle of arcs (�	, ��, … �Û), with flows outgoing from their 

respective initial nodes (�O& , … . . �OÜ) and incoming into their respective final nodes 

(mO& , … . . mOÜ), and constants (TO& , … . . TOÜ) determining their losses. Node �O& , the initial 

node of arc �	, has a positive generation }	. By (2c) it holds for every arc �J:   

mOÝ = �OÝ − TOÝ;�OÝ<� =: �J;�OÝ<,				K = 1,…¢   (A1) 
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Function �J(. ) gives the power received at the final node of arc ak, as a function of the 

power injected in the initial node of the arc. It holds:  �JZ;�OÝ< = 1 − 2	TOÝ{OÝ < 1. 

Taking ε > 0 and sufficiently small, another set of flows through the cycle can be 

determined, with outgoing flows . = (.O& , … . . .OÜ), and incoming flows  

Þ = (ÞO& , … . . ÞOÜ) such that: 

�O& − .O& = Ú      (A2) 

 ÞOÝ = �J;.OÝ<, mzT	K = 1,…¢  (A3) 

 �OÝ − .OÝ = mOÝß& − ÞOÝß& for K = 2, …¢ (A4) 

From (A1) and (A3) we have, for K = 1, …¢: 

mOÝ − ÞOÝ = �J;�OÝ< − �J;.OÝ< = �ZJ; OÝ<;�OÝ − .OÝ<	à��ℎ	 OÝ ∈ ;.OÝ , �OÝ< (A5) 

And by (A4):  mOÝ − ÞOÝ = �ZJ; OÝ<;mOÝß& − ÞOÝß&<, for K = 2,…¢  

Applying (A4) for K = 2,…¢,  (A5) for K = 1, and (A2) we arrive at: 

mOÜ − ÞOÜ = �ZÛ; OÜ<…�Z	; O&<Ú	 =:	 ÚÛ,	 < Ú	 

Those flows and the rest of the variables in �∗, fulfill all the equations (2b), (2c) and (2d) 

and equations (2a) in every node except �O& , where there is now a surplus power Ú	 −ÚÛ,	 > 0. If the power generated in �O&is reduced by that amount, the new generation at the 

node 	âÛ,	: = 	}	 − (	Ú	 − ÚÛ,	), the flows in . and Þ and the other values in �∗ are a 

feasible solution of the problem, with a smaller generation cost, which contradicts the 

optimality of �∗. 
3.7.2 Annex II – Numerical simulations of the nodal pricing method 

The goal of this annex is to describe the numerical simulations to test in a particular case 

the following propositions: 

• Given two countries of different size, if the topology of the interconnection grid, the 

capacities of the lines and the levels of the marginal cost curves are chosen randomly, 
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the benefits per unit of energy traded are greater, the smaller the country´s power 

system. 

• In the same context, if congestion rents are shared in halves in every interconnection, 

an increase in the interconnection capacity tends to favor more the smaller countries. 

 

A series of 1000 problems of optimal trade were resolved, all with four countries with 

demands 1, 5, 10 and 30 GW. An interconnection grid was defined for every problem. The 

existence of every one of the six possible lines linking the four countries was determined 

randomly, with probability 0.3 of existence. Configurations with non-connected graphs 

were rejected, and new draws were performed in those cases. The capacity of every line 0�, �4 was chosen as m� . ��Q(jI, j�) in both directions. For m� three values were used: 0.25, 

0.5, 1. 

The marginal cost function for country i without trade d�}I(}I) was defined by: 

d�}I = k ã}IjIä × VI = å0.100 ã}IjIä + 0.050 ã}IjIä
�æ × VI 

where VI was the result of a draw with uniform distribution in [0,2] 

}I and jI are expressed in GW and d�}I in USD/kWh. 

The variable VI can be interpreted as representing a random shock due to availability in 

primary sources for generation. Function k Ñ����Ò determines the form of the marginal cost 

curve before that random shock. The dependency of 
���� is a way of defining marginal cost 

curves before random shocks that differ only as a consequence of the scale of the country, 

as the proportions between different kinds of generation resources in all the countries are 

the same. 

The results of the simulation are presented in the following graphic, showing the benefit 

per unit of net energy traded, expressed in USD/kWh. The net energy traded by country �  
is defined as:  d1I = ç∑ 		��,I�∈��ß − ∑ 		�I,JJ∈��è ç. 
The three series of four points correspond to the three values chosen for m�, each one 

corresponding to a different level of average interconnection capacity. 
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The results show the two properties we wanted to test: i) the unit benefits are smaller the 

larger the size of the country, and ii) as the average interconnection capacity increases (m� 

is greater) the relative advantage of the smaller countries increases. 
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4 THE EFFECT OF INTERNATIONAL POWER TRADE ON THE DESIGN 

OF THE OPTIMAL GENERATION PORTFOLIO  

4.1 Introduction 

The subject under analysis is the effect of variations in the prices of international energy 

trade on the optimal design of a country’s power generation system, and particularly the 

determination of conditions leading to imports to be a complement or a substitute of wind 

capacity.  

The optimal design of a generation system is a problem of practical importance since in 

many countries, even with competitive markets for generation, the authorities conduct 

planning processes to shape the power system. The goal is to find the amount of capacity 

to be installed for every available kind of generation unit, assuming that capacity will be 

used optimally. As investments in power plants are irreversible, the problem is dynamic, 

since present investment decisions affect the future optimal short run performances of the 

system. In this paper we will use a simplified static model, with two kinds of local 

generation resources: 

• One thermal plant technology, with unit size small enough to assume the available 

power probability distribution to be concentrated, as a large number of units with 

independent outages are installed. This technology will be represented by a single fixed 

available power. 

• Wind power, with random available power. The dispersion of available power is a 

feature in common with other renewable sources as photovoltaic solar energy. In a 

simplified way we will assume two levels of wind power availability corresponding to 

two types of days, with and without wind. 

Additionally there is the possibility of international trade. The country can import energy 

form neighbor countries without restrictions, and export wind energy surpluses. In the 

model the energy imports are fully characterized by a single constant price.4  

                                                 
4 Besides neglecting the variability of prices, the treatment given here to imports does not take into account the 

perception of risk from an excessive dependence on imported energy. These considerations could be included in the 

model by imposing restrictions to the problem of optimal design, to ensure enough installed capacity is installed locally. 
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This chapter is organized as follows. In section 2 some relevant literature is briefly 

discussed and the model is presented in detail. The two nested problems are formulated: 

the determination of the optimal operation (usually called the economic dispatch) given the 

installed capacity of each generation resource, and the determination of the portfolio with 

optimal installed capacities when optimal operation is assumed. The different possible 

cases of optimal solutions are discussed and necessary conditions for the parameters are 

found for the validity of each case. Section 3 analyzes the trajectories of optimal 

generation portfolios when imports price increases from zero, showing the transitions 

between the different cases of optimal solution found in section 2. Three different classes 

of trajectories are found. Special attention is given to the problem of determining whether 

imports are a substitute or a complement of wind installed capacity. This general analysis 

is illustrated with a numerical example, for the particular case of demand with linear load 

duration curve. Section 4 presents the conclusions of the chapter, and section 5 contains 

annexes with the detailed proofs of the results from sections 2 and 3, and some properties 

of the objective function and the optimal generation portfolios. 

4.2 Modelling of generation and demand 

4.2.1 Relevant literature 

The analytical modelling of demand and supply of the power generation sector is the 

subject of a vast literature. 

There is a large number of papers analyzing the problem of optimal tariffs in the electric 

sector, the most significant of them reviewed by Joskow (1977). To solve this problem it is 

necessary to determine, in a very simplified way, the optimal design of the generation 

portfolio. Therefore simplified models for demand and supply are required.  

The most frequent representation for the supply is a set of generation resources with a 

fixed cost per unit of installed capacity, a constant variable cost and a maximum capacity.  

                                                                                                                                                    
Another solution could be to increase import prices to include the expected outage costs derived from that excessive 

dependence. 
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Demand is generally modelled by a probability distribution, as in Chao (1983), 

representing both the seasonal and daily variation patterns and the randomness. In the 

language of the power sector this distribution is often called the load duration curve (Vardi  

and others, 1977), and is represented with the y-axis measuring the amount of power 

demanded, and the x-axis measuring the probability or the amount of hours with demand 

exceeding a certain power. 

If all generation resources have constant maximum capacities and no additional constraints 

exist on the amount of energy that each of them can supply, then the their optimal 

operation can be intuitively described as the result of filling the load duration curve, from 

bottom to top, using the generation resources in the increasing order of their variable cost 

(Crew and Kleindorfer, 1977). In this way the available power of resources with lesser 

variable costs is used during the longest possible period. This is the simplest form of the 

economic dispatch, also applied sometimes in computational models used in practice as the 

WASP (IAEA, 2001). Models to develop optimal tariffs can add more complexity as 

multiple demand periods, outage costs and uncertainty in the availability of generation 

units, as in Kleindorfer and Fernando (1993). 

On the other side, the increasing importance of wind energy for power systems has given 

place to many economic studies, putting aside the numerous technical papers elaborated 

mainly from the point of view of engineering.  

Kennedy (2006) using load duration curves and simplified economic dispatches estimates 

the social benefits of the introduction of wind energy in a power system, without 

considering international energy trade. Some papers study the role of wind energy using 

portfolio analysis, where wind power installed capacity is an asset that can reduce cost 

volatility resulting from fuel costs uncertainty. Doherty, Outhred, and O’Malley (2006) 

determine the effect of the installation of wind power on the efficient portfolio frontier in 

Ireland. Huang and Wu (2008) study the impact of renewable energies on the power 

system in Taiwan, considering an objective function which includes the average and the 

variance of supply costs. 

The interaction of international trade and a high share of wind energy in generation is 

analyzed by Özdemir and others (2013). In the European energy spot markets, as the 

participation of intermittent wind energy supplies is increasing, there is a need for firm 
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generation capacity to fill the gaps. If one of the countries, in this case Germany, creates a 

market to remunerate installed capacity and exports energy when the neighbor countries 

experience an increase in net demand as a result of wind shortage, then these countries will 

act as free riders. Meibom and Sbrensen (1999) study the international trade resulting from 

wind power in the Nordic Power Pool, and obtain numerical results, but do not attempt to 

obtain general analytical results. 

The aim of the present chapter is to develop an analytical model to study the effect of 

international energy trade on the optimal amount of wind installed capacity in a power 

system. The subject is relevant for countries with both a high share of wind power in their 

generation systems, and a large installed capacity in interconnections with other power 

systems. Uruguay is perhaps the better example of this situation. The country´s energy 

policy has determined an expansion in wind capacity to reach 25% of energy supply from 

wind energy by 2017 (DNE, 2013). Besides, the interconnection capacity with Argentina is 

2000 MW and with Brazil will increase to 570 MW by 2015.  These capacities should be 

compared with a maximum demand of 1800 MW.  

4.2.2 Modelling of the resources and demand and hypotheses on the 

parameters 

Let us consider a period, for instance a year, with duration - measured in hours. We will 

call 1 the number of days in the period, so - = 1. 24. 
Let b³ and b� be the installed capacities measured in MW of two technologies: wind and 

thermal. 

Wind capacity has a yearly fixed cost per MW equal to m³, expressed in USD/MW, and has  

null variable cost. The amount of energy generated in a given day by wind capacity b³ is 

not controllable. With probability x	 the day is windy and available power is �	b³ , and 

with probability  x� = 1 − x	 the available power is equal to ��b³, with �	 > ��. Let us 

call b³I = �Ib³, with i=1,2. In both cases wind power is assumed constant during the day. 

We can then speak of type 1 and type 2 days, depending on the wind power available. Let 

us assume �� = 0. 
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Thermal capacity has a yearly fixed cost per MW equal to m� and variable energy cost k�. 
We will assume the thermal installed capacity b� is always entirely available.5 The values 

of m� ,	m³ and k�  are strictly positive. 

The surpluses of wind energy can be exported receiving a price �³P$ expressed in 

USD/MWh. Energy can be imported at price kIN$ expressed in USD/MWh, with no 

restrictions, and importing is always preferable to rationing the demand.  

The assumption of constant import and export prices would be a gross simplification in 

terms of a realistic calculation model, but is reasonable for the goal of this model, if the 

local country is small enough and its supply of wind energy is not correlated with the 

generation costs in the neighbor country.6 

The demand function P(t):[0,24]→R, determines the power demanded at each instant of 

the day, with continuous time measured in hours. For simplicity, we will assume all days 

of the year have the same demand curve. 

As mentioned before, a convenient representation of the demand used in analytical and 

numerical models is the load duration curve, which we will denote by j(b). The supply 

cost is the same with j(b) and with P(t), if dynamic phenomena are neglected. We define j(b): 70, bNOP8 → 70,248 as the measure expressed in hours of the set T(P)={t: P(t)≥P }. 

In words, j(b) is the total duration of the periods of the day when the demand P(t) is 

greater or equal to power b expressed in MW. 

Graphic 2.1 shows the appearance of both curves. bNOP and bNI� are the maximum and 

minimum power demanded during the day. j(b) = 24 for b < bNI�. 

Let us assume that j(b) is differentiable, that for b > bNI� it is strictly monotonically 

decreasing, and that j(bNOP) = 0. 

                                                 
5 No constrains are imposed on the operation of thermal plants such as minimum power or maximum power ramps. If 

outages were taken into account Pt could be interpreted as a net available power, and ft should be increased in 

consequence.  

6 The hypothesis does not hold if the neighbor country has a strong wind power generation and its winds are strongly 

correlated with the local country’s. 
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Let us call b(r): 70,24) → (bNI�, bNOP8 the inverse of function j(b), also strictly 

decreasing. It holds bNOP = b(0). 
We define bNI� = b(24) , the minimum value of the demand.  

Let us suppose bNOP > bNI� > 0. 

We will call base of the load duration curve the 

rectangle below bNI�.  

We define É(b), as:   É(b) = v j(w)rw¾  

Graphic 2.2 shows the appearance of É(b).  
The total amount of energy to be supplied daily in 

each day of the year (E) is: 

É = � j(w)rw¾µ¶­

 
 

We will assume that the unit costs of generation resources and the prices of trade result 

from the sampling of random variables with continuous densities, and therefore we will 

omit the analysis of some cases with null probability. 
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We will assume the following hypotheses: 

• �³P$ < k�          (2.1) 

This means that thermal plants will never be used to export. 

• The amount of imported energy is not upper bounded, the country can import as much 

energy as it needs to supply the demand.7 This hypothesis is not unrealistic for a small 

country with very strong interconnection links with its big neighbors. 

 

• 
£¹»& > -x	�³P$         (2.2) 

The costs of wind energy and the export price are such that it is not convenient to 

install wind capacity with the sole purpose of exporting energy in type 1 days. It is 

immediate to conclude that the optimal portfolios fulfill:  b³�	 ≤ bNOP. 

• Even if kIN$ < �³P$, it is not possible to import energy to make profits from arbitrage, 

re-exporting the imported energy. All imported energy is used to supply the local 

demand.  

The objective of the mathematical problem is to minimize the total expected cost in a year, 

which consists of the investment costs of both technologies (thermal and wind) plus the net 

expected variable cost. The net variable cost is the addition of the variable cost of thermal 

plants and the import costs, minus the income from exports. 

The problem of finding the operation in the short run of the fixed installed capacities, that 

yields the minimum net variable cost in a day, is called the optimal load dispatch and is 

addressed in part 2.3. The problem of determining the optimal capacities to be installed of 

each type of technology, assuming they will be used optimally is the subject of part 2.4 

4.2.3 Optimal dispatch given the installed capacities 

                                                 
7 This hypothesis is not unrealistic for a small country with very strong interconnection links with its big 

neighbors, like Uruguay. 
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4.2.3.1 Optimal dispatch if 

ct<cimp 

Under the hypothesis k� < kIN$ wind 

energy is dispatched first, then thermal 

generation, and last the imports.  

Graphic 2.3 shows the dispatch in a type 1 

day, if b³	 > 0,	b� > 0 and b³	 + b� <bNOP. 

b³	 = �	b³ is the available wind power 

during all the hours in a type 1 day. 

Wind energy with zero variable cost, supplies the demand below b = b³	, and generates a 

surplus represented by the vertically hatched area, exported at a price �³P$. 

The amount of exported energy is:   É³P$ = 24b³	 − É(b³	) 
The energy from thermal plants supplies the area between b = b³	 and b = b³	 + b�; the 

thermal plants generate at full load during j(b³	 + b�)  hours, and have non zero 

generation during j(b³	) hours. The amount of energy supplied by thermal plants in the 

whole day is equal to É(b³	 + b�) − É(b³	). 
Above the level b³	 + b� the demand is supplied with imports. The amount of imported 

energy is equal to a É − É(b³	 + b�) . 
The problem of optimal dispatch is the same for all days of the same type. Therefore the 

total net expected variable cost d� in a year is equal to:  

d� = x	1	d�	 + x�1	d�� 

where 	d�I is the optimal net variable cost in a day of type �.  
Let us call ��	 and ��� the maximum power from thermal plants in type 1 and type 2 days 

respectively. 

The optimal dispatch problem in a type � day, given the installed capacities Pt and Pe can 

be formulated as follows. 
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The net variable cost in a type � day is: 

d�I(b³ , b�, ��I) 	= 7É − É(b³�I + ��I)8kIN$ + 7É(b³�I + ��I) − É(b³�I)8k� 
−724b³�I − É(b³�I)8�³P$    (2.3) 

where ��I  is subject to: b� > ��I,  ��I ≥ 0, ��I ≤ bNOP − b³�I.  
The optimal dispatch problem is: 

��Q$ê�d�I(b³ , b�, ��I)  
subject to the same three constraints.  

The constraint ��I ≤ bNOP − b³�I can be omitted without changing the problem, because 

any solution with ��I ≥ bNOP − b³�I has a value of the objective d�I(bNOP − b³�I, b³ , b�), 
as a result of É(b) = É(bNOP) for every b ≥ bNOP. Only the solution with ��I = bNOP −b³�I is economically meaningful.  

The constraint ��I ≥ 0, can also be omitted as:  

ë�ì�ë$ê� = −j(b³�	 + ��I)(kIN$ − k�) ≤ 0      (2.4) 

The optimal dispatch problem can be formulated then as: 

��Q$ê�d�I(b³ , b�, ��I)    

s.t.  b� − ��I ≥ 0  

Applying the Kuhn-Tucker conditions, using ÉZ = j, and calling íI the dual variable 

associated to the constraint, the following are necessary conditions for optimality: 

j(b³�I + ��I)(kIN$ − k�) = íI         (2.5) 

íI ≥ 0 

íI(b� − ��I) = 0 

At the optimum: 
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• Either íI = 0		and j(b³�I + ��I) = 0, and therefore b³�I + ��I ≥ bNOP, and in 

particular b³�I + ��I = bNOP. 

This means thermal power supplies all the demand above the level of wind generation. 

• Or íI > 0, ��I = b�,  and  íI = j(b³�I + ��I)(kIN$ − k�). Thermal plants are 

dispatched at their maximum capacity but imports are still necessary, as j(b³�I +b�) > 0 and therefore b³�I + b� < bNOP 

Proposition 2.1: Let us assume �	 > �� = 0. Then ��� ≥ ��	. 

Proof: 

• If í	 = 0  and  í� = 0, then b³�	 + ��	 = ��� =	bNOP.  As b³�	 > 0, then ��� ≥ ��	. 

• If í	 = 0  and  í� > 0, then ��	 ≤ b� and ��� = b�, so the proposition holds. 

• If í	 > 0, ��	 = b�   and  í� = 0, ��� <	b�, then using (2.5) for � = 1, it would hold  

D(b³�	 + ��	) > 0, b³�	 + b� < bNOP . Using (2.5) for � = 2 would yield j(���) = 0, ��� ≥ bNOP.  As a result b³�	 + b� ≤ ��� , which is not possible as  �	 > 0 and b� ≥ ���.  

• If í	 > 0, í� > 0 then ��	 = b� and ��� = b�, so the proposition holds.  ∎ 

Therefore it holds ��� ≥ ��	: the maximum thermal power in type 2 days is always greater 

or equal the maximum thermal power in type 1 days. 

4.2.3.2 Optimal dispatch if ct≥cimp 

When imports are cheaper than thermal energy, then the optimal dispatch has no thermal 

energy. 

In the particular case when k� = kIN$ , there are optimal dispatches with thermal energy 

but as thermal capacity has a non-zero fixed cost, the optimal portfolio will have no 

thermal plants. 

Then the net variable cost in each type i day is: 

	d�I(b³ , 0, 0) = 7É − É(b³�I)8kIN$ − 724b³�I − É(b³�I)8�³P$   (2.6) 

for any installed capacity b�. 
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4.2.4 Optimal capacities 

Without loss of generality we can assume that at the optimum ��� = b�, as ��� ≥ ��	 by 

Proposition 2.1. Otherwise if b� > ��� there would be a surplus of unused thermal 

capacity. 

The following table summarizes the formulas for net variable costs found above: 

Type 

of 

day 

Expected 

number 

of days 

Net variable cost in a day when 

ct<cimp 

Net variable cost in a day 

when ct≥cimp,   with Pt=pti=0 

1 π1N CO1(Pe,Pt ,pt1) = [E - E(Peα1+pt1)]cimp   

                     + [E(Peα1+pt1) – E(Peα1)]ct   

                     –  [24.Peα1 – E(Peα1)] vexp 

CO1(Pe, 0, 0) = [E - E(Peα1)]cimp  

               –  [24.Peα1 – E(Peα1)] vexp 

2 π2N CO2(Pe, Pt, Pt) = [E – E(Pt)]cimp  +  E(Pt) ct   CO2(Pe, 0, 0) = E cimp   

 

In what follows the Kuhn-Tucker conditions are applied to the problem of optimal 

capacities, searching for local minima, which will be candidates to solve the global 

problem. Depending on the values of the parameters, different cases for local minima are 

possible. We will determine necessary conditions on the parameters for each case, and 

explore the unicity of the local minimum. We will call those local minima K-T solutions. 

4.2.4.1 Problem when ct<cimp 

The objective to minimize, the total yearly cost including fixed capacity costs, can be 

expressed as: 

d�(b³ , b� , ��	) = b³m³ + b�m� +	x	1	d�	(b³ , b� , ��	) + x�1	d��(b³ , b� , ��	)   

The optimal design problem is then: 
 ��Q¾¹,¾ê,$ê&d�(b³ , b� , ��	) 
 
s.t.  

b� − ��	 ≥ 0 dual variable í  

b³ ≥ 0  dual variable Î  

b� ≥ 0  dual variable V 
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Where:  

d�(b³ , b� , ��	) = 	b³m³ + b�m� + 

x	1�7É − É(b³�	 + ��	)8kIN$ + 7É(b³�	 + ��	) − É(b³�	)8k�− 724b³�	 − É(b³�	)8�³P$� + 

x�1�7É − É(b�)8kIN$ + É(b�)k��      (2.7) 

Using the same arguments as in 2.3 constraints ��I ≤ bNOP − b³�I  and  ��I ≥ 0 can be 

omitted. 

The necessary Kuhn-Tucker conditions are: 

b³)				m³ − �	x	1�j(b³�	 + ��	);kIN$ − k�< + j(b³�	);k� − �³P$< + 24�³P$� = Î  

 (2.8) 

b�)				m� − x�1j(b�);kIN$ − k�< = í + Î      (2.9) 

��	)			x	1j(b³�	 + ��	);kIN$ − k�< = í       (2.10) 

í, Î, V ≥ 0 

í(b� − ��	) = 0 

Vb� = 0 

Îb³ = 0 

The qualification of constraints conditions hold, as the constraints are linear and the 

associated normal vectors are linearly independent. 

From (2.9) and (2.10) it holds: 

m� − 7x	1j(b³�	 + ��	) + x�1j(b�)8;kIN$ − k�< = V     (2.11) 

The following table summarizes the cases and describes briefly the solutions in each of 

them. A detailed analysis is presented in Annex 1 of this chapter. 
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Cases 

Dual variables Features of the solution 

Marginal 

value of 

installed 

thermal 

capacity 

Marginal 

value of 

installed 

wind 

capacity 

Thermal 

power in 

type 1 days 

constraint 

Optimal controls Other relevant features 

A1 

µ=0 

ν=0 

λ=0 
Pt≥ 0, Pe≥ 0, Pt ≥ 

pt1 

Imports occur only in type 2 

days. 

A2 λ >0 
Pt≥ 0, Pe≥ 0, Pt = 

pt1 

Imports in both types of day. 

Thermal capacity is used at full 

load in both types of day. 

B1 

ν>0 

λ=0 Pt ≥0, Pe=0, Pt ≥ pt1 

Demand in both types of day is 

supplied purely with thermal 

energy. 

B2 λ >0 Pt ≥0, Pe=0, Pt = pt1 

Thermal capacity is used at full 

load in both types of day. There 

is no wind capacity. Optimal 

dispatch is identical in both 

types of day.  

C1 

µ>0 

ν=0 

λ=0 Pt =0;  Pe≥ 0 

No thermal capacity is installed. 

In type 1 days wind supplies the 

whole demand, and in type 2 

the whole supply is imported. 

C2 λ >0 
Pt =0;  Pe≥ 0, pt1 = 

0 

No thermal capacity is installed. 

In type 2 days the whole 

demand is imported. Type 1 

days also have imports. 

D1 

ν>0 

λ=0 Pt = 0, Pe = 0 

Annex 1 proves no solutions of 

this kind can exist for any 

parameter values. 

D2 λ >0 Pt = 0, Pe = 0 

No thermal or wind capacity is 

installed. The whole demand in 

both types of day is imported. 

 

The values of dual variables Î and V at the optimum have an intuitive interpretation as the 

marginal values of installed wind and thermal capacity: 
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(-Î ) is the net saving at the optimum from having a marginal amount of additional wind 

capacity, displacing thermal energy and imports, when b� and ��	 are fixed. 

(-V ) is the net saving at the optimum from having a marginal amount of additional thermal 

capacity, displacing imported energy, when b³ and ��	 are fixed. 

4.2.4.2 Problem when ct≥cimp 

Under this hypothesis we know the optimal thermal capacity to be installed is zero, as 

imported energy is cheaper and has no fixed capacity cost. The objective of the problem is: 

��Q¾¹d�∗(b³) 
s.t.  

b³ ≥ 0  dual variable Î  

Where:   

d�∗(b³) = b³m³ + x	1�7É − É(b³�	)8kIN$ − 724b³�	 − É(b³�	)8�³P$� + x�1kIN$ 

           (2.12) 

Neglecting the part of the objective which does not depend on the control variable we 

obtain the following new simplified objective: 

��Q¾¹ 						b³m³ − x	1�É(b³�	);kIN$ − �³P$< + 24�	b³�³P$� 
Kuhn-Tucker necessary conditions are: 

b³)					m³ + x	1�−�	j(b³�	);kIN$ − �³P$< − 24�	�³P$� = Î   (2.13) 

Î ≥ 0 

Îb³ = 0 

The following table presents the resulting possible cases. A detailed analysis is presented 

in Annex 2 of this chapter. 
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Case Marginal value of installed 

wind capacity 

Features of the solution 

Optimal controls Other relevant features 

E1 ν=0 Pe≥0, Pt=0 In type 1 days both wind and 

imports are used. In type 2 

days the whole demand is 

imported.  

E2 ν>0 Pe=0, Pt=0 The whole demand in both 

types of day is imported. 

 

4.2.5 Summary of necessary conditions and features of the K-T solutions in the 

different cases 

The detailed analysis in Annexes 1 and 2 obtains the Kuhn-Tucker necessary conditions 

for each possible case of local minima, and the constraints in the parameters for each case 

to occur. 

Some of the constraints in the parameters and its logical complements appear repeatedly 

and in the exposition are denoted as follows: 

(∗ 1)														m� ≤ -(kIN$ − k�) 
(1z ∗ 1)							m� > -(kIN$ − k�) 
(∗ 2)													m³/�	 ≤ x	-kIN$ 

(1z ∗ 2)						m³/�	 > x	-kIN$ 

(∗ 3)													m³/�	 ≤ x	-k�	
(1z ∗ 3)						m³/�	 > x	-k�	
(∗ 4)													m� ≤ x�-(kIN$ − k�)	
(1z ∗ 4)						m� > x�-(kIN$ − k�) 
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(∗ 5)												m³/�	 > x	(m� + -k�) 
(∗ 6)												m� > � £¹»&�&^− 24�³P$� (l�µî#lê)(l�µî#ï¹­î)1x	 + x�-(kIN$ − k�)  

The following graphics summarize the possible optimal cases, and show: 

• The necessary conditions in the parameters to allow the existence of minima in each 

case 

• The unicity or multiplicity of optimal solutions 

• The variation of optimal controls b³ and b� as functions of kIN$ y �³P$.  

For each case the optimal dispatch is represented with two graphics, one for each type of 

day (type 1 on the left and type 2 on the right). 

Sub-case A2-b, is the particular case of A2 when �	b³ ≤ bNI�, which is useful to analyze 

separately as will be shown in Annex 3. 
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4.3 Trajectories of the optimal design solution when cimp increases 

The main goal of the chapter is to present the effect of changes in the prices of international 

trade on the optimal design of the generation portfolio, more precisely on the optimal values of b³ and b�. Then a reasonable way to describe the optimal solutions is to analyze the different 

types of trajectories of the solutions for increasing values of kIN$, starting at zero. 

4.3.1 Upper hemicontinuity of the optimal solution trajectories 

To determine the trajectories of b³ and b� when kIN$ changes, we use Proposition 5.25, from  

Annex 4, about the upper hemicontinuity of the solution set: for a given value k of the import 

cost kIN$, if there is a single optimal solution w(kIN$) for every kIN$ ≠ k in a neighborhood of 

k, and w(kIN$) → wl  for kIN$ → k, then wl is one (possibly the only) optimal solution at  

kIN$ = k. 

We also use Proposition 5.23 from Annex 4, which affirms that the optimal solutions for any 

given values of the parameters form a convex set. 

To describe the trajectories we will use the expression: the solution “moves” or “passes” from 

case X to case Y, which means more precisely that there is a k�ð ∈ E�  so that: 

• For every kIN$ < k�ð the optimal solutions belong to case X 

• For every kIN$ > k�ð the optimal solutions belong to case Y 

• For kIN$ = k�ð the solutions (or the single solution) belong to any of these cases, or to 

both of them. 

If at k�ð the solution moves from case X to case Y, and in a neighborhood of k�ð which does 

not contain it, there is a single solution for every kIN$, the graphics of b³ and b� can have one 

of the following appearances: 

• If at k�ð there is a single solution, the solutions are continuous curves in k�ð 

• If at k�ð the solution is not unique, then the solutions belong to a convex set, and as a 

result of upper hemicontinuity the solutions have the appearance of Graphic 3.1 
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The detailed discussion in Annexes 1 to 3, shows that in the situations of multiple solutions at 

the kIN$ between cases, the appearance of the solutions is that of Graphic 3.2, where the 

solutions b�(k�ð) and b³(k�ð) for k�ð, are line segments 7b� , bð8, where b� and bð are the 

respective one-sided limits of the solutions, when kIN$ approaches k�ð from the left and from 

the right. 

Upper hemicontinuity of the solutions rules out the 

possibility of passage between cases with trajectories like 

the one in Graphic 3.3, where for kIN$ = k�ð the solution 

belongs to case X, but the one-sided limit when kIN$ 

approaches k�ð from the right in case Y, is not a solution in 

case X for kIN$ = k�ð. (Obviously the symmetric case with 

a discontinuity from the left is also excluded). 

4.3.2 Summary of the possible trajectories 

Annex 3 analyzes exhaustively the trajectories and the passages of the optimal solutions 

between cases when kIN$ increases starting at zero.  Graphic 3.4 summarizes the results. There 

are three kinds of trajectories, depending on the values of the parameters, depicted with 

differently coloured arrows. The conditions on the parameters originating each kind of 

trajectory are also presented. Let us call the three kinds of trajectories Fin A1, Fin A2 and Fin 

B2, according to the final case reached when kIN$ tends to infinity. The qualitative description 

of these three possible behaviors of the trajectories is presented in the following sections. 
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4.3.2.1 First behavior of the trajectories (Fin A1)  

This behavior occurs when wind capacity is so cheap that supplying with wind energy the base 

of the demand in type 1 days is less costly than the variable cost of thermal energy for the 

same purpose. This happens when m³/�	 < x	-k� . In Graphic 3.4 this behavior is represented 

with black fill arrows.  

For very low values of kIN$, so that kIN$ < £¹»&�&? =:	 kIN$�  the whole demand is supplied with 

imports (cases D2 and E2). 

When kIN$ exceeds kIN$� , the solution moves to cases C2 or E1 and includes an amount of 

wind capacity, increasing with kIN$; in other words wind capacity and imports are substitutes. 

With a further increase in kIN$, when this price exceeds kIN$ñ , (solution of equation 5.53 from 

Annex 3,  m� = � £¹»&�&^− 24�³P$� (l�µî#lò	)l�µî#ï¹­î1x	 + x�-(kIN$ − k�) ), the trajectory of optimal 

solutions moves to case A2. The optimal solutions have both nonzero wind and thermal 

capacities, and this thermal capacity is fully used during some period in type 1 as well as in 

type 2 days.  

This case A2 allows the possibility of wind power and imports being complementary. The 

intuition is that the mix of wind capacity in type 1 days plus imports in type 2 days competes 

with thermal capacity to fill the optimal portfolio. When imports price increases thermal 

capacity becomes more competitive and the optimal wind capacity decreases. This 

complementarity does not necessarily occur, as a result of the indetermination in the sign of 

(5.18) from Annex 1, but depends on the parameters and the form of the load duration curve j(b).  Proposition 5.6 from Annex 1 proves that if j(b) is linear, complementarity in case 

A2 in fact occurs. 

With further increases of kIN$, exceeding the value of kIN$ó , ( solution of equation 5.54 from 

Annex 2, 
£ê�'^(l�µî#lê) = j(b�) = jÀbNOP − b ô õ¹ö&÷&Ù#�ñï¹­îlê#ï¹­î øÂ  ), the optimal solution 

moves to case A1.  
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At the optimum there are now both positive wind and thermal capacities. Thermal capacity is 

not fully used in any period of type 1 days. In type 1 days there are no imports. When kIN$ 

increases, the optimal wind capacity remains constant, thermal capacity increases, and the 

share of imports in the supply of type 2 days decreases. When kIN$ tends to infinity, the 

solution remains in case A1 indefinitely, and imports tend to zero.  

4.3.2.2 Second behavior of the trajectories (Fin A2) 

Trajectories are of this kind when the price of wind capacity is “intermediate”, as condition  

π	Hcú < £¹»& < π	(fú + Hcú) holds. In Graphic 3.4 this behavior is represented with grey fill 

arrows. 

The trajectories are similar to Fin A1, except that in Fin A2 they remain in case A2 

indefinitely and never reach case A1. There is always an amount of imported energy, 

decreasing when c×üý grows, and tending to zero as c×üý tends to infinity. 

Regarding the possibility of complementarity between wind capacity and imports, the same 

reasoning of the preceding section is valid.  

4.3.2.3 Third behavior of the trajectories (Fin B2) 

Trajectories are of this third kind when the fixed cost of wind capacity is relatively high, as 

£¹»& > x	(m� +-k�) holds. In Graphic 3.4 this behavior is represented with white fill arrows. 

The optimal wind installed capacity is zero, for all import prices. The way demand is supplied 

is identical in both types of day. 

If imports are cheap enough and kIN$ < £ê? + k� =: kIN$	  holds, the optimal solution consists in 

supplying with imports the whole demand in both types of day (cases D2 y E2). When kIN$ 

exceeds kIN$	 , the solution moves to case B2, and includes a positive thermal capacity, 

increasing with cimp, which is fully used during some period in both types of day. When kIN$ 

tends to infinity, the solution remains indefinitely in case B2, thermal capacity tends to bNOP 

and energy imports tend to zero. 
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4.3.3 Effect of export prices 

Whenever wind capacity participates in the optimal solution and �	b³ > bNI� holds, so that 

exports occur, the optimal wind capacity is increasing in exports price.  
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Exports price does not affect the optimal portfolio in some situations when there is wind 

capacity at the optimum, but the restriction above does not hold; this happens in some 

combinations of parameters with null probability and in case A2-b when wind installed 

capacity is less than bNI� and therefore exports are zero.  

4.3.4 Examples of the three kinds of trajectories when D(P) is linear  

The goal of this section is showing numerical examples for each one of the three possible 

behaviors the optimal trajectories can have. 

As the load duration curve j(b) is chosen linear, by Proposition 5.6 from Annex 1, when the 

solution trajectory belongs to case A2 there is complementarity between wind capacity and 

imports: when kIN$ increases, the optimal wind capacity b³ decreases. 

4.3.4.1 Common data in the three examples 

The examples show the numerical results of three series of problems, increasing kIN$ by steps 

of 2 USD/MWh, and starting from zero. 

The common data are the following: 

• 1 = 365  days 

• b is expressed in MW, j(b) in hours, É(b) in MWh 

• - = 8760 hours 

• bNI� = 500 MW 

• bNOP = 1000 MW 

• j(b) = 24 hours   for b < 500 MW 

• j(b) = 247(1000 − b)/5008  hours for 500 < b < 1000 MW 

• j(b) = 0    for b > 1000 MW 

• É(b) = 24b  for b ≤ 500  MW 

• É(b) = 12000 + (b − 500) ∗ (24 + j(b))/2 for 500 < b ≤ 1000 MW 

• É(b) = 18000   for b > 1000  MW 

The following graphics show the appearance of D and E.  
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The daily energy demand is 18 000 MWh. 

• x	 = 0.8, x� = 0.2 

• �	 = 0.5, �� = 0.0, and as a result the expected capacity factor for wind energy is equal to 

0.8x0.5 = 0.4 

The annual energy demand is equal to 6 570 000 MWh. 

4.3.4.2 Results 

Each of the following examples corresponds to one of the three possible behaviors of the 

trajectories. The graphic in each example shows the values of b³, b� and ��	 and the value of 

the objective, for increasing values of kIN$. The vertical axis on the left measures power in 

MW. The vertical axis on the right measures the value of the objective in MUSD per year. 

4.3.4.2.1 Behavior  Fin A1.  Sequence of cases D2-C2-A2-A1 

We assume: m³ = 200000 USD/MW, m� = 100000 USD/MW, k� = 60 USD/MWh, �³P$ =
20 USD/MWh. It holds that:  

£¹»& = 400000 < x	-k� = 420480. The values of b³, b�, y ��	 

and the objective are shown in the following graphic. 
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Graphic 3.7 

 

 

 

As kIN$ increases starting at zero in case E2/D2, and exceeds kIN$� , the solution moves from 

E2/D2 to C2, with: 

kIN$� = £¹»&�&? = �      .�× .ó×��¥ ≈ 57.0777	�6j/��ℎ  

Imports become costly enough to justify the use of wind energy to supply the entire base of 

the load duration curve in type 1 days, with b³ = 1000 MW, b³�	 = 500 MW.  

When kIN$ increases in case C2, wind installed capacity also increases, as shown in 

Proposition 5.12, and thermal power remains null. 

The transition from C2 to A2 occurs at kIN$ñ  solution of (5.53), with kIN$ñ ≈ 75.5539. When 

the trajectory enters case A2, increasing thermal capacities appear in the optimal solution, with ��	 = ��� = b� , while optimal wind capacity decreases, fulfilling Proposition 5.6. Wind 

capacity and imports are complementary with linear j(b). 
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The solution passes from A2 to A1 at kIN$ = kIN$ó , with:  

kIN$ó = £ê�'? + k� = 	      .�×��¥ + 60 ≈ 117.0776	�6j/��ℎ  

After entering case A1, b³ and ��	 remain constant, and b� is increasing, fulfilling Proposition 

5.1. As the price of imports increases the amount of imports in type 2 days decreases, but the 

dispatch in type 1 days remains unchanged. The fixed capacity cost of wind power is low 

enough compared to thermal costs to keep optimal wind capacity in the range �	b³ > bNI�. 

4.3.4.2.2 Behavior Fin A2. Sequence of cases D2-C2-A2 

We assume: m³ = 300000 USD/MW, m� = 150000 USD/MW, k� = 80 USD/MWh, �³P$ =
20 USD/MWh. It holds that: x	-k� = 560640 < £¹»& = 600000 < x	(m� +-k�) = 680640. 

The values of b³, b�, y ��	 and the objective are shown in the following graphic. 

Graphic 3.8 

 

 

Initially this trajectory shows the same features as the previous one. 
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At kIN$�  solution passes from  D2 to C2, with: 

kIN$� = £¹»&�&? = ¯      .�× .ó×��¥ ≈ 85.6164	�6j/��ℎ  

At kIN$ñ  solution passes from C2 to A2, with kIN$ñ = 100, solution of (5.53) in Annex  1. 

The passage between subcases A2-a and A2-b occurs at a value of kIN$ with multiple 

solutions for Pt. By equation (5.28) in Annex 1, this happens when: 

 kIN$ = k� + £ê�?�&lê#õ¹ö&�'? = 80 + 	ó    ���¥ × .�×� 	#	¤������.	 .�×��¥ ≈ 143.1507                

At this point, the wind capacity supplies exactly the base of the load duration curve. If kIN$ 

increases beyond that value, optimal wind capacity goes on decreasing. There is no passage to 

case A1. Imports decreases in both types of day.  

4.3.4.2.3 Behavior Fin B2. Sequence of cases D2/E2-B2 

We assume: m³ = 200000 USD/MW, m� = 100000 USD/MW, k� = 40 USD/MWh, �³P$ =
20 USD/MWh. It holds that: x	-k� = 280320 < x	(m� +-k�) = 360320 < £¹»& = 400000. 

The values of b³, b�, y ��	 and the objective are shown in the following graphic. 
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Graphic 3.9 

 

As kIN$  increases and reaches the transition from E1/D2 to B2, thermal energy becomes more 

convenient than imports to supply the base of the load duration curve in both types of day. 
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kIN$	 = m�- + k� = 1000008760 + 40 ≈ 51.4951	�6j/��ℎ 

The maximum thermal power in both types of day is ��	 = ��� = b�.  
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4.4 Conclusions 

Using a simplified static model of supply and demand of power generation we have shown 

that imported energy can locally be either a substitute or a complement of wind capacity, or 

have no impact at all on it, in the optimal design of the generation portfolio. The actual 

behavior depends on the configuration of the optimal solution, which is a result of the relative 

costs of the different generation resources. This is a consequence of the random variability of 

the available power from wind power plants. For simplicity we have assumed two levels of 

power availability from wind: greater than zero in type 1 days and zero in type 2 days.  

We analyzed the trajectories of the optimal solution when imports price increases starting at 

zero. The condition to have wind capacity in the optimal solution for some level of import 

costs is    
£¹»& < x	(m� + -k�), and the conclusions we present correspond to this case.  

The local effect of increases in imports price kIN$ on the optimal amount of wind capacity is 

not the same for all cases and values of the parameters: imported energy can be either a 

complement or a substitute of wind capacity, or imports price can have no effect at all. 

If kIN$ ≤ £¹�&»&?  the optimal solution is to import the whole demand and no wind capacity is 

needed. 

As imports price increases and 
£¹�&»&? < kIN$ < kIN$ñ   holds, the optimal solution has wind 

capacity and imports, in cases C2/E1. Thermal capacity does not participate in the optimal 

solution. Imported energy is a substitute of wind capacity: the greater the imports price the 

bigger the optimal wind installed capacity.  

Further increases in imports price, so that kIN$ > kIN$ñ  holds, lead the solution to case A2, 

where thermal capacity participates in the optimal solution. Depending on the sign of (5.18), 

which is the result of both the relative costs of the resources and the form of the load duration 

curve j(b), complementarity of wind capacity and imports can occur in case A2: as imports 

price increases, wind capacity at the optimum decreases. The intuition is that a mix of wind 

capacity together with imports compete against thermal capacity, with imports filling the gaps 
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left by the absence of wind in type 2 days. The same argument can be applied to all 

intermittent non-conventional renewable energies. 

If the fixed cost of wind capacity is cheap enough and 
£¹»& < x	-k� holds (wind power is 

cheaper than the variable cost of thermal energy to supply the base of the load duration curve 

in type 1 days), an increase in kIN$ beyond kIN$ñ  to reach kIN$ó  leads the solution to case A1: 

optimal wind capacity does not depend on kIN$ and remains constant as imports prices tend to 

infinity. 

As can be expected, in all cases where wind energy surpluses are exported, an increase in the 

exports price increases the optimal wind capacity. 

The qualitative conclusion of the chapter is that for a country with strong interconnections 

with its neighbors, the negotiation of agreements for international power trade can have a 

strong influence on the optimal design of the generation portfolio, and in particular on the 

amount of wind and other renewables capacity. For a small country an improvement in such 

agreements would lead to a decrease in the prices of its imports and an increase in the prices of 

its exports. We found conditions under which smaller import prices can lead to greater optimal 

wind capacities: an improvement in international power trade would then be favorable to the 

installation of renewable energies. 
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4.5 Annexes to Chapter 4 

4.5.1 Annex 1 – Analysis of the possible cases of the optimal solution when ct<cimp 

4.5.1.1 Case A1 

It holds V = 0, Î = 0, í = 0 ;  b� ≥ 0, b³ ≥ 0, b� ≥ ��	 

After (2.10) it holds j(b³�	 + ��	) = 0, and therefore b³�	 + ��	 = bNOP; in type 1 days 

there are no imports and thermal capacity is never fully dispatched. In type 2 days the thermal 

capacity if fully dispatched during some period.  

The next graphic represents the situation: Eo denotes wind energy, T thermal energy and I 

imports. 

 

 

 

 

 

 

 

 

4.5.1.1.1 Necessary conditions 

From (2.9) results:  m� − x�1j(b�);kIN$ − k�< = 0     (5.1) 

From (5.1) results:  j(b�) = £ê�'^;l�µî#lê<  .  
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A necessary condition for this case to be possible is:  0 ≤ £ê�'^;l�µî#lê< ≤ 24 which is 

equivalent to: 

kIN$ > k� that holds by hypothesis, 

and m� ≤ x�-;kIN$ − k�<           (5.2) 

If (5.2) holds as an equality, there are infinite solutions with 0 ≤ b� ≤ bNI�. 

If (5.2) holds as a strict inequality, there is a single value for: 

b� = b ã £ê�'^(l�µî#lê)ä          (5.3) 

It also holds b� > bNI�.  

As function b(. ) is a strictly decreasing function, b� is a strictly increasing function of kIN$ , 

besides it does not depend on the value of �³P$.  

Under the hypothesis that the solution remains in this case: 

liml�µî→�� 		b� = b(0) = bNOP  

Using (2.8), and making b³�	 + ��	 = bNOP it holds: 

m³ − �	x	1�j(b³�	);k� − �³P$< + 24�³P$� = 0  and therefore: 

j(b³�	) = õ¹ö&÷&Ù#�ñï¹­îlê#ï¹­î   ;         (5.4) 

Let us observe that b³ does not depend on the imports price. 

A necessary condition for this case to be possible is:  

0 ≤ õ¹ö&÷&Ù#�ñï¹­îlê#ï¹­î ≤ 24   

The first inequality holds strictly by hypotheses (2.1) and (2.2). 
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The second inequality holds if 
£¹»&�&^ ≤ 24k�  or its equivalent:    

£¹»& ≤ x	-k�    (5.5) 

This means that to supply the base of the load duration curve in type 1 days, wind capacity is 

less costly than the variable cost of thermal plants. 

It also holds:    
£¹»& ≤ x	-kIN$         (5.6) 

The case when the second member of (5.4) is equal to 24 and (5.5) holds as equality, has 

infinite solutions, with b³�	 ≤ bNI�. 

If (5.5) holds as inequality there is a single value: 

b³ = b ô õ¹ö&÷&Ù#�ñï¹­îlê#ï¹­î ø × 	»& = b;Ë(�³P$, k�)< × 	»&      (5.7) 

with  b³�	 > bNI�,  where Ë(�, k) is defined as:    Ë(�, k): = õ¹ö&÷&Ù#�ñïl#ï   (5.8) 

It holds  
ë�(ï¹­î,	lê)ëï¹­î = #�ñlê� õ¹ö&÷&Ù(lê#ï¹­î)'    , which by (5.5) is non-positive. 

Therefore b³ is increasing in �³P$ and does not depend on kIN$.  

In summary the following proposition holds: 

Proposition 5.1: 

• The following are necessary conditions for the K-T solutions in case A1: 

m� ≤ x�-;kIN$ − k�< and  
£¹»& ≤ x	-k� 

• If both inequalities hold strictly, then the K-T solutions in this case are unique for every set 

of parameters. 

If m� < x�-;kIN$ − k�< then b� > bNI� and if 
£¹»& < x	-k� then b³�	 > bNI�. 

• The K-T solutions have: 

o b� strictly increasing in kIN$ and independent of �³P$  

o b³ increasing in �³P$ and independent of kIN$.  
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4.5.1.1.2 Variation of the solutions as cimp increases 

Les us denote w∗ a K-T solution in this case. If (5.2) and (5.5) hold as strict inequalities, we 

can find unique values for b³�	 and b�, both strictly greater than bNI�.  

As kIN$ increases, starting at the value corresponding to solution w∗,  the necessary conditions 

for the solution to belong to this case still hold. The solutions have a constant Pe (by (5.4)) and 

increasing values of Pt (by (5.3)).  Pt tends to bNOP as kIN$ tends to infinity. 

Therefore the following proposition holds:  

Proposition 5.2: If, starting at a unique solution in case A1, the value of kIN$ is increased, the 

K-T solutions remain in case A1, are unique for each value of kIN$, and have a constant b³ and 

increasing values of b� with  limit bNOP. 

4.5.1.2 Case A2 

It holds: V = 0, Î = 0, í > 0 ;  b� ≥ 0, b³ ≥ 0, b� = ��	 
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imports. The maximum imported power is greater in type 2 than in type 1 days. 

We can assume:  
£¹»& ≤ x	-kIN$   

Otherwise it would be convenient to substitute imports for the whole wind capacity. 

From (2.8) we have: 

m³ − �	x	1�j(b³�	 + b�);kIN$ − k�< + j(b³�	);k� − �³P$< + 24�³P$� = 0   

j(b³�	 + b�);kIN$ − k�< + j(b³�	);k� − �³P$< = £¹»&�&^− 24�³P$   (5.9) 

From (2.11): 

m� − 7x	1j(b³�	 + b�) + x�1j(b�)8;kIN$ − k�< = 0 

x	j(b³�	 + b�) + x�j(b�) = £ê^;l�µî#lê<       (5.10) 

Using (5.10), and x	 + x� = 1 we have:  

£ê^;l�µî#lê< ≤ 24          (5.11) 

The Jacobian M in Pe and Pt of the system of implicit equations (5.9) and (5.10) is: 

� = �7D’(b�α	 + b�)(	k×üý	– k�) + 	D’(b�α	)(k� −	���ý)8α		 D’(b�α	 + b�)(	k×üý	– k�)x	D’(b�α	 + b�)α		 x	D’(b�α	 + b�) 	+ x�D’(b�)	� 
   (5.12) 

det(M) = BD’(b�α	 + b�);	k×üý	– k�< + 	D’(b�α	);k� −	���ý<Cα	x�D’(b�) +	 
D’(b�α	)(k� −	���ý)α	x	D’(b�α	 + b�)  (5.13) 

As k×üý > k�  in this case, and k� >	���ý by hypothesis (2.1), any of the following is a 

sufficient condition for det(M)>0: 

• bNI� < b³�	 < bNOP  and  bNI� < b� < bNOP     (5.14) 
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• bNI� < b³�	  and b³�	 + b� < bNOP      (5.15) 

• bNI� < b�   and b³�	 + b� < bNOP      (5.16) 

Therefore if any of these three conditions above hold, by the implicit function theorem there 

exist locally continuously differentiable functions determining the values of b³ and b�, and the 

following proposition holds: 

Proposition 5.3: If any of the conditions (5.14), (5.15) and (5.16) hold and there is a K-T 

solution in case A2, it is unique for every k×üý.  

Differentiating (5.9) and (5.10) we have the following system of equations S in rb³ and rb�: 
BD’(b�α	 + b�);	k×üý	– k�< + 	D’(b�α	);k� −	���ý<Cα	rb³ + 	D’(b�α	 + b�);	k×üý	– k�<rb�= −j(b�α	 + b�)rk×üý + 7j(b�α	) − 248r���ý 

x	D’(b�α	 + b�)α	rb³ +	7x	D’(b�α	 + b�) 	+ x�D’(b�)8	db� = − £ê^;l�µî#lê<' rkIN$  

Let us define the matrix: 

	
�¾¹ = å−D(b�α	 + b�)dk×üý + 7D(b�α	) − 248d�³P$	 D’(b�α	 + b�)(	kIN$	– k�)−7m�/N(kIN$ − k�)�8dkIN$	 x	D’(b�α	 + b�) 	+ x�D’(b�)	æ 

It holds:   rb³ = ��ú	(M�¹)��ú	(M)  

rb³ = �−D(b�α	 + b�)7x	D’(b�α	 + b�) + x�D’(b�)8 + D’(b�α	 + b�) £ê�(l�µî#lê)� 	��ú	(M)rkIN$   

+7D(b�α	) − 2487x	D’(b�α	 + b�) + x�D’(b�)8 1det	(�)r�³P$ 

(5.17) 

In particular, using (5.10), we have: 

ë¾¹ël�µî = x�7D’(b�α	 + b�)D(b�) − D(b�α	 + b�)D’(b�)8 	��ú	(M)    (5.18) 
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The sign of this derivative cannot be determined beforehand, as it depends on the values of b� 

and b�, and the form of the load duration curve D.  

As for the derivative respect to �³P$, if b�α	 > 0, as D’(b�α	 + b�) < 0 and D(b�α	) < 24,  the 

coefficient of r�³P$ is positive and the following proposition holds: 

Proposition 5.4: If b�α	 > 0, then b� is increasing in �³P$.  

Let us define the matrix: 

	
�¾ê = å7D’(b�α	 + b�)(	k×üý	– k�) + 	D’(b�α	)(k� −	���ý)8α		 −D(b�α	 + b�)dk×üý + 7D(b�α	) − 248d�³P$x	D’(b�α	 + b�)α		 −7m�/N(kIN$ − k�)�8dkIN$ æ 

It holds that:  

rb� = det	(�¾ê)det	(�)  

rb� = 1det	(�)�−BD’(b�α	 + b�);k×üý	– k�< + 	D’(b�α	);k� −	���ý<Cα	 � m�N;kIN$ − k�<�� dkIN$ − x	D’(b�α	
+ b�)α	�−D(b�α	 + b�)dk×üý + 7D(b�α	) − 248d�³P$�� 

(5.19) 

In particular, using (5.10) we have: 

 b� kIN$ = 1det	(�) α	 !−x�D’(b�α	 + b�)D(b�) − D’(b�α	);k� −	���ý< m�N;kIN$ − k�<�" 
(5.20) 

As k� > �³P$ by hypothesis (2.1), any of the following is a sufficient condition for that 

derivative to be strictly positive:  

• (5.15):  bNI� < b³�	  and 	b³�	 + b� < bNOP   
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• (5.16): bNI� < b�  and  b³�	 + b� < bNOP   

• bNOP > b³�	 > bNI�        (5.21) 

Proposition 5.5: if any of the conditions (5.15), (5.16) or (5.21) hold, in the K-T solutions in 

case A2, the thermal capacity is strictly increasing in the imports price k×üý. 

4.5.1.2.1 Linear load duration curve 

When the load duration curve is linear, it holds that if bNOP > b³�	 > bNI�, then  D(b�α	 +b�) > D(b�) ≥ 0 and D′(b�α	 + b�) ≤ D′(b�). If both inequalities are used with (5.18), we 

obtain the following proposition. 

Proposition 5.6: In case A2, if D(P) is linear for b > bNI�, and bNOP > b³�	 > bNI�, holds, 

then b³ is decreasing in k×üý.  

4.5.1.2.2 Necessary conditions for Peα1≤ Pmin (case A2-b) 

As will be shown later, a further study of the K-T solutions when b³�	 ≤ bNI� is convenient. 

Let us call case A2-a that with b³�	 > bNI� and case A2-b that with b³�	 ≤ bNI�.  

Proposition 5.7: x	-k� ≤ £¹»& ≤ x	(m� +-k�) are necessary conditions for the existence in 

case A2 of K-T solutions with b³�	 ≤ bNI�, (Case A2-b). 

Proof: 

As b³�	 ≤ bNI�,  D(b�α	) = 24 and using (5.9) it holds: 

j(b³�	 + b�) = 	(l�µî#lê) � £¹»&�&^ − 24k��       (5.22) 

For  j(b³�	 + b�) ≥ 0 it must hold: 

£¹»&�&^ ≥ 24k�, which is equivalent to   
£¹»& ≥ x	-k�     (5.23) 

For  j(b³�	 + b�) ≤ 24 it must hold: 

£¹»&�&^ − 24k� ≤ 24(kIN$ − k�), which is equivalent to   
£¹»& ≤ x	-kIN$  (5.24) 
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Let us observe that if cimp is big enough then (5.24) is not restrictive.  

From (5.10) and (5.22) we have: 

�&(l�µî#lê) Ñ £¹»&�&^− 24k�Ò + x�j(b�) = £ê^(l�µî#lê)  

j(b�) = £ê#õ¹ö&�lê�&?�'^(l�µî#lê)          (5.25) 

For (b�) ≥ 0 , it must hold: 

£¹»& ≤ m� +-x	k�          (5.26) 

For (b�) ≤ 24 , it must hold: 

m� − £¹»& +-x	k� ≤ x�-(kIN$ − k�)  

m� + -x	k� ≤ £¹»& + x�-(kIN$ − k�)        (5.27) 

Let us observe that if cimp is big enough (5.27) is not restrictive.  

The value of kIN$ when j(b�) = 24  and (5.27) holds as equality, leads to infinite solutions 

for b� , and is equal to:  

kIN$ = k� + £ê�?�&lê#õ¹ö&�'?          (5.28) 

If condition j(b�) ≥ j(b³�	 + b�) is imposed, so that the K-T solution is physically 

meaningful, and using (5.22) and (5.25), we have: 

	(l�µî#lê) � £¹»&�&^ − 24k�� ≤ £ê#õ¹ö&��ñlê�&^�'^(l�µî#lê)  , that yields  
£¹»& ≤ x	(m� + -k�)  (5.29) 

This condition is more restrictive than (5.26). In summary (5.23) and (5.29) are the necessary 

conditions.    ∎ 
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If the optimal solution remains in this case A2-b) as kIN$ increases, using (5.25) we have that 

b� grows and the following proposition holds: 

Proposition 5.8: 

If the optimal solution remains in case A2-b) as kIN$ grows, then: 

liml�µî→��b� = b(0) =bNOP 

4.5.1.2.3 Variation of the K-T solutions in case A2-b as cimp increases  

Let us denote by w∗ a K-T solution in case A2-b. If (5.23), (5.24), (5.26), (5.27) and (5.29) 

hold as strict inequalities, there are unique values for b³�	 and b�.  
As kIN$ grows, the necessary conditions for the solution to belong to case A2-b still hold. 

Therefore the following proposition holds: 

Proposition 5.9: If for a set of parameters there is a unique K-T solution in case A2-b, 

increases of kIN$ lead to unique solutions in the same case A2-b. 

4.5.1.3 Case B1 

It holds: V = 0, Î > 0, í = 0 ;  b� ≥ 0, b³ = 0, b� ≥ ��	 

By (2.10) it holds:  x	1j(��	);kIN$ − k�< = 0  
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As by hypothesis kIN$ > k� , then j(��	) = 0 and ��	 = bNOP. 

As b³ = 0 both types of day have identical dispatches and ��	 = ��� = bNOP. 

Using (2.9) and b� = bNOP, we conclude that m� = 0, which contradicts the hypotheses. 

Therefore there can be no solutions in this case. 

4.5.1.4 Case B2 

It holds:  V = 0, Î > 0, í > 0 ;  b� ≥ 0, b³ = 0, b� = ��	 

As b³ = 0  both types of day have identical dispatches. 
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Using (2.8) we have: 

m³ − �	x	1�j(b�);kIN$ − k�< + 24k�� = Î > 0   

£¹»& > x	1�j(b�);kIN$ − k�< + 24k��         (5.30) 

From (2.11) it holds: m� = 1j(b�);kIN$ − k�<  
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j(b�) = £ê^;l�µî#lê<          (5.31) 

For this equality to hold it is necessary that kIN$ > k�, which is true by hypothesis, and 

j(b�) = £ê^;l�µî#lê< ≤ 24, which is equivalent to: 

m� ≤ -(kIN$ − k�)           (5.32) 

If (5.32) holds as equality, there exist infinite optimal solutions with b� ≤ bNI�. If (5.32) holds 

as strict inequality then b� > bNI� and there is a unique solution b�, increasing in kIN$: 

b� = b ã £ê^(l�µî#lê)ä          (5.33) 

If m� < -(kIN$ − k�) and the solution remains in case B2, then liml�µî→�� b� = b(0) = bNOP 

Using (5.31) and (5.30) we have, as necessary condition for this case: 

£¹»& > x	(m� +-k�)          (5.34) 

In summary the following proposition holds: 
 

Proposition 5.10 

• If m� = -(kIN$ − k�), there are infinite optimal solutions with b� ≤ bNI� 

• If m� < -(kIN$ − k�), the K-T solution is unique for every kIN$,  b� > bNI� and b� is 

increasing in kIN$ 

• If m� < -(kIN$ − k�) and the solution remains in case B2, liml�µî→�� b� = b(0) = bNOP   

4.5.1.4.2 Variation of the solutions as cimp grows 

If (5.32) holds as a strict inequality, there is a unique b�, strictly greater than bNI�.  

Let us denote by w∗ a unique K-T solution. As kIN$ grows, the necessary conditions for the 

solution to belong to this case still hold, and unique values for b� are found, increasing in kIN$ 

(by (5.33), so the following proposition holds. 
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Proposition 5.11: If for a set of parameters there is a unique K-T solution in case B2, 

increases of kIN$ lead to unique solutions in the same case B2, with increasing values of b� 
and liml�µî→�� b� = b(0) = bNOP. 

4.5.1.5 Case C1 

It holds: V > 0, Î = 0, í = 0 ;  b� = ��	 = 0, b³ ≥ 0 

By (2.10) it holds x	1j(b³�	);kIN$ − k�< = 0. As by hypothesis kIN$ > k�, then j(b³�	) =0 and b³�	 = bNOP. 

 

 

 

 

 

 

 

 

 

Using (2.8) and b³�	 = bNOP yields: m³ − �	x	-�³P$ = 0, which contradicts hypothesis (2.2). 

Therefore there can be no solutions in this case. 

4.5.1.6 Case C2 

It holds:  V > 0, Î = 0, í > 0 ;  b� = 0, b³ ≥ 0, ��	 = 0 

 

Eo

Pmax = P
e
α

1
 

Type 1 day Type 2 day 

            I 

E
exp

 

P
max

 = P
e
α

1
 Graphic 5.5 



117 
 

 

 

 

 

 

 

 

 

Using (2.8) we have: 

m³ − �	x	1�j(b³�	);kIN$ − k�< + j(b³�	);k� − �³P$< + 24�³P$� = 0   

m³ − �	x	1�j(b³�	);kIN$ − �³P$< + 24�³P$� = 0   

By (2.1)  �³P$ < k�. As in this case k� < kIN$, then kIN$ > �³P$ holds and then: 

j(b³�	) = õ¹ö&÷&Ù#�ñï¹­î;l�µî#ï¹­î<   (5.35) 

For this case to be possible, it is necessary that:  
õ¹ö&÷&Ù#�ñï¹­î;l�µî#ï¹­î< > 0 

The numerator is positive by (2.2), and also the denominator as kIN$ > �³P$. 

It must also hold:  
õ¹ö&÷&Ù#�ñï¹­î;l�µî#ï¹­î< ≤ 24, and then: 

£¹»& ≤ x	-kIN$           (5.36) 

If (5.36) holds as equality, there are infinite solutions with 0 ≤ b³�	 ≤ bNI�. If (5.36) holds as 

strict inequality there is a unique solution for each kIN$, with b³�	 > bNI�. 
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By (2.11): 

m� − 7x	1j(b³�	) + x�1248;kIN$ − k�< = V > 0 

m� > 7x	1j(b³�	) + x�1248;kIN$ − k�<        (5.37) 

Using (5.35) and (5.37) we have: 

m� > � £¹»&�&^− 24�³P$� (l�µî#lê)(l�µî#ï¹­î)1x	 + x�-(kIN$ − k�)     (5.38) 

If (5.36) holds as strict inequality from (5.35) there is a unique b³: 

b³ = 	»& b ô
õ¹ö&÷&Ù#�ñï¹­îl�µî#ï¹­î ø = 	»& b;Ë(�³P$, kIN$)<     with  Ë defined in (5.8) 

 
ë�(ï¹­î,	l�µî)ëï¹­î = #�ñl�µî� õ¹ö&÷&Ù(l�µî#ï¹­î)'  , which in this case is negative by (5.36). 

ë�(ï¹­î,	l�µî)ël�µî = − õ¹ö&÷&Ù#�ñï¹­î(l�µî#ï¹­î)'  , which is always negative by (2.2). 

As b(r) is strictly decreasing, the optimal b³ is increasing in �³P$ and also in kIN$. 

In summary the following proposition holds: 

Proposition 5.12:  

In case C2: 

• If  
£¹»& = x	-kIN$ there are infinite solutions for each kIN$, in the range 0 ≤ b³�	 ≤ bNI�. 

• If 
£¹»& < x	-kIN$ there is a unique solution for each kIN$, with b³�	 > bNI�. 

• The optimal b³ in increasing both in �³P$ and in kIN$. 

By hypothesis (2.1) �³P$ < k� and therefore kIN$ > �³P$.  
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By hypothesis (2.2)   
£¹»&�&^ − 24�³P$ > 0. So the first addend of the second member of (5.38) 

is greater than zero and therefore the following proposition holds. 

Proposition 5.13: 

The values of kIN$ in case C2 must hold: 

kIN$ < £ê�'? + k�          (5.39) 

4.5.1.7 Case D1 

It holds:  V > 0, Î > 0, í = 0 ;  b� = ��	 = 0, b³ ≥ 0 

By (2.10): x	1j(0);kIN$ − k�< = 0  

This case is impossible unless kIN$ = k�, which contradicts the hypotheses. 

4.5.1.8 Case D2 

It holds:  V > 0, Î > 0, í > 0 ;  b� = ��	 = 0, b³ = 0. 
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By (2.8) for this case to be possible it must hold: 

m³ − �	x	-kIN$ = Î > 0 

£¹»& > x	-kIN$   (5.40) 

From (2.11) results: 

m� − -(kIN$ − k�) = V > 0 

m� > -(kIN$ − k�)          (5.41) 
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4.5.2 Annex 2 – Analysis of the possible cases of the optimal solution when ct≥cimp 

Under the hypothesis k� ≥ kIN$, we know beforehand that the optimal solution has: 

 b� = ��	 = 0. 

4.5.2.1 Caso E1 

It holds:  Î = 0 ;  b� = ��	 = 0, b³ ≥ 0 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Using (2.13) we have: 

m³ + x	1�−�	j(b³�	);kIN$ − �³P$< − 24�	�³P$� = 0 

j(b³�	) = õ¹ö&÷&Ù	#	�ñï¹­î(l�µî#ï¹­î)          (5.42) 

Then it must hold: 0 ≤ õ¹ö&÷&Ù	#	�ñï¹­î(l�µî#ï¹­î) ≤ 24 

The numerator is positive by (2.2) so a necessary condition for the existence of solutions in 

this case is: 

kIN$ > �³P$           (5.43) 
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It must also hold  
£¹#�&?»&ï¹­î�&^»&(l�µî#ï¹­î) ≤ 24 , and therefore: 

£¹»& ≤ x	-kIN$           (5.44) 

If condition (5.44) holds as equality there are infinite solutions with b³�	 ≤ bNI�.   

If (5.44) holds as a strict inequality there is a single value for b³, with b³�	 > bNI�. 

Using the definition of Ë(�, k) from (5.8) results: 

b³ = b ô õ¹ö&÷&Ù#�ñï¹­îl�µî#ï¹­î ø × 	»& = b;Ë(�³P$, kIN$)< × 	»&  

As b(. ) is a decreasing function, b³ is increasing in kIN$. 

It holds  
ë�(ï¹­î,	l�µî)ëï¹­î = #�ñl�µî� õ¹ö&÷&Ù(l�µî#ï¹­î)'  which by (5.44) is non-positive. 

Therefore b³ is increasing in �³P$. 

In summary, the following proposition holds: 

Proposition 5.14: 

In case E1: 

• kIN$ > �³P$   and  
£¹»& ≤ x	-kIN$ are necessary conditions for the case  

• The optimal Pe is increasing in kIN$ and in �³P$. 

• If 
£¹»& = x	-kIN$ then there are infinite solutions with b³�	 ≤ bNI� , and if 

£¹»& < x	-kIN$ 

there is a single solution with b³�	 > bNI�. 

4.5.2.2 Case E2 

It holds: Î > 0 ;  b� = ��	 = 0, b³ = 0  
 
In this case, the whole demand is supplied with imports. 
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By (2.13): 

m³ + x	1;−�	24kIN$< = Î > 0 

m³�	 > x	-kIN$ 

If kIN$ ≤ �³P$, using  (2.1) it holds 
£¹»& > x	-�³P$, and therefore 

£¹»& > x	-kIN$. 
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4.5.3 Annex 3 – Analysis of the optimal solution trajectories with increasing 

values of cimp  

4.5.3.1 Origin of the trajectories in D2/E2 for a null cimp  

If kIN$ = 0, the problem has a single optimal solution with b³ = 0 and b� = 0, in case E2. 

As kIN$ increases, the optimal solution remains unique for each value of kIN$, and belongs to 

case D2/E2, with b³ = 0  and b� = 0 as long as the following conditions hold:  

(No*1)  m� > -(kIN$ − k�) which is equivalent to:  kIN$ < £ê? + k� =:	 kIN$	   (5.45) 

(No*2) 	m³/�	 > x	-kIN$  which is equivalent to:  kIN$ < £¹»&�&? =: kIN$�  (5.46) 

No K-T solutions exist in other cases, as they require as necessary conditions either (*1) or 

(*2), the logical complements of the conditions above. Therefore the single solution in case 

D2/E2 is the unique solution of the problem of optimal dispatch. 

The trajectory of the solution should move to another case when any of the conditions (*1) and 

(*2) become true as kIN$ increases. 

• If  
£¹»& < x	(m� +-k�) , then  kIN$� < kIN$	  holds and (*2) becomes true before (for a 

smaller kIN$) than (*1).  

Condition (No*1) holds in a neighborhood to the right of kIN$� , therefore the optimal 

solution cannot move at kIN$�  to cases A1, A2 or B2, which have (*1) as a necessary 

condition. 

The only feasible possibility is the passage from case D2/E2 to C2/E1. For kIN$ = kIN$�
 , 

case C2/E1 has infinite solutions, in the range 0 ≤ b³�	 ≤ bNI�, with b� = 0. For values 

of kIN$ greater than and arbitrarily close to kIN$� , by Proposition 5.12 we have single K-T 

solutions in the case, with b³�	 > bNI�, which are also the unique solutions of the general 

problem of optimal dispatch, as solutions in other cases are not possible.  
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• If  
£¹»& > x	(m� +-k�) then  kIN$	 < kIN$�  and (*1) becomes true before than (*2) when kIN$ 

increases.  

Condition (No*2) holds in a neighborhood to the right of kIN$	 , therefore the optimal 

solution cannot move to cases C2/E2, A2 or A1, which have (*2) as a necessary condition. 

The only remaining possibility is the passage at kIN$	  from case D2/E2 to case B2, and the 

permanence of the solution at case B2 in a neighborhood to the right of kIN$	 . By 

Proposition 5.10, at kIN$	 , case B2 has infinite solutions in the range 0 ≤ b� ≤ bNI�. For 

values of kIN$, greater than and arbitrarily close to kIN$	 , we have unique solutions in case 

B2, with b� > bNI�, which are also the unique solutions of the general problem of optimal 

dispatch, as solutions in other cases are not possible. 

• The event 
£¹»& = x	(m� +-k�)  has null probability and will not be considered. 

In summary, starting at D2/E2, as cimp grows the trajectories of the optimal solutions: 

• Move to case  C2/E1 , if 
£¹»& < x	(m� +-k�). 

• Move to case B2 , if 
£¹»& > x	(m� +-k�). 

With further increases in kIN$ solutions cannot return to case D2/E2, as either (*1) or (*2) 

hold indefinitely. The same reasoning applies in the following cases, eliminating the 

possibility of a return to D2/E2. 

4.5.3.2 Trajectories in C2/E1 originated in D2/E2 

The precedent analysis showed that trajectories originated in D2/E2 move to C2/E1 and for kIN$ > kIN$�  and close enough to kIN$� , have unique solutions with b³�	 > bNI�. 

By Proposition 5.12, as kIN$ grows, the optimal Pe in case C2/E1 also increases and therefore 

it holds b³�	 > bNI�. 
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If a trajectory is in case C2/E2 after arriving from D2/E2, then 
£¹»& < x	(m� + -k�) holds. 

Therefore (*5) does not hold, and the optimal solution cannot move to case B2 with further 

increases in kIN$. 

As a trajectory cannot return to case D2/E2, the only remaining possibilities are moving to 

cases A2 or A1. This can only happen if kIN$ exceeds the value k�, so only C2 can be the 

origin of such a passage, and not E1.  

Let us define kIN$¯ ≔ £ê�'? + k� > kIN$	  

The solutions in case A1 fulfill condition (*4) and therefore the following proposition holds: 

Proposition 5.15: For any solution in case A1 holds the condition: kIN$ ≥ £ê�'? + k� = kIN$¯  

Let us define:   E(kIN$):= � £¹»&�&^− 24�³P$� (l�µî#lê)(l�µî#ï¹­î)1x	 + x�-;kIN$ − k�<  (5.47) 

The solutions in case C2 fulfill condition (*6) 

m� > � £¹»&�&^− 24�³P$� (l�µî#lê)(l�µî#ï¹­î)1x	 + x�-;kIN$ − k�< = E(kIN$)   (5.48) 

and also kIN$ ≥ k�. 
By hypothesis (2.1) k� > �³P$ and therefore kIN$ > �³P$.  

By hypothesis (2.2)   
£¹»&�&^ − 24�³P$ > 0. Then the first addend of the second member in 

inequality (5.48) is positive. 

It also holds: 

�F�l�µî = � £¹»&�&^ − 24�³P$� (lê#ï¹­î)(l�µî#ï¹­î)'1x	 + x�- > 0     (5.49) 

so E is strictly increasing in kIN$. 
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E;kIN$¯ < = � £¹»&�&^ − 24�³P$� (l�µî¤ #lê)(l�µî¤ #ï¹­î)1x	 + m� = K + m�    (5.50) 

Where K > 0 is a constant.  

Therefore, for every kIN$ leading to solutions in case C2, by (5.48) and (5.50), the following 

condition holds: 

E;kIN$¯ < = K + m� > m� > E;kIN$<        (5.51) 

As E is continuous and strictly increasing, the following proposition holds: 

Proposition 5.16: There exists a constant � > 0, so that for every kIN$ leading to solutions in 

case C2, the following holds: kIN$¯ > � + kIN$ 

By propositions 5.15 and 5.16 it is impossible for the trajectory of optimal solutions to move 

directly from case C2 to case A1 as kIN$ grows. 

As m³, m� and k� are finite, when kIN$ → +∞, the solution cannot remain in case C2/E1 

indefinitely. Otherwise costs would exceed any arbitrary value, as a fixed amount of energy in 

type 2 days would be supplied at cost kIN$. 

The only remaining possibility is that a trajectory in case C2/E1, originated in D2/E2, moves 

afterwards to case A2 as kIN$ grows. 

4.5.3.3 Trajectories in A2 resulting from the sequence D2/E2 – C2/E1 

4.5.3.3.1 Trajectory entry in case A2 from case C2 

As b� = 0 in every solution in case C2, and the solutions are upper hemicontinuous, it is 

necessary to investigate the solutions in case A2 which have b� = 0, or arbitrarily close to 

zero in the vicinity of the passage from C2 to A2. A passage to other solutions in A2 without 

that feature would violate the upper hemicontinuity. 

Using (5.9) and (5.10) (the necessary conditions for case A2) and making b� = 0, we have: 
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j(b³�	)(kIN$−�³P$) = m³�	x	1 − 24�³P$ 

x	j(b³�	) + 24x� = £ê^(l�µî#lê)     

These conditions hold if: 

j(b³�	) = õ¹ö&÷&Ù#�ñï¹­îl�µî#ï¹­î = £ê^�&(l�µî#lò	)− 24 �'�&      (5.52) 

The first equality is the same as (5.35) which is fulfilled by the optimal values of b³ in case C2 

solutions. 

The second equality is equivalent to: 

m� = � £¹»&�&^ − 24�³P$� (l�µî#lò	)l�µî#ï¹­î1x	 + x�-(kIN$ − k�)     (5.53)  

Using the definition of E(kIN$) from (5.47), equation (5.53) can be rewritten as m� = E;kIN$<. 
Let us call kIN$ñ  the solution of kIN$ in (5.53), which is unique as E is strictly increasing by 

(5.49). 

The equality (5.53) is the border condition of inequality (*6) which is a necessary condition of 

case C2. 

In summary we have found a solution wñ in case A2, for kIN$ = kIN$ñ , which is the limit of the 

solutions in C2 (unique for every kIN$) when kIN$ → kIN$ñ . This solution wñ is the passage 

from C2 to A2. By the upper hemicontinuity no other solutions in A2 could be the destination 

of such passage. 

The solution wñ in case A2 has b³�	 > bNI�, as the solutions in C2 in a neighborhood of kIN$ñ   

also fulfill this condition and have strictly increasing values of Pe. 

Therefore in wñ it holds bNI� < b³�		 and b³�	 + b� < bNOP, which is the sufficient condition 

(5.15) of Proposition 5.3. As a consequence wñ is a unique K-T solution in case A2 and 
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moreover is the unique solution of the general problem, as no K-T solutions in other cases can 

exist.  

4.5.3.3.2 Exit or permanence in A2 

As the trajectory of optimal solutions enters A2, condition (5.53) (which is a particular case of 

(No*6)) is fulfilled. Condition (No*6) remains true as kIN$ grows, as E(kIN$) is strictly 

increasing. Therefore the trajectory cannot return to C2, where (*6) holds. 

We have proved before that the solution cannot return to D2/E2 either. 

As  
£¹»& < x	(m� + -k�), the solution cannot move to case B2, which has 

£¹»& > x	(m� +-k�) as 

a necessary condition. 

Therefore as kIN$ grows, the only possibilities for an optimal trajectory are either remaining 

indefinitely in case A2, or moving to case A1. 

As we have seen, the solutions in case A2 have the following as necessary conditions: 

(5.9) j(b³�	 + b�);kIN$ − k�< + j(b³�	);k� − �³P$< = £¹»&�&^− 24�³P$   

(5.10) x	j(b³�	 + b�) + x�j(b�) = £ê^;l�µî#lê<    

The following proposition can be proved: 

Proposition 5.17: If j(b³�	 + b�) > 0 and b³�	 > bNI� in a solution in case A2, and the 

solution remains in case A2 as kIN$ grows, then j(b³�	 + b�) is strictly decreasing in kIN$ , 

and therefore b³�	 + b� is strictly increasing. 

Proof: 

Let us denote “strictly increasing in kIN$” by the sign ↑ and “strictly decreasing in kIN$” by 

the sign ↓. 
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Using (5.9), as j(b³�	 + b�) > 0, k� − �³P$ > 0, kIN$ − k� > 0, the second member of (5.9) 

does not depend on kIN$, and kIN$ − k�↑, then if the solution remains in case A2 at least one 

of the following is true: j(b³�	 + b�)↓ or j(b³�	)↓. 
Using (5.10), as x	 > 0, 	x� > 0 and 

£ê^;l�µî#lê<↓, then if the solution remains in case A2, at 

least one of the following is true: j(b³�	 + b�)↓ or j(b�)↓. 
Let us assume that j(b³�	 + b�) ↓ is not true. Then j(b³�	)↓ and j(b�)↓ must hold, as long 

as the trajectory remains in case A2. But then b³�	↑ and b�↑, and as a consequence b³�	 +b�↑.  As from the beginning b³�	 > bNI� holds, then j(b³�	 + b�)↓, which is absurd.      ∎ 

As the trajectory of optimal solutions comes from a sequence of cases D2/E2 – C2/E1, then 

£¹»& < x	(m� +-k�) holds. Let us consider two subcases: 

• Subcase A2-i:  
£¹»& < x	-k� holds, wind capacity is so cheap that wind energy costs less 

than the pure variable cost of thermal plants to supply the base of the load duration curve 

in type 1 days. 

• Subcase A2-ii:   x	-k� < £¹»& < x	(m� +-k�)  
The event when 

£¹»& = x	-k� holds, has null probability and will not be considered. 

4.5.3.3.2.1 Subcase A2-i,  feα1<π1Hct 

By Proposition 5.7, x	-k� ≤ £¹»& is a necessary condition for solutions in case A2 to have 

b³�	 ≤ bNI�. Therefore in the Subcase A2-1 we are considering here, as the solutions do not 

fulfill that necessary condition, they all have b³�	 > bNI�. 

Therefore for any solution with b³�	 + b� < bNOP, it holds j(b³�	 + b�) > 0 and the 

hypothesis of Proposition 5.17 are fulfilled. Then j(b³�	 + b�) is strictly decreasing and b³�	 + b� is strictly increasing in kIN$, as long as the solution remains in case A2.  
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As b³�	 > bNI� and b³�	 + b� < bNOP , then condition (5.15) holds and using Proposition 5.3 

for each kIN$ the K-T solution is unique in case A2. No solutions can exist in other cases, so 

the solution is also unique for the general problem.  

As (5.15) holds, the hypothesis of Proposition 5.5 are fulfilled and therefore b� is increasing 

with kIN$. 

Let us assume the solution remains indefinitely in case A2 (in subcase A2-i) as  kIN$ grows. 

Using equation (5.10) results lim	j(b³�	 + b�) = 0 and lim	j(b�) = 0 when kIN$ → +∞. 

Therefore lim	b³�	 + b� = bNOP and lim	b� = bNOP. Then we have lim	b³�	 = 0. But this is 

not possible as the solutions in subcase A2-i all have b³�	 > bNOP. The contradiction comes 

from assuming the trajectory of optimal solutions remain in case A2 indefinitely; therefore we 

conclude the solutions move to case A1. 

Using 
£¹»& < x	-k�  and Proposition 5.1, we conclude that b³�	 > bNI� for all the solutions in 

case A1 and that the optimal wind capacity does not depend on kIN$. Using (5.4) we have: 

j(b³�	) = õ¹ö&÷&Ù#�ñï¹­îlê#ï¹­î   and therefore as b³�	 > bNI�: 

 b³�	 = 	»& b ô
õ¹ö&÷&Ù#�ñï¹­îlê#ï¹­î ø =: b³ó  . 

Let us impose the condition  b³�	 + b� = bNOP to solutions in case A1. 

b³ = b³ó, b� = bNOP − b³ó�	 is a solution in case A1, for the value of kIN$ that fulfills the 

following equation, which comes from (5.1): 

£ê�'^(l�µî#lê) = j(b�) = j ÀbNOP − b ô õ¹ö&÷&Ù#�ñï¹­îlê#ï¹­î øÂ     (5.54) 

Let us call kIN$ó  the solution of (5.54). 

As the second member of this inequality is less than or equal to 24, it holds: 
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	 £ê�'^(l�µî	 #lê) ≤ 24, and then m� ≤ x�-(kIN$ó − k�).      (5.55) 

Let us observe that: 

 kIN$ó ≥ £ê�'? + k� > £ê? + k� = kIN$	 > kIN$�        (5.56) 

For kIN$ = kIN$ó , the values b³ = b³ó and b� = bNOP − b³ó�	, are solutions in case A2, as they 

fulfill conditions (5.9) y (5.10): 

(5.9):   0. ;kIN$ó − k�< + j(b³ó�	);k� − �³P$< = £¹»&�&^ − 24�³P$ , is fulfilled by the definition 

of b³ó. 
(5.10):  x	. 0 + x�j(b�) = £ê^(l�µî	 #lê) , is fulfilled by the definition of kIN$ó . 

In summary we have found a common solution, shared by cases A2 and A1, for the value kIN$ = kIN$ó . This solution is then the passage from case A2 to case A1. 

4.5.3.3.2.2 Subcase A2-ii,  feα1>π1Hct 

As 
£¹»& > x	-k� , the condition (*3) which is necessary for solutions in case A1, does not hold. 

Then the trajectories of optimal solutions cannot move from case A2 to case A1. We have 

proved that the transitions to every other case are not possible, therefore we conclude the 

solutions remain indefinitely in case A2 as kIN$ grows. 

From equation (5.10) we conclude that: lim	j(b³�	 + b�) = 0 and lim	j(b�) = 0 when kIN$ → +∞. Therefore lim	b³�	 + b� = bNOP  and lim	b� = bNOP. Then we have limb³�	 =0, so the solution remain in subcase A2-b. 
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4.5.3.4 Trajectories in A1 resulting from the sequence D2/E2 – C2/E1 – A2 (subcase 

A2-i, feαααα1<ππππ1Hct) 

At kIN$ = kIN$ó , the trajectory of optimal solutions (a unique solution for each kIN$), moves 

from case A2 to A1, and the following conditions hold: b³�	 > bNI� and m� ≤ x�-(kIN$ó −
k�).  As kIN$ grows beyond kIN$ó  the trajectories: 

• Cannot move to D2/E2 as kIN$ > kIN$ó > kIN$� , so (No*2) does not hold. 

• Cannot move to C2 as kIN$ > kIN$ó ≥ £ê�'? + k� , while in C2 by (5.39) kIN$ < £ê�'? + k� 
• Cannot move to B2 as 

£¹»& < x	-k� by hypothesis, so (*5) does not hold. 

Finally, we will prove in what follows that the trajectories cannot return to A2.  

By Proposition 5.2, as kIN$ exceeds kIN$ó , b³ remains constant and b� is strictly increasing. At 

kIN$ = kIN$ó , it holds b³ + b� =	bNOP. Then for any kIN$ > kIN$ó , there is a constant Kó so that 

the solutions in A1 fulfill the condition: b³ + b� >	bNOP + Kó.  

By the upper hemicontinuity of the solutions, the trajectory cannot move to case A2, where the 

solutions fulfill the condition b³ + b� ≤	bNOP. Therefore the trajectory must remain in case 

A1, with constant b³ and with b� increasing in kIN$ and tending to bNOP as kIN$ → ∞. 

4.5.3.5 Trajectories in B2 originated in D2/E2 

If a trajectory of optimal solutions is in case B2, and has come from case D2/E2, then 
£¹»& >x	(m� +-k�)  (denoted by (*5)) must hold. 

We have shown in section 5.3.1 that a trajectory originated in D2/E2 and entering case B2, 

fulfills b� >	bNI�, in a vicinity to the right of kIN$	 , and contains unique solutions of the 

general problem. 

We have also shown that as kIN$ grows the trajectory cannot return to D2/E2. 
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The trajectory cannot move to A1, as this case requires the necessary condition 
£¹»& < x	-k� , 

which contradicts (*5) that holds by hypothesis. 

All solutions in case B2 have b³ = 0. If the trajectory of optimal solutions moved from B2 to 

A2, at a value kIN$¥  of imports price, then by the upper hemicontinuity of the solutions, the 

right hand limit of b³ for kIN$ → kIN$¥ �
 in case A2, would be b³ → 0. Then the solutions 

would be in case A2-b, as b³ < bNI� . But the solutions in A2-b must fulfill the necessary 

condition 
£¹»& ≤ x	(m� +-k�), which contradicts the hypothesis. We conclude that the passage 

from B2 to A2 is not possible. 

The trajectory cannot move to case C2. If such a passage existed, by the hemicontinuity of the 

solutions, as b� > bNI� in case B2, there would exist a solution in case C2 with b� ≥ bNI�, 

which is not possible. 

In summary the trajectories originated in D2/E2 that move to case B2, remain indefinitely in 

case B2, as kIN$ grows. 
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4.5.4 Annex 4- Properties of the objective function and the solutions of the 

optimal portfolio problem 

By (2.12) the objective function to minimize in the optimal portfolio problem when kIN$ ≤ k�, 
is: 

d�∗(b³) = b³m³ + x	1�7É − É(b³�	)8kIN$ − 724b³�	 − É(b³�	)8�³P$� + x�1ÉkIN$ 

By (2.7) the objective function when kIN$ > k� , is: 

d�(b³, b� , ��	) = b³m³ + b�m� + Ë	(b³ , ��	) + Ë�(b�) 
Where:  

Ë	(b³ , ��	) = x	1�7É − É(b³�	 + ��	)8kIN$ + 7É(b³�	 + ��	) − É(b³�	)8k�− 724b³�	 − É(b³�	)8�³P$� 
Ë�(b�) = x�1�7É − É(b�)8kIN$ + É(b�)k�� 
The linear constraints of the problem are: 

b� − ��	 ≥ 0 

b³ ≥ 0 

b� ≥ 0 

4.5.4.1 Existence of an optimal solution 

In both cases kIN$ ≤ k� and kIN$ > k� the objective functions are continuous in the control 

variables. The constraints determine a compact set. By the Weierstrass theorem there is at least 

one optimal solution. 

4.5.4.2 Convexity of the objective function 

4.5.4.2.1 Convexity of the objective CT to be minimized when cimp>ct 

Our problem is to find sufficient conditions for the convexity of the objective CT to minimize, 

or equivalently for the concavity of −CT, therefore we will analyze the concavity of −F	 and −F�. 
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4.5.4.2.1.1 Concavity of –F1 and –F2 

Proposition 5.18 

−Ë	(b³ , ��	) is non-strictly concave when kIN$ > k�, k� > �³P$, conditions which are fulfilled 

by hypothesis, and moreover is strictly concave at points where bNI� < b³�	 + ��	 < bNOP. 

The partial derivatives of Ë	 are: 

Ë	¾¹ = −�	x	1�j(b³�	 + ��	);kIN$ − k�< + j(b³�	);k� − �³P$< − 24� 
Ë	¾¹¾¹ = −�	�	x	1�j′(b³�	 + ��	);kIN$ − k�< + j′(b³�	);k� − �³P$<� 
Ë	¾¹$ê& = −�	x	1j′(b³�	 + ��	);kIN$ − k�< 
Ë	$ê& = −x	1j(b³�	 + ��	);kIN$ − k�< 
Ë	$ê&$ê& = −x	1j′(b³�	 + ��	);kIN$ − k�< 
The Hessian matrix of −Ë	 , which we will denote by -	 is:  

-	 = x	1 å�	�jZ(b³�	+��	);kIN$ − k�< + �	�jZ(b³�	);k� − �³P$< �	jZ(b³�	+��	);kIN$ − k�<�	jZ(b³�	+��	);kIN$ − k�< jZ(b³�	+��	);kIN$ − k�< æ  
For −Ë	 to be non-strictly concave, -	 must be negative semidefinite, which has the following 

necessary and sufficient condition: 

�	�jZ(b³�	+��	);kIN$ − k�< + �	�jZ(b³�	);k� − �³P$< ≤ 0      (5.57) 

'�	�jZ(b³�	+��	);kIN$ − k�< + �	�jZ(b³�	);k� − �³P$< �	jZ(b³�	+��	);kIN$ − k�<�	jZ(b³�	+��	);kIN$ − k�< jZ(b³�	+��	);kIN$ − k�< ' ≥ 0  (5.58) 

For the strict concavity to hold, both inequalities must hold strictly. 

The value of the determinant of the matrix in (5.58) is: 

       �	�jZ(b³�	)jZ(b³�	+��	);kIN$ − k�<;k� − �³P$< 
For both inequalities (5.57) and (5.58) to hold non-strictly it is sufficient that: kIN$ ≥ k� and 

k� ≥ �³P$. Both conditions are fulfilled by hypothesis so −Ë	 is non-strictly concave and 

therefore non-strictly quasiconcave. 
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For both inequalities to hold strictly, ensuring the strict concavity, the following set of 

conditions is sufficient: kIN$ > k� and k� > �³P$, (both true by hypothesis), and  bNI� <b³�	 + ��	 < bNOP. 

Proposition 5.19 

−Ë�(b�) is non-strictly concave when kIN$ ≥ k�, and strictly concave if this inequality holds 

strictly and additionally b� > bNI�. 

The second derivative of −Ë� is: 

−Ë�ZZ(b�) = x�1j′(b�)(kIN$ − k�) 
This derivative is non-negative if kIN$ ≥ k� and is strictly positive if kIN$ > k� and 

additionally  bNI� < b� < bNOP. 

4.5.4.2.1.2 Concavity of -CT 

Let us call:  

Ë = −d� = −b³m³ − b�m� − Ë	(b³ , ��	) − Ë�(b�) 
The non-strict concavity of Ë requires that for all w = (b³P, b�P , ��	P ), | = (b³( , b�( , ��	( ), and all � ∈ 70,18: 
Ë(�w + (1 − �)|) ≥ �Ë(w) + (1 − �)Ë(|) 
Using the definition of Ë in the second member of the inequality we have: 

�Ë(w) + (1 − �)Ë(|) = �7−b³Pm³ − b�Pm� − Ë	(b³P , ��	P ) − Ë�(b�P)8 
+(1 − �)B−b³(m³ − b�(m� − Ë	;b³( , ��	( < − Ë�;b�(<C = 

= −B�b³P + (1 − �)b³(Cm³ − B�b�P + (1 − �)b�(Cm�  
−B�Ë	(b³P , ��	P ) + (1 − �)Ë	;b³( , ��	( <C − B�Ë�(b�P) + (1 − �)Ë�(b�()C    
If −Ë	 and −Ë� are concave then: 
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�Ë(w) + (1 − �)Ë(|) ≤ −B�b³P + (1 − �)b³(Cm³ − B�b�P + (1 − �)b�(Cm� 
−Ë	B�b³P + (1 − �)b³( , ���	P + (1 − �)��	( C 

−Ë�B�b�P + (1 − �)b�(C 
= Ë7�w + (1 − �)|	8 

for all � ∈ 70,18, w, |. 

Therefore the following proposition holds: 

Proposition 5.20: If kIN$ ≥ k� and k� ≥ �³P$ (and this conditions hold by hypothesis), −d� is 

concave, d� is convex and therefore quasiconvex. 

If −Ë	 and −Ë� are strictly concave, the inequality required by the concavity holds strictly for 

any w, |.  Using Propositions 5.18 and 5.19, we conclude in the following proposition: 

Proposition 5.21: If kIN$ > k� and k� > �³P$ hold (and this conditions hold by hypothesis), 

and additionally the following conditions bNI� < b³�	 < bNOP  and bNI� < b� < bNOP hold, 

then −d� is strictly concave and the objective d� is strictly convex.  

4.5.4.2.2 Convexity of the objective CT*(Pe) to be minimized when cimp≤ct 

Derivating in (2.12) we get: 

rd�∗rb³ = m³ − �	x	1Bj(b³�	)kIN$ + (24 − j(b³�	))�³P$C 
�'��∗�¾¹' = −�	�x	1j′(b³�	)(kIN$ − �³P$)  (5.59) 

If kIN$ ≥ �³P$, then  
�'��∗�¾¹' ≥ 0, the objective function d�∗ is non-strictly  convex and 

therefore quasiconvex in 70, bNOP).  
If kIN$ < �³P$ then: 
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���∗�¾¹ > m³ − �	x	-�³P$ > 0 by hypothesis (2.2). This means that d�∗ is monotonically 

increasing and therefore quasiconvex. 

Then the following proposition holds: 

Proposition 5.22: For any values of the parameters of the problem d�∗ is cuasiconvex.  

4.5.4.3 Properties of the solutions 

As a result of Propositions 5.20 and 5.22, the objective of the problem of optimal design is 

quasiconvex for any values of the parameters that fulfill the hypotheses. 

If the objective function of a minimization problem is non-strictly quasiconvex and the 

constraints of the problem determine a convex feasible set, then the set of optimal solutions is 

convex.  

The constraints of our problem of optimal design are linear and therefore determine a convex 

set. Therefore the following proposition holds: 

Proposition 5.23: For any set of parameters that fulfill the hypotheses, the set of solutions of 

the optimal design problem is convex. 

If the objective function of a minimization problem is strictly quasiconvex and the constraints 

determine a convex feasible set, then the optimal solution is unique. 

Proposition 5.24:  If a solution of the optimal design problem fulfills the following conditions bNI� < b³�	 < bNOP and  bNI� < b� < bNOP, then this solution is unique. 

Proof: 

If kIN$ > k�	the objective function is d�. Let us call w∗ one of the optimal solutions of the 

problem. By Proposition 5.23, the set of optimal solutions is convex. Let us assume there 

exists another solution |∗. 
Every point in the segment w∗|∗ that joins w∗ and |∗, is also an optimal solution, as the set of 

solutions is convex. 
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As w∗ is interior to the set defined by bNI� < b³�	 < bNOP and bNI� < b� < bNOP, there exist 

an optimal solution |′ contained in w∗|∗ and a segment w∗|′, the points of which are optimal 

solutions and also fulfill both conditions. 

In the segment w∗|Z the objective d� is strictly convex by Proposition 5.21. Therefore, there 

exists a solution |′′ interior to the segment w∗|′, and d�(|ZZ) < d�(|Z) = d�(w∗) holds, 

against the hypothesis of optimality of w∗. Therefore the solution w∗ must be unique. 

If kIN$ ≤ k� the objective function is d�∗. By Proposition 5.14, if a solution fulfills condition 

bNI� < b³�	 < bNOP , it is unique. 

4.5.4.4 Upper hemicontinuity of the optimal solutions  

The problem of optimal design of the generation portfolio has control variables b³, b�, ��	. 

Assuming x	, x�, �	 and j(. ) are fixed, the parameters of the problem are the costs and 

prices m³, m�, k�, kIN$ and �³P$.  

Let us call 6(. ),  the correspondence that for every set of parameters, gives the set of optimal 

solutions. This set of optimal solutions is contained in the space of controls b³, b�, ��	. 

The problem of optimal design fulfills the hypotheses of the maximum theorem. The objective 

function is continuous both in the parameters and the control variables. The set of feasible 

points is delimited by linear constraints, independent of the parameters, which is a particular 

form of continuous dependence.  

The image in 6 of any set of parameters is bounded, as the feasible solutions of the problem 

are always bounded and so the optimal solutions. 

By the maximum theorem the correspondence 6 is upper hemicontinuous and the value of the 

objective is a continuous function of the parameters. 

The upper hemicontinuity means in this problem that for any sequence 0wN4N�	�  in the space 

of parameters, and any sequence 0�N4N�	�  in the space of controls, such that �N ∈ 6(wN) (�N 
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is one of the optimal solutions for wN), wN → w and �N → �, then � ∈ 6(w) (� is an optimal 

solution for the parameters w). Then the following proposition holds: 

Proposition 5.25: Let us consider fixed all other parameters so that only kIN$ can change. If 

there is a unique solution w(kIN$) for every kIN$ ≠ k, so that w(kIN$) → wl when kIN$ → k, 

then wl is one (possibly the unique) solution of the problem for kIN$ = k.  

In particular if kIN$ belongs to a segment (k	, k�) where the solutions are unique, upper 

hemicontinuity is equivalent to continuity. 
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