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 Abstract  
 

Seasonal climate forecasts and insurance are two instruments with potential to help manage 

risks in agricultural production. While both instruments play a distinct role in practice, they 

interact among themselves and with other production decisions. In particular, we contend that 

the progress in climate science in providing increasingly accurate seasonal forecasts has 

implications for the design of agricultural insurance. Early information regarding likely growing 

conditions will result in shifts in the expected distribution of crop yields, and the payouts 

associated with an insurance contract. The magnitude of these effects is illustrated using a 

combination of crop simulation models, and Monte Carlo techniques. 
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 Resumen 
 

Pronósticos climáticos estacionales y seguros son dos herramientas con potencial para ayudar a 

manejar riesgos en la producción agrícola. Mientras ambos instrumentos juegan un rol diferente 

en la práctica, interaccionan entre ellos y con otras decisiones de producción. En particular, 

proponemos que el progreso en la ciencia del clima a la hora de generar pronósticos que 

mejoran en cuanto a su precisión tiene implicancias para el diseño de seguros agropecuarios. 

Información temprana sobre las condiciones de crecimiento más probables resulta en cambios 

en la distribución esperado de rendimientos de cultivos, y las indemnizaciones asociadas a 

contratos de seguros. La magnitud de esos efectos es ilustrada usando una combinación de 

modelos de simulación de cultivos y técnicas Monte Carlo. 

 

Palabras Clave: Riesgo agropecuario; Seguro sobre índices; Seguros; Pronósticos climáticos 

estacionales. 

Código JEL: Q1, G22, Q54 
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1. Introduction 

 

 

Many decisions in agricultural production that depend on climate need to be made several 

months before the climate conditions materialize. A complicating factor is that some of the 

decisions about production practices interact in complex ways with the prevailing climate 

during the growing season in determining the economic performance of the enterprise. 

Therefore, critical choices such as crop mix, planting dates, and fertilizer applications, might 

turn out to be erroneous (or at least non-optimal) in an ex-post sense. The impacts of these 

“mistakes” may be serious, especially for farmers engaged in subsistence agriculture. Faced with 

uncertainty regarding climate conditions, decision makers tend to use production practices that 

reduce losses in adverse conditions at the expense of foregoing profitable activities in good years 

and in some cases accelerated environmental degradation (Hansen, 2002). Reducing climatic 

uncertainty should help producers make better decisions and improve their performance.  

Scientists have made remarkable progress in the last few decades at predicting seasonal climate 

fluctuations months in advance (Goddard et al., 2001). The growing ability to deliver timely and 

skillful seasonal climate predictions introduces the possibility to improve decision making, to 

either intensify activities and investments when favorable conditions are expected or prepare in 

advance when higher chances of adverse events are announced (Hansen, 2002). Moreover, it 

should be recognized that the forecasts are probabilistic, hence, even when they indicate that a 

given season is likely to be propitious for a given activity the realization may still fall in the low 

probability scenario. The remaining risks may limit producer responses (both for intensification 

or increase preparedness) to climate information, highlighting the importance of 

complementing forecasts with other risk management tools such as agricultural insurance.1  

However, the same expanding ability by climate scientist can harm some members of society if 

they are not aware of the information provided, the impacts it has on their activities, or are 

simply constrained to react to it (Pfaff et al., 1999). Agricultural insurance is among the 

activities that can be potentially affected by information on expected climate conditions (Ker 

and Mc Gowan, 2000; Luo et al., 1994; Skees et al., 1999; Hess and Syroka, 2005). Insurance 

products are most commonly priced considering expected payouts based on long-term historical 

records, used either directly or as input for simulation models to conduct Monte Carlo-based 

analysis (Goodwin and Mahul, 2004, Jewson and Brix, 2005). Any information that implies a 

modification of the expected payouts will induce a change in the value of the insurance (or the 

price of risk) that should be reflected in the premium if known before the contract is transacted 

(Skees et al., 1999). Failure to incorporate the information will put one of the parties involved at 

a disadvantage. The contract will be relatively over-priced in years when favorable conditions 

are expected diminishing the incentives of potential buyers to seek protection. On the other 

hand, the insurance will be relatively under-priced when poor conditions are expected providing 

incentives for potential buyers to increase their purchases. The dynamic of modifying the 

purchases in response to mismatches between the risk and its price is known as inter-temporal 

adverse selection. The financial sustainability of the insurance will be compromised in the 

presence of opportunities to engage in this type of behavior. In situations where producers rely 

heavily on external financing to conduct their activities, the extent of intertemporal adverse 

                                                 
1 Even if producers react fully to the information provided, and the forecasts are always correct, there are some scenarios 
(e.g. drought) where it is best not to engage in agricultural activities. Insurance might be a tool to prevent bankruptcies 
or famines.  
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selection can be limited by a policy linking the insurance to rural credit. However, this measure 

will not be effective when a significant number of producers can choose whether to use external 

or internal resources to finance their operations. Moreover, the policy will force producers to 

borrow in order to have access to the risk management tool. Another possible way to avoid 

adverse selection is to establish multiannual contracts, i.e., purchase insurance for a number of 

consecutive years at a pre-established price. This option has important limitations in developing 

country settings. 

Even in the absence of opportunities to engage in inter-temporal adverse selection, the 

effectiveness with which relevant risks are protected might change under different forecast 

scenarios. The seasonal forecast may not indicate a shift in expected payouts, but may modify 

the relationship between the insured variable and the risk from which protection is being 

sought. The latter is especially relevant in the case of index insurance, where the protection is 

crucially dependent on the relation between the index (rainfall, temperature, etc) and the 

variable of interest (e.g. yields, net income, etc).     

In summary, seasonal climate forecast will be relevant for an insurance contract if; a) the 

variable upon which the product is written responds in a predictable way to the information 

provided (e.g., likelihood of rainfall events in critical growth stages); and b) the relationship 

between the insured variable and the risk the insurance is designed to protect is modulated by 

the forecast’s content.  

The goal of this paper is to explore the implications of climate forecasts for an agricultural 

insurance product that pays when either yields, or an index correlated with yields fall below a 

trigger level. In the first section we establish the relationships between climate variables and 

yield. Clearly, if yields and climate variables are not associated, climate information will not 

interact with the insurance scheme. The analysis is based on the relationship between rainfall 

and maize (Zea mais) yields.  The second section discusses the seasonal tercile forecasts such as 

those available from the International Research Institute for Climate and Society (IRI) and 

assesses what information they contain about crop yields. The implications for insurance 

programs are covered in the following section.  The paper ends with a set of final remarks. 
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 2. Establishing a Relationship Between Rainfall and Yields 
 

To establish the impact of climate variables, in particular rainfall on yield variability time series 

of national level maize yields for Uruguay were obtained. The data, spanning the 1900-2004 

period was obtained from the Direction of Agricultural Statistics of the Ministry of Agriculture of 

Uruguay (DIEA, 2008) and is presented in Figure 1. Two main sources of year to year variability 

are present. First, yields appear to have a time trend, which accelerates markedly since about 

1975. The yield trend, which is fitted using locally weighted regression (loess; Cleveland et al., 

1988) is attributed to technological improvement.  The second source of variability is year to 

year fluctuations around that trend, which is attributable at least in part to climate variability.  

Since the focus of this article is on yield variability induced by climate variables, the time trend 

was removed. The procedure to express year’s t  yield in terms of the base year (2004) yields 

consist in multiplying the yield by a factor given by the ratio of the predicted yield for the base 

year to the predicted yield at year t  (Goodwin and Ker, 1998, Goodwin and Mahul, 2004). For 

example, let 
ty , and ˆ

ty  be the observed and predicted yields at time t  respectively and let ˆ
basey  

be the predicted yield for the base year. Then the detrended yield observation is given by 

 ˆ ˆ* /d

t t base ty y y y . Figure 2 show the detrended yields data. 

 

 

Figure 1. Time series of Country-Level Maize Yields for Uruguay. 
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Figure 2. Variability of National Level Maize Yields (Detrended). 

 
A linear regression model was then fitted to explore whether the year to year variability is 

associated with differences in seasonal rainfall amounts. The time scale was chosen to match the 

scales at which seasonal forecasts are issues in practice. The season that showed the highest 

association with national corn yields was December-January-February (DJF). This is expected 

since given the most common planting date in the country (mid September to October), the DJF 

period includes flowering, a growth stage in which the crop is highly sensitive to water stress. 

Results of two models are presented in Table 1. The table shows that the seasonal DJF rainfall 

total and the square of that variable explain almost 40% of the variance of yields. As expected, 

yields increase at a decreasing rate with seasonal rainfall. Perhaps surprisingly, little gain in 

explanatory power was obtained by increasing the temporal resolution of rainfall. Replacing 

seasonal by monthly rainfall amounts (for January, the month with highest explanatory power) 

increased the proportion of the variance explained by only 5% to 0.43 (data not shown).  

Table 1. Regression of Yields (kg/ha) on Total Rainfall (mm) in the December-January-February 

(DJF) Season. 

 Model 1 Model2 

 
0 1t t ty DJF      2

0 1 2t t t ty DJF DJF        

0  3336** 1418** 

1  3.4** 16.2** 

2  - -0.018** 

2R  0.19 0.38 

   **Significant at 1% 

 

The analysis conducted thus far, is based on yields aggregated to the national level. As such, they 

aggregate yields produced under very different conditions, in terms management practices, soil 

types, and climate. The mentioned aggregation masks the variability of individual producers or 

regions. Since this article is concerned with farm level variability, and given that long time series 
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of farm-level data are not available, yields were simulated using the CERES-Maize model from 

the Decision Support System for Agrotechnology Transfer (DSSAT) model (Jones et al., 1998).   

The crop models included in DSSAT (including CERES and CROPGRO) are detailed biological 

simulation models of crop growth and development that operate on a daily time step.  The 

models simulate dry matter production as a function of climate conditions, soil properties and 

management practices.  The dry matter produced on any given day is partitioned between the 

plant organs that are growing at that time.  Crop development in DSSAT models is driven by the 

accumulation of daily thermal time or degree days and by photoperiod sensitivity. The inputs 

required to run the models are daily weather variables, management information (planting date, 

fertilizer use, irrigation, etc.), cultivar characteristics and soil profile data.  Output from the 

models includes final grain yield, total biomass, and biomass partitioning between the different 

plant components at harvest.  The maize model used in this research was calibrated and tested 

using data from several field experiments established in INIA (National Agricultural Research 

Institute of Uruguay) during 1992-2000 (Baethgen, 1993; Baethgen, 2006 unpublished).     

 

 3. Effect of Management Practices on Yields 
 

Nine different management practices (treatments) for an agricultural soil representative of 

southwestern Uruguay were simulated, using forty years of daily weather data. The treatments 

resulted from the combination of 3 different hybrids, and 3 planting dates feasible for the 

growing conditions of the country. Hybrids were chosen to represent short, medium, and long 

cycles. The planting dates were defined as early season, mid-season, and late season. To avoid 

potentially extreme results from a specific day, the yields for each planting season (early, mid 

and late) are the average of yields from three planting dates spread over a three-week period. 

The planting dates were September 8, 15, and 22 for the early season, October 18, 25, and 

November 1 for the mid season, and December 8, 15, and 22 for the late season. Fertilization 

practices were held constant across the 9 treatments, with application of urea at a rate of 40kg 

N/ha at planting and 60 kg N/ha when the crop had 6-8 leaves. Table 2 summarizes the 

treatments and yield simulation results.  

Table 2. Simulated treatments and summary of statistics for the 40 years of simulated yields. 

Treatment Hybrid’s Cycle Planting Date Average Yield St. Dev. 

   (Kg/ha) (Kg/ha) 

1 Short Early 5353 1971 

2 Short Middle 4648 1723 

3 Short Late 5211 1429 

4 Medium Early 4848 2134 

5 Medium Middle 4431 1681 

6 Medium Late 5051 1460 

7 Long Early 3593 1807 

8 Long Middle 3129 1339 

9 Long Late 4180 1447 

 

Table 2 highlights the importance of a limited set of management practices. Varying only the 

hybrid and planting dates, expected mean yields changed from 3129kg/ha to 5353kg/ha. The 

variability (as measured by the standard deviation) of yields is also highly dependent on 
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management practices. Expected yields were highest for a short hybrid planted early, but 

producers could, by sacrificing some expected yields, significantly reduce their risks by planting 

the same hybrid late in the season.2 Simulated results indicate that planting late in the season 

has the potential of reducing yield variability, and in general increasing expected yields. The 

main reason is that the maize growth stages that are most sensitive to water deficits (tasseling) 

escape the periods with highest evaporative demand (December, and January). Clearly, the 

present discussion confirms that interactions between forecasted season and management 

practices such as planting dates should be considered. In general, more differences in yields in 

response to alternative forecasts should be expected when the crop’s most sensitive stages to the 

climate variable coincide with the forecasted season.  

Before evaluating the implications of the information contained in tercile forecasts for an 

insurance that would produce a payout whenever simulated yields fall below a fixed level (here a 

proportion of the expected yield in the absence of a forecast), some features of the distributions 

of yields are compared under alternative forecasts for different seasons.   

 

 4. Seasonal Tercile Forecasts: What Information Do They Contain 

About Yields? 
 

As mentioned before, seasonal climate forecast will be relevant for an insurance contract if the 

variable upon which the product is written responds in a predictable way to the information 

provided.  This section evaluates the implications of the information contained in seasonal 

tercile forecasts for expected yield levels, risks, and in general the distribution of yields. The 

terciles format was chosen to represent one of the ways in which forecasts are more commonly 

available.3 In this form, the forecast provide probabilities that precipitation or temperature will 

be in the highest one-third of the climatological distribution, the middle one-third, or the lowest 

one-third.  

For the purpose described in the previous paragraph, yield samples of size 1000 were created by 

sampling with replacement the pool of 40 years for each treatment, in accordance with the 

climate forecast. Specifically, years with observed seasonal rainfall amounts for the November-

December-January (NDJ) to January-February-March (JFM) seasons were classified into 

terciles (assigned by season). When the forecast was for a 45-30-25 percent of probabilities of 

rainfall in NDJ falling in the upper, middle, and lower tercile, 45-30-25 percent of the years in 

the sample came from years classified in the upper, middle and lower terciles respectively 

according to the relevant season. The same procedure was followed for all the season from NDJ 

to JFM, and different forecasts. 

As stated before the maize growth stage most sensitive to water stress is flowering: grain yields 

are greatly affected around the time of tasseling.  Consequently, the rainfall seasonal forecasts 

are especially relevant during that growth stage. We therefore assessed the impact of climate 

forecasts with different probability levels for the seasons where flowering occurred in each of the 

9 treatments (see Table 3).   

                                                 
2 A similar trade-off is obtained if the producer plants a hybrid of medium cycle late in the season. 
3 Seasonal tercile forecasts for the globe are publicly available from the International Research Institute for Climate and 
Society (http://portal.iri.columbia.edu/portal/server.pt). 

http://portal.iri.columbia.edu/portal/server.pt
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Table 3.  Mean maize anthesis (flowering) and maturity dates for the nine treatments, trimester 

centered in the flowering month. 

 

           

Treatment Hybrid Sowing Anthesis Maturity Trimester 

            

1   15-Sep 6-Dec 30-Jan NDJ 

2 Short 25-Oct 30-Dec 22-Feb DJF 

3   15-Dec 10-Feb 13-Apr JFM 

4   15-Sep 17-Dec 8-Feb NDJ 

5 Medium 25-Oct 7-Jan 2-Mar DJF 

6   15-Dec 18-Feb 27-Apr JFM 

7   15-Sep 25-Dec 16-Feb NDJ 

8 Long 25-Oct 15-Jan 11-Mar DJF 

9   15-Dec 25-Feb 11-May JFM 

 

Figure 3 shows the expected yields for the nine treatments, and how they differ from the no 

forecast information scenario (climatology) and under two alternative forecasts for the season 

centered in flowering. The two forecasts considered differed in the probabilities of assigned to 

each tercile (above normal, around normal and below normal): one represents an expected wet 

season (45-30-25) and the other represents an expected drier season (25-30-45). For this region 

of the world, forecasts that depart from climatology more than the ones considered in figure 3 

are not very frequent. However, we also considered more skillful forecasts in figure 4 to assess 

the expected shifts when they are issued. 

 

 

Figure 3. Expected yield responses for the 9 simulated treatments under relatively wet (45-30-

25) and dry (25-30-45) scenarios for forecasts corresponding to the seasons centered around the 

crop flowering stage. Numbers in the figure correspond to treatments. 
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The expected yield responses to forecasts that deviate from climatology (33-33-33) are 

represented by the vertical distance between the dots and the 45 degree line in the figures. 

Notice that expected yields under the dry (wet) forecast are in general lower (higher) than those 

in the absence of information. That is, the observed deviations occur in the expected direction.  

Figure 3 makes clear that the tercile forecasts with the assumed departures from climatology do 

not result in significant changes in expected yields. However, it is apparent that the forecast will 

imply distinct deviations from expected yields for different treatment. Seasonal forecasts seem 

to provide more information regarding expected yields for some treatments (e.g. 1, 2, 4, 5, 7 and 

8) than for others (e.g., 3, 6, and 9). The results imply that the forecasts provided little 

information regarding changes in expected yield of maize crops planted late (treatments 3, 6, 

and 9). A potential hypothesis is that planting late places the flowering stage in a period of 

expected lower evaporative demand. This would in turn imply that a given deviation of seasonal 

rainfall would have lower impacts on yield than for earlier dates. 

In general, the ranking of treatments in terms of expected yields remains largely unchanged 

under different forecasts. However, some useful information for risk management can be 

obtained from figure 3. While similar yields should be expected from the short cycle hybrid 

planted early or late (treatments 1, and 3 respectively) in the absence of forecast information, a 

dry forecast would indicate that late planting should be preferred. The opposite is true in the 

case of a wet forecast.      

Figure 4 shows the same graphs but under forecasts that differ more from climatology. The new 

scenarios are given by the following terciles; 55-30-15 for a wet forecast, and 15-30-55 for a dry 

forecast.  

 

 

Figure 4. Expected yield responses for the 9 simulated treatments under relatively wet (55-30-

15) and dry (15-30-55) scenarios for forecasts corresponding to the seasons centered around the 

crop flowering stage. Numbers in the figure correspond to treatments. 

 

As expected, yields tended to differ more from long term mean yields as forecasts become more 

different from climatology (more skillful).  Additionally, the ranking of treatments now differs 
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more than for the other set of forecasts. Under a dry forecast figure 4 makes clear that the 

treatment with highest expected yields is no longer the one that yielded more under climatology 

(treatment 1). It is also clear that under the dry forecast, the difference among the expected 

yields of treatments that rank in the middle in the climatology forecast (treatments 2, 4, 5, 9) is 

reduced.  

Expected yields, though clearly important, do not provide an indication of the risks faced by 

producers under different treatments and forecasts. For that purpose, the yield samples 

constructed through the procedures outlined above were used to obtain the empirical 

distribution of yields for each treatment under the alternative forecasts. To save space, only the 

distributions for the medium planting date and DJF forecast are presented in figure 5. The other 

treatments (not presented) show similar patterns. The distributions of yields obtained indicate 

that forecasts will provide meaningful information on the risk profile of the different treatments. 

Non-parametric statistical tests (Kolmogorov-Smirnov) confirmed that for each treatment, 

significantly different yield distributions (p-value< 0.05) are associated with different forecasts.  
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Figure 5. Empirical cumulative distribution functions of yields under different DJF forecasts for 

short (a), medium (b), and long (c) hybrid cycles planted at mid-season. 

 

Of particular interest from a risk management perspective is the lower tail of the yield 

distributions under different forecasts. Table 3 shows some sample quantiles for the yield 

distributions under selected forecasts for the season centered around flowering for each 

treatment. The table shows that forecasts placing more weight in lower rainfall terciles are 
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associated with lower yield quantiles. The forecast does not seem to provide information about 

the 30% quantile for the hybrids planted late (treatments 3, 6, and 9). However, the forecast 

information is reflected in the lower quantile considered for all treatments.    

 

Table 4. Two sample quantiles in the lower tail of the yield distribution for different forecasts 

centered at the flowering season for each treatments. Yields for the 9 treatments are in Kg/ha.  

  Treatments 

Forecast Quant. 1 2 3 4 5 6 7 8 9 

25-30-45  2311 1934 2711 1273 2023 2534 1143 1269 1862 

33-33-33 0.10 2975 2080 2711 2077 2257 2600 1265 1382 1862 

45-30-25  3153 2612 2883 2495 2283 2977 1319 1382 2156 

           

25-30-45  3303 2950 4260 3011 2612 4230 2098 2183 3058 

33-33-33 0.30 4268 3127 4260 3555 4015 4230 2429 2410 3058 

45-30-25  4633 4307 4260 4066 4135 4230 2559 2826 3058 

 

 

Figure 5 and table 3 indicate that for the treatments and seasons considered, forecasts that place 

more weight on the upper precipitation tercile result in first-order stochastically dominating 

shifts in the yield distribution. In other words, relatively wetter forecasts will be associated with 

rightward shifts in the cumulative density function of yields. This has direct implications for risk 

management instruments such as insurance, which are explored next. 

 

 5. Implications for Insurance  
 

Consider a hypothetical insurance product that makes an indemnity payment if yields fall below 

a guarantee    that is proportional to the producer’s expected yield   . In the case in which 

a payout is triggered, its size is given by the difference between the yield guarantee and the 

realized yield.4 The payout function for the described insurance is given by 

(1)  max ,0t tP y  , 

where 
tP  denotes payouts in year t, and 

ty  represents realized yields on the same year. In 

general, the price of the contract in equation (1), or equivalently the premium for the insurance 

can be represented by  

(2) ( )tPremium E P Risk Margin   

                                                 
4 In the simulations scenarios presented in this article, the outcomes of the model can be seen as actual yields, or as an 
index for them. Under the second interpretation, the insurance analyzed here is index-based. Since it integrates 
information about water and nutrient balances with genetic characteristics of the crop, an insurance based on a well 
calibrated model of yields should provide better risk protection than the most common indexes based on precipitation 
and or temperatures (World Bank 2005). 
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where  E  denotes the mathematical expectations operator. The appropriate risk margin in 

equation (2) depends on the risk preference of the insurer, and is in the end a highly subjective 

choice.5  To avoid making unnecessary assumptions, and since the focus of this article is on 

expected payouts, the risk margin will not be considered.  

The previous section established that different seasonal forecasts are associated with shifts in 

the distribution of yields. As such, seasonal forecasts provide early indication on expected yield 

losses and hence on expected payouts. An actuarially fair insurance that ignores the link 

established here is not financially sustainable. The risk loading (usually contained in the risk 

margin term of equation 2) might off-set the potential losses in the presence of intertemporal 

adverse selection, but payouts will ultimately exceed these anticipated by the insurer. Figure 6 

presents the expected payouts under different seasonal forecasts.   

 
Figure 6. Expected payouts under 5 different tercile forecasts for the 9 treatment. Forecasts are 

for the season centered around the flowering stage for each treatment (see table 3). 

 

Figure 6 shows that for all treatments, expected payouts are different under alternative relevant 

forecasts. Clearly, higher payouts are expected as the weight placed on lower seasonal 

precipitation terciles increases. For treatment 2 (short cycle planted in the mid-season) the 

expected payout from the contract is about 200 kg/ha under the 55-30-15 DJF forecast, whereas 

the same variable is three times as much under a 15-30-55 forecast for the same season. Similar 

results are observed for other treatments (e.g. 1, 4, and 5). The treatments showing the least 

changes in expected payout under different forecast are as expected, those planted late. Figures 

3 and 4, together with table 3 already revealed that late plantings were the least sensitive to 

changes in seasonal rainfall at the flowering stage.   

The results presented in figure 6 are consistent with the changes in yield distributions shown in 

figure 5.6 In fact, the latter figure is simply translating the implication of the shifts of the yield 

distribution illustrated in the previous figure to changes in insurance expected payouts. The 

shifts in yield distributions imply that expected payouts will be lower (for any fixed yield 

                                                 
5 For a review of different approaches see Henderson (2002). 
6 Notice that only hybrids planted in the middle of the season (treatments 2, 5, and 8) are shown in figure 5. 
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guarantee) under forecast placing higher probabilities in the upper tercile compared to relatively 

dryer forecasts. The change in expected payouts is explained by two forces acting in the same 

direction; a) the shift in the distributions imply that probability of yields falling below any given 

level decreases as more weight is placed on the upper tercile of precipitations, and b) given that 

a yield shortfall (compared to the guarantee) occurs, it is expected to be lower. 

 

 6. Final Remarks   
 

The discovery of the pervasive influence of the El Niño/Southern Oscilation (ENSO) 

phenomenon on rainfall and temperatures over many parts of the world in the late 1970s 

unleashed the development of new generation of numerical climate models. The improved 

understanding of ENSO as a coupling between the oceans and the atmosphere combined with 

the increasingly accurate climate models are resulting in better prospects for seasonal climate 

predictions. However, while the climate science community expected this progress would be 

rapidly incorporated into agricultural risk management and decision making, adoption proved 

to be slow.  

Many reasons may be behind the slow incorporation of seasonal climate forecasts on 

agricultural decision making. An often cited barrier is the mismatch between the specific 

information farmers are seeking and the information that can be provided by climate scientists. 

While farmers might be interested on deterministic forecasts of climate phenomena (e.g., about 

the amount of rainfall or duration of dry spells in a critical stage of crop growth), the current 

state of knowledge only allow scientists to provide forecasts for variables such as temperature or 

rainfall aggregated at a seasonal scale and in probabilistic terms. The demonstrated gains of 

providing forecast information of climate characteristics that are more relevant for crop 

production such as dry spell duration (Baethgen et al., 2009) has recently promoted promising 

advances in the forecasting of such climate variables (Robertson et al., 2010). 

In this article we contend that tercile-based, probabilistic seasonal climate forecasts contain 

useful information for both decision making and risk management in agriculture. The analysis 

of the specific example of maize yields in Uruguay showed that probabilistic seasonal climate 

forecasts contain information about likely shifts in the distribution of yields. This in turn would 

be reflected on expected returns and the risk associated with different decisions in terms of 

crop/hybrid selection and planting dates. For example, while a producer might be largely 

indifferent between planting a short hybrid early or late in the season (treatments 1 and 3) for 

the average year, she/he could take advantage of a relatively wet forecast by planting early. On 

the other hand, if the forecast indicates that the season is likely to be relatively dry, planting late 

is her/his best option in terms of yield prospects. 

We also point out that seasonal climate forecasts and agricultural insurance are two risk 

management tools that interact in practice. The study shows that the information currently 

provided in probabilistic seasonal forecasts has implications for insurance products designed to 

manage agricultural risks as expected changes in payouts can be inferred from the forecasts. The 

main implication is that ignoring the forecasts may provide opportunities for inter-temporal 

adverse selection and hinder the viability of insurance as a risk management tool. Increasing the 

premium to compensate for the losses induced by adverse selection may render the product 
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ineffective or unaffordable. We showed that even within a given hybrid and planting dates, the 

payout that is expected might vary by a factor of three under alternative forecasts. 

There are at least two ways to take into the account the presence of seasonal forecasts on the 

design of agricultural insurance. First, insurance might be traded before a skilled forecast 

becomes available. In this way the information contained in the forecast is sidestepped. A 

potential problem with this practice is that farmers would sometimes need to buy insurance 

months before planting the crop. Early commitment of resources may limit the ability of farmers 

to wait and form more accurate expectations regarding the relative prices of alternative crops 

before deciding which one to plant. Financing constraints might also limit advance purchases.  

A second way to consider the presence of forecast is to make the price of the insurance 

contingent on the information provided. In this manner, the insurance would be reflecting 

relative risks. An upside of this practice is that it sends information embedded in the forecasts 

regarding risks to farmers. Potential downsides are that a price varying insurance introduces 

another source of variability into the farmer’s operation, and that the insurance may become 

unaffordable when it is needed the most. This strategy would work best if the producer has 

choices regarding what to plant or whether to participate in agricultural activities in the season.



Seasonal climate forecasts and agricultural risk management: Implications for insurance design 19 

 

Carriquiry - Baethgen 

 

 

  

 

 7. References 
 

 

Baethgen, W.E. 1993.  Applications of simulation models in Soil Management and Soil Fertility 

studies (In Spanish) INIA Tech. Bull 42. La Estanzuela, Uruguay. 

Baethgen, W.E.; M. Carriquiry and C. Ropelewski. 2009. Tilting the odds in maize yields: how 

climate information can help manage risks. Bull. Am. Met. Soc. 90(2):179-183 

Cleveland, W. S., S. J. Devlin, and E. Grosse. “Regression by Local Fitting: Methods, Properties, 

and Computational Algorithms.” Journal of Econometrics 37 (1988): 87-114. 

DIEA.  2008.  Dirección de Estadísticas Agropecuarias, Ministerio de Ganadería, Agricultura y 

Pesca.  Montevideo, Uruguay  

               http://www.mgap.gub.uy/portal/hgxpp001.aspx?7,5,27,O,S,0,MNU;E;2;16;10;6;MNU;,  

Goddard, L., S. E. Zebiak, C. F. Ropelewski, R. Basher, and M. A. Cane. 2001. “Current 

Approaches to Seasonal-to-Interannual Climate Predictions.” International Journal of 

Climatology, 21: 1111-1152. 

Goodwin, B. K., and A. P. Ker. “Nonparametric Estimation of Crop Yield Distributions: 

Implications for Rating Group-Risk Crop Insurance Contracts.” American Journal of 

Agricultural Economics 80 (Feb. 1998): 139-153. 

Goodwin, B. K., and O. Mahul. 2004. “Risk Modeling Concepts Relating to the Design and 

Rating of Agricultural Insurance Contracts” World Bank Policy Research Working Paper 

3392. 

Hansen, J. W. 2002. “Realizing the Potential Benefits of Climate Prediction to Agriculture: 

Issues, Approaches, Challenges.” Agricultural Systems 77: 309-330. 

Henderson, R. 2002. “Pricing Weather Risks. Chap. 10 in Weather Risk Management: Markets 

Products and Applications, edited by E. Banks. Palgrave, New York. 

Hess, U., J. Syroka. 2005. “Weather-Based Insurance in Southern Africa: The Case of Malawi.” 

The World Bank. Agricultural and Rural Development Discussion Paper 13: 67pp.  

Jewson, S., and A. Brix., eds. Weather Derivative Valuation: the meteorological, statistical, 

financial and mathematical foundations. Cambridge: Cambridge University Press, 2005.  

Jones, J.W., G.Y. Tsuji, G. Hoogenboom, L.A. Hunt, P.K. Thornton, P.W. Wilkens, D.T. 

Imamure, W.T. Bowen and U. Singh (1998): Decision support system for 

agrotechnology transfer: DSSAT v3. In: G.Y. Tsuji et al. (eds): Understanding options 

for Agricultural production, p. 157 - 177. Kluwer Academic Publishers.  

Ker, A., and P. Mc Gowan. 2000. “Weather-Based Adverse Selection in the US Crop Insurance 

Program: The Private Insurance Company Perspective.” Journal of Agricultural and 

Resource Economics, 25 (2): 386-410. 

Luo, H., J. R. Skees, and M. A. Marchant. 1994. “Weather Information and the Potential for 

Inter-Temporal Adverse Selection in Crop Insurance.” Review of Agricultural 

Economics, 16: 441-451. 

Pfaff, A., Broad, K., and M.H. Glantz. 1999. Who benefits from Climate Forecasts? Nature, vol 

397, 25 Feb, 645-646. 

Robertson, A. W. ; V. Moron and Y. Swarinoto. 2010. Seasonal predictability of daily rainfall 

statistics over Indramayu district, Indonesia. Intern. J. Climatology, vol. 29:1449 - 1462 

Skees, J., P. Hazell, and M. Miranda. 1999. “New Approaches to Crop Yield Insurance in 

Developing Countries.” International Food and Policy Research Institute, Environment 

and Production Technology Division, Discussion Paper No. 55. 

World Bank. 2005. “Managing Agricultural Production Risk: Innovations in Developing 

Countries.” Agricultural and Rural Development Department. Report No. 32727-GLB. 

 

http://www.mgap.gub.uy/portal/hgxpp001.aspx?7,5,27,O,S,0,MNU;E;2;16;10;6;MNU;,


 

 

 

 

 

 

 

 

 

 

 

 

 

 

Abril, 2016 

DT 03/2016 

 

 

 

 

 

 

© 2011 iecon.ccee.edu.uy | instituto@iecon.ccee.edu.uy | Tel: +598 24000466 | +598 24001369 | +598 
24004417 |Fax: +598 24089586 | Joaquín Requena 1375 | C.P. 11200 | Montevideo - Uruguay 

 

INSTITUTO DE ECONOMÍA 

Serie Documentos de Trabajo 

 


