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Formally Verified Countermeasures
Against Cache Based Attacks in

Virtualization Platforms

Abstract

Cache based attacks are a class of side-channel attacks that are particularly ef-
fective in virtualized or cloud-based environments, where they have been used
to recover secret keys from cryptographic implementations. One common ap-
proach to thwart cache-based attacks is to use constant-time implementations,
which do not branch on secrets and do not perform memory accesses that de-
pend on secrets. However, there is no rigorous proof that constant-time im-
plementations are protected against concurrent cache attacks in virtualization
platforms; moreover, many prominent implementations are not constant-time.
An alternative approach is to rely on system-level mechanisms. One recent
such mechanism is stealth memory, which provisions a small amount of pri-
vate cache for programs to carry potentially leaking computations securely.
We weaken the definition of constant-time, introducing a new program classi-
fication called S-constant-time, that captures the behavior of programs that
correctly use stealth memory. This new definition encompasses some widely
used cryptographic implementations. However, there was no rigorous analy-
sis of stealth memory and S-constant-time, and no tool support for checking
if applications are S-constant-time.

In this thesis, we propose a new information-flow analysis that checks if
an x86 application executes in constant-time or S-constant-time. Moreover,
we prove that (S-)constant-time programs do not leak confidential informa-
tion through the cache to other operating systems executing concurrently on
virtualization platforms. The soundness proofs are based on new theorems
of independent interest, including isolation theorems for virtualization plat-
forms, and proofs that (S-)constant-time implementations are non-interfering
with respect to a strict information flow policy which disallows that control
flow and memory accesses depend on secrets. We formalize our results using
the Coq proof assistant and we demonstrate the effectiveness of our analyses
on cryptographic implementations, including PolarSSL AES, DES and RC4,
SHA256 and Salsa20.

Keywords: Non-interference, cache-based attacks, constant-time cryptog-
raphy, stealth memory, Coq



Formally Verified Countermeasures
Against Cache Based Attacks in

Virtualization Platforms

Resumen

Los ataques basados en el cache son una clase de ataques de canal lateral
(side-channel) particularmente efectivos en entornos virtualizados o basados
en la nube, donde han sido usados para recuperar claves secretas de imple-
mentaciones criptográficas. Un enfoque común para frustrar los ataques basa-
dos en cache es usar implementaciones de tiempo constante (constant-time),
las cuales no tienen bifurcaciones basadas en secretos, y no realizan accesos
a memoria que dependan de secretos. Sin embargo, no existe una prueba
rigurosa de que las implementaciones de tiempo constante están protegidas
de ataques concurrentes de cache en plataformas de virtualización. Además,
muchas implementaciones populares no son de tiempo constante. Un en-
foque alternativo es utilizar mecanismos a nivel del sistema. Uno de los más
recientes de estos es stealth memory, que provee una pequeña cantidad de
cache privado a los programas para que puedan llevar a cabo de manera se-
gura computaciones que potencialmente filtran información. En este trabajo
se debilita la definición de tiempo constante, introduciendo una nueva clasifi-
cación de programas llamada S-constant-time, que captura el comportamiento
de programas que hacen un uso correcto de stealth memory. Esta nueva defini-
ción abarca implementaciones criptográficas ampliamente utilizadas. Sin em-
bargo, hasta el momento no había un análisis riguroso de stealth memory y
S-constant-time, y ningún soporte de herramientas que permitan verificar si
una aplicación es S-constant-time.

En esta tesis, proponemos un nuevo análisis de flujo de información que
verifica si una aplicación x86 ejecuta en constant-time o S-constant-time.
Además, probamos que los programas (S-)constant-time no filtran informa-
ción confidencial a través del cache a otros sistemas operativos ejecutando
concurrentemente en plataformas de virtualización. La pruebas de corrección
están basadas en propiedades que incluyen teoremas, de interés en sí mis-
mos, de aislamiento para plataformas de virtualización y pruebas de que las
implementaciones (S-)constant-time son no interferentes con respecto a una
política estricta de flujo de información que no permite que el control de flujo
y los accesos a memoria dependan de secretos. Formalizamos nuestros resul-
tados utilizando el asistente de pruebas Coq, y mostramos la efectividad de
nuestros análisis en implementaciones criptográficas que incluyen PolarSSL
AES, DES y RC4, SHA256 y Salsa20.

Palabras clave: No interferencia, ataques basados en cache, criptografía
constant-time, stealth memory, Coq
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Chapter 1

Introduction

This thesis presents a formal approach for securely deploying and executing code that manipu-
lates confidential information (such as user credentials or cryptographic keys) on a computing
environment. Our main goal is to guarantee that this confidential information cannot be obtained
by (does not leak to) an unauthorized user. One of the most common mechanisms to provide such
a computing environment, where users are isolated from one another, is virtualization. We will
see, however, that this mechanism is only a partial solution, due to the presence of side-channels
via shared physical resources.

1.1 Problem statement

Virtualization platforms, which are the focus of our study, allow several operating systems
(called guest operating systems) to coexist on commodity hardware, and provide support for
multiple applications to run seamlessly on the operating systems running on top of them. Roughly,
virtualization can be defined as the addition of a software layer, the virtual machine monitor
(VMM) or hypervisor, between the hardware and the existing software that exports an interface
(virtual machine or VM) at the same level as the underlying hardware. Figure 1.1 shows a
diagram of a virtualization platform.

Host Machine

Hardware

Hypervisor

VM1

Guest OS

App App

Simpli ed HW Interface

VM2

Guest OS

App App

Simpli ed HW Interface

Figure 1.1: Diagram of a virtualization platform

Virtualization technologies first appeared in the late sixties as a way to efficiently share the
expensive mainframe hardware of the time between a large group of users. After a period of
obscurity in the nineties, it has become pervasive in high-integrity, safety-critical components in

1



1.1 Problem statement 2

embedded systems (mobile phone, airplanes), as well as in data centers and cloud computing
infrastructures [110]. Historically there have been two main styles of virtualization: full virtu-
alization and paravirtualization. In the first, each virtual machine is an exact duplicate of the
underlying hardware, and the VMM provides no functionality except multiplexing the hardware
resources (such as CPU, system memory, I/O devices) among multiple VMs [65]. This makes
it possible to run unmodified operating systems on top of it. When an attempt to execute a
privileged instruction by the OS is detected, the hardware raises a trap that is captured by the
hypervisor and then it emulates the instruction behavior. In the paravirtualization approach,
each virtual machine is a simplified version of the physical architecture. The guest operating
systems must be modified to perform calls to the hypervisor (called hypercalls) instead of directly
accessing the hardware. A hypercall interface allows OSs to perform a synchronous software trap
into the hypervisor to perform a privileged operation, analogous to the use of system calls in
conventional operating systems. An example use of a hypercall is to request a set of page table
updates, in which the hypervisor validates and applies a list of updates, returning control to the
calling OS when this is completed.

One of the most important features of a virtualization platform is to guarantee that appli-
cations with different security policies can execute securely in parallel. This is accomplished
by ensuring that the guest operating systems run isolated from one another, i.e. they have
independent behavior and cannot learn about or influence each other’s information and actions.
In order to guarantee isolation and to keep control of the platform, a hypervisor makes use of
the different execution modes of the CPU. Traditionally1, the hypervisor itself runs in supervisor
mode, in which all CPU instructions are available; while the guest operating systems run in user
mode in which privileged instructions cannot be executed.

The increasingly important role of virtualization in software systems makes it a prime
target for formal verification. Indeed, the complexity and critical nature of these platforms
make faults both more likely and severe. Formal methods allow studying, understanding and
guaranteeing the correctness of the behavior of such systems. In [81], Klein provides a very
complete survey of software verification, with a special emphasis on verifying operating systems.
Recently, several projects have set out to formally verify the correctness of operating system kernel
and hypervisor implementations. The most prominent initiatives are the Microsoft Hyper-V
verification project [47, 92], and the L4.verified project [82]. These works are discussed in some
further detail in Chapter 7.

Reasoning about implementations provides the ultimate guarantee that deployed hypervisors
provide the expected properties. There are however significant hurdles with this approach,
especially if one focuses on proving security properties rather than functional correctness. The
complexity of formally proving non-trivial properties of implementations might be overwhelming in
terms of the effort it requires; worse, the technology for verifying some classes of security properties
may be underdeveloped: specifically, there is currently no established method for verifying security
properties involving two system executions, a.k.a. 2-properties [46], for implementations. In
particular, the main results of this thesis are non-interference properties, which cannot be
expressed in terms of only one system execution. In addition, many implementation details are
orthogonal to the security properties to be established, and may complicate reasoning without
improving the understanding of the essential conditions that guarantee isolation among guest
operating systems. Thus, there is a need for complementary approaches where verification is
performed on idealized models that abstract away from the specifics of any particular hypervisor,

1Some modern processors now use a hierarchy of execution modes. Specifically, with the increased popularity
of virtualization technologies, new modes have been added in order to more easily support hardware assisted
virtualization. Examples include ARM virtualization extensions [123], Intel Vanderpool [122], AMD Pacifica [14],
and more recently, Intel SGX [98].



3 Introduction

and yet provide a realistic setting in which to explore the security issues that pertain to the
realm of hypervisors.

Despite ongoing efforts, showing that virtualization platforms ensure isolation remains a
significant challenge. Problems arise due to the sharing of hardware resources between the
different VMs running concurrently. Not only does the hypervisor need to carefully control the
sharing of resources and validate the guest operating systems behavior, making it a very complex
piece of software; but there can be side-channels that can be exploited to bypass the isolation
mechanisms imposed by the hypervisor. Side-channels attacks obtain secret information from a
victim system by observing the execution of the system on a physical environment, and analyzing
measurable differences on the shared hardware that are related to its secrets.

The cache is one such shared hardware resource. It is a fast storage device used by CPUs to
store a copy of data from main memory to reduce the overhead necessary to access memory data.
When the processor needs to read a memory value, it fetches the value from the cache if it is
present (cache hit), or from memory if it is not (cache miss).

Cache-based attacks are a very powerful attack vector that use the cache as a side-channel,
allowing a malicious party to obtain confidential data through observing timing differences in
program execution. They are widely applicable, but are specially devastating against crypto-
graphic implementations that form the security backbone of many Internet protocols (e.g. TLS)
or wireless protocols (e.g. WPA2). Known targets of cache-based attacks include widely used
implementations of DES [121], AES [31, 120] and RC4 [42]. These attacks have been constantly
improved and applied in different settings; see for example [74, 75, 129]. In Chapter 7 we describe
these and other works in further detail.

Cache-based attacks may be sophisticated, but their underlying idea is relatively simple:
an attacker observes the cache to gain partial information about the sequence of reads and
writes performed by a program during execution; using this knowledge, he successfully retrieves
confidential data of the program.

In practice, one distinguishes between three types of attacks: trace-driven, time-driven, and
access-driven [5]. In a trace-driven attack, the adversary has the ability to observe if each memory
access during the victim program execution generated a cache miss or a cache hit. Time-driven
attacks are less restrictive since the adversary can only measure an aggregate value related to
the total number of cache hits and misses (for example, the total execution time of the victim).
Finally, in an access-driven attack, the adversary has visibility over the cache line sets that the
victim accesses during its computation.

These types of attacks have also been successful in cloud computing environments [109]. In
such settings, a malicious tenant can manage that an operating system under its control co-resides
with the operating system which executes the program targeted by the attacker. This allows the
attacker to share the cache with its victim and therefore to exploit the possible side-channels
that arise, in order to retrieve confidential information from the victim program.

Several countermeasures have been proposed for these attacks, see for example [106, 126, 88, 48,
120, 53]. One approach is to develop applications that do not leak information through the cache,
such as making implementations constant-time, i.e. programs that do not branch on secrets and
do not perform memory accesses that depend on secrets. There are some cryptographic algorithms
that are designed to be constant-time, such as SHA256, TEA, Salsa20; and some that can be
made constant-time by modifying their implementations, for example, AES [77], DES, RC4, and
even RSA. There are even some general techniques for turning implementations of cryptographic
algorithms constant-time [34]. However, there is no rigorous proof that constant-time algorithms
are indeed protected against cache-based attacks when executed concurrently on virtualization
platforms with shared cache. Moreover, many common cryptographic implementations such as
PolarSSL AES, DES, and RC4 do make array accesses that depend on secret keys for efficiency
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reasons and are therefore not constant-time.
A different and more permissive approach is to allow implementations that are not constant-

time, but to deploy system-level countermeasures that prevent an attacker from drawing useful
observations from the cache. Some of these mechanisms are transparent to applications, but
sacrifice performance: instances include flushing the cache at each context switch [120] or
randomizing its layout [125]. We formally analyzed the first countermeasure in a previous work,
see Section 1.3.

Other mechanisms are not transparent and must be used correctly, either via APIs or via
compilers that enforce their correct usage. For example, warming [107] loads all tables that may
be accessed with secret-dependent indices into the cache immediately after a context switch.
These countermeasures are generally applicable, but cache size and decreased performance might
be an issue.

One lightweight mechanism is stealth memory [57]; in contrast to many of its competitors,
stealth memory can be implemented in software, does not require any specific hardware and
does not incur a significant performance overhead. Informally, stealth memory enforces a locking
mechanism on a small set of cache lines, called stealth cache lines, saves them into protected
memory and restores them upon context switches, thereby ensuring that entries stored in stealth
cache lines are never evicted, and do not leak information. From an abstract perspective, memory
accesses to stealth addresses, i.e addresses that map to stealth cache lines, become “hidden”
and have no visible effect. Thus, applications can perform memory accesses that depend on
secrets without revealing confidential information, provided these accesses are done on stealth
addresses. From an application point of view, stealth memory provides a convenient means to
protect some actions during program execution, and allows making programs secure against
cache-based attacks. A recent implementation and evaluation of stealth memory [80] shows how
this effect can be achieved with a modest amount of stealth memory, and a minimal performance
overhead.

Although early work on stealth memory suggests that several prominent cryptographic
implementations can be made secure by using this technology correctly, this class of programs
has not been formally studied before, and in particular, there is no rigorous security analysis of
stealth memory and no mechanism to ensure that application code uses it correctly.

1.2 Contributions

This work focuses on the study of constant-time implementations; giving formal guarantees
that such implementations are protected against cache-based attacks in virtualized platforms
where their supporting operating system executes concurrently with other, potentially malicious,
operating systems. We also study stealth memory as another flexible and efficient countermeasure
against these attacks. Moreover, we provide support for deploying constant-time and applications
using stealth memory, in the form of type-based enforcement mechanisms on x86 implementations.
The mechanisms are integrated into CompCert, a realistic verified compiler for C [93]. Additionally,
we experimentally validate our approach on a set of prominent cryptographic implementations.
To achieve these goals, we make the following contributions:

• We develop a model of virtualization that accounts for virtual addresses, physical and
machine addresses, memory mappings, page tables, translation lookaside buffer (TLB), and
cache; and provides an operational semantics for a representative set of actions, including
reads and writes, allocation and deallocation, context switching, and hypercalls. We prove
a non-interference result on the model that shows that an adversary cannot discover secret
information using cache side-channels, from a constant-time victim. This model is presented
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in detail in Chapter 2, and the non-interference result in Chapter 3.

• We define an analysis for checking if x86 applications are constant-time. Our analysis
is based on a type system that simultaneously tracks aliasing and information flow. For
convenience, we package our analysis as a certifying compiler for CompCert. Our certifying
compiler takes as input a C program whose confidential data is tagged with an annotation
High, and checks whether it is constant-time. We prove that constant-time programs are
non-interfering with respect to an information flow policy which mandates that the control
flow and the sequence of memory accesses during program execution do not depend on
secrets. The policy is captured using an operational semantics of x86 programs where
transitions are labelled with their read and write effects. These results are presented in
Chapter 4.

• We provide a formal proof that constant-time programs are protected against cache-based
attacks in virtualization platforms. The proof contemplates a very strong threat model
with a malicious operating system that controls the scheduler, executes concurrently with
the operating system on which the victim application runs, and can observe how the cache
evolves throughout the execution. The theorem and a sketch of the proof are presented in
Section 4.7.

• We extend our virtualization model with stealth memory primitives, and prove the isolation
result in this new setting. We also introduce a new program classification, which we call
S-constant-time, that captures the behavior of programs that correctly use stealth memory.
As a significant contribution of these extensions, we obtain the first rigorous security
analysis of stealth memory. These results are presented in Chapter 5.

• We successfully evaluate the effectiveness of our framework on several cryptographic imple-
mentations, including AES, DES, and RC4 from the PolarSSL library, and SHA256, Salsa20.
We observe that these implementations are constant-time or S-constant-time. By measuring
their stealth memory requirements, we conclude that S-constant-time implementations
can be executed on virtualization platforms with a small amount of stealth memory, and
hence with a very limited overhead (the performance overhead of using stealth memory is
proportional to its size). We present this evaluation in Chapter 6.

• We formalized and machine checked most of our results in the Coq proof assistant (over
50,000 lines of code). The formalization2. is based on the first formal model of stealth
memory. The model is a significant development in itself (over 10,000 lines of code) and is
of independent interest.

The only result presented in this thesis that was not completely mechanized in Coq (as of
this writing) was the valid state invariance for the basic model (without stealth memory).
This property (Lemma 2.4.1) was already proved for other versions of the model [20, 21].
While long and laborious, this proof is conceptually easy, and we therefore decided not to
redo it and leave it for future work. We have proved, however, the invariance of four new
stealth conditions (presented in Section 5.1.1), and also proved that the semantics of the
new stealth memory actions (presented in Section 5.1.2) keep all state validity conditions
invariant.

2The formal development is available at http://www.fing.edu.uy/inco/grupos/gsi/documentos/tesis/

coq-devel.tar.gz, and can be verified using Coq , version 8.4pl6
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1.3 Summary of publications

This thesis builds upon and extends a number of previously published papers:

• G. Barthe, G. Betarte, J. Campo, and C. Luna. Formally verifying isolation and availability
in an idealized model of virtualization. In FM 2011, pages 231–245. Springer-Verlag, 2011.

• G. Barthe, G. Betarte, J. Campo, and C. Luna. Cache-Leakage Resilient OS Isolation in
an Idealized Model of Virtualization. In CSF 2012, pages 186–197, 2012.

• G. Barthe, G. Betarte, J. D. Campo, J. M. Chimento, and C. Luna. Formally verified
implementation of an idealized model of virtualization. In R. Matthes and A. Schubert,
editors, 19th International Conference on Types for Proofs and Programs, TYPES 2013,
April 22-26, 2013, Toulouse, France, volume 26 of LIPIcs, pages 45–63. Schloss Dagstuhl -
Leibniz-Zentrum fuer Informative, 2013.

• G. Barthe, G. Betarte, J. Campo, C. Luna, and D. Pichardie. System-level non-interference
for constant-time cryptography. In Proceedings of the 2014 ACM SIGSAC Conference on
Computer and Communications Security, CCS ’14, pages 1267–1279, New York, NY, USA,
2014. ACM.

In each paper I worked on the analysis and development of the different formal specifications
in Coq and the formulation and proof of the relevant security properties, in particular the isolation
results. In addition, I was involved in the design of the static analysis for constant-time and
S-constant-time programs, but not on the final implementation in CompCert. I also participated
in the integration of the static analysis and the idealized virtualization model, in order to state
and prove an isolation theorem that relates both models, see Chapters 3 and 4 for more details.
I have also collaborated in the analysis of results and writing of those papers.

In this thesis we will focus on and expand the results presented in the last work [22]. The
others, since they are the basis on which this work is built, and provide interesting complementary
approaches to the ones followed here, will be briefly described in this section.

In [20], we developed a minimalistic model of a hypervisor, and formally proved that the
hypervisor correctly enforces isolation between guest operating systems. We also showed that
under mild hypotheses, it guarantees basic availability properties to guest operating systems. In
this first model we abstracted away many specifics of memory management such as caches and
TLBs. Instead, our model focused on the aspects that were most relevant for memory isolation
properties. Specifically, we showed that an operating system can only read and modify memory it
owns, and proved a non-influence property [103] stating that the behavior of an operating system
is not influenced by other operating systems. In addition, our model allowed reasoning about
availability; we proved, under reasonable conditions, that all requests of a guest operating system
to the hypervisor are eventually attended, so that no guest operating system waits indefinitely
for a pending request. Overall, our verification effort showed that the model was adequate to
reason about safety properties (read and write isolation), 2-safety properties (OS isolation), and
liveness properties (availability).

In [21] we continued our work by extending the model with a formalization of a VIVT cache
and TLB. Then, drawing inspiration from physically observable cryptography [99], we considered
an extended model of traces in which operating systems can draw observations on the history
of the cache, therefore leading to a possible information leak through cache side-channels. The
resulting model allowed us to reason about the class of synchronous access-driven cache-based
attacks; in particular, we proved that flushing the cache upon switching between guest operating
systems ensures OS isolation and prevents such attacks. The second main contribution of this
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work was a machine-checked proof of what we called transparency. Transparency states that
the virtualization platform is a correct abstraction of the underlying hardware, in the sense
that a guest operating system cannot distinguish whether it executes alone or together with
other systems. Transparency is a 2-safety property; its formulation involves an erasure function
which removes all the components of the states that do not belong to some fixed operating
system. We defined an appropriate erasure, established its fundamental properties, and derived
the transparency property of the virtualization model.

While that work provided the basis to the extensions presented in this document, the main
properties were somewhat simpler. The reason for this is that the previous model had a write-
through cache policy. That allowed us to derive the equivalence relation for cache from the
equivalence of memory (the set of cache values were always included in memory), and reuse the
isolation proof presented in [20]. In the model presented here, the write policy is left abstract, so
it is necessary to define the cache equivalence explicitly. More importantly, due to the flushing
of the cache, no condition on the behavior of the victim was required, so there was no need to
ensure that application code behaves correctly.

The semantics of the two previous works only considered correct action execution. In [23] we
extended the semantics with error handling. We implemented a hypervisor in the programming
language of Coq, and proved that it realizes the axiomatic semantics. Although it remained
idealized and far from a realistic hypervisor, the implementation arguably provided a useful
mechanism for validating the axiomatic semantics. This implementation was total, in the sense
that it computed for every state and action a new state or an error. Thus, soundness was proved
with respect to an extended axiomatic semantics in which transitions may lead to errors. The
second contribution of this paper was a proof that OS isolation remained valid for executions
that may trigger errors.

1.4 Outline

The remaining of the thesis is structured as follows. We present the virtualization model in
Chapter 2. In Chapter 3 we describe in detail the adversary model used, and prove our main
isolation result. Chapter 4 presents the static analysis for x86 applications. The extension of these
results to stealth memory is presented in Chapter 5. The experimental results on cryptographic
implementations are described in Chapter 6. Finally, in Chapter 7 we present the related work
and Chapter 8 concludes the thesis.





Chapter 2

Virtualization Model

This chapter presents our idealized model of virtualization. This formal model focuses on the
memory management of virtualization platforms, and it will allow us to reason about isolation
properties, cache attacks and its countermeasures. Our modeling choices were originally guided
by paravirtualization platforms, such as Xen [19], and specifically by Xen on ARM [73], and we
will therefore use terminology from this technology.

Our model is a transition system with states and state transformers (called actions). These
actions will be defined using axiomatic semantics, with pre and post-conditions. The states in
the model will represent the memory structures of a machine running a hypervisor, and several
operating system running on top of it. These structures include the main memory of the platform,
various kinds of memory spaces, and a cache and TLB. In Section 2.1, we present a general
overview of the virtualization model we have developed. Then, we describe the formal details of
the model states and actions in Sections 2.2 and 2.3. Finally, in Section 2.4 we show that the
actions preserve an appropriate valid state property that guarantees basic qualities of the model.

2.1 Model overview

Our model captures the main components of memory management in a virtualization platform.
The memory and related resources, such as the cache and TLB, need to be securely shared
between the guest operating systems.

In order to share the available memory between different application or processes, modern
operating systems and hypervisors use a memory management mechanism called virtual memory.
This mechanism provides each process with a unique memory space, and the processes access
their own memory values using virtual addresses that are mapped to real addresses by a piece
of hardware called the memory management unit (MMU). Hypervisors have the added task
of providing the guest operating systems with a contiguous memory region for their correct
operation. This is done by using an extra memory address space that maps addresses as seen by
guest operating systems (called physical addresses) to the real memory addresses (called machine
addresses).

The mapping between the virtual address space and machine memory is handled by the
hypervisor and it is stored in special memory areas called page tables. There can be many levels
of indirection in the page table structure (called multilevel page table) to use a more efficient
representation of the memory space of a process. In this work we will use a single-level page
table structure, represented by a page in memory, that stores the virtual to real address mapping.
Each application of each guest operating system will have its own page table, and therefore its
own virtual address space.

In addition to the page table structure, the TLB can be used to speed up the translation

9



2.1 Model overview 10

from virtual to machine memory addresses. It is a class of cache: in the event of a TLB hit, the
address corresponding to a given virtual address is obtained directly, instead of searching for it
in the process page table (which resides in main memory).

One of the main components of our model is the cache. There are different ways to identify
cache entries. The cache may potentially be accessed either with a physical address (physically
indexed cache) or a virtual address (virtually indexed cache). There are, in turn, two variants of
virtually indexed caches: those where the entries are tagged with the virtual address (virtually
indexed, virtually tagged or VIVT cache) and those which are tagged with the corresponding
physical address (virtually indexed, physically tagged or VIPT cache). We have studied both
types of cache, see [21] and [22]; here we will use VIPT caches, as presented in the second work.

There are several alternative policies for implementing cache content management, in particular
concerning the update and replacement of cache information. A replacement policy is one that
specifies the criteria used to remove a value when the cache is full and a new value needs to be
stored. Some common policies remove the least recently used (LRU), the most recently used
(MRU) or the least frequently used value (LFU). We model an abstract replacement policy which
can be refined to the ones most commonly used.

A write policy specifies how the modification of a cache entry impacts the memory values: a
write-through policy, for instance, requires that values are written both in the cache and in the
main memory. A write-back policy, on the other side, requires that values are only modified in
the cache and marked dirty, and updates to main memory are performed when a dirty entry is
removed from the cache. In the present work we again model an abstract write policy that can
handle both strategies.

The type of cache we are modeling inherently has problems in the presence of aliases (two
different virtual addresses that map to the same memory page), known as the synonym problem.
In this case, the page can potentially be cached twice (once for each virtual address) in both
VIVT and VIPT caches. If this happens, an update to one of the entries might leave the other
one inconsistent. Standard solutions for this problem include specialized hardware that detects
and handles aliases, flushing the cache, or detecting aliases and avoiding caching more than one
writable page in the cache. We follow the last approach, and make aliased pages non-cacheable,
so that there is never more than one copy of a memory page in the cache.

2.1.1 What we do not model

As is apparent from the previous description, the memory model we have designed is relatively
complete. There are however, important components we have decided not to include in the
model, since they are not directly related to the memory management behavior of the platform,
or are somewhat orthogonal to the kind of analysis we plan to perform on the model. Including
these components is however an interesting line of future research, and would make our model
even more complete and realistic.

Related to the virtual memory management, there is a technique called transparent page
sharing, that can be used in virtualization implementations (specifically in VMWare products)
to reduce the amount of memory required by the virtual machines. This technique works by
allocating only one copy of pages with the same contents between different operating systems
(or different applications inside a given operating system). All guest operating systems would
access this shared page (by mapping the virtual address of each OS to the same memory page).
When the page is modified, the hypervisor must create a copy of it for the system that is
doing the modification (this technique is called copy-on-write). Recently, some attacks that
exploit transparent page sharing have been published [74]; and this led the vendor to disable the
functionality [124]. Our model does not include this mechanism, and its study is left as future
work.
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Another aspect we have not included in the model is a different type of cache called instruction
cache. In addition to the cache mentioned before (which can be called data cache), some
architectures have an instruction cache to store fetched program instructions from memory and
avoid a memory access for each instruction executed. This is specially efficient in loops, where
the same sequence of instructions is used repeatedly. Even though instruction caches can also be
exploited to leak information [6], we do not include this kind of caches in our model. Modeling it
would require a much more detailed model of the processor and instructions (including modeling
the fetch of the instructions from memory), and storing the program code in memory. Modeling
program execution at this level of detail would require some work, but should be feasible, and it
is left as future work.

We have also not considered input/output (IO) devices (such as hard disk drives, network
interfaces, or input devices). These resources are shared between guest operating systems, and
are therefore a possible cause of information leakage. One possible approach for modeling IO
devices is to treat them as special memory regions. There are even cases where devices directly
access main memory, and data is mapped from memory to the device (this technique is called
direct memory access, or DMA).

Accesses to IO devices are possibly asynchronous, meaning that reading to one of these
devices could block the process until the data is available; the device would then tell the operating
system that the data is ready to be used; and finally the process would be unblocked to consume
the data. This asynchronous access mechanism implies that it would be necessary to model an
interruption mechanism, which would complicate our model somewhat. However, it would not
be very different from the hypercall mechanism we have in our model (where writing to a page
table, for example, essentially blocks the process until the hypervisor validates and executes the
action on behalf of the calling operating system).

2.1.2 Variants and extensions

There are many possible variants and extensions that can be performed to our model. One
possibility is to adapt it to other virtualization paradigms. While our model is based on
paravirtualization, it can be easily adapted to more closely model a full-virtualization platform by
treating hypercalls as traps, triggered when an operating system attempts to perform a privileged
instruction (such as writing to a page table).

One important extension we have not undertaken yet is the concurrent execution of instructions
by means of either multi-core or multithreading processors. Multi-core architectures provide
more than one complete processing unit within the main CPU component, while multithreading
allows using these processing units more efficiently by, for example, allowing several execution
threads of a process to execute concurrently.

Formally modeling concurrency has its challenges. The main problem is to give a semantics
for the model, which would have to be possibilistic and our isolation results would therefore also
be possibilistic. Since this is not the kind of result we are aiming at, we focus on an execution
model with only one process (and one guest operating system) executing at a given time, and
leave the modeling of concurrent execution as future work.

2.2 States

In this section we give an overview of the state of the idealized virtualization model, which
includes the main memory of the platform, various kinds of memory spaces, and the cache and
TLB. In Figure 2.1 we show a high level diagram of the memory model.

The machine memory is the real machine memory. A mechanism of page classification was
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Figure 2.1: Memory model of the platform

introduced in order to cover concepts from virtualization platforms, in particular Xen [19]. The
model considers that each machine address points to one memory page. Each page has at most
one owner: a particular guest OS or the hypervisor. The pages are also classified as either a data
page with read/write access or a page table, where the mappings between virtual and machine
addresses reside. An OS is required to register and classify a page before being able to use it.
The set of machine addresses (written Ma) model real hardware memory on the host machine
and are never directly used by the guest OS.

In usual architectures with paging, the addresses are composed of two parts: a page identifier
and an offset inside the page. We use an abstraction of this addressing mode, and do not
distinguish between accesses at different offsets inside the page. All machine addresses will
therefore refer to a different page, and we will only record the access to the memory page, not
the specific data inside it. This gives us a good level of abstraction to reason about memory
accesses, while still capturing the behavior of actual implementations.

The physical memory is an address space exposed by the hypervisor for the use of the guest
OSs kernel. The physical addresses (whose type is written Pa) are provided by the hypervisor in
order for the guest operating systems to use a contiguous memory space when referencing its
own pages. The mapping between physical and machine addresses is managed exclusively by the
hypervisor and it is transparent to the guest operating systems.

Virtual addresses (denoted Va) are used by applications running on guest operating systems.
The hypervisor maintains page tables that map virtual addresses to machine addresses in special
memory pages. The operating systems must call the hypervisor to modify these mappings.

Each OS has a designated portion of its virtual address space that is reserved for the hypervisor.
This is done in order to avoid a context switch by the hypervisor to access its own memory, when
an operating system makes a hypercall. This way, hypervisor data is always accessible through
the virtual address space of all operating systems. We say that a virtual address va is accessible
by the OS (os_accessible(va)) if it belongs to the virtual address space of the OS which is not
reserved for the hypervisor.

In Figure 2.2 we give the formalization of the platform state, which consists of a collection of
components that we now proceed to describe.
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Va,Pa,Ma virtual, physical

and machine addresses

OSId OS identifier

HC := new | del | lswitch| pin | unpin | ⊥ hyper calls

OSData := Pa× HC OS data

GuestOSs := OSId 7→ OSData guest OSs

OSActivity := running | waiting OS activity state

EM := usr | svc execution mode

ActiveOS := OSId× OSActivity active OS

PageContent := RW (Value) | PT (V add 7→ Ma) | ⊥ page content

PageOwner := Hyp | OS(OSId) | ⊥ page owner

Page := PageContent× PageOwner × Bool memory page

Memory := Ma 7→ Page memory map

HyperMap := OSId× Pa 7→ Ma hypervisor map

CacheData := Va×Ma 7→Kc
Page cache data

CacheIndex := Va 7→ Index cache index

CacheHistory := Index 7→ Hist cache history

Cache := CacheData× CacheIndex× CacheHistory VIPT cache

TLB := Va 7→Kt
Ma TLB

SLST := GuestOSs× ActiveOS× HyperMap×Memory × Cache× TLB Platform state

Figure 2.2: Formal definition of the state

Operating systems

We define a type OSId of identifiers for guest operating systems. The state contains information
about each guest OS current page table, which is a physical address, and information on whether
it has a hypercall pending to be resolved. A hypercall is a privileged functionality exported by
the hypervisor to the guest OSs. The list of availiable hypercalls is given by the type HC.

Formally this information is captured by the GuestOSs mapping that associates OS identifiers
with objects of type OSData.

Active OS and execution modes

One of the operating systems is active at any given time (ActiveOS). For this OS, in addition to
its identifier, we register whether it is currently running or waiting for a hypercall to be resolved.
Active OS execution mode is formalized by the type OSActivity.

Most hardware architectures distinguish at least two execution modes, namely user mode
(usr) and supervisor mode (svc). These modes are used as a protection mechanism, where
privileged instructions are only allowed to be executed in supervisor mode. In our model, guest
OSs execute in user mode while the hypervisor executes in supervisor mode. When a guest OS
needs to execute a privileged operation, it requests the hypervisor to do it on its behalf. After
requesting the hypervisor to execute some service, the active guest OS will turn to execution
mode waiting until the service is completed and the execution control returned, switching then
its execution mode to running. Execution modes are formalized by the type EM.

Mappings

The mapping that associates, for each OS, physical to machine addresses is managed by the
hypervisor. This mapping, which is formalized as the component HyperMap of the state, might
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be treated differently by each specific virtualization platform. There are platforms in which this
mapping is public and the OS is allowed to use machine addresses. The physical-to-machine
address mapping is modified by the actions page_pin and page_unpin, as described in Section 2.3.

The Memory is formalized as a mapping from machine addresses to pages. A memory
page (Page), consists of page content (PageContent) and metadata. The content is either a
readable/writable value, an OS page table (a mapping from virtual to machine addresses), or
nothing (an unallocated or unused page).

Each OS has a collection of page tables associated (one for each application executing on the
OS) that map virtual addresses into machine addresses. When executed, the applications use
virtual addresses, therefore on context switches the current page table of the OS must change
so that the currently executing application may be able to refer to its own address space. Page
tables updates are done exclusively by the hypervisor (neither applications nor guest OSs have
permission to do so); and every memory address accessed by an OS needs to be associated to
a virtual address. The model must guarantee the correctness of those mappings, namely, that
every machine address mapped in a page table of an OS is owned by it. We consider an abstract
type of values equipped with an equality relation, and we assume given a distinguished value
⊥ when the value is undefined. In particular we abstract away implementation details such as
encoding, size, etc.

The page metadata contain a reference to the page owner, of type PageOwner, which can be
either the hypervisor, an OS, or ⊥ and a flag indicating whether the page can be cached or not.

Cache

The figure also shows the cache, which is accessed by a pair of virtual and machine addresses
(modeling a VIPT cache) and holds a subset of the readable/writable memory pages. The size of
the cache is bounded by a positive fixed constant Kc.

In VIPT caches indices of the cache are derived from the virtual addresses, but each entry is
tagged with the machine address. This avoids the need of flushing the cache on every context
switch, and therefore requires less software management.

The cache can be seen as a collection of data blocks or cache lines (which are pages in our
model) that are accessed by cache indices. There is a mapping CacheIndex from virtual addresses
to cache indices. Since caches are usually set associative, there are many virtual addresses that
map to the same index. All data that is accessed using the same index is called a cache line set.
As defined in [80] we assume that the inertia property holds for the cache. This property states
that after adding an entry to the cache in a virtual address va and replacing some entry, the
evicted address is in the same cache line set as va.

We also model historic access information as the abstract component of the cache CacheHistory.
This is used by the replacement policy to decide the entry to be evicted from the cache.
The replacement policy selects an entry to remove when a new entry is to be added and the
corresponding cache line is full. There are various cache policies in use (LFU, LRU, PLRU, etc).
We left the actual policy of the model abstract, and only require that it selects the same entry
for removal from two caches, as long as their histories are the same.

This requirement is necessary in order to have a deterministic policy that consistently selects
the same entry for removal. We will ultimately show that the same attacker entries are removed
from the cache (implying that cache based attacks are impossible), see the discussion in Section 3.1.
It is therefore necessary that the selection of the entry to remove is done based on specific public
information (in our case, the cache history) that can be proved to be equal during two executions
of the model.

Most replacement policies are consistent with our assumption. For example, the LRU policy
(least recently used) would select the oldest entry from the cache line set for eviction. The history
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in this case would store information on when each entry was accessed. When an entry is to be
evicted, the one accessed least recently would be selected. In this case, if two caches have the
same history and entries, and an eviction takes place, the policy will select the same entry in
both cases. The LRU policy can therefore be shown to comply with the required assumption.

One important replacement policy that is problematic is random replacement (RR). With
this policy, it would not be possible to prove that the attacker will always see the same entries
evicted (since the selection is completely random). One way to handle this is to consider a
pseudo-random number generator (PRNG). A PRNG generates a deterministic approximation of
a random sequence, starting from an initial number called the seed. In this case we would store
the seed and the number of calls to the PRNG in the cache history, so that given two caches with
the same histories and entries, the replacement policy will select the same entry for eviction.

TLB

The TLB is used in conjunction with the current page table of the active OS to speed up
translation of virtual to machine addresses. The TLB is flushed on context switches and updates
are done simultaneously in the page table, so its management is simpler than the cache. Therefore
we do not record the TLB access history, as it is not necessary to write back evicted TLB entries.
The size of the TLB is bounded by a positive fixed constant Kt.

2.2.1 Access functions

In this section we define the helper functions used to predicate and manipulate the components
of the state. We will give the type of each function or predicate, and an high level explanation of
its behavior.

os_accessible(va : Va) : Prop is a predicate indicating whether a virtual address is accessible
to an OS or if it is reserved for the hypervisor.

get_page_mem(s : SLST, va : Va) : Option(Ma× Page) returns the machine address ma and
the page pg mapped from the virtual address va in the active OS current page table mapping.
This function first searches for va in the TLB, and if it is not there, in the current page table in
memory, to find the ma. Once it has the ma, it looks for an entry indexed with (va,ma) in the
cache. It returns the corresponding page in the cache, or the page in ma from main memory if it
is not cached.

[ ]pol : Memory → Ma → Page → Memory similar to a regular memory mapping update, but
depends on the selected write policy. It either writes the new page in memory (in write-through
policy), or leaves the memory unchanged (write-back policy). The application of this function
will be written: mem[ma := pg]pol = mem′.

cache_add(c : Cache, va : Va,ma : Ma, pg : Page) : Cache× Option (Ma× Page) adds entries
in the cache. It returns the new cache and an optional entry that was selected for replacement
and removed from the cache. This function is parameterized by an abstract replacement policy
that determines which elements are evicted from a full cache line, and guarantees that the inertia
property holds for the cache.

get_page_va_ma(s : SLST, va : Va,ma : Ma) : Option (Page) returns the page corresponding
to the cache entry (va,ma), if it exists; otherwise returns the page in ma from memory.
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get_page_hyp(s : SLST, os : os_ident, pa : Pa) : Option (Ma × Page) returns the machine
address ma and the page pg in memory, mapped from the physical address pa in the hypervisor
mapping for the OS.

memory_alias : (mem : Memory, va : Va,ma : Ma) : Prop is a predicate that indicates
whether a page table maps a virtual address other than va to ma. This is used to guarantee that
no aliased pages are cached, since this would be incorrect for a write-back cache policy.

remove_cache_va(c : Cache, cpt : Page, va : Va) : Cache × Option (Ma × Page) searches for
va in the cpt page table, obtaining the corresponding machine address ma. It then removes the
entry (va,ma) from the cache, if it exists. The function returns the new cache and the optional
removed entry.

remove_cache_ma(c : Cache,ma : Ma) : Cache × Option (Ma × Page) if there is an entry
(va,ma) in the cache, for any va, this removes it, and returns the corresponding page. Note
that since aliased pages are not cached, there can only be one entry in the cache for a given ma.
Otherwise, returns the cache unchanged.

update_cache_entry(mem : Memory, entry : Option (Ma × Page)) : Cache if entry is some
pair (ma, pg), updates the memory with pg as the page in ma (returns mem[ma := pg]).
Otherwise, returns mem unchanged. This function is used to write back in memory an optional
removed cache entry, returned by the remove_cache_va and remove_cache_ma functions.

mark_page_non_cacheable : (mem : Memory,ma : Ma) : Memory sets the non-cacheable
flag to the page in ma.

tlb_flush(tlb : TLB) : TLB returns the empty TLB.

free_madd(mem : Memory) : Ma returns a machine address that is not used by any OS or
the hypervisor; so it is suitable for a page_pin action.

madd_in_no_PT (os : os_ident,ma : Ma,mem : Memory) : Prop is a predicate that holds
when no page table of os maps a virtual address to ma.

is_empty : (pg : Page) : Prop is a predicate that indicates whether the given page table is
empty.

2.2.2 Valid state

We define a notion of valid state that captures essential properties of the platform. Formally, the
predicate valid_state holds on a state s if s satisfies the following properties:

1. if the active OS is running then no hypercall requested by it is pending;

2. if the hypervisor is running, the processor must be in supervisor mode, and if an OS is
running, the processor must be in user mode;

3. the hypervisor maps an OS physical address to a machine address owned by that same OS.
This mapping is also injective;
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4. all page tables of an OS o map accessible virtual addresses to pages owned by o and not
accessible ones to pages owned by the hypervisor;

5. the current page table of any OS is owned by that OS;

6. any machine address ma which is associated to a virtual address in a page table has a
corresponding physical address as pre-image in the hypervisor mapping;

7. memory pages from different virtual addresses mapped to the same machine address
(synonym problem) are marked as non-cacheable;

8. all cache keys, pairs of the form (va, ma), are related in some page table of the memory;

9. all cache pages have the same owner and type (readable/writable) as those in machine
memory;

10. if a virtual address va is translated into a machine address ma according to the TLB, then
ma is associated to va in the active memory mapping;

All properties have a straightforward interpretation in our model. The valid states property
is invariant under action execution, as shown in Section 2.4.

2.3 Action semantics

The operational semantics of the platform is modelled as a labelled transition system:

s ֒
a,o
−−→ s′

where s, s′ range over states, a ranges over actions and o ranges over OS identifiers. Informally,
such a transition indicates that the execution of the action a by o from a state s, leads to a new
state s′.

The type Action is defined as a enumerated type of all modeled platform actions. Figure 2.1
presents the list of actions with their parameters and effects.

Actions can be classified as follows:

1. access, from an OS or the hypervisor, to RW memory pages (read, read_hyper, write
and write_hyper);

2. update of page tables by the hypervisor on demand of an OS (new and del);

3. context switches, that change the active OS or the current page table of an OS by the
hypervisor (switch and lswitch);

4. hypervisor call (hcall);

5. changes of the execution mode (chmod and ret_ctrl);

6. changes in the hypervisor memory mapping, which are performed by the hypervisor on
demand of an OS (pin and unpin); and

7. a silent action (silent), that models behavior that does not affect the state.
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Action Informal description Effect

read va Guest OS reads virtual address va read va

read_hyper va The hypervisor reads virtual address va read va

write va val Guest OS writes value val in va write va

write_hyper va val The hypervisor writes value val in va write va

new va pa Hypervisor extends the memory of the active OS new va pa
with va 7→ ma

del va Hypervisor deletes mapping for va from del va
the current memory mapping of the active OS

switch o Hypervisor sets o to be the active OS switch o

lswitch pa Hypervisor changes the current memory mapping of the lswitch pa
active OS to be pa

hcall hc An OS requires privileged service hc hcall hc
to be executed by the hypervisor

ret_ctrl Returns the execution control to the hypervisor ret_ctrl

chmod The hypervisor gives the execution chmod

control to the active OS
page_pin pa t The memory page that corresponds to pa is registered page_pin pa t

and classified with type t for the active OS
page_unpin pa The memory page of the active OS page_unpin pa

that corresponds to pa is un-registered
silent Represents the silent action (no effects on the system) ∅

Table 2.1: Actions and their effects

Each action a has an effect eff(a). We use these effects to classify the observations that can
be drawn from an action execution. Actions have as effect that same action, except for the write,
which only has as the effect parameter the virtual address and not the value; and silent, which
has no effect. Note that two actions have the same effect if and only if, the actions are the same
action or two writes to the same address but with arbitrary values. In Chapter 3 this notion of
effects is used to express the isolation property.
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In what follows the semantics of actions will be presented using the following layout:

Action name args

Informal description of the action behavior

Rule

Formal description of the behavior using natural semantics.

Precondition

Informal description of the conditions that must be satisfied for a correct execution of the
action.

Postcondition

Informal description of the effect of the action execution

Notes

Remarks concerning the action

2.3.1 Memory accesses

Memory access actions represent the instructions executed when the operating systems or the
hypervisor read or write memory pages. All these actions act on the virtual address space, as is
normal in most architectures. The accessed pages are cached (eventually replacing some previous
entry), and the TLB is updated with the new entry.
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Action read va

Guest OS reads the data in va

Rule

act = (aos, running) os_accessible(va)
get_page_mem(s, va) = (ma, pg) pg = (RW _, OS aos, b)

cache_add(cache, va,ma, pg) = (cache′, (ma′, pg′))
mem[ma′ := pg′][ma := pg] = mem′ tlb[va := ma] = tlb′

s = (oss, act, hyp,mem, cache, tlb) ֒
read va,act
−−−−−−−−→ (oss, act, hyp,mem′, cache′, tlb′)

act = (aos, running) os_accessible(va)
get_page_mem(s, va) = (ma, pg) pg = (RW _, OS aos, b)

cache_add(cache, va,ma, pg) = (cache′,⊥) tlb[va := ma] = tlb′

s = (oss, act, hyp,mem, cache, tlb) ֒
read va,act
−−−−−−−−→ (oss, act, hyp,mem, cache′, tlb′)

Precondition

The action read va requires that the active OS aos is running, that va is accessible by aos,
and that the current page table of aos maps the virtual address va to a machine address ma
and a page pg. Moreover, pg is readable/writable.

Postcondition

After the execution of the action, the cache is updated with the entry associated to the pair
(va,ma). The TLB is updated with the pair (va,ma).

If an entry is evicted from the cache (first rule), then its page must be the present at the
corresponding address in the new memory (either because it already was, in a write-through
policy; or because it is written to memory as a result of the eviction, in a write-back policy).

Otherwise (second rule), the memory does not change.
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Action read_hyper va

The hypervisor reads virtual address va

Rule

act = (aos, waiting) get_page_mem(s, va) = (ma, pg) pg = (RW _, OS aos, b)
cache_add(cache, va,ma, pg) = (cache′, (ma′, pg′))

mem[ma′ := pg′][ma := pg] = mem′ tlb[va := ma] = tlb′

s = (oss, act, hyp,mem, cache, tlb) ֒
read_hyper va,act
−−−−−−−−−−−−−→ (oss, act, hyp,mem′, cache′, tlb′)

act = (aos, waiting) get_page_mem(s, va) = (ma, pg) pg = (RW _, OS aos, b)
cache_add(cache, va,ma, pg) = (cache′,⊥) tlb[va := ma] = tlb′

s = (oss, act, hyp,mem, cache, tlb) ֒
read_hyper va,⊥
−−−−−−−−−−−−−→ (oss, act, hyp,mem, cache′, tlb′)

Precondition

The action read_hyper va requires that the active OS aos is in waiting mode (or equivalently,
that the hypervisor is running). The current page table of the active OS aos maps the virtual
address va to a machine address ma and a page pg. Moreover, pg is readable/writable.

Postcondition

The postcondition of this action is the same as the postcondition of the read action.
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Action write va val

Guest OS writes value val in va

Rule

act = (aos, running) get_page_mem(s, va) = (ma, pg) pg = (RW _, OS aos, b)
cache_add(cache, va,ma, (RW val,OS aos, b)) = (cache′, (ma′, pg′))

mem[ma′ := pg′][ma := (RW val,OS aos, b)]pol = mem′ tlb[va := ma] = tlb′

s = (oss, act, hyp,mem, cache, tlb) ֒
write va val,act
−−−−−−−−−−−→ (oss, act, hyp,mem′, cache′, tlb′)

act = (aos, running) get_page_mem(s, va) = (ma, pg) pg = (RW _, OS aos, b)
cache_add(cache, va,ma, (RW val,OS aos, b)) = (cache′,⊥)

mem[ma := (RW val,OS aos, b)]]pol = mem′ tlb[va := ma] = tlb′

s = (oss, act, hyp,mem, cache, tlb) ֒
write va val,act
−−−−−−−−−−−→ (oss, act, hyp,mem′, cache′, tlb′)

Precondition

The action write va val requires that the active OS aos is running. Furthermore, the virtual
address va is mapped to a machine address ma and a readable/writable page pg in the current
page table of the active OS (get_page_mem).

Postcondition

There are two rules for the write action, one in which an entry is evicted from the cache
when the written page is added, and the other in which no entry is evicted. In both cases the
resulting state differs in the value val of the page associated to the pair (va,ma) in the cache
cache, and in the TLB tlb. If cache_add returns an entry (ma′, pg′) that was evicted from
the cache, the memory in ma′ is updated with pg′. The final value in memory of the page in
ma is dependent on the write policy in use (mem[ma := page]pol updates the page in ma with
page in the write-through policy, and it leaves it unchanged in the write-back case).
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Action write_hyper va val

The hypervisor writes value val in va

Rule

act = (aos, waiting) get_page_mem(s, va) = (ma, pg) pg = (RW _, OS aos, b)
cache_add(cache, va,ma, (RW val,OS aos, b)) = (cache′, (ma′, pg′))

mem[ma′ := pg′][ma := (RW val,OS aos, b)]pol = mem′ tlb[va := ma] = tlb′

s = (oss, act, hyp,mem, cache, tlb) ֒
write_hyper va val,⊥
−−−−−−−−−−−−−−−−−→ (oss, act, hyp,mem′, cache′, tlb′)

act = (aos, waiting) get_page_mem(s, va) = (ma, pg) pg = (RW _, OS aos, b)
cache_add(cache, va,ma, (RW val,OS aos, b)) = (cache′,⊥)

mem[ma := (RW val,OS aos, b)]]pol = mem′ tlb[va := ma] = tlb′

s = (oss, act, hyp,mem, cache, tlb) ֒
write_hyper va val,⊥
−−−−−−−−−−−−−−−−−→ (oss, act, hyp,mem′, cache′, tlb′)

Precondition

The action write_hyper va val requires that the hypervisor is running. Furthermore, the
virtual address va is mapped to a machine address ma and a readable/writable page pg in the
current page table of the active OS (get_page_mem).

Postcondition

The postcondition of this action is the same as the postcondition of the write action.

2.3.2 Page table updates

Page table updates modify the operating system page tables adding or removing mapping entries.
Only the hypervisor can execute these actions on behalf of an operating system. If a guest
operating system wants to modify one of its page tables, it has to make a hypercall with the
corresponding parameters (see section 2.3.4).
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Action new va pa

Hypervisor extends the virtual memory of the active OS with va 7→ ma

Rule

act = (aos, waiting) os_accessible(va) oss[aos] = (pa′, New va pa)
get_page_hyp(s, aos, pa) = (ma, pg) ¬memory_alias(mem, va,ma)

get_page_hyp(s, aos, pa′) = (ma′, cpt) cpt[va := ma] = cpt′

oss[aos := (pa′, None)] = oss′ tlb[va := ⊥] = tlb′

remove_cache_va(cache, cpt, va) = (cache′, entry)
update_cache_entry(mem, entry) = mem′ mem′[ma′ := cpt′] = mem′′

(oss, act, hyp,mem, cache, tlb) ֒
new va pa,act
−−−−−−−−−→ (oss′, act, hyp,mem′′, cache′, tlb′)

act = (aos, waiting) os_accessible(va) oss[aos] = (pa′, New va pa)
get_page_hyp(s, aos, pa) = (ma, pg) memory_alias(mem, va,ma)

get_page_hyp(s, aos, pa′) = (ma′, cpt) cpt[va := ma] = cpt′

oss[aos := (pa′, None)] = oss′ tlb[va := ⊥] = tlb′

remove_cache_va(cache, cpt, va) = (cache′, entry)
update_cache_entry(mem, entry) = mem′

remove_cache_ma(cache′,ma) = (cache′′, entry′)
update_cache_entry(mem′, entry′) = mem′′

mem′′[ma′ := cpt′] = mem′′′ mark_page_non_cacheable(mem′′′,ma) = mem′′′′

s = (oss, act, hyp,mem, cache, tlb) ֒
new va pa,act
−−−−−−−−−→ (oss′, act, hyp,mem′′′, cache′′, tlb′)

Precondition

The action new va pa requires that the hypervisor is running, that va is accessible by the
active OS, and that aos has a pending new hypercall. Furthermore, pa should be mapped to
some machine address ma and page pg.

Postcondition

In the state after the execution, the current page table cpt is updated with the mapping of
va to ma. va could appear mapped to some other machine address ma′ in the current page
table, if the operating system is requesting an update of the existing mapping va 7→ ma′ to
va 7→ ma. In this case, the entry corresponding to (va,ma′) is removed from the cache by the
remove_cache_va function, and the old cached page value is written to memory.

If the new address is an alias (second rule), in addition to the above, the cache entry with ma
as its address is removed from the cache (and written to memory). Additionally, the page in
ma is marked as non cacheable.

In both cases, the mapping from va is removed from the TLB, if it exists.
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Action del va

Hypervisor deletes mapping for va from the current page table of the active OS

Rule

act = (aos, waiting) os_accessible(va) oss[aos] = (pa′, Del va)
get_page_hyp(s, aos, pa′) = (ma′, cpt)

oss[aos := (pa′, None)] = oss′ cpt[va := ⊥] = cpt′ mem[ma′ := cpt′] = mem′

remove_cache_va(cache, cpt, va) = (cache′,_) tlb[va := ⊥] = tlb′

s = (oss, act, hyp,mem, cache, tlb) ֒
del va,act
−−−−−−−→ (oss′, act, hyp,mem′, cache′, tlb′)

Precondition

The action del va requires that the hypervisor is running, that va is accessible by the active
OS aos, and that aos has a pending del hypercall.

Postcondition

In the resulting state, the current page table cpt of aos is updated by deleting the mapping
from va. Additionally, if va maps to some ma in the current page table of aos and there exists
an entry in the cache for (va,ma), this entry is removed. Similarly, the mapping from va is
removed from the TLB.

In this case, the eventual entry removed from the cache need not be written back to memory,
since after the deletion in the cpt, the corresponding page is now inaccessible. Indeed, a
cacheable page is never aliased, and therefore there is only one page table that maps some
virtual address to this page, and that is the one this action is deleting.

2.3.3 Context switches

Context switches occur when the currently running process in the processor is switched to let
another execute. We define two kinds of context switches: operating system or global context
switch (switch, sometimes called world switch) in which the hypervisor selects another operating
system to execute, and local or application context switch (lswitch) in which the running
application inside the active operating system is changed.



2.3 Action semantics 26

Action switch o

Hypervisor sets o to be the active OS

Rule

act = (aos, waiting) oss[o] = (pa,None)
(o, waiting) = act′ tlb_flush(tlb) = tlb′

(oss, act, hyp,mem, cache, tlb) ֒
switch o,o
−−−−−−−−→ (oss, act′, hyp,mem, cache, tlb′)

Precondition

The context switch o action requires that the hypervisor is running, and that there is no
hypercall pending for the OS o.

Postcondition

In the resulting state, o is the new active OS, and the TLB tlb is (fully) flushed.

Action lswitch pa

Hypervisor changes the current memory mapping of the active OS to be pa

Rule

act = (aos, waiting) oss[aos] = (_, LSwitch pa)
get_page_hyp(s, aos, pa) = (ma, pg) pg = (PT _,_,_)

oss[aos := (pa,None)] = oss′ tlb_flush(tlb) = tlb′

s = (oss, act, hyp,mem, cache, tlb) ֒
lswitch pa,act
−−−−−−−−−−−→ (oss′, act, hyp,mem, cache, tlb′)

Precondition

The action lswitch pa requires that the hypervisor is running, and that the active OS is
waiting for an hypercall to change its current memory mapping to pa. Additionally, there
exists a machine address ma, associated by the hypervisor mapping to the physical address pa,
which is the address of a PT page.

Postcondition

The effect of this action is to set pa as the address of the current page table of the active OS;
and flush the TLB.

2.3.4 Hypercall

Hypercalls are an API exposed by the hypervisor to the operating systems, in order for them to
be able to perform privileged operations on the platform. The hypervisor, when receiving an
hypercall, first validates its parameters, and then performs the required action on behalf of the
operating system.
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Action hcall hc

The active OS requires privileged service hc to be executed by the hypervisor.

Rule

act = (aos, running) oss[aos] = (pa,_)
oss[aos := (pa, hc)] = oss′ (aos, waiting) = act′

(oss, act, hyp,mem, cache, tlb) ֒
hcall hc,act
−−−−−−−−−→ (oss′, act′, hyp,mem, cache, tlb)

Precondition

The action hcall hc requires that the active OS is running.

Postcondition

In the resulting state, the active OS requires the execution of hc to the hypervisor, which takes
control of the execution.

2.3.5 Changes of execution mode

The ret_ctrl and chmod actions modify the execution mode of the processor. The first instruction
happens when the hypervisor regains control of the processor from an operating system (either
because the operating system gives back control voluntarily or because of an interruption). The
second one happens when the hypervisor is ready to let some operating system execute.

Action ret_ctrl

The active OS returns the execution control to the hypervisor.

Rule

act = (aos, runnig)
(aos, waiting) = act′

(oss, act, hyp,mem, cache, tlb) ֒
ret_ctrl,act
−−−−−−−−−→ (oss, act′, hyp,mem, cache, tlb)

Precondition

The action ret_ctrl requires that the active OS is running.

Postcondition

In the resulting state, the hypervisor is running.
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Action chmod

The hypervisor gives to the active OS the execution control.

Rule

act = (aos, waiting) oss[aos] = (_, None)
(aos, running) = act′

(oss, act, hyp,mem, cache, tlb) ֒
chmod,act
−−−−−−−→ (oss, act′, hyp,mem, cache, tlb)

Precondition

The action chmod requires that the hypervisor is running, and that there is no hypercall
pending for the active OS.

Postcondition

In the resulting state, the active OS is running.

2.3.6 Hypervisor mapping updates

Hypervisor mapping updates model dynamic memory allocation and deallocation by operating
systems. They are privileged actions, and are therefore only executed by the hypervisor (on
behalf of an operating system, by means of an hypercall). These updates allocate a free memory
page to the requesting operating system (page_pin), or deallocates a page from its memory
(page_unpin).

Action page_pin pa t

The memory page that corresponds to physical address pa, for the active OS, is registered
and classified with type t.

Rule

act = (aos, waiting) oss[aos] = (pa′, P in pa t)
hyp[aos][pa] = ⊥ free_madd(mem) = ma

oss[aos := (pa′, None)] = oss′ hyp[aos][pa := ma] = hyp′

mem[ma := (t, aos, true)] = mem′

(oss, act, hyp,mem, cache, tlb) ֒
page_pin pa t,act
−−−−−−−−−−−−−→ (oss′, act, hyp′,mem′, cache, tlb)

Precondition

The action page_pin pa t requires that the hypervisor is running, that the active OS must
be waiting for an hypercall to pin the physical address pa of type t, and that pa must not be
already allocated. In addition to that, there must be a free machine memory (ma) available.

Postcondition

The effect of the action is to create and allocate at machine address ma a new page of type t
whose owner is the active OS and bind, in the hypervisor mapping, the physical address pa to
ma. The rest of the state remains unchanged.
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Action page_unpin pa

The memory page that corresponds to physical address pa, for the active OS, is un-
registered.

Rule

act = (aos, waiting) oss[aos] = (pa′, UnPin pa) pa′ 6= pa
get_page_hyp(s, aos, pa) = (ma, pg)

is_empty(pg) madd_in_no_PT (aos,ma,mem)
oss[aos := (pa′, None)] = oss′ hyp[aos][pa := ⊥] = hyp′

mem[ma := (Other,No_Owner, true)] = mem′

s = (oss, act, hyp,mem, cache, tlb) ֒
unpin pa,act
−−−−−−−−−→ (oss′, act, hyp′,mem′, cache, tlb)

Precondition

The action page_unpin pa requires that the hypervisor is running, that the active OS must
be waiting for an hypercall to unpin the physical address pa, that pa is not the current page
physical address of the active OS, and that if the page associated with the machine address
ma, mapped by pa in the hypervisor mapping, is of type PT , it must be empty. Finally, ma
can not appear in any page table of the active OS (all such mappings should be removed
beforehand, by calling the del action).

Postcondition

The action removes the mapping of pa to ma in the hypervisor mapping. In the resulting state,
the page pg is un-registered.

2.3.7 Silent

The silent action is any instruction that does not have an effect on the state of the platform.
One instance of such an instruction might be an arithmetic operation on registers, which does
not modify the memory state of the platform.

In addition, we have used silent actions for some properties such as transparency in [21],
where we proved that operating system behavior does not change if we turn all actions of other
operating systems into the silent action.
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Action silent

Represents the silent action –the system does not advertise any effects.

Rule

(oss, act, hyp,mem, cache, tlb) ֒
silent,act
−−−−−−−−→ (oss, act, hyp,mem, cache, tlb)

Precondition

This operation has no restrictions for execution.

Postcondition

The state does not change.

2.4 Invariance of valid state

Given the state definition and action semantics, we can now prove that one-step execution
preserves the valid state property. That is to say, the state resulting from the execution of an
action in a valid state is also a valid one.

Lemma 2.4.1 (Valid State Invariant).
∀ (s s′ : SLST) (a : Action) (o : OSId), valid_state(s) → s ֒

a,o
−−→ s′ → valid_state(s′)

Proof. To prove this lemma one has to prove all valid state conditions for all actions. We will
briefly describe the proof for some of these cases.

• First, we start with conditions 8 and 9 for the write action. Condition 8 states that “all
cache keys, (va, ma) pairs, are related in some page table mapping of the memory”; and
condition 9 that “all cache pages have the same owner and type (readable/writable) as
those in machine memory”.

We assume we have a valid state s and execute the write vaw val, to get to state s′. By the
semantics of the write action, there must be a machine address maw such that vaw maps
to maw in the current page table of the active OS. If the written page is not cacheable, the
cache does not change in s′. The only change is in the value of the memory page at maw.

Since this page is not cacheable, no cache entry can have maw as a machine index, and
therefore condition 8 and 9 holds for all cache pages in s′.

If the written page is cacheable, then in s′ there is a new entry (vaw,maw) in the cache. As
mentioned before, the current page table mapping maps vaw to maw in s and s′, proving
condition 8. Furthermore, this page have the same owner and type as the memory page,
since the only difference is in the value; therefore condition 9 also holds.

• The other case we will consider is that of conditions 4 and 6 for the new action. These
conditions state that “all page tables of an OS o map accessible virtual addresses to pages
owned by o and not accessible ones to pages owned by the hypervisor” and “any machine
address ma which is associated to a virtual address in a page table has a corresponding
physical address as pre-image in the hypervisor mapping”, respectively.

Again, we assume we have a valid state s and execute the new van pan, to get to state
s′; where we know that van is accessible. If the operating system o is not active, the
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conditions hold since it is another operating system that executes the action, and therefore
the memory structures of o do not change. If it is active, then by the action semantics, pan
must have a corresponding man in the hypervisor mapping of o; and therefore condition
6 holds. Furthermore, since s is valid and the hypervisor mapping does not change, the
memory page at man must be owned by o, proving condition 4.

In this manner we can prove all conditions for all actions to finish the proof of the lemma. It
should be noted that in the previous description many details have been omitted. In reality, the
proof of this lemma is particularly cumbersome, involving the analysis of many cases, derived
from the complexity of the action semantics and the valid state conditions.

Platform state invariants, such as state validity, are useful to analyze other relevant properties
of the model. In particular, the results presented in the following sections are obtained from
valid states of the platform.





Chapter 3

Isolation

One of the main goals of this work is to provide convincing and formal arguments that constant-
time implementations constitute an adequate defense against the threats posed by cache-based
attacks. For this we use the idealized model of virtualization presented in the previous chapter,
where for the sake of concreteness, we will consider a scenario with only two guest operating
systems: a victim operating system ov and an attacker operating system oa. In particular, we
will focus on the class of attacks where the malicious operating system oa adaptively probes the
state to retrieve information about previous execution steps and then launches an attack to learn
information otherwise private to the victim operating system. The description of this attacker
model will be presented in Section 3.1.

The property of isolation and non-leakage of victim data in which we are interested is a
non-interference result on execution traces of the platform, where the notion of indistinguishability
amounts to equality of observations resulting from the execution of the victim actions. In Section
3.2 we describe the general framework for reasoning about non-interference and its variants.
Following the usual non-interference definitions, in Section 3.3 we define the state equivalence
relation we will use. In Section 3.4 we introduce execution traces; then we show the necessary
unwinding lemmas in Section 3.5, and prove our main isolation result in Section 3.6.

3.1 Adversary model

The class of attacks we model are cache timing attacks, i.e. attacks that exploit the side-channel
created by the timing difference between a data access from the cache (cache hit) and an access
from main memory (cache miss). This kind of attacks have been successfully used to recover the
secret keys of various cryptographic algorithms, such as DES [121] and AES [106, 68].

For efficiency, usual implementations of cryptographic algorithms make use of precomputed
results stored in memory called look-up tables. Instead of computing a time-consuming operation
in real-time, the result is searched in those tables. The problem arises because the parameters of
the operation (the indices used to access the table) generally depend on the secret key used. If
an attacker could see the sequence of memory accesses of the victim program, he could deduce
the value of the key, since he knows which table entries were accessed.

Even before these attacks, the problem of side-channels was a well-known issue that led to
their integration into security models for cryptography. Physically observable cryptography [99]
is one example of a model that aims at providing a realistic framework for cryptographic proofs
by giving adversaries the ability to draw observations about the physical execution of programs.
One essential component of physically observable cryptography is a leakage oracle that can be
called by the adversary with an observation function ℓ from states to some observation domain
Obs, and obtains as a response the value of ℓ(s) where s is the current state of the system. The

33
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leakage function captures at an abstract level and in a uniform manner different side-channels
and yields a tractable model in which to reason about the security of cryptographic constructions,
in the style of provable security.

We specialize physically observable cryptography to the case of cache-timings attacks, in
which the attacker can perform timing measurements on the cache in order to discover which of
his cached pages are no longer cached after execution of the victim OS. The observations are
therefore the set of virtual addresses that correspond to evicted cache entries of the attacker.
Given a transition s ֒

a,o
−−→ s′, we will define the function ℓ(s, s′) as the set of virtual addresses of

the attacker that are cached in s, but evicted during the execution of action a by the OS o, and
therefore not cached in s′.

The security property we prove establishes that the observations that the adaptive adversary
draws during execution of a constant-time victim are independent of the victim data. The
adaptive attacker in this setting is formalized using an adversarially controlled scheduler: at each
step the adversary can decide whether the victim operating system or itself will execute. We
further give the adversary the power to trigger the resolution of pending hypercalls. Formally,
we model this attacker as a function A that takes a partial execution trace up to that point, and
returns either a tag V ictim, if the attacker lets the victim operating system perform the next
action, or an action of its choice Attacker a that it will execute in the next step. The reason for
giving the attacker complete control over the scheduler is to model the ability of the attacker to
let the victim execute few instructions between measurements, improving the bandwidth of the
side-channel. For example, Bangerter, Gullash and Krenn show an efficient attack on AES, by
exploiting the Linux Completely Fair Scheduler [68].

In addition to controlling the scheduler and observing its cache entries, we will let the attacker
observe all state components, except the values stored in readable/writable pages owned by the
victim. We will therefore define the attacker so that it will not be able to distinguish between
states that only differ in victim data. In other words, the adversary will be able to observe its
own readable/writable memory pages; the values of its own cache entries; the memory layout of
the victim, as defined by the page metadata (owner and cacheable status) of the victim memory
pages and the layout and history of the cache. The adversary cannot, however, directly read,
write or observe page tables or the hypervisor mappings (either its own or the victim). This is
because these mappings are maintained by the hypervisor and guest OSs have no direct access to
them. Moreover, the adversary cannot directly observe the values held in the memory or cache
entries of the victim.

By giving the adversary this much visibility over the victim state, we capture the kind of
attacks we are interested in: if two states differ in one of these observable components, the
execution of an action might replace an attacker entry in the cache, potentially leading to a
cache-based information leakage. On the other hand, we will prove that if two actions with the
same effect are executed in two equivalent states (indistinguishable for the attacker), the attacker
cache entries are equal in the resulting states, and therefore the leakage function will always
return the same observations.

Our adversary model is strong enough to allow us to model various kinds of realistic attacks.
For example, Osvik et al [106] use synchronous attacks to efficiently recover AES keys. In a
synchronous attack the attacker can trigger victim encryptions at will. Our adversary is able to
perform these attacks, since it has complete control over the scheduler. The authors mention two
different kinds of synchronous attacks: “Evict+Time” and “Prime+Probe”.

In the first, “Evict+Time”, the attacker begins by executing the encryption once, making
sure the victim relevant look-up table entries are stored in the cache. Then it evicts some cache
entries by accessing its own memory addresses, and runs the encryption once more, this time
timing its execution. By measuring the victim execution time, the attacker can learn whether the
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evicted entry was accessed by the second execution or not. This allows the attacker to recover
the key by repeating this process and performing a statistical analysis afterwards.

We are able to capture this kind of attacks. Indeed, if we consider two executions of the
attack, such that the cache entry evicted by the attacker is accessed in the first but not in the
second, then our adversary would be able to draw different observations. This is because after
the first execution, the victim replaces an attacker entry in the cache (therefore the leakage
function returns this entry virtual address); while after the second execution, no attacker entry
is replaced (and therefore the leakage function returns no virtual address).

The second kind of attack, “Prime+Probe”, can also be modeled. This attack works by
first filling the cache with attacker entries (by reading a wide range of memory address); then
triggering an encryption, where the victim replaces some (attacker) entries from the cache; and
finally measuring the time it takes for the attacker to access its own addresses. In this case, our
leakage function would return different results during the execution of the victim, if it removes
different attacker entries from cache.

3.2 Non-interference

To prove that the behavior of the attacker is not influenced in any way by private data of
the victim, we need to study how information flows between guest operating systems in our
model, even in the presence of cache side-channels. For this we will use a technique called
non-interference, first described by Goguen and Meseguer [63, 64], which is a formal framework
for the specification and verification of security properties based on restrictions on the information
flow between different domains of a system. A domain is a portion of the system with a given
security level. It can be a user, a process or as in our setting, a guest operating system.

The basic idea is to separate the model of a system from the security policies specifications
that the system should exhibit, and to provide a general technique for proving that a system
satisfies a given policy. The model is defined in terms of state transitions, with focus on operations
and outputs. The policies must specify the restrictions on how the different domains interact
with one another, and are therefore defined in terms of: interference assertions, which expresses
that a domain u can influence another domain v (written u v); and non-interference assertions,
that prohibit a domain from influencing another (written u 6 v) [111].

We will closely follow von Oheimb’s formulation of non-interference [103], using similar
concepts, and instantiating various security models defined in that work to study variations
that are relevant for our purposes. In that work, two variants of the model are presented for
deterministic and nondeterministic systems. Since our virtualization model is deterministic (see
Section 2.1.2), we will focus only on the deterministic case. In this case, a step function is defined
so that given a state and an action, it returns the new state after the execution of the action. A
run of a system is defined as the lifting of the step function to a finite sequence of actions from
an initial state s0. Therefore, run(s0, α) is the final state after executing all actions in the list α.
Furthermore, each action a has a domain associated with it (written dom(a)), that represents
the domain that executes the action.

There are basically two complementary policies that show that a domain does not influence
another, depending on whether the focus is on behavior (some events are secret and should not
interfere with other domains) or on data (some data is secret and should not leak to untrusted
domains). In the first case, the attacker must be unable to distinguish whether a secret event
happened or not; while in the second, the attacker is unable to distinguish between two executions
starting from states that only differ on the secrets. This lead von Oheimb to define two related
notions for each of these approaches: non-interference and non-leakage, and then combine them
in what he calls non-influence.
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Non-interference captures the idea that a domain v cannot distinguish between an execution
with a domain u that cannot influence it (u 6 v) and an execution where the actions of u
are not present. In order to model the ability of a domain to distinguish between executions,
an unwinding relation on states parameterized by a domain is defined. This relation captures
the partial view of the system by this domain. Two states s and t are in this relation, written
s

u
∼ t, if u cannot distinguish between the two. In the general case, this does not need to be

an equivalence relation [96]. In the following, we will only consider state equivalences as the
unwinding relation, so we will also restrict this discussion to these kinds of relations.

Formally, the non-interference property can be stated as follows:

Definition 3.2.1 (Non-interference). A system is non-interferent if and only if for every initial
state s0, list of actions α, and domain u, run(s0, α)

u
∼ run(s0, ipurge(u, α)).

Here, the function ipurge removes all actions executed by a domain that cannot influence u,
either directly or indirectly, from the run. This property shows that domains cannot distinguish
between a run and the variant without the actions of the domains not allowed to interfere with
it. This implies that the execution of these actions have no effect on the behavior of u, and
therefore, no interference is possible between these domains.

Two lemmas are used to prove this property; these are the step consistent and the locally
preserves unwinding lemmas:

Lemma 3.2.2 (Step-consistent unwinding lemma). Let s and t be states, a an action and u a
domain, such that s

u
∼ t. Then, step(a, s)

u
∼ step(a, t).

Lemma 3.2.3 (Locally preserves unwinding lemma). Let s be a state, u a domain and a an
action, such that dom(a) 6 u. Then, s

u
∼ step(a, s).

The first lemma establishes that the execution of the actions allowed to interfere with u
depends exclusively on the visible part of the state. The second, that the execution of the other
actions are transparent for u, in the sense that u cannot tell if the action was executed or not.
With these two lemmas, the non-interference property is established.

There is also a “strong” version that allows for arbitrary action removal or addition, instead
of purging all actions not allowed to interfere with a domain. The property in this case would
state that, given two arbitrary runs α and β, such that ipurge(u, α) = ipurge(u, β), then
run(s0, α)

u
∼ run(s0, β). However, it is easy to show that this version is equivalent to the classical

one when the unwinding relation ∼ is symmetric and transitive.
Note that both versions use finite runs of actions, and they only require that the equivalence

holds in the final states. In other words, the system runs to the end and then the resulting states
are inspected to see if there are observable differences. Our approach will deviate from these
assumptions, and use infinite (co-inductive) runs. The reason for this is that we are modeling
the execution of a virtualization platform and there is no final state to be reached, the platform
should continuously execute, handling requests from the processes in the guest operation systems.

This has important implications on the way we can state noninterference properties. Since it
is somewhat complex to define a purging function on infinite runs, we will define an equivalence
relation that constructs two traces with the same visible actions, and arbitrary non-visible actions.
This is a variation on “strong” non-interference, that uses a co-inductive equivalence relation for
the condition ipurge(u, α) = ipurge(u, β). We present the formal definitions of these relations
in Section 3.4 and Chapter 5. In a previous work we have used and proved a non-interference
property more similar to the classical one, which we called transparency, where instead of purging,
we transform non-observable actions to the silent action [21].
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The classical notion of non-interference is primarily focused on the visibility of events. The
secrecy of state information is secondary, and handled via side-effects. There is a complementary
version, called non-leakage, that deals with secret information and treats events as secondary.

This property can be stated as follows:

Definition 3.2.4 (Non-leakage). Let s and t be a states, u a domain and α a list of actions,

such that s
sources(u,α)

∼ t. The system is non-leaking if and only if run(s, α)
u
∼ run(t, α).

Here the function sources(u, α) returns the domains that execute actions in α that can influence
u.

Non-leakage means that, starting from two indistinguishable states, the execution of a sequence
of actions leads to indistinguishable final states; in other words, all possible observations are
independent of state information that cannot be observed.

To prove this theorem, only the step-consistent unwinding lemma is necessary, since the same
action sequence is used in both executions, and no purging is necessary.

The combination of non-interference and non-leakage, called non-influence by von Oheimb,
makes it possible to reason about state information and events at the same time. It can be stated
as:

Definition 3.2.5 (Non-influence). Let s and t be a states, u a domain and α a list of actions, such

that s
sources(u,α)

∼ t. A system is non-influencing if and only if run(s, α)
u
∼ run(t, ipurge(u, α)).

In this chapter we will prove a non-leakage result, where the equivalence of states will treat
the victim operating system data as secret and the rest of the state as visible. This will allow us
to show that constant-time implementations (in which the sequence of actions is fixed and does
not depend on data) do not leak information through cache side-channels.

Later, when we introduce stealth memory in Chapter 5, we will not only focus on non-
leakage of secret information, but also on the secrecy of stealth actions. We will therefore use a
non-influence property in that case.

3.3 Equivalence of states

In order to instantiate non-leakage in our model, we start by defining an equivalence relation ∼
between states to represent the partial view of the attacker operating system oa on the state;
thus, two states s and s′ s.t. s ∼ s′ coincide on all parts of the state exposed to the attacker.
The fact that we allow dynamic memory allocation through the execution of the pin action
complicates the definition of this relation. Since we cannot state it directly in terms of machine
addresses, we do it indirectly through the use of the hypervisor mapping physical addresses,
which are chosen by the operating systems, and are therefore the same in both executions. The
definition of this relation is a conjunction of equivalence definitions for the relevant components
of the state, which follow:

Definition 3.3.1 (Equivalence of OS information). The operating system information oss and
oss′ are equivalent for the attacker, if the attacker has the same current page table, and the same
hypercall in both states. Furthermore, the attacker must be either active in both states and have
the same activity, or not active in the states.

For the equivalence of the memory we consider two cases: when a physical address is mapped
to a readable/writable page (Equivalence of hypervisor mappings), and when it is mapped to a
page table (Equivalence of cache and memory mappings).
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In the first case (depicted in Figure 3.1) we require that the attacker readable/writable pages
are the same. Furthermore, the metadata of the memory pages of the victim must be the same
(pages should have the same owner, and same cacheable flag, but can hold an arbitrary value).
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Figure 3.2: Equivalence of cache and memory mappings

In the second, since machine addresses are arbitrary in both states, the page tables will contain
different mappings. For these page tables to be in the equivalence relation, all virtual addresses
mapped in one page table must be also mapped in the other. Furthermore, readable/writable
pages mapped by a virtual address should be the same, if the owner is the attacker, or have the
same metadata if it is a victim page (see Figure 3.2).

More formally, these two equivalence relations are as follows:

Definition 3.3.2 (Equivalence of hypervisor mappings). Two states s and s′ have equivalent
hypervisor mappings for the attacker (s ∼hyp s′) if for every physical address pa, readable/writable
page pg and machine address ma:

• if get_page_hyp(s, oa, pa) = (ma, pg), there exists ma′ such that
get_page_hyp(s′, oa, pa) = (ma′, pg);

• if get_page_hyp(s, ov, pa) = (ma, pg), then there exists ma′ such that
get_page_hyp(s′, ov, pa) = (ma′, pg′), where pg and pg′ are equal except in their contents;

and reciprocally for s′.

Definition 3.3.3 (Equivalence of cache and memory mappings). Two states s and s′ have
equivalent cache and memory mappings for the attacker (s ∼mem s′) if for every physical address
pt_pa, page table pt_pg and machine address pt_ma, such that get_page_hyp(s, o, pt_pa) =
(pt_ma, pt_pg), there exist pt_ma′ and pt_pg′ such that get_page_hyp(s′, o, pt_pa) =
(pt_ma′, pt_pg′) and for all virtual addresses va and machine address ma such that pt_pg[va] =
ma and get_page_va_ma(s, va,ma) is readable/writable, then there exists ma′ such that
pt_pg′[va] = ma′. Furthermore, the same physical address pa that maps to ma in s, maps to
ma′ in s′; and moreover:

• if o = oa then get_page_va_ma(s, va,ma) = get_page_va_ma(s, va,ma′);
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• if o = ov, then get_page_va_ma(s,ma) and get_page_va_ma(s′,ma′) are equal except
in their contents;

and reciprocally for s′.

Finally, we consider the equivalence of cache histories. As stated in Section 2.2 the cache
history represent historic access information used by the replacement policy. Two histories are
equivalent if they have the same information for all cache indices. This equivalence guarantees
that the replacement policy will select the same entry for eviction from the two caches when
adding an entry in the same cache index. If this was not the case, it could remove an attacker
entry in one state, and a victim one in the other, leading to a leakage of information.

Definition 3.3.4 (Equivalence of cache histories). Two cache histories history and history′ are
equivalent for the attacker if for all cache index i, history[i] = history′[i].

3.4 Execution traces

The isolation property is eventually expressed on execution traces, rather than execution steps.
An execution trace is defined as a stream (an infinite list) of states that are related by the
transition relation −֒→, i.e. an object of the form s0 ֒

a0,o0
−−−→ s1 ֒

a1,o1
−−−→ s2 ֒

a2,o2
−−−→ s3 . . . such that every

execution step si ֒
ai,oi−−−→ si+1 is valid. Formally, an execution trace is defined as a stream Θ of

pairs of states, actions and OS, such that for every i ≥ 0, si ֒
ai,oi−−−→ si+1, where Θ[i].st = si,

Θ[i].act = a[i] and Θ[i].osi = oi.
We lift the indistinguishability relation to execution traces Θ and Θ′ using the following

co-inductive rules:

s ∼ s′ Θ ∼ Θ′

(s ֒
a,oa
−−→Θ) ∼ (s′ ֒

a,oa
−−→Θ′)

s ∼ s′ Θ ∼ Θ′ eff(a) = eff(a′)

(s ֒
a,ov
−−→Θ) ∼ (s′ ֒

a′,ov
−−−→Θ′)

These rules state that given two equivalent traces, one can add equivalent states s and s′ to
the beginning, as long as the same attacker action, or victim actions with the same effect are
used. In other words, two equivalent traces are indistinguishable for the attacker, at every point
of execution.

As mentioned in Section 3.1, the attacker has control not only on the actions it executes
(as we are modeling an adaptive attacker) but also on the scheduler, in the sense that it is the
attacker who decides what operating system will execute next at any given point of the execution.

We model the attacker controlled scheduler as a function that given the partial trace executed
up to that point, returns the next attacker action to execute, or hands control to the victim.

A : partial_trace → {V ictim | Attacker a}

We only require that the result of this function is the same when two partial traces are indistin-
guishable for the attacker, i.e. when they are equivalent with respect to the ∼ relation.

The execution traces will be generated by merging the attacker and victim actions in the way
indicated by this scheduler. We introduce the interleaving relation for this purpose:

A(pt) = V ictim s ֒
a,ov
−−→Θ[0].st interleave(Θ[0].st, pt ֒

a,ov
−−→ s, v_str,Θ)

interleave(s, pt, a :: v_str, s ֒
a,ov
−−→Θ)

A(pt) = Attacker a s ֒
a,oa
−−→Θ[0].st interleave(Θ[0].st, pt ֒

a,oa
−−→ s, v_str,Θ)

interleave(s, pt, v_str, s ֒
a,oa
−−→Θ)
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Given a state s, a partial trace pt, a stream of victim action v_str, and an execution trace
Θ, the interleaving is the result of adding the execution of the next action (of either the victim
in the first rule, or the attacker in the second) to the interleaving of the rest of the trace, where
the state is appended to the partial trace.

This definition is co-inductive, but it is complicated by the use of the partial traces, which
are inductive lists. Intuitively, the result is a trace where attacker actions (chosen by himself
based on the partial trace) are merged into the execution of the victim stream of actions.

This abstract interleaving function can be instantiated for common particular cases where the
attacker does not have control of the scheduler. As an example, we developed an implementation
of a round-robin scheduler and showed that it behaves as modeled by the definitions above.

3.5 Unwinding lemmas

The equivalence relation ∼ is kept invariant when the same attacker action or two victim actions
with the same effect are executed in two equivalent states. These results are variations of standard
non-interference unwinding lemmas, specifically step-consistent unwinding lemmas. Figure 3.3
shows a graphical representation of these lemmas.
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Figure 3.3: Step-consistent unwinding lemmas

Basically, we prove that the execution from two equivalent states of two victim actions with
the same effect does not change the attacker part of the state, and that it changes the victim
part of the state in a way that preserves the equivalence. We show a similar result when the
attacker executes the same action from two equivalent states. Formally:

Lemma 3.5.1 (oa step-consistent unwinding lemma). Let s1 and s′1 be states where oa is active,
and such that s1 ֒

a,oa
−−→ s2, s′1 ֒

a,oa
−−→ s′2 and s1 ∼ s′1. Then, s2 ∼ s′2.

Lemma 3.5.2 (ov step-consistent unwinding lemma). Let s1 and s′1 be states where ov is active,

and such that s1 ֒
a,ov
−−→ s2, s′1 ֒

a′,ov
−−−→ s′2, eff(a) = eff(a′) and s1 ∼ s′1. Then, s2 ∼ s′2.

Proof. To prove these lemmas each action must be analyzed checking the equivalence conditions
on the resulting states. To give an idea of the proof, we will describe the case of a write action
by the victim for the equivalence of hypervisor mappings.

We start with two valid and equivalent states s1 and s′1; two virtual addresses va and va′

and two values val and val′ such that s1 ֒
write va val,ov
−−−−−−−−−−−→ s2 and s′1 ֒

write va′ val′,ov
−−−−−−−−−−−−→ s′2. Since

eff(write va val) = eff(write va′ val′), the virtual addresses used must be the same; so va = va′.
Since the execution of the action is valid in both states, there must be some maw and ma′w

such that in the respective current page tables of ov pt_pg and pt_pg′, pt_pg[va] = maw and
pt_pg′[va] = ma′w. In addition, we must necessarily have get_page_ma(s1,maw) = pgw and
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get_page_ma(s′1,ma′w) = pg′w, where pgw and pg′w are readable/writable. Since va must be
accessible, by condition 4 of valid state these pages must also be owned by the victim.

To prove the equivalence for attacker pages, we assume that get_page_hyp(s2, oa, pa) =
(ma, pg), and have to prove get_page_hyp(s′2, oa, pa) = (ma′, pg). The valid state invariant
lemma tells us that s2 and s′2 are valid. Therefore, pg must be owned by oa. Furthermore, since
neither the hypervisor mapping or the page tables change during the execution of the writes,
the page pgw and pg′w are owned by ov in s2 and s′2 respectively. It is easy to see that the only
page that (possibly) changes in s1 after the write is pgw and it is not in ma, since the owners are
different. Therefore get_page_hyp(s1, oa, pa) = get_page_hyp(s2, oa, pa) = (ma, pg). Since s1
and s′1 are equivalent, it must be the case that get_page_hyp(s′1, oa, pa) = (ma′, pg). Again, it
can be shown that pg does not change during the execution of the action in s′1, and therefore
get_page_hyp(s′2, oa, pa) = (ma′, pg).

For the remaining case we have to show that if get_page_hyp(s2, ov, pa) = (ma, pg), then
there is a ma′ and pg′ in s′2 such that get_page_hyp(s′2, ov, pa) = (ma′, pg′) where pg and pg′

are equal except in their contents. Using condition 6 of valid state, we get a physical address paw
such that get_page_hyp(s1, ov, paw) = (maw, pgw). By the equivalence of cache and memory
mappings between s1 and s′1, we know that get_page_hyp(s′1, ov, paw) = (ma′w, pg

′
w).

Now we must consider two cases, when pa is equal to paw and when they differ. If they are
equal, then the pages in pa are equal to pgw and pg′w with the only difference of their value,
which are val and val′ respectively. If the physical addresses are different, the pages did not
change, and by the equivalence of s1 and s′1, they must be equal except for the value. This
concludes the proof of the equivalence of hypervisor mapping, for the victim write action.

As is typical of a non-leakage result, the other lemma generally used in non-interference, the
locally preserves unwinding lemma, is not necessary. A lemma of this kind would state that the
effects of some action are not observable by the attacker: if s1 ֒

a,o
−−→ s2, then s1 ∼ s2, for some

suitable action a.
Indeed, we do not need this result for our (current) purposes since, as we are modeling

constant-time victims, we require that the victim performs the same number of actions in the
same order in both executions1. This means that the attacker and the victim executions will
be in lockstep, and therefore only lemmas that advance by one action in each execution are
necessary.

Note that extra actions in one of the executions represent a victim unbalanced branch that
depends on secret data. This branching is not allowed in constant-time implementations, so our
requirements for the victim are consistent with this hypothesis. This will be made clearer in
Chapter 4, where we define a static analysis on victim code to guarantee that the implementation
is constant-time.

3.6 Isolation Theorem

The isolation theorem is one of our main results, putting together our unwinding lemmas and
the interleaving of two traces of victim actions. In order to capture the condition that the victim
actions executed in both traces have the same effects, we define the ≈ relation as follows:

eff(a) = eff(a′) v_str ≈ v_str′

(a :: v_str) ≈ (a′ :: v_str′)

1This lemma will be necessary when we introduce Stealth Memory in Chapter 5, where the isolation theorem
corresponds to a non-influence property.
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The theorem states that given two initial and equivalent states, and two traces of victim
actions with the same effects, the attacker cannot distinguish between the two execution traces
generated by interleaving the traces of victim actions:

Theorem 3.6.1 (Constant-time isolation). Let s0 and s′0 be two states such that s0 ∼ s′0; let
v_str and v_str′ two sequence of victim actions such that v_str ≈ v_str′; and let Θ and Θ′

be traces such that interleave(s0, [], v_str,Θ) and interleave(s′0, [], v_str′,Θ′). Then Θ ∼ Θ′.

Proof. The proof is done by co-induction, using the unwinding lemmas where appropriate.
Intuitively, partial traces are always equivalent, so the attacker will at each point select the next
victim action (in which case they must have the same effects) or the same action for himself.
This guarantees that both interleaved traces are in lockstep, so we can apply the unwinding
lemmas to finally prove the equivalence of the traces.

Note that the condition that victim actions have the same effect in both traces is necessary
because the execution of two actions with different effects, a read to va in Θ and a read to va′

in Θ′ for instance, may provoke different attacker entries to be evicted from the cache, leading to
different observations for the attacker. An access to different addresses in the traces represents a
victim that makes memory accesses that depend on secret data (as in a table look-up, with the
key as the index). This kind of access is forbidden in constant-time implementations.

Furthermore, this is a condition that depends exclusively on the victim behavior. This will
allow us to connect this result with an application level analysis, to give formal guarantees of
non leakage for constant-time programs (written in the C language). The next chapter explains
this connection in detail.

On the other hand, we can also prove a result on the attacker observations, in the style of
physically observable cryptography. We show that the attacker cannot gain information by calling
the leakage oracle after the execution of an action:

Lemma 3.6.2 (Step non-leakage for equivalent states). Let s1 and s′1 be states such that

s1 ֒
a,o
−−→ s2, s′1 ֒

a′,o
−−→ s′2 and s1 ∼ s′1. Furthermore, a and a′ are the same action if o is the attacker,

or have the same effect if it is the victim. Then, ℓ(s1, s2) = ℓ(s′1, s
′
2).

Proof. The proof is based on the equivalence of s1 and s′1 to show that after the execution of the
actions, the same cache entries are evicted from both states. The equivalence relation has to be
strong enough for this to be the case, and this is the main reason our equivalence is so complex,
involving many state components and different conditions, as a simpler relation would not be
enough to guarantee that the attacker observations are the same. This strong equivalence makes
the proof of the unwinding lemmas and the main isolation theorem much more complex, as these
results are correspondingly stronger.

This lemma can be easily generalized to show that the leakage oracle returns the same
observations for each state in two equivalent traces: if Θ ∼ Θ′, then for all i, ℓ(Θ[i].st,Θ[i+1].st) =
ℓ(Θ′[i],Θ′[i+ 1]).

Since the scheduler model is very general and can be influenced by the attacker, we are able to
obtain a very strong isolation result. However, the approach we took still has some shortcomings.
The scheduler is based on discrete actions, and not based on timing, as it is usually the case
(i.e. instead of giving each OS the same time slice to execute, our example round robin scheduler
executes the same number of actions for each OS). Modeling a more realistic scheduler would
pose a significant challenge, since it would require to have a concrete timing model for the target
architecture instructions. This kind of analysis would be extremely difficult in the context of
program verification, where it would be necessary to guarantee that the timing of the execution
of the victim is independent of secret values.



Chapter 4

Language-based security

In the previous chapter we presented an isolation result that guarantees non-leakage on the
idealized virtualization model, under the assumption that the addresses accessed by the victim
process were independent of its data. As mentioned at that time, this condition only depends
on the behavior of the victim, and can be checked on the victim program source code. In this
chapter we describe a way of guaranteeing non-leakage at the application level, by performing a
static analysis on programs. The analysis enforces that the program is constant-time, i.e. that
the sequence of memory accesses is independent of the value of some secret information that
needs to be protected against leakage. We will show that constant-time programs validated by
our analysis, are indeed protected against cache side-channel attacks when running together with
a malicious operating system in a virtualization platforms, by linking the static analysis at the
application level with the isolation results at the (idealized) system level.

Our analysis is built on top of CompCert [93], a formally verified, optimizing C compiler that
generates reasonably efficient assembly code for x86 platforms (as well as PowerPC and ARM). In
addition to being a significant achievement on its own, CompCert provides an excellent platform
for developing verified static analyses. We take specific advantage of two features of CompCert:

1. its memory model, which achieves a subtle and effective compromise between exposure to
machine-level representation of memory and tractability of formal proofs, and is ideal for
reasoning about properties that relate to sequences of memory accesses;

2. its sophisticated compilation chain, which involves over 15 passes, and about 10 intermediate
languages, which are judiciously chosen to provide compact representations on which
program analyses can be verified.

Our goal is to implement a static data-flow analysis for checking whether programs perform
conditional jumps or memory accesses that depend on secrets, and to derive strong semantical
guarantees for the class of programs accepted by the analysis. In Section 4.1 we give some
background on data-flow analyses in general.

In order to obtain meaningful results, it is important that our analysis is performed on
intermediate representations towards the end of the compilation chain, rather than source C
programs; indeed, some compilation passes in the compiler middle-end (typically at RTL level)
may modify and reorder memory accesses and hence a non-leaking C program could well be
transformed into a leaking x86 program, or vice versa. This happens regardless of the semantic
preservation property guaranteed by CompCert, since it does not guarantee that the sequence of
memory accesses of the program will remain unchanged. Indeed, some compiler passes such as
register allocation, will indeed modify the sequence of memory accesses of the program. We will
therefore settle on performing our analysis on a minor variation of the nearly final intermediate

43
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1. i = xH;

2. if (i < 0) {

3.    i = 0;

4. }

5. y = A[i];

1. i = xH;

2. i < 0

3. i = 0;

false

5. y = A[i];

true

Figure 4.1: Example program and its CFG

language, which we called MachIR. Studying ways of performing the analysis at the source level,
and providing guarantees even in the presence of some optimizations is left as future work, as
this would greatly simplify the static analysis.

In Section 4.2 the syntax and semantics of the MachIR intermediate language is presented.
In Section 4.3, we show that the sequence of memory addresses of a program in Mach, MachIR
and assembly are equal, in order to be guarantee that the properties we prove also hold for the
program executable code. Sections 4.4 and 4.5 present two related static analysis. The first
computes the memory addresses that will be accessed at run-time by the program, while the
second type verifies that the program is constant-time, by means of a type system that guarantees
that memory accesses do not depend on secret information.

Our first result on programs that are accepted by the type system is a soundness lemma
presented in Section 4.6. Intuitively, this guarantees that programs that type-check behave
as required by the isolation theorem presented in Chapter 3, i.e. that all memory addresses
accessed by the program are independent of secret information. The formal link between the two
models is described in Section 4.7. Finally, Section 4.8 concludes the chapter with a discussion of
limitations and future work related to our constant-time type system.

4.1 Data-flow analysis

Data-flow analysis is a technique used to deduce information about the run-time behavior of a
program, by only studying the static program code [79] Its most common applications are in
implementing compiler optimizations, such as constant propagation and liveness analysis; and
in information flow analysis [52]. Here we will use it to enforce a constant-time behavior on
programs, and therefore guarantee that secrets do not leak through cache side-channel attacks.

Data-flow analyses usually work on a program representation called the control-flow graph
or CFG. In a CFG each node corresponds to a program instruction, and there is a transition
between each node and the node or nodes corresponding to the next instructions in the code.
Figure 4.1 shows an example program and its CFG representation.

The goal of the analysis is to compute, for each instruction, facts that are guaranteed to hold
in every possible execution of the program. For this, one defines what information is present at
the start of the program, how the execution of each node changes this information, and how to
combine the information when a node has more than one incoming edges. More formally, an
instance of a data-flow problem (DFP) includes a CFG, a domain D of data-flow facts, an initial
fact init, an operator ⊓ that combines incoming facts, and a transfer function fn : D → D that
computes the effect of executing n.

Kildall [79] studied this kind of problems and proposed an algorithm to compute the fixpoint
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C Source

Cminor

RTL

Mach

ASM

CFG Construction

static analyses for

code optimization
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Taint Analysis

this thesis

code linearization,

register spilling

Figure 4.2: CompCert architecture overview with MachIR addition

for the DFP, that always finds the best solution (meet over all paths or MOP), provided the
domain D is a complete lattice with no infinite descending chains, ⊓ is the lattice meet operator,
and fn is distributive.

Data-flow analysis, and Kildall’s algorithm in particular, can be used to formally study a
program information flow behavior. Secure information flow analysis shows how information
travels between variables in the program, detecting undesirable flows. Usually one classifies
program variables with a security level (generally just public or Low, and secret of High),
and forbids the assignment of a High value to a Low variable, through either explicit (called
flow-insensitive information flow) or also implicit assignments (called flow-sensitive).

In this work, instead of forbidding flow from High to Low variables, we will taint or mark as
High variables that receive the value of a High variable. We will then check that a program never
uses a High variable in the condition of a branch or loop, or as an array index. The example
program of Figure 4.1, for example, would be rejected by our analysis assuming xH is High.
Indeed, the variable i is tainted at instruction 1, and it is used in the condition of the if at
instruction 2, which is not allowed. In addition, at instruction 5, the same High variable i is
used to access array A, which is also forbidden.

4.2 MachIR syntax and semantics

The static analysis we are interested in requires reasoning about the sequence of memory accesses
of the program. For this kind of analysis, the most appropriate representation is Mach, the last-
but-final intermediate language in the CompCert compilation chain. This language is used after
compiler passes that may introduce new memory accesses, and immediately before generation of
assembly code. Hence the sequence of memory accesses at Mach and assembly levels coincide.
Moreover, Mach has a compact syntax, which is important to reduce proof effort.

On the other hand, the Mach language does not enjoy a control flow graph representation,
which is a drawback for performing static analyses. We therefore adopt a minor variant of Mach,
which we call MachIR, that retains the same instruction set as Mach but makes explicit the
successor(s) of each instruction, see Figure 4.2. MachIR is a suitable representation for building
verified static analyses about sequences of memory accesses of programs.

A MachIR program p is represented by a (partial) map of program nodes to instructions, i.e.
as an element of N ⇀ I. Each instruction explicitly carries its successor(s) node(s) in the control
flow graph.

The most basic instructions manipulate registers and perform conditional and unconditional
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N ∋ n CFG nodes
R ∋ r register names
S ∋ S global variable names
A ∋ addr ::=

| based(S) based addressing
| stack(δ) stack position
| indexed indexed addressing

O ∋ op ::=
| addrof(addr) symbol address
| move register move
| arith(a) arithmetic operation

I ∋ instr ::=
| op(op,~r , r ,n) register operation
| loadς(addr ,~r , r ,n) memory load
| storeς(addr ,~r , r ,n) memory store
| goto(n) static jump
| cond(c,~r ,nthen ,nelse) conditional static jump

Figure 4.3: Instruction set

jumps: op(op,~r , r ,n) (register r is assigned the result of the operation op on arguments ~r ;
next node is n), goto(n) (unconditional jump to node n) and cond(c,~r , nthen , nelse) (conditional
jump; next node is nthen or nelse depending on the boolean value that is obtained by evaluating
condition c on arguments ~r).

Memory is manipulated trough two instructions: loadς(addr ,~r , r ,n) (register r receives the
content of the memory at an address that is computed with addressing mode addr and arguments
~r ; next node is n) and storeς(addr ,~r , r ,n) (the content of the register r is stored in memory at
an address that is computed with addressing mode addr and arguments ~r ; next node is n). ς
describes the type of memory chunk that is accessed (of size 1, 2 or 4 bytes).

Addressing based(S) (resp. stack(δ)) directly denotes the address of a global symbol (resp.
of the stack memory block). Pointer arithmetic is performed through addressing mode indexed.
Additional instructions are used to access the activation record of a procedure call, and to perform
the call. Figure 4.3 gives an excerpt of the language instruction set.

Figure 4.4 presents part of the semantics of the MachIR language. Values are either numeric
values Vnum(i) or pointer values Vptr(b, δ) with b a memory block name and δ a block offset.
We let &SP denote the memory block that stores the stack. A state t = (n, ρ, µ)1 is composed of
the current CFG node n, the set of register values ρ and the CompCert memory µ.

The operational semantics is modelled with judgments:

t ֒
e
−→ t′

The semantics is implicitly parameterized by a program p. Informally, the judgment above says
that executing the program p with state t leads to a state t′, and has visible effect e, where e
is either a read effect read x (with x an address), or a write effect write x, or the null effect ∅.
Note that effects model the addresses that are read and written, but not their value. Figure 4.5

1To avoid confusion, we will use the letter t to denote states at the language level, and s to denote states at
the virtualization platform level.
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Num ∋ i numerics
Block ∋ b memory block identifiers

Val ∋ v ::=
| Vnum(i) numeric value
| Vptr(b, i) pointer value (block+offset)

S → Block ∋& address of symbols
R → Val ∋ ρ set of register values

Mem ∋ µ CompCert memory

Figure 4.4: Semantic domains

JindexedK(ρ, [r1; r2])= J+K(ρ(r1), ρ(r2))
Jglobal(S)K(ρ, []) = Vptr(&S, 0)
Jstack(δ)K(ρ, []) = Vptr(&SP, δ)

= undef otherwise

Jaddrof(addr)K(ρ,~r) = JaddrK(ρ,~r)
JmoveK(ρ, [r ]) = ρ(r)

Jarith(a)K(ρ,~r) = JaK(ρ[~r ])

p[n] = op(op,~r , r ,n ′)

(n, ρ, µ)
∅
−→P (n ′, ρ[r 7→ JopK(ρ,~r)], µ)

p[n] = loadς(addr ,~r , r ,n
′) JaddrK(ρ,~r) = vaddr µ[vaddr]ς = val

(n, ρ, µ)
read vaddr−−−−−−−→P (n ′, ρ[r 7→ val], µ)

p[n] = storeς(addr ,~r , r ,n
′) JaddrK(ρ,~r) = vaddr store(µ, ς, vaddr, ρ(r)) = µ′

(n, ρ, µ)
write vaddr−−−−−−−−→P (n ′, ρ, µ′)

Figure 4.5: Mach IR semantics (excerpt)

presents selected rules of the semantics. Note that an instruction like store4(stack(δ), [], r , n
′) will

assign the four stack positions δ, δ + 1, δ + 2 and δ + 3.

4.3 Equivalence between MachIR and assembly

In order to be able to perform our analysis using the MachIR language and guarantee our results
are valid in the resulting object program, it is necessary to show that it is sound and complete to
enforce standard, path, and memory-trace non-interference based on the MachIR (rather than
the ASM) representation of programs. Indeed, note that all languages in CompCert, including
ASM, Mach and MachIR share a same notion of initial state where each global variable is given
an initial value. We prove that for every Mach program p, the execution traces of p, its MachIR
form pMachIR, and its ASM form pASM are equal.
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4.4 Alias analysis

In order to enforce non-interference policies, constant-time verification must track how information
flows during execution. However, instructions such as storeς(indexed, [r1; r2], r ,n

′) do not show
explicitly which memory cell will be assigned at runtime. The standard solution, used e.g. by
Robert and Leroy [94] for the CompCert RTL language, is to perform an alias analysis. For our
purposes, it is sufficient to perform a simple type-based analysis, which is similar to a points-to
analysis [71] but restricts the set of points-to information to a singleton for each variable.

Our type system statically computes the points-to information PointsTo(n, addr ,~r) at every
node n for a memory access with an addressing mode addr and arguments ~r . Hence, if node
n contains an instruction loadς(addr ,~r , r ,n

′) or an instruction storeς(addr ,~r , r ,n
′), we have a

prediction, at compile time, of the targeted memory address.
We first define the set alias of alias information. An element of alias is of one of the forms:

1. Num, which represents only a numerical value;

2. Symb(S), which represents either a non-pointer value, or a pointer value that points to the
variable S;

3. Stack(δ), which represents either a non-pointer value, or Vptr(&SP, δ).

For example, if an instruction storeς(indexed, [r1; r2], r ,n
′) is performed at node n when r1

contains Vptr(&S, 8) and r2 contains the integer 16, the points-to static analysis may safely
predict PointsTo(n, addr ,~r) = Symb(S), because the accessed pointer is Vptr(&S, 24).

Alias information is partially ordered with Num ⊆ Symb(S) and Num ⊆ Stack(δ). This
partial order is lifted to alias maps by the standard pointwise lifting.

Programs are assigned types of the form:

A ∈ (N → S → alias)× (N → N → alias)× (N → R → alias)

where for every node n:

• A[n](S) gives the flow-sensitive points-to information of the global variable S;

• A[n](δ) gives the flow-sensitive information of the stack cell at address Vptr(&SP, δ);

• A[n](r) gives the flow-sensitive information of the register r .

The typing rules are given in Figure 4.6, and are mostly standard. Each load and store instruction
requires two cases: one for stack access and one other for global variable access. For a load at
node n, in a register r and on a pointer value that points to a global variable S, we transfer the
abstract content of A[n](S) to the abstract information A[n′](r) of the successor node n′. The
treatment is similar for a load on a pointer value that points to a stack position. For a store
at node n, from a register r to a pointer value that points to a stack position Vptr(&SP, δ), we
update the abstract content A[n′](δ) of the successor node n′. If the store is performed on a
global variable, we only perform a weak update: A[n′](S) must contain A[n](r) (the content
of the stored value), but also A[n](S) (the previous content), since the Symb(S) may represent
several concrete memory cells. The type system will reject some programs if a pointer value, at a
specific program point, may points-to a different symbol, depending on the path that has been
followed to reach this point. This restriction could be lifted by considering sets (rather than
singletons) of symbolic addresses.
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alias ::=
| Num numerical value
| Symb(S) points to any cell allocated

for symbol S
| Stack(δ) points to the δth stack cell

AJindexedK(a, [r1; r2])= AJ+K([a(r1); a(r2)])
AJglobal(S)K(a,~r) = Symb(S)
AJstack(δ)K(a, []) = Stack(δ)

= Num otherwise

AJaddrof(addr)K(a,~r) = AJaddrK(a,~r)
AJmoveK(a, [r ]) = a(r)

AJarith(a)K(a,~r) = AJaK(a[~r ])

A[n][r 7→ AJopK(A[n],~r)] ⊆ A[n ′]

A ⊢ n : op(op,~r , r ,n ′)

AJaddrK(A[n],~r) = Symb(S) A[n][r 7→ A[n](S)] ⊆ A[n ′]

A ⊢ n : loadς(addr ,~r , r ,n
′)

AJaddrK(A[n],~r) = Stack(δ)} A[n][r 7→ A[n](δ)] ⊆ A[n ′]

A ⊢ n : loadς(addr ,~r , r ,n
′)

AJaddrK(A[n],~r) = Symb(S) A[n][S 7→ A[n](r) ∪A[n](S)] ⊆ A[n ′]

A ⊢ n : storeς(addr ,~r , r ,n
′)

AJaddrK(A[n],~r) = Stack(δ) A[n][δ 7→ A[n](r)] ⊆ A[n ′]

A ⊢ n : storeς(addr ,~r , r ,n
′)

A[n] ⊆ A[n ′]

A ⊢ n : goto(n ′)

A[n] ⊆ A[nthen ] A[n] ⊆ A[nelse ]

A ⊢ n : cond(c,~r ,nthen ,nelse)

Figure 4.6: Alias type system
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p(n) = op(op,~r , r ,n ′)

Xh ⊢ n : τ ⇒ τ [r 7→ τ(~r)]

p(n) = loadς(addr ,~r , r ,n
′) PointsTo(n, addr ,~r) = Symb(S) τ(~r) = Low

Xh ⊢ n : τ ⇒ τ [r 7→ Xh(S)]

p(n) = loadς(addr ,~r , r ,n
′) PointsTo(n, addr ,~r) = Stack(δ)

Xh ⊢ n : τ ⇒ τ [r 7→ τ(δ) ⊔ · · · ⊔ τ(δ + ς − 1)]

p(n) = storeς(addr ,~r , r ,n
′)

PointsTo(n, addr ,~r) = Symb(S) τ(~r) = Low τ(r) ⊑ Xh(S)

Xh ⊢ n : τ ⇒ τ

p(n) = storeς(addr ,~r , r ,n
′) PointsTo(n, addr ,~r) = Stack(δ)

Xh ⊢ n : τ ⇒ τ [δ 7→ τ(r), . . . , δ + ς − 1 7→ τ(r)]

p(n) = goto(n ′)

Xh ⊢ n : τ ⇒ τ

Figure 4.7: Information flow rules for constant-time

Definition 4.4.1 (Alias-well-typed programs). A program p is alias-well-typed with respect
to an alias map A, if A ⊢ n : p[n] holds for all nodes n in p, and at the initial node n0 of the
program, A[n0] contains a correct abstraction of the initial program memory.

We forge the initial abstraction of the memory by scanning the declaration of the global
variables. If a global is initialised with a numeric constant, its initial abstraction is Num.
CompCert also allows to initialise a global with the address of an other global variable S. In this
case, the initial abstraction is Symb(S).

We note that the relative simplicity of our analysis is derived from the specific guarantees
provided by the CompCert memory model, and more particularly from the strong isolation
between global variables. The main complexity of our type system lies in its treatment of
stack manipulation, which requires specific care because the CompCert memory model does not
enforce any separation guarantee for it. The type system makes sure every access to the stack is
performed through constant addresses in order to track finely this part of the memory.

4.5 Constant-time type system

We define a constant-time type system that enforces standard, path and memory-trace non-
interference of programs. Informally, the type system prevents branching on secrets and performing
memory accesses that depends on a secret – otherwise the access would leak information.

As usual, we consider a lattice of security levels L = {Low,High} with Low ⊑ High. Initially,
the user declares a set X0

h ⊆ S of high variables.
Programs are assigned types (Xh, T ), where Xh ∈ S → L is a global type, and T ∈ N →

(N+ R) → L is a mapping from program nodes to local types. Xh is a flow-insensitive global
type which assigns a security level Xh(S) for every global variable S ∈ S. T is a flow-sensitive
local type which assigns for every offset δ ∈ N the security level T [n](δ) of the stack cell at
address Vptr(&SP, δ) and node n, and for every register r ∈ R its security level T [n](r) at node
n. Formally, the type system manipulates judgments of the form:

Xh ⊢ n : τ1 ⇒ τ2
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where Xh is a global type, n is a node, and τ1 and τ2 are local types, i.e. τ1, τ2 ∈ (N+ R) → L.
The type system enforces a set of constraints on X0

h, Xh and T . Typing rules are given in
Figure 4.7; we note τ(~r) for

⊔

r∈~r τ(r).
The rule for op(op,~r , r ,n ′) simply updates the security level of r with the supremum of the

security levels of ~r .
There are two rules for loadς(addr ,~r , r , n

′). The first one considers the case where the value
is loaded from a global variable S. In this case, the typing rule requires that all registers are low,
i.e. τ(~r) = Low, as we want to forbid memory accesses that depend on a secret. The security
level of the register r is updated with the security level Xh(S) of the variable. The second rule
considers the case where the value is loaded from a stack position at offset δ. In this case, our
type system conservatively requires that the memory access is constant (and statically predicted
by the alias type system). Note that the security level of the register r is set to the maximum of
τ(δ), . . . , τ(δ + ς − 1). Indeed, the security level of τ(δ) models the level of the 8-bit value at
position δ; if the load is performed with a memory chunk of size strictly bigger than 1, several
8-bit value will be accessed. Our type system takes care of this subtlety.

The two typing rules for store are similar to the rules for load. If the store is performed on
a global variable, we again require τ(~r) = Low to make sure the dereferenced pointer address
does not depend on secrets. The constraint τ(r) ⊆ Xh(S) propagates the security level of the
stored value. For a store on a stack offset, we again make sure to consider enough stack offsets
by considering the memory chunk of the instruction.

Definition 4.5.1 (Constant-time programs).
A program p is constant-time with respect to a set of variables X0

h, written X0
h ⊢ p, if there exists

(Xh, T ) such that for every S ∈ X0
h, Xh(S) = High and for all nodes n and all its successors n′,

there exists τ such that
Xh ⊢ n : T (n) ⇒ τ ∧ τ ⊑ T (n′)

where ⊑ is the natural lifting of ⊑ from L to types.

To type-check a program, the user needs to specify the set X0
h of initial secrets variables to

protect, then our compiler computes the sets Xh and T using Kildall’s algorithm [79], and finally
verifies if the program is constant-time, according to Definition 4.5.1.

4.6 Soundness of type system

The soundness property of our type system shows that programs that type-check are constant-
time. This means that, assuming all Low variables are equal in two initial states with arbitrary
High variables, the victim performs the same sequence of memory accesses. If this is the case, the
values of the (arbitrary) High variables have no effect on the addresses accessed by the victim,
and it is therefore constant-time.

We define an indistinguishability relation between states, noted t ∼Xh
t′, to capture the

requirement that all Low values (either global variables, stack cells or registers) are equal in t
and t′. Figure 4.8 shows the formal definition of this relation. We can then state our soundness
result:

Theorem 4.6.1 (Soundness of constant-time verification). Let p be a program that is alias
well-typed and constant-time well-typed with respect to a set Xh of high variables. For every
two executions of p:

t1 ֒
e1−→ t2 ֒

e2−→ t3 ֒
e3−→ . . . t′1 ֒

e′
1−→ t′2 ֒

e′
2−→ t′3 ֒

e′
3−→ . . .

if t1∼Xh
t′1, then for all i, ti∼Xh

t′i and ei=e′i.
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Figure 4.8: Indistinguishability relations

Proof. If the program type-checks, it can be shown that after the execution of two instructions
with the same effect (two reads or two writes to the same addresses, or two instructions with no
effect) from two indistinguishable states, the resulting states will also be indistinguishable. This
is because if the instruction uses some value as a parameter, it is either High in both states and
therefore the type system will mark as High all variables that get updated by this instruction;
or they are equal in both states and all variables will change to the same value in the resulting
states.

In order to show that instruction effects are the same in both traces we show that if there is
a branch in the program, it will take the same path in both executions. This is because High
branches are forbidden by the type system, and therefore the branch condition will be Low and
equal in both states. In addition, expressions used as addresses in all instructions are guaranteed
to be Low (and therefore equal), since the type system forbids dereferencing High pointers. This
shows that the effects of program instructions are equal in both executions.

4.7 System-level security

In this section we establish a link between the constant-time analysis at the language level and
the isolation result stated in theorem 3.6.1 at the system level; in order to give formal guarantees
that constant-time implementations are secure against cache timing attacks on virtualization
platforms.

With the definitions in Section 3.4 and the semantics defined for MachIR programs, one can
define the concurrent execution (A ‖ p)[s0] of an attacker A and a victim program p, starting
from an initial state s0. Informally, (A ‖ p)[s0] is the platform execution trace that interleaves
the sequence of actions by the victim operating system ov, corresponding to the semantics
of the program p; and the sequence of actions chosen by the adversary oa, according to the
adversarially-chosen scheduling policy—both captured in the definition of A.

Given a program p and a set of initial secrets X0
h, we define an equivalence relation ∼X0

h

on
platform states that requires that low variables have the same value. This relation is implicitly
parameterized by a mapping of MachIR states to platform states that maps program variables to
platform virtual addresses.

We can now state and prove a theorem that guarantees that if a program p is constant-time
(X0

h ⊢ p) with respect to the set of secrets X0
h, then an attacker A cannot distinguish between

two different executions of this program from two initial states that are indistinguishable and
have the same Low values. Formally:
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Theorem 4.7.1 (System-level security). Given a program p, an attacker A, and initial states s0
and s′0; such that s0 ∼ s′0 and s0 ∼X0

h

s′0. If X0
h ⊢ p, then (A ‖ p)[s0] ∼ (A ‖ p)[s′0].

Proof. The proof of this theorem is a straightforward combination of theorems 4.6.1 and 3.6.1.
Since we are in the hypothesis of the first, one can prove that the sequence of memory accesses of
the victim are the same in both executions and therefore, by Theorem 3.6.1, the attacker cannot
distinguish between the two executions.

In order to state the this theorem, we defined an interface in our Coq development to link
the virtualization model and its isolation theorems presented in previous chapters, to the static
analysis and proofs presented here. For this we use the Coq module system [45] in order to
obtain a language independent interface that can be linked to other languages, in addition to the
CompCert intermediate language we use (called MachIR).

This interface consists of abstract definitions of the type L for the language; Lstate for states
in the language semantics; a function get_trace, that given a program and an initial state returns
the stream of effects generated by the execution of that program; and an equivalence relation
∼X0

h

that holds when two states differ only in the values of High variables.
We can easily instantiate this abstract definitions for MachIR, using the language syntax as

L (see Figure 4.3), the MachIR states as Lstate (triples of the form (n, ρ, µ), see Figure 4.4), and
the projection of effects of MachIR execution streams as the get_trace function (see Figure 4.5).

Theorem 4.7.1 provides the first formal proof that constant-time programs are secure against
cache timing attacks on virtualization platforms, even in the presence of a strong, active attacker
which can interleave at will the victim program execution with code of its choice.

4.8 Discussion

As a consequence of the simple alias analysis, our type system has some shortcomings that make
it necessary to perform some minor modifications to the program source code.

Specifically, our alias analysis is not able to track usage of arrays in the stack, because
tracking stack offsets precisely would require a complex value analysis, which is not implemented.
Formalizing a value analysis is certainly possible, but left for further work.

In addition, in order to avoid reasoning about procedure calls, we use a functionality of
CompCert to automatically inline all code into one function, before performing the analyses. Note
that this implies that recursion cannot be used (which is usually not a problem for cryptography)
and that calls to external functions must be removed before type-checking the program. Again,
extending the tool to handle these cases is left for future work.





Chapter 5

Stealth Memory

In the previous chapters we formally analyzed the behavior of constant-time programs and showed
that they are secure against cache-timing attacks. There are some cryptographic algorithms that
are designed to be constant-time, and some that can be made constant-time by modifying its
implementations. There are cases where efficient constant-time implementations exist, see [77]
for example, where Käsper and Schwabe show an efficient constant-time implementation for
AES. However these implementations are dependent of the algorithm used. In general, naively
removing look-up tables may degrade performance, since it is necessary to compute at run-time
the costly operations stored in memory.

In order to avoid this problem altogether, we will study another countermeasure against
cache based side-channels, called Stealth Memory. In [57], Erlingsson and Abadi discuss the
basis of this system-level protection mechanism that runs on commodity hardware and uses a
special memory region intended to allocate data whose usage pattern needs to be protected. The
authors claim that information stored in a stealth region is not exposed to attackers via the usual
cache side-channels. An implementation of this mechanism for the Microsoft Hyper-V hypervisor,
called StealthMem, is presented and discussed in [80]. In StealthMem, the system hypervisor
provides each application running on a virtual machine with a limited amount of stealth memory
than can be accessed as if caches were not shared with other VMs. Stealth memory can be used,
for instance, by programmers of cryptographic libraries to store data, such as look-up tables,
that are known to be target of cache side-channel attacks.

The solution embodies a software method for locking memory regions into the shared cache.
This is accomplished by selecting a cache line set for stealth use, and disallowing the allocation
of addresses that are mapped to this cache line set. This guarantees that cache entries from
those regions can not be evicted by other VMs, and that accesses to those regions do not evict
cache entries of other VMs. In addition, a set of cache lines is assigned to each CPU core,
where different processor cores might be running different VMs. Whenever a VM is scheduled
to execute, the hypervisor ensures that the VM’s stealth region is loaded into the locked cache
lines of the current core. Therefore each VM can use its own stealth region to store data without
revealing its usage patterns.

Figure 5.1 illustrates the cache and memory setup of stealth memory on a four core machine.
There is a locked page per core in the cache, in which running operating systems store their
stealth memory page. On context switch, for example when VM5 is scheduled to execute on
Core 4, the stealth page of the new operating system Pg5 is stored in the corresponding cache
entry for the core.

Since addresses mapped to the stealth cache line set cannot be used by the guest operating
systems or the hypervisor, rendering part of the memory unusable, the stealth memory mechanism
has some storage overhead. This overhead was minimized in the original StealthMem work by
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Figure 5.1: Stealth memory on multicore [80]

exploiting an architectural property of caches (set associativity) and the cache replacement policy
(pseudo-LRU) present in some commodity hardware. Since we work with an abstract replacement
policy, we will leave the study of this StealthMem optimization for future work.

In [80], the authors illustrate the simplicity of use of StealthMem by describing the changes
that were required to transform standard implementations of Blowfish, AES and DES to use the
stealth memory regions. The modifications in all cases consisted in replacing the global array
variables that hold the encryption look-up tables by pointers to the stealth region. In the case of
Blowfish this change required only 3 lines and DES required to change 5 lines. Adapting AES
was less straightforward, it required a change of 34 lines, due to the fact that the implementation
declares its tables as 8 different variables.

In order to provide convincing guarantees of security, it is necessary to deploy effective
countermeasures against attacks, and to acquire expertise on their usage. Stealth memory is
a relatively new development that still has shortcomings in these areas: there is no formal
guarantee that information stored in stealth regions is indeed protected against side-channels,
and application code needs to be manually modified to allocate some of the program data in
stealth memory. There is no mechanism to correctly select which variables should be stealth, or
a way to prove that a certain variable selection is safe.

In this chapter we tackle these issues by first weakening the definition of constant-time,
introducing a new program classification which we call S-constant-time, that captures the
behavior of programs that correctly use stealth memory. S-constant-time programs are still not
allowed to branch on secrets, but they can access tables using secret indexes, as long as the
tables are stored in stealth memory. As we previously did for constant-time, we will give formal
guarantees that the stealth memory mechanism is indeed an effective countermeasure against
cache side-channels, and we define a static analysis to check if C programs are S-constant-time.
The results in this chapter are the first formal security analysis of stealth memory.

We will start by presenting, in Section 5.1, an extension of the virtualization model with the
components needed to represent the stealth memory regions and the platform actions required
to handle allocation and access to those regions. Section 5.2 presents a generalization of our
isolation result from Chapter 3, that guarantees non-leakage through cache side-channels, when
the victim correctly uses the stealth mechanism. In Section 5.3, we extend the static analysis
of C programs to check that victim implementations are S-constant-time. Finally, Section 5.4
provides the main non-leakage result showing that program that pass the static analysis are
protected against cache side-channels.
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5.1 Extensions to the virtualization model

The virtualization model requires modifications analogous to the ones done on a real system,
described by the StealthMem authors. We need to define and reserve a cache line set for stealth
usage, modify the semantics of the new action to add the checks that guarantee that the stealth
memory is indeed protected; introduce a new primitive to allocate stealth memory (the new_sm

action), and modify the behavior of the context switch to restore the stealth page to the cache in
the new execution context. As expected, the read and write actions require no modification. For
efficiency, these actions need to execute directly on hardware, without hypervisor intervention: a
call to the hypervisor for every memory access would make the mechanism practically unusable.
In addition, stealth memory does not require specialized hardware, so it is important to be able
to model it without changing the semantics of these two actions.

5.1.1 State extensions
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Figure 5.2: Memory model of the platform with stealth memory

We start by presenting extensions on the model states. In Figure 5.2 we show a high level
diagram of the new memory model. Note the similarities with Figure 5.1, even though we use
only one core, as discussed in Section 2.1.2. One cache index and one particular virtual address
(stealth_va) in its cache line set is selected for stealth use. All other virtual addresses in that
cache line set are reserved and cannot be used either by the guest operating systems or the
hypervisor. We allow one stealth page per virtual address space, so each guest operating system
can use a set of stealth pages, one for each page table. Each application running on top of the
operating systems, however, only has access to one stealth page.

Note that the use of only one stealth page per application is usually not an important
restriction; given the intended usage of the stealth memory mechanism, the amount of information
that is stored in stealth pages is small. It is usually used to store the look-up tables of cryptographic
algorithms, which requires only a small amount of memory, see Chapter 6 for the stealth memory
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requirements of some implementations. Furthermore, it is relatively straightforward to extend
the definitions to use a set of stealth addresses.

Stealth memory works by disallowing the use of virtual addresses that are on the same cache
line set as stealth_va (referred to as the exclusion property in the StealthMem article [80]),
and storing in cache the stealth page of the current operating system on context switches. To
guarantee that these restrictions hold in our model, we add four conditions to the valid state
invariant:

11. every stealth page is readable/writable and cacheable

12. the current stealth page of the active OS is always cached;

13. if an entry is cached in the stealth cache line set, it must be the stealth page of the active
OS.

14. No virtual address in the stealth cache line set, different from stealth_va, can be used in
the memory space of any operating system.

The proof of these new invariants critically relies on the inertia property of caches [80]: upon
adding a virtual address to the cache, the evicted virtual address, if any, is in the same cache
line set as the added one. Together with the exclusion property this implies that adding a new
non-stealth entry to the cache will never evict the stealth page currently cached.

5.1.2 New action semantics

We split the new action in two: one for allocating stealth memory (new_sm), and one for regular
memory allocation of non-stealth pages (new). The new_sm action allocates a page to the
stealth_va, and immediately adds it to the cache. The behavior of the non-stealth new action is
modified to check that the virtual address allocated is not in the stealth cache line set.

We also modify the semantics of the context switches (switch and lswitch actions), in order
to add the stealth page to the cache on context switch (and remove the old one, if necessary).

As mentioned before, the read and write actions do not need to be modified. Also, the
default behavior of the del action is correct for both stealth and non-stealth pages, so there is
no need to modify it or add an specialized delete action for the stealth page.

The operational semantics of the new actions are presented in the same layout as in section
2.3, with the modifications shown in bold-face.
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Action new va pa

Hypervisor extends the memory of the active OS with va 7→ ma

Rule

act = (aos, waiting) os_accessible(va) oss[aos] = (pa′, New va pa)
get_page_hyp(s, aos, pa) = (ma, pg) non_stealth_cache_line(va)

¬memory_alias(mem, va,ma)
get_page_hyp(s, aos, pa′) = (ma′, cpt) cpt[va := ma] = cpt′

oss[aos := (pa′, None)] = oss′ mem[ma′ := cpt′] = mem′

remove_cache_va(cache, cpt, va) = cache′ tlb[va := ⊥] = tlb′

(oss, act, hyp,mem, cache, tlb) ֒
new va pa,act
−−−−−−−−−→ (oss′, act, hyp,mem′, cache′, tlb′)

act = (aos, waiting) os_accessible(va) oss[aos] = (pa′, New va pa)
get_page_hyp(s, aos, pa) = (ma, pg) non_stealth_cache_line(va)

memory_alias(mem, va,ma)
get_page_hyp(s, aos, pa′) = (ma′, cpt) cpt[va := ma] = cpt′

oss[aos := (pa′, None)] = oss′

pg = (t, o, b) mem[ma := (t, o, false)][ma′ := cpt′] = mem′

remove_cache_va(cache, cpt, va) = cache′

remove_cache_ma cache′ ma = cache′′

tlb[va := ⊥] = tlb′

s = (oss, act, hyp,mem, cache, tlb) ֒
new va pa,act
−−−−−−−−−→ (oss′, act, hyp,mem′, cache′′, tlb′)

Precondition

The precondition of this action is the same as before, with the extra condition that the allocated
virtual address va is not in the stealth cache line set (predicate non_stealth_cache_line(va)).

Postcondition

No changes to the postcondition were necessary.

Notes

In order to achieve non-leakage of stealth data, it is necessary that accesses to the stealth_va
do not replace any entry in the cache. The hypervisor ensures that this is the case by enforcing
the exclusion property: it only allows operating systems to allocate virtual addresses that are
not in the same cache line set as stealth_va.
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Action new_sm stealth_va pa

Hypervisor extends the stealth memory of the active OS with stealth_va 7→ ma

Rule

act = (aos, waiting) os_accessible(va) oss[aos] = (pa′, New stealth_va pa)
get_page_hyp(s, aos, pa) = (ma, pg) pg = (RW _,_, true)

¬memory_alias(mem, stealth_va,ma)
get_page_hyp(s, aos, pa′) = (ma′, cpt) cpt[stealth_va] = ⊥

oss[aos := (pa′, None)] = oss′ cpt[stealth_va := ma] = cpt′ mem[ma′ := cpt′] = mem′

cache_add(cache, stealth_va,ma,pg) = (cache′,_)
tlb[stealth_va := ma] = tlb′

s = (oss, act, hyp,mem, cache, tlb) ֒
new_sm stealth_va pa,act
−−−−−−−−−−−−−−−−−−→ (oss′, act, hyp,mem′, cache′, tlb′)

Precondition

The action new_sm stealth_va pa has the same precondition as the new action for the not aliased
case; with the extra requirement for the new page to be readable/writable and cacheable.

Postcondition

The only additions to the postcondition is that the new stealth page is immediately stored in
the cache, and the mapping in the TLB is updated.

Notes

Allocating an aliased stealth page is not allowed, since the stealth page pg in ma must always
remain cached (aliased pages are not cacheable in our model). This is why we only define one
new_sm rule for the case when no alias is generated.
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Action switch o

Hypervisor sets o to be the active OS

Rule

act = (aos, waiting) oss[o] = (pa,None) get_page_hyp(s, o, pa) = (_, cpt)
(o, waiting) = act′ stealth_save(mem, cache) = mem′

stealth_add(stealth_drop(cache),mem,o, cpt) = cache′

tlb_flush(tlb) = tlb′

(oss, act, hyp,mem, cache, tlb) ֒
switch o,o
−−−−−−−−→ (oss, act′, hyp,mem′, cache′, tlb′)

Precondition

The precondition of this action is the same as before.

Postcondition

In the resulting state, the stealth page of the new active OS, if any, is cached immediately,
after saving the old stealth cache page into memory.

Notes

The semantics of this action reflects a distinguishing characteristic of VIPT caches, i.e. the
cache is not flushed on context switches. As a consequence, the execution of one process of an
OS may result in the eviction from the cache of the entries belonging to another concurrent
OS; as we have seen, this behavior can be exploited by an attacker to gain information on the
execution of a victim OS. The fact that the stealth page of the active OS is always cached is
what guarantees that these attacks cannot be performed on stealth pages.
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Action lswitch pa

Hypervisor changes the current memory mapping of the active OS to be pa

Rule

act = (aos, waiting) oss[aos] = (pa′, LSwitch pa)
get_page_hyp(s, aos, pa) = (ma, pg)

pg = (PT _, OS aos,_) get_page_hyp(s, aos, pa′) = (_, cpt)
oss[aos := (pa,None)] = oss′ stealth_save(mem, cache) = mem′

stealth_add(stealth_drop(cache),mem,aos, cpt) = cache′

tlb_flush(tlb) = tlb′

s = (oss, act, hyp,mem, cache, tlb) ֒
lswitch pa,act
−−−−−−−−−−−→ (oss′, act, hyp,mem′, cache′, tlb′)

Precondition

The precondition of this action remains unchanged.

Postcondition

As in the switch action, the cached stealth page of the previous process is saved in memory,
and the stealth page of the new process (mapped by the new current page table) is immediately
stored in the cache.

5.2 Isolation

Stealth memory must allow operating systems to access memory regions without leaking its
usage patterns. This means that accesses to the stealth_va should not be observable by the
attacker. Isolation in this setting is therefore stated as a non-interference property, where not
only the attacker must be unable to distinguish between states in two executions, but also the
attacker must not be able to observe an access of the victim to the stealth region. In other words,
the execution of an access to the stealth region should not influence the attacker behavior in any
way. As mentioned in Section 3.2, this is a generalization of the non-leakage result of theorem
3.6.1, resulting in a non-influence property.

We classify the platform actions into stealth actions and non-stealth actions. Stealth actions
are the ones that use or change the stealth_va virtual address: read and write, when the
accessed address is stealth; new_sm; del, when the deleted address is stealth; and local context
switches, which change the current page table of the active OS, and therefore the cached stealth
page. We define the effect of a stealth action to be the empty (the same as the silent action),
so that two arbitrary stealth actions always have the same effect.

In this new setting, the attacker should be completely unaware of the stealth memory regions
of the victim. We will therefore update our equivalence relation for states, to require that only
the non-stealth part of the memory of the victim be equivalent. This new definition allows the
victim to have arbitrary stealth regions in both states; or even to have a stealth page in one state
but not the other. Figures 3.1 and 3.2 provide illustration for these definitions, and are mainly
unchanged in the new setting. The new formal definition of each equivalence condition are as
follows:

Definition 5.2.1 (Equivalence of non-stealth hypervisor mappings). Two states s and s′ have
equivalent non-stealth hypervisor mappings for the attacker (s ∼hyp s′) if for every physical
address pa, readable/writable page pg and machine address ma:
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• if get_page_hyp(s, oa, pa) = (ma, pg), there exists ma′ such that
get_page_hyp(s′, oa, pa) = (ma′, pg);

• if get_page_hyp(s, ov, pa) = (ma, pg), and no page table maps stealth_va to ma,
then there exists ma′ such that get_page_hyp(s′, ov, pa) = (ma′, pg′), where pg and pg′

are equal except in their contents;

and reciprocally for s′.

Definition 5.2.2 (Equivalence of non-stealth cache and memory mappings). Two states s
and s′ have equivalent non-stealth cache and memory mappings for the attacker (s ∼mem

s′) if for every physical address pt_pa, page table pt_pg and machine address pt_ma, such
that get_page_hyp(s, o, pt_pa) = (pt_ma, pt_pg), there exist pt_ma′ and pt_pg′ such that
get_page_hyp(s′, o, pt_pa) = (pt_ma′, pt_pg′) and for all virtual address va and machine
address ma such that pt_pg[va] = ma and get_page_va_ma(s, va,ma) is readable/writable,
then there exists ma′ such that pt_pg′[va] = ma′. Furthermore, the same physical address pa
that maps to ma in s, maps to ma′ in s′; and moreover:

• if o = oa then get_page_va_ma(s, va,ma) = get_page_va_ma(s, va,ma′);

• if o = ov, and va is not stealth_va then get_page_va_ma(s,ma) and
get_page_va_ma(s′,ma′) are equal except in their contents;

and reciprocally for s′.

Definition 5.2.3 (Equivalence of non-stealth cache histories). Two cache histories history
and history′ are equivalent for the attacker if for all non-stealth cache index i, history[i] =
history′[i].

The statement of the two step-consistent unwinding lemmas (3.5.1 and 3.5.2) remain the
same, but they now use the new equivalence definition and must therefore be proved again. We
show the statements again here:

Lemma 5.2.4 (oa step-consistent unwinding lemma). Let s1 and s′1 be states where oa is active,
and such that s1 ֒

a,oa
−−→ s2, s′1 ֒

a,oa
−−→ s′2 and s1 ∼ s′1. Then, s2 ∼ s′2.

Lemma 5.2.5 (ov step-consistent unwinding lemma). Let s1 and s′1 be states where ov is active,

and such that s1 ֒
a,ov
−−→ s2, s′1 ֒

a′,ov
−−−→ s′2, eff(a) = eff(a′) and s1 ∼ s′1. Then, s2 ∼ s′2.

Proof. Again, to prove these lemmas each action must be analyzed checking the equivalence
conditions on the resulting states. For the unchanged actions, the previous proofs can be reused.

The actions with new semantics are also easily proved using the previous results. The new

action is the same as before, with an added precondition, so the result still holds. The new_sm

is like executing a normal new, and then performing a read of the stealth page. Composing
both executions, the resulting states are proved to be equivalent. Similarly, the switch and
lswitch can be viewed as an execution of the old context switch, with a read of the stealth page
afterwards.

In this manner, these two lemmas can be easily proved by reducing them to the non-stealth
case.

In addition, as is required of a non-influence result, we need to prove one more unwinding
lemma that shows that the execution of a stealth action is unobservable by the attacker:

Lemma 5.2.6 (Locally preserves unwinding lemma). Let s and s′ be states such that s ֒
a,ov
−−→ s′

and eff(a) = ∅. Then, s ∼ s′.
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Proof. As in the previous two unwinding lemmas, we need to analyze each action, checking all
equivalence conditions for the states.

For a read or write action to the stealth_va, the stealth page is guaranteed to be always
cached (by condition 12 of valid state, and because the victim is active and running). Therefore,
upon execution of one of these actions, the state remains the same, except possibly for the
value written in the stealth cache entry in the case of a write. The states before and after the
execution of any of these actions can therefore be shown to be indistinguishable for the attacker.

In the case of the new_sm and del actions, the non-stealth part of the victim memory is
shown to be unchanged, except for the new or removed mapping from stealth_va in the current
page table of the victim. This is taken into account in the equivalence definition, and the states
are therefore indistinguishable.

For the lswitch, the non-stealth part of the victim memory is shown to remain unchanged.
The only possible state change is the caching of a new stealth page, and the writing-back of the
old stealth cache entry; and both changes modify the stealth (unobservable) part of the victim
memory.

The condition for the victim that required that it executes actions with the same effects on
both traces (v_str ≈ v_str′) remains the same; but now using the new definition of the effects
of the actions:

eff(a) = eff(a′) v_str ≈ v_str′

(a :: v_str) ≈ (a′ :: v_str′)

This rule requires the victim to execute two non-stealth actions with the same effect (i.e. two
writes to the same virtual address but with arbitrary value, or the exact same action), or two
arbitrary stealth actions or silent (it can execute a stealth action in one trace, and silent in the
other).

Analogously, the lifting of the equivalence relation for traces is the same as before, using the
new definitions of action effects and state equivalence:

s ∼ s′ Θ ∼ Θ′

(s ֒
a,oa
−−→Θ) ∼ (s′ ֒

a,oa
−−→Θ′)

eff(a) = eff(a′) s ∼ s′ Θ ∼ Θ′

(s ֒
a,ov
−−→Θ) ∼ (s′ ֒

a′,ov
−−−→Θ′)

The rules allow executing the same attacker action, or two victim actions with the same
effect (either both non-stealth with the same effect, or two arbitrary stealth actions), from two
equivalent states. The statement of the isolation theorem remains the same, but using these new
definitions:

Theorem 5.2.7 (S-constant-time isolation). Let s0 and s′0 be two states such that s0 ∼ s′0;
v_str and v_str′ two sequence of victim actions such that v_str ≈ v_str′; and Θ and Θ′ be
traces such that interleave(s0, v_str,Θ) and interleave(s′0, v_str′,Θ′). Then Θ ∼ Θ′.

Proof. As was the case for theorem 3.6.1, this proof is a direct consequence of the unwinding
lemmas and a co-inductive argument.

Indeed, when the attacker selects his own action to execute, by the co-inductive hypothesis,
it does so from equivalent states and equivalent partial traces. Therefore, the selected attacker
action must be the same in both traces. Lemma 5.2.4 allows us to prove the equivalence of the
first state of the tail of the traces.

When the attacker selects victim actions to execute, since they have the same effects, they
are either both non-stealth with the same effect, allowing us to use Lemma 5.2.5; or two arbitrary
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stealth actions, allowing us to use Lemma 5.2.6 twice, once for each trace, and proving the
equivalence by the transitivity of the state equivalence.

Note that even though the attacker is not able to observe the stealth memory of the victim,
we cannot allow the victim to execute completely arbitrary stealth actions, and both traces must
still be in lockstep. In other words, if the victim executes a stealth action in one trace, it must
do so in the other trace, or execute silent in its place. This means that, even using stealth
memory, we still cannot allow high branches in victim code.

To illustrate the problem, suppose the victim performs a read inside an if with a High
condition, and then a read to some variable:

...

if <high_condition > {

read Xs

}

read Y

...

In this case, the variable Xs must be stealth. Otherwise, the victim would execute the
non-stealth read to Xs in one trace (when the condition is true) and not in the other (if the
condition is false), and this is not safe. Variable Y need not be stealth, as it is not inside a high
region. This program is still not secure. Indeed, the trace of victim actions would be:

v_str = (read Xs) :: (read Y) :: ...
v_str′ = (read Y) :: ...

When the scheduler interleaves these actions, it must select one action from both traces. The
resulting traces could then be:

Θ = s1֒
read Xs,ov
−−−−−−−→ s2 ֒

a,oa
−−→ s3 ֒

read Y,ov
−−−−−−−→ s4...

Θ′ = s′1֒
read Y,ov
−−−−−−−→ s′2 ֒

a,oa
−−→ s′3...

Note that the attacker executes action a from two non-equivalent states s2 and s′2 which
breaks isolation. The problem is not in the visibility of the stealth action read Xs (which we
proved to be non-interferent in Lemma 5.2.6), but in the visibility of the non-stealth action
read Y.

This happens even if the attacker has no control over the scheduler (for example, a round
robin scheduler that executes exactly one action of each operating system would generate these
traces). The root of the problem lies in the code having a non-balanced high branch, so the
scheduler can let the attacker execute when the victim is still inside the High region in one trace
and in a Low region in the other.

Padding the shorter branch (in this case the empty else branch) with silent actions would
make the program secure again in our model. However, this technique is not very realistic as
usual schedulers work with time slices instead of discreet actions. In an actual execution, then,
timing differences between the executions will be the main source of leakage.

Coppens et al [48] argue that it would be extremely complex (or even impossible) to guarantee
that two executions take the exact same time in a modern processor. In that work they propose
the use of if-conversion in order to eliminate high branches when the program is compiled.

Since high branching is generally considered harmful in cryptography, we decided to disallow
them entirely for S-constant-time programs. This restriction is not a problem for the algorithms
we analyze in Chapter 6, but trying to remove it is an interesting line of future work.
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5.3 A type system for stealth memory

We have shown that the attacker has no visibility over the stealth memory region of the victim.
We can therefore relax our type system to allow secret-dependent memory accesses on stealth
addresses. The modified typing rules now involve a set Xs of addresses that must be mapped
to stealth memory. The main typing rules are now given in Figure 5.3. Note that there is no
requirement that stealth addresses are high; in practice, stealth addresses often store public
tables.

p(n) = loadς(addr ,~r , r ,n
′) PointsTo(n, addr ,~r) = Symb(S) τ(~r) = High =⇒ S ∈ Xs

Xs, Xh ⊢ n : τ ⇒ τ [r 7→ τ(~r) ⊔Xh(S)]

p(n) = storeς(addr ,~r , r ,n
′)

PointsTo(n, addr ,~r) = Symb(S) τ(~r) = High =⇒ S ∈ Xs τ(~r) ⊔ τ(r) ⊑ Xh(S)

Xs, Xh ⊢ n : τ ⇒ τ

Figure 5.3: Information flow rules for S-constant-time

Definition 5.3.1 (S-constant-time). A program p is S-constant-time with respect to a set of
variables X0

h and a set of stealth addresses Xs, written Xs, X
0
h ⊢ p, if there exists (Xh, T ) such

that for every S ∈ X0
h, Xh(S) = High and for all nodes n and all its successors n′, there exists τ

such that
Xs, Xh ⊢ n : T (n) ⇒ τ ∧ τ ⊑ T (n′)

where ⊑ is the natural lifting of ⊑ from L to to types.

As before, the sets Xh and T are inferred using Kildall’s algorithm.
Our soundness result is extended to the setting of stealth memory simply by considering a

modified labelled operational semantics (see Figure 5.4) where accessing variables in Xs has no
visible effect; the equivalence of language states, that required states to have the same values for
the Low variables, remains unmodified.

p[n] = loadς(addr ,~r , r ,n
′) JaddrK(ρ,~r) = vaddr vaddr /∈ Xs µ[vaddr]ς = v

(n, ρ, µ) ֒
read vaddr−−−−−−−→ (n ′, ρ[r 7→ v], µ)

p[n] = storeς(addr ,~r , r ,n
′)

JaddrK(ρ,~r) = vaddr vaddr /∈ Xs store(µ, ς, vaddr, ρ(r)) = µ′

(n, ρ, µ) ֒
write vaddr−−−−−−−−→ (n ′, ρ, µ′)

p[n] = loadς(addr ,~r , r ,n
′) JaddrK(ρ,~r) = vaddr vaddr ∈ Xs µ[vaddr]ς = v

(n, ρ, µ) ֒
∅
−→ (n ′, ρ[r 7→ v], µ)

p[n] = storeς(addr ,~r , r ,n
′)

JaddrK(ρ,~r) = vaddr vaddr ∈ Xs store(µ, ς, vaddr, ρ(r)) = µ′

(n, ρ, µ) ֒
∅
−→ (n ′, ρ, µ′)

Figure 5.4: Modified IR semantics (excerpts)

The soundness statement is the same as before, except that now all actions involving a stealth
variable have the ∅ effect.
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Theorem 5.3.2 (Soundness of S-constant-time verification). If Xs, X
0
h ⊢ p then For every two

executions of p:

t1 ֒
e1−→ t2 ֒

e2−→ t3 ֒
e3−→ . . . t′1 ֒

e′
1−→ t′2 ֒

e′
2−→ t′3 ֒

e′
3−→ . . .

if t1∼Xh
t′1, then for all i, ti∼Xh

t′i and ei=e′i.

Proof. If the program type-checks, it can be shown, by the same argument as before, that after
the execution from two indistinguishable states of two instructions with the same effect (two
non-stealth reads or writes to the same addresses, or two instructions with no effect) the resulting
states will also be indistinguishable.

In order to show that instruction effects are the same in both traces, we note that High
branches are still forbidden (and therefore the program has to take the same path in both
executions), and that expressions used as addresses in all instructions are either Low (and
therefore equal), or High (and therefore, the base address must be stealth). In the second case,
the resulting effect is ∅ in both executions, so they are also equal.

5.4 System-level security for stealth memory

As before, we can link the type system and the semantics of the program in the platform model.
The mapping from MachIR states to platform states must now map elements of Xs to stealth
addresses. Under this condition, we can prove that if a program p is S-constant-time (Xs, X

0
h ⊢ p)

with respect to the set of secrets X0
h, then an attacker A cannot distinguish between two different

executions of this program from two initial states that are indistinguishable and have the same
values for all Low variables. Formally:

Theorem 5.4.1 (System-level security). Given a program p, an attacker A, and initial states s0
and s′0; such that s0 ∼ s′0 and s0 ∼X0

h

s′0. If Xs, X
0
h ⊢ p, then (A ‖ p)[s0] ∼ (A ‖ p)[s′0].

Proof. Again, we can combine the results from theorems 5.3.2 and 5.2.7. Since we are in the
hypothesis of the first, we can prove that the effects of the victim actions are the same in both
executions and therefore, by Theorem 5.2.7, the attacker cannot distinguish between the two
executions.

As mentioned before, the sets Xh and T are inferred using Kildall’s algorithm. The set Xs

can also be computed modifying the algorithm to track array accesses with high indices. We do
not do this at the moment, but we have done it for an earlier version, and we are confident it
would be easy to add the functionality.

In addition, the compiler can be modified to perform stealth allocation automatically, pro-
ducing an S-constant-time object program with a formal guarantee that it does not leak secret
information. However, as this last modification would be dependent on the specific architecture
and the stealth memory implementation used, it was not included and is left as future work.

To make the presentation clearer, in this thesis we chose to separate the constant-time
analysis from the stealth memory part. The actual CompCert implementation, however, was
done with stealth memory primitives from the beginning, and not as an extension. Since one can
think of constant-time programs as a particular case of S-constant-time with no stealth memory
regions available, we modeled the stealth static analysis first, and then handled constant-time by
disabling the use of stealth memory. In other words, if a program type-checks without using any
stealth addresses, it is constant-time and proven to be non-leaking.





Chapter 6

Applications to cryptographic

algorithms

In this chapter we present the results of applying our static analyses to a representative set of
cryptographic implementations, including some that are vulnerable to cache-based attacks on
common platforms, and constant-time ones that were specifically designed to avoid such attacks.
In all cases, we considered publicly available implementations of the algorithms, compiled them
using CompCert, and run our certified type system on the MachIR programs output by the
compiler.

We start by giving an overview of the verification process and results in Section 6.1. Section
6.2 contains a brief description and specific results of each verified algorithm. We use the AES
algorithm in Section 6.3 as a study case to show the verification process in detail.

6.1 Overview

As described in Chapter 4, our static analysis is implemented on top of the CompCert compiler.
In order to type check a C source code file, the user should specify the names of the variables
that must be protected (the initial set of High variables) and the set of variables that should
be allocated in stealth memory. This set should be empty when type checking constant time
programs. If it compiles successfully, the program is guaranteed to be safe against the type of
cache side-channel attacks modeled in this work.

Figure 6.1 summarizes the list of examples analyzed, and provides in each case the number of
variables allocated as stealth, and the amount of stealth memory that is required to execute the
program securely.

As shown in the figure, a wide variety of cryptographic implementations could be analyzed.
As expected, some examples required minor rewriting of the program in order to fit with our alias
type system (specifically, we had to rewrite programs so that arrays become global variables).

After this rewriting, a test case of the algorithm was selected using some test vectors provided
by the libraries used; and the set of secrets (in general the cryptographic key) was identified.
The execution of CompCert was done using flags added for our analysis. These include the
-secrets flag to mark given global variables as secrets, an optional flag -stealths to consider
the given global variables as stealths, and -dmachir to dump the generated MachIR code in a
file. The execution of the compiler can fail because of syntax errors or limitations of the alias
analysis, or because the program is not (S-)constant-time. If it compiles correctly, the executable
is guaranteed to be immune to the cache based attacks we modeled in this work.
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Example LoC # addresses Size (KB)

DES 836 10 2
BlowFish 279 1 4

AES 744 5 4
RC4 164 1 0.25
Snow 757 6 6

Salsa20 1077 - -
TEA 70 - -

SHA256 419 - -

Table 6.1: Selected experimental results

6.2 Evaluated algorithms

6.2.1 AES

The Advanced Encryption Standard (AES) is a symmetric encryption algorithm that was selected
by NIST in 2001 to replace DES [2]. AES is very widely used and it is expected to remain the
prevailing blockcipher for the next 20 years. Although NIST claimed the selected algorithm
resilient against side-channels, AES is a prominent example of an algorithm in which the sequence
of memory accesses depend on the cryptographic key.

As a testcase for our approach, we have applied our stealth verification to the PolarSSL (now
mbed TLS [16]) implementation of AES. Our type system is able to prove that 4kB of stealth
memory is sufficient to execute AES securely. In Section 6.3 we explain this algorithm and show
the result of our static analysis in detail.

6.2.2 DES and BlowFish

Data Encryption Standard (DES) [1] and BlowFish [112] are symmetric encryption algorithms
that were widely used until the advent of AES. They are designed under the same principles as
AES, and their implementation critically relies on S-boxes. Cache-based attacks against DES
and BlowFish are reported by Tsunoo et al [121] and Kelsey et al [78] respectively.

We have applied our stealth verification to the PolarSSL implementation of DES, and the C
implementation of BlowFish by Bruce Schneier [113]; again, our tool proves that only a small
amount of stealth memory (resp. 2kB and 4kB) is required for the programs to execute securely.

6.2.3 SNOW

Snow [4] is a stream cipher used in standards such as the 3GPP encryption algorithms. Its
implementation relies on table look-ups for clocking its linear feedback shift register (LFSR).
Cache-based attacks against SNOW—and similar LFSR-based ciphers—are reported by Leander,
Zenner, and Hawkes [91]. We have applied our stealth verification on an ECRYPT implementation
of SNOW; our tool proves that SNOW can be executed securely with 6kB of stealth memory.

6.2.4 RC4

RC4 is a stream cipher introduced by Rivest in 1987 and used in cryptographic standards such as
SSL and WPA. It is based on a pseudo-random generator that performs table look-ups. Chardin,
Fouque and Leresteux [42] present a cache-based attack against RC4. Analyzing the PolarSSL
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implementation of RC4 with our stealth verification proves that the program can execute securely
with only 0.25kB of stealth memory.

6.2.5 TEA, Salsa20, SHA256

We have applied our constant-time type system to some cryptographic algorithms that carefully
avoid performing table look-ups with indices dependent on secrets: Tiny Encryption Algo-
rithm [127], a block cipher designed by Needham and Wheeler; Salsa20 [30], a stream cipher
designed by Bernstein, and SHA256 [3]. For the latter, we consider the input text to be secret,
with the intention to demonstrate that SHA256 is suitable to be used in password hashing. In
all cases, our type system establishes that the programs are indeed constant-time, and therefore
secure without using stealth memory.

6.3 Detailed example: AES

For concreteness, we consider AES-128, i.e. the variant of AES with keys of 128 bits; other
variants use other key lengths but operate under similar principles. AES-128 encrypts and
decrypts messages by iteratively repeating 10 rounds of computation. Each AES round processes
128 bits blocks, which can conveniently be viewed as a 4 × 4 bytes matrices, using a round key,
which can also be viewed as a 4 × 4 bytes matrix and is obtained from the AES key using a key
expansion algorithm.

Plain Text

AddRoundKey RoundKey0

Last Round

SubBytes ShiftRows AddRoundKey

RoundKeyi

RoundKeyNr

Cipher Text

Encryption Round

SubBytes ShiftRows MixColumns AddRoundKey

x Nr-1

Figure 6.1: AES encryption diagram

Figure 6.1 illustrates the operation of the encryption algorithm. At each round, the algorithm
turns a 4 × 4 matrix into another 4 × 4 matrix, by performing the following steps: performing
pointwise replacement according to some fixed substitution (SubBytes), shifting the rows of the
input matrix (ShiftRows), multiplying the output with a fixed 4 × 4 matrix (MixColumns) and
computing the pointwise exclusive or of the resulting matrix and of the round key (AddRoundKey).
The last round is special in that the MixColumns operation is not performed.

Most applications of AES require encryption and decryption to be efficient. Software
implementations of AES achieve a high degree of efficiency by storing in the cache look-up tables,
as recommended by the AES specification. For instance, many implementations rely on look-up



6.3 Detailed example: AES 72

tables, known as S-boxes, to perform substitutions efficiently. More efficient implementations,
such as the PolarSSL implementation, store intermediate computations in eight 16 × 16 tables
of 32-bits values, and as a result, can bypass expensive arithmetic operations in the field GF(28).
The standard security notion for key-alternating blockciphers such as AES is indinstinguishability
from a random permutation. Informally, it states that an adversary has small probability to
distinguish between a stream of bitstrings output by the encryption scheme or by a random
permutation. This assumption is widely used in the provable security analysis of schemes that
build on AES, and best-known cryptanalyses on AES only marginally improve on brute force
attacks (the estimated complexity of the biclique attack from [36] is 2126.2) or target reduced
rounds AES (e.g. [59] exhibit a chosen-key distinguisher for 9-rounds AES-128).

However, many AES implementations are vulnerable to cache-based timing attacks, and fail to
comply with even the weakest security guarantees. Already in 1999, Koeune and Quisquater [86]
report timing attacks against careless implementations of AES in which conditional statements
depend on secret data—a first recipe for security disaster. In a nutshell, these implementations
exploit an algebraic equality between two tables S and S′:

S′[b] =

{

2S[b] if S[b] < 128
2S[b]⊕ 283 if S[b] ≥ 128

to compute S′ from S using a conditional statement that tests S[b] < 128, where b is secret. As
noted by Koeune and Quisquater [86], the attack is easily circumvented. In particular, high-speed
implementations of AES pre-compute the values of the tables, and hence the attack is moot.

However, these implementations still perform table accesses that depend on secret data—a
second recipe for a security disaster. In 2005, Bernstein [31] reports on a simple timing attack
which allows to recover AES keys by exploiting the correlation between execution time and cache
behavior during computation. Because memory accesses depend on the secret key, attackers can
recover the secret key by measuring the execution time for sufficiently many AES computations.
Shortly afterwards, Tromer, Osvik, and Shamir [120] concurrently report on several attacks
against AES, including an effective attack that does not require knowledge of the plaintexts or the
ciphertexts. Further improvements of the attacks have been reported, notably by Bonneau and
Mironov [37], by Aciiçmez, Schindler and Koç [7], and by Canteaut, Lauradoux and Seznec [41].
Bangerter, Gullasch and Krenn [68] report on an attack in which key recovery is performed in
almost real-time, and Ristenpart et al [109] show that cache-based attacks can be realized in
virtualized cloud platforms.

6.3.1 Example C implementation

In this section we present part of the C source code of the AES encryption function from the
PolarSSL library.

The code uses a known optimization on 32 bit processors [50] to combine the SubBytes,
ShiftRows and MixColumns steps of each round into appropriate table look-ups. Four 256-entry
tables, here called FT0, FT1, FT2 and FT3, are needed for this optimization. Each AES round
is implemented in the AES_FROUND macro, which also performs the XOR with the round key to
implement the AddRoundKey step. In lines 20 to 23, the first AddRoundKey of the algorithm is
performed. Then, the for in line 25 executes Nr − 2 rounds. An additional round is done on
line 31. Finally, the special last round is done from line 33 onward, in which the S-box FSb is
used instead of the FTi tables, since there is no MixColumns step in this round.
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1 #define AES_FROUND(X0 ,X1 ,X2 ,X3,Y0,Y1,Y2,Y3)

2 {

3 X0 = *RK++ ^ FT0[ ( Y0 ) & 0xFF ] ^

4 FT1[ ( Y1 >> 8 ) & 0xFF ] ^

5 FT2[ ( Y2 >> 16 ) & 0xFF ] ^

6 FT3[ ( Y3 >> 24 ) & 0xFF ];

7 ...

8 }

9

10 int aes_crypt_ecb( aes_context_nr *ctx_nr , aes_context_rk *ctx_rk ,

11 aes_context_buf *ctx_buf ,

12 const unsigned char input [16],

13 unsigned char output [16] )

14 {

15 int i;

16 uint32_t *RK , X0, X1 , X2 , X3, Y0, Y1 , Y2, Y3;

17

18 RK = ctx_rk ->rk;

19

20 GET_UINT32_LE( X0, input , 0 ); X0 ^= *RK++;

21 GET_UINT32_LE( X1, input , 4 ); X1 ^= *RK++;

22 GET_UINT32_LE( X2, input , 8 ); X2 ^= *RK++;

23 GET_UINT32_LE( X3, input , 12 ); X3 ^= *RK++;

24

25 for( i = (ctx_nr ->nr >> 1) - 1; i > 0; i-- )

26 {

27 AES_FROUND( Y0, Y1, Y2 , Y3, X0, X1 , X2 , X3 );

28 AES_FROUND( X0, X1, X2 , X3, Y0, Y1 , Y2 , Y3 );

29 }

30

31 AES_FROUND( Y0, Y1, Y2 , Y3, X0, X1 , X2 , X3 );

32

33 X0 = *RK++ ^ \

34 ( (uint32_t) FSb[ ( Y0 ) & 0xFF ] ) ^

35 ( (uint32_t) FSb[ ( Y1 >> 8 ) & 0xFF ] << 8 ) ^

36 ( (uint32_t) FSb[ ( Y2 >> 16 ) & 0xFF ] << 16 ) ^

37 ( (uint32_t) FSb[ ( Y3 >> 24 ) & 0xFF ] << 24 );

38 ...

39 PUT_UINT32_LE( X0, output , 0 );

40 PUT_UINT32_LE( X1, output , 4 );

41 PUT_UINT32_LE( X2, output , 8 );

42 PUT_UINT32_LE( X3, output , 12 );

43 return( 0 );

44 }

Listing 6.1: aes_crypt_ecb C source code

Even though the actual static analysis is done on the MachIR compiled code, we will illustrate
the reasoning behind our analysis on the C source code to compare it to the actual analysis
described in the next section. We will consider the round key (ctx_rk) as secret. This variable
taints RK as High in the assignment of line 18, and Xi in lines 20 to 23. In line 27 a value that
depends on Xi is used to index the FTi tables. These tables must therefore be allocated in stealth
memory. Furthermore, the variables Yi are also tainted at this point. In lines 34 to 37 we have
accesses to the FSb table that uses Yi as indices. Since the Yi are High, this table must also be
allocated in stealth memory for the algorithm to be considered S-constant-time.
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6.3.2 MachIR code

Next, we show a fragment of the compilation of this function to MachIR. The MachIR pretty
printer shows the security level of expressions at each program point and the result of the alias
analysis when performing a memory access.

652 AX{L} = (ctx_rk + 0){L} goto 651

...

624 DX{H} = int32[(AX + 28){L}]{ctx_rk} goto 623

623 SI{H} = DX{H} goto 622

622 SI{H} = (SI >>u 8){H} goto 621

621 SI{H} = (SI & 255){H} goto 620

620 SI{H} = int8u[(FSb + 0 + SI){H}]{FSb} goto 619

Listing 6.2: aes_crypt_ecb MachIR compilation

The address of ctx_rk is first stored in the AX register. This address is Low, even if the
content of the ctx_rk variable is High. Then, in line 624 the address is accessed, and its contents
loaded in the DX register (note how the points-to analysis infers the variable pointed to by register
AX). Since the contents of ctx_rk are High, the register is also tainted with a High security level.
The register SI is used to compute the index to access the array FSb, using the value of DX.
Finally, in line 620, FSb is accessed using a high index, so it is marked as stealth.

After type checking the rest of the code, the variables FSb, FT0, FT1, FT2 and FT3 are required
to be stealth. These variables correspond to S-boxes and look-up tables used by the encryption
implementation. The total amount of memory needed to store these variables is 4Kb.



Chapter 7

Related Work

In this chapter we discuss some work related to the topics of this thesis, such as OS modeling
and verification, side-channels attacks in cryptography and their countermeasures, information
flow and language based protection mechanisms and program verification of cryptographic
implementations.

7.1 OS verification

OS verification is an active field of research [115]. An important breakthrough was the machine-
checked refinement proof of an implementation of the seL4 microkernel, a general purpose
operating system of the L4 family [83]. The main thrust of the formal verification is to show
that an implementation of the microkernel correctly refines an abstract specification. Subsequent
machine-checked developments prove that seL4 enforces integrity, authority confinement [114]
and intransitive non-interference [102]. The formalization includes some confidentiality results in
the presence of side-channels, but it does not model cache nor timing attacks.

Another very prominent initiative is the Microsoft Hyper-V verification project [47, 92],
which has made a number of impressive achievements towards the functional verification of the
implementation of the Hyper-V hypervisor, a large software component that combines C and
assembly code (about 100 kLOC of C and 5kLOC of assembly). The overarching objective of the
formal verification is to establish that a guest operating system cannot observe any difference
between executing through the hypervisor or directly on the hardware.

Dam et al [51] formally verify information flow security for a simple separation kernel for
ARMv7. The verification is based on an extant model of ARM in HOL, and relates an ideal
model in which the security requirements hold by construction with a real model that faithfully
respects the system behavior. Extending the approach to handle the cache is left for further
work.

IronClad [69] is another project that aims at providing strong security for a complete software
stack, including applications, operating system, drivers, and cryptographic libraries. They prove
not only functional correctness, but non-interference results as well. They do not, however, model
the cache or side-channels that arise from its use.

A significant number of OS verification projects have their primary focus on security. Our
work is most closely related to von Oheimb et al’s proof of non-leakage for the SLE88 smart
card [103, 104], and to isolation proofs for separation kernels [70, 67, 97]. Other related work
includes Sewell et al [114]’s proof of integrity for seL4. Recently, Baumann et al [29] establish OS
isolation for an implementation of a separation kernel; however, the isolation property is derived
by a pen-and-paper proof from the formal verification in VCC.
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An alternative to prove the safety and security of legacy operating systems is to design
provably safe and secure operating systems. Singularity [72], HiStar [130] and Flume [90] are
prime examples of operating systems that were designed with provable safety and security in mind.
Krohn and Tromer [89] provide a CSP model of the Flume system [90] and show non-interference
of the idealized model; they also discuss covert channels, but do not establish non-interference
in presence of leakage. As for legacy systems, machine-checked verification provides stronger
confidence in the guarantees achieved by a particular architecture. Tiwari et al [119] and Yang
and Hawblitzel [128] use static analysis and type systems to prove security and safety properties
of their implementations.

7.2 Memory and OS models

Most works on OS verification (including this thesis) consider an idealized memory model that
makes simplifying assumptions, or abstracts away some component. For instance, our work
provides a simplified treatment of page tables and elides the possibility of nesting. Such multi-level
page tables are modeled in more detail e.g. in the L4.verified project, see [87]; interestingly,
Franklin et al [61, 60] provide small model theorems that allow reducing the verification of a
certain class of properties from models that consider nested page tables to models with page
tables of depth 1. Shadow page table algorithms are also considered in [11], where the authors
provide a formal model of the TLB. In addition, there is a number of relevant formalization
efforts that have considered the TLB and the cache, but that have not yet integrated these
components in their formal models. For instance, Tews et al [118] develop a stack of memory
models, and prove formally that the models satisfy a form of integrity property, called the plain
memory property. They discuss a TLB memory model, but leave it for future work. Likewise,
Kolanski [87] describes as future work a possible approach to account for the TLB and cache in
the seL4 model.

Other OS components and mechanisms that have been studied in the literature include device
drivers, schedulers, and interrupts, see e.g. [18, 58, 66].

7.3 Side-channel attacks in cryptography

In [85], Kocher presents a practical timing attack on RSA and suggests that many vectors,
including the cache, can be exploited to launch side-channel attacks. Aciiçmez and Schindler [6]
demonstrate that not only data cache, but instruction cache attacks are also effective.

In 2012, Mowery et al [101] discussed some difficulties in performing cache timing attacks
on modern architectures and systems. They claimed that cache timing attacks have become
significantly more difficult to perform, due to new technologies such as dedicated hardware for
cryptography, multicore processors or prefetching. Further research, such as [13, 75], showed that
cache attacks are still very much relevant even on modern architectures.

There are also other timing attacks that do not use the cache as a side-channel, such as the
lucky thirteen attack on TLS [10], which uses a timing side-channel to recover plaintexts.

As mentioned before, several countermeasures have been proposed for these attacks, see for
example [106, 126, 88, 48, 120, 53]. One relatively recent countermeasure consists of using page
coloring to mitigate the cache side-channel [116]. Page coloring is a software-based technique that
directs how memory pages are mapped to cache lines. This technique can be used to allocate
memory regions that need protecting in a specialized secure color that is not shared with other
operating systems, and therefore isolated. The resulting mechanism is somewhat similar to
stealth memory. Other countermeasures include specialized prefetching [62], called disruptive
prefetching; time padding [38]; and obfuscated execution [108].



77 Related Work

Over the last decade, researchers have developed abstract models of cryptography that capture
side-channels, and developed constructions that are secure in these models, see e.g. [56] for a
survey.

7.4 Analysis tools for cache-based attacks

CtGrind1 is an extension of ValGrind that can be used to check automatically that an imple-
mentation is constant-time. It reuses a Valgrind module called memcheck that checks if the
program ever uses the value of an uninitialized variable. By marking secret data as uninitialized
and running memcheck, the tool can detect and report all memory accesses and branches that
depend on secret information.

CacheAudit [54] is an abstract-interpretation based framework for estimating the amount of
leakage through the cache in straightline x86 executables. CacheAudit has been used to show
that several applications do not leak information through the cache and to compute an upper
bound for the information leaked through the cache by AES. These guarantees hold for a single
run of the program, i.e. in the non-concurrent attacker model. A follow-up [26] provides an
upper bound for the leakage of AES in an abtract version of the concurrent attacker model;
however, the bound is only valid under strong restrictions, e.g. on scheduling. Moreover, the
results of [26] cannot be used to assert the security of constant-time programs against concurrent
cache attacks.

7.5 Non-interference

Non-interference originates from the seminal work of Goguen and Meseguer [63, 64], and has
been generalized in numerous dimensions. Mantel [96] provides a thorough review of a large body
of prior work, and elaborates a general framework to formally specify and verify information
flow policies. Building upon [96], von Oheimb [103] revisits and generalizes the classical notion
of non-interference for state-based systems presented by Rushby in [111]. In particular, he
introduces a notion of non-leakage which focuses on information flow during system runs rather
on the observability of actions, and guarantees that secret information present in the initial state
of the system does not leak out of the domain(s) it is intended to be confined to. Non-leakage
combined with non-interference give rise to the notion of non-influence. One minor shortcoming
of non-influence is that it only considers traces that are generated by the same sequence of
actions, whereas it is often desirable to prove a refined and stronger property which also consider
traces that coincide in the actions performed by the observing domain. Our isolation theorems
in Chapter 3 and 5 are stated as non-leakage and non-influence theorems respectively, but avoid
the aforementioned shortcoming.

7.6 Language-based protection mechanisms

Many authors have developed language-based protection methods against side-channel attacks.
Agat [8] defines an information flow type system that only accepts statements branching on secrets
if the branches have the same pattern of memory accesses, and a type-directed transformation to
make programs typable. Molnar et al [100] define the program counter model, which is equivalent
to path non-interference, and give a program transformation for making programs secure in this
model. Coppens et al [48] use selective if-conversion to remove high branches in programs. Zhang
et al [131] develop a contract-based approach to mitigate side-channels. Enforcement of contracts

1It was developed circa 2010 by Adam Langley and is available from https://github.com/agl/ctgrind/.
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on programs is performed using a type system, whereas informal analyses are used to ensure
that the hardware comply with the contracts. They prove soundness of their approach. However,
they do not consider the concurrent attacker model and they do not provide an equivalent of
system-level non-interference. Stefan et al [117] also show how to eliminate cache-based timing
attacks, but their adversary model is different.

More recently, Liu et al [95] define a type system for an information flow policy called
memory-trace non-interference in the setting of oblivious RAM. Their type system has similar
motivations as ours, but operates on source code and deals with a different attacker model.

7.7 Verified cryptographic implementations

There is a wide range of methods to verify cryptographic implementations: type-checking, see
e.g. [33], deductive verification, see e.g. [55], code generation, see e.g. [40] and model extraction,
see e.g. [9]. However, these works do not consider side-channels.

Recently, Almeida et al [12] extend the EasyCrypt framework [25] to reason about the security
of C-like implementations in idealized models of leakage, such as the Program Counter Model,
and leverage CompCert to carry security guarantees to executable code; moreover they, instrument
CompCert with a simple check on assembly programs to ensure that a source C program that is
secure in the program counter model is compiled into an x86 program that is also secure in this
model.

7.8 Verified compilation and analyses

CompCert [93] is a flagship verified compiler that has been used and extended in many ways;
except for [12], these works are not concerned with security. Type-preserving and verifying
compilation are alternatives that have been considered for security purposes; e.g. Chen et al [43]
and Barthe et al [28] develop type-preserving compilers for information flow.

The generic static analyzer Verasco [76] integrates with the CompCert compiler and establishes
the absence of run-time errors of programs. In addition to the proof of soundness of the analyzer,
the results are shown to be carried over to the executable code generated by the compiler.

Formal verification of information flow analyses is an active area of research; e.g. Barthe et
al [27] and Amtoft et al [15] formally verify type-based and logic-based methods for enforcing
information flow policies in programs. More recently, Azevedo et al [17] formally verify a
clean-slate design that enforces information flow.

Leroy and Robert [94] have developed a points-to analysis in the CompCert framework. We
apply and formalize similar techniques, but combine the alias information with information flow
tracking.

Other previous work on mechanized verification of static analyses has been mostly focused on
inference of Java bytecode types [84], compiler optimizations [49, 32], control flow analysis [39]
or abstract interpretation for value analysis [35].



Chapter 8

Conclusions

In this thesis, we have developed an idealized model of virtualization that includes a specification
of the behavior of a virtualization hypervisor, and a very realistic memory model, with virtual
memory, cache and TLB. The model captures at an abstract level cache-based leakage in the spirit
of leakage resilient cryptography. We have observed that in absence of any specific countermeasure,
cache-based side-channels attacks are possible in the model, and proved isolation results that
give sufficient conditions to enforce strong isolation between operating systems.

Constant-time cryptography is often advocated as a solution against cache-based attacks. In
this work, we have also developed a certified static analysis for constant-time cryptography, and
given the first formal proof that constant-time programs are indeed protected against concurrent
cache-based attacks.

Moreover, we have extended our analysis to the setting of stealth memory; to this end we have
defined a new program classification, which we call S-constant-time, and developed a certified
static analysis for this class of programs. Furthermore, we have proved that S-constant-time
programs are also protected against cache timing attacks. This constitutes the first formal
security analysis of stealth memory.

Our results have been formalized using the Coq proof assistant on top of the CompCert compiler,
and our analyses have been validated experimentally on a representative set of cryptographic
algorithms.

Table 8.1 shows the specification and proof size of the main parts of our development in lines
of Coq code (LoC), as reported by the coqwc tool.

Specification Proofs Total 1

Basic model and lemmas 3.2k 6.8k 11.6k
Valid state invariance 180 25.0k 30.0k
Stealth model and theorems 2.1k 8.2k 11.8k
Static analyses and proofs 1.5k 2.0k 4.1k
Interface between model and CompCert 153 20 221
Total 7.1k 42.1k 57.7k

Table 8.1: LoC of Coq development

Throughout the development we made extensive use of Coq module system to define clear
and effective interfaces between the different parts of the model. We also used Coq automation
facilities to some degree, in general following Chlipala’s [44] approach to large scale engineering
of formal developments. This allowed us to save time when faced with the unavoidable rewriting

1The total LoC number includes comments and headers
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of theorem statements and definitions. The state equivalence definition, for example, required
many iterations in order to obtain strong enough conditions to prove the non-interference result
we wanted.

The development of the basic model without stealth memory took us around one year; and
included simplifying and rewriting some of the previous definitions [21], and implementing the
new VIPT cache. The stealth memory extensions took approximately another year; and consisted
of the definition of the new actions and invariants, plus the new state equivalence and proof of
the isolation theorem. The static analysis and CompCert integration took around six months;
starting from a proof of concept of the analysis for a simple artificial language, then moving to
CompCert RTL intermediate language, before finally setting on the Mach analysis presented here.

One direction of future work is to improve our tool by implementing a value analysis to
improve the static analysis for constant-time and S-constant-time programs. A strong enough
value analysis would allow programs to be checked without modifications.

In addition, our static analysis is performed at the lower levels of the compiling chain, after
all compiler optimizations; see [28], for example, for a discussion on how compiler optimizations
may break information flow typing. This makes it more difficult for developers to predict whether
their applications will pass stealth verification. Another improvement to our current approach is
to develop the static analysis closer to the C language and prove that its results are preserved
by compilation, in the sense that all accepted programs are compiled into programs that pass
stealth verification.

Another direction for future work is to extend our analysis to programs that branch on secrets.
This would allow us to analyze a few cryptographic implementations with high branching, such
as the modular exponentiation used in some RSA implementations [85]; but more importantly,
it will allow us to analyze a broader type of applications that are not cryptographic. Many
such applications handle private information and can also be the target of cache timing attacks,
such as the recent Oren et al [105] Javascript-based remote attack. One strategy to handle high
branching is to extend CompCert with predicated instructions and if-conversion. The work of
Barthe et al [24] has some preliminary work in this direction.

Regarding the idealized virtualization model, there are many possible extensions. The most
interesting ones include modeling transparent page sharing, the instruction cache, IO devices
and multi-core. See Sections 2.1.1 and 2.1.2 for an in-depth discussion.
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