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Abstract

A natural way to avoid the injection of potentially dangerous or illicit prod-
ucts in a certain country is by means of protection, following a strict port-
of-entry inspection policy. A naive exhaustive manual inspection is the most
secure policy. However, the number of within containers allows only to check
a limited number of containers by day. As a consequence, a smart port-of-
entry selection policy must trade cost of inspection with security, in order to
fit into the dynamic operation of a port.

We explore the design of port-of-entry container inspection policies with
imperfect information (unavailable or untrusted data). Starting from an
a-priori classification provided by port-of-entry customs operator, a combi-
natorial optimization problem is introduced. The goal is to match an a-priori
container classification with a logically coherent one, subject to a given level
of container inspection. Inspired in the related literature, a novel Multi-Tree
committee is introduced in order to find a solution to the previous com-
binatorial problem. It combines the strength of binary decision trees and
minimization of logical functions. The algorithm is easy-to-handle and use-
ful for an on-line production. We highlight the effectiveness of our proposal,
regarding real traces available from the port of Montevideo. The results show
the capability to detect the most risky containers and its conservative nature,
respecting any desired level of inspection.
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1. Introduction

The decisions ruled by a port-of-entry customs operator must overcome
several challenges, as the presence of illicit products or even foreign at-
tacks. The source of inspiration is their experience to detect anomalies and
sometimes, it is assisted with electrical detection by sensors and operational
research-based algorithms for manual inspection.

The real problem is so complex that theoretical tools and automatic al-
gorithms usually assist, but do not replace, the decision of an operator. The
main difficulties arise when the available information is untrusted, incom-
plete or imperfect. Furthermore, there is no international agreement in the
encoding of information. As a consequence, an automatic approach is highly
desirable, but it is hard to design. Moreover, it is difficult to compare the
sensibility of different models against the presence of suspicious containers.
So far, the proposed approaches from the operational research community
ranges from game-theoretic models [17], design of logical functions [20], bi-
nary decision trees [13, 16], multi-objective optimization [19, 21], dynamic
programming techniques [21], and Bayesian approach [4], among many other
ad-hoc models for screening under budget constraints [7] and prophylactic
models for terrorist attacks [14].

In this paper, we propose a novel approach with the objective of “cor-
recting” inconsistencies found within the a-priori classification provided by
port-of-entry customs operators according to their work experience. The de-
cisions are supported by a set of rules or risk-indicators, that suggest which
containers are suspicious and which are not. The goal is to enforce coher-
ence in the classification, i.e. a container with more risk-indicators should
be classified as more suspicious, and therefore should be pointed out to be
manually checked with higher probability. As far as we know, the detection
and correction of inconsistencies in a real-life port-of-entry inspection policy
has not been addressed in previous works in the related literature. The main
contributions of this paper are summarized in the following items:

• To the best of our knowledge, this is the first paper in the area that
enriches an operational research approach based on previous experience
offered by customs operators in a real port.
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• Previous works assume perfect knowledge of detection/false alarm prob-
abilities, or percentage of illicit containers [4, 13, 20, 16, 1, 2]. However,
a pointwise estimation of those probabilities are usually performed with
small sample size in relation with the whole container population. We
believe this assumptions lead to unaccurate models. In this sense, our
model seems to be more realistic.

• We provide an explicit formulation of a combinatorial optimization
problem, called Coherence Problem. The goal is to enrich an a-priori
classification given by real customs operators, adding coherence and
respecting a desired level of inspection (i.e. the fraction of containers
to be inspected).

• A novel Multi-Tree Committee is introduced in order to provide a feasi-
ble solution. It combines the strength of Binary Decision Trees (BDTs)
and minimization of logical functions.

• We obtained real traces offered by our National Port Operator, called
Administración Nacional de Puertos, located at Montevideo, Uruguay.
We will appreciate the capability of our Committee-based approach to
detect the most risky containers, and its conservative nature, respecting
the level of inspection imposed by customs operators.

This document is organized as follows. Section 2 contains related work,
mainly focused on binary decision trees and logical design of inspection poli-
cies. In Section 3, an ideal approach is developed. Here, we try to follow the
classification provided by customs operators as close as possible. A Mirror
solution presents the minimum gap. However, it is not coherent, in the sense
that more risky containers are not opened. Inspired in the deficiencies of
the previous approach, a Realistic Approach is presented in Section 4. It
captures a notion of coherence in the decision which is usually not met in
real-life, giving possibilities of enhancement and automation. Furthermore,
a desired fraction of containers is selected to be inspected, hence it achieves
a realistic level of inspection.

In Section 5, an algorithm called TreeCommittee is introduced for the
general Coherence Problem. It tries to unify the strength of both worlds:
binary decision trees and logical functions. As we will see, the role of the
committee is to cope with imperfect information and to adjust to a desired
level of inspection. Section 6 illustrates the results on the lights of real traces
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from our national port of Montevideo. There, we study the gap between
TreeCommittee and Mirror. Finally, in Section 7 we point-out concluding
remarks and discuss trends for future work.

2. Related Work

The inspection process can be regarded as the collection and analysis of
information available from multiple sensors and other sources, in order to
decide whether a container should be allowed to enter the port or not [20].

The means to detect anomalies are supported in digital signal processing
of physical information of containers and consistency of the documentation
related with the container. J. Candy provides an X-ray physics-based threat
detection solution, using a probabilistic model [4]. The Bayesian approach
enables the development of a physics-based detection algorithm capable of
detect threat under restricted assumptions, including known detection and
false alarm probabilities.

David Madigan, Sushil Mittal and Fred Roberts develop an abstraction
of the port-of-entry inspection problem [13], assuming the existence of n
logical sensors which return binary variables {di}i=1,...,n, such that di = 1
means that the feature number i studied by that sensor is suspicious; and
di = 0 otherwise. As a consequence, each container has a corresponding
binary word d = d1 . . . dn, and the authors study classification mechanism of
binary words by means of binary decision trees (BDT). A BDT is a widely
used classification technique, where there is a special root-node and all nodes
have output-degree 2. The container information i is inserted in the root-
node, which is identified with a question (precisely, one sensor labeled with
the numbers {1, . . . , n}). If the answer is affirmative (negative), the infor-
mation i travels to the right (left) branch of that node. Finally, there is a
correspondence between the terminal nodes and the set {0, 1}, in order to
assign a binary classification to every container. A challenging problem is
to design the questions to be inserted in each node. As a consequence, the
design of a BDT is reduced to a sequential decision problem, where the aim
is to decide the order of the sensors to minimize a cost function.

A related perspective of the problem is to design a binary function f :
{0, 1}n → {0, 1}, where the containers are manually classified whenever their
corresponding binary word d complies f(d) = 1. There are several realiza-
tions of a certain binary function f(d) with equivalent BDTs. Laurent Hyafil
and Ronald Rivest proved in 1976 that the minimization of the expected

4



number of questions in the set of equivalent BDTs is an NP-Complete prob-
lem, where the probabilities P (di = 1) are known [11]. In the year 2003,
Phillip Stroud [16] provides an exhaustive enumeration of BDTs such that
no sensor appears twice in any branch. Specifically, if Nn is the number of
such BDTs, then Nn = 2 + n(Nn−1)

2, where N0 = 2 (with no sensor, the
only BDTs are either output 0 or 1). The reader can easily check that there
are only 74 BDTs with n = 2 sensors, but N5 ≈ 5 × 1018. The cardinality
Nn of BDTs in terms of the number of sensors n has an exponential growth,
and an exhaustive evaluation of BDTs is not practical for a large number
of sensors. Stroud defines the cost of a tree combining both the misclassi-
fication probability and inspection cost (i.e. the use of sensors). The first
contribution depends on the failure probability of the sensors, as well as the
statistical distribution of the containers, that must be previously estimated
from historical information. It sounds mandatory to reduce the search space.
Therefore, the author finds an optimal BDT among a reduce subset. They
ranked all trees formed from 3 or 4 sensors according to increasing tree costs,
and defined an enumeration algorithm. Their results can not be directly ex-
tended to higher number of sensors. However, Anand et. al point out that
the optimal inspection policy provided by Stroud algorithm is remarkably
insensitive to parametric changes [1], reinforcing their approach.

Similar in spirit and with a BDT-based classification, David Madigan first
tunes the thresholds for each sensor in order to minimize the cost function,
by means of numerical methods for non-linear equations, combining gradient-
descent and Newton-Raphson. A key element of his development is to study
a distinguished sub-class of BDT, which are monotonous and complete (a
BDT is monotonous when it realizes a monotonous binary function, and
complete whenever the BDT includes all sensors). In this sub-world of BDT,
an algorithm for exhaustive enumeration is feasible, and the author finds
the optimal BDT when n = 4. The number of BDTs in this subset is now
263, 515, 920 when n = 5. The number of monotonous logical functions with
n bits is called Dedekind’s number since his seminal work in 1897 [6], and
the exact number is an open problem for large number of n (recent advances
in this area confirm for instance the case n = 8 [18]).

The search in the space of complete-monotonous BDTs takes into consid-
eration a neighborhood structure (i.e. a polytime and completely transitive
neighborhood system) that swaps, deletes, merges and replaces nodes for cost
minimization. Nevertheless, the multi-modal nature of the objective func-
tion leads the local search to get stuck in local minima. As a consequence
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Madigan introduces a heuristic approach with randomness, inspired in simu-
lated annealing. The heuristic is tested with the set of complete monotonous
BDT, reaching 42 times the global optimum, which was more economic than
the BDT found by Anand, who search even in the whole universe of BDT.
Since the complete study for n = 5 also escapes to million of tree configu-
rations, it was suggested as a trend for future work, and suggests the use of
genetic algorithms. Indeed, the design of genetic algorithms to face a multi-
modal objective has been suggested in other works [12, 9], and implemented
in subsequent works [15, 5].

More recently, Christina M. Young tackles the port-of-entry inspection
problem in order to avoid undesired cargo in the United States, in her PhD
thesis [20]. The thesis includes a background of the problem and discussion
of several formulations for the port-of-entry inspection problem by mathe-
matical models, with a neat treatment of the assumptions and horizon of
applicability. Based on Elsayed et. al [8], the goal of the models is to re-
duce the overall expected cost in the space of sequential inspection policies.
Following works from Stroud and Saeger [16], S. Anand [1] and Boros [2],
it is assumed that the sensors return normally distributed numerical values.
Christina M. Young finds optimal thresholds by numerical estimation, that
lead to a binary output. A sequential configuration of the sensors can be
identified with parallel-series logical circuits or equivalently, conjunctive nor-
mal forms. Let π be the proportion of containers with risky elements, that
should be manually inspected under optimal conditions, and let us denote
with X the random variable that assumes the value 1 whenever the container
has illegal cargo and 0 otherwise: π = P (X = 1). Consider pi = P (di = 1)
and their complements qi = 1 − pi. Additionally, the utilization of sensor i
has a cost ci.

The most strict policy Fs will define a container as risky whenever there
is at least one sensor set to 1. In normal form it is Fs = ∨

n
i=1{di = 1}. The

following question has a simple answer, but illustrates a valuable concept for
the problem under study. Which is the optimum sequence for the container
inspection under strict policy? The answer is to order the sensors with low
cost and higher sensibility to positive first: c1/q1 < c2/q2 < . . . < cn/qn,
where we re-labeled the sensors to respect the previous inequalities.

The opposite policy is the most permissive, and defines a container as
risky only when all sensors are positive: Fp = ∧n

i=1{di = 1}. Which is
the optimal sequence in this case? In this case, the sensors with highest
sensibility to negative should be revised before, weighting their costs. More

6



precisely, the order must respect c1/p1 < c2/p2 < . . . < cn/pn.
The previous results are intuitive, and were proved for the first time by

Zhang et. al and further generalized to all logical functions [20, 8]. It is worth
noting that the correct use of this optimization tool requires knowledge about
the probabilities pi = P (di = 1) for each sensor, as well as the proportion π
of risky containers and the cost of utilization ci of all sensors. Christina M.
Young also weights the cost of inspection in the cost function by a convex
combination between misclassification and inspection, or Pareto curves that
trade both aspects as desired.

An alternative approach is to exploit historical classification provided by
port operators and conduct a mimetic solution. In [10], we provide the clos-
est deterministic classification to that offered by customs operators. The
measure of similarity is there captured by the number of matchings in the
classification of a part of the training set, and the result has a statistical
meaning.

This work is widely inspired in prior works from David Madigan and
Christina M. Young [20]. However, the context is rather hostile, since the in-
formation available is not statistically significant to define correct estimations
for the misclassification probabilities, nor the proportion of risky containers
π. As pointed out before, the novelty of this approach is the introduction of
consistency to a previously given incoherent classification. Additionally, we
will combine the strength of BDTs and minimization of normal forms evalu-
ation in order to define an inspection policy suitable for an arbitrary number
of sensors and level of inspection. In Section 3, we conduct an ideal approach,
and a summary of the main ingredients provided in [10]. Then, a realistic
analysis is carried out in Section 4. A corresponding realistic classification is
presented in Section 5, and a later comparison between both approaches is
highlighted in Section 6.

3. Ideal Approach

We will follow the terminology from Section 2, where we are given a train-
ing multiset W = {w1, . . . , wN} of (possibly repeated) binary words, for N
containers. The set {1, 2, . . . , r} will be denoted by [r] for short, and repre-
sent the levels of risk. Each container is labelled (by customs operators) a
risk level l1, . . . , lN , where li ∈ [r]. In the real problem, we are also concerned
with a level of inspection α, but we will not study this constraint until the
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following section. In a first ideal approach, the goal is to define a deter-
ministic function f : {0, 1}n → [r] that automatically classifies containers,
and is similar to the labels provided by customs operator. This approach
reflects the expertise from customs operators, where the fuzzy classification
is realized in an automatic manner.

Observe that we do not assume misclassification probabilities nor sensor
calibration. Therefore, to the best of our knowledge, there is only one prior
work in the area that is suitable to the conditions of our real problem, written
by the same authors [10]. This article is our point of departure, and will be
summarized in this section as an ideal approach.

Two notions of similarity are considered. The symmetric difference be-
tween f and the multiset W of binary words is:

∆W (f) =
N
∑

i=1

1{f(wi) 6=li}

An alternative measure of similarity is the mean square error:

dW (f) =
1

N

N
∑

i=1

({f(wi)− li})
2

The following combinatorial optimization problem formalizes the Ideal
Approach:

min
f :{0,1}n→[r]

d(f,W ),

being either d(f,W ) = ∆W (f) the symmetric difference or d(f,W ) = dW (f)
the mean square error.

It is well known from elementary calculus that the mean square error
is minimized when f(w) is an averaging and rounding among all the labels
wi ∈ W such that wi = w. Let us denote f1 to that average-and-rounding
classification rule (for convention, we choose f1(w) = 1 whenever w /∈ W ).
Now, let us consider d(f,W ) = ∆W (f), what is called the Decision Problem.
The following definition has been introduced by the same authors in [10]:

Definition 1. Given the multiset W = {w1, . . . , wN} and respective labels
l1, . . . , lN ∈ [r], the Mirror Solution is the function f2 : {0, 1}m → [r] where
f2(w) is the empirical mode (i.e., the most frequent label for w in the multiset
W ). As a convention, we choose f2(w) = 1 whenever w /∈ W .
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The following result is intuitive.

Proposition 1. The Mirror Solution is a global optimum for the Decision
Problem.

Proof. Let us consider an arbitrary solution g : {0, 1}m → {1, . . . , k} and the
Mirror Solution f2. We will establish the inequality ∆W (f2) ≤ ∆W (g).

Let us consider the frequency of the binary word w in the multiset W
with label i, this is ti(w) = {j ∈ [1, N ] : wj = w, l(wj) = i}.
The number of incorrect assignments to word w using f2 is precisely
ε(f2, w) = (

∑

1≤i≤k |ti(w)|)−max{|ti(w)| : 1 ≤ i ≤ k}. If g(w) 6= f2(w) then
the number of incorrect assignments to word w using g is
ε(g, w) = (

∑k

i=1 |ti(w)|)−
∑k

i=1 1{g(w)=i}|ti(w)|.
Since only one of those indicators is true, we immediately conclude that
ε(f2, w) ≤ ε(g, w), and

∆W (f2) =
N
∑

i=1

1{f2(wi) 6=li}

=
∑

w∈{0,1}m

1{w∈W}(
k

∑

i=1

|ti(w)|)−max{|ti(w)|, i = 1, . . . , k}

=
∑

w∈{0,1}m

1{w∈W}ε(f2, w) ≤
∑

w∈{0,1}m

1{w∈W}ε(g, w) = ∆(g, L).

For the sake of simplicity, we will consider the deterministic rule f1
(average-and-rounding) as the classification provided by customs operators.
It is the optimal rule in the sense that it minimizes the mean square error.

4. Realistic Approach

We we follow the terminology from Section 3. We are given a triad
(W, f, α), where W = {w1, . . . , wN} represents a multiset of (possibly re-
peated) binary words, f = f1 is the averaging-rounding rule, that assigns a
risk-value in the set [r] to each container, and a level of inspection α ∈ [0, 1]
that determines the fraction of containers to be inspected.

The project signed by our university and the port pursues the goal of
designing an algorithm that should adapt to a variable number of sensors n
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and risk-levels r, meeting at the same time a desired level of inspection.

Observe that the set of binary words accepts a partial order: if w =
d1 . . . dn and w′ = d′1 . . . d

′
n, then w ≤ w′ if and only if di ≤ d′i for all

i = 1, . . . , n. A function g : {0, 1}n → [r] is monotonous, or coherent, if
g(w) ≤ g(w′) whenever w ≤ w′. In practice, the classification f offered by
the customs operator is not coherent. Indeed, there are certain containers
that were assigned a low classification, while they should have been classified
as risky, in terms of sensors.

Therefore, we are motivated to introduce the Coherence Problem. Let us
denote ∆(f, g) the symmetric difference between two given functions f and
g. More precisely, if f : {0, 1}n → [r] and g : {0, 1}n → [r] then

∆(f, g) =
∑

w∈{0,1}n

1{f(w) 6=g(w)},

where 1{x} equals 1 if x is true, and 0 otherwise. Alternatively, the symmetric
difference with respect to the multiset W of binary words is:

∆W (f, g) =
N
∑

i=1

1{f(wi) 6=g(wi)}

Our goal is to find the coherent classification g that is closest to the given
one f , with respect to the multiset W , respecting a given level of inspection
α ∈ (0, 1), that determines the fraction of containers to be inspected. The
Coherence Problem is formulated as follows:

min
g,I

∆W (f, g)

s.t.

f(w) ≤ f(w′), ∀w ≤ w′ (1)
∑

w∈W

1{g(w)>I} ≤ α|W | (2)

I ∈ [r] (3)

In words, coherence is introduced to the classification f provided by the op-
erator (Constraint 1), meeting at the same time a certain level of inspection
α (Constraint 2). Decision variable I plays the role of a threshold, where
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the containers to be inspected w must respect the inequality g(w) > I. Con-
straint 3 states that the threshold is an arbitrary integer in the set [r].

The reader can appreciate that the Coherence Problem does not in-
volve misclassification probabilities, in contrast to most previous works in
the area [4, 13, 20, 16, 1, 2].

5. Multi-Tree Committee

In this section we will propose an algorithm to address the Coherence
Problem in its most general formulation. Even though it is more sophisticated
than averaging or statistical mode, as a result we will have a coherent solution
that meets the levels of inspections that must be met in real-life applications.

As stated before, any arbitrary container is identified with a binary word
w = d1 . . . dn, di ∈ {0, 1}. A classification is a function g : {0, 1}n → [r].
The main reason to return a function g with range in the same set [r] is
that the symmetric difference ∆W (f, g) can be dynamically compared by
new functions f and multisets W offered by customs operators. Further-
more, containers classified on-line can be added to the training data in the
future (adding the concept of closed-loop or feedback in our control system).
TreeCommittee receives the multiset W , classification f : {0, 1}n → [r], a
level of inspection α and returns a coherent classification g and threshold I.
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Algorithm 1 TreeCommittee
Inputs:

Multiset: W
Classification: f : {0, 1}n → [r]
Level of Inspection: α ∈ [0, 1]
Output:

Coherent Function: g : {0, 1}n → [r]
Threshold: I

1: for i = 1 to r − 1 do

2: gi = Convert(W, f, i)
3: Ti = OptimizeBDT (W, f, gi)
4: end for

5: g = 1 +
∑n

i=1 Ti

6: Iaux ← 1
7: q ← Count(g(W ) > Iaux)
8: αaux ← q/|W |
9: while αaux ≤ α do

10: Iaux ← Iaux + 1
11: q ← Count(g(W ) > Iaux)
12: αaux ← q/|W |
13: end while

14: I ← Iaux − 1
15: return (g, I)

A key element is to translate the problem into r−1 binary sub-problems.
This is where it is possible to exploit the knowledge provided from prior works
in the field, covering structures of binary decision trees, logics in normal
form, heuristics and minimization. Precisely, Convert(W, f, i) receives a set
of binary words in its first argument, a function f : {0, 1}n → [r], a positive
integer i ∈ {1, . . . , r−1} and returns the binary function gi : W → {0, 1} such
that gi(w) = 1{f(w)>i} (Line 2). The heart of TreeCommittee is Function
OptimizeBDT , that is applied sequentially to each function gi during for
loop (Line 3). It returns a binary decision tree that is equivalent to a coherent
function (related with the input function). The output g is precisely a Multi-
Tree Committee. It combines the opinion of the tree-committee {Ti}i=1,...,r−1

in a simple fashion: the risk is the number of risky opinions from the trees,
or sum risk, plus one (Line 5). During the block of Lines 6-14 the threshold
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I is found. An auxiliary variable Iaux is iteratively increased, until the level
of inspection is not met. Then, the correction I = Iaux − 1 takes place in
Line 14. Both decision variables (g, I) are returned correspondingly in Line
15.

Remarks.

1 The range of g is precisely [r] as desired, since Ti(w) ∈ {0, 1}, for all
i ∈ {1, . . . , r − 1}.

2 The functions gi are defined in the multiset W , but in the whole set
{0, 1}n.

3 Moreover, functions gi may be non-coherent.

4 A sum of coherent functions is coherent. Therefore, the output com-
mittee function g inherits the monotonicity of its terms Ti.

As a consequence, OptimizeBDT should introduce coherence to the input
function of its third argument (i.e. gi), extend its domain and translate it
to an equivalent binary decision tree. That tree will be further optimized by
means of a local search and rewritten to minimize the number of questions,
inspired in parallel-series minimization of logical functions [20].

Algorithm 2 T = OptimizeBDT (W, f, g)

1: g1 = Coherence(g,W )
2: g2 = Complete(g1)
3: T 1 = Translate(g2)
4: T 2 = LocalSearch(W, f, T 1)
5: T 3 = SpeedUp(W,T 2)
6: return T = T 3

Coherence receives a (possibly incomplete) binary function g and returns
a coherent function g1 with the same domain. Consider the partially ordered
set R = ({0, 1}n,≤). Coherence uses the relation in the subset W inherited
by R, and explores each maximal chain. If during that process there are two
words w ≤ w′ with g(w) = 1 > g(w′) = 0, then g(w) is set to 0. The process
is finite, and the result is a coherent function g1. Analogously, Complete
extends g1 preserving coherence (iteratively in each chain by means of Zorn’s
Lemma), and returns g2. If a certain word w not in W has some lower bound
set to 1, then g2(w) = 1. If it has an upper bound set to 0, then g2(w) = 0.
Otherwise, if w is not comparable with any element in W , we set g2(w) = 0.
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Once the complete coherent function g2 is obtained, a translation to a
binary decision tree takes place (Line 3). In order to carry-out the transla-
tion, a canonical reduced representation of logical functions is used, by means
of an ordered binary decision diagram (OBDD), following recommendations
from [3]. Function Translate works in three stages. These stages are illus-
trated one-by-one with an example (the reader can find properties of OBDDs
and a thorough overview in [3]). Consider the input function g from Table 1.

Table 1: Sample binary function g to be translated.

d1 d2 d3 g
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 0
1 1 1 1

Figure 1 shows an equivalent complete binary-tree representation of g,
where the output values 0 or 1 are written in blocks. Observe that solid
external links are used when the sensor returns an affirmative answer, while
negative answers are represented by external dashed links. In the second
stage, internal nodes are identified whenever they have the same answer (i.e.
the same external nodes), as illustrated in Figure 2. Finally, in the third
stage redundant questions are deleted (see Figure 3 for the application in
the example). These stages are iteratively applied, until no modification is
feasible (in the example the process is complete).

A naive local search is included in Line 4, where two questions (nodes)
are swapped whenever the solution is both feasible and has lower symmetric
difference with the given function.
Finally, a SpeedUp process takes effect, inspired in prior work of Christina
Young [20]. SpeedUp does not change the logical value of the input tree T 2,
but just rewrites the sequential order of the questions. Precisely, we write the
equivalent logical value for T 2 with a normal form T 2 = ∨m

i=1

(

∧r
j=1ϕij

)

, where

each ϕij assumes a possible value dk or its negation dk for some k = 1, . . . , n.
Both operations of disjunction (∧) and conjunction (∨) are commutative.

14



x
1

x
2

x
2

x
3

x
3

x
3

x
3

1 1 10 0 0 0 0

Figure 1: Translate - Stage 1: each binary word w = d1d2d3 is assigned the value g(w).
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Figure 2: Translate - Stage 2: Internal nodes with identical answers are identified.

15



x
1

x
2

x
3

10

Figure 3: Translate - Stage 3: Deletion of redundant questions.

Therefore, we can commute the order and the logical result is unaffected,
but the computational effort (for instance, the number of questions) can be
reduced. For each sensor, the probabilities pi = P (di = 1) can be estimated
with the statistical average, and qi = 1− pi. Since in this problem the costs
ci of the sensors are similar, we fix ci = 1. The least frequent clauses of T 2

in the set W (concretely, the less frequent events of the set {∧r
j=1ϕij}j=1,...,r)

appear first, whereas the most frequent literals ϕij of each clause appear
first. To summarize, Function SpeedUp rewrite the input tree exploiting the
fact that the operations ∨ and ∧ are commutative, in order to minimize the
computational effort in the evaluation.

6. Empirical Results

The customs operators from Administración Nacional de Puertos (ANP)
provided us a classified training data of |W | = 1433 labelled containers in
order to design a port-of-entry inspection algorithm with a level of inspection
α = 0, 02. The labels accept r = 3 possibilities according to their expertise,
where 1 means low risk, 2 medium risk and 3 represents the highest risk.

We summarize from our analysis from Sections 3 and 5 the following three
solutions, and the corresponding terminology:

16



• Average-and-rounding rule, f1, is the best inspection policy for the
Ideal Approach, when the mean square error is being minimized.

• Mirror solution, f2, is the best inspection policy for the Decision Prob-
lem, when the symmetric difference is being minimized.

• TreeCommittee, denoted by g, is a feasible solution for the Coherence
Problem, where the solution meets both coherence and a desired level
of inspection.

The operators suggested us to use n = 6 risk-indicators, that we will label as
sensors, using the classical terminology, with output w = d1d2 . . . d6, being
di ∈ {0, 1}. These sensors take the training data and find the output di
by means of a statistical analysis, reflecting anomalies with high risk. For
the sake of data privacy, the adjustment of the sensors and their thresholds
is excluded (in fact, they return numerical values instead of binary ones).
However, we followed a traditional optimization technique by means of a
discretization of the n-dimensional cube, in order to find thresholds and
translate real values into binary ones [10].

As a pre-processing stage, we studied the correlation between each indi-
cator di and the given classification. We excluded one indicator from our
study, since its output was consistently null for all containers in the training
data (as a consequence, a positive answer from this sensor would mean an
immediate manual inspection). Additionally, by rank-correlation and inde-
pendent tests we could identify another indicator that has weak correlation
with the given classification. From previous observations, we work with four
risk-indicators.

Incidentally, Madigan suggests optimal solutions when n = 4 [13]. How-
ever, Madigan’s methodology is not applicable for this scenario, since we do
not have historical information of false positives and negatives in order to
estimate the misclassification probability.

Table 2 shows the discrepancy between Mirror solution and the labels
provided by customs operators L = {l1, . . . , l1433}. Observe that the main
diagonal represents the number of matchings between Mirror and the labels,
while the sum of the remaining entries is the symmetric difference.
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Table 2: Matchings between Mirror and labels

f1 / W 1 2 3
1 390 96 31
2 102 581 96
3 18 96 23

Observe that Mirror classifies 390 + 581 + 23 = 994 containers correctly
out of 1433, so ∆W (f1) = 439. From Proposition 1, we know that Mirror
presents the lowest symmetric difference. However, as an ideal approach, it
does not meet coherence nor level of inspection of 2%.

We know that our TreeCommitee solution will present lower matchings
than Mirror, since the Coherence Problem is multi-constrained (see Table 3
for details). However, in order to have a major understanding of its perfor-
mance it is worth to have a closer look of its classification in terms of the
labels of specific words, coherence and level of inspection.

Table 3: Matchings between TreeCommittee and labels

g/W 1 2 3
1 502 762 142
2 8 11 1
3 0 0 7

We implemented TreeCommittee in Matlab and injected the given clas-
sification W with labels, with a running time close to one minute in a home-
PC. We obtained the binary trees T1 and T2 illustrated in Figures 4 and 5
respectively, together with the output classifier g from Table 4.

The first tree penalizes more cases than the second-one. This is reason-
able, since the corresponding input functions g1 and g2 of OptimizeBDT
respect the inequality g1 ≥ g2. This is a strong indication of consistency
from the tree-building block, since the level of inspection of T2 is lower than
one of T1. Constraint 2 states that the number of words w ∈ W such that
g(w) > 1 must not exceed ⌊α|W |⌋ = ⌊0, 02 × 1433⌋ = 28 elements. The
number of containers w ∈ W such that g(w) > 1 are precisely the ones with
a positive answer of some binary tree (equivalently, the rows from Table 4
such that g(w) > 1), and represents 27/1433× 100 = 1, 88%, respecting the
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Table 4: Final classifier g: the last row represents the remaining words z1z2z3z4 ∈ {0, 1}
4.

d1 d2 d3 d4 g
1 1 1 1 3
0 1 1 1 3
1 0 1 1 2
1 0 1 0 2
1 1 0 1 2
1 1 1 0 2
z1 z1 z3 z4 1

x

x x

x x

x

0 1

1

2 2

3 3

4

Figure 4: First committee-member T1 of TreeCommittee.
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Figure 5: Second committee-member T2 of TreeCommittee.

level of tractability accepted by the dynamism of our national port (fixed in
2%).

There were only seven real containers in the training data that have been
classified with maximum risk 3, since those containers were common to both
trees, representing a level of inspection of 7/1433×100 = 0, 488%. According
to the coherence-guided process, the most risky word w = 1111 is assigned the
maximum risk (g(1111) = 3), while w = 0000 has minimum risk (g(0000) =
1). There was exactly one container with maximum risk in the training set,
and f(1111) = 3 accordingly. There were exactly six containers that present
the word w = 0111, and respect g(0111) = f(0111) = 3.

The words with intermediate classification represent a mass of 20 con-
tainers. Both words w = 1010 and w = 1011 occur exactly in two containers
each, and they have been classified with intermediate risk by both inspection
policies: g(1010) = f(1010) = 2 and g(1011) = f(1011) = 2. We appreci-
ate a reasonable matching, regarding our original assumption that the target
objective is a logical function. The case with highest gap between the labels
and MultiTree Committee occurs in the binary word w = 1101. This word
appears 16 times in the set W and g(1011) = 2, but it was assigned 8 times
the maximum risk, 7 times intermediate risk and 1 time the lowest risk, by
customs operators. This gap suggests the need to have a higher number of
rules. Additionally, the operators wish to include randomness to the current
algorithm, in order to try an optimistic manual inspection of “non-risky”
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containers from time to time.

7. Conclusions

In a real-world port-of-entry inspection problem, misclassification prob-
abilities are hard to estimate, and customs operators use their experience
but sometimes lack of a theoretical foundation. However, to the best of
our knowledge, prior works assume perfect knowledge of these probabilities,
which is not our case. Additionally, our context is hostile, since the training
data is inaccurate.

In this article, a Coherence Problem has been introduced, and a Multitree
Committee algorithm has been developed in order to define a port-of-entry
inspection policy. Both the model and its resolution are deterministic and
easy-to-handle, which is a relevant aspect in practice.

We show that an arbitrary classification can be optimized in two aspects.
The first is to introduce coherence in the decision, while the second is to
develop a fully-automatic solution, saving time and human-resources. In a
first ideal approach, an automatic solution is presented. Then, we introduce
coherence to the previous solution.

The main benefits of Multitree Committee are its adaptability to an ar-
bitrary number of sensors n, classification range [r], and level of inspection,
without a need of misclassification probabilities (whose estimation is non-
trivial) and historical feedback, since the new classification can extend the
training set.

Regarding these elements and the recommendations from the port opera-
tors, as a future work we want to contrast stochastic-based mechanisms with
respect to the current development, and tune our algorithm here described
adding randomness, in order to cope with purely deterministic attacks.

8. Acknowledgments

This work has been partially supported by Administración Nacional de
Puertos (ANP) and Dirección Nacional de Aduanas (DNA), from Montev-
ideo, Uruguay. We express our most sincere gratitude to Dr. Franco Robledo
for his support and effort in order to set-up the contract between Facultad
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