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Abstract

We present a programmable PON testbed using commercial equipment and SDN control,

enabling configuration exploration, performance evaluation, and reproducible experiments—fostering
open datasets for network optimization and machine learning research.

Introduction

Passive Optical Networks (PONs) have become
a widely adopted solution for providing broad-
band connectivity to end-users, particularly in
residential scenarios. Its greatest advantage is
an efficient use of optical fibers, with the typical
point-to-multipoint (PtMP) topology allowing ser-
vice providers to share fiber infrastructure among
multiple users via time-division multiplexing/multi-
ple access (TDM/TDMA). The PtMP nature of the
optical access is the reason why the performance
of PONs is not solely determined by the physi-
cal (PHY) transmission layer but also by dynamic
bandwidth allocation mechanisms and protocol-
imposed constraints, both from the transmission
convergence (TC) layer realm, and hardware limi-
tations. All of these can severely impact through-
put, latency and packet jitter.

A major challenge to address this issue lies in
the opaque, vendor-specific nature of dynamic
bandwidth allocation (DBA) algorithmsl'l. In or-
der to adapt the upstream priorities of different
service flows, PON relies on five types of traffic
containers (T-CONT). Those can group services
with similar priorities and are used to provide a fair
bandwidth allocation for the different users using
one same service. However, the details of such
algorithms are unknown and cannot be modified
by network operatorsf?, forcing them to investi-
gate system behavior and often make decisions
regarding network provisioning with incomplete
information. Unable to accurately predict delay,
frame loss, or total assigned capacity, operators
often resort to oversimplified, set-and-forget en-
gineering rules for the DBA configurations. This
uncertainty frequently results in overprovisioning
to meet performance targets, cost inflation and un-
derutilization of network resources. While manual
adjustments or synthetic probes can be used to
optimize PON configuration, trial-and-error risks
service degradation, and probes add extra network
load that can impact user experience.

In this context, the absence of open datasets
based on commercial PON deployments remains

a major obstacle to advancing data-driven net-
work optimization. Even the most sophisticated
modeling tools and network simulator cannot fully
replicate real-world behavior®l, especially when
evaluating physical metrics and time-sensitive pa-
rameters. This gap between simulated and op-
erational performance limits the effectiveness of
research efforts and slows down innovation partic-
ularly for academic institutions that lack access to
real production environments.

Our work addresses these challenges by pro-
viding publicly accessible performance measure-
ments from a real PON using an SDN-enabled
testbed with automated monitoring (see Fig. 1).
This platform acts as a physical twin of a commer-
cial PON, enabling reproducible experiments for
rigorous DBA configuration research and democ-
ratizing access to empirical data for researchers
lacking physical PON infrastructure. It also serves
as a benchmark for comparing vendors and as-
sists operators in planning networks without dis-
rupting service. While previous works have ex-
plored testbeds for dataset generation in other
domains!*8l, to the best of our knowledge, this
is the first SDN-orchestrated PON testbed and
the first to make its generated datasets publicly
available!”!, covering a wide range of DBA configu-
rations, traffic profiles, and performance indicators.
In this paper, we detail the testbed and SDN con-
troller, describe the dataset, and illustrate its utility
through a practical use case.
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PON Testbed

Our experimental infrastructure (Fig.2) is based
on four elements: (1) The PON infrastructure, (2)
the real-time physical measurement infrastructure,
(3) the traffic generation stage and (4) the control
and orchestration planes.
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Fig. 2: Experimental setup block diagram.

1. For the PON infrastructure we use a commer-
cial Gigabit-capable PON (G-PON) with an Op-
tical Line Terminal (OLT), 32 Optical Network
Units (ONUs) and two optical splitters.

2. We incorporate a measurement stage between
the OLT and ONUs, featuring a high-resolution
oscilloscope and PON protocol analyzer (snif-
fer). These instruments provide real-time moni-
toring of waveform integrity, timing parameters
and key metrics at both PHY and TC layers,
offering essential visibility into the dynamic be-
havior of the optical access.

3. A commercial traffic generator creates different
traffic patterns, with individual flows per ONU
to simulate diverse user demands via an in-
termediate Ethernet switch using 802.1Q. The
OLT’s metro-side output loops back to the traf-
fic generator, creating a closed-loop system
with synchronized timing references for both
up and downstream flows, which is critical for
accurate and repeatable performance measure-
ments. The generator also performs evaluation
of the transmitted flows and completes the list
of available metrics with layers 2 and 3 indica-
tors such as latency, jitter or frame loss rate.

4. A custom-developed control plane, through
which all the devices talk with a management
entity with the help of a custom-developed or-
chestrator and SDN framework.

Custom-developed Control Plane

The orchestrator is developed following a mod-
ular paradigm, enabling the integration of addi-
tional functionalities and promoting interoperabil-
ity. Fig. 3 details the control plane in our plat-
form. Three different layers can be identified here:
(1) The orchestration layer, (2) the SDN controller
layer and (3) the physical network functions layer.

The orchestrator can be accessed via a custom
graphical user interface (GUI), a web interface, or
with custom scripts. These entities communicate
with the Policy Manager, which acts as the gateway
between the user interface and the control plane
server. It provides functions for continuous net-
work state monitoring and dynamic configuration
adjustments, enabling performance optimization
and adaptation to changing conditions. It commu-
nicates with the SDN controller through a RESTful
interface.
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Fig. 3: Control plane architecture.

On the SDN controller side, a Flask APl serves
as the Northbound Interface, processing incom-
ing requests and interacting with a dedicated
database. The Flask API supports various opera-
tions, including executing received configurations,
storing and retrieving previous configurations, and
querying end-network equipment. To ensure inter-
operability, a translation layer is integrated into the
orchestrator, converting human-readable YAML
configurations into structured YANG models. This
enables compatibility with industry-standard SDN
frameworks and facilitates integration with broader
network management ecosystems.

A Model Interpreter provides intelligent medi-
ation by mapping abstract service definitions to
device-specific parameters. It analyzes incom-
ing configurations and delegates execution to spe-
cialized Instruction Modules tailored for different
network elements (OLTs, switches, etc.). These
modules encapsulate device-specific command



sets and communication protocols, abstracting
hardware complexity from higher-level operations.
The Southbound Interface of the SDN controller
enables communication with network equipment
through Command-line Interface over Telnet com-
mands, issuing both configuration directives and
status queries to maintain synchronization be-
tween the control system and network state.

The designed control plane enables dynamic ad-
justment, continuous monitoring, and automated
data acquisition, allowing empirical testing of the
network’s behavior under different parameter set-
tings and traffic conditions. Its modular archi-
tecture not only supports dataset generation but
also facilitates the integration of configuration al-
gorithms and the platform’s future expansion.

Data Acquisition
The system is capable of retrieving end-to-end per-
formance metrics by querying and parsing statis-
tics from the traffic generator and other metrology
equipment: it can collect detailed performance
data from the PON itself—by directly querying the
OLT and the ONUs—as well as PHY and TC layer
KPIs from the PON analyzer and the oscilloscope.
We developed a custom module that uses the
orchestrator to systematically enqueue multiple
traffic profiles and network configurations (T-CONT
types and their configuration parameters) in a loop.
The system emulates a 24-hour traffic pattern for
16 ONUs, capturing one measurement every 12
minutes, with each network configuration and KPI
acquisition operation taking approximately two min-
utes. Each point reflects the traffic demand of
all ONUs under a specific set of DBA parame-
ters. The control plane interacts with the traffic
generator to collect performance data, which is
parsed and stored in structured CSV files avail-
able in our Git repositoryl’). This process results in
an open collection of datasets to support research
on the impact of T-CONT configuration parameters
in PON. Each dataset contains:

» Network configurations and user traffic profiles
recorded at regular 12-minute intervals across
the emulated 24-hour period.

» Performance results for each combination of
configuration and traffic profile, including eighty-
eight metrics per direction (uplink and downlink)
such as latency, frame loss ratio, bit error rate,
throughput, and packet size.

* Traffic patterns derived from both real-world
studies®1'% and synthetic scenarios, applied
to various network configurations.

« Data stored in multi-indexed
DataFrames!'"! for structured analysis.
The dataset structure facilitates reproducible ex-

periments and is suitable for tasks such as perfor-

mance prediction, configuration tuning, and ma-
chine learning-based optimization in PON.

Pandas

Usage Example

Fig.4 demonstrates the results of a machine learn-
ing model trained with the dataset to predict PON
uplink delay based on peak information rate (PIR)
and different traffic profiles across all ONUs. All
ONUs in this example are configured with a T-
CONT type 3. In this case, the model predicts the
delay for a PIR of 50 Mbps, which was not included
in the training data.
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Fig. 4: Comparison of actual and predicted uplink delay

across different hours of the day.

The graph in Fig.4 displays uplink delay mea-
surements (in microseconds) plotted against hours
of the day. Two data series are presented: actual
measured values and predicted values. The re-
sults indicate that the prediction model accurately
captures the daily pattern of uplink delay fluctua-
tions, with both series exhibiting similar trends and
values ranging approximately between 350-450
microseconds throughout the day. Other scenar-
ios closer to network planning use-cases could be
easily investigated with our database such as the
impacts of changing the peak, committed or fixed
information rates of T-CONT profiles or even the
optimization of T-CONT type for a specific service.

Conclusions

Our SDN-orchestrated PON testbed provides a
programmable platform for transparent perfor-
mance evaluation in optical access networks. By
integrating commercial-grade equipment with SDN
control, we enable diverse configurations and opti-
mization strategies in a controlled yet realistic en-
vironment. The multi-layered control architecture
developed automates experiments and collects
performance data across physical, protocol, and
application levels, facilitating empirical validation
of network behavior and bridging the gap between
theoretical models and real implementations. The
open datasets generated!”] contribute significantly
to the research community, especially for machine
learning applications in network optimization, by
documenting relationships between configuration
parameters and performance metrics under varied
traffic conditions.

This platform is designed to support collabora-
tive experimentation, offering a shared infrastruc-
ture for advancing the understanding and optimiza-
tion of optical access networks. New data will be
added to the repository as work progresses.
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