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Resumen

Este trabajo presenta un análisis de art́ıculos de células de dirección de la
cabeza de roedores que describan su comportamiento, y realiza un relevamiento,
tanto de modelos matemáticos como de modelos computacionales. Comenzando
por el análisis de art́ıculos con enfoques principalmente biológicos sobre dichas
células, donde construye una base sólida de entendimiento de la temática, se
continúa a través de sucesivos art́ıculos referenciados. Cada uno de estos art́ıcu-
los incrementa, paso a paso, sobre distintas propiedades y desarrolla cada uno
modelos más complejos. Una vez adquirida una comprensión adecuada de la
dinámica de las células y los modelos, se procede a la puesta en funcionamiento
y prueba de uno de los modelos relevados.

La construcción de un escenario de pruebas en el simulador Gazebo, donde
se incluye un entorno de referencias para experimentar y un robot Ridgeback:
práctico, sencillo y extensible, que permite, sobre el sistema operativo robótico,
ROS, la ejecución del modelo computacional y análisis de su funcionamiento,
evidenciando carencias y problemas, y mostrando posibilidades de extensiones
a implementar.

Una de estas carencias es la falta de procesamiento de imágenes para las
referencias visuales, por lo que se incluyó un paso intermedio entre la cámara
del robot y la activación de la célula de para darle un uso práctico a las células
de visión, obteniéndose resultados satisfactorios con corrección de desfasaje de
dirección del sistema.

Diversas magnitudes de velocidad angular de giro del robot no se ven acom-
pasadas por el desplazamiento del cúmulo del atractor de la red neuronal, cau-
sando una acumulación de error en la representación de la dirección del sistema.
Por esto, se consideró y llevó a cabo la implementación de soporte de múlti-
ples velocidades puntuales. Si bien se logró que el sistema tolere más de una
velocidad espećıfica de giro, el resultado no es fácilmente escalable considerando
la cantidad de magnitudes que pueden surgir en varios escenarios de funciona-
miento.

Palabras clave: Células de dirección de la cabeza, bio-robótica, redes neuro-
nales
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4.2.3. Desarrollo de solución de múltiple velocidad . . . . . . . . 46

5. Experimentación 49
5.1. Validación de múltiple velocidad en Google Test . . . . . . . . . 49

5.1.1. Prueba de velocidad estándar: una vuelta . . . . . . . . . 49
5.1.2. Prueba de velocidad doble: una vuelta . . . . . . . . . . . 50
5.1.3. Prueba de velocidad inversa: una vuelta . . . . . . . . . . 50
5.1.4. Prueba de velocidad doble inversa: una vuelta . . . . . . . 51
5.1.5. Prueba de giro: ida y vuelta . . . . . . . . . . . . . . . . . 51
5.1.6. Prueba de giro doble: ida y vuelta a doble velocidad . . . 52

5.2. Experimentación en simulación . . . . . . . . . . . . . . . . . . . 52
5.2.1. Validación de modelo base . . . . . . . . . . . . . . . . . . 53
5.2.2. Validación de giro de una vuelta . . . . . . . . . . . . . . 53
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Caṕıtulo 1

Introducción

La evolución de los seres vivos, a lo largo de millones de años, ha estado
marcada por la interacción constante con una amplia variedad de entornos y
situaciones. Esto ha representado una oportunidad única de aprendizaje, per-
mitiéndoles adaptarse de manera cada vez más eficiente a su entorno. Como
resultado, han desarrollado una notable robustez y tolerancia a los cambios.
Gracias a esta capacidad de adaptación, los seres vivos sirven como referencia
para desarrollar soluciones robóticas que imiten su comportamiento.

En la actualidad, ya se encuentran soluciones biológicas trasladando asimis-
mo ventajas inherentes del mundo animal, como lo son su eficiencia, robustez o
adaptabilidad, al mundo robótico. Un ejemplo de esto es el sonar de los subma-
rinos inspirado en la eco-localización de los murciélagos, lo que demuestra que
ciertos procesos naturales pueden ser adaptados tecnológicamente.

Por otro lado, la navegación robótica es una herramienta que le permite a
los sistemas autónomos desplazarse y ubicarse sin la necesidad de asistencia por
parte de un operador. En los últimos años, su eficacia ha aumentado significa-
tivamente gracias a los avances en capacidad de procesamiento, lo cual permite
una respuesta más rápida y precisa frente a los cambios en el entorno. Del
contexto biológico y la influencia robótica surge la motivación para la robótica
bio-inspirada.

1.1. Motivación

Un elemento destacable de la bioloǵıa son las células de dirección de la cabeza
encontradas en distintas partes del cerebro de roedores. Estas células permiten
al animal orientarse en ambientes donde las referencias de ubicación son escasas.
Pudiendo ser influenciadas tanto por est́ımulos externos al roedor (por ejemplo,
visuales) como por internos (movimientos del mismo), poseen la capacidad de
registrar y mantener una dirección para la cual la célula maximiza su actividad
si la cabeza del roedor apunta en dicha dirección. En cuanto el roedor gira su
cabeza hacia otra dirección, la misma célula reduce su tasa de disparo, mientras
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que otra célula comienza a disparar.
Diversas investigaciones han mostrado las propiedades de dichas células, a

partir de las cuales se han desarrollado modelos matemáticos que describen su
comportamiento. Cada uno de estos modelos presenta distintas cualidades según
el enfoque tomado y la estructura utilizada.

En este sentido, una colaboración más estrecha entre el conocimiento biológi-
co y la robótica podŕıa ser de mutuo beneficio, abriendo oportunidades para el
desarrollo de tecnoloǵıas más flexibles y eficientes. Por esto, analizar e imple-
mentar mejoras sobre modelos existentes de células de dirección de la cabeza,
podŕıa contribuir significativamente a la reducción de la brecha entre los compor-
tamientos animales y los sistemas artificiales. La simplificación y optimización
de los sistemas de orientación en autómatas permitiŕıa acercar sus capacidades
a las de los organismos vivos, favoreciendo simulaciones más realistas que se
aproximen al estándar biológico. Mejorar estos modelos significaŕıa dar un paso
en esa dirección, por lo que pasa a ser un objetivo de este proyecto.

1.2. Objetivo

Centrado en las células de dirección de la cabeza de roedores, este proyecto
busca estudiar los modelos matemáticos basados en dichas células, imitando sus
comportamientos y propiedades, y el lugar que toman en el sistema de orien-
tación de los animales para evaluar posibles mejoras a sistemas robóticos. El
objetivo es realizar un relevamiento del estado del arte de dichos modelos, eva-
luando las propiedades de cada uno y analizando la posibilidad de implementa-
ción computacional. Sobre estas implementaciones se busca evaluar e identificar
posibles mejoras que se vean reflejados en los modelos, desarrollando las mis-
mas y finalmente realizar un comparativo sobre el desempeño de los cambios
realizados para determinar el éxito.

1.3. Alcance

El alcance para este proyecto está compuesto por los siguientes objetos:

Documento del estado del arte sobre art́ıculos que definan una imple-
mentación matemática y/o computacional sobre células de dirección de la
cabeza en roedores. Se busca principalmente aquellos que posean limita-
da o nula dependencia con otras células de navegación de roedores (p.e.
células de lugar, células de grilla), pudiendo estar relacionados, con el fin
de no limitar las posibilidades de integración.

Implementación en sistemas robóticos de los modelos relevados, priori-
zando aquellos que ya dispongan de una arquitectura funcional y código
disponible.

Análisis, diseño e implementación de mejoras sobre dichos modelos, ya
sean existentes de modelos anteriores o nuevas.
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Evaluación de mejoras respecto al desempeño de los modelos en un entorno
robótico simulado.

1.4. Estructura de este documento

Este documento está comprendido por las siguientes secciones:

Marco teórico: definición y contexto de los conceptos teóricos aplicados en
el documento.

Revisión de antecedentes: se listan algunos de los art́ıculos analizados con
el fin de ampliar el entendimiento sobre la temática, investigar las solu-
ciones propuestas para el problema y explicar las mismas desde un punto
de vista técnico.

Desarrollo de la solución: detalle de trabajos realizados sobre las soluciones
propuestas en el punto anterior con el fin de extender lo analizado y definir
el avance.

Experimentación: análisis cuantitativo de métricas propuestas previo y
posteriormente a lo desarrollado para evaluar la efectividad de lo imple-
mentado.

Conclusiones: cierre de lo expuesto en este documento, consideraciones de
trabajos a futuro y reflexión final.
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Caṕıtulo 2

Marco teórico

2.1. Introducción

Para facilitar el entendimiento de los modelos de células de dirección presen-
tados, en este caṕıtulo se describen conceptos clave que sirven como base para
su desarrollo. Se describen tanto conceptos biológicos, para facilitar el entendi-
miento del sistema nervioso de los seres vivos, como matemáticos, que funcionan
como cimiento teórico sobre el cual están construidas las soluciones.

2.2. Aspectos biológicos

2.2.1. Neuronas

El sistema nervioso de los seres vivos está compuesto por una extensa red
de neuronas. Las neuronas son células especializadas altamente interconectadas,
capaces de llevar a cabo el procesamiento de señales recibidas y redirigirlas hacia
otras células mediante impulsos eléctricos y señales qúımicas. La interacción
entre dos neuronas es llamada sinapsis, por la cual una neurona emisora, llamada
presináptica, env́ıa señales con una frecuencia o tasa de disparo a otra neurona
receptora o neurona postsináptica.
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Figura 2.1: Composición de una neurona.

En la figura 2.1 se puede observar las distintas componentes de una neurona.
Con 1 están señaladas las dendritas, componente principal para la recepción de
señales sinápticas, donde la célula actual cumple el rol postsináptico. Con 2
se indica el cuerpo somático, principal encargado del procesamiento llevado a
cabo por la neurona. El núcleo está señalado por el punto 3, que es donde se
lleva a cabo la contención genética y la śıntesis de moléculas. Finalmente, en
4 está indicado el axón, encargado de transportar los impulsos desde el cuerpo
somático hacia su destino, donde esta neurona es el componente presináptico.

En el contexto de orientación y navegación, neuronas encontradas en los ce-
rebros de los roedores construyen una red interconectada de forma tal que les
proporciona un esquema de asistencia en orientación. Las células de dirección
de la cabeza, descubiertas por primera vez por Ranck (Ranck, 1984), presentan
actividad cuando la cabeza del roedor apunta en una dirección puntual, au-
mentando la tasa de disparo conforme la dirección se acerca a dicha dirección.
Otras neuronas involucradas en la ubicación espacial son las células de grilla,
que forman patrones regulares de activación con forma de grilla hexagonal en el
mapa interno del espacio, y las células de lugar, las cuales se disparan cuando
el animal se encuentra en ciertos lugares del espacio.

2.2.2. Regiones del cerebro

El hipocampo es una región del cerebro que forma parte del sistema ĺımbi-
co. Es una parte fundamental en la formación de mapas cognitivos y memoria
espacial, estando conectado con otras áreas especializadas del cerebro, como la
corteza entorrinal medial, el postsub́ıculo, el presub́ıculo y el núcleo talámico
anterodorsal. El postsub́ıculo es una parte importante del sistema que conforma
la orientación biológica. Ubicado en la parte posterior del hipocampo, recibe
información del sistema vestibular aśı como otras regiones del hipocampo, y
env́ıa hacia áreas implicadas en el control motor y la integración sensorial del
animal. Es el encargado de la codificación y transformación de las señales de
orientación direccional para representaciones espaciales mediante la integración
de las múltiples fuentes sensoriales utilizadas. El núcleo talámico anterodor-
sal está involucrado con la codificación de la dirección de la cabeza del animal
manteniendo conexiones con el postsub́ıculo. Interpreta las señales vestibulares
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y mantiene una referencia interna de la dirección de la cabeza.

Figura 2.2: Interconexiones de regiones del cerebro y su asociación con neu-
ronas involucradas en la navegación espacial. Imagen tomada de http://

www.scholarpedia.org/article/Head direction cells

En la imagen 2.2 se muestra la relación entre distintas secciones del cerebro
involucradas con el funcionamiento de las células de dirección de la cabeza. En
azul se muestran las partes involucradas directamente con las células de direc-
ción, en verde se representan secciones que involucran las células de velocidad
angular, parte fundamental de la confección de la representación de la dirección
actual de la cabeza del roedor. También se hace referencia a células de lugar
y células grilla, otros tipos de células involucradas en los sistemas neuronales
de orientación de los roedores. La imagen 2.3 ilustra las distintas regiones del
cerebro involucradas en distintos sistemas de orientación.

2.2.3. Orientación biológica

La capacidad de los seres vivos de estimar la propia orientación y trayec-
toria en el espacio se basa en la combinación de múltiples fuentes sensoriales.
El sistema vestibular del óıdo interno detecta aceleraciones lineales y angulares
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Figura 2.3: Secciones del cerebro de los roedores que forman parte de los siste-
mas de orientación. Se ilustran las células de lugar del hipocampo, activándo-
se al pasar el roedor por un mismo lugar en dos oportunidades (recuadro iz-
quierdo), las células de dirección que se activan cuando la cabeza del roe-
dor toma cierta dirección (recuadro central) vinculado con el sub́ıculo, y las
células grilla, encontradas en la corteza entorrinal, que se activan al detec-
tar que el roedor se encuentra alineado a un sistema particular de determi-
nada grilla. Imagen tomada de https://commons.wikimedia.org/wiki/File:
Rat pup exploring a new environment.jpg
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y el sistema propioceptivo interpreta los movimientos musculares. Estos siste-
mas, integrados además al sistema visual, conforman un sistema de navegación
interno dentro de las regiones cerebrales descritas.

2.3. Odometŕıa robótica

La odometŕıa robótica es el uso de sensores por parte de un robot para ras-
trear movimientos con el fin de estimar su posición a lo largo del tiempo. Dicha
estimación requiere un punto de partida y la integración de los movimientos
realizados posteriormente, para realizar una estimación que indique la posición
en un tiempo espećıfico.

Una unidad de medida inercial (IMU, por sus siglas en inglés) es un sen-
sor electrónico que permite estimar el movimiento y orientación de un agente,
utilizado frecuentemente en robótica para determinar una ubicación aproxima-
da. Cumplen en robótica un rol análogo al del sistema vestibular de los seres
vivos, al proporcionar información inercial a partir de aceleraciones lineales y
rotaciones angulares.

2.4. Redes Neuronales Artificiales

Una red neuronal es un modelo computacional compuesto por nodos organi-
zados en capas interconectadas, donde cada nodo (o neurona artificial) realiza
un procesamiento y se lo env́ıa a otros en la siguiente capa a través de señales,
simulando aśı el procesamiento llevado a cabo por neuronas en el cerebro de
los seres vivos. Cada uno de estos nodos recibe una combinación ponderada de
señales de los nodos de la capa anterior o señales de entrada, para el caso de
la primera capa, las procesa mediante una función de activación y transmite el
resultado a los nodos de la siguiente capa. La imagen 2.4 representa una neurona
artificial donde el nodo recibe la señal de activación por el equivalente a las den-
dritas para una neurona, el cuerpo somático realiza el procesamiento en función
de la activación percibida, y posteriormente el axón lo env́ıa a la siguiente capa.
En la imagen 2.5 se representa la interacción entre los nodos de las distintas
capas, representando los nodos activos con color negro.
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Figura 2.4: Representación de nodo individual de la red neuronal.

Figura 2.5: Esquema general de red neuronal.

Una caracteŕıstica particular de algunas redes neuronales es el uso de la
función de retropropagación, que se encarga de la modificación del sistema para
llevar a cabo un aprendizaje del mismo a base de su salida. Un mensaje de
ajuste es enviado hacia atrás en la red neuronal (2.6), reforzando o debilitando
las conexiones entre distintos nodos.

Figura 2.6: Esquema de red neuronal con retropropagación.

Cuando las redes neuronales interconectan la salida como señales de entrada
en una nueva iteración, son llamadas redes neuronales recurrentes.
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2.4.1. Atractor

Un atractor es un tipo de red neuronal recurrente donde las conexiones están
organizadas de una forma tal, que las funciones de los nodos y la sinapsis entre
ellos llevan a la red neuronal a estados espećıficos llamados puntos de atracción,
donde se presenta una acumulación de actividad (también llamada enerǵıa).
Estos puntos de atracción influyen sobre un entorno de convergencia para los
cuales el sistema, no recibiendo est́ımulos externos, tiende a estos puntos. Una
vez alcanzado este punto, un atractor permanece en él, representando aśı una
memoria o estado persistente. Similar a una pelota que atraviesa huecos, repre-
sentado en la figura 2.7, donde la pelota es empujada por la pendiente hacia el
fondo del hueco, los puntos de atracción son los estados hacia donde tiende a
acumularse la mayor actividad del sistema. Las redes neuronales de atractores
continuos presentan una red de nodos en la que se encuentran múltiples puntos
de atracción. Los puntos de atracción corresponden a neuronas para los cuales la
actividad recibe un aumento, influenciando su entorno y, de manera recurrente,
su entorno aumenta aún más su enerǵıa. Una vez que un cúmulo alcanza uno
de estos puntos, permanece alĺı hasta percibir est́ımulos suficientemente grandes
que desplacen los niveles de enerǵıa al entorno del siguiente punto de conver-
gencia, similar a un empuje de la pelota en la ilustración siendo llevada hasta
el otro lado de la pendiente.

Figura 2.7: Representación práctica de un atractor. Distintos colores de la misma
pelota representan puntos de atracción diferentes.

Un problema que surge de las redes neuronales recurrentes es el aumento
de enerǵıa desmesurado, causando la inestabilidad del cúmulo de actividad en
el sistema. Para mantener la distribución de actividad de forma que el sistema
mantenga la enerǵıa acotada y un único cúmulo definido, los atractores poseen
un mecanismo de inhibición en el cual la señal emitida por un nodo influye ne-
gativamente en las demás de forma proporcional a la magnitud de la señal y la
distancia sináptica entre los nodos en el atractor. Esta distancia corresponde a
distancia angular para atractores en forma de anillo o distancia euclidiana si es
un atractor en un plano, entre otros. De esta forma, un nodo con mucha activi-
dad tiene una influencia mayor sobre sus vecinos, y una influencia negativa sobre
el resto del sistema. Esto genera una competencia entre cúmulos de actividad
en la que prevalece el que emita una mayor señal sobre los demás, y evitando la
proliferación de cúmulos menores en un sistema sin est́ımulos externos.
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2.5. Aprendizaje Hebbiano

La plasticidad neuronal se describe como la capacidad de las redes neuro-
nales de modificar su estructura en respuesta a experiencias para adaptarse a
distintos escenarios. Para llevar a cabo dicha actualización, uno de los procesos
que surgen es la variación de la conectividad entre dos neuronas que se dis-
paran una inmediatamente de la otra, recibiendo aśı una actualización en el
peso sináptico que las vincula, incrementando la relación entre las mismas y
mejorando la eficiencia de la sinapsis. A este mecanismo se le llama aprendizaje
hebbiano. En un contexto de redes neuronales artificiales, es aplicable para la
adaptación de las sinapsis, como una regla de actualización local que ajusta los
pesos sinápticos entre nodos, logrando aśı un aprendizaje de funcionamiento sin
necesidad de supervisión.

∆wij = kxiyi (2.1)

En la ecuación 2.1 se muestra un ejemplo donde el producto de la tasa de
disparo xi correspondiente a un nodo i, la tasa de disparo yi correspondiente
a un nodo j y una tasa de aprendizaje k resultan en la actualización del peso
sináptico wij .

2.6. Robot Operating System: ROS

ROS es un conjunto de herramientas y libreŕıas de software libre que funcio-
nan como base para el diseño y desarrollo de aplicaciones robóticas. Escrito prin-
cipalmente en C++ y Python, es soportado completamente en Linux, mientras
que para algunas versiones de Windows y MacOS existen versiones experimen-
tales. ROS simplifica el proceso de implementación de aplicaciones, permitiendo
aumentar la complejidad de la interconexión entre diversos módulos aplicados.
Estos módulos llamados nodos son programas independientes en ejecución que
realizan tareas espećıficas y se comunican con otros nodos, a través de mensajes,
para realizar tareas más complejas y aśı poder llevar a cabo comportamientos
requeridos. Versiones anteriores de ROS requeŕıan un nodo maestro encargado
de la coordinación entre los diversos nodos (nodo maestro). Versiones modernas
no requieren la existencia de dicho nodo, utilizando un sistema llamado Data
Distribution Service (DDS) que permite la descentralización de la coordinación.

La comunicación entre nodos puede llevarse a cabo a través de tópicos, servi-
cios o acciones. Representados en la figura 2.8, los tópicos son canales aśıncronos
de comunicación siguiendo un modelo publicación/suscripción, donde un nodo
env́ıa mensajes a determinado tópico, y dicho mensaje es reenviado a todos sus
nodos suscriptos.
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Figura 2.8: Funcionamiento aśıncrono de tópicos de múltiples publicadores a
múltiples suscriptores.

Los servicios (figura 2.9) funcionan con un modelo cliente/servidor, donde
un nodo presta un servicio, mientras que otro nodo lo utiliza en forma de clien-
te, realizando una comunicación śıncrona enviando un mensaje de solicitud y
esperando una respuesta por parte del servidor.

Figura 2.9: Llamada a servicio de un nodo que devuelve una respuesta.

Las acciones funcionan de manera similar a los servicios, pero para tareas que
se ejecutan durante un tiempo extendido, recibiendo retroalimentación durante
el proceso de ejecución en forma de múltiples respuestas, enviando un resultado
al concluir la acción. En la figura 2.10 un nodo env́ıa una solicitud de acción,
recibiendo las respuestas y posteriormente el resultado.

Figura 2.10: Flujo de trabajo de una llamada de acción.

2.6.1. Gestión de conjuntos de datos

Para grabar y almacenar conjuntos de datos y realizar repeticiones de prue-
bas, ROS provee archivos de registro llamados bags. Estos bags permiten guar-
dar todo lo que publican los sensores involucrados en el sistema para efectuar
múltiples simulaciones utilizando datos grabados, potencialmente de escenarios
reales cuando el acceso al equipo es limitado. También permiten realizar análi-
sis de los datos para evaluar fallos en el control o la percepción de los robots y
ejecutar múltiples configuraciones de un mismo sistema en un escenario contro-
lado.
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2.6.2. Visualización

ROS provee herramientas de visualización y análisis de datos que permiten
graficar y mostrar la arquitectura del sistema construido, aśı como datos de los
tópicos del mismo. La herramienta rqt graph (figura 2.11) muestra de forma
gráfica la topoloǵıa de nodos y tópicos del sistema, permitiendo entender flujo
de información del mismo.

Figura 2.11: Ejemplo de rqt graph, imagen tomada de https://wiki.ros.org/
rqt graph.

Para la simulación de escenarios virtuales se encuentra disponible Gazebo,
una herramienta que combina visualización 3D con simulación f́ısica, permitien-
do representar robots en entornos virtuales realistas y generar datos de sensores
simulados, permitiendo la validación de sistemas robóticos en escenarios com-
plejos sin necesidad de contar con el hardware f́ısico.
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Caṕıtulo 3

Revisión de antecedentes

Las células de dirección de la cabeza son neuronas encontradas en el post-
sub́ıculo (POS) y en el núcleo talámico anterodorsal (ATN) de los cerebros de
algunos roedores. Dichas células maximizan su tasa de disparo cuando el roe-
dor (figura 3.1a) apunta su dirección en una dirección predeterminada para la
célula llamada dirección de preferencia (figura 3.1b). Entre las propiedades de
estas células, se encuentran la capacidad de mantener la referencia para cierta
dirección a través del tiempo, activarse ante la presencia de referencias visuales
detectadas en el campo visual del roedor e interpretar giros del animal para
alternar el disparo de distintas células. Esto le permite al roedor mantener la
referencia en ambientes con limitada o nula visibilidad, sin depender de referen-
cias visuales, utilizando exclusivamente los sensores biológicos propioceptivos
del cuerpo. Frente a los giros de la cabeza del roedor en el plano, las células al-
ternan su activación de acuerdo a la dirección tomada, maximizando la tasa de
disparo cuando la cabeza apunta en la dirección de preferencia. Esta dirección
de preferencia se mantiene a través del tiempo e inalterada, conservando una
única dirección para cada célula, mostrando ser un mecanismo confiable como
referencia interna de la dirección de la cabeza del roedor.

Taube (Taube, Muller, y Ranck, 1990) interpretó la relación entre frecuencias
de disparo de distintas células para una dirección como una función triangular
con el máximo ubicado sobre la dirección de preferencia de la célula, y un decre-
cimiento lineal hasta aproximadamente 45º desde la misma donde alcanza un
mı́nimo general, pudiendo este máximo variar entre distintas células.
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(a) Representación de la cabeza del roedor. (b) Representación de la célula de dirección
y su dirección de preferencia.

Figura 3.1: Representación abstracta de un roedor y una célula.

3.1. Propuestas de modelos

Varias investigaciones a lo largo del tiempo han marcado hitos en el entendi-
miento de la navegación biológica, aportando cada vez más información sobre su
funcionamiento. En este documento se presentan algunas implementaciones de
dichas investigaciones que contribuyen a la construcción cada vez más avanzada
de un modelo de células de dirección de la cabeza de roedores.

3.1.1. Construcción de una red neuronal para células de
dirección

McNaughton (McNaughton, Chen, y Markus, 1991) interpretó las direcciones
de preferencia de las células como nodos en una máquina de estados. Definiendo
los desplazamientos angulares de la cabeza del roedor como transiciones en el
sistema, compone un sistema que rastrea la orientación del roedor e imita la
activación de cada célula de dirección al llegar a un estado y el declive de la
activación de la célula anterior. En la figura 3.2 se ilustra una máquina de
estados parcial, donde cada estado representa una célula de dirección con su
dirección de preferencia. Las transiciones entre los estados representan los giros
de la cabeza del roedor.

Figura 3.2: Transformaciones angulares de McNaughton

También se discute la incorporación de transiciones de estado debido a la
presencia de referencias visuales asociadas a ciertos nodos de la máquina de
estados.
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Basado en la propuesta (McNaughton y cols., 1991) de representar direc-
ciones de la cabeza del roedor como nodos preestablecidos y el giro del roedor
basándose en funciones predeterminadas, Skaggs (Skaggs, Knierim, Kudrimoti,
y McNaughton, 1996) adecúa esta propuesta para darle la dinámica de una red
neuronal artificial continua con forma de anillo (anillo de atractores), resultando
los nodos en un arreglo unidimensional. Se asocia la idea de nodo a célula de
dirección donde cada una env́ıa señales a las demás (3.3a) simulando la sinapsis
entre estas y no solamente transformaciones atómicas.

(a) Representación de influencia de pesos
sinápticos Wi entre nodos en la red neuro-
nal artificial

(b) Células para orientaciones 0º, 45º y
90º, distribuidas en arreglo circular. Pesos
sinápticos más débiles, representados con
ĺınea puntuada, para nodos con mayor dis-
tancia angular entre sus direcciones de pre-
ferencia.

Figura 3.3: Organización de nodos y sus pesos sinápticos.

Los nodos son distribuidos en un arreglo circular (3.3b) vinculando cada
uno a un ángulo de orientación del roedor, relacionando aśı la dirección de
preferencia de las células de dirección del roedor, con separación equidistante
entre śı en el ćırculo. Esta distribución toma la forma de anillo, donde cada par
de nodos presenta una sinapsis más fuerte cuando se encuentran cercanos entre
śı respecto al ángulo representado.

Se incluyeron conexiones de inhibición al sistema para darle las propiedades
de anillo de atractores, donde se cumpla la unicidad del cúmulo de actividad y
el mismo mantenga su nivel de actividad en un sistema estático.

La dinámica de desplazamiento del cúmulo se lleva a cabo mediante la in-
corporación de células vestibulares y células de rotación. Al percibir est́ımulos
sobre una célula vestibular, esta influye sobre un anillo de células de rotación
que, a su vez, influyen sobre las células de dirección del anillo. Esto genera un
desequilibrio del sistema y traslada el cúmulo en el sentido definido por la célula
vestibular y las células de rotación, cambiando la tasa de disparo de las células
de rotación similar a lo observable en la figura 3.4.
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Figura 3.4: Desplazamiento del cúmulo por influencia de células de rotación.
En cada gráfica, el eje de las abscisas representa los nodos ordenados por sus
direcciones de preferencia. El eje de las ordenadas representa la tasa de disparo
de las células en cada iteración.

También se incorpora un conjunto de células visuales que se activan con la
detección de referencias visuales en el entorno. Dichas células se inicializan con
una influencia débil hacia las células de dirección, y son entrenadas mediante la
regla de aprendizaje hebbiano definida en la ecuación 3.1. En esta ecuación, W
representa el peso sináptico entre las células, λpost y λpre son las tasas de disparo
pre- y postsináptico, y la función f() es una función de variación, encargada
del aumento o decremento de la variación de la ecuación. Con esta función, la
sinapsis de las células visuales incrementa conforme el sistema las observe. Si
las referencias no son observadas con cierta frecuencia, la sinapsis decrece hasta
llegar a un mı́nimo.

∆W = α(Wmaxf(λpost)−W )λpre (3.1)

El comportamiento de aprendizaje de estas células visuales fueron observa-
dos por Taube (Taube y cols., 1990) y el entendimiento de la estabilidad fue
extendido por Knierim (Knierim, Kudrimoti, y McNaughton, 1995), reportando
en cada caso un mayor control sobre el conjunto de células de dirección si una
referencia visual era percibida como estable por el roedor, mientras que dicho
control se véıa reducido en caso de percibir cambios en el entorno.

3.1.2. Modelo Matching/Offset

Con una estructura similar al propuesto por Stringer, Redish (Redish, Elga,
y Touretzky, 1996) define una interacción entre dos conjuntos de nodos donde
uno representa la orientación actual, mientras que el otro representa la orien-
tación a futuro estimada de la dirección de la cabeza del roedor. Este modelo
está inspirado en estudios por parte de Taube (Taube, 1995) donde las células
encontradas en el ATN presentan niveles de activación correspondientes a una
estimación de la ubicación a futuro de la cabeza del roedor, manteniendo las
células de dirección encontradas en el POS una representación de la dirección
actual.

Para esto definieron dos atractores, compuestos cada uno por dos conjuntos
de nodos en forma de anillo, donde uno de estos anillos representa componentes
excitadores del atractor, mientras que el otro representa los inhibidores. En la
figura 3.5 se representan los nodos de cada anillo, inhibidores y excitadores, y
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sus respectivas interacciones. Los nodos inhibidores poseen conexiones sinápti-
cas que influencian un rango amplio de nodos en ambos conjuntos, inhibiendo
un poco más a los nodos angularmente cercanos en la representación del ani-
llo. Los nodos excitadores, por el contrario, influencian fuertemente los nodos
de su entorno, decayendo en mayor medida en comparación con los inhibidores
según incrementa la distancia entre nodos. Una distribución Gaussiana de cam-
pana más ancha y baja representa las conexiones sinápticas de los inhibidores,
mientras que una angosta y alta representa las conexiones de los excitadores.

Figura 3.5: Par de anillos de nodos representando inhibidores y excitadores y
sus conexiones sinápticas, ĺıneas gruesas representan la alta enerǵıa distribuida
por los excitadores, ĺıneas delgadas representan la enerǵıa distribuida por los
inhibidores

El par de anillos con las conexiones excitadoras e inhibidoras conforman un
conjunto con dinámicas de atractor similar a las descritas anteriormente. Se de-
finen dos atractores, uno para representar las células de dirección en el POS y
otro para el ATN. Para que el sistema funcione correctamente, estos atractores
poseen igual cantidad de nodos en sus anillos, cada nodo representando una di-
rección de preferencia equidistante entre śı e igual a las demás. Las conexiones
entre ambos atractores (figura 3.6) se dan exclusivamente entre sus conjuntos de
excitadores, de tal forma que cuando el sistema se encuentra estático, las inter-
acciones son limitadas a los nodos con direcciones de preferencia equivalentes.
Cuando el sistema percibe un giro, los nodos excitadores del POS influencian
los nodos del ATN con un desfasaje angular, que causa el desplazamiento del
cúmulo hacia un lado. Por la interacción entre los nodos, este desfasaje produce
una influencia de vuelta al POS. En la figura 3.6 la interacción estática entre
los atractores se representa con ĺıneas sólidas. Para el giro, la influencia desde
el POS hacia el ATN se representa con ĺıneas de guiones, y la ĺınea punteada es
el retorno de esa influencia.
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Figura 3.6: Par de atractores representando el postsub́ıculo y el núcleo talámi-
co anterodorsal, y un ejemplo de interacciones entre sus conjuntos excitadores
frente a un escenario de rotación en un sentido

Entre las ventajas de este modelo, a diferencia con el propuesto por Skaggs,
se encuentra la capacidad de interpretar giros a distintas velocidades, siendo
necesario establecer un ĺımite mucho más acotado en caso de carecer de la in-
fluencia del ATN. Esto se logra reforzando las funciones de disparo de las células,
incrementando la sinapsis desde el POS al ATN de acuerdo a la velocidad de
giro.

3.1.3. Adaptación dinámica de pesos sinápticos mediante
aprendizaje Hebbiano

Una limitante que presentan algunos modelos de células de dirección de la
cabeza, es la definición de pesos sinápticos preestablecidos por el modelador. La
definición de estas conexiones puede provocar fallos en la configuración del giro,
causando giros con errores. Para atacar este problema, se propuso un entrena-
miento de las conexiones sinápticas con aprendizaje hebbiano (Zhang, 1996) que
resulte en un modelo con influencia simétrica entre sus nodos. Frente a irregula-
ridades en este entrenamiento, las conexiones pueden derivar en desv́ıos e ines-
tabilidad en el cúmulo de actividad del atractor, por lo que Stringer (Stringer,
Trappenberg, Rolls, y de Araujo, 2002) propuso una adaptación con una tra-
za de memoria que mitigue variaciones en la simetŕıa de las conexiones. Otra
propuesta es la inclusión de un umbral de activación basado en una función
sigmoide (figura 3.7) que influye en la tasa de disparo de las células.
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Figura 3.7: Función sigmoide de umbral de activación

3.1.4. Implementación con influencia visual

Incorporando las dinámicas de atractores, aprendizaje y desplazamiento del
cúmulo de actividad propuesto por autores previos, Kyriacou (Kyriacou, 2011)
presenta un modelo con aprendizaje para los pesos, definiendo además del siste-
ma visual y el sistema vestibular, el sistema cinestésico que representa el movi-
miento propio del animal, diferenciándolo del vestibular respecto a si el animal
se mueve por śı mismo o es desplazado externamente. Durante una etapa de en-
trenamiento del sistema, se establece la correlación entre las células de dirección
y las imágenes recibidas por una cámara de 360º, comparando las imágenes re-
cibidas en cada momento con la posición original de la cámara y determinando
aśı la ubicación referenciada. El sistema utilizado permite realizar correcciones
rápidamente gracias a una referencia absoluta de posicionamiento visual donde
todas las referencias visuales están disponibles si el sistema posee capacidades de
visión. Si bien existe un desfasaje de la dirección representada cuando la visual
se encuentra inhabilitada debido a no existir iluminación, el posicionamiento se
corrige rápidamente al momento de recuperar las dichas referencias.

3.1.5. Células de dirección en modelo RatSLAM

RatSLAM es un sistema de navegación robótica que utiliza la técnica SLAM
(del inglés Simultaneously Localize And Map) de ubicación y trazado de mapas
en simultáneo. Basado en modelos computacionales del hipocampo encontrado
en el cerebro de los roedores, RatSLAM aplica la dinámica de los atractores
continuos con el enfoque probabiĺıstico de SLAM, estimando la ubicación actual
como un conjunto de probables ubicaciones y descartando algunas de las mismas
con la presencia de referencias visuales.

Centrado en un esquema de representación de posición, compuesto por un
módulo de dirección de la cabeza y un módulo de codificación de la ubicación
(figura 3.8), RatSLAM posee un sistema de integración de rutas que procesa los
sensores de movimiento y visión del robot para estimar la posición del robot.
Internamente al esquema de representación de posición, se actualizan el módulo
de dirección de la cabeza y la codificación de ubicación, siendo la ubicación
influenciada por la dirección de la cabeza en la integración de rutas. Un sistema
de visión local se encarga de realizar estimaciones de la posición definiendo
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múltiples ubicaciones probables, que luego son cotejadas con la codificación de la
ubicación para determinar la posición más probable dado el contexto registrado.

Figura 3.8: Interacción entre módulos de RatSLAM

Tanto el módulo de dirección como el módulo de ubicación funcionan a base
de redes de atractores continuos. El atractor de dirección es similar al propuesto
por Skaggs (Skaggs y cols., 1996) de un anillo unidimensional de nodos, donde
cada nodo representa una dirección preferida. El cúmulo de actividad de dicho
atractor es desplazado mediante la inyección de enerǵıa en el atractor, con la
forma de un nuevo cúmulo, similar a las células de rotación vistas. La inyección
de enerǵıa se da en la forma de desfasaje del cúmulo de actividad, a base de la
velocidad angular percibida por el sistema de integración de rutas por parte de
la señal recibida desde los sensores del robot.

3.1.6. Modelo de integración de rutas

Sinha (Sinha y Wang, 2014) busca mejorar la navegación bio-inspirada im-
plementada en robótica mediante el desarrollo de modelos anteriores. Basado
en el modelo propuesto por Stringer (Stringer y cols., 2002), se implementan
dinámicas de integración de rutas llevado a cabo por las células de dirección de
la cabeza y se desarrollan extensiones sobre el modelo.

A diferencia de lo expuesto por Kyriacou (Kyriacou, 2011), aqúı se imple-
menta una única célula visual (3.9) utilizada para la inicialización y pruebas de
corrección de desfasaje en la dirección.

Dividido en etapas de entrenamiento, inicialización y ejecución, este modelo
presenta una dinámica de pruebas que simulan un comportamiento similar al
observado por las células de dirección de la cabeza encontradas en la cabeza de
los roedores.
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Figura 3.9: Diagrama de interacción de células de dirección, rotación y visual.
Imagen tomada de ”An implementation of the path integrator mechanism of
head direction cells for bio-mimetic navigation.”(Sinha y Wang, 2014).
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Caṕıtulo 4

Modelo de referencia y
propuestas de extensión

En este caṕıtulo se describen aspectos técnicos del modelo tomado como
referencia para el desarrollo y las extensiones incorporadas al mismo. La primera
parte detalla el modelo seleccionado como ĺınea de base para el desarrollo de
soluciones que extiendan las capacidades de los modelos de células de dirección
de la cabeza. Dicho modelo presenta una arquitectura simple y flexible, sobre el
cual se pueden realizar extensiones e incorporar nuevos sensores. Al encontrarse
disponible el código fuente de este modelo, y además encontrarse implementado
sobre la plataforma ROS, lo hace un candidato ideal para tomarlo como punto
de partida. Este modelo es además el más reciente al momento de realizar el
relevamiento del estado del arte de la temática. Más adelante, se describen los
trabajos realizados sobre el modelo y las modificaciones necesarias para poder
llevar a cabo las extensiones y evaluaciones que requiere este proyecto.

4.1. Modelo base

El modelo base de simulación de células de dirección de la cabeza (Sinha
y Wang, 2014) utilizado en este documento es una extensión del desarrollo de
un modelo de anillo atractor unidimensional (Stringer y cols., 2002), adaptando
los conceptos estudiados en art́ıculos anteriores descritos en la sección Estado
del Arte (influencia visual, aprendizaje hebbiano). Implementado en C++ sobre
ROS, se construye un modelo funcional a base de células de dirección, células
de rotación y células de visión. Los pesos sinápticos entre las células son defini-
dos siguiendo un entrenamiento uniforme con aprendizaje hebbiano durante la
etapa de calibración, para la cual los est́ımulos externos están inactivos. Dicho
entrenamiento proporciona a los pesos sinápticos simetŕıa angular acorde a lo
observado por Stringer (Stringer y cols., 2002), siendo los pesos sinápticos de-
finidos a partir de una función de la distancia angular entre las direcciones de
preferencia de las células de dirección.
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La etapa de inicialización establece un cúmulo de actividad mediante la
activación forzada de una única célula de visión con pesos equivalentes a los
aprendidos en el entrenamiento, y estabiliza dicho cúmulo mediante la iteración
de la rutina de procesamiento sin est́ımulos por parte del sistema vestibular o
visual.

La etapa de ejecución lleva a cabo la dinámica de funcionamiento, la cual
consta de iteraciones de ejecución invocadas por la llegada de un mensaje con-
teniendo información odométrica, el cual inicia la rutina de actualización del
estado del sistema, recalculando las tasas de disparo de las células de rotación
y de dirección.

La clase Bionavigator (figura 4.1) es la clase central del sistema encargada
de vincular los distintos tipos de células del modelo. Sobre esta clase se definen
conjuntos para las células de dirección, encargadas de la representación de la
dirección del cúmulo en el atractor. También se definen dos células de rotación,
uno para cada sentido de giro, y una célula de visión.

Las células de dirección actualizan el estado del cúmulo en el sistema esta-
bilizando niveles de actividad. Las células de rotación se encargan de realizar
un des-equilibrio de los niveles de actividad, causando un traslado de la enerǵıa
del cúmulo y generando aśı un desplazamiento del mismo en el sentido corres-
pondiente a la célula de rotación. Por otro lado, las células de visión efectúan
una influencia centrada sobre células de dirección puntuales.

Estas células se encargan del desplazamiento y cambios en la ubicación del
cúmulo de actividad.

Se definen además, conjuntos de pesos sinápticos que representan los enlaces
entre las distintas células transmitiendo las tasas de disparo que componen la
activación de cada célula. Estos conjuntos incluyen las interacciones entre células
de dirección sobre śı mismas, la influencia de las células de rotación sobre las
células de dirección, y la influencia de las células de visión sobre las células de
dirección.

Figura 4.1: Clase principal que representa el modelo y las clases de conjuntos
que la componen
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Figura 4.2: Clases de conjuntos de neuronas

Figura 4.3: Clases de conjuntos sinápticos entre nodos
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4.1.1. Células

Cada clase de conjuntos de células implementada es derivada de la superclase
NeuronSet (figura 4.2). Las sinapsis entre los distintos conjuntos de células son
implementadas a través de la superclase SynapseSet(figura 4.3).

Células de dirección: Las células de dirección representan la red de atrac-
tores, siendo cada nodo el centro de un punto de atracción individual con una
tasa de disparo en función de la activación percibida, influenciando aśı las célu-
las de su entorno y generando el cúmulo de actividad. El sistema cuenta con un
conjunto de cien células de dirección uniformemente distribuidas en forma de
anillo, cada una representando un ángulo de 3,6º (360º/100), influyendo sobre
las demás y sobre śı misma a través de sinapsis ponderadas por pesos sinápticos
entre cada par de células. En la figura 4.4 se representa el anillo de células y la
interacción de una célula HDi con algunas de sus células cercanas. En el mode-
lo, la sinapsis no se limita a las células cercanas, sino que cada célula influencia
al conjunto completo. La ubicación del cúmulo se define a partir de la función
CurrentHeadDirection, que evalúa las tasas de disparo, retornando el ı́ndice de
la célula con mayor tasa de disparo en el arreglo de células. Este ı́ndice corres-
ponde a la posición de dicha célula en el arreglo de células de dirección de la
clase Bionavigator.

Figura 4.4: Representación del anillo y la interacción entre nodos

Sinapsis de células de dirección: La clase HDSynapseSet de la figura 4.3
representa los conjuntos de pesos sinápticos de interacción entre las células de
dirección. Los pesos sinápticos wHD

ij de este conjunto se ajustan a una función
gaussiana (ecuación 4.1) de la distancia angular entre las células, durante la
etapa de calibración del sistema en la que se fuerza el disparo de la célula de
rotación.

wHD
ij = exp(−1 + ∆S2

2σHD2 ) (4.1)

En esta ecuación, ∆S es la distancia angular entre las direcciones de pre-
ferencia de las células HDi y HDj , mientras que σHD es un parámetro que
controla el ancho de la distribución. El resultado de dicho entrenamiento para
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cada peso toma la forma de distribución gaussiana hacia los demás nodos, es
representado en la figura 4.5.

Figura 4.5: Distribución gaussiana de pesos sinápticos para células de dirección.

Células de rotación: Dos células de rotación orquestan el sentido de trasla-
ción del cúmulo de actividad del atractor mediante su influencia sobre la red. Si-
mulando el sistema vestibular del roedor, inspirado por lo propuesto por Stringer
(Stringer y cols., 2002) se desplaza el cúmulo simulando señales de movimiento
del roedor. Cuando se recibe un mensaje en un tópico de ROS con mensajes
odométricos, se dispara la rutina de procesamiento. La velocidad angular reci-
bida define la activación de la célula de rotación y esto causa el desequilibrio
del atractor influenciando las células del cúmulo en el sentido de la célula de
rotación correspondiente (figura 4.6).

Figura 4.6: Representación de una célula de rotación en color rojo y su sinapsis
hacia las células de dirección.
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Figura 4.7: Distribución sináptica de los pesos para una célula de dirección y la
influencia de la célula de rotación, representada con la gráfica de color rojo.

Sinapsis de células de rotación: El conjunto de pesos sinápticos para
las células de rotación es equivalente al peso sináptico de la célula de dirección
contigua en el anillo, de acuerdo al sentido de giro. De esta forma, la célula
de rotación causa el desequilibrio incrementando la actividad de la célula que
atrae al cúmulo. La figura 4.7 muestra la distribución de los pesos sinápticos
direccionales para la célula central del cúmulo y los pesos sinápticos rotacionales
para la célula de rotación.

Células de visión: Una única célula de visión (figura 4.8) está integrada en
el atractor, pero se utiliza exclusivamente para el est́ımulo que crea un cúmulo
en la red. Mediante el forzado de disparo de la célula, se iteran ciclos que in-
crementan la activación de las células de dirección, consiguiendo aśı la tasa de
disparo necesaria para mantener activo el atractor de la posición dada por la
célula de visión. Esto simula la influencia de una referencia visual asociada a
una célula de visión, pero no se encuentra implementada una rutina de proce-
samiento de imágenes que convierta la información de una fuente de imágenes
en activación.

Figura 4.8: Sinapsis de la célula de visión sobre las células de dirección. Se asocia
el color azul para diferenciar las células de visión, de las células de rotación en
los diagramas.

Estas células se asocian a direcciones puntuales, por lo que están vinculadas
particularmente a una célula de dirección. En el caso de activarse en una ubica-
ción suficientemente alejada del cúmulo principal, generaŕıa un cúmulo nuevo.
Esto se observa en la figura 4.9.
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Figura 4.9: Est́ımulo visual genera un nuevo cúmulo de actividad.

4.1.2. Esquema de funcionamiento

El sistema está implementado en C++ sobre ROS, utilizando los tópicos
como mecanismo de comunicación y disparador de iteraciones. Se divide en
etapas de calibración, inicialización y ejecución.

Calibración

En la etapa de calibración se realiza un ajuste de los pesos sinápticos entre
los nodos del conjunto de células de dirección. Dos iteraciones recorren los nodos
con sus direcciones de preferencia y asignan los pesos sinápticos entre células de
acuerdo a una función gaussiana. Esta función toma como entrada la distancia
angular entre las direcciones de preferencia de las células presinápticas y post-
sinápticas involucradas en la sinapsis a entrenar. En la ecuación de cálculo del
peso (4.1) se utiliza el parámetro de ajuste σHD y ∆S representa la distancia
angular entre los nodos.

Figura 4.10: Influencia de la célula HDi sobre la célula HDj a través del peso
sináptico wijk ponderado por la tasa de disparo de la célula de rotación k, rROT

k .
Se asocia el color verde para las rotaciones de sentido horario.

Durante esta etapa también se realiza el ajuste de los pesos sinápticos co-
rrespondientes a las células de rotación (figura 4.10). Para cada nodo se ajusta
un peso sináptico correspondiente a la influencia de la rotación en ese sentido.
Cada etapa de iteración de la calibración corresponde a uno de los sentidos de
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giro. En este paso se calculan los pesos sinápticos rotacionales wHD ROT
ijk , que

representan la sinapsis rotacional de la célula HDj sobre la célula HDi, ponde-
rada por la tasa de disparo rHD

j de la célula de dirección y la tasa de disparo

rROT
k de la célula rotacional, que llevan al desplazamiento del cúmulo (figura
4.11). La ecuación 4.2 muestra el cálculo parcial (no incluye activación de otras
células de dirección o células de visión) de la activación hHD

i de la célula HDi

por parte de cada célula de dirección HDj .

Figura 4.11: Influencia de una célula en proceso de rotación en sentido horario,
identificado con el color verde.

hHD
i =

∑
jk

wHD ROT
ijk rHD

j rROT
k (4.2)

La sinapsis correspondiente a la célula de visión es equiparada a la sinapsis
de la célula de dirección sobre la cual está centrada, hacia las demás células.

Inicialización

La inicialización del sistema se realiza mediante la activación forzada de la
célula de visión. Tomando esta como la dirección inicial del sistema, se corre una
cantidad arbitraria de iteraciones de ejecución sin información odométrica donde
cada una permite actualizar el estado del sistema. Con esto, la red neuronal
recibe la influencia de la célula de visión centrada en una célula de dirección,
generando aśı un cúmulo centrado en dicha célula (figura 4.12). Para el caso del
código fuente del art́ıculo, el valor de iteraciones con la célula de visión activa
es de 10.
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Figura 4.12: Generación del cúmulo en la etapa de inicialización.

Una vez ejecutada la cantidad de iteraciones, se desactiva el forzado de
disparo de la célula, quitando aśı el único est́ımulo externo del sistema. Restando
el est́ımulo entre nodos, el sistema llegará a su punto de equilibrio manteniendo
el cúmulo de actividad en su lugar en una cantidad finita de iteraciones de
ejecución. En este caso, la cantidad indicada de iteraciones es 200.

Ejecución

La dinámica del sistema funciona a base de iteraciones que actualizan el
estado del mismo mediante un recálculo de la tasa de disparo de las células de
dirección. Cada una de estas iteraciones es ejecutada por una rutina invocada
con la llegada de un mensaje de la IMU conteniendo información odométrica
del robot. Durante esta rutina se actualiza la tasa de disparo de las células de
rotación para luego actualizar el estado del sistema, calculando la activación de
las células de dirección y, con esto, la tasa de disparo.
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Figura 4.13: Relaciones en la iteración de cálculo de tasa de disparo. Para des-
balancear el equilibrio y desplazar el cúmulo de actividad en un sentido, cada
célula HDi debe influenciar principalmente a sus células cercanas en el anillo
en dicho sentido, de forma proporcional a: la tasa de disparo rHD

i , la tasa de
disparo de la célula de rotación rHD ROT

k y el peso sináptico wHD ROT
ijk que vin-

cula la célula donde se encuentra el cúmulo con sus células cercanas HDj . La
visual se computa de forma independiente a las demás células.

La tasa de disparo de una célula se calcula con una función sigmoide a
base de su activación. Para el caso de las células de dirección, la activación
de una célula HDi está compuesta por la tasa de disparo de todas las células
de dirección HDk ponderada por el peso sináptico correspondiente entre las
células, la tasa de disparo de las células de rotación ponderado por su peso
sináptico, y la tasa de disparo de la célula de visión también ponderada con su
peso sináptico entre la célula de visión y la célula de dirección. La figura 4.13
muestra una versión generalizada de la llegada del mensaje de la IMU al tópico
/hdbot/imu data, llevando a la iteración del sistema y un esquema resumido
de la interacción de las células. Las células de rotación (Rot0CCW y Rot0CW
en la figura) se activan una u otra según el sentido de la velocidad de rotación.
En la figura 4.14 se representa una versión simplificada de la procedencia de la
activación: otras células HDK , la célula de rotación y la célula visual.
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Figura 4.14: Relaciones simplificadas en la iteración de cálculo de tasa de disparo
para un giro contrarreloj.

El cálculo de activación realizado en cada iteración corresponde a una ecua-
ción diferencial de tipo integración con pérdidas (Leaky-Integrator en inglés),
calculado computacionalmente con el método de pasos de Euler. La ecuación
diferencial se describe en (4.3). Una vez finalizadas las iteraciones de las suma-
torias de activación, se actualiza la tasa de disparo de la célula calculada con
la sigmoide a base de su activación. La dirección actual se considera como la
célula con mayor tasa de disparo.

τ
δhHD

i

δt
= −hHD

i (t) +
ϕ0

CHD

∑
j

((wHD
ij − wINH)rHD

j (t)))

+
ϕ1

CHD×ROT

∑
jk

(wHD ROT
ijk rHD

j (t)rROT
k (t))

+
ϕ1

CHD×V IS

∑
jl

(wHD V IS
ij rV IS

l (t))

(4.3)

En esta ecuación diferencial (4.3), hHD
i (t) corresponde a la activación de una

célula de dirección i en el tiempo t, τ es la constante de tiempo de la ecuación
diferencial. Las tasas de disparo rHD

j , rROT
k y rV IS

l corresponden a las tasas de
disparo de las células de dirección, rotación y visión respectivamente. Los pesos
sinápticos son representados por wHD

ij para los pesos sinápticos entre células

de dirección, wHD ROT
ijk para los pesos sinápticos rotacionales y wHD V IS

jl para

los pesos sinápticos de visión. Las constantes ϕ0, ϕ1, ϕ2, C
HD, CHD×ROT y

CHD×V IS son parámetros de ajuste para la ecuación que permiten ponderar
los distintos componentes del sistema. wINH es la inhibición que mantiene el
sistema en equilibrio y habilita en el sistema la dinámica de atractor.
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Figura 4.15: Diagrama de secuencia del sistema para un ciclo de iteración.

En el diagrama mostrado en la figura 4.15 se representan de forma sencilla los
pasos dados por el sistema para llevar a cabo una iteración. Comenzando con la
recepción de un mensaje de velocidad angular de la IMU, el valor es pasado a la
función CallbackPublishDirection (disparada por la propia llegada del mensaje)
de la clase Bionavigator para la actualización de las tasas de disparo de las
células de rotación. Una vez actualizadas, Bionavigator invoca la actualización
de las células de dirección involucrando todos los componentes del sistema: tasas
de disparo de rotación, tasas de disparo de visión, pesos sinápticos de rotación,
pesos sinápticos de visión y pesos sinápticos de células de dirección. Una vez
actualizadas las tasas de disparo de las células de dirección, el sistema devuelve
como dirección actual la dirección de preferencia de la célula con mayor tasa de
disparo, pasándola al tópico de ROS HeadDirection.

4.1.3. Dinámica del giro

Cuando se reciben paquetes con movimiento nulo y el sistema efectúa ite-
raciones con las células de rotación que anulan su tasa de disparo, resulta en
un sistema estático si no se incluye la visual. Frente a la llegada de un mensaje
con movimiento no nulo, el cálculo altera el equilibrio, generando la atracción
hacia un nuevo nodo del sistema y desplazando aśı el cúmulo de actividad. Esta
influencia puede observarse en la figura 4.11. Puntos intermedios del proceso
pueden observarse en la figura 4.16 donde la tasa de disparo de la célula de
dirección actual decrece, aumentando la tasa de disparo de la célula de la nue-
va dirección. Frente a la persistencia de llegada de mensajes de movimiento no
nulo, el sistema continuará con el estado de desequilibrio, desplazando aún más
el cúmulo, eventualmente centrándose en la siguiente célula de dirección.
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Figura 4.16: Desplazamiento del cúmulo por influencia de células de rotación.

4.1.4. Dinámica Visual

Las células visuales funcionan sobre un nodo puntual, sin cambiar su refe-
rencia. En cada iteración, se incluye en el cálculo la influencia de las células
visuales, generando un aumento en la activación de sus nodos asociados y, de-
pendiendo de la ubicación del cúmulo y la referencia visual, podŕıa desplazar
el cúmulo rompiendo su equilibrio o generar un nuevo cúmulo centrado en la
referencia de la célula visual. La figura 4.17 muestra un ejemplo de los pasos de
generación de un nuevo cúmulo.

Figura 4.17: Generación de un nuevo cúmulo por influencia de célula visual.

La dinámica de corrección del error cuando la activación visual surge en un
entorno de la dirección actual del atractor, realiza un ajuste en sentido de la re-
ferencia. Cuando la activación surge por fuera de dicho entorno, algunos autores
refieren a la percepción de la estabilidad de la referencia para definir el accionar
de dicha influencia. Si el roedor percibió de forma recurrente la referencia en una
dirección, entonces la influencia puede generar un nuevo cúmulo de actividad y
definir una nueva dirección actual, invalidando la anterior.

La percepción de estabilidad es implementada por algunos modelos como
un aprendizaje hebbiano de la sinapsis entre las células de visión y las célu-
las de dirección, donde una referencia es percibida como estable a medida que
permanece en una misma dirección respecto al robot.

Este mecanismo no está implementado en el modelo desarrollado, consi-
derándose únicamente referencias estables sin aplicación de aprendizaje heb-
biano a los pesos sinápticos. Frente a una detección de la referencia visual, el
modelo corregirá la dirección si es cercana o generará una nueva si la diferencia
angular es significativa, ilustrado en la figura 4.17.

La tabla 4.1 lista los parámetros utilizados por el modelo para la simulación
de las células de dirección.
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Parámetro Valor
Cantidad de células de dirección 100
Cantidad de células de rotación 2
Cantidad de células de visión 1

αHD 1.5
βHD 3
αROT 1
βROT 0
ϕ0 1000
ϕ1 2000
ϕ2 1000

CHD 100
CHD×ROT 200
CHD×V IS 100

k 1
wINH 0.02
σHD 10

Tabla 4.1: Parámetros del modelo base.

4.2. Extensión del modelo

Partiendo de la implementación del modelo base (Sinha y Wang, 2014), se
construyó un entorno de simulación y se procedió a la ejecución y análisis del
código con el objetivo de evaluar su funcionamiento y explorar posibles ĺıneas
de desarrollo. Se detectó que el modelo no se encontraba en un estado funcio-
nal, siendo necesario hacerle ajustes para un funcionamiento correcto. Tampoco
presenta soporte para múltiples velocidades de giro del robot. Se realizó una re-
visión del código, revelando la ausencia de uso de visión por computadora para
la aplicación de la célula de visión, utilizándose esta únicamente como est́ımulo
puntual que define un cúmulo de actividad. También se encontró que algunos
parámetros indicados en el documento difieren de los utilizados en el código.

Se construyó un entorno de simulación y pruebas Gazebo Classic (versión
9) como simulador robótico, en conjunto con ROS Melodic como infraestruc-
tura principal para la ejecución del modelo base. Para la ejecución de pruebas
sistemáticas automatizadas, independiente al simulador construido, se añadió
al código un módulo de pruebas de Google Test para simplificar escenarios de
prueba y reproducción de escenarios. Google Test es un marco de trabajo de
pruebas en C++, elegido por su fácil integración y creación de pruebas.

4.2.1. Puesta en funcionamiento de modelo base

Entorno de simulación Gazebo/ROS

La simulación construida sobre Gazebo, con el modelo corriendo sobre ROS.
Como plataforma para los sensores, se exploraron alternativas como la construc-

38



ción de un robot sobre la simulación o el uso del robot PR2. Ante intentos sin
éxito de poner en funcionamiento dichas opciones, se optó por el uso del robot
Ridgeback, para el cual se obtuvo instrucciones de uso y el mismo presenta una
estructura sencilla de extender. Para llevar a cabo desplazamientos del robot,
Gazebo posee el tópico /cmd vel encargado de ejecutar los comandos necesarios
para el movimiento. La información de movimiento es publicada a través de otro
tópico con mensajes de datos odométricos.

A pesar de estar disponible la información de movimiento, el robot fue equi-
pado con una IMU para separar la modificación de los parámetros de funciona-
miento de la misma. Se instaló además una cámara, la cual actúa como medio
f́ısico para la recolección y procesamiento de datos. En la figura 4.18a pueden
observarse la cámara, identificada con un cubo de color blanco al frente del
robot, y la IMU, representada como un cilindro de color blanco.

(a) Robot Ridgeback (b) Robot Ridgeback ubicado en entorno
de simulación

Figura 4.18: Vistas del simulador

El escenario mostrado en la figura 4.18b muestra el entorno construido para
el robot. El modelo base recibe los mensajes odométricos a través del tópico de
publicación de mensajes de la IMU, asignando la velocidad angular de rotación
vertical como la activación de las células de rotación. Una vez calculada la
dirección actual, se publica en el tópico /head direction. En la figura 4.19 se
representa la interacción entre nodos y tópicos involucrados en el funcionamiento
del sistema.
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Figura 4.19: Diagrama de nodos y tópicos utilizados en el sistema.

El robot en la simulación de Gazebo recibe comandos de movimiento a través
del tópico /cmd vel. La IMU registra el movimiento y env́ıa un mensaje de es-
tructura odométrica que incluye la velocidad angular al tópico /hdbot/imu data.
Para el modelo base se define una tasa de actualización de 100 Hz por parte de
la IMU, siendo luego filtrados un 90% de los mensajes utilizando una tasa real
de 10 Hz. Para mejorar la claridad del código, se redujo la tasa de actualización
de la IMU a 10 Hz y se quitaron las condiciones de filtro. El modelo base no
incluye un tópico de comunicación para la cámara o actualización de las células
de visión, por lo que para el procesamiento de esta célula, se utilizó el tópico
/hdbot cam/image raw, provisto por la cámara integrada al robot, que capta
un ángulo de 60º frente al mismo. Cuatro esferas de colores fueron ubicadas
alrededor del robot para utilizar como referencias visuales.

Puesta en funcionamiento

Al ejecutar el modelo base, se observan mensajes de información, alerta y
debug en la consola indicando las distintas etapas del sistema y su respectivo
avance. Durante la etapa de inicialización del cúmulo, se observa a través de los
mensajes el aumento de la tasa de disparo máxima y la reducción de la tasa de
disparo mı́nima de las células de dirección. En las gráficas de la figura 4.20 se
puede apreciar cómo se inicializa el atractor generando el cúmulo de actividad
mediante la influencia de la célula de visión, forzando su activación, y generando
un aumento en la tasa de disparo de la célula de dirección correspondiente al
ı́ndice 50. Una vez alcanzado el valor máximo aproximado de 0.02473, futuras
iteraciones no aumentan significativamente el máximo del atractor.
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Figura 4.20: Inicialización de un cúmulo de actividad.

Una vez concluidas las iteraciones de inicialización, se ejecutan iteraciones
de estabilización, donde el atractor es desprovisto de est́ımulos externos, inter-
cambiando enerǵıa exclusivamente entre las células de dirección. Sin la inserción
de enerǵıa de la célula visual, la tasa de disparo máxima decrece a causa de la
inhibición de las demás células de dirección de acuerdo a la ecuación 4.3. En la
figura 4.21 se observa la disipación del cúmulo de enerǵıa, resultando la tasa de
disparo de las células en 0.007606.

Figura 4.21: Estabilización disipa cúmulo de actividad.

Ajustes de parámetros

Para evitar la disipación del cúmulo de actividad, es necesario alcanzar el
umbral de activación del cúmulo incrementando la tasa de disparo de la célula
central. Para esto, una solución es incrementar los ı́ndices que ponderan el in-
tercambio de enerǵıa de la ecuación 4.3. Incrementando ϕ2, la enerǵıa insertada
por la influencia de la célula visual aumenta. Esto, por śı solo, no es suficiente
para mantener el cúmulo en funcionamiento una vez que cese el est́ımulo. Pa-
ra lograr esto, es necesario incrementar ϕ0, logrando aśı que el cúmulo domine
la competencia entre los distintos nodos del atractor mediante la inhibición,
evitando la disipación de la enerǵıa.

Se incrementaron progresivamente los ı́ndices ϕ0 y ϕ2. En primer lugar el
correspondiente a la célula de visión, de forma que el cúmulo alcance un máximo
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arbitrariamente alto. Luego, se aumenta el ı́ndice correspondiente a las células
de dirección, de forma que el cúmulo llegue a un estado estable sin disiparse.
Posteriormente, se reduce el indice de las células de visión, realizando una ini-
cialización más gradual del cúmulo y que la célula de visión no tenga demasiada
influencia sobre las demás células.

Los valores fijados para una estabilización sin disipación completa del cúmulo
resultan en ϕ0 = 34 y ϕ2 = 21.

Parámetros de rotación

En el art́ıculo original del modelo base (Sinha y Wang, 2014) no se especi-
fica una velocidad angular para los escenarios planteados. Para estas pruebas,
se definió una velocidad de 2 ∗ π/100, equivalente a un giro de una célula de
dirección (o 3.6º) cada 1 segundo o 10 iteraciones.

Para ajustar la influencia de las células de rotación, es necesario ajustar los
parámetros α y β. Estos parámetros ajustan el desfasaje y la inclinación de la
función sigmoide, utilizada en el cálculo de la tasa de disparo de las células en
función de su activación. En el art́ıculo del modelo base (Sinha y Wang, 2014)
no son mencionados espećıficamente, asumiéndose que se utilizan los mismos
que se utilizan para el cálculo de la tasa de disparo de las células de dirección
(α = 1,5 y β = 3).

Revisando el código fuente, se encuentran los valores α = 0 y β = 1. Prue-
bas sobre este par de valores revelan una inestabilidad del cúmulo, causando
desfasaje sobre el sistema cuando la IMU no reporta movimientos significativos,
recibiendo mensajes con niveles atribuibles a ruido, los cuales son considerables
cuando son pasados como parámetro para la función sigmoide con los valores α
= 0 y β = 1, causando aśı la inestabilidad.

Para el correcto funcionamiento, se analizó la ecuación sigmoide aplicada y
sus valores en 0 y la velocidad estándar propuesta 2∗π/100, con el fin de buscar
los parámetros que permitan funcionar correctamente al sistema, obteniéndo-
se aśı α = 0,5 y β = 10. Estos valores son modificados posteriormente para
adaptarlos a los requerimientos del sistema para el funcionamiento visual y la
funcionalidad de múltiples velocidades.

Los parámetros fueron ajustados, mediante ensayo y error, a través de múlti-
ples pruebas de ejecución, obteniéndose como resultado la tabla de parámetros
4.2.

En todas las pruebas con simulador, el env́ıo de mensajes al tópico /cmd vel
presenta un retraso respecto a la ejecución de la rutina invocada por la llegada
de un mensaje de la IMU al tópico /hdbot/imu data. Debido a esto, se utilizó
la herramienta rosbag para replicar el flujo de mensajes enviados por la IMU
para prescindir de la ejecución de la simulación. Estas pruebas resultan en una
disminución del error en las medidas registradas ante el uso de rosbag frente al
uso de la simulación. Los resultados de estas pruebas pueden apreciarse en el
caṕıtulo 5.
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Parámetro Valor
Cantidad de células de dirección 100
Cantidad de células de rotación 2
Cantidad de células de visión 1

αHD 0.5
βHD 2
αROT 0.055
βROT 1000
αV IS 95
βV IS 2
ϕ0 6600
ϕ1 1488
ϕ2 2000

CHD 100
CHD×ROT 200
CHD×V IS 100

k 1
wINH 0.03
σHD 10

Tabla 4.2: Parámetros del modelo ajustado

4.2.2. Funcionamiento visual - Desarrollo de visual

En el modelo base, existe una única célula de visión sin actualización de
actividad en la etapa de ejecución. Dicha célula es utilizada durante la etapa de
inicialización mediante un forzado de su tasa de disparo, generando aśı el cúmulo
principal del atractor. Una vez generado el cúmulo, la célula se desactiva y no
se vuelve a utilizar en tiempo de ejecución. El art́ıculo del modelo base (Sinha y
Wang, 2014), refiere a la utilización de dicha célula en una única instancia como
prueba preliminar mediante el forzado de la tasa de disparo.

Para poner en funcionamiento dicha célula en tiempo real, se implementó
una rutina de cálculo de la actividad de la célula de visión CallbackUpdateVision
(agregado a la clase en el diagrama de la figura 4.22). Esta rutina tiene como
entrada la imagen de la cámara instalada en el robot descrito en la sección
anterior. La activación de dicha célula se basa en la detección de la presencia de
la referencia visual en el ángulo de visión de la cámara, similar a la observación
de dicha referencia por parte del roedor en un entorno real.
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Figura 4.22: Diagrama de clase bionav con la rutina CallbackUpdateVision.

Para el procesamiento de la imagen, se utilizó el módulo de ROS cv bridge,
que funciona como puente entre las imágenes de ROS y OpenCV. OpenCV
es una libreŕıa de procesamiento de imágenes con capacidad para detectar la
presencia de las esferas de colores disponibles en el entorno de simulación cons-
truido, observable en la figura 4.23b.

(a) Imagen presentada por la cámara para
la posición referida del robot.

(b) Posición del robot.

Figura 4.23: Relación entre la posición del robot y la visión de la cámara.

Como referencia visual se utilizó la presencia de la esfera roja ubicada en la
simulación, observable por el robot en la imagen 4.23a, y se definió la activación
de la célula proporcionalmente a la ubicación del centro de la esfera respecto
a los bordes laterales de la imagen recibida. En la imagen 4.24a, X representa
la ubicación del centro de la esfera respecto al borde izquierdo, mientras que C
representa el punto medio de la imagen. La ecuación 4.4 calcula la activación de

44



la célula de visión. La tasa de disparo es calculada en función de la activación
(ecuación 4.5), con los parámetros α = 95 y β = 2, cuyo gráfico está representado
en la figura 4.24b. La definición de estos parámetros conlleva ajustes de los
ponderadores de la ecuación 4.3, cuyos resultados se ven reflejados en la tabla
4.2.

(a) Referencia de valores para el cálculo de
la activación. La activación se calcula como
la proporción de la ubicación de la esfera al
punto medio de la imagen.

(b) Función sigmoide de tasa de disparo de
célula visual en función de su activación.

Figura 4.24: Referencias de cálculo de tasa de disparo de la célula de visión.

hV IS = (100/C) ∗ (C − |C −X|) (4.4)

rV IS =
1

1 + e−2β(hV IS−α)
(4.5)

La rutina de cálculo de la activación es invocada por la llegada de un men-
saje de imagen a través del tópico de ROS /hdbot cam/image raw. Una vez
obtenida la activación, la tasa de disparo es calculada con la función sigmoide y
actualizada en el sistema (figura 4.25). Esto no genera una iteración del mismo,
sino que es incorporada automáticamente al realizar una iteración mediante la
llegada de mensajes odométricos.

Figura 4.25: Diagrama de secuencia del sistema para la actualización de la infor-
mación visual mediante el cálculo de las tasas de disparo. Frente a la llegada de
un mensaje de imagen, la clase Bionavigator invoca la función de actualización
de la tasa de disparo de las células de visión, obteniendo aśı los valores para esa
imagen.
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4.2.3. Desarrollo de solución de múltiple velocidad

Un problema que sufren varios modelos es la incapacidad de realizar giros
adecuados a diferentes velocidades. Para atacar esto, se definió un conjunto ex-
tra de células de rotación, activadas por la velocidad de giro del sistema recibida
a través del tópico correspondiente a la IMU. Cada conjunto extra de células
soporta una velocidad principal de funcionamiento y requiere la modificación de
la clase Bionavigator, aśı como el ajuste de los parámetros para la función sig-
moide que determina la tasa de disparo de la célula de rotación, y la calibración
de los pesos sinápticos para dicha célula. Por esto, el desarrollo de esta propues-
ta contempla el soporte para dos velocidades (Rot0 y Rot1) para cada sentido
de giro (sentido contrarreloj y reloj, respectivamente) según muestra la figura
4.26. Cada célula de rotación posee su conjunto de parámetros independiente
de ajuste para el cálculo de la tasa de disparo mediante la función sigmoide.

Figura 4.26: Rotación definida por múltiples células de rotación. Los colores se
asocian de la siguiente manera: rojo para sentido contrarreloj para una veloci-
dad; violeta para sentido contrarreloj para otra velocidad; verde para sentido
reloj para una velocidad; amarillo para sentido reloj para otra velocidad.

La selección de células de rotación es basado en la velocidad angular recibi-
da, actualizando aśı la tasa de disparo correspondiente e invocando el conjunto
sináptico adecuado a dicha velocidad. En la figura 4.27 se ilustran las células de
rotación y se muestra la influencia sobre distintas células de dirección. El diagra-
ma de clases correspondiente a la inclusión de las células de rotación adicionales
se observa en la figura 4.28. Las células de rotación, 2∗π/100 (aproximadamen-
te 0,0628) y 4 ∗ π/100 (aproximadamente 0,1256), son activadas de acuerdo a
una condición de velocidad que las separa en 0,07. Este valor fue seleccionado
arbitrariamente para separar el uso de una u otra célula de rotación. Valores ab-
solutos iguales o inferiores a 0,07 invocan la iteración del sistema con el primer
conjunto de células, valores absolutos superiores utilizan el segundo conjunto de
células.
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Figura 4.27: Esquema de sinapsis para múltiples células de rotación sobre células
de dirección. A la derecha se observan los pesos sinápticos para las distintas
células, con sus respectivos colores asociados.

Figura 4.28: Diagrama de clase Bionavigator con dos células de rotación para
cada sentido de giro.

Para ajustar el desplazamiento del cúmulo a las distintas velocidades, se im-
plementó un sistema de ı́ndices graduales, similar al sistema utilizado en RatS-
LAM de influencia, donde los ı́ndices son desfasados de acuerdo a la velocidad,
desplazando el peso sináptico. Para este caso, se adecuó el peso sináptico de
acuerdo a la distancia angular entre las direcciones de preferencia de las células,
desde la dirección actual a la dirección estimada según el movimiento, ilustrado
en la figura 4.29. Al contrario de lo observado en la versión anterior del modelo
que utiliza una célula de rotación por sentido de giro, para lograr el despla-
zamiento del peso sináptico se incrementó arbitrariamente la distancia angular
pasada como parámetro a la función gaussiana que calcula los pesos sinápticos
visto en la ecuación 4.1.
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Figura 4.29: Influencia de múltiples células de rotación.

Puesto que la calibración del sistema de ı́ndices graduales es fijo y arbitrario,
no es dinámico según el estado en el que se encuentre el sistema.

Figura 4.30: Diferencia en las distancias angulares para el cálculo de la múltiple
velocidad.

En la figura 4.30, los términos de diferencia de la distancia angular pasada
por parámetro corresponden a ∆ROT0 = 0,02 y ∆ROT1 = 0,43. Estos valores
son obtenidos a base de prueba y error, y permiten al sistema ejecutar con mayor
precisión los giros indicados, reduciendo el error cometido, medido a base de
iteraciones requeridas para realizar el mismo giro. Para ambos pares de células
de rotación se aplicaron los mismos parámetros α y β mostrados en la ecuación
4.2. La diferencia entre las velocidades de las células proviene del desfasaje en
la distancia angular ∆ROT0 y ∆ROT1.
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Caṕıtulo 5

Experimentación

En este caṕıtulo se detallan los experimentos técnicos llevados a cabo para
el análisis y evaluación de desempeño de los cambios implementados y del de-
sarrollo levado a cabo. Se presentan en primera instancia los experimentos de
simulación de mensajes sistemáticos, sin ruido, pasados directamente a la red
neuronal.

Posteriormente se presentan los experimentos ejecutados en un entorno de
simulación, donde se incluye el movimiento del robot, los mensajes odométricos
generados por la IMU y la actualización del estado de la red neuronal. Por
último, se muestran resultados de pruebas en escenarios reproducidos mediante
el registro y ejecución de conjuntos de datos (rosbag).

5.1. Validación de múltiple velocidad en Google
Test

Para validar las velocidades utilizadas y giros realizados por el cúmulo, in-
dependientemente de valores reportados por la simulación o conjuntos de datos,
se ejecutan iteraciones que son directamente llamadas desde la suite de Google
Test, omitiendo la invocación de la función CallbackPublishDirection. Se define
la velocidad estándar como 2 ∗ π/100, siendo la inversa −2 ∗ π/100.

5.1.1. Prueba de velocidad estándar: una vuelta

Se realiza un desplazamiento del cúmulo a velocidad estándar durante 1000
iteraciones. Este experimento valida el funcionamiento teórico del sistema para
la velocidad estándar.
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Figura 5.1: Evolución de la dirección (en grados) del cúmulo para un giro a
velocidad estándar.

La figura 5.1 muestra el comienzo y el fin del giro, posicionándose ambos en
la dirección 36º, logrando una vuelta completa en sentido contrarreloj.

5.1.2. Prueba de velocidad doble: una vuelta

Se realiza un desplazamiento del cúmulo a velocidad doble durante 500 itera-
ciones. Este experimento valida el funcionamiento teórico del sistema utilizando
la doble velocidad estándar (4 ∗ π/100).

Figura 5.2: Evolución de la dirección (en grados) del cúmulo para un giro a
velocidad doble.

La figura 5.2 muestra el comienzo y el fin del giro, posicionándose ambos en
la dirección 36º, logrando una vuelta completa en sentido contrarreloj.

5.1.3. Prueba de velocidad inversa: una vuelta

Se realiza un desplazamiento del cúmulo a velocidad estándar en sentido reloj
durante 1000 iteraciones. Este experimento valida el funcionamiento teórico del
sistema para la velocidad inversa.
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Figura 5.3: Evolución de la dirección (en grados) del cúmulo para un giro a
velocidad inversa.

La figura 5.3 muestra el comienzo y el fin del giro, posicionándose ambos en
la dirección 36º, logrando una vuelta completa en sentido reloj.

5.1.4. Prueba de velocidad doble inversa: una vuelta

Se realiza un desplazamiento del cúmulo a velocidad doble en sentido reloj
durante 500 iteraciones. Este experimento valida el funcionamiento teórico del
sistema para la doble velocidad inversa.

Figura 5.4: Evolución de la dirección (en grados) del cúmulo para un giro a
velocidad inversa doble.

La figura 5.4 muestra el comienzo y el fin del giro, posicionándose ambos en
la dirección 36º, logrando una vuelta completa en sentido reloj.

5.1.5. Prueba de giro: ida y vuelta

Se realiza un desplazamiento del cúmulo a velocidad estándar en sentido
contrarreloj durante 1000 iteraciones seguido por 1000 iteraciones en sentido
reloj a velocidad estándar. Esto valida el funcionamiento del sistema ante una
combinación de giros.
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Figura 5.5: Evolución de la dirección (en grados) del cúmulo para un giro a
velocidad estándar seguido de un giro a velocidad inversa.

La figura 5.5 muestra el comienzo y el fin del giro, posicionándose ambos en
la dirección 36º, logrando una vuelta completa en cada sentido.

5.1.6. Prueba de giro doble: ida y vuelta a doble velocidad

Desplazamiento del cúmulo a velocidad estándar en sentido contrarreloj du-
rante 1000 iteraciones seguido por 1000 iteraciones en sentido reloj a velocidad
inversa. Esta prueba da un total de cuatro vueltas. Esto valida el funcionamiento
del sistema ante una combinación de giros a doble velocidad.

Figura 5.6: Evolución de la dirección (en grados) del cúmulo para un giro doble
en ambos sentidos.

La figura 5.6 muestra el comienzo y el fin del giro, posicionándose ambos en
la dirección 36º, logrando dos vueltas completas en cada sentido.

5.2. Experimentación en simulación

Para validar el modelo y la construcción de la simulación, se ejecutaron
pruebas básicas que muestren el funcionamiento del sistema y el comportamiento
del robot dentro del entorno simulado.

Para facilitar la lectura de los datos presentados, se efectuó una transfor-
mación del marco de referencia para los ángulos registrados por el sistema. Se
realiza una transformación equivalente a un giro de 36º, definiendo en 0º el
punto de inicio. Dicha transformación se extiende exclusivamente a la presente
sección y a la sección 5.3. Las gráficas no se ven afectadas por la misma.
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5.2.1. Validación de modelo base

Durante la puesta en funcionamiento, se ejecutó el modelo base sin modi-
ficaciones con el fin de definir una ĺınea de referencia de funcionamiento del
sistema. Dicha puesta en funcionamiento debeŕıa realizar las etapas de calibra-
ción e inicialización, llegando a un estado estable del atractor con un cúmulo de
actividad definido. La ejecución reveló que los parámetros utilizados en la tabla
4.1 no mantienen un cúmulo de actividad para el código utilizado.

Figura 5.7: Disipación del cúmulo en etapa de estabilización.

La figura 5.7 muestra las tasas de disparo en las etapas de inicialización y
estabilización que llevan a la disipación del cúmulo. Se representan tres pasos
de la etapa de inicialización con los colores morado, marrón y rosado, llevando
al sistema al punto máximo. Las demás iteraciones corresponden a la etapa de
estabilización, mostrando el decremento del cúmulo de actividad, concluyendo
que el sistema posee algún error a corregir.

5.2.2. Validación de giro de una vuelta

El ajuste de parámetros lleva al cúmulo de actividad a un estado estable. Se
ejecuta la simulación y pone en funcionamiento el modelo, indicándose al robot
el giro a velocidad de 2 ∗ π/100 radianes. Esta velocidad corresponde al giro de
una vuelta completa al cabo de 1000 iteraciones, debiendo apuntar el cúmulo
a la dirección 0º, que es la dirección inicial del sistema para este experimento,
validando aśı el giro de una vuelta.

El giro se realiza a través del env́ıo de 1000 mensajes de comando de movi-
miento para el robot mediante la ejecución de un conjunto de datos a través del
tópico /cmd vel.

El giro es indicado en la iteración 5 del modelo, pero el modelo no recibe
mensajes de giro hasta la iteración 54 (ver gráfica 5.8). Una vez el robot completa
la vuelta, se detienen los mensajes aproximadamente en la iteración 870. En ese
momento, el modelo reporta que la ubicación del cúmulo es 64,8º. El modelo
continúa procesando mensajes de giro, continuando el desplazamiento hasta la
dirección 46,8º en la iteración 925. La tabla 5.1 lista dichos eventos.
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Figura 5.8: Dirección (en grados) del cúmulo de actividad del sistema a través
de las iteraciones del experimento.

Iteración Dirección Evento
5 0º Comienzo giro del robot
54 0º Comienzo de desplazamiento del cúmulo
870 64,8º Fin de giro del robot
925 46,8º Fin de desplazamiento del cúmulo

Tabla 5.1: Tabla de referencia entre iteraciones, direcciones del sistema y eventos
del experimento.

El error, obtenido a partir tópico sobre el que se publican datos odométricos
del robot en la simulación, es de 0,75º, mientras que para el sistema, el error
corresponde a un ángulo de 46,8º. En vista de los retrasos entre el env́ıo de
mensajes y el giro del sistema, el error en la dirección es atribuido a la interacción
entre el simulador y el modelo, siendo necesario aislar la ejecución para validar
el giro sin el error.

5.2.3. Generación de un nuevo cúmulo

En el caso de que la referencia visual se encuentre separada de la ubicación
del cúmulo en el atractor, se generará un nuevo cúmulo cuando se detecte la
referencia visual. Para este escenario se orientó el robot hacia la esfera amarilla
con el cúmulo en la dirección 0º, y se realizó un giro de una vuelta. Cuando
el robot detecta la referencia visual de la esfera roja, genera un nuevo cúmulo,
ubicando al mismo en la dirección 0º y continuando el giro hasta terminar con el
robot observando la esfera amarilla. Para un giro de 270º debido a la corrección
del cúmulo, la ubicación final debeŕıa ser de 90º.
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Figura 5.9: Dirección (en grados) del cúmulo durante la corrección visual.

Representado en la imagen 5.9, el giro del robot comienza en la iteración
5, reportándose el giro del cúmulo a partir de la iteración 74. Cuando el robot
observa la esfera roja, en la iteración 255, un nuevo cúmulo es generado en la
dirección 0º. El giro del cúmulo continúa hasta la iteración 874. Estos datos se
representan en la tabla 5.2.

Iteración Dirección Evento
5 0º Comienzo giro del robot
48 0º Velocidad angular recibida por el sistema
54 356,4º Comienzo desplazamiento del cúmulo
255 0º Generación de un nuevo cúmulo
874 136,8º Fin desplazamiento del cúmulo

Tabla 5.2: Tabla de detalle de eventos de generación de un nuevo cúmulo

En la gráfica de la figura 5.10 se observa la evolución del cúmulo a través
de las iteraciones del experimento, mostrando además de los destacados de la
tabla, algunos pasos intermedios como son la iteración del cúmulo previo a la
generación de un nuevo cúmulo, o algunos pasos intermedios durante el giro.

Figura 5.10: Distribución de las tasas de disparo de las células de dirección
representando el cúmulo a través de las iteraciones.

La ejecución del giro finaliza con el cúmulo sobre la dirección 136,8º. La
posición del robot en el sistema presenta un error de 0,73º. Nuevamente se
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observa un retraso entre el inicio del giro del robot y el inicio de desplazamiento
del cúmulo, atribuyéndose lo a la simulación.

5.2.4. Corrección leve de cúmulo

Para llevar a cabo una corrección leve, en la que la referencia visual se
encuentra en un entorno de actividad del cúmulo, se realizó un giro para separar
la referencia visual del cúmulo. Luego, se realizó un giro a baja velocidad para
inducir el error y desorientar al atractor, y posteriormente se realizó un giro a
velocidad estándar, acercando el cúmulo a la referencia visual con una diferencia
de aproximadamente 20º. Al final del experimento, el cúmulo debe apuntar
correctamente a la dirección inicial de 0º.

En la figura 5.11 se muestra el disparo de la célula de rotación en sentido
reloj para orientar al atractor lejos de la referencia visual.

Figura 5.11: Giros en sentido reloj del robot en simulación con valores de velo-
cidad angular (en radianes por segundo) inferiores a 0.

Para inducir el error, se aplicó al robot una velocidad de 2π/1000 radianes
por segundo, visible aproximadamente entre las iteraciones 450 y 1000 de la
figura 5.12.

Figura 5.12: Giros en sentido contrarreloj del robot en simulación con valores
de velocidad angular (en radianes por segundo) superiores a 0.

En la figura 5.13 se observa el cambio en la dirección del cúmulo, no siendo
afectada entre las iteraciones referidas en la inducción del error. Al final de la
misma, se puede apreciar la corrección de orientación del cúmulo.
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Figura 5.13: Evolución de la dirección (en grados) del cúmulo de actividad.

Figura 5.14: Evolución de las tasas de disparo de las células de dirección del
atractor.

La figura 5.14 muestra la evolución del cúmulo en diferentes etapas del ex-
perimento. En la tabla 5.3 se detallan los pasos representados.
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Índice Dirección Iteración
10 0º 1
42 115,2º 400
42 115,2º 484
42 115,2º 968
27 61,2º 1200
15 18 1319
15 18 1322
13 10,8º 1323
12 7,2º 1324
11 3,6º 1325
10 0º 1326
10 0º 1329

Tabla 5.3: Referencia de pasos representados en evolución del cúmulo.

La fase de inducción de error del experimento causa una leve variación del
cúmulo visible en la imagen 5.15, donde la curva azul representa el estado para
el cual el robot se encuentra estático, mostrando una variación para la curva
naranja, que muestra tendencia de movimiento, siendo esta insuficiente para
desplazar por completo el cúmulo y terminando en la curva verde al finalizar el
giro a baja velocidad.

Figura 5.15: Cambio en el cúmulo frente a velocidades insuficientes para el
desplazamiento.

La meseta formada por la acumulación de influencia de las células de direc-
ción, rotación y visión se muestra en la figura 5.16, mostrando paso a paso la
corrección de la dirección del cúmulo, culminando en la dirección asociada a la
célula de visión.
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Figura 5.16: Evolución de la dirección del cúmulo en el entorno de la referencia
visual.

El error de la simulación para este experimento es de 0,92º. Dado que la
corrección del cúmulo de actividad se realiza sobre el final del experimento, el
error del sistema se anula, resultando el error absoluto en el indicado por la
simulación.

5.2.5. Giros a diferentes velocidades

Para validar los giros del módulo de múltiples velocidades se realizó un giro a
velocidad estándar (2∗π/100 radianes por segundo), repitiendo un experimento
anterior, y luego un giro a velocidad doble (4∗π/100 radianes por segundo) para
evaluar la precisión del giro. El primer giro debe coincidir en inicio y resultado
con el experimento anterior de una vuelta a velocidad estándar. El segundo giro
debeŕıa realizar dos vueltas completas, finalizando en la posición inicial de 0º.

Figura 5.17: Evolución de la dirección (en grados) del cúmulo en un giro de una
vuelta con el módulo de múltiple velocidad a velocidad 2 ∗ π/100.

La figura 5.17 representa la dirección del cúmulo durante la prueba, mos-
trando un error superior al causado por el experimento de validación de giro de
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una vuelta. La tabla 5.4 detalla la dirección para el comienzo y el final de la
vuelta.

Iteración Dirección Evento
5 0º Comienzo giro del robot
50 0º Velocidad angular recibida por el sistema
56 356,4º Comienzo desplazamiento del cúmulo
825 82,8º Fin giro del robot
872 64,8º Fin desplazamiento del cúmulo

Tabla 5.4: Tabla de referencias de giro de validación de módulo multi-velocidad.

El error de la simulación fue de 1,83º mientras que el error del sistema es
de 64,8º. El error del sistema con el módulo de múltiples velocidades para una
velocidad estándar se mantiene en valores aproximados a la versión anterior del
modelo.

La vuelta a doble velocidad muestra un giro similar al de velocidad estándar,
ejecutado en una cantidad proporcional de iteraciones, variando aproximada-
mente de 1000 iteraciones a 500 iteraciones. La gráfica de la figura 5.18 muestra
la evolución del cúmulo de actividad, mientras que la tabla 5.5 detalla los valores
de la ejecución.

Figura 5.18: Evolución de la dirección (en grados) del cúmulo en un giro de una
vuelta con el módulo de múltiple velocidad a doble velocidad.

Iteración Dirección Evento
5 0º Comienzo giro del robot
51 0º Velocidad angular recibida por el sistema
55 356,4º Comienzo desplazamiento del cúmulo
425 90º Fin giro del robot
468 61,2º Fin desplazamiento del cúmulo

Tabla 5.5: Tabla de referencias de giro de una vuelta con el módulo de múltiple
velocidad a doble velocidad.

Para el giro a doble velocidad, el error presentado por el simulador correspon-
de a 1,95º. El error del sistema para este experimento es de 61,2º, manteniendo
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similares valores para ambas velocidades de giro.

5.3. Experimentación independiente de simula-
ción

Para validar los escenarios de manera independiente del simulador, se cons-
truye un conjunto de datos (rosbag) para la idéntica replicación del escenario
de simulación, capturado a partir de los mensajes generados por el mismo a
través de los tópicos asociados a la IMU y a la cámara. Dicho escenario incluye
un giro de aproximadamente 360º, recorriendo las referencias visuales en orden
amarillo, rojo, verde, azul y nuevamente amarillo.

5.3.1. Validación de giro de una vuelta sin simulador

Para repetir el escenario y evaluar el giro de forma independiente al simu-
lador, se ejecuta el conjunto de datos construido, realizando un giro de aproxi-
madamente 360º a través de mensajes de la IMU. La influencia de la referencia
visual se encuentra desactivada para este experimento. Al igual que en el esce-
nario repetido, el cúmulo debe empezar y terminar en la dirección 0º.

Figura 5.19: Evolución de la dirección (en grados) del cúmulo en giro en base a
conjunto de datos.

La vuelta realizada por el cúmulo con datos provistos por el conjunto de
datos realizan una vuelta completa, con mı́nimo error. En la imagen 5.19 se
muestra la evolución del cúmulo completando la vuelta, mientras que en 5.20
se puede apreciar que el conjunto de datos no lleva al cúmulo a completar la
vuelta, con una diferencia de 3,6º.
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Figura 5.20: Traslado del cúmulo mediante el uso de mensajes de velocidad
angular de la IMU.

El modelo toma como dirección inicial la dirección 0º. La ejecución comienza
en la iteración 1, permaneciendo estático hasta la iteración 27, donde comienza
a enviar mensajes con velocidad angular de 2 ∗ π/100. Esto genera un giro
contrarreloj que desplaza el cúmulo a un ritmo de 3,6º cada 10 iteraciones,
recorriendo 90º cada 250 iteraciones. Se tomaron muestras de la tasa de disparo
de las células de dirección en las iteraciones 1, 277, 527, 777 y 1027, registrando
la posición de cada una en la gráfica de la figura 5.20. Alĺı se puede observar el
desplazamiento del cúmulo a través de las direcciones de preferencia 0º, 270º,
180º, 90º y 3,6º.

Índice Dirección Iteración
10 0º 1
85 270º 277
60 180º 527
35 90º 777
11 3,6º 1027

Tabla 5.6: Referencias de los cúmulos representados en la gráfica.

La tabla 5.6 muestra las posiciones del cúmulo en cada una de las iteraciones.
Para la última iteración representada, la diferencia de 3,6º se debe a que el giro
registrado por el conjunto de datos no comprende las 1000 iteraciones necesarias
para el giro completo, finalizando en la iteración 1025 y no completando el
desplazamiento a la célula de dirección inicial. Puesto que no se está ejecutando
la simulación, no existe un error para el giro del robot, considerando este error
el único a considerar para el éxito del experimento. Los parámetros utilizados
para realizar este giro son los registrados en la tabla 4.2.
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5.3.2. Generación de un cúmulo nuevo

La validación de la generación de un cúmulo nuevo es realizada con el mismo
conjunto de datos que la prueba anterior, activando la actualización de la tasa
de disparo de las células de visión. Tomando como referencia visual asociada
a la célula correspondiente a la dirección 0º, el sistema comienza observando
la esfera amarilla para luego recibir una actualización de la tasa de disparo de
la célula de visión luego de un giro de 90º, generando aśı un nuevo cúmulo de
actividad. El giro restante de 270º ubicaŕıa al cúmulo en la dirección 90º.

Figura 5.21: Dirección (en grados) del sistema en el tiempo a través de las
iteraciones 1 a 1030. Para la iteración 127 y 380, los saltos corresponden al
pasaje del ı́ndice 0 al 99.

En la gráfica de la figura 5.21, se observa que en el entorno de la iteración
280 la dirección del sistema recibe una actualización.

Figura 5.22: Distribución de tasas de disparo en puntos clave a través de las
iteraciones 1 a 1030 .

En la figura 5.22, se puede observar el decremento de enerǵıa del cúmulo en
la iteración 277, siendo reemplazado en la iteración 278 por el nuevo cúmulo.
Debido a la acumulación de múltiples fuentes de enerǵıa, las tasas de disparo
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forman una meseta en el pico del cúmulo, saturando el atractor. Una vez que la
referencia visual pierde la influencia significativa sobre la célula visual alejándose
del centro, el cúmulo continúa en movimiento recorriendo las células de manera
similar a la prueba anterior, habiendo recibido una corrección en la dirección.

Al finalizar la ejecución del conjunto de datos, la posición del cúmulo resulta
en la dirección 97,2º, presentando una diferencia de 7,2º con el valor esperado.
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Caṕıtulo 6

Conclusiones y Trabajo
Futuro

6.1. Conclusiones

Este proyecto permite ampliar el entendimiento sobre las células de direc-
ción de la cabeza mediante el relevamiento de modelos, ya sea teóricos o compu-
tacionales, existentes. Los conceptos teóricos y prácticos aplicados, tanto de la
bioloǵıa como de la robótica, sientan una base sobre la cual los modelos compu-
tacionales pueden funcionar. A pesar de las dificultades para comprender el
funcionamiento de cada modelo individual y su trasfondo conceptual, fue po-
sible poner en funcionamiento el modelo seleccionado y realizar una revisión,
evaluando su comportamiento e ideando extensiones.

Mediante la puesta en funcionamiento y construcción de un escenario de si-
mulación, fue posible analizar un modelo anterior de células de dirección de la
cabeza, experimentando con su estructura y funcionamiento. La calibración de
ı́ndices del atractor presentó un desaf́ıo considerable, ya que requiere el análi-
sis, prueba y validación de valores candidatos, para evaluar su rendimiento y
considerar ajustes adicionales sobre una gran cantidad de parámetros a definir.
La visualización del robot facilita la comprensión de la interacción entre robot,
modelo y células, favoreciendo la visualización de posibles extensiones. La simu-
lación, sin embargo, presenta retrasos en el procesamiento de mensajes y cálculo
de direcciones, por lo que si bien es útil para una representación del entorno y
visualización del robot, los análisis reportan desfasajes de tiempo que inducen
al error.

La validación de la célula de visión, conectando la imagen de la cámara
a la activación de la célula de visión, provee en un mecanismo de corrección
de desfasaje del cúmulo. Al no poseer la célula de visión un entrenamiento
dinámico o aprendizaje hebbiano, los ı́ndices de ponderación juegan un papel
importante en el comportamiento del cúmulo. En el escenario en el que el cúmulo
se encuentra relativamente distante al ángulo de la referencia visual, la célula de
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visión realiza una corrección total con la generación de un nuevo cúmulo. Frente
a un desfasaje arbitrariamente chico, la corrección realiza un desplazamiento
del cúmulo existente. En ambos casos, no se analizó el error inducido por la
propia célula de visión cuando el cúmulo se aleja de la referencia visual. Si bien
el sistema actual está limitado a una única célula de visión, presenta varias
posibilidades de mejora.

Considerando la limitante que poseen algunos modelos anteriores de poder
desplazar el cúmulo con suficiente precisión para una única velocidad, surge la
propuesta del desarrollo de la extensión del modelo que le permite al mismo
poder realizar giros con otras velocidades, manteniendo la precisión original.
Dicha precisión requirió una re-calibración de algunos ı́ndices con el fin de poder
resolver de manera correcta el giro a mayor velocidad. La extensión propuesta
presentó un soporte efectivo para una velocidad adicional, sin embargo, resulta
poco eficiente en su estado actual debido al re-trabajo necesario para extender
el soporte a valores adicionales individuales de velocidad.

6.2. Trabajo Futuro

Implementación en un robot real: queda pendiente la prueba del modelo
de células de dirección de la cabeza en un escenario real, definiendo las
referencias visuales y analizando el procesamiento del atractor, ya sea en
el robot o en un equipo separado.

Extensión de la solución visual: adición de células de visión para cubrir
un ángulo visual superior. Incluir procesamiento y reconocimiento de pa-
trones en imágenes proporcionadas por el robot. Implementar aprendizaje
hebbiano para la estabilidad de las referencias visuales o el entrenamiento
de los pesos sinápticos visuales hacia las células de dirección.

Optimización de sistema de múltiple velocidad: optimización del soporte
para mútiple velocidad, ya sea extendiendo el margen de valores soporta-
dos utilizando un sistema general de ı́ndices y ponderadores, o diseñando
una solución alternativa general que permita adaptarse a las múltiples
velocidades.

Alternativas de proceso de iteración: cambios en la frecuencia de iteracio-
nes ejecutadas alteran el comportamiento del atractor. Soluciones a este
sistema pueden involucrar procesamiento basado en diferencia de tiempo,
o cantidad de iteraciones para la velocidad.
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