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Resumen

Este trabajo presenta un andélisis de articulos de células de direccién de la
cabeza de roedores que describan su comportamiento, y realiza un relevamiento,
tanto de modelos matematicos como de modelos computacionales. Comenzando
por el analisis de articulos con enfoques principalmente biolégicos sobre dichas
células, donde construye una base sélida de entendimiento de la tematica, se
continda a través de sucesivos articulos referenciados. Cada uno de estos articu-
los incrementa, paso a paso, sobre distintas propiedades y desarrolla cada uno
modelos més complejos. Una vez adquirida una comprensién adecuada de la
dindmica de las células y los modelos, se procede a la puesta en funcionamiento
y prueba de uno de los modelos relevados.

La construccién de un escenario de pruebas en el simulador Gazebo, donde
se incluye un entorno de referencias para experimentar y un robot Ridgeback:
préactico, sencillo y extensible, que permite, sobre el sistema operativo roboético,
ROS, la ejecucion del modelo computacional y analisis de su funcionamiento,
evidenciando carencias y problemas, y mostrando posibilidades de extensiones
a implementar.

Una de estas carencias es la falta de procesamiento de imégenes para las
referencias visuales, por lo que se incluyé un paso intermedio entre la cdmara
del robot y la activacién de la célula de para darle un uso préctico a las células
de visién, obteniéndose resultados satisfactorios con correccién de desfasaje de
direccién del sistema.

Diversas magnitudes de velocidad angular de giro del robot no se ven acom-
pasadas por el desplazamiento del ctimulo del atractor de la red neuronal, cau-
sando una acumulacion de error en la representacion de la direccion del sistema.
Por esto, se consider$ y llevé a cabo la implementacién de soporte de multi-
ples velocidades puntuales. Si bien se logré que el sistema tolere mas de una
velocidad especifica de giro, el resultado no es facilmente escalable considerando
la cantidad de magnitudes que pueden surgir en varios escenarios de funciona-
miento.

Palabras clave: Células de direccién de la cabeza, bio-robdtica, redes neuro-
nales
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Capitulo 1

Introduccion

La evolucién de los seres vivos, a lo largo de millones de anos, ha estado
marcada por la interaccién constante con una amplia variedad de entornos y
situaciones. Esto ha representado una oportunidad tnica de aprendizaje, per-
mitiéndoles adaptarse de manera cada vez mas eficiente a su entorno. Como
resultado, han desarrollado una notable robustez y tolerancia a los cambios.
Gracias a esta capacidad de adaptacion, los seres vivos sirven como referencia
para desarrollar soluciones robdticas que imiten su comportamiento.

En la actualidad, ya se encuentran soluciones bioldgicas trasladando asimis-
mo ventajas inherentes del mundo animal, como lo son su eficiencia, robustez o
adaptabilidad, al mundo robético. Un ejemplo de esto es el sonar de los subma-
rinos inspirado en la eco-localizacién de los murciélagos, lo que demuestra que
ciertos procesos naturales pueden ser adaptados tecnolégicamente.

Por otro lado, la navegacion robética es una herramienta que le permite a
los sistemas auténomos desplazarse y ubicarse sin la necesidad de asistencia por
parte de un operador. En los tltimos afnos, su eficacia ha aumentado significa-
tivamente gracias a los avances en capacidad de procesamiento, lo cual permite
una respuesta mas rapida y precisa frente a los cambios en el entorno. Del
contexto bioldgico y la influencia robdtica surge la motivacién para la robdtica
bio-inspirada.

1.1. Motivacion

Un elemento destacable de la biologia son las células de direccién de la cabeza
encontradas en distintas partes del cerebro de roedores. Estas células permiten
al animal orientarse en ambientes donde las referencias de ubicacién son escasas.
Pudiendo ser influenciadas tanto por estimulos externos al roedor (por ejemplo,
visuales) como por internos (movimientos del mismo), poseen la capacidad de
registrar y mantener una direcciéon para la cual la célula maximiza su actividad
si la cabeza del roedor apunta en dicha direcciéon. En cuanto el roedor gira su
cabeza hacia otra direccién, la misma célula reduce su tasa de disparo, mientras



que otra célula comienza a disparar.

Diversas investigaciones han mostrado las propiedades de dichas células, a
partir de las cuales se han desarrollado modelos matematicos que describen su
comportamiento. Cada uno de estos modelos presenta distintas cualidades segtin
el enfoque tomado y la estructura utilizada.

En este sentido, una colaboracién més estrecha entre el conocimiento biolégi-
co y la robotica podria ser de mutuo beneficio, abriendo oportunidades para el
desarrollo de tecnologias mas flexibles y eficientes. Por esto, analizar e imple-
mentar mejoras sobre modelos existentes de células de direccién de la cabeza,
podria contribuir significativamente a la reduccién de la brecha entre los compor-
tamientos animales y los sistemas artificiales. La simplificacién y optimizacién
de los sistemas de orientacién en autématas permitiria acercar sus capacidades
a las de los organismos vivos, favoreciendo simulaciones més realistas que se
aproximen al estandar biolégico. Mejorar estos modelos significaria dar un paso
en esa direccion, por lo que pasa a ser un objetivo de este proyecto.

1.2. Objetivo

Centrado en las células de direccion de la cabeza de roedores, este proyecto
busca estudiar los modelos matemaéticos basados en dichas células, imitando sus
comportamientos y propiedades, y el lugar que toman en el sistema de orien-
tacién de los animales para evaluar posibles mejoras a sistemas robdticos. El
objetivo es realizar un relevamiento del estado del arte de dichos modelos, eva-
luando las propiedades de cada uno y analizando la posibilidad de implementa-
ciéon computacional. Sobre estas implementaciones se busca evaluar e identificar
posibles mejoras que se vean reflejados en los modelos, desarrollando las mis-
mas y finalmente realizar un comparativo sobre el desempeno de los cambios
realizados para determinar el éxito.

1.3. Alcance

El alcance para este proyecto estd compuesto por los siguientes objetos:

= Documento del estado del arte sobre articulos que definan una imple-
mentacién matemética y/o computacional sobre células de direccién de la
cabeza en roedores. Se busca principalmente aquellos que posean limita-
da o nula dependencia con otras células de navegacién de roedores (p.e.
células de lugar, células de grilla), pudiendo estar relacionados, con el fin
de no limitar las posibilidades de integracién.

= Implementacion en sistemas robéticos de los modelos relevados, priori-
zando aquellos que ya dispongan de una arquitectura funcional y cédigo
disponible.

= Andlisis, diseno e implementacién de mejoras sobre dichos modelos, ya
sean existentes de modelos anteriores o nuevas.



1.4.

Evaluacion de mejoras respecto al desempeno de los modelos en un entorno
robético simulado.

Estructura de este documento

Este documento estd comprendido por las siguientes secciones:

Marco tedrico: definicién y contexto de los conceptos tedricos aplicados en
el documento.

Revisién de antecedentes: se listan algunos de los articulos analizados con
el fin de ampliar el entendimiento sobre la temadtica, investigar las solu-
ciones propuestas para el problema y explicar las mismas desde un punto
de vista técnico.

Desarrollo de la solucién: detalle de trabajos realizados sobre las soluciones
propuestas en el punto anterior con el fin de extender lo analizado y definir
el avance.

Experimentacién: andlisis cuantitativo de métricas propuestas previo y
posteriormente a lo desarrollado para evaluar la efectividad de lo imple-
mentado.

Conclusiones: cierre de lo expuesto en este documento, consideraciones de
trabajos a futuro y reflexién final.






Capitulo 2

Marco teorico

2.1. Introduccion

Para facilitar el entendimiento de los modelos de células de direccién presen-
tados, en este capitulo se describen conceptos clave que sirven como base para
su desarrollo. Se describen tanto conceptos bioldgicos, para facilitar el entendi-
miento del sistema nervioso de los seres vivos, como matematicos, que funcionan
como cimiento tedérico sobre el cual estdan construidas las soluciones.

2.2. Aspectos biolégicos

2.2.1. Neuronas

El sistema nervioso de los seres vivos estd compuesto por una extensa red
de neuronas. Las neuronas son células especializadas altamente interconectadas,
capaces de llevar a cabo el procesamiento de senales recibidas y redirigirlas hacia
otras células mediante impulsos eléctricos y senales quimicas. La interaccién
entre dos neuronas es llamada sinapsis, por la cual una neurona emisora, llamada
presindptica, envia senales con una frecuencia o tasa de disparo a otra neurona
receptora o neurona postsindptica.



Figura 2.1: Composicién de una neurona.

En la figura 2.1 se puede observar las distintas componentes de una neurona.
Con 1 estan senaladas las dendritas, componente principal para la recepcién de
senales sindpticas, donde la célula actual cumple el rol postsindptico. Con 2
se indica el cuerpo somatico, principal encargado del procesamiento llevado a
cabo por la neurona. El nicleo estd senalado por el punto 3, que es donde se
lleva a cabo la contencién genética y la sintesis de moléculas. Finalmente, en
4 estd indicado el axén, encargado de transportar los impulsos desde el cuerpo
somatico hacia su destino, donde esta neurona es el componente presindptico.

En el contexto de orientacién y navegacién, neuronas encontradas en los ce-
rebros de los roedores construyen una red interconectada de forma tal que les
proporciona un esquema de asistencia en orientacién. Las células de direccion
de la cabeza, descubiertas por primera vez por Ranck (Ranck, 1984), presentan
actividad cuando la cabeza del roedor apunta en una direccién puntual, au-
mentando la tasa de disparo conforme la direccién se acerca a dicha direccion.
Otras neuronas involucradas en la ubicacion espacial son las células de grilla,
que forman patrones regulares de activacion con forma de grilla hexagonal en el
mapa interno del espacio, y las células de lugar, las cuales se disparan cuando
el animal se encuentra en ciertos lugares del espacio.

2.2.2. Regiones del cerebro

El hipocampo es una region del cerebro que forma parte del sistema limbi-
co. Es una parte fundamental en la formacion de mapas cognitivos y memoria
espacial, estando conectado con otras areas especializadas del cerebro, como la
corteza entorrinal medial, el postsubiculo, el presubiculo y el niicleo talamico
anterodorsal. El postsubiculo es una parte importante del sistema que conforma
la orientacién biolégica. Ubicado en la parte posterior del hipocampo, recibe
informacion del sistema vestibular asi como otras regiones del hipocampo, y
envia hacia areas implicadas en el control motor y la integracion sensorial del
animal. Es el encargado de la codificacién y transformaciéon de las senales de
orientacién direccional para representaciones espaciales mediante la integracion
de las multiples fuentes sensoriales utilizadas. El ntucleo taldmico anterodor-
sal esta involucrado con la codificacién de la direccién de la cabeza del animal
manteniendo conexiones con el postsubiculo. Interpreta las senales vestibulares



y mantiene una referencia interna de la direccién de la cabeza.

inhibitory  |———
Excllalory  —a—— Vestibular

Figura 2.2: Interconexiones de regiones del cerebro y su asociacién con neu-
ronas involucradas en la navegacién espacial. Imagen tomada de http://
www.scholarpedia.org/article/Head direction_cells

En la imagen 2.2 se muestra la relaciéon entre distintas secciones del cerebro
involucradas con el funcionamiento de las células de direccién de la cabeza. En
azul se muestran las partes involucradas directamente con las células de direc-
cién, en verde se representan secciones que involucran las células de velocidad
angular, parte fundamental de la confeccién de la representacion de la direccion
actual de la cabeza del roedor. También se hace referencia a células de lugar
y células grilla, otros tipos de células involucradas en los sistemas neuronales
de orientacién de los roedores. La imagen 2.3 ilustra las distintas regiones del
cerebro involucradas en distintos sistemas de orientacién.

2.2.3. Orientacién biolégica

La capacidad de los seres vivos de estimar la propia orientacién y trayec-
toria en el espacio se basa en la combinacién de multiples fuentes sensoriales.
El sistema vestibular del oido interno detecta aceleraciones lineales y angulares
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Figura 2.3: Secciones del cerebro de los roedores que forman parte de los siste-
mas de orientacién. Se ilustran las células de lugar del hipocampo, activando-
se al pasar el roedor por un mismo lugar en dos oportunidades (recuadro iz-
quierdo), las células de direccién que se activan cuando la cabeza del roe-
dor toma cierta direccién (recuadro central) vinculado con el subiculo, y las
células grilla, encontradas en la corteza entorrinal, que se activan al detec-
tar que el roedor se encuentra alineado a un sistema particular de determi-
nada grilla. Imagen tomada de https://commons.wikimedia.org/wiki/File:
Rat_pup_exploring_a new_environment. jpg
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y el sistema propioceptivo interpreta los movimientos musculares. Estos siste-
mas, integrados ademads al sistema visual, conforman un sistema de navegacion
interno dentro de las regiones cerebrales descritas.

2.3. Odometria robdtica

La odometria robdética es el uso de sensores por parte de un robot para ras-
trear movimientos con el fin de estimar su posicion a lo largo del tiempo. Dicha
estimacién requiere un punto de partida y la integraciéon de los movimientos
realizados posteriormente, para realizar una estimacién que indique la posicién
en un tiempo especifico.

Una unidad de medida inercial (IMU, por sus siglas en inglés) es un sen-
sor electrénico que permite estimar el movimiento y orientacién de un agente,
utilizado frecuentemente en robética para determinar una ubicacién aproxima-
da. Cumplen en robética un rol analogo al del sistema vestibular de los seres
vivos, al proporcionar informacién inercial a partir de aceleraciones lineales y
rotaciones angulares.

2.4. Redes Neuronales Artificiales

Una red neuronal es un modelo computacional compuesto por nodos organi-
zados en capas interconectadas, donde cada nodo (o neurona artificial) realiza
un procesamiento y se lo envia a otros en la siguiente capa a través de senales,
simulando asi el procesamiento llevado a cabo por neuronas en el cerebro de
los seres vivos. Cada uno de estos nodos recibe una combinacién ponderada de
senales de los nodos de la capa anterior o senales de entrada, para el caso de
la primera capa, las procesa mediante una funciéon de activacién y transmite el
resultado a los nodos de la siguiente capa. La imagen 2.4 representa una neurona
artificial donde el nodo recibe la senal de activacion por el equivalente a las den-
dritas para una neurona, el cuerpo somatico realiza el procesamiento en funcién
de la activacién percibida, y posteriormente el axén lo envia a la siguiente capa.
En la imagen 2.5 se representa la interaccién entre los nodos de las distintas
capas, representando los nodos activos con color negro.
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Figura 2.4: Representacion de nodo individual de la red neuronal.
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Figura 2.5: Esquema general de red neuronal.

Una caracteristica particular de algunas redes neuronales es el uso de la
funcién de retropropagacién, que se encarga de la modificacién del sistema para
llevar a cabo un aprendizaje del mismo a base de su salida. Un mensaje de
ajuste es enviado hacia atrds en la red neuronal (2.6), reforzando o debilitando
las conexiones entre distintos nodos.

Figura 2.6: Esquema de red neuronal con retropropagacion.

Cuando las redes neuronales interconectan la salida como senales de entrada
en una nueva iteracién, son llamadas redes neuronales recurrentes.
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2.4.1. Atractor

Un atractor es un tipo de red neuronal recurrente donde las conexiones estan
organizadas de una forma tal, que las funciones de los nodos y la sinapsis entre
ellos llevan a la red neuronal a estados especificos llamados puntos de atraccién,
donde se presenta una acumulacién de actividad (también llamada energia).
Estos puntos de atraccién influyen sobre un entorno de convergencia para los
cuales el sistema, no recibiendo estimulos externos, tiende a estos puntos. Una
vez alcanzado este punto, un atractor permanece en él, representando asi una
memoria o estado persistente. Similar a una pelota que atraviesa huecos, repre-
sentado en la figura 2.7, donde la pelota es empujada por la pendiente hacia el
fondo del hueco, los puntos de atraccién son los estados hacia donde tiende a
acumularse la mayor actividad del sistema. Las redes neuronales de atractores
continuos presentan una red de nodos en la que se encuentran miltiples puntos
de atraccién. Los puntos de atraccién corresponden a neuronas para los cuales la
actividad recibe un aumento, influenciando su entorno y, de manera recurrente,
su entorno aumenta aun mas su energia. Una vez que un cumulo alcanza uno
de estos puntos, permanece alli hasta percibir estimulos suficientemente grandes
que desplacen los niveles de energia al entorno del siguiente punto de conver-
gencia, similar a un empuje de la pelota en la ilustracién siendo llevada hasta
el otro lado de la pendiente.

¥

Figura 2.7: Representacion practica de un atractor. Distintos colores de la misma
pelota representan puntos de atraccion diferentes.

Un problema que surge de las redes neuronales recurrentes es el aumento
de energia desmesurado, causando la inestabilidad del ciumulo de actividad en
el sistema. Para mantener la distribuciéon de actividad de forma que el sistema
mantenga la energia acotada y un tnico cimulo definido, los atractores poseen
un mecanismo de inhibicién en el cual la sefial emitida por un nodo influye ne-
gativamente en las demds de forma proporcional a la magnitud de la senal y la
distancia sindptica entre los nodos en el atractor. Esta distancia corresponde a
distancia angular para atractores en forma de anillo o distancia euclidiana si es
un atractor en un plano, entre otros. De esta forma, un nodo con mucha activi-
dad tiene una influencia mayor sobre sus vecinos, y una influencia negativa sobre
el resto del sistema. Esto genera una competencia entre ciimulos de actividad
en la que prevalece el que emita una mayor senal sobre los demés, y evitando la
proliferacién de ciimulos menores en un sistema sin estimulos externos.
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2.5. Aprendizaje Hebbiano

La plasticidad neuronal se describe como la capacidad de las redes neuro-
nales de modificar su estructura en respuesta a experiencias para adaptarse a
distintos escenarios. Para llevar a cabo dicha actualizacién, uno de los procesos
que surgen es la variacién de la conectividad entre dos neuronas que se dis-
paran una inmediatamente de la otra, recibiendo asi una actualizacién en el
peso sinaptico que las vincula, incrementando la relacién entre las mismas y
mejorando la eficiencia de la sinapsis. A este mecanismo se le llama aprendizaje
hebbiano. En un contexto de redes neuronales artificiales, es aplicable para la
adaptacion de las sinapsis, como una regla de actualizacion local que ajusta los
pesos sinapticos entre nodos, logrando asi un aprendizaje de funcionamiento sin
necesidad de supervision.

En la ecuacién 2.1 se muestra un ejemplo donde el producto de la tasa de
disparo x; correspondiente a un nodo i, la tasa de disparo y; correspondiente
a un nodo j y una tasa de aprendizaje k resultan en la actualizaciéon del peso
sindptico w;.

2.6. Robot Operating System: ROS

ROS es un conjunto de herramientas y librerias de software libre que funcio-
nan como base para el diseno y desarrollo de aplicaciones robéticas. Escrito prin-
cipalmente en C++ y Python, es soportado completamente en Linux, mientras
que para algunas versiones de Windows y MacOS existen versiones experimen-
tales. ROS simplifica el proceso de implementacién de aplicaciones, permitiendo
aumentar la complejidad de la interconexién entre diversos médulos aplicados.
Estos médulos llamados nodos son programas independientes en ejecucién que
realizan tareas especificas y se comunican con otros nodos, a través de mensajes,
para realizar tareas més complejas y asi poder llevar a cabo comportamientos
requeridos. Versiones anteriores de ROS requerian un nodo maestro encargado
de la coordinacién entre los diversos nodos (nodo maestro). Versiones modernas
no requieren la existencia de dicho nodo, utilizando un sistema llamado Data
Distribution Service (DDS) que permite la descentralizacién de la coordinacién.

La comunicacién entre nodos puede llevarse a cabo a través de tépicos, servi-
cios o acciones. Representados en la figura 2.8, los topicos son canales asincronos
de comunicacién siguiendo un modelo publicacién/suscripcién, donde un nodo
envia mensajes a determinado tépico, y dicho mensaje es reenviado a todos sus
nodos suscriptos.
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Publicacién Suscripcion

TOPICO

L Suscripcion
Publicacion P

Figura 2.8: Funcionamiento asincrono de tépicos de multiples publicadores a
multiples suscriptores.

Los servicios (figura 2.9) funcionan con un modelo cliente/servidor, donde
un nodo presta un servicio, mientras que otro nodo lo utiliza en forma de clien-
te, realizando una comunicacién sincrona enviando un mensaje de solicitud y
esperando una respuesta por parte del servidor.

Solicitud de servicio

Respuesta

Figura 2.9: Llamada a servicio de un nodo que devuelve una respuesta.

Las acciones funcionan de manera similar a los servicios, pero para tareas que
se ejecutan durante un tiempo extendido, recibiendo retroalimentacién durante
el proceso de ejecucién en forma de multiples respuestas, enviando un resultado
al concluir la accién. En la figura 2.10 un nodo envia una solicitud de accién,
recibiendo las respuestas y posteriormente el resultado.

Solicitud de accion

Respuestas

Resultado

Figura 2.10: Flujo de trabajo de una llamada de accién.

2.6.1. Gestion de conjuntos de datos

Para grabar y almacenar conjuntos de datos y realizar repeticiones de prue-
bas, ROS provee archivos de registro llamados bags. Estos bags permiten guar-
dar todo lo que publican los sensores involucrados en el sistema para efectuar
multiples simulaciones utilizando datos grabados, potencialmente de escenarios
reales cuando el acceso al equipo es limitado. También permiten realizar anali-
sis de los datos para evaluar fallos en el control o la percepcién de los robots y
ejecutar multiples configuraciones de un mismo sistema en un escenario contro-

lado.
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2.6.2. Visualizacion

ROS provee herramientas de visualizacion y andlisis de datos que permiten
graficar y mostrar la arquitectura del sistema construido, asi como datos de los
tépicos del mismo. La herramienta rqt_graph (figura 2.11) muestra de forma
grafica la topologia de nodos y topicos del sistema, permitiendo entender flujo
de informacién del mismo.

Default - RosGui

File Plugins Running Perspectives Help
IROS Graph DE@ O %
@ |  Nodes/Topics (all) =1/ / || B || B |

& namespaces [ actions dead sinks [ leaf topics & Hide Debug [ Highlight & Fit | (9]

move_group
T —

: 'Imm_gmnn: | [move_group/display_planned_path

-

Figura 2.11: Ejemplo de rqt_graph, imagen tomada de https://wiki.ros.org/
rqt_graph.

Para la simulacion de escenarios virtuales se encuentra disponible Gazebo,
una herramienta que combina visualizacién 3D con simulacién fisica, permitien-
do representar robots en entornos virtuales realistas y generar datos de sensores
simulados, permitiendo la validacién de sistemas robédticos en escenarios com-
plejos sin necesidad de contar con el hardware fisico.
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Capitulo 3

Revision de antecedentes

Las células de direccion de la cabeza son neuronas encontradas en el post-
subiculo (POS) y en el nicleo taldmico anterodorsal (ATN) de los cerebros de
algunos roedores. Dichas células maximizan su tasa de disparo cuando el roe-
dor (figura 3.1a) apunta su direccién en una direccién predeterminada para la
célula llamada direccién de preferencia (figura 3.1b). Entre las propiedades de
estas células, se encuentran la capacidad de mantener la referencia para cierta
direccién a través del tiempo, activarse ante la presencia de referencias visuales
detectadas en el campo visual del roedor e interpretar giros del animal para
alternar el disparo de distintas células. Esto le permite al roedor mantener la
referencia en ambientes con limitada o nula visibilidad, sin depender de referen-
cias visuales, utilizando exclusivamente los sensores bioldgicos propioceptivos
del cuerpo. Frente a los giros de la cabeza del roedor en el plano, las células al-
ternan su activacién de acuerdo a la direccién tomada, maximizando la tasa de
disparo cuando la cabeza apunta en la direccién de preferencia. Esta direccién
de preferencia se mantiene a través del tiempo e inalterada, conservando una
Unica direccién para cada célula, mostrando ser un mecanismo confiable como
referencia interna de la direccién de la cabeza del roedor.

Taube (Taube, Muller, y Ranck, 1990) interpreté la relacién entre frecuencias
de disparo de distintas células para una direccién como una funcién triangular
con el méximo ubicado sobre la direccién de preferencia de la célula, y un decre-
cimiento lineal hasta aproximadamente 45° desde la misma donde alcanza un
minimo general, pudiendo este méximo variar entre distintas células.
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(a) Representacién de la cabeza del roedor. (b) Representacién de la célula de direccién
y su direccién de preferencia.

Figura 3.1: Representacién abstracta de un roedor y una célula.

3.1. Propuestas de modelos

Varias investigaciones a lo largo del tiempo han marcado hitos en el entendi-
miento de la navegacion biolégica, aportando cada vez mas informacién sobre su
funcionamiento. En este documento se presentan algunas implementaciones de
dichas investigaciones que contribuyen a la construccién cada vez mas avanzada
de un modelo de células de direccion de la cabeza de roedores.

3.1.1. Construccion de una red neuronal para células de
direccién

McNaughton (McNaughton, Chen, y Markus, 1991) interpretd las direcciones
de preferencia de las células como nodos en una maquina de estados. Definiendo
los desplazamientos angulares de la cabeza del roedor como transiciones en el
sistema, compone un sistema que rastrea la orientacién del roedor e imita la
activacién de cada célula de direccién al llegar a un estado y el declive de la
activacion de la célula anterior. En la figura 3.2 se ilustra una méquina de
estados parcial, donde cada estado representa una célula de direccién con su
direccién de preferencia. Las transiciones entre los estados representan los giros
de la cabeza del roedor.

5 5% I[F s o

L gCID T

7| der

Figura 3.2: Transformaciones angulares de McNaughton

También se discute la incorporaciéon de transiciones de estado debido a la
presencia de referencias visuales asociadas a ciertos nodos de la maquina de
estados.
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Basado en la propuesta (McNaughton y cols., 1991) de representar direc-
ciones de la cabeza del roedor como nodos preestablecidos y el giro del roedor
basdndose en funciones predeterminadas, Skaggs (Skaggs, Knierim, Kudrimoti,
y McNaughton, 1996) adecta esta propuesta para darle la dindmica de una red
neuronal artificial continua con forma de anillo (anillo de atractores), resultando
los nodos en un arreglo unidimensional. Se asocia la idea de nodo a célula de
direccién donde cada una envia sefiales a las demés (3.3a) simulando la sinapsis
entre estas y no solamente transformaciones atémicas.

(a) Representaciéon de influencia de pesos (b) Células para orientaciones 0°, 45° y

sindpticos W; entre nodos en la red neuro- 902, distribuidas en arreglo circular. Pesos

nal artificial sindpticos mas débiles, representados con
linea puntuada, para nodos con mayor dis-
tancia angular entre sus direcciones de pre-
ferencia.

Figura 3.3: Organizacién de nodos y sus pesos sinapticos.

Los nodos son distribuidos en un arreglo circular (3.3b) vinculando cada
uno a un angulo de orientacion del roedor, relacionando asi la direccién de
preferencia de las células de direccion del roedor, con separacién equidistante
entre si en el circulo. Esta distribucion toma la forma de anillo, donde cada par
de nodos presenta una sinapsis més fuerte cuando se encuentran cercanos entre
si respecto al angulo representado.

Se incluyeron conexiones de inhibicién al sistema para darle las propiedades
de anillo de atractores, donde se cumpla la unicidad del cimulo de actividad y
el mismo mantenga su nivel de actividad en un sistema estatico.

La dindmica de desplazamiento del cimulo se lleva a cabo mediante la in-
corporacién de células vestibulares y células de rotacién. Al percibir estimulos
sobre una célula vestibular, esta influye sobre un anillo de células de rotacién
que, a su vez, influyen sobre las células de direccién del anillo. Esto genera un
desequilibrio del sistema y traslada el cimulo en el sentido definido por la célula
vestibular y las células de rotacién, cambiando la tasa de disparo de las células
de rotacién similar a lo observable en la figura 3.4.
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Tasa de
disparo

Células de direccion

Figura 3.4: Desplazamiento del cimulo por influencia de células de rotacion.
En cada gréfica, el eje de las abscisas representa los nodos ordenados por sus
direcciones de preferencia. El eje de las ordenadas representa la tasa de disparo
de las células en cada iteracion.

También se incorpora un conjunto de células visuales que se activan con la
deteccién de referencias visuales en el entorno. Dichas células se inicializan con
una influencia débil hacia las células de direccién, y son entrenadas mediante la
regla de aprendizaje hebbiano definida en la ecuacién 3.1. En esta ecuacién, W
representa el peso sindptico entre las células, Apost ¥ Apre son las tasas de disparo
pre- y postsindptico, y la funcién f() es una funcién de variacién, encargada
del aumento o decremento de la variacién de la ecuaciéon. Con esta funcién, la
sinapsis de las células visuales incrementa conforme el sistema las observe. Si
las referencias no son observadas con cierta frecuencia, la sinapsis decrece hasta
llegar a un minimo.

AW = a(Winao f (Mpost) — W)Apre (3.1)

El comportamiento de aprendizaje de estas células visuales fueron observa-
dos por Taube (Taube y cols., 1990) y el entendimiento de la estabilidad fue
extendido por Knierim (Knierim, Kudrimoti, y McNaughton, 1995), reportando
en cada caso un mayor control sobre el conjunto de células de direccién si una
referencia visual era percibida como estable por el roedor, mientras que dicho
control se veia reducido en caso de percibir cambios en el entorno.

3.1.2. Modelo Matching/Offset

Con una estructura similar al propuesto por Stringer, Redish (Redish, Elga,
y Touretzky, 1996) define una interaccién entre dos conjuntos de nodos donde
uno representa la orientacién actual, mientras que el otro representa la orien-
tacién a futuro estimada de la direccién de la cabeza del roedor. Este modelo
estd inspirado en estudios por parte de Taube (Taube, 1995) donde las células
encontradas en el ATN presentan niveles de activacién correspondientes a una
estimacién de la ubicacién a futuro de la cabeza del roedor, manteniendo las
células de direccién encontradas en el POS una representacion de la direccién
actual.

Para esto definieron dos atractores, compuestos cada uno por dos conjuntos
de nodos en forma de anillo, donde uno de estos anillos representa componentes
excitadores del atractor, mientras que el otro representa los inhibidores. En la
figura 3.5 se representan los nodos de cada anillo, inhibidores y excitadores, y
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sus respectivas interacciones. Los nodos inhibidores poseen conexiones sindpti-
cas que influencian un rango amplio de nodos en ambos conjuntos, inhibiendo
un poco mas a los nodos angularmente cercanos en la representacién del ani-
llo. Los nodos excitadores, por el contrario, influencian fuertemente los nodos
de su entorno, decayendo en mayor medida en comparacién con los inhibidores
segin incrementa la distancia entre nodos. Una distribucién Gaussiana de cam-
pana mas ancha y baja representa las conexiones sinapticas de los inhibidores,
mientras que una angosta y alta representa las conexiones de los excitadores.

Figura 3.5: Par de anillos de nodos representando inhibidores y excitadores y
sus conexiones sinapticas, lineas gruesas representan la alta energia distribuida
por los excitadores, lineas delgadas representan la energia distribuida por los
inhibidores

El par de anillos con las conexiones excitadoras e inhibidoras conforman un
conjunto con dindmicas de atractor similar a las descritas anteriormente. Se de-
finen dos atractores, uno para representar las células de direccién en el POS y
otro para el ATN. Para que el sistema funcione correctamente, estos atractores
poseen igual cantidad de nodos en sus anillos, cada nodo representando una di-
reccién de preferencia equidistante entre si e igual a las demés. Las conexiones
entre ambos atractores (figura 3.6) se dan exclusivamente entre sus conjuntos de
excitadores, de tal forma que cuando el sistema se encuentra estatico, las inter-
acciones son limitadas a los nodos con direcciones de preferencia equivalentes.
Cuando el sistema percibe un giro, los nodos excitadores del POS influencian
los nodos del ATN con un desfasaje angular, que causa el desplazamiento del
cumulo hacia un lado. Por la interaccién entre los nodos, este desfasaje produce
una influencia de vuelta al POS. En la figura 3.6 la interaccién estatica entre
los atractores se representa con lineas sélidas. Para el giro, la influencia desde
el POS hacia el ATN se representa con lineas de guiones, y la linea punteada es
el retorno de esa influencia.

19



Atractor

POS £
Atractor e
ATN

Figura 3.6: Par de atractores representando el postsubiculo y el nicleo talami-
co anterodorsal, y un ejemplo de interacciones entre sus conjuntos excitadores
frente a un escenario de rotacién en un sentido

Entre las ventajas de este modelo, a diferencia con el propuesto por Skaggs,
se encuentra la capacidad de interpretar giros a distintas velocidades, siendo
necesario establecer un limite mucho més acotado en caso de carecer de la in-
fluencia del ATN. Esto se logra reforzando las funciones de disparo de las células,
incrementando la sinapsis desde el POS al ATN de acuerdo a la velocidad de
giro.

3.1.3. Adaptacion dinamica de pesos sinapticos mediante
aprendizaje Hebbiano

Una limitante que presentan algunos modelos de células de direccién de la
cabeza, es la definiciéon de pesos sinapticos preestablecidos por el modelador. La
definicién de estas conexiones puede provocar fallos en la configuracion del giro,
causando giros con errores. Para atacar este problema, se propuso un entrena-
miento de las conexiones sindpticas con aprendizaje hebbiano (Zhang, 1996) que
resulte en un modelo con influencia simétrica entre sus nodos. Frente a irregula-
ridades en este entrenamiento, las conexiones pueden derivar en desvios e ines-
tabilidad en el cimulo de actividad del atractor, por lo que Stringer (Stringer,
Trappenberg, Rolls, y de Araujo, 2002) propuso una adaptacién con una tra-
za de memoria que mitigue variaciones en la simetria de las conexiones. Otra
propuesta es la inclusién de un umbral de activaciéon basado en una funcién
sigmoide (figura 3.7) que influye en la tasa de disparo de las células.
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Figura 3.7: Funcién sigmoide de umbral de activacion

3.1.4. Implementacién con influencia visual

Incorporando las dinamicas de atractores, aprendizaje y desplazamiento del
ctimulo de actividad propuesto por autores previos, Kyriacou (Kyriacou, 2011)
presenta un modelo con aprendizaje para los pesos, definiendo ademaés del siste-
ma visual y el sistema vestibular, el sistema cinestésico que representa el movi-
miento propio del animal, diferenciandolo del vestibular respecto a si el animal
se mueve por si mismo o es desplazado externamente. Durante una etapa de en-
trenamiento del sistema, se establece la correlacién entre las células de direccién
y las imdgenes recibidas por una cdmara de 3602, comparando las imégenes re-
cibidas en cada momento con la posicién original de la cdmara y determinando
asi la ubicacién referenciada. El sistema utilizado permite realizar correcciones
rapidamente gracias a una referencia absoluta de posicionamiento visual donde
todas las referencias visuales estan disponibles si el sistema posee capacidades de
vision. Si bien existe un desfasaje de la direccién representada cuando la visual
se encuentra inhabilitada debido a no existir iluminacion, el posicionamiento se
corrige rapidamente al momento de recuperar las dichas referencias.

3.1.5. Células de direccion en modelo RatSLAM

RatSLAM es un sistema de navegacién robdtica que utiliza la técnica SLAM
(del inglés Simultaneously Localize And Map) de ubicacién y trazado de mapas
en simultdneo. Basado en modelos computacionales del hipocampo encontrado
en el cerebro de los roedores, RatSLAM aplica la dindmica de los atractores
continuos con el enfoque probabilistico de SLAM, estimando la ubicacién actual
como un conjunto de probables ubicaciones y descartando algunas de las mismas
con la presencia de referencias visuales.

Centrado en un esquema de representaciéon de posicién, compuesto por un
modulo de direccién de la cabeza y un médulo de codificacion de la ubicacion
(figura 3.8), RatSLAM posee un sistema de integracién de rutas que procesa los
sensores de movimiento y visién del robot para estimar la posicién del robot.
Internamente al esquema de representacién de posicion, se actualizan el médulo
de direccién de la cabeza y la codificacién de ubicacién, siendo la ubicacién
influenciada por la direccién de la cabeza en la integracién de rutas. Un sistema
de vision local se encarga de realizar estimaciones de la posicién definiendo
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multiples ubicaciones probables, que luego son cotejadas con la codificacién de la
ubicacion para determinar la posicion mas probable dado el contexto registrado.

Sensor externo Sensores del
de vision Representacion de Pose robot
Y Direccion de la L2
. / cabeza | Integracion de
Vision Local | ' g
: . ] rutas

Codificacion de ;
. Ubicacion

Figura 3.8: Interaccion entre médulos de RatSLAM

Tanto el médulo de direcciéon como el médulo de ubicacion funcionan a base
de redes de atractores continuos. El atractor de direccion es similar al propuesto
por Skaggs (Skaggs y cols., 1996) de un anillo unidimensional de nodos, donde
cada nodo representa una direccion preferida. El ciimulo de actividad de dicho
atractor es desplazado mediante la inyeccién de energia en el atractor, con la
forma de un nuevo cumulo, similar a las células de rotacion vistas. La inyeccion
de energia se da en la forma de desfasaje del cumulo de actividad, a base de la
velocidad angular percibida por el sistema de integracion de rutas por parte de
la senal recibida desde los sensores del robot.

3.1.6. Modelo de integracion de rutas

Sinha (Sinha y Wang, 2014) busca mejorar la navegacién bio-inspirada im-
plementada en robética mediante el desarrollo de modelos anteriores. Basado
en el modelo propuesto por Stringer (Stringer y cols., 2002), se implementan
dinamicas de integracion de rutas llevado a cabo por las células de direccién de
la cabeza y se desarrollan extensiones sobre el modelo.

A diferencia de lo expuesto por Kyriacou (Kyriacou, 2011), aqui se imple-
menta una unica célula visual (3.9) utilizada para la inicializacién y pruebas de
correccion de desfasaje en la direccién.

Dividido en etapas de entrenamiento, inicializacién y ejecucién, este modelo
presenta una dindmica de pruebas que simulan un comportamiento similar al
observado por las células de direccién de la cabeza encontradas en la cabeza de
los roedores.

22



Figura 3.9: Diagrama de interaccién de células de direccién, rotacion y visual.
Imagen tomada de ”An implementation of the path integrator mechanism of
head direction cells for bio-mimetic navigation.” (Sinha y Wang, 2014).
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Capitulo 4

Modelo de referencia y
propuestas de extension

En este capitulo se describen aspectos técnicos del modelo tomado como
referencia para el desarrollo y las extensiones incorporadas al mismo. La primera
parte detalla el modelo seleccionado como linea de base para el desarrollo de
soluciones que extiendan las capacidades de los modelos de células de direccion
de la cabeza. Dicho modelo presenta una arquitectura simple y flexible, sobre el
cual se pueden realizar extensiones e incorporar nuevos sensores. Al encontrarse
disponible el cédigo fuente de este modelo, y ademés encontrarse implementado
sobre la plataforma ROS, lo hace un candidato ideal para tomarlo como punto
de partida. Este modelo es ademés el mas reciente al momento de realizar el
relevamiento del estado del arte de la tematica. Mas adelante, se describen los
trabajos realizados sobre el modelo y las modificaciones necesarias para poder
llevar a cabo las extensiones y evaluaciones que requiere este proyecto.

4.1. Modelo base

El modelo base de simulacién de células de direccién de la cabeza (Sinha
y Wang, 2014) utilizado en este documento es una extensién del desarrollo de
un modelo de anillo atractor unidimensional (Stringer y cols., 2002), adaptando
los conceptos estudiados en articulos anteriores descritos en la seccién Estado
del Arte (influencia visual, aprendizaje hebbiano). Implementado en C++ sobre
ROS, se construye un modelo funcional a base de células de direccién, células
de rotacién y células de visién. Los pesos sindpticos entre las células son defini-
dos siguiendo un entrenamiento uniforme con aprendizaje hebbiano durante la
etapa de calibracion, para la cual los estimulos externos estan inactivos. Dicho
entrenamiento proporciona a los pesos sinapticos simetria angular acorde a lo
observado por Stringer (Stringer y cols., 2002), siendo los pesos sinapticos de-
finidos a partir de una funcién de la distancia angular entre las direcciones de
preferencia de las células de direccion.
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La etapa de inicializaciéon establece un cimulo de actividad mediante la
activacion forzada de una unica célula de visién con pesos equivalentes a los
aprendidos en el entrenamiento, y estabiliza dicho cimulo mediante la iteracion
de la rutina de procesamiento sin estimulos por parte del sistema vestibular o
visual.

La etapa de ejecucién lleva a cabo la dinamica de funcionamiento, la cual
consta de iteraciones de ejecucion invocadas por la llegada de un mensaje con-
teniendo informacién odométrica, el cual inicia la rutina de actualizacién del
estado del sistema, recalculando las tasas de disparo de las células de rotacion
y de direccién.

La clase Bionavigator (figura 4.1) es la clase central del sistema encargada
de vincular los distintos tipos de células del modelo. Sobre esta clase se definen
conjuntos para las células de direccion, encargadas de la representacién de la
direccién del cimulo en el atractor. También se definen dos células de rotacion,
uno para cada sentido de giro, y una célula de visién.

Las células de direccion actualizan el estado del cimulo en el sistema esta-
bilizando niveles de actividad. Las células de rotacién se encargan de realizar
un des-equilibrio de los niveles de actividad, causando un traslado de la energia
del cimulo y generando asi un desplazamiento del mismo en el sentido corres-
pondiente a la célula de rotacién. Por otro lado, las células de visién efectian
una influencia centrada sobre células de direccién puntuales.

Estas células se encargan del desplazamiento y cambios en la ubicacién del
cumulo de actividad.

Se definen ademas, conjuntos de pesos sindpticos que representan los enlaces
entre las distintas células transmitiendo las tasas de disparo que componen la
activacién de cada célula. Estos conjuntos incluyen las interacciones entre células
de direccién sobre si mismas, la influencia de las células de rotacién sobre las
células de direccién, y la influencia de las células de vision sobre las células de
direccién.

Bionavigator

mpHDCells : HDCells

mpRotationCellsClockwise : RotationCellsClockwise
mpRotationCellsCounterClockwise : RotationCellsCounterClockwise
mpVisionCells : VisionCells

mpHDSynapseSet | HDSynapseSet

mpHD_RotationCellClockwiseSynapseSet : HD_RotationCellClockwiseSynapseSet
mpHD_RotationCellCounterClockwise SynapseSet : HD_RotationCellCounterClockwiseSynapseSet
mpHD_\VisionSynapseSet : HD_VisionSynapseSet

Calibrate
SetlnitialDirection
CallbackPublishDirection
HeadDirection

Figura 4.1: Clase principal que representa el modelo y las clases de conjuntos
que la componen
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CurrentHeadDirection UpdateFiringRateTrace
UpdateFiringRate
UpdateFiringRateTrace

RotacionCellsClockwise — RotacionCellsCounterClockwise
UpdateFiringRate UpdateFiringRate
UpdateFiringRateTrace UpdateFirngRateTrace

Figura 4.2: Clases de conjuntos de neuronas

]

SynapsesSet

Weighthatrix
Dimension
DimensionY

Update\Weight

L

HDSynapseSet

HD_RotationSynapseSet

HD_VisionSynapseSet

Figura 4.3: Clases de conjuntos sindpticos entre nodos
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4.1.1. Células

Cada clase de conjuntos de células implementada es derivada de la superclase
NeuronSet (figura 4.2). Las sinapsis entre los distintos conjuntos de células son
implementadas a través de la superclase SynapseSet(figura 4.3).

Células de direccion: Las células de direccion representan la red de atrac-
tores, siendo cada nodo el centro de un punto de atraccién individual con una
tasa de disparo en funcién de la activacién percibida, influenciando asi las célu-
las de su entorno y generando el ciimulo de actividad. El sistema cuenta con un
conjunto de cien células de direccién uniformemente distribuidas en forma de
anillo, cada una representando un dngulo de 3,62 (3602/100), influyendo sobre
las demas y sobre si misma a través de sinapsis ponderadas por pesos sinapticos
entre cada par de células. En la figura 4.4 se representa el anillo de células y la
interaccion de una célula H D; con algunas de sus células cercanas. En el mode-
lo, la sinapsis no se limita a las células cercanas, sino que cada célula influencia
al conjunto completo. La ubicacién del cimulo se define a partir de la funciéon
CurrentHeadDirection, que evalia las tasas de disparo, retornando el indice de
la célula con mayor tasa de disparo en el arreglo de células. Este indice corres-
ponde a la posicion de dicha célula en el arreglo de células de direccion de la
clase Bionavigator.

Figura 4.4: Representacién del anillo y la interaccién entre nodos

Sinapsis de células de direccién: La clase HDSynapseSet de la figura 4.3
representa los conjuntos de pesos sinapticos de interaccién entre las células de
direccién. Los pesos sinapticos wg D de este conjunto se ajustan a una funcién
gaussiana (ecuacién 4.1) de la distancia angular entre las células, durante la
etapa de calibracion del sistema en la que se fuerza el disparo de la célula de
rotacion.

1+ AS?
HD—ex + S

Wi = (—W)

(4.1)
En esta ecuacién, AS es la distancia angular entre las direcciones de pre-

ferencia de las células HD; y HD;, mientras que oD es un pardmetro que
controla el ancho de la distribucion. El resultado de dicho entrenamiento para
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cada peso toma la forma de distribucién gaussiana hacia los deméas nodos, es
representado en la figura 4.5.

-
>

Figura 4.5: Distribucién gaussiana de pesos sinapticos para células de direccion.

Células de rotacién: Dos células de rotacion orquestan el sentido de trasla-
cién del cimulo de actividad del atractor mediante su influencia sobre la red. Si-
mulando el sistema vestibular del roedor, inspirado por lo propuesto por Stringer
(Stringer y cols., 2002) se desplaza el cimulo simulando sefiales de movimiento
del roedor. Cuando se recibe un mensaje en un tépico de ROS con mensajes
odométricos, se dispara la rutina de procesamiento. La velocidad angular reci-
bida define la activacién de la célula de rotacion y esto causa el desequilibrio
del atractor influenciando las células del cimulo en el sentido de la célula de
rotacién correspondiente (figura 4.6).

Figura 4.6: Representacion de una célula de rotacién en color rojo y su sinapsis
hacia las células de direccién.
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Tasa de disparo

-
Célula de direccwnn'

Figura 4.7: Distribucién sinaptica de los pesos para una célula de direccién y la
influencia de la célula de rotacién, representada con la grafica de color rojo.

Sinapsis de células de rotacién: El conjunto de pesos sindpticos para
las células de rotacion es equivalente al peso sindptico de la célula de direccion
contigua en el anillo, de acuerdo al sentido de giro. De esta forma, la célula
de rotacion causa el desequilibrio incrementando la actividad de la célula que
atrae al cimulo. La figura 4.7 muestra la distribucién de los pesos sindpticos
direccionales para la célula central del cimulo y los pesos sindpticos rotacionales
para la célula de rotacién.

Células de visién: Una tinica célula de vision (figura 4.8) estd integrada en
el atractor, pero se utiliza exclusivamente para el estimulo que crea un cimulo
en la red. Mediante el forzado de disparo de la célula, se iteran ciclos que in-
crementan la activacion de las células de direccién, consiguiendo asi la tasa de
disparo necesaria para mantener activo el atractor de la posicién dada por la
célula de visién. Esto simula la influencia de una referencia visual asociada a
una célula de visién, pero no se encuentra implementada una rutina de proce-
samiento de iméagenes que convierta la informacién de una fuente de imagenes
en activacion.

Figura 4.8: Sinapsis de la célula de visién sobre las células de direccién. Se asocia
el color azul para diferenciar las células de visién, de las células de rotacién en
los diagramas.

Estas células se asocian a direcciones puntuales, por lo que estan vinculadas
particularmente a una célula de direccién. En el caso de activarse en una ubica-
cién suficientemente alejada del cumulo principal, generaria un cimulo nuevo.
Esto se observa en la figura 4.9.
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Figura 4.9: Estimulo visual genera un nuevo cimulo de actividad.

4.1.2. Esquema de funcionamiento

El sistema estd implementado en C++ sobre ROS, utilizando los tépicos
como mecanismo de comunicaciéon y disparador de iteraciones. Se divide en
etapas de calibracion, inicializacion y ejecucion.

Calibracién

En la etapa de calibracion se realiza un ajuste de los pesos sindpticos entre
los nodos del conjunto de células de direccién. Dos iteraciones recorren los nodos
con sus direcciones de preferencia y asignan los pesos sindpticos entre células de
acuerdo a una funcién gaussiana. Esta funcién toma como entrada la distancia
angular entre las direcciones de preferencia de las células presindpticas y post-
sinapticas involucradas en la sinapsis a entrenar. Fn la ecuacién de cédlculo del
peso (4.1) se utiliza el pardmetro de ajuste o7? y AS representa la distancia
angular entre los nodos.

Vi _

-

ROtk

Figura 4.10: Influencia de la célula HD; sobre la célula HD; a través del peso
sindptico w;j; ponderado por la tasa de disparo de la célula de rotacién k, rFOT.
Se asocia el color verde para las rotaciones de sentido horario.

Durante esta etapa también se realiza el ajuste de los pesos sindpticos co-
rrespondientes a las células de rotacién (figura 4.10). Para cada nodo se ajusta
un peso sinaptico correspondiente a la influencia de la rotacién en ese sentido.
Cada etapa de iteracién de la calibracion corresponde a uno de los sentidos de
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giro. En este paso se calculan los pesos sindpticos rotacionales wg,?*ROT, que

representan la sinapsis rotacional de la célula HDj; sobre la célula HD;, ponde-
rada por la tasa de disparo TJH D de la célula de direccién y la tasa de disparo
r,f'OT de la célula rotacional, que llevan al desplazamiento del cimulo (figura
4.11). La ecuacién 4.2 muestra el cédlculo parcial (no incluye activacién de otras
células de direccién o células de visién) de la activacién h7P de la célula HD;
por parte de cada célula de direccion HD);.

Tasa de
dispara

Células de direccidn

Figura 4.11: Influencia de una célula en proceso de rotacién en sentido horario,
identificado con el color verde.

HD __ HD_ROT, HD, ROT
WP = wP RO P (4.2)
jk

La sinapsis correspondiente a la célula de vision es equiparada a la sinapsis
de la célula de direccién sobre la cual estd centrada, hacia las demas células.

Inicializacion

La inicializacion del sistema se realiza mediante la activacién forzada de la
célula de visién. Tomando esta como la direccién inicial del sistema, se corre una
cantidad arbitraria de iteraciones de ejecucion sin informacion odométrica donde
cada una permite actualizar el estado del sistema. Con esto, la red neuronal
recibe la influencia de la célula de visién centrada en una célula de direccidn,
generando asi un cimulo centrado en dicha célula (figura 4.12). Para el caso del
cédigo fuente del articulo, el valor de iteraciones con la célula de vision activa
es de 10.
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Figura 4.12: Generacion del ciimulo en la etapa de inicializacién.

Una vez ejecutada la cantidad de iteraciones, se desactiva el forzado de
disparo de la célula, quitando asi el tinico estimulo externo del sistema. Restando
el estimulo entre nodos, el sistema llegara a su punto de equilibrio manteniendo
el cimulo de actividad en su lugar en una cantidad finita de iteraciones de
ejecuciéon. En este caso, la cantidad indicada de iteraciones es 200.

Ejecucion

La dindmica del sistema funciona a base de iteraciones que actualizan el
estado del mismo mediante un recalculo de la tasa de disparo de las células de
direccién. Cada una de estas iteraciones es ejecutada por una rutina invocada
con la llegada de un mensaje de la IMU conteniendo informacién odométrica
del robot. Durante esta rutina se actualiza la tasa de disparo de las células de
rotacién para luego actualizar el estado del sistema, calculando la activacién de
las células de direccién y, con esto, la tasa de disparo.
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Realizar iteracion del |
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Figura 4.13: Relaciones en la iteracién de cédlculo de tasa de disparo. Para des-
balancear el equilibrio y desplazar el cimulo de actividad en un sentido, cada
célula HD; debe influenciar principalmente a sus células cercanas en el anillo
en dicho sentido, de forma proporcional a: la tasa de disparo P la tasa de
disparo de la célula de rotacion rfIP-FOT y el peso sindptico wg kD -ROT que vin-
cula la célula donde se encuentra el cimulo con sus células cercanas HD);. La

visual se computa de forma independiente a las demas células.

La tasa de disparo de una célula se calcula con una funcién sigmoide a
base de su activacién. Para el caso de las células de direccién, la activacion
de una célula HD; estd compuesta por la tasa de disparo de todas las células
de direccién H Dj;, ponderada por el peso sindptico correspondiente entre las
células, la tasa de disparo de las células de rotacién ponderado por su peso
sindptico, y la tasa de disparo de la célula de visién también ponderada con su
peso sindptico entre la célula de visién y la célula de direccién. La figura 4.13
muestra una versién generalizada de la llegada del mensaje de la IMU al topico
/hdbot/imu_data, llevando a la iteracién del sistema y un esquema resumido
de la interaccién de las células. Las células de rotacién (RotoCCW y RotoCW
en la figura) se activan una u otra segin el sentido de la velocidad de rotacién.
En la figura 4.14 se representa una version simplificada de la procedencia de la
activacion: otras células H Dk, la célula de rotacion y la célula visual.
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Figura 4.14: Relaciones simplificadas en la iteracién de célculo de tasa de disparo
para un giro contrarreloj.

El célculo de activacién realizado en cada iteracién corresponde a una ecua-
cién diferencial de tipo integracién con pérdidas (Leaky-Integrator en inglés),
calculado computacionalmente con el método de pasos de Euler. La ecuacion
diferencial se describe en (4.3). Una vez finalizadas las iteraciones de las suma-
torias de activacién, se actualiza la tasa de disparo de la célula calculada con
la sigmoide a base de su activacién. La direccién actual se considera como la
célula con mayor tasa de disparo.

5hH HD D _  INHy.HD
5t =—hiT(t CHD —w' )i (t))
+CHD><ROT (wije TP OrOT (1) (4.3)
1
T CHDXVIS (wgD VI IS())
jl

En esta ecuacién diferencial (4.3), h22P(t) corresponde a la activacién de una
célula de direccion i en el tiempo t, 7 es la constante de tiempo de la ecuacion
diferencial. Las tasas de disparo rH D ROT y erI S corresponden a las tasas de
disparo de las células de d1recc10n rotac1on y vision respectivamente. Los pesos
sindpticos son representados por w D para los pesos sindpticos entre células

de direccién, wH,? -ROT para, los pesos sinapticos rotacionales y wf DVIS para

los pesos sindpticos de visién. Las constantes ¢g, ¢1, ¢g, CHP, CHPXROT
CHDXVIS gon pardmetros de ajuste para la ecuacién que permiten ponderar
los distintos componentes del sistema. w!™V# es la inhibicién que mantiene el
sistema en equilibrio y habilita en el sistema la dindmica de atractor.
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Figura 4.15: Diagrama de secuencia del sistema para un ciclo de iteracion.

En el diagrama mostrado en la figura 4.15 se representan de forma sencilla los
pasos dados por el sistema para llevar a cabo una iteracién. Comenzando con la
recepcién de un mensaje de velocidad angular de la IMU, el valor es pasado a la
funcién CallbackPublishDirection (disparada por la propia llegada del mensaje)
de la clase Bionavigator para la actualizacién de las tasas de disparo de las
células de rotacién. Una vez actualizadas, Bionavigator invoca la actualizacion
de las células de direccién involucrando todos los componentes del sistema: tasas
de disparo de rotacién, tasas de disparo de visién, pesos sindpticos de rotacion,
pesos sinapticos de visién y pesos sinapticos de células de direccién. Una vez
actualizadas las tasas de disparo de las células de direccién, el sistema devuelve
como direccion actual la direccién de preferencia de la célula con mayor tasa de
disparo, pasandola al tépico de ROS HeadDirection.

4.1.3. Dinamica del giro

Cuando se reciben paquetes con movimiento nulo y el sistema efectia ite-
raciones con las células de rotacién que anulan su tasa de disparo, resulta en
un sistema estatico si no se incluye la visual. Frente a la llegada de un mensaje
con movimiento no nulo, el cdlculo altera el equilibrio, generando la atracciéon
hacia un nuevo nodo del sistema y desplazando asi el cimulo de actividad. Esta
influencia puede observarse en la figura 4.11. Puntos intermedios del proceso
pueden observarse en la figura 4.16 donde la tasa de disparo de la célula de
direccién actual decrece, aumentando la tasa de disparo de la célula de la nue-
va direccion. Frente a la persistencia de llegada de mensajes de movimiento no
nulo, el sistema continuara con el estado de desequilibrio, desplazando ain més
el camulo, eventualmente centrandose en la siguiente célula de direccion.
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Figura 4.16: Desplazamiento del ciimulo por influencia de células de rotacién.

4.1.4. Dinamica Visual

Las células visuales funcionan sobre un nodo puntual, sin cambiar su refe-
rencia. En cada iteracion, se incluye en el calculo la influencia de las células
visuales, generando un aumento en la activacién de sus nodos asociados y, de-
pendiendo de la ubicacién del cimulo y la referencia visual, podria desplazar
el cimulo rompiendo su equilibrio o generar un nuevo ctimulo centrado en la
referencia de la célula visual. La figura 4.17 muestra un ejemplo de los pasos de
generacién de un nuevo cumulo.

Tasa de
disparo

Células de direccion

Figura 4.17: Generacién de un nuevo ciimulo por influencia de célula visual.

La dindamica de correccion del error cuando la activacién visual surge en un
entorno de la direccién actual del atractor, realiza un ajuste en sentido de la re-
ferencia. Cuando la activacién surge por fuera de dicho entorno, algunos autores
refieren a la percepcién de la estabilidad de la referencia para definir el accionar
de dicha influencia. Si el roedor percibié de forma recurrente la referencia en una
direccién, entonces la influencia puede generar un nuevo cimulo de actividad y
definir una nueva direccién actual, invalidando la anterior.

La percepcion de estabilidad es implementada por algunos modelos como
un aprendizaje hebbiano de la sinapsis entre las células de vision y las célu-
las de direccién, donde una referencia es percibida como estable a medida que
permanece en una misma direccion respecto al robot.

Este mecanismo no estd implementado en el modelo desarrollado, consi-
derandose unicamente referencias estables sin aplicacion de aprendizaje heb-
biano a los pesos sinapticos. Frente a una deteccién de la referencia visual, el
modelo corregira la direccién si es cercana o generard una nueva si la diferencia
angular es significativa, ilustrado en la figura 4.17.

La tabla 4.1 lista los parametros utilizados por el modelo para la simulacién
de las células de direccién.
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Parametro Valor
Cantidad de células de direccién | 100
Cantidad de células de rotacién 2
Cantidad de células de visién 1
QgD 1.5
Bup 3
QROT 1
BroT 0
o 1000
d1 2000
b 1000
cHp 100
OHD X ROT 200
CHD xVIS 100
k 1
wINH 0.02
ocHP 10

Tabla 4.1: Parametros del modelo base.

4.2. Extension del modelo

Partiendo de la implementacién del modelo base (Sinha y Wang, 2014), se
construyé un entorno de simulacién y se procedié a la ejecucién y andlisis del
codigo con el objetivo de evaluar su funcionamiento y explorar posibles lineas
de desarrollo. Se detecté que el modelo no se encontraba en un estado funcio-
nal, siendo necesario hacerle ajustes para un funcionamiento correcto. Tampoco
presenta soporte para multiples velocidades de giro del robot. Se realizé una re-
vision del cédigo, revelando la ausencia de uso de visién por computadora para
la aplicacién de la célula de visién, utilizandose esta tinicamente como estimulo
puntual que define un ctimulo de actividad. También se encontré que algunos
pardametros indicados en el documento difieren de los utilizados en el cédigo.

Se construy6 un entorno de simulacién y pruebas Gazebo Classic (versién
9) como simulador robético, en conjunto con ROS Melodic como infraestruc-
tura principal para la ejecucién del modelo base. Para la ejecucién de pruebas
sistematicas automatizadas, independiente al simulador construido, se anadié
al codigo un médulo de pruebas de Google Test para simplificar escenarios de
prueba y reproduccién de escenarios. Google Test es un marco de trabajo de
pruebas en C++, elegido por su facil integracién y creacion de pruebas.

4.2.1. Puesta en funcionamiento de modelo base
Entorno de simulacién Gazebo/ROS

La simulacién construida sobre Gazebo, con el modelo corriendo sobre ROS.
Como plataforma para los sensores, se exploraron alternativas como la construc-
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cién de un robot sobre la simulacién o el uso del robot PR2. Ante intentos sin
éxito de poner en funcionamiento dichas opciones, se opt6 por el uso del robot
Ridgeback, para el cual se obtuvo instrucciones de uso y el mismo presenta una
estructura sencilla de extender. Para llevar a cabo desplazamientos del robot,
Gazebo posee el tépico /emd_vel encargado de ejecutar los comandos necesarios
para el movimiento. La informacién de movimiento es publicada a través de otro
tépico con mensajes de datos odométricos.

A pesar de estar disponible la informacién de movimiento, el robot fue equi-
pado con una IMU para separar la modificaciéon de los parametros de funciona-
miento de la misma. Se instalé ademdas una camara, la cual actiia como medio
fisico para la recoleccién y procesamiento de datos. En la figura 4.18a pueden
observarse la cdmara, identificada con un cubo de color blanco al frente del
robot, y la IMU, representada como un cilindro de color blanco.

(a) Robot Ridgeback (b) Robot Ridgeback ubicado en entorno
de simulacién

Figura 4.18: Vistas del simulador

El escenario mostrado en la figura 4.18b muestra el entorno construido para
el robot. El modelo base recibe los mensajes odométricos a través del tépico de
publicacién de mensajes de la IMU, asignando la velocidad angular de rotacién
vertical como la activaciéon de las células de rotaciéon. Una vez calculada la
direccién actual, se publica en el tépico /head_direction. En la figura 4.19 se
representa la interaccién entre nodos y topicos involucrados en el funcionamiento
del sistema.
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L:ndbut_camnmage_raw

lcmd_vel Igazebo /hdbot /blonav /head_direction

/hdbot/imu_data

Figura 4.19: Diagrama de nodos y tépicos utilizados en el sistema.

El robot en la simulacién de Gazebo recibe comandos de movimiento a través
del tépico /cmd_vel. La IMU registra el movimiento y envia un mensaje de es-
tructura odométrica que incluye la velocidad angular al tépico /hdbot/imu_data.
Para el modelo base se define una tasa de actualizacién de 100 Hz por parte de
la IMU, siendo luego filtrados un 90 % de los mensajes utilizando una tasa real
de 10 Hz. Para mejorar la claridad del c6digo, se redujo la tasa de actualizacion
de la IMU a 10 Hz y se quitaron las condiciones de filtro. El modelo base no
incluye un tépico de comunicacién para la cAmara o actualizacion de las células
de visién, por lo que para el procesamiento de esta célula, se utilizo el tépico
/hdbot_cam/image_raw, provisto por la cdmara integrada al robot, que capta
un 4ngulo de 60° frente al mismo. Cuatro esferas de colores fueron ubicadas
alrededor del robot para utilizar como referencias visuales.

Puesta en funcionamiento

Al ejecutar el modelo base, se observan mensajes de informacién, alerta y
debug en la consola indicando las distintas etapas del sistema y su respectivo
avance. Durante la etapa de inicializacién del cimulo, se observa a través de los
mensajes el aumento de la tasa de disparo maxima y la reduccién de la tasa de
disparo minima de las células de direccién. En las graficas de la figura 4.20 se
puede apreciar como se inicializa el atractor generando el cimulo de actividad
mediante la influencia de la célula de vision, forzando su activacién, y generando
un aumento en la tasa de disparo de la célula de direccién correspondiente al
indice 50. Una vez alcanzado el valor maximo aproximado de 0.02473, futuras
iteraciones no aumentan significativamente el maximo del atractor.
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Figura 4.20: Inicializacién de un cimulo de actividad.

Una vez concluidas las iteraciones de inicializacién, se ejecutan iteraciones
de estabilizacién, donde el atractor es desprovisto de estimulos externos, inter-
cambiando energia exclusivamente entre las células de direccion. Sin la insercién
de energia de la célula visual, la tasa de disparo maxima decrece a causa de la
inhibicién de las demés células de direccién de acuerdo a la ecuacién 4.3. En la
figura 4.21 se observa la disipacién del cimulo de energia, resultando la tasa de
disparo de las células en 0.007606.

Evolucién

0.0250 . . .
—— Estabilizacion-lteracion_0

—— Estabilizacion-Iteracion_1
—— Estabilizacion-lteracion_2
—— Estabilizacion-lteracion_3
—— Estabilizacion-lteracion_4
—— Estabilizacion-lteracion_5

0.0225

0.0200

0.0175

isparo

0.0150

Tasa de d

0.0125

0.0100

0.0075 -—

0 20 40 60 80 100
Direccién de la cabeza

Figura 4.21: Estabilizacion disipa cimulo de actividad.

Ajustes de parametros

Para evitar la disipacion del cimulo de actividad, es necesario alcanzar el
umbral de activacién del cimulo incrementando la tasa de disparo de la célula
central. Para esto, una solucion es incrementar los indices que ponderan el in-
tercambio de energia de la ecuacion 4.3. Incrementando ¢s, la energia insertada
por la influencia de la célula visual aumenta. Esto, por si solo, no es suficiente
para mantener el cimulo en funcionamiento una vez que cese el estimulo. Pa-
ra lograr esto, es necesario incrementar ¢g, logrando asi que el cimulo domine
la competencia entre los distintos nodos del atractor mediante la inhibicion,
evitando la disipacion de la energia.

Se incrementaron progresivamente los indices ¢g y ¢2. En primer lugar el
correspondiente a la célula de visién, de forma que el ctimulo alcance un maximo
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arbitrariamente alto. Luego, se aumenta el indice correspondiente a las células
de direcciéon, de forma que el cimulo llegue a un estado estable sin disiparse.
Posteriormente, se reduce el indice de las células de vision, realizando una ini-
cializacion mas gradual del cimulo y que la célula de visiéon no tenga demasiada
influencia sobre las demés células.

Los valores fijados para una estabilizacién sin disipacién completa del cimulo
resultan en ¢g = 34 y ¢o = 21.

Parametros de rotaciéon

En el articulo original del modelo base (Sinha y Wang, 2014) no se especi-
fica una velocidad angular para los escenarios planteados. Para estas pruebas,
se definié una velocidad de 2 x /100, equivalente a un giro de una célula de
direccién (o 3.6°2) cada 1 segundo o 10 iteraciones.

Para ajustar la influencia de las células de rotacién, es necesario ajustar los
pardmetros a y 3. Estos parametros ajustan el desfasaje y la inclinacion de la
funcién sigmoide, utilizada en el cdlculo de la tasa de disparo de las células en
funcién de su activacién. En el articulo del modelo base (Sinha y Wang, 2014)
no son mencionados especificamente, asumiéndose que se utilizan los mismos
que se utilizan para el cdlculo de la tasa de disparo de las células de direccion
(a=15yp8=23).

Revisando el cédigo fuente, se encuentran los valores « = 0y 8 = 1. Prue-
bas sobre este par de valores revelan una inestabilidad del cimulo, causando
desfasaje sobre el sistema cuando la IMU no reporta movimientos significativos,
recibiendo mensajes con niveles atribuibles a ruido, los cuales son considerables
cuando son pasados como pardmetro para la funcién sigmoide con los valores «
=0y 8 =1, causando asi la inestabilidad.

Para el correcto funcionamiento, se analizé la ecuacién sigmoide aplicada y
sus valores en 0 y la velocidad estdandar propuesta 2+ /100, con el fin de buscar
los parametros que permitan funcionar correctamente al sistema, obteniéndo-
se asi a = 0,5 y 8 = 10. Estos valores son modificados posteriormente para
adaptarlos a los requerimientos del sistema para el funcionamiento visual y la
funcionalidad de multiples velocidades.

Los parametros fueron ajustados, mediante ensayo y error, a través de multi-
ples pruebas de ejecucion, obteniéndose como resultado la tabla de pardametros
4.2.

En todas las pruebas con simulador, el envio de mensajes al tépico /emd_vel
presenta un retraso respecto a la ejecucion de la rutina invocada por la llegada
de un mensaje de la IMU al tépico /hdbot/imu_data. Debido a esto, se utilizd
la herramienta rosbag para replicar el flujo de mensajes enviados por la IMU
para prescindir de la ejecucién de la simulacion. Estas pruebas resultan en una
disminucién del error en las medidas registradas ante el uso de rosbag frente al
uso de la simulacion. Los resultados de estas pruebas pueden apreciarse en el
capitulo 5.
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Parametro Valor
Cantidad de células de direccién | 100
Cantidad de células de rotacién 2
Cantidad de células de visién 1
(65205} 0.5
BHD 2
QROT 0.055
BroT 1000
avis 95
Bvis 2
do 6600
P 1488
o) 2000
CcHDP 100
CHD X ROT 200
CHD xVIS 100
k 1
w!NH 0.03
oHD 10

Tabla 4.2: Parametros del modelo ajustado

4.2.2. Funcionamiento visual - Desarrollo de visual

En el modelo base, existe una tunica célula de visién sin actualizacion de
actividad en la etapa de ejecucién. Dicha célula es utilizada durante la etapa de
inicializacién mediante un forzado de su tasa de disparo, generando asi el camulo
principal del atractor. Una vez generado el cimulo, la célula se desactiva y no
se vuelve a utilizar en tiempo de ejecucién. El articulo del modelo base (Sinha y
Wang, 2014), refiere a la utilizacién de dicha célula en una tnica instancia como
prueba preliminar mediante el forzado de la tasa de disparo.

Para poner en funcionamiento dicha célula en tiempo real, se implementd
una rutina de calculo de la actividad de la célula de visién CallbackUpdateVision
(agregado a la clase en el diagrama de la figura 4.22). Esta rutina tiene como
entrada la imagen de la cdmara instalada en el robot descrito en la seccién
anterior. La activacién de dicha célula se basa en la deteccion de la presencia de
la referencia visual en el dngulo de visién de la cdmara, similar a la observacién
de dicha referencia por parte del roedor en un entorno real.
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Bionavigator

mpHDCells : HDCells

mpRotationCellsClockwise : RotationCellsClockwise
mpRotationCellsCounterClockwise : RotationCellsCounterClockwise
mpVisionCells : VisionCells

mpHDSynapseSet : HDSynapseSet

mpHD_RotationCellClockwiseSynapseSet : HD_RotationCellClockwiseSynapseSet
mpHD_RotationCellCounterClockwise SynapseSet : HD_RotationCellCounterClockwiseSynapse Set
mpHD VisionSynapseSet | HD VisionSynapseSet

Calibrate
SetlnitialDirection
CallbackPuhlishDirection
CallbackUpdateVision
HeadDirection

Figura 4.22: Diagrama de clase bionav con la rutina CallbackUpdateVision.

Para el procesamiento de la imagen, se utilizé el médulo de ROS cv_bridge,
que funciona como puente entre las imédgenes de ROS y OpenCV. OpenCV
es una libreria de procesamiento de imégenes con capacidad para detectar la
presencia de las esferas de colores disponibles en el entorno de simulacién cons-
truido, observable en la figura 4.23b.

smoothsalng 5| o &|lGmy -

(a) Imagen presentada por la cdmara para (b) Posicién del robot.
la posicién referida del robot.

Figura 4.23: Relacién entre la posicion del robot y la vision de la camara.

Como referencia visual se utilizé la presencia de la esfera roja ubicada en la
simulacion, observable por el robot en la imagen 4.23a, y se definié la activacion
de la célula proporcionalmente a la ubicacién del centro de la esfera respecto
a los bordes laterales de la imagen recibida. En la imagen 4.24a, X representa
la ubicacion del centro de la esfera respecto al borde izquierdo, mientras que C'
representa el punto medio de la imagen. La ecuacion 4.4 calcula la activacion de
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la célula de visién. La tasa de disparo es calculada en funcién de la activacién
(ecuacién 4.5), con los pardmetros a = 95y § = 2, cuyo gréfico estd representado
en la figura 4.24b. La definicién de estos pardmetros conlleva ajustes de los
ponderadores de la ecuacion 4.3, cuyos resultados se ven reflejados en la tabla
4.2.

X
Activacion 0.5
\/ 0
C
(a) Referencia de valores para el célculo de (b) Funcién sigmoide de tasa de disparo de
la activacion. La activacion se calcula como célula visual en funcién de su activacién.

la proporcién de la ubicacién de la esfera al
punto medio de la imagen.

Tasa de disparo

Figura 4.24: Referencias de célculo de tasa de disparo de la célula de visién.

RVIS = (100/C) * (C — |C — X|) (4.4)

1
VIS _
r 1 T+ e—2B8(hVI5—a) (4'5)

La rutina de calculo de la activacién es invocada por la llegada de un men-
saje de imagen a través del tépico de ROS /hdbot_cam/image raw. Una vez
obtenida la activacién, la tasa de disparo es calculada con la funcién sigmoide y
actualizada en el sistema (figura 4.25). Esto no genera una iteracién del mismo,
sino que es incorporada automaticamente al realizar una iteracién mediante la
llegada de mensajes odométricos.

HDCells RotCells VisCells
] ] ] I
Imagen | |
UpdateFiringRate (act) I ..:|
| »
]

lil FiringRates
] ] ]

]

]

]

]
v v v v

s

Figura 4.25: Diagrama de secuencia del sistema para la actualizacion de la infor-
macién visual mediante el calculo de las tasas de disparo. Frente a la llegada de
un mensaje de imagen, la clase Bionavigator invoca la funcién de actualizacién
de la tasa de disparo de las células de visién, obteniendo asi los valores para esa
imagen.
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4.2.3. Desarrollo de solucién de miultiple velocidad

Un problema que sufren varios modelos es la incapacidad de realizar giros
adecuados a diferentes velocidades. Para atacar esto, se definié un conjunto ex-
tra de células de rotacion, activadas por la velocidad de giro del sistema recibida
a través del topico correspondiente a la IMU. Cada conjunto extra de células
soporta una velocidad principal de funcionamiento y requiere la modificacién de
la clase Bionavigator, asi como el ajuste de los parametros para la funcion sig-
moide que determina la tasa de disparo de la célula de rotacién, y la calibracion
de los pesos sinapticos para dicha célula. Por esto, el desarrollo de esta propues-
ta contempla el soporte para dos velocidades (Roty y Roty) para cada sentido
de giro (sentido contrarreloj y reloj, respectivamente) segiin muestra la figura
4.26. Cada célula de rotacién posee su conjunto de parametros independiente
de ajuste para el calculo de la tasa de disparo mediante la funcién sigmoide.

Figura 4.26: Rotacién definida por multiples células de rotacién. Los colores se
asocian de la siguiente manera: rojo para sentido contrarreloj para una veloci-
dad; violeta para sentido contrarreloj para otra velocidad; verde para sentido
reloj para una velocidad; amarillo para sentido reloj para otra velocidad.

La seleccion de células de rotacién es basado en la velocidad angular recibi-
da, actualizando asi la tasa de disparo correspondiente e invocando el conjunto
sindptico adecuado a dicha velocidad. En la figura 4.27 se ilustran las células de
rotacion y se muestra la influencia sobre distintas células de direccién. El diagra-
ma de clases correspondiente a la inclusién de las células de rotacién adicionales
se observa en la figura 4.28. Las células de rotacién, 2 x7/100 (aproximadamen-
te 0,0628) y 4 * w/100 (aproximadamente 0,1256), son activadas de acuerdo a
una condicién de velocidad que las separa en 0,07. Este valor fue seleccionado
arbitrariamente para separar el uso de una u otra célula de rotacién. Valores ab-
solutos iguales o inferiores a 0,07 invocan la iteracion del sistema con el primer
conjunto de células, valores absolutos superiores utilizan el segundo conjunto de
células.
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Figura 4.27: Esquema de sinapsis para multiples células de rotacién sobre células
de direccién. A la derecha se observan los pesos sindpticos para las distintas
células, con sus respectivos colores asociados.

Bionavigator

mpHDCells : HDCells

mpRotationCellsClockwise : RotationCellsClockwise[2]
mpRotationCellsCounterClockwise : RotationCellsCounterClockwise[2]
mpVisionCells : VisionCells

mpHDSynapseSet | HDSynapseSet

mpHD_RotationCellClockwiseSynapseSet : HD_RotationCellClockwise SynapseSet[2]
mpHD_RotationCellCounterClockwise SynapseSet : HD_RotationCellCounterClockwiseSynapseSet]2]
mpHD_VisionSynapseSet : HD_VisionSynapseSet

Callibrate
SetinitialDirection
CallbackPublishDirection
CallbackUpdateVision
HeadDirection

Figura 4.28: Diagrama de clase Bionavigator con dos células de rotacién para
cada sentido de giro.

Para ajustar el desplazamiento del ciumulo a las distintas velocidades, se im-
plementd un sistema de indices graduales, similar al sistema utilizado en RatS-
LAM de influencia, donde los indices son desfasados de acuerdo a la velocidad,
desplazando el peso sinaptico. Para este caso, se adecud el peso sindptico de
acuerdo a la distancia angular entre las direcciones de preferencia de las células,
desde la direccién actual a la direccién estimada segtin el movimiento, ilustrado
en la figura 4.29. Al contrario de lo observado en la versién anterior del modelo
que utiliza una célula de rotaciéon por sentido de giro, para lograr el despla-
zamiento del peso sindptico se incrementé arbitrariamente la distancia angular
pasada como parametro a la funcién gaussiana que calcula los pesos sindpticos
visto en la ecuacion 4.1.
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Tasa de
disparo de
cada célula
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Célula de direccion

Figura 4.29: Influencia de multiples células de rotacion.

Puesto que la calibracién del sistema de indices graduales es fijo y arbitrario,
no es dinamico segun el estado en el que se encuentre el sistema.

Tasa de
disparo de
cada célula

Célula de direccion
AROT, AROT,

Figura 4.30: Diferencia en las distancias angulares para el cdlculo de la miiltiple
velocidad.

En la figura 4.30, los términos de diferencia de la distancia angular pasada
por parametro corresponden a AROTy = 0,02 y AROT; = 0,43. Estos valores
son obtenidos a base de prueba y error, y permiten al sistema ejecutar con mayor
precision los giros indicados, reduciendo el error cometido, medido a base de
iteraciones requeridas para realizar el mismo giro. Para ambos pares de células
de rotacion se aplicaron los mismos parametros « y # mostrados en la ecuacion
4.2. La diferencia entre las velocidades de las células proviene del desfasaje en
la distancia angular AROT, y AROT}.
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Capitulo 5

Experimentacion

En este capitulo se detallan los experimentos técnicos llevados a cabo para
el andlisis y evaluacion de desempeno de los cambios implementados y del de-
sarrollo levado a cabo. Se presentan en primera instancia los experimentos de
simulacion de mensajes sistematicos, sin ruido, pasados directamente a la red
neuronal.

Posteriormente se presentan los experimentos ejecutados en un entorno de
simulacion, donde se incluye el movimiento del robot, los mensajes odométricos
generados por la IMU y la actualizacién del estado de la red neuronal. Por
iltimo, se muestran resultados de pruebas en escenarios reproducidos mediante
el registro y ejecucién de conjuntos de datos (rosbag).

5.1. Validacion de miltiple velocidad en Google
Test

Para validar las velocidades utilizadas y giros realizados por el cimulo, in-
dependientemente de valores reportados por la simulacién o conjuntos de datos,
se ejecutan iteraciones que son directamente llamadas desde la suite de Google
Test, omitiendo la invocacién de la funciéon CallbackPublishDirection. Se define
la velocidad estandar como 2 % 7/100, siendo la inversa —2 x 7 /100.

5.1.1. Prueba de velocidad estandar: una vuelta
Se realiza un desplazamiento del cimulo a velocidad estandar durante 1000
iteraciones. Este experimento valida el funcionamiento tedrico del sistema para

la velocidad estandar.
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Figura 5.1: Evolucién de la direccién (en grados) del ctimulo para un giro a
velocidad estandar.

La figura 5.1 muestra el comienzo y el fin del giro, posicionandose ambos en
la direccién 369, logrando una vuelta completa en sentido contrarreloj.

5.1.2. Prueba de velocidad doble: una vuelta

Se realiza un desplazamiento del ciimulo a velocidad doble durante 500 itera-
ciones. Este experimento valida el funcionamiento tedrico del sistema utilizando
la doble velocidad estandar (4 * 7/100).
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Figura 5.2: Evolucién de la direccién (en grados) del ctimulo para un giro a
velocidad doble.

La figura 5.2 muestra el comienzo y el fin del giro, posicionandose ambos en
la direccién 369, logrando una vuelta completa en sentido contrarreloj.

5.1.3. Prueba de velocidad inversa: una vuelta
Se realiza un desplazamiento del cimulo a velocidad estdndar en sentido reloj
durante 1000 iteraciones. Este experimento valida el funcionamiento teérico del

sistema para la velocidad inversa.
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Figura 5.3: Evolucién de la direccién (en grados) del ctimulo para un giro a
velocidad inversa.

La figura 5.3 muestra el comienzo y el fin del giro, posicionandose ambos en
la direccién 369, logrando una vuelta completa en sentido reloj.

5.1.4. Prueba de velocidad doble inversa: una vuelta

Se realiza un desplazamiento del cimulo a velocidad doble en sentido reloj
durante 500 iteraciones. Este experimento valida el funcionamiento teérico del
sistema para la doble velocidad inversa.
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Figura 5.4: Evolucién de la direccién (en grados) del ctimulo para un giro a
velocidad inversa doble.

La figura 5.4 muestra el comienzo y el fin del giro, posicionandose ambos en
la direccién 36°, logrando una vuelta completa en sentido reloj.

5.1.5. Prueba de giro: ida y vuelta

Se realiza un desplazamiento del cimulo a velocidad estdndar en sentido
contrarreloj durante 1000 iteraciones seguido por 1000 iteraciones en sentido
reloj a velocidad estandar. Esto valida el funcionamiento del sistema ante una
combinacion de giros.
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Figura 5.5: Evolucién de la direccién (en grados) del ctimulo para un giro a
velocidad estandar seguido de un giro a velocidad inversa.

La figura 5.5 muestra el comienzo y el fin del giro, posicionandose ambos en
la direccién 369, logrando una vuelta completa en cada sentido.

5.1.6. Prueba de giro doble: ida y vuelta a doble velocidad

Desplazamiento del ciimulo a velocidad estandar en sentido contrarreloj du-
rante 1000 iteraciones seguido por 1000 iteraciones en sentido reloj a velocidad
inversa. Esta prueba da un total de cuatro vueltas. Esto valida el funcionamiento
del sistema ante una combinacién de giros a doble velocidad.
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Figura 5.6: Evolucién de la direccién (en grados) del ciimulo para un giro doble
en ambos sentidos.

La figura 5.6 muestra el comienzo y el fin del giro, posicionandose ambos en
la direccién 36°, logrando dos vueltas completas en cada sentido.

5.2. Experimentacion en simulacion

Para validar el modelo y la construcciéon de la simulacién, se ejecutaron
pruebas bésicas que muestren el funcionamiento del sistema y el comportamiento
del robot dentro del entorno simulado.

Para facilitar la lectura de los datos presentados, se efectué una transfor-
macién del marco de referencia para los dngulos registrados por el sistema. Se
realiza una transformacién equivalente a un giro de 36°, definiendo en 0° el
punto de inicio. Dicha transformacion se extiende exclusivamente a la presente
seccién y a la seccion 5.3. Las gréficas no se ven afectadas por la misma.
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5.2.1. Validacion de modelo base

Durante la puesta en funcionamiento, se ejecuté el modelo base sin modi-
ficaciones con el fin de definir una linea de referencia de funcionamiento del
sistema. Dicha puesta en funcionamiento deberia realizar las etapas de calibra-
cion e inicializacién, llegando a un estado estable del atractor con un cimulo de
actividad definido. La ejecucién revelé que los pardmetros utilizados en la tabla
4.1 no mantienen un cumulo de actividad para el cédigo utilizado.

Evolucién
0.0250 ——— -
—— Estabilizacion-lteracion_01
0.0225 e -
° Estabilizacion-Iteracion_02
© 0.0200 —— Estabilizacion-Ilteracion_04
0 o . .
S 0.0175 —— Estabilizacion-Iteracion_12
(] PN . .
 0.0150 —— Inicializacion-lteracion_01
8 P )
8 0.0125 — In!c!al!zac!on Iterac!on_04
Inicializacion-lteracion_10
0.0100
0.0075
0 20 40 60 80 100

Direccidn de la cabeza

Figura 5.7: Disipacién del cimulo en etapa de estabilizacién.

La figura 5.7 muestra las tasas de disparo en las etapas de inicializacion y
estabilizaciéon que llevan a la disipacién del cimulo. Se representan tres pasos
de la etapa de inicializacion con los colores morado, marrén y rosado, llevando
al sistema al punto maximo. Las demads iteraciones corresponden a la etapa de
estabilizacion, mostrando el decremento del ciimulo de actividad, concluyendo
que el sistema posee algiin error a corregir.

5.2.2. Validacién de giro de una vuelta

El ajuste de parametros lleva al cimulo de actividad a un estado estable. Se
ejecuta la simulacién y pone en funcionamiento el modelo, indicandose al robot
el giro a velocidad de 2 x /100 radianes. Esta velocidad corresponde al giro de
una vuelta completa al cabo de 1000 iteraciones, debiendo apuntar el cimulo
a la direccién 0°, que es la direccidén inicial del sistema para este experimento,
validando asi el giro de una vuelta.

El giro se realiza a través del envio de 1000 mensajes de comando de movi-
miento para el robot mediante la ejecuciéon de un conjunto de datos a través del
tépico /emd_vel.

El giro es indicado en la iteracién 5 del modelo, pero el modelo no recibe
mensajes de giro hasta la iteracién 54 (ver gréafica 5.8). Una vez el robot completa
la vuelta, se detienen los mensajes aproximadamente en la iteracion 870. En ese
momento, el modelo reporta que la ubicacién del cimulo es 64,8°. El modelo
continiia procesando mensajes de giro, continuando el desplazamiento hasta la
direccién 46,82 en la iteracién 925. La tabla 5.1 lista dichos eventos.
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Figura 5.8: Direccién (en grados) del cimulo de actividad del sistema a través
de las iteraciones del experimento.

Iteracién | Direccién Evento
5 0° Comienzo giro del robot
54 0° Comienzo de desplazamiento del cimulo
870 64,89 Fin de giro del robot
925 46,8° Fin de desplazamiento del cimulo

Tabla 5.1: Tabla de referencia entre iteraciones, direcciones del sistema y eventos
del experimento.

El error, obtenido a partir tépico sobre el que se publican datos odométricos
del robot en la simulacién, es de 0,75°, mientras que para el sistema, el error
corresponde a un dngulo de 46,8°. En vista de los retrasos entre el envio de
mensajes y el giro del sistema, el error en la direccion es atribuido a la interaccion
entre el simulador y el modelo, siendo necesario aislar la ejecucién para validar
el giro sin el error.

5.2.3. Generacion de un nuevo cimulo

En el caso de que la referencia visual se encuentre separada de la ubicacion
del cimulo en el atractor, se generard un nuevo cumulo cuando se detecte la
referencia visual. Para este escenario se orienté el robot hacia la esfera amarilla
con el ciimulo en la direccién 02, y se realizé un giro de una vuelta. Cuando
el robot detecta la referencia visual de la esfera roja, genera un nuevo cimulo,
ubicando al mismo en la direccién 0° y continuando el giro hasta terminar con el
robot observando la esfera amarilla. Para un giro de 2702 debido a la correccién
del cimulo, la ubicacién final deberfa ser de 90°.
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Figura 5.9: Direccién (en grados) del ctimulo durante la correccién visual.

Representado en la imagen 5.9, el giro del robot comienza en la iteracién
5, reportandose el giro del cimulo a partir de la iteraciéon 74. Cuando el robot
observa la esfera roja, en la iteracion 255, un nuevo cumulo es generado en la
direccién 0°. El giro del cimulo continta hasta la iteracién 874. Estos datos se
representan en la tabla 5.2.

Iteracién | Direccion Evento
5 0° Comienzo giro del robot
48 0° Velocidad angular recibida por el sistema
54 356,4° Comienzo desplazamiento del cimulo
255 0° Generacién de un nuevo cimulo
874 136,8° Fin desplazamiento del cimulo

Tabla 5.2: Tabla de detalle de eventos de generacion de un nuevo cimulo

En la gréfica de la figura 5.10 se observa la evolucién del cimulo a través
de las iteraciones del experimento, mostrando ademas de los destacados de la
tabla, algunos pasos intermedios como son la iteraciéon del cimulo previo a la
generacién de un nuevo cumulo, o algunos pasos intermedios durante el giro.
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Figura 5.10: Distribucion de las tasas de disparo de las células de direccion
representando el ciimulo a través de las iteraciones.

La ejecucién del giro finaliza con el ctimulo sobre la direccién 136,8°. La
posicién del robot en el sistema presenta un error de 0,73°. Nuevamente se
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observa un retraso entre el inicio del giro del robot y el inicio de desplazamiento
del camulo, atribuyéndose lo a la simulacion.

5.2.4. Correccién leve de cimulo

Para llevar a cabo una correccion leve, en la que la referencia visual se
encuentra en un entorno de actividad del ciimulo, se realizé un giro para separar
la referencia visual del cimulo. Luego, se realizé un giro a baja velocidad para
inducir el error y desorientar al atractor, y posteriormente se realizé un giro a
velocidad estandar, acercando el cimulo a la referencia visual con una diferencia
de aproximadamente 20°2. Al final del experimento, el cimulo debe apuntar
correctamente a la direccién inicial de 0°.

En la figura 5.11 se muestra el disparo de la célula de rotacién en sentido
reloj para orientar al atractor lejos de la referencia visual.
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Figura 5.11: Giros en sentido reloj del robot en simulacién con valores de velo-
cidad angular (en radianes por segundo) inferiores a 0.

Para inducir el error, se aplicé al robot una velocidad de 27/1000 radianes
por segundo, visible aproximadamente entre las iteraciones 450 y 1000 de la
figura 5.12.
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Figura 5.12: Giros en sentido contrarreloj del robot en simulacién con valores
de velocidad angular (en radianes por segundo) superiores a 0.

En la figura 5.13 se observa el cambio en la direccién del cimulo, no siendo
afectada entre las iteraciones referidas en la induccion del error. Al final de la
misma, se puede apreciar la correcciéon de orientacion del cimulo.
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Figura 5.13: Evolucién de la direccién (en grados) del ciimulo de actividad.
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Figura 5.14: Evolucién de las tasas de disparo de las células de direcciéon del
atractor.

La figura 5.14 muestra la evolucién del cimulo en diferentes etapas del ex-
perimento. En la tabla 5.3 se detallan los pasos representados.
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Indice | Direccién | Iteracién
10 0° 1
42 115,20 400
42 115,20 484
42 115,2° 968
27 61,2° 1200
15 18 1319
15 18 1322
13 10,8° 1323
12 7,20 1324
11 3,69 1325
10 0° 1326
10 0° 1329

Tabla 5.3: Referencia de pasos representados en evolucién del cimulo.

La fase de induccién de error del experimento causa una leve variacién del
cumulo visible en la imagen 5.15, donde la curva azul representa el estado para
el cual el robot se encuentra estatico, mostrando una variacién para la curva
naranja, que muestra tendencia de movimiento, siendo esta insuficiente para
desplazar por completo el cimulo y terminando en la curva verde al finalizar el
giro a baja velocidad.
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Figura 5.15: Cambio en el cimulo frente a velocidades insuficientes para el
desplazamiento.

La meseta formada por la acumulacion de influencia de las células de direc-
cién, rotacién y visién se muestra en la figura 5.16, mostrando paso a paso la
correccion de la direccién del ciimulo, culminando en la direccién asociada a la
célula de vision.
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Figura 5.16: Evolucién de la direccién del cimulo en el entorno de la referencia
visual.

El error de la simulacién para este experimento es de 0,92°. Dado que la
correccion del camulo de actividad se realiza sobre el final del experimento, el
error del sistema se anula, resultando el error absoluto en el indicado por la
simulacion.

5.2.5. Giros a diferentes velocidades

Para validar los giros del médulo de miiltiples velocidades se realizé un giro a
velocidad estandar (27 /100 radianes por segundo), repitiendo un experimento
anterior, y luego un giro a velocidad doble (4#7/100 radianes por segundo) para
evaluar la precision del giro. El primer giro debe coincidir en inicio y resultado
con el experimento anterior de una vuelta a velocidad estandar. El segundo giro
deberfa realizar dos vueltas completas, finalizando en la posicién inicial de 0°.
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Figura 5.17: Evolucién de la direccién (en grados) del cimulo en un giro de una
vuelta con el médulo de multiple velocidad a velocidad 2 % 7r/100.

La figura 5.17 representa la direccién del cimulo durante la prueba, mos-
trando un error superior al causado por el experimento de validacién de giro de
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una vuelta. La tabla 5.4 detalla la direccién para el comienzo y el final de la

vuelta.
Iteracion | Direccion Evento
5 0° Comienzo giro del robot
50 0° Velocidad angular recibida por el sistema
56 356,42 Comienzo desplazamiento del ciimulo
825 82,89 Fin giro del robot
872 64,8° Fin desplazamiento del cimulo

Tabla 5.4: Tabla de referencias de giro de validacién de médulo multi-velocidad.

El error de la simulacién fue de 1,83° mientras que el error del sistema es
de 64,8°. El error del sistema con el médulo de multiples velocidades para una
velocidad estdndar se mantiene en valores aproximados a la versién anterior del
modelo.

La vuelta a doble velocidad muestra un giro similar al de velocidad estandar,
ejecutado en una cantidad proporcional de iteraciones, variando aproximada-
mente de 1000 iteraciones a 500 iteraciones. La grafica de la figura 5.18 muestra
la evolucién del ciimulo de actividad, mientras que la tabla 5.5 detalla los valores
de la ejecucién.
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Figura 5.18: Evolucién de la direccién (en grados) del cimulo en un giro de una
vuelta con el médulo de miltiple velocidad a doble velocidad.

Iteracién | Direccion Evento
5 0° Comienzo giro del robot
51 0° Velocidad angular recibida por el sistema
55 356,42 Comienzo desplazamiento del cimulo
425 90° Fin giro del robot
468 61,2° Fin desplazamiento del ctimulo

Tabla 5.5: Tabla de referencias de giro de una vuelta con el médulo de miiltiple
velocidad a doble velocidad.

Para el giro a doble velocidad, el error presentado por el simulador correspon-
de a 1,95°. El error del sistema para este experimento es de 61,2°, manteniendo

60



similares valores para ambas velocidades de giro.

5.3. Experimentacion independiente de simula-
cién

Para validar los escenarios de manera independiente del simulador, se cons-
truye un conjunto de datos (rosbag) para la idéntica replicacién del escenario
de simulacién, capturado a partir de los mensajes generados por el mismo a
través de los tépicos asociados a la IMU y a la cdmara. Dicho escenario incluye
un giro de aproximadamente 360°, recorriendo las referencias visuales en orden
amarillo, rojo, verde, azul y nuevamente amarillo.

5.3.1. Validacién de giro de una vuelta sin simulador

Para repetir el escenario y evaluar el giro de forma independiente al simu-
lador, se ejecuta el conjunto de datos construido, realizando un giro de aproxi-
madamente 360° a través de mensajes de la IMU. La influencia de la referencia
visual se encuentra desactivada para este experimento. Al igual que en el esce-
nario repetido, el cimulo debe empezar y terminar en la direccién 0°.
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Figura 5.19: Evolucién de la direccién (en grados) del cimulo en giro en base a
conjunto de datos.

La vuelta realizada por el cimulo con datos provistos por el conjunto de
datos realizan una vuelta completa, con minimo error. En la imagen 5.19 se
muestra la evolucién del cimulo completando la vuelta, mientras que en 5.20
se puede apreciar que el conjunto de datos no lleva al cimulo a completar la
vuelta, con una diferencia de 3,6°.
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Figura 5.20: Traslado del cimulo mediante el uso de mensajes de velocidad
angular de la IMU.

El modelo toma como direccién inicial la direccién 0°. La ejecucion comienza
en la iteracién 1, permaneciendo estatico hasta la iteraciéon 27, donde comienza
a enviar mensajes con velocidad angular de 2 % 7/100. Esto genera un giro
contrarreloj que desplaza el cimulo a un ritmo de 3,6° cada 10 iteraciones,
recorriendo 90° cada 250 iteraciones. Se tomaron muestras de la tasa de disparo
de las células de direccién en las iteraciones 1, 277, 527, 777 y 1027, registrando
la posicién de cada una en la gréafica de la figura 5.20. Alli se puede observar el
desplazamiento del ctimulo a través de las direcciones de preferencia 0°, 2709,
1809, 90° y 3,6°.

Indice | Direccién | Iteracién
10 0° 1
85 270° 277
60 180° 527
35 90° ey
11 3,62 1027

Tabla 5.6: Referencias de los ctimulos representados en la grafica.

La tabla 5.6 muestra las posiciones del cimulo en cada una de las iteraciones.
Para la tltima iteracién representada, la diferencia de 3,6° se debe a que el giro
registrado por el conjunto de datos no comprende las 1000 iteraciones necesarias
para el giro completo, finalizando en la iteraciéon 1025 y no completando el
desplazamiento a la célula de direccion inicial. Puesto que no se estd ejecutando
la simulacién, no existe un error para el giro del robot, considerando este error
el Unico a considerar para el éxito del experimento. Los pardmetros utilizados
para realizar este giro son los registrados en la tabla 4.2.
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5.3.2. Generacion de un cumulo nuevo

La validacion de la generacion de un ciimulo nuevo es realizada con el mismo
conjunto de datos que la prueba anterior, activando la actualizacion de la tasa
de disparo de las células de visién. Tomando como referencia visual asociada
a la célula correspondiente a la direccién 0°, el sistema comienza observando
la esfera amarilla para luego recibir una actualizacién de la tasa de disparo de
la célula de visién luego de un giro de 902, generando asi un nuevo ctimulo de
actividad. El giro restante de 2702 ubicaria al ctiimulo en la direccién 90°.
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Figura 5.21: Direccién (en grados) del sistema en el tiempo a través de las
iteraciones 1 a 1030. Para la iteracién 127 y 380, los saltos corresponden al
pasaje del indice 0 al 99.

En la grafica de la figura 5.21, se observa que en el entorno de la iteracién
280 la direccion del sistema recibe una actualizacion.
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Figura 5.22: Distribucién de tasas de disparo en puntos clave a través de las
iteraciones 1 a 1030 .

En la figura 5.22, se puede observar el decremento de energia del cimulo en
la iteracion 277, siendo reemplazado en la iteracion 278 por el nuevo ctimulo.
Debido a la acumulacién de miultiples fuentes de energia, las tasas de disparo
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forman una meseta en el pico del cimulo, saturando el atractor. Una vez que la
referencia visual pierde la influencia significativa sobre la célula visual alejandose
del centro, el cimulo contintda en movimiento recorriendo las células de manera
similar a la prueba anterior, habiendo recibido una correccién en la direccion.
Al finalizar la ejecucién del conjunto de datos, la posicién del cimulo resulta
en la direccién 97,22, presentando una diferencia de 7,2° con el valor esperado.
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Capitulo 6

Conclusiones y Trabajo
Futuro

6.1. Conclusiones

Este proyecto permite ampliar el entendimiento sobre las células de direc-
cién de la cabeza mediante el relevamiento de modelos, ya sea tedricos o compu-
tacionales, existentes. Los conceptos tedricos y practicos aplicados, tanto de la
biologia como de la robdtica, sientan una base sobre la cual los modelos compu-
tacionales pueden funcionar. A pesar de las dificultades para comprender el
funcionamiento de cada modelo individual y su trasfondo conceptual, fue po-
sible poner en funcionamiento el modelo seleccionado y realizar una revision,
evaluando su comportamiento e ideando extensiones.

Mediante la puesta en funcionamiento y construccién de un escenario de si-
mulacion, fue posible analizar un modelo anterior de células de direccion de la
cabeza, experimentando con su estructura y funcionamiento. La calibracién de
indices del atractor presenté un desafio considerable, ya que requiere el andli-
sis, prueba y validacién de valores candidatos, para evaluar su rendimiento y
considerar ajustes adicionales sobre una gran cantidad de parametros a definir.
La visualizacién del robot facilita la comprension de la interaccién entre robot,
modelo y células, favoreciendo la visualizacién de posibles extensiones. La simu-
lacién, sin embargo, presenta retrasos en el procesamiento de mensajes y calculo
de direcciones, por lo que si bien es 1til para una representacién del entorno y
visualizacién del robot, los anélisis reportan desfasajes de tiempo que inducen
al error.

La validacion de la célula de visién, conectando la imagen de la camara
a la activacién de la célula de visién, provee en un mecanismo de correccion
de desfasaje del cumulo. Al no poseer la célula de visién un entrenamiento
dindmico o aprendizaje hebbiano, los indices de ponderacién juegan un papel
importante en el comportamiento del ctimulo. En el escenario en el que el cimulo
se encuentra relativamente distante al angulo de la referencia visual, la célula de

65



visién realiza una correccién total con la generacion de un nuevo cimulo. Frente
a un desfasaje arbitrariamente chico, la correccién realiza un desplazamiento
del cimulo existente. En ambos casos, no se analiz6 el error inducido por la
propia célula de visiéon cuando el cimulo se aleja de la referencia visual. Si bien
el sistema actual estd limitado a una tnica célula de visién, presenta varias
posibilidades de mejora.

Considerando la limitante que poseen algunos modelos anteriores de poder
desplazar el camulo con suficiente precisiéon para una tunica velocidad, surge la
propuesta del desarrollo de la extensién del modelo que le permite al mismo
poder realizar giros con otras velocidades, manteniendo la precisién original.
Dicha precisién requirié una re-calibracién de algunos indices con el fin de poder
resolver de manera correcta el giro a mayor velocidad. La extensién propuesta
presentd un soporte efectivo para una velocidad adicional, sin embargo, resulta
poco eficiente en su estado actual debido al re-trabajo necesario para extender
el soporte a valores adicionales individuales de velocidad.

6.2. Trabajo Futuro

= Implementacién en un robot real: queda pendiente la prueba del modelo
de células de direcciéon de la cabeza en un escenario real, definiendo las
referencias visuales y analizando el procesamiento del atractor, ya sea en
el robot o en un equipo separado.

= Extensién de la solucién visual: adicién de células de visién para cubrir
un angulo visual superior. Incluir procesamiento y reconocimiento de pa-
trones en imagenes proporcionadas por el robot. Implementar aprendizaje
hebbiano para la estabilidad de las referencias visuales o el entrenamiento
de los pesos sinapticos visuales hacia las células de direccién.

= Optimizacion de sistema de miltiple velocidad: optimizacion del soporte
para mutiple velocidad, ya sea extendiendo el margen de valores soporta-
dos utilizando un sistema general de indices y ponderadores, o disenando
una solucién alternativa general que permita adaptarse a las multiples
velocidades.

= Alternativas de proceso de iteracién: cambios en la frecuencia de iteracio-
nes ejecutadas alteran el comportamiento del atractor. Soluciones a este
sistema pueden involucrar procesamiento basado en diferencia de tiempo,
o cantidad de iteraciones para la velocidad.
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