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El Folklore que por definicion es la ciencia que es-
tudia los saberes populares, eso que lleva el hom-
bre, no recibido por via institucional, sino que por
la via de la tradicion, nos hace conocernos, justa-
mente, a nosotros mismos, y ustedes saben muy
bien que conocerse a si mismo es comenzar a me-
jorarse...

LLAURO AYESTARAN



Esta pagina ha sido intencionalmente dejada en blanco.



Resumen

Este trabajo aborda la restauracién de grabaciones musicales de cinta analégica
mediante técnicas de reduccién de ruido (denoising), combinando enfoques clésicos
de procesamiento de seniales con estrategias modernas basadas en aprendizaje pro-
fundo. El proyecto surge de la necesidad de preservar el acervo sonoro del Centro
Nacional de Documentacion Musical Lauro Ayestardn, que reine grabaciones de
campo y de estudio afectadas por la degradacién propia de los medios magnéticos
y las limitaciones tecnoldgicas de su época.

El objetivo principal consistié en desarrollar, implementar y comparar dos en-
foques representativos para la reduccién de ruido en grabaciones musicales: (1)
un sistema automatizado de sustraccion espectral, que incluye mejoras orientadas
a la restauracién musical —como modelado arménico/percusivo, anélisis sinusoi-
dal, un esquema iterativo de atenuacién progresiva y un detector automatico de
inactividad de senal—, y (2) un modelo de aprendizaje profundo basado en arqui-
tecturas U-Net de dos etapas, entrenadas con diferentes bases de datos de ruido
(MagTapeDB, con ruido de cinta magnética, y grabaciones de graméfono).

Los entrenamientos se realizaron en el ClusterUY, considerando limitaciones
de hardware y explorando la influencia del dominio del ruido sobre la capacidad
de generalizacion de los modelos. La evaluacién experimental combiné métricas
perceptuales objetivas (PEAQ y PAQM), andlisis por tipo de contenido musical,
variacién segun la relacién senial-ruido (10 dB y 16 dB), tiempos de procesamiento,
y escucha critica cualitativa.

Los resultados demuestran que las técnicas clasicas de procesamiento de seniales
continian ofreciendo un rendimiento altamente competitivo. En particular, la sus-
traccién espectral —tanto en su versién estandar como alternativa— logra un
equilibrio sélido entre calidad perceptual, estabilidad y eficiencia computacional,
manteniendo un desempeno consistente en diversos escenarios, aunque la técnica
presente artefactos conocidos como el ruido musical.

Por otro lado, los modelos de aprendizaje profundo muestran un comporta-
miento mas variable: alcanzan resultados competitivos cuando el tipo de ruido y el
contenido de las senales coincide con el utilizado en el entrenamiento, pero experi-
mentan una degradacion significativa al enfrentarse a dominios no representados.
Ademads, tienden a eliminar transitorios y componentes de alta frecuencia, introdu-
ciendo una cierta artificialidad perceptual. Esto evidencia tanto la dependencia de
los modelos respecto a los datos de entrenamiento como la limitada explicabilidad
de sus decisiones.

Desde el punto de vista practico, las técnicas basadas en redes neuronales re-



quieren recursos computacionales elevados, tiempos de entrenamiento prolongados
y conocimientos especializados para su ajuste y validacion, lo cual contrasta con
la simplicidad y robustez de los métodos clasicos.

En conjunto, los resultados permiten concluir que las técnicas clasicas siguen
siendo una herramienta eficaz y accesible para la restauracién de grabaciones pa-
trimoniales, mientras que los enfoques basados en aprendizaje profundo, aunque
prometedores, requieren adaptaciones especificas para alcanzar una calidad per-
ceptual comparable en contextos reales y diversos.

v
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Capitulo 1

Introduccion

El denoising busca atenuar el ruido presente en una senal sin degradar la infor-
macién sonora relevante. Su importancia radica en que incluso niveles moderados
de ruido pueden afectar la inteligibilidad, la percepcion musical y el rendimiento
de sistemas automaticos basados en audio.

En el caso del habla, la presencia de ruido puede dificultar la comprension del
mensaje, especialmente en ambientes con bajo nivel de senal o con interferencias
acusticas significativas. Esto no solo afecta la experiencia del oyente, sino que
también puede limitar la eficacia de sistemas automaticos de reconocimiento de
voz, asistentes virtuales, o subtitulado automaético. La inteligibilidad del habla,
es decir, la capacidad de entender las palabras pronunciadas, depende en gran
medida de la relacién senal-ruido (Signal-to-Noise Ratio, SNR), asi como de ciertas
caracteristicas del habla, como los formantes y las consonantes fricativas.

El ruido en grabaciones musicales puede opacar detalles importantes del sonido,
como los matices de los instrumentos o la claridad de las voces. Este problema
adquiere particular relevancia en el contexto de la preservacién del patrimonio
musical, donde grabaciones histdricas presentan degradaciones caracteristicas de
los medios analdgicos que requieren intervencién técnica para su restauracién.

Este proyecto tiene como objetivo desarrollar, implementar y comparar dos en-
foques fundamentales de denoising para la restauracién de grabaciones musicales:
la sustraccion espectral con mejoras propuestas y modelos basados en aprendizaje
profundo.

La sustraccién espectral es una técnica clasica del procesamiento de audio, cu-
yo principio consiste en estimar el espectro del ruido y sustraerlo del espectro de la
senal contaminada. Dado que las implementaciones abiertas disponibles suelen ser
limitadas o poco accesibles, parte del proyecto se centré en desarrollar una versién
automatizada del algoritmo cldsico. Ademds, se implementé una variante que in-
corpora modelado espectral mediante técnicas de separacién armoénica/percusiva
y analisis sinusoidal, un esquema iterativo para reduccién progresiva del ruido, y
algoritmos especificos para mitigacién del ruido musical. Un componente clave del
sistema desarrollado es el detector automatico de inactividad de senal, basado en
multiples métricas (energia en tiempo corto, tasa de cruces por cero y magnitud es-
pectral en altas frecuencias), que permite estimar el perfil de ruido sin intervencién
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manual.

En paralelo, se entrenaron modelos de denoising basados en aprendizaje pro-
fundo, empleando una arquitectura U-Net de dos etapas para aprender patrones
de ruido y restaurar el espectrograma limpio. Los modelos se entrenaron utilizando
dos bases de datos de ruidos —MagTapeDB (ruido de cinta magnética) y grabacio-
nes de graméfono—, asi como combinaciones de ambas, con el fin de analizar cémo
varia su desempeno segin el dominio de ruido considerado y evaluar su capacidad
de generalizacion.

La evaluacién experimental incorpora multiples dimensiones: métricas percep-
tuales objetivas (PEAQ y PAQM), anélisis por tipo de contenido musical (musica
popular, muchas fuentes, pocas fuentes, vocal), variacién segin relacién senal-
ruido, tiempos de procesamiento, y escucha critica cualitativa. Esta evaluacién
integral permite no solo cuantificar el desempeno técnico de cada enfoque, sino
también comprender sus ventajas relativas, limitaciones practicas y artefactos ca-
racteristicos.

1.1. Motivacidn

El estudio y desarrollo de técnicas de reducciéon de ruido en audio responde
tanto a necesidades practicas como cientificas. En el ambito de la restauracion de
grabaciones musicales histéricas, estas técnicas adquieren especial relevancia, ya
que permiten recuperar informacién sonora valiosa afectada por las limitaciones
inherentes de los medios analdgicos. Sin embargo, muchas de las herramientas
disponibles en el entorno profesional son de cardcter propietario, presentan un
funcionamiento opaco y requieren recursos computacionales elevados o licencias de
alto costo, lo que dificulta su adopcién en contextos académicos y patrimoniales.

En este escenario, resulta necesario contar con enfoques abiertos, comprensi-
bles y reproducibles que permitan estudiar los mecanismos de reduccién de ruido
y adaptarlos a distintos tipos de degradacién. Este trabajo se propone contribuir
en esa direccion, explorando dos paradigmas complementarios: las técnicas clasi-
cas basadas en procesamiento de senales y los modelos modernos de aprendizaje
profundo.

La sustraccion espectral fue seleccionada como punto de partida por su solidez
tedrica, su bajo costo computacional y su capacidad de ofrecer control explicito
sobre los pardmetros de atenuacién. Ademads, su comportamiento y artefactos son
bien comprendidos en la literatura, lo que facilita proponer variantes mejoradas y
analizar sus efectos. A partir de esta base, se implementd una version extendida que
incorpora modelado arménico/percusivo, andlisis sinusoidal y esquemas iterativos
de reduccién progresiva.

En paralelo, el rapido avance de las redes neuronales profundas abre nuevas
posibilidades para la restauracién de audio, especialmente en contextos donde el
ruido presenta estructuras complejas o no estacionarias. Los modelos tipo U-Net
han demostrado un desempeno notable en tareas de separacién y limpieza de audio.

En definitiva, este trabajo busca aportar una base experimental sélida que per-
mita comprender las ventajas y limitaciones de cada enfoque, y sirva de referencia
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para futuros desarrollos en restauracién de audio histdérico.

1.2. Grabaciones en cinta magnética y su degradacion

A mediados del siglo XX, el ruido en las grabaciones analégicas representaba un
desafio significativo debido a las limitaciones tecnoldgicas de la época. Los sistemas
de grabacién y reproduccién utilizaban medios fisicos como cintas magnéticas y
discos de vinilo, goma, laca o acetato, los cuales eran susceptibles a diversas fuentes
de interferencia. El ruido de fondo, a menudo causado por imperfecciones en el
medio de grabacién, fluctuaciones en la corriente eléctrica, o el desgaste del equipo,
se manifestaba como silbidos, zumbidos o distorsiones no deseadas.

Aunque muchas grabaciones profesionales alcanzaban una calidad sonora no-
table, el ruido seguia presente como una caracteristica inherente del formato, espe-
cialmente al realizar copias sucesivas [1]. A diferencia del audio digital, donde las
copias pueden ser idénticas al original, en el dominio analégico cada duplicacién
generaba una pérdida acumulativa de calidad.

Si bien se desarrollaron técnicas para mitigar estos problemas —como el uso de
filtros, cintas de mayor calidad y sistemas de reduccién de ruido tipo Dolby—, estas
soluciones no lograban eliminar completamente las degradaciones, y en algunos
casos introducian artefactos propios [2].

Se profundiza sobre estas degradaciones en el Anexo [B.2

1.3. Centro Nacional de Documentacion Musical Lauro
Ayestaran

Lauro Ayestardn (1913-1966) fue un destacado musicdlogo, investigador y do-
cente uruguayo, considerado el pionero de la musicologia en el pais. Su trabajo fue
fundamental para la recopilacion, estudio y preservacién del patrimonio musical
uruguayo, abarcando tanto la musica académica como las expresiones musicales
populares y folkléricas.

Uno de sus aportes mas significativos fue la realizacién de extensas grabacio-
nes de campo a lo largo de Uruguay, donde documenté diversas manifestaciones
musicales tradicionales. Estas grabaciones constituyen un acervo invaluable para
la investigacién musicolégica y la preservacion de la cultura sonora del pais. Su
labor ha sido reconocida internacionalmente, y su legado sigue vigente a través del
Centro de Documentacion Musical Lauro Ayestardn (CDM) [3], que se dedica a
la conservacion y estudio de sus archivos. En la se observan dos mo-
mentos de su trabajo de documentacién sonora, tanto en entornos de grabacién
controlados como en el registro de campo.

El Centro Nacional de Documentacion Musical Lauro Ayestardn fue creado
por resolucion del Ministerio de Educacion y Cultura de fecha 26 de marzo de
2009, sobre la base de los materiales del archivo del gran musicélogo adquiridos en
2002 por el Estado uruguayo. El proyecto del CDM se basa en el espiritu de Lauro
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Figura 1.1: Lauro Ayestaran en distintas instancias de su labor de documentacién musical: en
estudio y en trabajo de campo, registrando interpretaciones de mdsicos populares uruguayos
mediante grabadores de cinta.

Ayestardn, pionero de una musicologia uruguaya, abarcativa de todos los ambitos
de actividad cultural que presentan aspectos musicales, con una vision abierta a
otras expresiones culturales, a otros dmbitos antropolégicos, a otras manifestacio-
nes artisticas [3].

El trabajo de campo de Lauro Ayestaran se inicia en 1943 y, a partir de 1946,
incorpora el registro sistematico en discos de 25 cm a 78 rpm. En 1952 adquiere
su primer grabador de cinta magnética, formato que pasa a utilizarse de forma
habitual en las campanas posteriores. Algunos anos mas tarde, hacia 1955, Ayes-
taran realiza ademas un respaldo en cinta del material registrado originalmente en
disco, de modo que el acervo conservado en el CDM combina registros efectuados
directamente en cinta con transferencias posteriores desde soportes de 78 rpm.

En la Fig. se observa una cinta magnética de carrete abierto empleados por
Ayestaran en estas camparas.

- EL TaMsoReL
AFRo-Mo TR [ DEAWD |

Figura 1.2: Cinta magnética de carrete abierto utilizada por Lauro Ayestaran para el registro
sonoro. Imégen del CDM |3].




1.4. Antecedentes

En este contexto, el presente trabajo se centra explicitamente en el estudio y
tratamiento del ruido asociado a las grabaciones en cinta magnética. Esta eleccion
responde, por un lado, a una continuidad natural con el trabajo previo de Irigaray
et al. [4], también focalizado en ruido de cinta, y por otro, al objetivo de desarrollar
una herramienta con mayor grado de generalidad, que pueda aplicarse no sélo al
caso particular de las transferencias desde discos de 78 rpm, sino también a otros
archivos sonoros registrados o preservados en cinta magnética. De este modo, la
motivacion histérica vinculada al archivo de Ayestaran convive con un enfoque
metodolégico que prioriza la utilidad del método en escenarios mas amplios de
restauracién de audio.

1.4. Antecedentes

El proyecto de denoising que se propone tiene como antecedentes varios tra-
bajos y estudios previos que abordan la eliminacién de ruido en grabaciones de
audio, utilizando tanto técnicas tradicionales como enfoques basados en aprendi-
zaje profundo.

Uno de los antecedentes es el articulo titulado Aproximacion interdisciplinaria
al trabajo con documentos sonoros. Estudio de caso: las grabaciones de campo de
Lauro Ayestardn [5], presentado por Ignacio Irigaray y Federico Sallés. Este tra-
bajo aborda la necesidad de re-digitalizar estas grabaciones utilizando tecnologias
modernas y procedimientos actualizados de limpieza y digitalizacién. El proceso
incluye la evaluacién del estado de los materiales originales, el desarrollo de nue-
vos algoritmos de procesamiento digital y la implementacién de técnicas como la
sustraccion espectral y eliminacién de clicks.

Recientemente, se ha visto un auge en el uso de técnicas de aprendizaje profun-
do para la reduccién de ruido en grabaciones de audio. Un ejemplo es el articulo A
Two-Stage U-Net for High-Fidelity Denoising |6], donde se trabajé sobre discos de
78 rpm. Otro articulo relevante es Bandwidth FExtension of Historical Music using
Generative Adversarial Networks [7).

Ademas, se cuenta con un articulo de Ignacio Irigaray, Martin Rocamora y Luiz
W. P. Biscainho del 2023, titulado Noise reduction in analog tape audio recordings
with deep learning models [4], que aborda el problema de la reduccién de ruido en
grabaciones de cinta utilizando un enfoque de aprendizaje profundo.

Finalmente, existen herramientas comerciales especializadas, como iZotope RX
18], que ofrecen soluciones para la restauracién de audio.

1.5. Estructura del documento

El presente trabajo se organiza de la siguiente manera:

= Capitulo 2: introduce la técnica de sustraccién espectral, desde sus funda-
mentos tedricos hasta la implementacion desarrollada. Se describe el algo-
ritmo clasico, el detector automatico de inactividad propuesto y la variante
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mejorada SS Denoisify, que incorpora modelado espectral, procesamiento
iterativo y técnicas de reduccién de ruido musical.

s Capitulo 3: presenta el modelo de aprendizaje profundo basados en arqui-
tecturas U-Net de dos etapas. Se revisan los antecedentes del uso de redes
neuronales en procesamiento de audio musical y se detalla el modelo adop-
tado como base para este trabajo.

= Capitulo 4: describe la metodologia experimental, incluyendo las bases de
datos utilizadas (MusicNet, ruido de cinta magnética, ruido de gramdéfono y
musica personalizada), las métricas de evaluacién empleadas, el proceso de
bisqueda de hiperparametros para los algoritmos de sustraccién espectral,
los procedimientos de entrenamiento de los modelos de aprendizaje profundo
en el ClusterUY, asi como la forma en que se llevé a cabo la evaluacién final
de los modelos propuestos.

= Capitulo 5: presenta el andlisis de resultados, organizado en cuatro dimen-
siones: los hiperpardametros éptimos encontrados, las curvas de aprendizaje
de los modelos neuronales, la evaluacién objetiva mediante métricas per-
ceptuales (considerando el desempeno general, la variacién segin SNR, el
andlisis por categoria de contenido y los tiempos de procesamiento), y la
escucha critica cualitativa de las senales restauradas.

= Capitulo 6: sintetiza las conclusiones principales del trabajo, identificando
las ventajas y limitaciones de cada enfoque, y propone lineas futuras de
investigacién.

Finalmente, se incluyen dos Apéndices. El Apéndice A analiza métricas alter-
nativas evaluadas para la deteccién de inactividad, mientras que el Apéndice B
caracteriza en detalle los tipos de ruido presentes en discos de graméfono y cintas
magnéticas.



Capitulo 2

Sustraccion espectral

En el presente capitulo se introduce la primera técnica de denoising abordada
en este trabajo: la sustraccién espectral. Se comienza con una resena histérica que
contextualiza el surgimiento de esta metodologia y su relevancia en el procesa-
miento de senales ruidosas. A continuacién, se presenta la formulacién clasica del
algoritmo y su implementacién fundamental.

Posteriormente, se desarrolla en detalle uno de los médulos centrales para su
correcto funcionamiento: el detector de inactividad, encargado de identificar de
manera auténoma los segmentos de la senal donde no existe actividad relevante
y que, por tanto, pueden emplearse para estimar el perfil de ruido. Finalmente,
se discuten variantes y extensiones del enfoque tradicional, lo que culmina en el
desarrollo de una implementacién alternativa propuesta en este trabajo, orientada
a mejorar la eficacia del algoritmo en la restauracién de grabaciones de audio.

2.1. Introduccién

La primera propuesta formal de sustraccién espectral fue presentada por Ste-
ven F. Boll en 1979, en su articulo “Suppression of Acoustic Noise in Speech Using
Spectral Subtraction” [9]. Este trabajo dio origen a uno de los métodos mas influ-
yentes y ampliamente utilizados en la reduccién de ruido en senales de voz [10-12].
Su popularidad se debe principalmente a su sencillez conceptual, bajo costo compu-
tacional y facilidad de implementacién en tiempo real [10,/11}/13]. Ademds, diversas
variantes del método han sido incorporadas en sistemas comerciales, incluyendo
algoritmos de cancelacién de ruido en teléfonos méviles [10].

La técnica propuesta por Boll se fundamenta en que, durante las pausas de
habla, la senal registrada estd compuesta mayoritariamente por el ruido de fondo.
Esto permite estimar su espectro y sustraerlo posteriormente del resto de la senal
para obtener una versién mas limpia de la voz. El enfoque asume que el ruido
es aditivo, independiente y localmente estacionario, de modo que la estimacién
obtenida en segmentos sin voz se mantiene vélida en los instantes inmediatamente
posteriores.

A pesar de su efectividad y simplicidad, el método presenta un problema bien
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conocido: la generacién de ruido musical (musical noise), considerado uno de los
mayores desafios de la técnica [9,/10,/13,|14]. Este artefacto se manifiesta percep-
tualmente como tonos breves, fluctuantes y molestos, resultado de la estructura
discontinua que produce la sustracciéon espectral.

Para mitigar estas distorsiones, se han propuesto numerosas variantes del méto-
do original. Entre los aportes més influyentes se encuentra la propuesta de Berouti
et al. |14], quienes introdujeron un factor de sobreestimacién del ruido y un pi-
so espectral. Otras lineas de trabajo relevantes incluyen la sustraccion espectral
multibanda [15,]16], los métodos basados en filtrado de Wiener [17], las técni-
cas iterativas [10}/16},/18-20], los enfoques perceptuales [21], y modelos estadisticos
avanzados como los estimadores MMSE de Ephraim y Malah [22].

2.2. Formulaciéon matematica de la técnica

En esta seccién se presentan los fundamentos y procedimientos matematicos
que describen la técnica de sustraccién espectral [9,10.(13/14]. En primer lugar, se
considera una senal ruidosa y compuesta por L muestras. El ruido se modela como
senal estocastica, aditiva y no correlacionada con la senal determinista original.
Bajo este supuesto, puede escribirse:

y[m] = x[m] + n[m], (2.1)

donde z[m] representa la senal libre de ruido y n[m] una realizacién del ruido
aditivo que la contamina. La transformada de Fourier de tiempo corto (STFT) de
la senial y se define como:

L —1 . o
Y[f.k] = > ylm+ fLyop) wlm] e Ta™, (2.2)
m=0

donde w[m] es una ventana de Hanrﬂ de longitud Lg¢, que corresponde con el
tamano de la FFTEI, ¥ Lnop es el desplazamiento (hop-size) entre ventanas conse-
cutivas. El indice f corresponde al nimero de frame, con f € F ={0,..., Ly —1},
siendo Ly la cantidad total de frames. Por su parte, k indica el bin frecuencial y
puede tomar los valores kK =0, ..., Lg — 1. La cantidad total de frames esta dada
por:

Ly = {L‘LffJ 1 (2.3)

1La ventana de Hann es una funcién suavizante que atentia los bordes de cada segmen-
to para disminuir el efecto de las discontinuidades introducidas por el enventanado y la
superposicion.

2La Fast Fourier Transform (FFT) es un algoritmo eficiente para calcular la trans-
formada discreta de Fourier (DFT), reduciendo su complejidad computacional de O(N?)
a O(Nlog N) y permitiendo obtener el contenido espectral de un frame de una senal de
manera rapida.
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A partir de la y dado que la STFT es un operador lineal, se

obtiene inmediatamente:
Y[f k] = X[f, k] + N[f, k], (2.4)

donde X|[f, k| corresponde a la STFT de x[m] y N|[f, k] ala STFT de n[m].
Para caracterizar el comportamiento espectral, se define el frame f de la STFT
del ruido como:

Ny = [IN[£, 0]l IN[f,1]l, s INLf, Las — 1] (2.5)

Cada uno de estos frames son realizaciones de un vector estocastico con media p
y varianza o?.

Dado el escenario matematico anterior, la técnica de sustraccién espectral tiene
como objetivo atenuar la media introducida por el ruido. El caso ideal para estimar
la media espectral del ruido —lo que en este trabajo se denominara perfil del

ruido— consiste en emplear el siguiente estimador insesgado:

Nk = |]1c, S NylK. (2.6)

fer

Sin embargo, es evidente que este calculo resulta inviable en la préactica, ya que
exige disponer de la STFT del ruido de forma independiente a la STFT de la senal
ruidosa; en otras palabras, asumir esto equivale a resolver de antemano el propio
problema de la restauracién.

Por este motivo, la técnica de sustraccion espectral propone modelar el ruido
como un proceso estacionario a lo largo de toda la senal, es decir, asumir que
sus propiedades estadisticas —en particular, su media y su varianza espectral—
permanecen aproximadamente constantes en el tiempo. Bajo esta hipdtesis, las
distintas realizaciones del ruido, observadas en los frames donde no hay contenido
relevante de la senal, pueden emplearse para estimar de manera consistente su
perfil espectral.

Para ello, se asume la existencia de un subconjunto de frames F C F en los
cuales la senal estd ausente y solo se encuentra presente el ruido. En dichos frames
se cumple:

Y[f, k] = N[f,k] VfeF. (2.7)

De este modo, a partir de la condicién de estacionariedad del ruido, se define
el siguiente estimador del perfil espectral:

NIk = %;\Y[ﬁ Kl = ,},;Yﬂk}, (2.8)

donde Yy[k] denota la componente k-ésima del frame f de la STFT de la senal
ruidosa Y.
La sustraccién espectral para cada frame se define como:

Xy =max{Y; - aN, Y}, feF, (2.9)
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donde los pardmetros a > 1, 8 € (0, 1) controlan, respectivamente, la cantidad de
energia espectral sustraida y el piso minimo permitido para cada componente. Es-
tos valores determinan el compromiso entre la reduccién de ruido y la preservaciéon
de la calidad de la senal procesada.

Por un lado, el factor de sobreestimacion « permite incrementar la cantidad de
ruido sustraido, multiplicando el espectro estimado del ruido por un valor mayor
que uno [9]. Esto atenta o elimina la mayoria de los picos anchos del espectro
de ruido. Sin embargo, en algunas frecuencias permanecen ciertos picos angostos,
rodeados por frecuencias de menor potencia, formando lo que [14] denomina valles.
Estos valles generan transiciones abruptas en el espectro que se perciben auditi-
vamente como el denominado ruido musical, el cual se analiza en detalle en la
Seccién 2.9

Para suavizar estas transiciones, se introduce el parametro 3, que evita que
la magnitud espectral se reduzca abruptamente a cero. De este modo, se atentian
las oscilaciones bruscas entre picos y valles, reduciendo el ruido musical. En la
se ilustran los resultados de la sustraccion espectral aplicada a un frame
de una sefnial musical con su correspondiente perfil de ruido. Alli se observan los
denominados wvalles, generados por la sustraccion espectral sin el parametro 3, y
cémo la incorporacién del mismo permite suavizar dichas discontinuidades.

60 4 —— Sefial Limpia
40
20 A

—20

Magnitud [dB]

60 7 —— Seiial Ruidosa
40
201

—20

Magnitud [dB]

perfil del Ruido

Magnitud [dB]
N
]

—— sustraccién sin g

Magnitud [dB]
s
=1

—— Sustraccién con 8

Magnitud [dB]
N
S

0 5000 10000 15000 20000
Frecuencia [Hz]

Figura 2.1: Comparacién de la sustraccién espectral en un frame de sefial musical. Se muestran:
(i) espectro de la sefial limpia, (i) espectro de la sefial ruidosa, (iii) perfil de ruido, (iv)
resultado de la sustraccién espectral con factor de sobreestimacién «, donde aparecen los
mencionados valles, y (v) sustraccién espectral reforzada con el pardmetro 3, el cual suaviza
dichas transiciones y reduce las fluctuaciones.
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Finalmente, para reconstruir la senal en el dominio temporal se utiliza la mag-
nitud procesada X £|k], obtenida mediante la sustraccién espectral, junto con la
fase original de la STFT ruidosa ZY[f, k]. Asi, el espectro complejo estimado para
cada frame se define como:

X[f, k] = X [k] &? “YIIK], (2.10)

Luego, cada frame temporal se obtiene aplicando la transformada inversa de
Fourier iFFT:
L —1 . Com g
Bt = — > X[fkle' 2w, t=0,1,...,Lg — 1. (2.11)
k=0

La reconstruccién completa (iISTFT) se obtiene mediante el procedimiento de

overlap—add, sumando las contribuciones de cada frame en sus posiciones tempo-
rales correspondientes:

Li—1

. 1 . =

&[m] = - > R{&g[m — fLnop)} Ljo<m—sLnep<ia} m=0,1,...,L—1, (2.12)
f=0

donde L = (Lf —1)Lpop + L, y el factor de normalizacién C' se define como:

L —1
w[m). (2.13)

m=0

1
C =

Lhop

Aqui, 17 denota la funcién indicatriz, que toma el valor 1 cuando la condicién
especificada se cumple y 0 en caso contrario.

Cabe destacar que, en general, no necesariamente se cumple que L = L. Por
lo tanto, la sefial original x[m] y la senal restaurada #[m| pueden diferir en su
cantidad total de muestras.

2.3. Algoritmo SS Clasico

Como punto de partida, se implementd un algoritmo bésico de sustraccion es-
pectral: §S Cldsico. La implementacion se basé principalmente en el enfoque pre-
sentado por Vaseghi en [13], donde se detallan diversos métodos para la reduccién
de ruido, incluyendo variantes de esta técnica, asi como sus fundamentos estadisti-
cos y perceptuales. El esquema general del algoritmo desarrollado se presenta en
la

Inicialmente, la senal de audio y[m| es transformada al dominio tiempo fre-
cuencia mediante la STFT, utilizando una ventana de tipo Hann. El resultado es
la matriz compleja Y[ f, k|, donde cada columna representa el espectro de un frame
temporal.

Posteriormente, se aplica un algoritmo de deteccién de no actividad, cuyo ob-
jetivo es identificar segmentos (frames) donde no hay contenido musical ni vocal,

11
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» /YK

vim) [ orpr YU - Ler | Y
[

Deteccién F Promedio

de Inactividad

Figura 2.2: Diagrama de bloques del algoritmo basico de sustraccién espectral implementado,
SS Clasico, que incluye el anélisis y sintesis STFT, deteccion de segmentos de inactividad,
filtrado pasabajos y la sustraccién con parametros a y 3.

sino unicamente ruido (F). Vale la pena recordar que la deteccién automdtica
de estas regiones es uno de los objetivos principales del presente trabajo, ya que
permite adaptar el algoritmo de forma dindmica a diferentes entornos de ruido
sin una intervencién manual. Esto serda desarrollado con mayor profundidad en la
Seccion 2.4

Los espectros de los segmentos identificados como ruido se promedian para ob-
tener un perfil espectral estimado N, que representa el médulo promedio del ruido
por cada bin de frecuencia sobre el conjunto F de frames, definido anteriormente.

Como se describio en la formulaciéon matematica de la técnica, la presencia de
ruido estocastico aditivo sobre una senal modifica su distribucién estadistica. En
particular, la media y la desviacién estandar de la senal original se ven afectadas.
El estimador propuesto por S. F. Boll [9] plantea corregir la alteracién en la media
introducida por el ruido a través de la sustraccién, pero no compensa la dispersién
(varianza) de la senal.

Por esta razon, en 13| se propone aplicar un filtro pasabajos de primer orden
(low-pass filter, LPF) en la dimensién temporal, con el objetivo de atenuar la
varianza no deseada introducida por el ruido. Para ello, se toma el médulo de la
STFT Y[f, k] y luego se procesa cada uno de sus frames mediante la siguiente
funcién recursiva:

YO? f = 07

Y}JPF _
PYFN 4 (1=p) Yy, [>0,
donde p € (0,1) es un parametro que controla la suavidad del filtrado: valores cer-
canos a 1 producen un filtrado mas agresivo y, por lo tanto, una mayor atenuacién
de las variaciones rapidas.

Si bien una senal de audio puede presentar variaciones abruptas en el tiempo
—por ejemplo, debido a transiciones rapidas entre formantes o a cambios subitos en
su estructura espectral— se asume que estas variaciones son menos pronunciadas
que las generadas por el ruido analdgico.

Bajo esta hipdtesis, el uso de un LPF en el tiempo implica un compromiso:
se acepta cierto riesgo de suavizar componentes legitimas de la senial a cambio de

12
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suprimir las fluctuaciones més répidas asociadas al ruido. Segun [13], este suavi-
zado espectral contribuye a reducir la varianza del ruido y, por ende, a mitigar la
aparicién de ruido musical.

Finalmente, se aplica la sustraccion espectral sobre los frames resultantes del
filtrado pasabajos, siguiendo el mismo procedimiento definido en la
La senal en el dominio temporal se reconstruye luego mediante la iSTF'T, emplean-
do como espectro complejo el producto entre la magnitud estimada X [f k] y la
fase de la STFT ruidosa, esto es, X[f, k| eI £YIF K],

2.4. Detector de inactividad de la senal

En la técnica de sustraccion espectral es fundamental disponer de un perfil de
ruido representativo, obtenido a partir de segmentos de la senal donde no existe
actividad util. Tradicionalmente, esta identificacién de regiones inactivas se realizé
de forma manual, lo que limita la autonomia y escalabilidad del proceso.

En este trabajo se propone un enfoque completamente automatico para la
deteccién de inactividad, cuyo objetivo es localizar de manera robusta los tramos
libres de contenido relevante y, a partir de ellos, estimar el perfil de ruido sin una
intervencion manual. Este médulo constituye una etapa clave dentro del sistema
de denoising, ya que la calidad de la estimacién del ruido condiciona directamente
el desempeno de la sustraccion espectral.

A continuacién se detalla la implementacién completa del algoritmo propuesto
para la deteccién automaética de inactividad. Dado que las decisiones de diseno
adoptadas en este médulo se fundamentan en el comportamiento de las métricas
evaluadas, se recomienda revisar previamente el andlisis presentado en el
donde se discuten en profundidad las propiedades, ventajas y limitaciones
de cada métrica considerada.

Implementaciéon del algoritmo

En primer lugar, el detector de inactividad analiza la senal en el dominio tempo-
ral mediante ventanas solapadas (frames temporales), utilizando el mismo tamano
de ventana y el mismo desplazamiento que los utilizdos en la STFT. Es importante
recordar que el funcionamiento del algoritmo implementado se basa en la hipotesis
de que el ruido presente en la grabacion es aproximadamente estacionario a lo largo
de toda su duracién. Bajo este supuesto, se asume que los ultimos frames de la
senal contienen uinicamente ruido, lo cual permite obtener una primera estimacién
de su perfil. Esta eleccién se justifica en que, tipicamente, las piezas musicales y
las grabaciones musicoldgicas no finalizan de forma abrupta, sino que incluyen una
breve seccién final sin contenido musical relevante, que puede aprovecharse como
referencia inicial para caracterizar el ruido presente en toda la senal.

Posteriormente, se aplican umbrales especificos sobre cada una de las métricas
extraidas, con el objetivo de detectar de forma robusta los segmentos de inac-
tividad. Para evitar clasificaciones erréneas causadas por transiciones graduales
entre regiones activas e inactivas —como los ataques o decaimientos al inicio o
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final de un sonido— se incorporan margenes adicionales al comienzo y al final de
cada segmento detectado como silencio. Estos margenes permiten excluir los fra-
mes limitrofes que podrian estar contaminados por contenido mixto de sonido y
ruido. Por defecto, el margen inicial es mayor que el final, ya que el crecimiento
de amplitud al inicio de un sonido suele ser mas abrupto que su decaimiento.

Ademds, el algoritmo impone restricciones de duracién minima tanto para los
segmentos de silencio como para los de actividad. Un segmento es considerado
silencio tnicamente si su longitud excede un umbral minimo, lo cual previene
detecciones falsas provocadas por fluctuaciones breves en las métricas. De forma
similar, si se detecta un sonido entre dos silencios cuya duraciéon no alcanza el
umbral minimo para el sonido, se lo considera parte del silencio anterior, evitando
asi la fragmentacion innecesaria de los tramos inactivos.

Inicialmente, para la implementacién del algoritmo se consideraron dos métri-
cas: la energia en tiempo corto (STE) y la taza de cruces por cero en
tiempo corto (ZCR). Ambas se calculan aplicando una ventana deslizante de
tamaifo fijo sobre la sefial ruidosa en el dominio temporal, avanzando con un salto
definido. En el caso de la STE, se estima la energia de cada frame como la suma de
los cuadrados de las muestras contenidas en la ventana, de acuerdo con la siguiente

expresion:
M—1

STE[n] = )  2*[nR+m] (2.14)

m=0

donde z[n| es la senal, M = Lg es el tamafio de la ventana y R = Ly el salto
entre ventanas. Por otro lado, la ZCR se calcula contando cudntas veces la senal
cambia de signo dentro de cada ventana, lo cual se obtiene a partir del signo de
muestras consecutivas. El resultado se normaliza por el tamano de la ventana, lo
que conduce a la siguiente expresion:

1 M—-1
ZCR[n] Z lsgn(z[nR + m]) — sgn(z[nR +m —1])| /2 (2.15)

m=1

donde sgn(+) representa la funcién signo.

No obstante, como se discute en el es fundamental tener en cuenta
los casos en los que ciertos fragmentos de la senal, particularmente aquellos con
componentes agudas, puedan presentar una tasa de cruces por cero elevada sin
corresponder necesariamente a ruido. Para abordar esta situacion, se introdujo
una nueva métrica: la magnitud espectral promedio en altas frecuencias
(MHF). Esta métrica se calcula a partir de la STFT de la senal, utilizando el
mismo valor de ventana que en las métricas anteriores. En cada frame, se computa
el promedio de la magnitud espectral a partir de una frecuencia umbral f.,, con
el objetivo de estimar la presencia de contenido espectral en altas frecuencias. La
férmula utilizada para calcular esta métrica es:

MHF[n]

(2.16)
=k,
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donde X|[n, k] representa el valor complejo de la STFT en el frame n y bin k, k.
es el bin de frecuencia correspondiente a fout, vy K = L / 2 es el total de bins de
frecuencia.

Para determinar la frecuencia de corte feut v su correspondiente indice espectral
k., se tomé como referencia el comportamiento de una senal sinusoidal, asi como la
tasa de cruces por cero promedio en los tultimos frames de la senal, de los cuales se
asume que contienen Unicamente ruido. En particular, una sinusoide de frecuencia
f, muestreada a una frecuencia f, tiene una tasa de cruces por cero dada por:

2f
[s

A partir del cédlculo de la ZCR para cada ventana de andlisis, se estima la
media sobre los ultimos frames de silencio, que se denota como ZCRyise. Este
valor permite estimar una frecuencia de referencia cuya tasa de cruces por cero sea
equivalente, despejando de la ecuacién anterior:

ZCPhni Js
fref: ;se f

Con el fin de introducir un margen de tolerancia, se define la frecuencia de corte
como una fraccion de esta frecuencia de referencia:

fcut = (1 - apct) : fref (219)

donde apey € (0,1) es un parametro de tolerancia que define cudn estricta serd
la exclusién de componentes de frecuencia inferior. Finalmente, el indice espectral
correspondiente a esta frecuencia de corte se obtiene como:

_ fcut - M
ke = \\fs J . (2.20)

Los umbrales utilizados para cada una de las métricas fueron definidos en
funcién de su valor promedio estimado sobre los ultimos frames. Para cada métrica,
el umbral se establece como una fraccién de su media en esta regiéon de referencia,
seguin las siguientes expresiones:

ZCRyin = (2.17)

(2.18)

TSTE = (1 + aSTE) ' STEnoise (221)
T7cr = (1 - aZCR) - ZCRyoise (222)
TMHF = (1 + aMHF) . MHFnoise (223)

donde agTg, azcr, amur € [0, 1] son pardmetros de sensibilidad que determinan
qué tan estrictos seran los umbrales respecto a la energia, la tasa de cruces por
cero y la magnitud espectral en altas frecuencias, respectivamente.

Una vez definidos los umbrales, se procede a recorrer todos los frames, clasi-
ficando como inactivos aquellos que cumplan simultdneamente las siguientes tres
condiciones:

STE[n] < TSTE
ZCR[TL] > Tycr (224)
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Las condiciones [2.24] aseguran que un frame seréd considerado como inactivo si
presenta baja energia, alta tasa de cruces por cero y baja magnitud espectral en
altas frecuencias.

En el Algoritmo [I] se puede apreciar la implementacién para la deteccién de
inactividad de la sefial. La mascara de segmentos inactivos utilizada en este algo-
ritmo es un arreglo del mismo tamano que la cantidad total de frames, donde cada
elemento indica si el frame correspondiente esta activo o inactivo.

Algoritmo 1 Deteccién de segmentos de inactividad de la senal.

Entrada: Senal = y su frecuencia de muestreo; pardmetros: tamano de ven-
tana, salto entre ventanas, control de umbrales, mérgenes, largos
minimos de segmentos, cantidad de ventanas iniciales.

Salida: Mascara de segmentos inactivos.

1. Inicializacién

Calcular la magnitud de la STFT de la senal z.

Calcular: STE, ZCR, STE, uido: ZCR uido-

Calcular: MHF, MHF,yid0-

Calcular: TSTE7 TZCR; TMHF

Inicializar la mascara de segmentos inactivos con las ventanas iniciales.
2. Detecciéon de Inactividad

for n: resto de ventanas do

if STE[n| < Tstg and ZCR[n| > Tzcr and M HF[n| < Typr then
| Marcar ventana como inicio de segmento de inactividad.

else if se detecto un inicio y el segmento es suficientemente largo then
Aplicar mérgenes.

Verificar el tamano del segmento activo entre los segmentos inactivos.
Actualizar mascara de segmentos inactivos.

3. Postprocesamiento
Procesar el ultimo segmento de silencio (si corresponde).
Retornar mdscara de segmentos inactivos

2.5. Propuestas de mejora del algoritmo basico

La sustraccién espectral, desde su formulacién original propuesta por Boll,
se consolido rapidamente como una técnica simple y eficiente para la reduccién
de ruido en senales de audio, especialmente de voz. Sin embargo, su aplicacién
préctica evidencié limitaciones importantes, entre ellas la apariciéon del denomina-
do ruido musical y la incorporacién de ciertas distorsiones cuando la sustraccién
es demasiado agresiva y ateniia componentes relevantes de la senal.

Estas dificultades motivaron el desarrollo de diversas variantes orientadas a
mejorar la robustez y la calidad perceptual del método. Entre ellas se destacan
las estrategias especificas para mitigar el ruido musical —como la eliminacién de
componentes espectrales de muy baja magnitud o el uso de sustraccién espectral
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2.5. Propuestas de mejora del algoritmo basico

iterativa— y la incorporacién de etapas de modelado espectral, destinadas a pre-
servar la estructura relevante de la senal antes y después del proceso de atenuacion.

En esta seccién se describen las técnicas empleadas para abordar estas limi-
taciones y mejorar el desempeno del algoritmo bésico de sustraccién espectral,
desarrollado en la

2.5.1. Ruido musical

El fenémeno conocido como ruido musical se refiere a un conjunto de arte-
factos tonales que aparecen en senales procesadas mediante algoritmos de reduc-
cion de ruido basados en la sustraccién espectral. En una representacién tiempo—
frecuencia, estos artefactos se manifiestan como picos breves e irregulares, distri-
buidos aleatoriamente en ambas dimensiones y con mayor predominancia en las
bandas altas de frecuencia.

En la que muestra el espectrograma de una senal restaurada con
el algoritmo SS Cldsico, pueden identificarse como pequenos picos de color celeste
que sobresalen del fondo azul oscuro, el cual corresponde a los valles espectrales
donde la energia es considerablemente menor.
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Figura 2.3: Espectrograma de una sefial restaurada mediante SS Clésico, donde se observan
picos espectrales breves e irregulares —caracteristicos del ruido musical— que sobresalen del
fondo de baja energia (valles).

Perceptualmente, estos picos no guardan relacién con la estructura armonica
de la senal original, por lo que se perciben como tonos breves y fluctuantes. Steven
F. Boll ﬂgﬂ sefiala que estos eventos pueden aparecer incluso en regiones donde
existe actividad relevante, especialmente cuando la senal no logra enmascararlos,
siendo més notorios en regiones de silencio o baja energfa.

Diversos trabajos ﬂ§|, atribuyen la aparicion del ruido musical a dos
factores principales. En primer lugar, debido al procedimiento descrito en la[Ecua-]
que atenua aquellos coeficientes espectrales cuya energia se encuentra por
debajo de la estimacion del perfil de ruido, en un factor controlado por la variable
5. Este mecanismo genera valles espectrales —huecos abruptos en la distribucion
del espectro— y produce una representacion tiempo—frecuencia irregular y discon-
tinua, tal como se ilustra en la figura anterior.

En segundo lugar, desde una perspectiva estadistica, el fenémeno esta asociado
a la varianza del ruido. La estimacién del perfil espectral representa tipicamente el
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Capitulo 2. Sustraccién espectral

valor promedio del ruido, de modo que los coeficientes que superan aleatoriamente
dicha media no son eliminados y permanecen en el residuo. Estas fluctuaciones
estocésticas originan dichos picos intermitentes. Dado que este residuo no siempre
queda enmascarado por la energia armonica de la senal, sus componentes sobresa-
lientes se vuelven audibles durante la reconstruccion temporal, especialmente en
las bandas de frecuencia més altas.

A partir del andlisis tedrico anterior, se presentan a continuacién dos técnicas
implementadas con el propodsito de mitigar la presencia de ruido musical en la
restauracion de grabaciones de audio.

Algoritmo de reduccién de ruido musical

En este trabajo se implementé una funcién de deteccién y supresién de ruido
musical que opera en el dominio espectral mediante la STFT. El algoritmo analiza
frame por frame la evolucién temporal de los coeficientes espectrales y aplica un
proceso de eliminacion selectiva: si un componente presenta simultdneamente una
duracién breve y una magnitud reducida (por debajo de un cierto umbral), se
clasifica como ruido musical y su magnitud es anulada. La fase original se conserva
y la senal se reconstruye mediante la iSTFT. El procedimiento completo se presenta
en el Algoritmo

Algoritmo 2 Algoritmo de atenuacién del ruido musical basado en deteccién
espectro-temporal de eventos de baja energia y corta duracion.
Entrada: Senal z; parametros: tamano FFT Ngpr, salto H, umbral en dB
Ty, duracién maxima permitida Ly .y.
Salida: Senal y con el ruido musical atenuado.
1. Analisis STFT
Calcular la STFT de z: X < STFT(z, Ngpr, H).
Separar magnitud M = | X| y fase & = £X.
2. Conversién de umbral
Convertir el umbral de dB a escala lineal: Tj;, = 107a8/20,
3. Deteccion de eventos de baja energia
Construir méscara binaria B: B[f,n] =1 si M[f,n] < Ty, en otro caso 0.
4. Eliminacién de eventos cortos
for cada frecuencia f do
Detectar inicios y finales de secuencias consecutivas con Bl[f,:] = 1.
Calcular la longitud L = fin — inicio.
if 0 < L < L. then
| Anular: M[f,inicio : inicio + L] < 0.

5. Reconstruccién
Obtener y mediante iSTFT(M - ¢/®, Nppr, H). Retornar y
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2.5. Propuestas de mejora del algoritmo basico

La extraida de [13], ilustra graficamente este procedimiento: se
utiliza una ventana temporal deslizante sobre la magnitud espectral de cada frame,
comparando su duracién y nivel con un umbral predefinido. Los componentes que
no cumplen estos criterios son eliminados (marcados con una x), mientras que
aquellos considerados vélidos se conservan (marcados con un v').

A Spectral magnitude
Threshold level

X X J \/\/JJJJ it X X X -

X
Sliding window o ?jﬁifiﬁ

Time

Window length

Figura 2.4: Ejemplo del procedimiento de identificacién y supresidon de ruido musical a par-
tir de caracteristicas espectro-temporales. La magnitud espectral se recorre con una ventana
deslizante, comparando cada evento con un umbral de energia y una duracién maxima. Los
componentes descartados se marcan con una x, mientras que los preservados aparecen con un
v'. Imagen extraida de [13].

Sustraccidn espectral iterativa

Por otro lado, el trabajo Reinforced Spectral Subtraction Method to Enhance
Speech Signal [10] propone una versién iterativa de la sustraccién espectral cu-
yo prop¢sito es adaptar dindmicamente el perfil de ruido en funcién del residuo
generado en cada etapa. Bajo este enfoque, el ruido musical —aunque no estacio-
nario— se modela como un nuevo ruido aditivo que puede estimarse y atenuarse
progresivamente. El método inicia con una sustraccién espectral convencional; la
senal obtenida, que atin contiene ruido musical, se analiza en segmentos sin presen-
cia musical para estimar el espectro de dicho residuo. Esta estimacion se emplea
en una nueva sustraccién sobre la sefial procesada, y el procedimiento se repite de
manera iterativa, refinando en cada paso la caracterizacion del ruido y permitiendo
una adaptacion continua del algoritmo.

Ademas, dado que el ruido musical presenta variaciones temporales, Ogata [10]
propone realizar estimaciones locales del perfil de ruido en marcos temporales se-
parados para cada iteracién, lo que mejora la capacidad de seguimiento de la
estructura del ruido residual. El autor reporta resultados considerablemente sa-
tisfactorios con esta metodologia, mostrando mejoras claras en la calidad de las
seniales procesadas bajo distintos escenarios de ruido.

La sustraccién espectral ha sido comparada ampliamente con el filtro de Wie-
ner [13,/16,22]. En particular, en [16] se analiza cémo, bajo ciertas condiciones,
la version iterativa del método puede aproximarse progresivamente al comporta-
miento del filtro de Wiener. A medida que la estimacién del ruido se vuelve maés
precisa y la senal procesada se asemeja a la senal limpia, la funcién de ganancia
utilizada en la sustraccién espectral tiende a converger hacia una forma cercana a
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Capitulo 2. Sustraccién espectral

la del filtro de Wiener, el cual es éptimo en el sentido del error cuadratico medio
(mean square error, MSE). Si bien dicha convergencia no se garantiza en todos
los casos, este analisis aporta una justificacién tedrica relevante para el uso de
esquemas iterativos.

2.5.2. Modelado espectral

Una posible forma de mejorar la eficacia de la sustraccion espectral consiste
en preservar, antes de aplicar el proceso de sustraccién, aquellas componentes que
resultan relevantes para la estructura de la senal. La idea central de la propuesta es
que, si se logra separar o modelar adecuadamente la porcién 1til de la senal—por
ejemplo, sus componentes armonicas o transitorias—, entonces la sustraccién pue-
de concentrarse casi exclusivamente en atenuar las componentes del ruido. De este
modo, se evita alterar el contenido relevante de la senal original y se reduce la
probabilidad de introducir distorsiones o artefactos durante la restauracion.

Para llevar a cabo esta idea, se empleé el modelado espectral, una técnica
de procesamiento digital de senales que representa una senal —particularmente de
audio— como la combinacién de componentes de distinta naturaleza. Formalmente,
una senal z puede representarse como la suma de las siguientes tres componentes
principales:

T = Tg+ T4 + Te, (2.25)

donde:

= 1, corresponde con la componente sinusoidal, que representa la parte tonal
de la senial. Se modela como la suma de sinusoides con frecuencia, amplitud
y fase variables en el tiempo.

= 1 se define como la componente transitoria, que captura eventos abruptos
de corta duracién, como ataques de instrumentos o consonantes plosivas.

m I.: es la componente estocdstica, que representa la energia no armonica o
aleatoria, incluyendo consonantes fricativas, ruido ambiental u otras fluctua-
ciones no estructuradas.

La propuesta se centra en desarrollar un método que permita extraer dichas
componentes de la sefial original x a partir de la senal ruidosa x+n, de manera que
la sustraccién espectral no las distorsione y se enfoque tinicamente en atenuar las
componentes estocasticas del ruido n. Para ello, se realizé una revision bibliografica
con el objetivo de identificar las herramientas mas adecuadas para llevar a cabo esta
tarea. A continuacion, se describen los trabajos mas relevantes que se consideraron
para el presente trabajo.

En primer lugar, los estudios de McAulay y Quatieri |23], junto con los de
Serra [24-27], ofrecieron aportes relevantes que han influido en la evolucién del
modelado espectral. Por un lado, McAulay y Quatieri propusieron una técnica
basada en una representacion sinusoidal, donde la senal de voz se descompone en
componentes cuya frecuencia, amplitud y fase varian suavemente en el tiempo, per-
mitiendo una reconstruccién precisa incluso en entornos ruidosos. Posteriormente,
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2.5. Propuestas de mejora del algoritmo basico

Serra extendio este enfoque mediante el modelo Spectral Modeling Synthesis (SMS),
al introducir una descomposicién mas general en componentes deterministas (si-
nusoides) y estocasticas (ruido), lo cual permitié una mayor calidad de sintesis y
una mayor flexibilidad en la transformacién de senales complejas.

Una implementacién destacada de este modelo es SMS Tools [2§], desarrollada
por el Music Technology Group de la Universitat Pompeu Fabra, bajo la direccion
del mismo Xavier Serra. Este conjunto de herramientas de c6digo abierto permite
el andlisis, transformacién y sintesis de senales de audio basandose en el modelo
de descomposicién determinista-estocdstico propuesto por Serra y Smith [25] vy,
también, en las publicaciones [24}26]2729].

Por otro lado, en paralelo a estos avances, se desarrollaron técnicas orientadas
a la separacion de componentes dentro de senales de audio complejas. Una de estas
técnicas se denomina Harmonic/Percussive Source Separation (HPSS) propuesta
por Fitzgerald [30], quien introduce un método simple y eficiente basado en el
filtrado por mediana aplicado sobre el espectrograma de la senal. El enfoque se
fundamenta en la observacion de que las componentes arménicas se manifiestan
como estructuras horizontales en el dominio tiempo-frecuencia, mientras que las
percusivas aparecen como estructuras verticales. Mediante la aplicacion de filtros
de mediana en direcciones temporales y frecuenciales, se obtienen representaciones
separadas que permiten generar mascaras para aislar cada tipo de componente,
como se ilustra en la Ademds, en los FMP Notebooks del laborato-
rio AudioLabs Erlangen [31] se puede encontrar una implementacién didéctica y
extensible de este enfoque.
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[Miiller, FMP, Springer 2015]

Figura 2.5: Esquema del algoritmo Harmonic/Percussive Source Separation (HPSS) propuesto
en [31]. A partir del espectrograma de potencia de la sefial se aplican filtros de mediana en
direccién horizontal y vertical, lo que permite resaltar las estructuras asociadas a componentes
armoénicas y percusivas, respectivamente. Posteriormente, mediante enmascaramiento binario
e iSTFT, se reconstruyen las sefiales correspondientes a cada tipo de componente.
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Capitulo 2. Sustraccién espectral

2.6. Algoritmo SS Denoisify

A partir de las técnicas descritas previamente, se disend el algoritmo SS De-
noisify, ilustrado en la con el objetivo de mejorar tanto el rendimiento
como la eficiencia del método de reduccion de ruido basado en sustraccién espectral

presentado en la

1
1
1
: HPSS
1
1
1

1
| l,
—— > STFT

T 1
Método iterativo
Y D ion
eteccié |

de inactividad Frames inactivos

iSTFT ——>

Algoritmo de reduccién de
ruido musical

Figura 2.6: Diagrama de bloques del algoritmo SS Denoisify propuesto para la reduccién de
ruido. El proceso combina separaciéon arménica/percusiva (HPSS), modelado sinusoidal (SMS
Tools) y un esquema de sustraccién espectral iterativa. Ademas, incorpora deteccién de inac-
tividad para estimar el perfil de ruido y una etapa final de supresién de ruido musical.

Inicialmente, se buscd separar las estructuras de la senal que contienen infor-
macion relevante, como las componentes tonales, los armoénicos y los transitorios.
Para ello, se emple6 la técnica HPSS [31], que descompone la senal ruidosa y en dos:
una senal obtenida mediante el filtrado de mediana vertical, y|,, y otra mediante
el filtrado de mediana horizontal, y|, donde se verifica que

HPSS{y} = {ylv, yln}, v =ylo+yln

En este caso, si se asume que la senal ruidosa puede expresarse como
Y=T+N=2Ts+ Tt + Te+n,

donde xg, x; v x. son las componentes correspondientes con el modelado espectral,
entonces las senales resultantes de los filtrados de mediana pueden escribirse de la
siguiente forma:

y|v = $s|v + $t|v + $e|v + n|va
(2.26)

Yln = zs|n + ze|p + ze|pn + nlp.

Si se considera ademads que la componente sinusoidal puede obtenerse en su
totalidad a partir del filtrado de mediana horizontal |30, zs|, = zs, vy que la
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componente transitoria se puede extraer del filtrado de mediana vertical [30], z¢|, =
T, se obtiene:

y|v =x+ xe’v + n‘va
(2.27)

y|h =Ts+ $e|h + n|h-

Como se observa en la expresién anterior, el ruido puede presentar tanto ca-
racteristicas armonicas como transitorias, de modo que ambas salidas generadas
por el algoritmo HPSS estardn contaminadas por dicho ruido. Por esta razoén, so-
bre la componente y|, se aplica ademds un andlisis de modelado sinusoidal, con el
objetivo de identificar las sinusoides estables a lo largo del tiempo, idealmente aso-
ciadas al contenido tonal, melédico o estructurado de la senal. Sea SMS la funcién
encargada del modelado sinusoidal; entonces, se obtiene la siguiente expresién:

SMS{yln} = SMS{ws + ze|p + n[n} = xs. (2.28)

Para ilustrar este proceso, en la[Figura 2.7)se presenta un ejemplo del funciona-
miento del modelado espectral. El primer espectrograma muestra la senal ruidosa
original con una SNR de 16dB; el segundo exhibe las componentes transitorias
estimadas; el tercero corresponde a las componentes armoénicas obtenidas tras sus-
traer dichos transitorios; y el cuarto muestra el modelado sinusoidal aplicado sobre
la parte arménica residual.

Como puede observarse en los espectrogramas segundo y tercero, los transito-
rios se separan correctamente de la parte arménica de la senal, aunque el ruido
permanece presente en ambas representaciones, tal cual se muestra en la
En cambio, en el dltimo espectrograma —correspondiente al modelado
sinusoidal— se aprecia que este enfoque no preserva el ruido en todo el espectro,
lo cual permite aislar de forma precisa la componente sinusoidal de la senal, como
lo denota la [Ecuacion 2.28

A continuacién, se define la senal
*
Yy = y‘v + x5 = (xt + xe‘v + n‘v) + T,
la cual se sustrae de la senial ruidosa y para obtener el residuo
r=y—y" =Zeln+nln,

que mantiene las componentes estocasticas de la sefial y el ruido resultantes tras el
filtrado de mediana horizontal. Esta senal residual se utiliza como entrada para la
segunda etapa del algoritmo: la sustraccién espectral iterativa. Tal como se ilustra
en la dicha etapa se divide en dos fases: (i) una sustraccién iterativa
aplicada sobre dicho residuo, preservando la senal y* previamente calculada, y (ii)
una sustraccién iterativa aplicada a la sefial completa.

Esta estrategia permite, en primera instancia, realizar una atenuacién més in-
tensa del ruido presente en la senal residual (n|,), mediante un mayor ntimero
de iteraciones. Posteriormente, se aplica una sustraccién més suave sobre la senal
total, abarcando tanto la residual r como las componentes transitorias x;, sinusoi-
dales x; y estocasticas x..
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Figura 2.7: Ejemplo del proceso de modelado espectral. El primer espectrograma corresponde
a la sefial ruidosa original (SNR = 16 dB); el segundo muestra las componentes transitorias
estimadas; el tercero presenta las componentes armonicas tras la sustraccion de los transitorios;
y el cuarto ilustra el modelado sinusoidal aplicado al residuo arménico.

En un escenario ideal, la primera fase de sustraccién iterativa sobre r se encarga
de atenuar las componentes del ruido asociadas al filtrado de mediana horizontal
n|p. A continuacién, se reincorpora la senal y* y se realiza la segunda fase de
sustraccion, destinada a reducir la componente restante n|,. De este modo, se
espera obtener una estimacion de la senal limpia

A~

T+ 1+ T =2
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Es importante destacar que, como se muestra en la y al igual que
en el algoritmo basico descrito en la se emplean los frames inactivos,
identificados mediante la detecciéon de inactividad de la sefial, para estimar el
perfil de ruido que posteriormente se utilizard en la sustraccion espectral de cada
iteracion, como se describié en algoritmo iterativo de la [Subseccion 2.5.11

Finalmente, la senal obtenida tras la etapa iterativa del algoritmo Z* se utiliza
como entrada del método de reduccién de ruido musical descrito en la
con el fin de aplicar un procesamiento final que atente este tipo de
ruido en el resultado global del algoritmo. Esto resulta en la restauracién final &
de la senal x.

2.7. Parametros de los algoritmos

En las Tablas se resumen los parametros utilizados por los algorit-
mos propuestos, organizados en funcién de su finalidad dentro del procesamiento.
La Tabla presenta los parametros generales y aquellos asociados a la sustrac-
cion espectral, tanto en su version clasica como iterativa. La Tabla agrupa los
parametros empleados para la detecciéon de inactividad o silencio en la senal de
entrada. La Tabla retne los parametros vinculados al modelado espectral, in-
cluyendo tanto el anélisis sinusoidal como la deteccién de transitorios. La Tabla[2.4]
detalla los parametros especificos para la reduccién de ruido musical.

Tabla 2.1: Pardmetros generales y de la Sustraccién espectral (clasica e iterativa).

Parametro Tipo Descripciéon
X ndarray Senal de entrada con ruido.
fs int Frecuencia de muestreo (Hz).
nfft int Tamano de la FFT para el andlisis y sintesis STFT.
hop int Tamano del salto para el andlisis y sintesis STFT.
float Factor de sobre-sustraccién.
float Factor de suelo espectral.
float Factor de suavizado del filtro paso bajo.
n_iter int Numero de iteraciones de la sustraccién espectral.
sm_keep pct float Porcentaje de iteraciones en las que se preserva el mo-

delo espectral (0-1).
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Tabla 2.2: Pardmetros de la Deteccién de inactividad de la sefial.

Parametro Tipo Descripciéon

th_energy float Umbral de energia para la deteccion de silencio.

th_zcr float Umbral de tasa de cruces por cero para la deteccién de
silencio.

th_he float Umbral de magnitud en alta frecuencia para la deteccién
de silencio.

zcr_hf pct_cut float Porcentaje de corte en alta frecuencia para el cdlculo de
ZCR.

min silence_len int Duracién minima (en frames) de un segmento de silencio.

min_sound_len int Duracién minima (en frames) de un segmento sonoro.

start_silence int Ntumero minimo de frames de silencio al inicio.

end_silence int Numero minimo de frames de silencio al final.

num_init_frames int Numero de frames iniciales para referencia de ruido.

Tabla 2.3: Parametros del Modelado espectral.

Parametro Tipo Descripcién

sm_nfft int Tamano de la FFT para el modelado sinusoidal.

sm_hop int Tamaifio del salto para el modelado sinusoidal.

peak thresh  float Umbral para deteccién de picos (dB).

min sine dur float Duracién minima de una sinusoide (segundos).

max_sines int Numero méaximo de sinusoides por frame.

fdev offset float Desplazamiento de desviaciéon de frecuencia para la
continuacién de sinusoides.

fdev_slope float Pendiente de desviacion de frecuencia para la conti-
nuacién de sinusoides.

td_nfft int Tamano de la FFT para deteccién de transitorios.

td_Lh int Longitud del filtro mediano horizontal (en segundos o
frames).

td Lp int Longitud del filtro mediano percusivo (en Hz o bins).

Tabla 2.4: Parametros de la Reduccién de ruido musical.

Parametro Tipo Descripcién

mn_nfft int Tamaino de la FFT para reduccién de ruido musical.

mn_hop int Tamano del salto para reduccién de ruido musical.

mn_thresh db float Umbral (en dB) para supresién de ruido musical.

mn_win len int Longitud de la ventana de suavizado para eliminacién

de ruido musical.
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Capitulo 3

Aprendizaje profundo

En este capitulo se presentan las técnicas de aprendizaje profundo empleadas
para la reduccién de ruido en grabaciones musicales. En primer lugar, se revisan
brevemente los antecedentes mas relevantes del uso de redes neuronales en procesa-
miento de audio, con especial énfasis en su aplicacién al denoising. A continuacién,
se describe en detalle el modelo en dos etapas propuesto por Moliner et al. [6], que
constituye la base de este trabajo.

3.1. Introduccién

El uso del aprendizaje automético para resolver problemas de procesamiento
de senales ha crecido de forma significativa en los ultimos afios, y el procesamiento
de musica no es la excepcién. El trabajo [32], muestra cémo en la ltima década
los articulos que aplican aprendizaje profundo en misica pasaron de poco mas de
diez en 2014 a mas de doscientos en 2021.

El uso de aprendizaje automético permite superar las limitaciones de los méto-
dos clésicos, los cuales suponen caracteristicas del ruido (como estacionareidad o
su distribucién espectral) que no se cumplen estrictamente en contextos reales,
teniendo que tratar las imperfecciones con técnicas independientes.

En 2020, Li et al. presentaron en [33] un algoritmo de denoising supervisado
orientado a la restauraciéon de grabaciones musicales histéricas. Con los avances
en aprendizaje profundo, los métodos basados en datos ofrecieron una alternati-
va flexible: eliminar del procesamiento los métodos tradicionales, no imponiendo
suposiciones explicitas sobre el ruido y aprendiendo directamente de datos reales.

Este enfoque introduce nuevos desafios: por un lado, disenar un modelo capaz
de capturar la complejidad estructural de la musica. manteniendo una arquitectura
suficientemente simple para ser entrenable, y por otro, construir un conjunto de
datos adecuado, ya que las grabaciones musicales antiguas o degradadas carecen
de versiones limpias de referencia [33].

El modelo propuesto por Li convierte internamente la senal en su representa-
cién tiempo—frecuencia mediante la STEFT. El espectrograma resultante (represen-
tado como una imagen de dos canales, correspondientes a las componentes real e
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imaginaria) se procesa con una red neuronal convolucional tipo U-Net 2D. Final-
mente, la senal se reconstruye en el dominio temporal aplicando la iSTFT. Este
proceso se puede observar en la

Input Ouput
| JI D-block (N, S=(So, S1))
| Maybedownsample 1 Upsample | L
_______ [Tommeme mmmmmemmm e -
| STFT | | Inverse STFT | | Conv2D (k=(3, 3), n=N/2) | ------
I | Proj. 1
| Convab (k=(7, 7), n=32) | I Convab (k=(7, 7), n=2) | TransposedConv2D | — L~
T T (k=(So+2, 81+2),
1 L n=N/2, stride=S)
| E-block (N=64, S=(1, 2)) | | D-block (N=32, S=(1, 2)) |
L > |
| E-block (N=64, S=(1, 2)) | I D-block (N=64, S=(1, 2)) |
T =T
I ]
| E-block (N=128, S=(2, 2)) | | D-block (N=64, S=(2, 2)) | E-block (N, S=(So, S1))
; >] )
| E-block (N=128, S=(1, 2)) | I D-block (N=128, S=(1, 2)) | ]
I { ConvaD (k=(So+2, S1+2),
| E-block (N=256, S=(2, 2)) | | D-block (N=128, S=(2, 2)) | n=N, stride=S)
; ]
| E-block (N=512, S=(2, 2)) | I D-block (N=256, S=(2, 2)) | ConvaD (k=3.3), m=N)
. .
: ]
| Conv2D (k=(3. 3), n=128) | | Conv2b (k=(3, 3), n=512) | [

Figura 3.1: Esquema del método propuesto por Li et al. [33] para la restauracién de grabacio-
nes musicales histéricas. El modelo convierte la sefial de audio al dominio tiempo—frecuencia
mediante la STFT, procesa el espectrograma complejo con una arquitectura U-Net 2D vy re-
construye la sefial en el dominio temporal mediante la iSTFT. Imagen tomada de [33].

El trabajo de Li fue continuado en 2022 por Moliner et al. [6], quienes realizaron
diversas modificaciones a la arquitectura propuesta en 33| y entrenaron la red para
el caso de ruido de gramofono. De esta manera, se propuso, por un lado, el uso de
datos de ruido mas realistas y, por otro, una arquitectura refinada basada en dos
etapas de U-Net.

Los autores comentan que, en distintas pruebas con musica artificialmente
contaminada con ruido, el sistema alcanzé una calidad perceptual indistinguible
del audio limpio original segin la evaluaciéon subjetiva de oyentes, siendo capaz de
eliminar colored noise, rumble y eventos impulsivos [6]. En las secciones siguientes
se describira en detalle el trabajo desarrollado por Eloi Moliner et al., sobre el cual
se basa este estudio, dado que su implementacién y documentacion son de libre
acceso.

Posteriormente, este enfoque fue retomado en 2023 por Irigaray et al. [4], quie-
nes aplicaron y adaptaron la metodologia al problema de la reduccién de ruido en
grabaciones analégicas en cinta magnética. En este contexto, los autores destacan
—en consonancia con Moliner et al. [6]— que uno de los factores decisivos para el
alto rendimiento obtenido fue el uso de datos de ruido realistas. Para ello, desa-
rrollaron una base de datos especifica de ruido de cinta magnética [34], registrada
a partir de diversos equipos funcionales. Con dicho material, entrenaron el modelo
de aprendizaje automadtico propuesto en [6], empleando mezclas entre estos ruidos
y fragmentos musicales limpios bajo distintos niveles de SNR.

Ademas, tanto la evaluacién objetiva como la subjetiva confirmaron la eficacia
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del método en la restauracién de grabaciones analdgicas, resaltando nuevamente
los beneficios de entrenar con ruido real proveniente del dominio de aplicacién
especifico.

3.2. Modelo de dos etapas U-Net

En esta seccién se presenta el trabajo de Eloi Moliner y Vesa Valimaksi, titu-
lado “A two-stage U-Net for high-fidelity denoising of historical recordings” [6],
orientado a la reduccién del ruido en grabaciones histéricas. En primer lugar, se
describe el preprocesamiento aplicado a los datos de entrenamiento y, posterior-
mente, se detalla la arquitectura propuesta e implementada por los autores.

3.2.1. Preprocesamiento de los datos

En términos generales, los datos ruidosos utilizados durante el entrenamiento
se crearon segun la siguiente expresion:

X =pB(Y +aN), (3.1)

donde X denota la sefial contaminada, Y la senal limpia, N el ruido, « un factor de
escalado que determina la SNR resultante y 8 un factor que ajusta el nivel global de
la mezcla. La variacién de estos parametros introduce diversidad en las condiciones
de entrenamiento, aumentando la robustez del modelo frente a distintos niveles de
ruido e intensidad al simular multiples escenarios de grabacién y degradacion. Esta
estrategia forma parte de la técnica conocida como data augmentation.

La base de datos de grabaciones limpias considerada fue MusicNet [35], cu-
ya descripcion se presenta en la [Subseccion 4.1.1] Para evitar sesgos asociados a
artefactos no deseados, se descartaron las grabaciones mas antiguas del conjun-
to, cuya calidad se encontraba sensiblemente deteriorada. En cuanto al conjunto
de ruidos, los autores utilizaron fragmentos extraidos del proyecto “The Great 78
Project” [36], descrito en la [Subseccion 4.1.3|

En la se muestran los diagramas de bloques correspondientes a los
procedimientos utilizados para generar los datos ruidosos de entrenamiento.

Para construir cada audio limpio, primero se barajan (shuffle) las grabaciones
de la base MusicNet para aleatorizar su orden de acceso y procesamiento. Luego,
cada senal se carga de forma individual, se convierte a mono (si corresponde) y se
normaliza por su valor maximo absoluto. La senal resultante se divide en frames
sin solapamiento y de longitud fija, rellenando con ceros (zero-padding) cuando su
duracién es menor que la requerida.

Para cada frame, se seleccionan aleatoriamente un valor de SNR en el rango
de 2 a 20 dB y un valor de escalado entre -6 y 4 dB. Con estos pardmetros y un
cierto segmento de ruido, se ajusta el nivel de la senal ruidosa de modo de obtener
la SNR y la escala especificadas segun la

La generacién de los audios de validacion sigue esencialmente el mismo pro-
cedimiento utilizado para el conjunto de entrenamiento. La tinica diferencia signi-
ficativa es que no se aplica el shuffie inicial a la lista de grabaciones, por lo que
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MusicNet
(train) Datos de Entrenamiento

Mezcla Aleatoria

The Great 78 Project

Datos de Ruido

Flitrado
(train/val)

Mezcla Aleatoria

Ajustar Largo

Normalizacién
Segmentacion
Y

X =B(Y +aN) 10log1o(B) ~ U[—6,4)

l l Segmento de Ruido
N

Frames  Frames
Limpios  Ruidosos

10log1g(ax) ~ U[2,20) J

Y

Figura 3.2: Diagrama de flujo del generador de datos de entrenamiento (izquierda) y del
generador de segmentos de ruido (derecha). El primer bloque muestra las etapas de mezcla,
conversién a mono, normalizacién, segmentacién y generaciéon de frames con SNR y nivel
de escala aleatorios. El segundo bloque ilustra el proceso de seleccion y preparacion de los
segmentos de ruido.

las senales se procesan en el orden original en que aparecen en la base de datos
destinada a validacion.

Por otro lado, el preprocesamiento de los segmentos de ruido, también ilustrado
en la[Figura 3.2] sigue una serie de pasos especificos. En primer lugar, se filtran los
audios de ruido correspondientes al conjunto de entrenamiento o validacién, segin
sea necesario. A continuacién, se realiza una mezcla aleatoria entre las senales
filtradas. Finalmente, se ajusta la duracién de cada segmento para que coincida
con la longitud fija utilizada en los frames de los audios limpios.

Este ajuste consiste en recortar el segmento cuando su longitud excede la reque-
rida, o bien extenderlo cuando resulta més corto. En este tiltimo caso, la extension
se realiza mediante un procedimiento overlap—add con ventanas de Hann: la senal
se repite de forma circular, utilizando una periodicidad coherente con la rotacién
de discos de 78 rpm, y cada repeticion se solapa suavemente con la anterior gra-
cias a la ponderacién de la ventana, evitando asi discontinuidades audibles en los
limites.

3.2.2. Descripcién de la arquitectura

La arquitectura propuesta en [6] estd compuesta por dos subredes U-Net co-
nectadas en serie, con distintas entradas y objetivos de entrenamiento especificos,
complementadas por un médulo de atencién supervisada (Supervised Attention

Module, SAM), como se ilustra en la [Figura 3.3
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Figura 3.3: Arquitectura propuesta en ||§|| compuesta por dos subredes U-Net en serie y un
mddulo de atencién supervisada (SAM). La primera U-Net modela el ruido residual, mientras
que la segunda refina la estimacién utilizando las representaciones generadas en la etapa previa.
Imagen extraida de [6].

Esta separacién permite abordar el denoising en dos fases sucesivas: la primera
subred se encarga de estimar el ruido residual presente en la sefial, mientras que la
segunda realiza una atenuacién refinada, considerando tanto la senal ruidosa como
las estimaciones generadas por la primera etapa.

El modelo opera directamente sobre la STFT de la senal, utilizando como
canales independientes las partes real e imaginaria del espectrograma. Para su
célculo se emplea una ventana de Hamming de 2048 muestras y un desplazamiento
de 512 muestras.

A estos dos canales se le suman diez canales adicionales que corresponden a
los llamados frequency-positional embeddings, los cuales permiten que las primeras
capas convolucionales tomen en cuenta explicitamente la posiciéon de cada compo-
nente espectral en el eje de frecuencia.

Cada uno de estos vectores dependen unicamente de la frecuencia f del bin
correspondiente, y se construyen utilizando funciones coseno de diferentes frecuen-
cias. La férmula general es la siguiente:

)

(cos (W}J;) , COS (27r

donde F' representa el ancho de banda total del espectrograma y k = 10 es el
numero de componentes del vector.

S/
F

f

) s -.,COS (Qk_lTF

F

p(f) (3.2)
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Esta técnica estd inspirada en los positional embeddings utilizados en arqui-
tecturas tipo Transformer, y tiene como objetivo proporcionar al modelo una re-
presentacién explicita de la ubicacién en frecuencia. Al concatenar estos vectores
con los canales originales, el modelo puede distinguir mejor las caracteristicas del
espectro segin su posicién [37].

En cada etapa del modelo, la entrada de 12 canales se procesa inicialmente
mediante un extractor de caracteristicas compuesto por una capa convolucional
seguida de una funcién de activacion no lineal Exponential Linear Unit (ELU), tal
como se ilustra en la En la primera etapa, las caracteristicas obtenidas,
denotadas como F}, 1, se alimentan directamente a la subred U-Net. En cambio, en
la segunda etapa, las caracteristicas de entrada Fj, 2 se construyen concatenando
las caracteristicas generadas por el médulo SAM de la etapa anterior, representadas
por Fgam- X

El espectrograma limpio final, denotado como Y>3, se obtiene procesando las
caracteristicas de salida de la segunda subred U-Net, Fi 2, mediante una tdltima
capa convolucional de tamafio 3 x 3.

Arquitectura U-Net

La arquitectura U-Net tiene una estructura simétrica en forma de “U”, com-
puesta por una etapa de codificacién (encoder), que reduce progresivamente la
resolucién para capturar el contexto global, y una etapa de decodificacién (de-
coder), que recupera la resolucién original mediante operaciones de upsampling.
En este enfoque, las skip connections constituyen un elemento fundamental, ya
que enlazan directamente las capas correspondientes del encoder y del decoder, lo
que permite conservar detalles locales relevantes al mismo tiempo que se integra
informacién contextual de mayor nivel.

F‘i[l E)\\1
&
I-Block, N=32 I-Block, N—32 Ss

ey — - Conv. | %,

|
ELU |,

o

Conv. Conv. \‘/f

3x3, N | | 3x3,N| ,
I-Block, N—64 ELU |/

Conv.
3x3, N
ELU

I-Block, N—64

=

I-Block, N=128

Figura 3.4: Estructura de la subred U-Net. La figura ilustra la estructura codificador-
decodificador simétrica con cuatro niveles de reduccién y expansién de resolucién (izquierda),
conectados mediante skip connections. Cada nivel incorpora un bloque intermedio denomina-
do I-Block (derecha). El descenso en resolucién se realiza mediante convoluciones con salto
(strided convolutions). Imagen extraida de [6].
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Tal como se muestra en la las U-Net empleadas en este estudio in-
corporan en cada nivel un bloque intermedio (I-Block) que actia como un médulo
de refinamiento local. Estos bloques combinan convoluciones densamente conecta-
das con una conexién residual, lo que permite capturar patrones espectrales finos
sin perder estabilidad numérica ni capacidad de generalizaciéon. Su funcién es pro-
cesar la informacion a cada escala antes de modificar su resolucion.

La ruta de codificacién se implementa mediante convoluciones con salto (strided
convolutions) de kernel 4 x 4 y paso 2 x 2. Estas operaciones no solo reducen la
resolucion temporal y frecuencial, sino que también expanden el campo receptivo
de la red, permitiendo que los niveles méas profundos integren informacién global
del espectrograma. Esta caracteristica es 1til para modelar estructuras ruidosas
amplias, como el hiss de banda ancha o patrones espectrales estables del ruido
propio del soporte [6].

La etapa de decodificacién reconstruye la resolucién utilizando convoluciones
transpuestas configuradas de manera simétrica respecto a las de la ruta de codifi-
cacion. Durante esta fase, las caracteristicas recuperan un mayor nivel de detalle
y se combinan con las activaciones correspondientes del codificador mediante skip
connections. Segun los autores, estas conexiones evitan la pérdida de informacion
local provocada por las operaciones de reducciéon de resolucién y permiten que el
modelo preserve bordes espectrales, armdnicos débiles y transitorios relevantes que
de otro modo podrian degradarse.

Médulo SAM

El médulo SAM se incorpora para ayudar al modelo a concentrarse en las
regiones del espectrograma donde el ruido es més notorio. Su funcién es guiar
la segunda etapa del proceso de denoising mediante un mecanismo de atencién
supervisada.

Durante el entrenamiento, este moédulo aprende a generar un mapa que resalta
las zonas tiempo-frecuencia con mayor presencia de ruido. Al aplicar este mapa
sobre las representaciones internas del modelo, se refuerza la informacién relevante
y se atenia la menos ttil, permitiendo una supresién de ruido més precisa en la
segunda etapa de la red.

Como se puede notar en la el residuo estimado N se obtiene a partir
de las caracteristicas de salida de la primera subred U-Net, Fi 1, mediante una
capa convolucional de tamano 3 x 3. La salida intermedia de la primera etapa, }A’l,
se calcula entonces como Y = X + N, donde X es el espectrograma de entrada.
A partir de esta salida, se generan las caracteristicas Fganm siguiendo el esquema
ilustrado en dicha figura, utilizando méscaras de atencién M que se calculan di-
rectamente a partir de Vi mediante una convolucién 1 x 1 seguida de una funcién
sigmoide.

Parametros del entrenamiento

Para entrenar el modelo, se empled una funcién de pérdida basada en el error
absoluto medio (Mean Absolute Error, MAE) entre las salidas de cada etapa y
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el espectrograma limpio de referencia. La expresion matematica de la funcién de
pérdida es:

czfl(zk:(‘?lk—yk)Jr‘YQ’f—Yk’), (3.3)

donde Y representa el espectrograma limpio y K la cantidad total de coeficientes
de la STFT.

El proceso de entrenamiento se ejecuta de forma distribuida mediante la es-
trategia MirroredStrategy de TensorBoard, lo que permite aprovechar multiples
GPUs. Segtun los autores, el entrenamiento se llevé a cabo durante 300,000 steps
(2000 por época) utilizando un tamano de lote de 8 y un optimizador Adam. La
tasa de aprendizaje inici6 en 1 x 10~ y se redujo en un factor de 10 cada 100,000
steps (50 épocas). Ademds, no se aplicaron técnicas de normalizacién como batch
normalization o weight normalization, ya que no mostraron mejoras en el rendi-
miento durante las pruebas [6].
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Capitulo 4

Metodologia

En el presente capitulo se describen en detalle los procedimientos metodolégicos
seguidos durante el desarrollo de este trabajo. En primer lugar, se definen las
bases de datos utilizadas y las métricas consideradas para la experimentacion.
A continuacién, se presenta el proceso de busqueda de hiperparametros llevado
a cabo para los diferentes mdédulos de la implementacién de sustraccién espectral
desarrollada en la seccién [2.6] Posteriormente, se describe la metodologia empleada
para los entrenamientos del modelo propuesto en el Capitulo [3| y, finalmente, se
detallan las estrategias de evaluacién aplicadas a los modelos finales con el objetivo
de analizar su desempeno en la reduccién de ruido.

4.1. Bases de datos

4.1.1. Mdsica clasica (MusicNet)

La base de datos MusicNet, introducida por John Thickstun, Zaid Harchaoui
y Sham M. Kakade en el articulo Learning Features of Music from Scratch [35],
consiste en 330 grabaciones de musica cldsica con licencia libre. Cada grabacion
incluye tanto el archivo de audio en formato WAV como anotaciones temporales
detalladas de las notas musicales, instrumentos y compositores, almacenadas en un
archivo CSV asociado. Los audios presentan una duracién variable, se encuentran
en formato mono, con una frecuencia de muestreo de 44.1 kHz y una resolucién de
32 bits por muestra.

El conjunto contiene interpretaciones de obras de reconocidos compositores co-
mo Schubert y Mozart, entre otros. Algunos ejemplos incluidos son la Piano Sonata
in D major de Schubert —con movimientos como Allegro vivace y Scherzo. Alle-
gro vivace— y el String Quartet No. 19 in C major de Mozart —con movimientos
como Adagio—Allegro y Andante cantabile.
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4.1.2. Base de musica personalizada

En el marco de este proyecto, se desarrollé una base de datos propia con el
propdsito de evaluar el desempeno de las técnicas de procesamiento propuestas
en escenarios acusticos diversos. La coleccion incluye 48 grabaciones en formato
estéreo, almacenadas como archivos WAV codificados a 16 bits por muestra y
con una frecuencia de muestreo de 44,1 kHz. Las piezas abarcan distintos géneros
musicales, épocas e instrumentaciones, y se organizan en cuatro categorias de 12
grabaciones cada una: Musica Popular, Muchas Fuentes, Pocas Fuentes y Vocal.

La primera categoria Miisica Popular estd conformada por grabaciones de
géneros como rock, pop, blues, bossa nova y cumbia. Estas piezas presentan for-
maciones instrumentales tipicas —guitarra eléctrica o actustica, bajo, bateria y voz
principal—, a menudo complementadas por teclados, percusién menor u otros ins-
trumentos de acompanamiento. Este conjunto resulta representativo de produccio-
nes musicales modernas, con estructuras ritmicas marcadas y un equilibrio sonoro
caracteristico de mezclas comerciales. Algunos ejemplos incluidos son canciones de
Red Hot Chili Peppers, Jaime Roos y Madonna, entre otros.

Luego, la segunda categoria Muchas Fuentes agrupa musica con una alta
densidad instrumental, que abarca desde orquestas clasicas hasta conjuntos con-
temporaneos con instrumentacién diversa. Estas grabaciones se caracterizan por
la coexistencia de numerosas fuentes —cuerdas, vientos, metales y percusion—
que generan una elevada complejidad espectral y temporal. Entre los ejemplos se
encuentran piezas de la banda sonora de Indiana Jones y El Senor de los Anillos,
asi como obras orquestales como Liszt — Hungarian Rhapsody No. 2 in D minor,
S5.359 No. 2 interpretada por la Orchestre symphonique de Montréal, y Pixinguinha
e Sua Orquestra — Marreco Quer Agua.

La categoria Pocas Fuentes estd compuesta por obras con un niimero reduci-
do de instrumentos, tales como duetos de voz y guitarra o interpretaciones solistas.
Este tipo de material permite analizar con mayor precision los efectos del procesa-
miento sobre seniales simples y bien definidas. Algunos ejemplos son baladas como
Blowin’ in the Wind (Bob Dylan), Into My Arms (Nick Cave) y Someone Like
You (Adele).

Finalmente, la categoria Vocal retine grabaciones a capela, incluyendo coros,
interpretaciones de épera sin acompanamiento y piezas contemporaneas centradas
exclusivamente en la voz humana. Este conjunto resulta de particular interés, dado
el papel fundamental de la voz en la mayoria de los contextos musicales y su
relevancia para el estudio de la reduccién de ruido en seniales vocales. Ejemplos
de esta categoria incluyen Fernando Cabrera — Te Abracé en la Noche y Perotd
Chingo — Coral.

4.1.3. Ruido de graméfono

El conjunto de datos de graméfono (gramophone record noise dataset), desarro-
llado por Eloi Moliner y Vesa Viliméki [6], fue creado con el propésito de disponer
de muestras de ruido altamente realistas para el entrenamiento de modelos de
denoising. Para ello, se extrajeron segmentos de ruido a partir de grabaciones de
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discos de gramofono de 78 rpm, pertenecientes a la coleccién piblica y digitalizada
del The Great 78 Project [36].

Las muestras incluyen una combinacién de degradaciones procedentes de diver-
sas fuentes: ruido eléctrico de los circuitos (como hiss), ruido ambiental del entorno
de grabacién, ruido de baja frecuencia (rumble) generado por el giradiscos, e irre-
gularidades del soporte fisico que producen clics y golpes (clicks y thumps). Se
profundiza sobre estas degradaciones en el Anexo

Para seleccionar automaticamente los segmentos que contenian tnicamente
ruido, Moliner y Valiméki entrenaron un clasificador binario basado en redes neu-
ronales, con una arquitectura similar a la propuesta en PoCoNet por Isik et al. [37],
utilizando un subconjunto de ejemplos etiquetados manualmente como referencia.
Este enfoque permitié reducir los falsos positivos habituales en métodos basados
unicamente en umbrales de energia, los cuales tienden a confundir pasajes musi-
cales suaves, colas de reverberacién o desvanecimientos con ruido puro [6}33].

El conjunto final comprende 139 minutos de audio en mono, con una resolucién
de 16 bits por muestra y una frecuencia de muestreo de 44,1 kHz, divididos en 2430
segmentos extraidos de 1386 grabaciones diferentes, entre los anos 1902 y 1966.

4.1.4. Grabaciones analdgicas de cintas de audio

El conjunto de datos de grabaciones en cinta de audio analdgica (Analog Au-
dio Tape Recordings) fue desarrollado por Ignacio Irigaray, Martin Rocamora y
Luiz W. P. Biscainho [4], con el objetivo de caracterizar el ruido inherente al me-
dio magnético y al mecanismo de reproduccién. Para ello, se reprodujeron cintas
virgenes en distintos equipos de cinta abierta y cassette, registrando exclusivamente
el ruido generado por el sistema sin contenido musical. Las grabaciones se reali-
zaron en el Centro Nacional de Documentacién Musical (Montevideo, Uruguay)
utilizando una interfaz M-Audio Fast Track Pro, con una frecuencia de muestreo
de 44,1 kHz y una resoluciéon de 16 bits por muestra. Todos los equipos fueron
previamente calibrados y mantenidos para garantizar su correcto funcionamiento.

Se utilizaron cinco grabadores de cinta abierta: dos modelos semi-profesionales
Revox ATT7 (versiones normal-speed y high-speed), un grabador a valvulas Revox C-
36, y dos grabadores portatiles Uher (modelos 4000 Report S y 4000 Report L).
Ademas, se empleé un reproductor de cassette Technics TR-575 de doble deck,
con un cassette virgen TDK HX-S60. Para las grabaciones en cinta abierta se
utilizé Premium Analog Recording Tape de ATR Magnetics. Las sesiones abarcaron
distintas velocidades de reproduccion (inches per second, IPS) segun el dispositivo:
1.875, 3.75, 7.5 y 15 IPS. En la se pueden apreciar algunos de los
grabadores y reproductores utilizados para la creacion de la base de datos.

El ruido caracteristico del medio incluye principalmente hiss (ruido de alta fre-
cuencia generado por la aleatoriedad del grano magnético y el ancho de banda del
sistema), hum y buzz (componentes tonales producidas por interferencias eléctri-
cas, tipicamente en 50/60 Hz y sus arménicos), y ruido de modulacién (variaciones
del nivel de ruido dependientes de la senal grabada). En la del Anexo
B se describe cada una detalladamente.
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e

Revox A77 Uher 4000 Report L Technics TR-575 Revox C-36

Figura 4.1: Grabadores y reproductor utilizados en las sesiones de grabacién analdgica.

En total, el conjunto de datos contiene aproximadamente 2 horas de audio en
mono, equivalentes a 10 minutos por cada combinacién de dispositivo y velocidad.

4.1.5. MagTapeDB: Una base de datos de grabaciones histéricas
en cinta magnética

MagTapeDB es una base de datos disenada para el desarrollo y evaluaciéon
de técnicas de restauracion de audio aplicadas a grabaciones musicales histoéricas
almacenadas en cintas magnéticas. Su objetivo principal es proporcionar material
realista que refleje las caracteristicas y degradaciones propias del medio analégico,
tales como hiss, hum, wow and flutter, saturacién y caidas de senal, las cuales
no suelen estar representadas en los conjuntos de datos sintéticos o modernos
empleados habitualmente en el procesamiento digital de audio.

La coleccién esta compuesta por mas de 800 fragmentos de audio provenientes
del archivo musicolégico de Lauro Ayestardn [3]. En total, la versién actual del
conjunto incluye 894 fragmentos (aproximadamente 351 minutos) distribuidos en
tres categorias: grabaciones musicales, tonos de diapasén (pitchpipe tones) y seg-
mentos de ruido de cinta. Cada archivo de audio cuenta con metadatos asociados
que incluyen informacién como el niimero de carrete, afio de grabacién, velocidad
de cinta, presencia de instrumentos, localizaciéon geografica y, cuando es posible,
frecuencia de afinacién estimada.

Las digitalizaciones se realizaron a partir de cintas de 1/4 de pulgada en for-
mato mono, reproducidas mediante una grabadora Revox A77 y digitalizadas a
través de una interfaz Universal Audio Apollo Solo. Posteriormente, los audios fue-
ron segmentados y anotados manualmente, identificando regiones musicales, tonos
de referencia y fragmentos de ruido, a partir de los cuales se generaron extractos
estandarizados de 30 segundos.

4.2. Meétricas para la evaluacion

En esta seccién se describen las métricas utilizadas para evaluar los modelos
finales obtenidos. Estas métricas permiten cuantificar de forma objetiva el desem-
peno de los distintos enfoques analizados y establecer una base de comparacion
consistente entre los resultados experimentales presentados posteriormente.

38



4.2. Meétricas para la evaluacién

4.2.1. Error Cuadratico Medio Relativo (RMSE)

El Error Cuadrdtico Medio Relativo, o Relative Mean Square Error (RMSE), es
una métrica utilizada para cuantificar el error promedio entre una senal estimada
y su referencia, normalizado con respecto a la energia de la senal original. De esta
manera, se puede expresar la magnitud del error en términos relativos, facilitando
la comparacion entre senales de distinta escala o amplitud. Matemé&ticamente, se
define como:

N Y
RMSE — W (4.1)
1=1 %

donde y; representa la senal de referencia, §; la senial estimada y N el ndamero total
de muestras.

El valor de RMSE es adimensional y toma valores no negativos. Un RMSE
igual a cero indica una coincidencia perfecta entre ambas senales, mientras que
valores mayores reflejan un incremento proporcional del error relativo.

4.2.2. Precisién, Recuperacién y Fg-Score

Las métricas de Precision (Precision)y Recuperacion (Recall) son ampliamen-
te utilizadas en problemas de clasificacion y deteccién, ya que permiten evaluar el
desempetio de un sistema en términos de su capacidad para identificar correcta-
mente los elementos de interés.

La Precisién mide la proporcién de verdaderos positivos entre todas las pre-
dicciones positivas realizadas por el sistema, y se define como

TP
Precision = TP+ FP (4.2)
donde T'P corresponde a los verdaderos positivos (instancias correctamente detec-
tadas) y F'P a los falsos positivos (instancias incorrectamente clasificadas como
positivas). Una alta precisién indica que la mayoria de las detecciones son correc-
tas, es decir, que el sistema comete pocos falsos positivos.
Por otro lado, la Recuperacién o Sensibilidad (Recall) cuantifica la propor-
cién de verdaderos positivos detectados respecto al total de positivos reales, y se
expresa como

TP
Recall = m (43)

donde F'N representa los falsos negativos (instancias positivas que el sistema no
logré detectar). Un alto valor de Recall implica que el sistema detecta la mayoria
de los casos relevantes, aunque podria incluir algunos errores adicionales.

Dado que la Precisién y el Recall tienden a presentar un compromiso entre
si, se introduce el Fg-Score, una medida combinada que pondera ambas métricas
segun un parametro 8 que controla la importancia relativa de la Recuperacién
frente a la Precision. Su definicién general es

Precision - Recall

Fz=(1 2y.
p=U1+5) (B2 - Precision) + Recall

(4.4)
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Cuando § = 1, ambas métricas se ponderan de forma equitativa, obteniéndose
el conocido Fi-Score. Valores de 8 > 1 otorgan mayor peso a la Recuperacién,
mientras que valores de 8 < 1 favorecen la Precisién.

4.2.3. Evaluacién Perceptual de la Calidad del Audio (PEAQ)

La Evaluacion Perceptual de la Calidad del Audio, o Perceptual Evaluation of
Audio Quality (PEAQ), desarrollada bajo la Recomendacién ITU-R BS.1387 (38|,
constituye una de las métricas mas reconocidas y utilizadas en la industria del
audio para la evaluacion objetiva de la calidad percibida. Este método emplea un
modelo psicoacustico que simula el funcionamiento del sistema auditivo humano
con el fin de identificar distorsiones y artefactos introducidos en sefiales procesadas,
generando un valor objetivo que se correlaciona estrechamente con las evaluaciones
subjetivas realizadas por oyentes expertos.

En este trabajo se emplea la implementacién GstPEA(Q), disponible publica-
mente en el repositorio de GitHub [39]. Dicha herramienta reproduce el algoritmo
descrito en la Recomendacién ITU-R BS.1387-1 [38], y permite realizar medicio-
nes objetivas de la calidad percibida del audio tanto en su versiéon basica como
avanzada.

La degradacion perceptual de una grabacién se cuantifica mediante la Cali-
ficacién de Diferencia Objetiva (Objective Difference Grade, ODG), la cual
busca aproximar la puntuacién promedio que otorgaria un oyente humano exper-
to. Este indice se expresa en una escala continua cuyos valores de referencia se
presentan a continuacion:

0: Degradacién imperceptible.

-1: Degradacién perceptible, pero no molesta.
= -2: Degradacion levemente molesta.
= -3: Degradacion molesta.

= -4: Degradacion muy molesta.

4.2.4. Medida Perceptual de la Calidad del Audio (PAQM)

De forma similar a PEAQ), la Medida Perceptual de la Calidad del Audio, o Per-
ceptual Audio Quality Measure (PAQM), es una métrica desarrollada para evaluar
de forma objetiva la calidad percibida de senales de audio, basada en un modelo
psicoactstico que simula el comportamiento del sistema auditivo humano. Este en-
foque permite estimar el grado de degradacién introducido por un procesamiento
o codificacion al comparar una sefial procesada con su version original.

En este trabajo se emplea la implementacién de PAQM disponible en el repo-
sitorio de GitHub 40|, desarrollada en PyTorch por J. G. Beerends y J. A. Ste-
merdink, segin lo descrito en su publicacién original [41].
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El modelo produce un puntaje que varia a partir de cero, donde un valor de
0 indica que la senal procesada es indistinguible de la original, reflejando una
degradacién perceptual minima o inexistente. A medida que el valor aumenta, se
interpreta una mayor diferencia perceptual entre ambas senales.

Esta métrica se utiliza en este trabajo como referencia complementaria a PEAQ
para la evaluacién perceptual de la calidad de las grabaciones.

4.2.5. Relacion senal-ruido estimada

Vale la pena recordar que la relacién senal a ruido se define como

Peeri
SNR = 10log, ( B al) (4.5)

ruido

donde Picsal v Pruido Tepresentan las potencias promedio de la senal y del ruido,
respectivamente.

En este trabajo se emplea una version estimada de la SNR, calculada a partir
de la representacion espectro-temporal de la sefial mediante la STFT. Para ello, se
calcula la energia promedio de cada trama temporal y se distingue entre regiones
con y sin senal de interés mediante un vector indicador.

La potencia promedio de cada trama se obtiene promediando sobre las bandas
de frecuencia:

1 K
Plm] = 2= [X(k,m)[*, (4.6)
k=1

donde X (k,m) es el valor complejo de la STFT en la banda de frecuencia k y el
frame temporal m, y K es el nimero total de bins de frecuencia. De esta manera,
P[m] representa la potencia promedio de la senial en el frame temporal m.

A partir de estas potencias, se definen los valores promedio en los frames de
senal (psr) y de ruido (pr), y la estimacién final de la SNR se calcula como:

SNRestimado = 1010glO <M> . (47)
Pr
Esta formulacién no requiere disponer de una senal de referencia limpia, lo
que la hace especialmente 1til para evaluar grabaciones reales o procesadas, donde
solo se tiene acceso a la senal resultante. De este modo, la SNR estimada propor-
ciona una medida objetiva del predominio de la senal 1til sobre el ruido residual,
permitiendo cuantificar la calidad o la mejora alcanzada tras el procesamiento.

4.3. Buisqueda de hiperparametros
La implementacion final descrita en la presenta una complejidad
considerable debido al elevado ntmero de parametros y configuraciones involu-

cradas. Por esta razén, se opté por realizar una busqueda de hiperpardametros de
manera modular, abordando cada componente del sistema de forma independiente.
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En primer lugar, se ajustaron los parametros asociados al detector de inactivi-
dad, con el fin de establecer una segmentacion adecuada entre regiones de silencio
y de senal.

Posteriormente, se realizaron dos procesos de busqueda diferenciados:

= Bisqueda de hiperparametros del algoritmo basico de sustraccién
espectral: destinada a optimizar el rendimiento del método clasico, consi-
derando parametros como «, 8y p.

= Bisqueda de hiperparametros de la implementaciéon propuesta SS
Denoisify: enfocada en ajustar los parametros de la versién iterativa desa-
rrollada y del médulo de reduccién de ruido musical.

Esta estrategia permitié aislar el efecto de cada conjunto de parametros sobre el
desempeno global del sistema, facilitando la comparacion directa entre el algoritmo
clésico y la propuesta desarrollada en este trabajo.

Vale la pena aclarar que en todos los casos, a excepcién del ultimo moédulo,
se utilizé una longitud de ventana FFT de nfft = 2048 muestras, con un des-
plazamiento (hop size) equivalente a una cuarta parte de dicha longitud (hop =
nfft / 4).

4.3.1. Detector de inactividad

Para el ajuste de los parametros del algoritmo de deteccion de inactividad en
la senal, se seleccionaron aleatoriamente dos audios de cada grupo perteneciente
a la base de datos de musica personalizada. En cada uno de ellos se etiquetaron
manualmente los segmentos temporales (en segundos) correspondientes a regiones
de silencio, es decir, aquellos tramos que el algoritmo deberia identificar como
inactivos. Ademads, se incluyeron tres audios de ruido provenientes de la base de
datos Analog Audio Tape Recordings (con una SNR de 10 dB), correspondientes a
los dispositivos Revox A77, Uher 4000 Report S y Uher 4000 Report L. El anélisis
se realiz6 considerando los tdltimos 30 segundos de cada grabacion.

A cada segmento de audio limpio se le asigné un segmento de ruido corres-
pondiente a cada uno de los tres audios mencionados. Los tramos de ruido fueron
seleccionados sin solapamiento, de modo de evitar correlaciones entre los distintos
audios evaluados. En total, el procedimiento se aplicé sobre 8 x 3 = 24 senales
(ocho audios limpios y tres tipos de ruido).

Dado un conjunto de configuraciones posibles para el algoritmo, el proceso de
busqueda consistié en evaluar cada combinacién de parametros sobre los audios se-
leccionados, con el objetivo de cuantificar la eficiencia con que el detector identifica
los intervalos inactivos.

Para ello, las senales fueron segmentadas en frames de duracion fija, y para
cada trama se determind si pertenecia a una regién activa o inactiva, tanto en
las etiquetas manuales como en la salida del algoritmo. De esta manera, cada
configuracién de parametros produjo una secuencia binaria de detecciones, que fue
comparada con la secuencia de referencia mediante la métrica Fg-Score.
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4.3. Bulsqueda de hiperparametros

En este trabajo se utilizé un valor de § = 0,8, lo que otorga un mayor peso a
la precisién que a la recuperacion. De esta forma, el detector se penaliza mas por
clasificar erréneamente una trama activa como inactiva (FP) que por omitir una
regién silenciosa real (FN). Este criterio busca favorecer un comportamiento con-
servador del detector, privilegiando la fiabilidad en la identificacién de los silencios
reales.

Complementariamente, se buscé minimizar el RMSE entre el perfil de ruido
calculado a partir de los segmentos de 30 segundos y el perfil detectado sobre el
audio contaminado con ruido, de manera de asegurar una adecuada estimaciéon
del ruido de fondo. Para ello, ambos perfiles se ponderaron utilizando la curva de
A-weighting (que se observa en la , un filtro que refleja la sensibilidad
del ofdo humano a distintas frecuencias, otorgando mayor relevancia a aquellas
bandas donde la percepcion auditiva es mas sensible y reduciendo el peso de las
frecuencias menos audibles [42]. Esta ponderacién permite que la evaluacién del
ruido se alinee mejor con la percepcion subjetiva de la calidad sonora.

1.0 —— A-Weighting

0.8

0.6

0.4 1

0.2 9

0.0

T T T T
o] 5000 10000 15000 20000
Frecuencia (Hz)

Figura 4.2: Curva de ponderacién en A-weighting, mostrando cémo se ajustan los pesos de las
distintas frecuencias para reflejar la sensibilidad del oido humano.

Tabla 4.1: Rangos de valores considerados en la bisqueda de hiperpardmetros del detector de
inactividad.

Hiperparametro Valores evaluados

th_energy [0.15, 0.3, 0.45, 0.6, 0.75, 0.8, 0.85, 0.9, 0.95]

th_zcr [0.15, 0.25, 0.3, 0.35, 0.45, 0.6, 0.75, 0.8, 0.86, 0.9, 0.92, 0.95]
th_he 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.45, 0.6, 0.75]

zcr_hf _pct_cut [0.25, 0.45, 0.65, 0.85, 0.88, 0.9, 0.91, 0.94]

min_silence_len [5, 10, 15, 20, 30]

min_sound_len [10, 20, 25, 30, 35, 40]

start_silence [1,2,4,5,6, 8]

end_silence 1,2, 4, 6, §]

num_init_frames [5]
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Los rangos de valores considerados para los parametros del algoritmo de detec-
cién de inactividad se presentan en la[Tabla 4.1] Cada hiperpardmetro fue evaluado
sobre un conjunto de valores representativos, con el objetivo de identificar la com-
binacion que optimiza la deteccién de los frames inactivos en la senal.

4.3.2. Sustraccién espectral

Una vez obtenidos los resultados de la bisqueda de hiperpardametros para el de-
tector de inactividad, se llevaron a cabo dos nuevas biisquedas: una correspondiente
al algoritmo basico de sustraccién espectral y otra asociada a la implementacién
propuesta en la

En ambos casos, se emplearon las mismas grabaciones utilizadas en la etapa
anterior y se evalué el desempeno de cada configuraciéon mediante tres métricas
principales: PEAQ, PAQM y la SNR estimada.

Para cada par de segmentos de audio limpio y ruido (a una SNR de 10 dB), se
calculé inicialmente el deterioro perceptual entre la senal original y la sefial ruidosa
mediante las métricas PEAQ y PAQM. Posteriormente, la senal contaminada fue
procesada con el algoritmo de sustraccién espectral correspondiente, obteniéndose
las métricas finales respecto a la senal original.

Las diferencias entre las métricas iniciales y finales permiten cuantificar la
mejora perceptual introducida por el algoritmo, segin las siguientes expresiones:

APAQM = PAQMiyicial — PAQMgna (4.8)

APEAQ = PEAQfina — PEAQinicial (49)

donde los valores positivos de APAQM y APFEAQ indican una mejora perceptual
en la senal procesada.

Adicionalmente, se calculé la SNR estimada final utilizando los frames previa-
mente etiquetados como activos o inactivos de forma manual. Un mayor valor de
la SNR estimada indica que la potencia del ruido resulta relativamente menor en
comparacién con la potencia de la senial original, lo cual puede corresponder con
una mejora en la calidad de la senal restaurada.

En el caso de la implementacién del método de sustraccién espectral fue ne-
cesario tener en cuenta dos consideraciones principales: la elevada cantidad de
parametros disponibles y el tiempo de ejecucion del algoritmo. Este dltimo resulto
considerablemente mayor que el del método clasico, debido a su naturaleza itera-
tiva y a la inclusién de etapas adicionales de procesamiento, como el modelado
espectral.

Por esta razon, se decidié fijar los parametros asociados al modelado espectral
siguiendo las recomendaciones presentadas en la bibliografia [28,30], con excepcién
del parametro peak_thresh, que determina el umbral de potencia a partir del cual
se realiza la deteccion de picos utilizada posteriormente en la sintesis sinusoidal.

Los parametros sometidos a evaluacion correspondientes al médulo iterativo
del algoritmo fueron: alpha, beta, n_iter y sm keep_pct. En este caso, se adoptd
un valor de rho igual a 0.01, considerado el menos restrictivo posible, con el objeti-
vo de permitir una mayor flexibilidad en las iteraciones del proceso de sustraccion
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espectral. Asimismo, se seleccionaron valores de alpha y beta menos restrictivos.
Este enfoque busca lograr una sustraccion mas suave —mediante valores relati-
vamente bajos de alpha— y un umbral superior més permisivo, evitando una
eliminacién excesiva de la energia espectral. En las Tablas y se presen-
tan los rangos de valores considerados para la evaluacién de ambos algoritmos de
sustraccion espectral.

Tabla 4.2: Rangos de valores considerados en la bisqueda de hiperparametros para el algoritmo
SS Clasico.

Hiperparametro Valores evaluados

[0.4, 0.5, 0.6, 0.65, 0.7, 0.75, 0.8, 0.84, 0.88, 0.9, 0.92, 0.94, 0.96, 0.99)]
[0.01, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.5, 0.6]
[0.01, 0.05, 0.1, 0.15]

Tabla 4.3: Rangos de valores considerados en la biisqueda de hiperparametros para el algoritmo
SS Denoisify.

Hiperparametro Valores evaluados

[0.1, 0.15, 0.2, 0.25]

[0.93, 0.96, 0.99]
n_iter [10, 20, 30]
sm_keep_pct [0.5, 0.7, 0.9]
peak_thresh [-60, -50, -40]

Es importante destacar que en este trabajo se opté por utilizar valores de
alpha < 1, a diferencia de lo planteado originalmente en la técnica clasica de sus-
traccion espectral. El uso de factores de atenuacién mayores (alpha > 1) puede
resultar adecuado en aplicaciones de procesamiento de voz, donde la supresién
agresiva del ruido residual no afecta de manera significativa la inteligibilidad. Sin
embargo, se comprobd experimentalmente que, en sefiales musicales, este enfo-
que tiende a eliminar energia espectral relevante, incluyendo arménicos y matices
timbricos perceptualmente importantes. En consecuencia, la senal procesada puede
presentar una pérdida de naturalidad y una modificacién perceptible de su timbre.

4.3.3. Algoritmo de reduccién de ruido musical

Finalmente, se realizé la bisqueda de hiperparametros correspondiente al al-
goritmo de reduccion de ruido musical, asociado al altimo médulo de la implemen-
tacién detallada en la [Seccion 2.6l

De forma analoga a las evaluaciones previas, se utilizaron los mismos segmentos
de audio y las métricas objetivas PEAQ y PAQM. En este caso, no se considerd
el uso de la SNR estimada, dado que las componentes espectrales asociadas al
ruido musical presentan una potencia relativamente baja, por lo que su impacto
en el valor global de SNR resulta despreciable.
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Las variaciones de PEAQ y PAQM se calcularon con respecto a la salida del
moédulo iterativo de sustraccién espectral, en lugar de hacerlo sobre el audio conta-
minado. De esta manera, la comparacion refleja especificamente la mejora atribui-
ble a la etapa de reduccién de ruido musical y su efecto sobre la calidad perceptual
del resultado final.

En la se presentan los rangos de valores considerados en la bisqueda
de hiperparametros para este médulo. En particular, se evaluaron distintos ta-
manos de ventana FFT y longitudes de ventana temporal expresadas en segundos,
de modo que:

mn_win len = int(mn_win len (s) X sampling rate)

Tabla 4.4: Rangos de valores considerados en la bisqueda de hiperpardmetros para el algoritmo
de reduccién de ruido musical.

Hiperparametro Valores evaluados

mn_nfft [256, 512, 1024, 2048, 4096, 8192]
mn_thresh_db [-5, -10, -15, -20, -25, -30]
mn_win len (s) [le-3, 5e-3, le-2, 5e-2, le-1]

4.3.4. Eleccién de la configuracion optima

Dado que las métricas mencionadas en las secciones anteriores no comparten
necesariamente los mismos rangos ni escalas de valores, se decidié normalizarlas
en el intervalo [0,1] con el fin de garantizar una comparacién equitativa entre las
distintas configuraciones evaluadas. Esta normalizacién permitié, ademas, definir
una métrica ponderada que integra de manera conjunta la informacion de las
distintas medidas de desempeno, facilitando la seleccion de la configuracién éptima
de parametros para cada mddulo.

Por cada configuracién de hiperparametros se calcularon la media y la des-
viacion estandar de las métricas correspondientes a las senales utilizadas en la
evaluacion.

Sea una métrica X asociada a un conjunto de valores medios {xg,z1,z2,...}
y desviaciones estandar {0, 01,09, ...}, uno por cada configuracién evaluada. En
primer lugar, con el fin de penalizar configuraciones que presenten una alta varia-
bilidad, se aplicé un ajuste suave a los valores medios. En el caso de las métricas
donde un valor mayor implica una mejora —tales como APFEAQ, APAQM, SNR
estimada y Fg-Score— se utilizé la siguiente penalizacion:

T

Fi= o, i=0,1,2,... (4.10)
1+ 155

Por otro lado, para métricas donde una menor media representa un mejor
desempertio, como es el caso del RMSE, la penalizacién se aplicé de manera inversa,
es decir, multiplicando por el factor correspondiente:
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~ g; .
=z (1 + 1020) . i=0,1,2,... (4.11)

Posteriormente, todos los valores ajustados Z; se normalizaron en el intervalo
[0, 1] mediante una normalizacién min-max:
_ Z; — min()

T = i=0,1,2,... (4.12)

méx(Z) — min(z)’

De esta forma, todas las métricas quedan expresadas en una escala comun,
lo que habilita su combinaciéon en una tnica métrica ponderada destinada a se-
leccionar la configuracién éptima de hiperpardmetros. A continuacién, se detalla
la ponderacién aplicada en cada uno de los mdédulos, dado que cada componen-
te del sistema persigue objetivos especificos y, en consecuencia, requiere priorizar
determinadas métricas por encima de otras.

En el caso del detector de inactividad, la métrica final se establecié como una
combinacién ponderada del F-Score con un peso del 80% y del RMSE con un
20 %. Esta eleccién refleja la importancia central del Fg-Score para evaluar la
capacidad del detector de distinguir entre actividad e inactividad, mientras que
el RMSE, aunque menos relevante para esta tarea, se incorpora para favorecer
configuraciones que, ademads, permitan obtener estimaciones mas representativas
del ruido.

Para los algoritmos de sustraccién espectral —tanto el método Clasico como
la variante SS Denoisify— se definié una métrica final basada en una ponderacién
del 45 % para cada una de las métricas diferenciales APEAQ y APAQM, y del
10 % para la SNR estimada. Esta asignacién prioriza explicitamente el impacto
perceptual del proceso de denoising, ya que las métricas diferenciales capturan
de forma directa las mejoras o degradaciones respecto a la senal limpia, mientras
que la SNR estimada, si bien aporta una medida complementaria, no siempre se
correlaciona de manera consistente con la calidad perceptual.

Finalmente, en la busqueda de hiperparametros del algoritmo de reduccién
de ruido musical, también se emplearon las métricas diferenciales APAQM y
APFEAQ, aunque en este caso calculadas con respecto a la salida del mdédulo
iterativo de SS Denoisify. Como se mencion anteriormente, esta eleccién permite
evaluar especificamente si este ultimo moédulo aporta una contribucién adicional
al proceso de reduccién del ruido residual. Dado que ambas métricas reflejan la
calidad perceptual del resultado generado por el médulo, la métrica final se definié
mediante una ponderacién equitativa del 50 % para cada una.

4.4. Entrenamiento del modelo de aprendizaje profundo

Uno de los objetivos de este trabajo es presentar y comparar dos enfoques sus-
tancialmente distintos para la restauracién de grabaciones: la sustraccién espectral
y el aprendizaje automatico. En las secciones anteriores se describié la metodo-
logia utilizada para optimizar el desempeno de ambos algoritmos —tanto el clasico
como el propuesto— mediante la exploracion sistemédtica de sus hiperparametros.

47



Capitulo 4. Metodologia

En lo que respecta al aprendizaje profundo, en el se desarroll6
un modelo especifico basado en el trabajo de Eloi Moliner y Vesa Vilimaki [6].

En la presente seccion se detalla la metodologia empleada para realizar distintos
entrenamientos sobre dicho modelo, con el fin de evaluar su rendimiento en el
contexto planteado en este estudio.

4.41. Recurso ClusterUY

El entrenamiento del modelo se realiz6 en el Centro Nacional de Supercompu-
tacion (ClusterUY) [43], una infraestructura compuesta por 45 nodos con sistema
operativo Linux CentOS 7, interconectados mediante una red Ethernet de 10 Gbps.

Para este trabajo se solicité un entorno de cémputo con 64 GB de memoria
RAM y una GPU NVIDIA Tesla P100, equipada con 12 GB de memoria y
5384 nicleos CUDA. El entorno de ejecucién se configuré mediante Conda, utili-
zando CUDA 10.1 y cuDNN 7, junto con las bibliotecas indicadas en el entorno
provisto por Moliner et al. [6].

Durante el entrenamiento se presentaron algunas limitaciones asociadas a la
infraestructura del clister, entre las que se destacan: la imposibilidad de asignar
mas de una GPU a un mismo trabajo, las restricciones de memoria de la GPU que
condicionaron el tamano del batch y la longitud de las secuencias de audio, y la
necesidad de dividir los experimentos debido a que el sistema de colas no permite
solicitar recursos por mas de tres dias consecutivos.

4.4.2. Entrenamientos

Una vez analizado en profundidad el modelo de dos etapas basado en U-Net,
presentado en el[Capitulo 3] se decidié realizar una serie de experimentos orientados
a evaluar la capacidad del modelo bajo diferentes condiciones de ruido, adaptadas
al contexto del presente trabajo: la restauracién de grabaciones histéricas de Lauro
Ayestaran [3].

Con este objetivo, ademas del entrenamiento original implementado por Eloi
Moliner en [6], se consideraron las siguientes variantes experimentales:

= Modelo MusicNet + MagTapeDB: entrenado utilizando la base Music-
Net para las senales limpias y la base MagTapeDB como fuente de ruidos
de cinta.

= Modelo MusicNet + MagTapeDB 4+ Gramofono: entrenado con la
base MusicNet para las senales limpias, y con las bases MagTapeDB y
Gramdfono combinadas como fuentes de ruido.

Es importante aclarar que la decision de emplear ambas bases de ruidos respon-
de al interés de analizar cémo la diversidad espectral y temporal de los distintos
tipos de ruido analdgico influye en la capacidad del modelo para generalizar y
adaptarse a distintos escenarios de degradacion sonora.

Por otra parte, no se modificé la base de datos de audios limpios, manteniéndo-
se MusicNet como fuente principal. Esta eleccién se fundamenta en su accesibilidad
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y extensién, ademds de la complejidad que implicaria construir una base alterna-
tiva de tamano y diversidad comparables. Ademads, el uso en comin de MusicNet
también se justifica por la comparabilidad que ofrece con otros modelos entrenados
sobre el mismo conjunto de grabaciones limpias. No obstante, esta decisién impli-
ca ciertas limitaciones, las cuales seran discutidas en la evaluacién de los modelos
entrenados, en el

La etapa de preprocesamiento de las bases de datos se mantuvo idéntica a la
descrita en [6]. En el caso particular del conjunto conformado por MagTapeDB
y Gramdfono, ambos fueron preprocesados de manera independiente y, posterior-
mente, sus segmentos de ruido se combinaron de forma aleatoria. Una vez con-
formado el conjunto final, se realiz6 una divisién estratificada en un 70 % para
entrenamiento y un 30 % para validacién.

Como se menciond anteriormente, debido a las limitaciones de recursos del
ClusterUY, fue necesario restringir algunos de los hiperpardametros utilizados du-
rante el entrenamiento. En particular, se redujo la duraciéon de cada segmento de
audio de 5 a 3 segundos, el tamano del batch de 8 a 2, y la cantidad de épocas
se establecié con un maximo de 150, aunque en cada corrida este valor depende
exclusivamente del limite de tiempo asignado por el ClusterUY, como méaximo tres
dias de uso. Es importante destacar que estas modificaciones tienen un impacto
directo en el desempeno y la capacidad de generalizacién de los modelos resultantes
del entrenamiento.

Durante el entrenamiento se monitorizaron dos métricas principales para eva-
luar el desempeno del modelo: la funcién de pérdida total y el MAFE asociado a la
segunda etapa de la U-Net (correspondiente a la sumatoria del segundo médulo en
la . Ambas métricas se calcularon tanto sobre el conjunto de entre-
namiento como sobre el conjunto de validacion. El seguimiento conjunto de estas
curvas permitié analizar la evolucion de la capacidad del modelo para aproximar
los datos, asi como identificar posibles indicios de sobreajuste o subajuste.

4.5. Evaluacion de los modelos finales

En esta seccion se presentan el procedimiento y los criterios empleados para
evaluar el desempeno de los distintos modelos desarrollados en el contexto de
la restauracion de grabaciones musicolégicas mediante técnicas de denoising. El
objetivo principal es analizar comparativamente la capacidad de cada enfoque
para atenuar el ruido sin degradar la calidad perceptual ni alterar la estructura
armonica de las senales originales.

Para ello, se consideran tanto los métodos clasicos de sustraccién espectral,
en sus variantes tradicional y alternativa (SS Cldsico y SS Denoisify), como los
modelos basados en aprendizaje profundo entrenados con distintas combinaciones
de bases de datos: MusicNet, MagTapeDB y Gramdfono. De este modo, se busca
evaluar el impacto que tiene la diversidad y naturaleza del conjunto de entrena-
miento en la capacidad de generalizaciéon del modelo y en la preservacién de las
caracteristicas propias del material sonoro restaurado. En resumen, los modelos
sometidos a evaluacion son los siguientes:
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= SS Clasico: implementacién tradicional del algoritmo de sustraccion espec-
tral.

= SS Denoisify: variante de la sustraccién espectral basada en un esquema
iterativo con modelado espectral y algoritmos de reduccién de ruido musical.

» DL Gramoéfono: Modelo entrenado con la base de datos MusicNet y el
conjunto de ruidos de Gramdfono.

= DL MagTapeDB: Modelo entrenado con MusicNet y los ruidos provenien-
tes de la base MagTapeDB.

= DL MagTapeDB + Gramoéfono: Modelo entrenado con MusicNet, Mag-
TapeDB y Gramdfono.

Para la evaluacién se consideraron las grabaciones de la Base de Musica Per-
sonalizada como sefiales limpias, y los audios de la base de datos Grabaciones
Analégicas de Cintas de Audio como fuentes de ruido. Luego de una revisién
detallada de esta tltima, se decidié excluir las grabaciones correspondientes al dis-
positivo Revoxr C36, debido a la presencia de un ruido tipo buzz, de caracter tonal
vy agudo, que resultaba perceptualmente dominante y poco representativo del tipo
de ruido analdgico que se busca estudiar en este trabajo.

Es importante destacar que para la evaluacion final de los modelos no se consi-
der6 la base de datos MusicNet. Esto se debe a que uno de los objetivos centrales
de este proyecto es analizar el desempeno de las distintas técnicas de denoising
en un escenario mas general y representativo del caso de estudio que motiva este
trabajo: las grabaciones musicologicas de Lauro Ayestaran. Con este propdsito,
se construy6 la Base de Musica Personalizada, compuesta por senales altamente
diversas entre si, lo que permite evaluar los modelos en un contexto mas amplio
y exigente. Como algunas de estas senales presentan caracteristicas similares a las
incluidas en MusicNet, dicha base queda incorporada de forma implicita dentro
de esta diversidad, evitando asi sesgos hacia un conjunto especifico y favoreciendo
una evaluacion mas realista del rendimiento de cada modelo.

En primer lugar, cada una de las grabaciones de ruido de cinta, con una dura-
cién aproximada de 10 minutos, se segmenté en tramos de 30 segundos sin solapa-
miento, a fin de evitar posibles correlaciones entre las distintas combinaciones de
senales limpias y ruidosas. Posteriormente, cada grabacion limpia perteneciente a
la Base de Musica Personalizada se recorté considerando sus ultimos 30 segundos,
a los cuales se les asigndé uno de los segmentos de ruido previamente definidos,
conformando asi las sefiales de evaluacién contaminadas.

Este procedimiento se repitié para dos niveles de SNR, de 10 dB y 16 dB,
siguiendo el criterio establecido en [4], donde dichos valores fueron seleccionados
a partir de pruebas de escucha realizadas sobre grabaciones histéricas de Lauro
Ayestaran. La asignacién de los segmentos de ruido se efectué de manera que las
grabaciones de los distintos dispositivos de cinta se distribuyeran uniformemente
entre los grupos de audio de la base de datos, garantizando una representacion
equilibrada de las condiciones de evaluacion.
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Para la evaluacion del rendimiento de los modelos, las sefiales limpias y ruidosas
(en formato WAV) se organizaron en directorios independientes, clasificados por
grupo y nivel de SNR, con el fin de aplicar posteriormente los distintos métodos
de denoising y almacenar los resultados procesados en sus respectivas carpetas.
No obstante, este procedimiento presenta un posible inconveniente: al combinar
una senal limpia con su correspondiente segmento de ruido, la suma puede exceder
el rango normalizado de amplitud de las muestras, es decir, el intervalo [—1, 1]. Esto
podria generar distorsién por saturacién (wrap around) al guardar los archivos en
formato WAV. Para prevenirlo, se realiz6 una normalizacién conjunta de ambas
seniales —limpia y ruidosa—, dividiendo cada una por el méximo absoluto entre
ambas. Sea x la senal limpia y n el segmento de ruido asignado. La senal ruidosa
se define como:
Tp =T+ n. (4.13)

Luego, se determiné un factor de normalizacién como el méaximo absoluto entre
ambas senales:
norm_factor = max (max(|z|), max(|z,|)) . (4.14)

Finalmente, ambas se normalizaron mediante:

x L, Ty — S — (4.15)
norm_factor norm_factor

De esta forma, se garantiza que la sefal resultante permanezca dentro del
rango permitido, evitando saturaciones sin alterar de manera significativa la SNR
establecida. Ademads, se normalizé la senal limpia con el objetivo de mantener la
coherencia de escalas, de modo que las versiones limpias y restauradas puedan
compararse bajo las mismas condiciones de amplitud en cada una de las métricas
utilizadas.

Cabe destacar que, si bien este reescalado introduce un error de cuantizacién
minimo, su impacto sobre la evaluacién es despreciable frente a las diferencias
significativas que se analizan entre los distintos modelos.

Las métricas seleccionadas para la evaluacién final de los modelos fueron las
variaciones APAQM yv APEAQ, definidas en las Ecuaciones [4.8] y junto con
el tiempo de ejecucién correspondiente al proceso de restauracién de cada modelo.
Estas métricas permiten cuantificar tanto la mejora perceptual resultante como la
eficiencia computacional de los distintos enfoques analizados.
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Capitulo 5

Analisis de resultados

El presente capitulo tiene por objetivo analizar y discutir los resultados obte-
nidos a partir de los distintos modelos y metodologias de reducciéon de ruido desa-
rrollados durante este trabajo. A lo largo de los capitulos anteriores se abordaron
las bases tedricas, el disenio de los modelos de sustraccién espectral y aprendizaje
profundo y los procedimientos experimentales empleados para su entrenamiento,
validacion y evaluacién. En este capitulo se integran dichos elementos, presentan-
do y analizando los resultados obtenidos, organizados en cuatro niveles de estudio
complementarios que permiten una evaluacion tanto cuantitativa como cualitativa
del desempefio alcanzado por cada enfoque.

En primer lugar, se presentan los hiperpardmetros finales obtenidos a partir
de las busquedas descritas en el los cuales definen las configuracio-
nes Optimas encontradas para cada modelo de sustraccién espectral. Estos valores
fueron seleccionados en funcién de su desemperfio en las métricas perceptuales y
constituyen la base para las comparaciones realizadas en las siguientes secciones.

En segundo lugar, se examinan las curvas de aprendizaje, que reflejan la evo-
luciéon de las métricas de entrenamiento y validacién a lo largo de las épocas,
permitiendo evaluar la convergencia y capacidad de generalizacion de los modelos
de aprendizaje profundo, asi como el impacto del conjunto de datos utilizado.

Luego, se realiza una evaluacion objetiva mediante las métricas perceptuales,
PEAQ y PAQM, que cuantifican la mejora en la calidad de las senales procesadas
y permiten contrastar la efectividad de cada enfoque bajo diferentes condiciones de
ruido y tipos de audio. Ademas, se incluye un estudio comparativo de los tiempos
de procesamiento, con el fin de contextualizar los resultados obtenidos en términos
de eficiencia computacional y viabilidad préactica de cada método.

Finalmente, se presenta una evaluacién subjetiva, basada en la escucha criti-
ca de las grabaciones restauradas, con el propédsito de complementar el andlisis
numérico y obtener una apreciacién perceptual del desempeno real de los modelos.
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5.1. Busqueda de hiperparametros

A continuacion se presentan los valores de los hiperparametros obtenidos para
los distintos mddulos del algoritmo SS Denoisify y para SS Cldsico. Asimismo,
se realizé un analisis detallado del rendimiento alcanzado por cada una de las
configuraciones éptimas.

5.1.1. Detector de inactividad

La configuracién 6ptima obtenida para el detector de inactividad corresponde
a la combinacién de parametros que alcanzé el mejor desempeno global segin
las métrica ponderada, especificada en la [Subseccidén 4.3.4] Los valores medios y
las desviaciones estandar del Fg-Score, Precision, Recall y RMSE se presentan
en la Ademss, los pardmetros seleccionados para esta configuracién se
muestran en la[Tabla 5.2l

Tabla 5.1: Resultados obtenidos para la configuracién éptima del Detector de Inactividad. La

metodologia utilizada se detalla en

Meétrica Media Desviaciéon estandar
F-Score (%) 68.65 17.28
Precision (%)  62.03 22.11

Recall (%) 91.84 9.18

RMSE 0.0047 0.0092

Tabla 5.2: Parametros seleccionados para el Detector de Inactividad, entre los rangos de valores

especificados en la

Parametro Valor
th_energy 0.75
th_zcr 0.35
th_he 0.05

zcr_hf _pct_cut 0.90
min_silence_len 10

min_sound_len 25
start_silence 8
end_silence 1

num_init_frames 5

En primer lugar, los resultados obtenidos muestran que el detector de inactivi-
dad alcanzé un desempeno satisfactorio segin el Fg-Score. Sin embargo, el andlisis
detallado de las métricas de Precision y Recall revela un comportamiento asimétri-
co: mientras que el Recall presenta un valor medio elevado, el Precision alcanza
un valor medio sensiblemente menor.

Dado que el objetivo principal del médulo es maximizar el Precision, evitando
clasificar como inactivos segmentos que en realidad contienen contenido sonoro, un
valor relativamente bajo (62.03 %) evidencia un problema importante: el detector
introduce una cantidad apreciable de falsos positivos, lo que implica que fragmen-
tos con informacién musical pueden incorporarse erréneamente al calculo del perfil
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de ruido, afectando potencialmente la calidad de la restauracién. Este comporta-
miento senala una limitacion del médulo que debera ser abordada y mejorada en
posibles trabajos futuros.

Sin embargo, vale la pena destacar que el elevado Recall indica que la mayoria
de los segmentos verdaderamente silenciosos si son detectados correctamente, lo
que beneficia la estimacién de dicho perfil.

Luego, las desviaciones estdndar observadas en la indican que el
desempeno del detector varia de forma considerable entre grabaciones. Esto su-
giere que la efectividad del médulo depende fuertemente de las caracteristicas
particulares de cada sefial —como su dinamica, instrumentacion o presencia de
transitorios—, lo que repercute en la estabilidad de la deteccion.

Cabe destacar que los resultados obtenidos para la métrica RMSE —una me-
dia de 0.0047 y una desviacién estandar de 0.0092— son satisfactorios para el
objetivo planteado. Estos valores reflejan una estimacién consistente del perfil de
ruido, incluso considerando que el desempeno puede verse afectado por errores en
la Precision, ya que la inclusién incorrecta de frames activos dentro del perfil de
ruido introduce cierta distorsion en la estimacién.

Por otro lado, dentro de los parametros seleccionados resulta especialmente
interesante analizar los valores asociados a las longitudes minimas de frames re-
queridas para considerar un segmento como activo o inactivo. A una frecuencia
de muestreo de 44,1 kHz, la duracién minima establecida para un segmento de
actividad es de aproximadamente 330 ms, mientras que la correspondiente a un
segmento inactivo es cercana a 150 ms, es decir, casi la mitad de la anterior.

Asimismo, los mérgenes temporales definidos al inicio y al final de cada seg-
mento de silencio muestran una asimetria significativa: los frames de margen inicial
corresponden aproximadamente a 130 ms, mientras que los del margen final re-
presentan cerca de 50 ms. Esta diferencia sugiere que, en términos préacticos, un
segmento activo tiende a presentar una transicién mas gradual al finalizar que al
iniciarse, lo cual indica que la aparicién de actividad en la sefial suele ser mas
abrupta que su finalizacién.

Para ilustrar con mayor precisién el desempeno alcanzado, se seleccioné una
senial ruidosa del conjunto de evaluacién que obtuvo un resultado particularmente
desfavorable. Sobre esta senal se analizaron en detalle sus caracteristicas tanto
temporales como espectrales. En la se representan la STE, la ZCR y
la MHF. Por otro lado, en la se muestran los resultados del proceso de
deteccién junto con los perfiles de ruido estimados y etiquetados.

La debe interpretarse considerando que la senal analizada corres-
ponde a los ultimos 30 segundos de una grabacién musical de la Base de Musica
Personalizada. Por lo tanto, es coherente observar que, a partir de aproximada-
mente los 2022 segundos, tanto la STE como la MHF disminuyen de manera
significativa, reflejando el final natural de la pieza musical y la desaparicién pro-
gresiva de sus componentes estructurales.

Es importante destacar que los umbrales utilizados para la STE y la MHF son
extremadamente bajos. Esto se debe a que, incluso para una SNR = 10 dB, la
energia y la magnitud espectral del ruido de cinta son considerablemente menores
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Figura 5.1: Evoluciéon temporal de las tres métricas utilizadas en el detector de inactividad:
STE, ZCR y MHF, junto con sus umbrales respectivos. La figura ilustra cémo, hacia los tltimos
segundos del fragmento (~ 20-22 s), las métricas basadas en energia y magnitud espectral
descienden de manera significativa debido al final natural de la pieza musical, mientras que la
ZCR aumenta en ausencia de contenido tonal, reflejando la presencia dominante del ruido de
cinta en altas frecuencias.

que las de la senial musical. En contraste, el umbral de la ZCR es mas elevado, lo
cual resulta esperable dado que el ruido analdgico presenta variaciones de signo
mucho mas frecuentes que la senal original, aun cuando su potencia es baja.

Un comportamiento particularmente ilustrativo se observa hacia el final del
fragmento, cuando la musica se extingue: la ZCR aumenta de manera sostenida.
Esto indica que, en ausencia del contenido arménico de la senial original, prevalece
unicamente el ruido de cinta. Este incremento en la ZCR, coincide con la hipdtesis
discutida en el donde se plantea que el ruido de cinta considerado en
este trabajo posee una componente espectral que se intensifica en las bandas altas,
lo que naturalmente incrementa su tasa de cruces por cero.

Por otra parte, la sefial elegida obtuvo valores de Precision, Recall y RMSE
iguales a 34.27, 68.69 y 0.0013, respectivamente. Como se mencioné anteriormen-
te, estos resultados no son satisfactorios y esto se puede ver reflejado directamente
en la En el primer panel se observa que una proporcién considerable
de los segmentos activos fue clasificada erréneamente como inactiva, lo cual ex-
plica el valor relativamente bajo de Precision. Al mismo tiempo, puede apreciarse
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Figura 5.2: Desempefio del detector de inactividad para una sefal del conjunto de evaluacién.
En el panel superior se muestran la sefial ruidosa, la sefial limpia y los segmentos inactivos
detectados en comparacién con los segmentos etiquetados manualmente. En los paneles cen-
trales e inferiores se ilustran los perfiles espectrales de ruido esperados y detectados, tanto
sin ponderacién como aplicando A-Weighting. La figura permite visualizar simultdneamente
los aciertos y fallos en la deteccién temporal, asi como la elevada precisién alcanzada en la
estimacién espectral del ruido.

que la mayoria de los segmentos etiquetados manualmente como inactivos fueron
detectados correctamente por el algoritmo, lo que se corresponde con un Recall
significativamente mas alto.

El bajo desempeno del Precision puede justificarse a partir del comportamiento
temporal de la senal: cuando la cancién comienza a finalizar (aproximadamente
a partir de los 22s), su potencia se vuelve muy baja en comparaciéon con la del
ruido de cinta presente a un SNR = 10dB. En estas condiciones, el algoritmo
no logra distinguir adecuadamente la senal limpia en esos tramos, interpretando
dichos segmentos como inactivos.

Este comportamiento también puede observarse en la[Figura 5.1} donde alrede-
dor de los 22 s se evidencia un valor de ZCR excesivamente elevado, caracteristico
del ruido, en lugar de un ZCR mads reducido que corresponderia a la senal original.
Debido a que dicho valor queda por encima del umbral utilizado para identifi-
car tramos inactivos, estos frames son erréneamente clasificados pese a contener
actividad relevante de la sefnal.

Por otro lado, los dos paneles inferiores de muestran los perfiles es-
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pectrales de ruido —esperado y detectado— tanto sin ponderacién como aplicando
A-Weighting. En ambos casos se observa una coincidencia notable entre los perfi-
les, lo cual respalda el valor extremadamente bajo del RMSE obtenido y confirma
que, pese a los errores en la deteccion temporal, la estimacién espectral del ruido
sigue siendo altamente precisa.

5.1.2. Sustraccién espectral

El rendimiento obtenido por la configuraciéon 6ptima del algoritmo SS Cldsico
se resume en la donde se presentan los valores medios y las desviacio-
nes estandar de APAQM, APEAQ y la SNR estimada. Los hiperpardametros que
permitieron obtener estos resultados se detallan en la

En el caso del algoritmo SS Denoisify, la configuracién éptima alcanzada mues-
tra un desempeno consistente segin las mismas métricas, cuyos valores se reportan
en la Los hiperpardmetros asociados a esta configuracién se presentan
en la

Tabla 5.3: Rendimiento obtenido para la configuracién éptima del algoritmo SS Clésico.

Métrica Media Desviacion estandar

APAQM 1.94 0.91
APEAQ 0.50 0.73
SNR (dB)  22.32 3.10

Tabla 5.4: Rendimiento obtenido para la configuraciéon 6ptima del algoritmo SS Denoisify.

Meétrica Media Desviacién estandar
APAQM 1.87 0.93
APEAQ 0.33 0.45
SNR (dB) 22.35 3.24

Tabla 5.5: Configuracién éptima encontrada para el algoritmo SS Clasico, a partir de los rangos

de valores elegidos en la

Hiperpardmetro Valor

0.99
0.01
0.15

Tanto la version clasica como SS Denoisify lograron mejoras perceptuales posi-
tivas, reflejadas en los valores de APAQM y APFEAQ. No obstante, la sustraccion
espectral clasica presenté un desempeno superior, alcanzando incrementos prome-
dio mayores en ambas métricas en comparacién con SS Denoisify. Dado que la
SNR estimada resulté practicamente equivalente en ambos casos, las diferencias
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Tabla 5.6: Configuracién 6ptima encontrada para el algoritmo SS Denoisify, a partir de los

rangos de valores elegidos en la

Hiperparametro Valor

n_iter 30
0.10
0.93
0.01

sm_keep_pct 0.50

peak_thresh -60

observadas no se deben a la cantidad de ruido atenuado, sino al impacto que cada
algoritmo introduce sobre la estructura temporal y espectral de la senal.

Las desviaciones estandar relativamente elevadas en todas las métricas indican
que el rendimiento de ambos enfoques depende fuertemente de las caracteristicas
especificas de cada sefial musical, un comportamiento esperable dada la diversidad
armonica y dindmica presente en las grabaciones evaluadas.

Un aspecto particularmente relevante de estos resultados son las configuracio-
nes 6ptimas encontradas para cada algoritmo. En el caso de la sustraccion espectral
clasica, los pardametros seleccionados corresponden sistematicamente a los valores
mas extremos dentro de los rangos evaluados: un a = 0,99 que maximiza la can-
tidad de ruido sustraido, un 8 = 0,01 que fija un piso espectral extremadamente
bajo, y un p = 0,15 que aplica un filtro pasabajos més agresivo. Esta combinacién
sugiere que, para el tipo de ruido analdgico considerado, la versién clasica del al-
goritmo se beneficia de una estrategia extremadamente agresiva en la eliminacion
del ruido, incluso a costa de un mayor riesgo de distorsién. Ademas, el hecho de
que los valores 6ptimos se encuentren en los extremos del espacio de biisqueda su-
giere que la configuracién verdaderamente éptima podria ubicarse més alla de los
limites evaluados, lo cual puede ser interesante para explorar en trabajos futuros.

En contraste, la configuracién 6ptima de SS Denoisify presenta un comporta-
miento significativamente distinto: prioriza el uso del niimero méximo de iteracio-
nes (n-iter = 30), una proporcién moderada de iteraciones dedicadas al modelado
espectral (sm_keep_pct = 0.50), y un umbral de deteccién de picos sinusoidales muy
bajo (peak_thresh = -60 dB), lo que implica una deteccién amplia de componentes
tonales durante la sintesis del modelado sinusoidal. Asimismo, los valores 6ptimos
de o = 0,10 y 8 = 0,93 indican un enfoque considerablemente menos agresivo
tanto en la sustraccién como en el piso espectral. En conjunto, estos parametros
sugieren que SS Denoisify obtiene su mejor rendimiento cuando atenta el ruido
de forma mas moderada y delega un papel preponderante al modelado sinusoidal
y a la sustraccién iterativa.

Es importante mencionar que el analisis detallado del rendimiento de ambos
algoritmos se desarrollard en profundidad en las secciones siguientes.
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5.1.3. Algoritmo de reduccién de ruido musical

Los resultados obtenidos para la configuracién 6ptima del algoritmo se resumen
en la donde se presentan los valores medios y las desviaciones estdndar
de APEAQ y APAQM. La configuracién de hiperparametros asociada a estos
resultados se muestra en la

Tabla 5.7: Rendimiento obtenido para la configuracién éptima del algoritmo.

Métrica Media Desviacién estandar

APEAQ  -0.0750 1.1120
APAQM  0.0109 0.1790

Tabla 5.8: Configuraciéon 6ptima encontrada para el algoritmo de reduccién de ruido musical,
a partir de los rangos de valores elegidos en la

Hiperparametro Valor

mn_nfft 256
mn_thresh_db -25
mn_win len 44

En ambas tablas se puede destacar que el desempeno alcanzado por la confi-
guracién éptima del algoritmo de reduccién de ruido musical no es favorable. Los
valores obtenidos para APFAQ y APAQM son practicamente nulos en prome-
dio, lo que indica que el médulo no aporta mejoras significativas al proceso de
denoising. Ademas, al igual que en los casos anteriores, las desviaciones estandar
asociadas a ambas métricas son considerablemente elevadas, lo que refleja una fuer-
te dependencia del rendimiento respecto de las caracteristicas particulares de cada
grabacién. En conjunto, estos resultados sugieren que, bajo las configuraciones
evaluadas, el médulo de reduccién de ruido musical no logra contribuir de forma
consistente a la restauracién de las senales. Debido a esta razén, en las evaluaciones
y andlisis posteriores no se consideré el tltimo médulo de la implementacién.

5.2. Curvas de aprendizaje

En los capitulos anteriores se presentaron los fundamentos tedricos y meto-
dolégicos que sustentan el desarrollo y entrenamiento de los modelos de denoising
basado en redes neuronales profundas.

En particular, se entrenaron dos versiones del modelo: una utilizando exclusi-
vamente la base de datos de ruidos de cinta MagTapeDB, y otra combinando dicha
base con la coleccién de ruidos de graméfono empleada por Moliner y Vélimaéki [6].
El objetivo de esta comparacion fue evaluar si un modelo entrenado con una base
especifica para el tipo de ruido presente en las grabaciones de cinta logra un mejor
desempeno que uno entrenado con una combinacién méas diversa de ruidos, anali-
zando asi el efecto de la generalizacion frente a la especializacién del conjunto de
entrenamiento.
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En este contexto, las curvas de aprendizaje presentadas a continuacién permi-
ten analizar la evolucién del error durante el proceso de entrenamiento, tanto en
el conjunto de entrenamiento como en el de validacién. Su observacién resulta fun-
damental para evaluar la convergencia del modelo, su capacidad de generalizacién
y el impacto de la base de datos empleada en el desempeno final.

Las Figuras a [5.6] muestran la evolucién de la pérdida y del error absoluto
medio registrados durante el proceso de entrenamiento para ambos modelos con-
siderados. En cada caso se presentan las métricas de entrenamiento y validacién a
lo largo de las épocas.
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Validacion
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Figura 5.3: Evolucién de la pérdida durante el entrenamiento y la validacién para el modelo
entrenado con la base MagTapeDB.
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Figura 5.4: Evolucién de la pérdida durante el entrenamiento y la validacién para el modelo
entrenado con la base combinada MagTapeDB + Graméfono.

Al comparar las curvas correspondientes a cada modelo, se observa que la evo-
lucién de la pérdida y del MAE presentan comportamientos muy similares dentro
de una misma base de datos. En ambos casos, las curvas siguen una tendencia de-
creciente durante las primeras épocas y una posterior estabilizacion en validacién,
lo que indica que ambas métricas reflejan de manera coherente la dinamica del
proceso de aprendizaje, aunque cuantifican magnitudes distintas.
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Figura 5.5: Evolucién del MAE durante el entrenamiento y la validacién para el modelo entre-
nado con la base MagTapeDB.
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Figura 5.6: Evolucién del MAE durante el entrenamiento y la validacién para el modelo entre-
nado con la base combinada MagTapeDB + Graméfono.

Tal como se detalla en la [Subseccion 3.2.2| la funcién de pérdida utilizada
durante el entrenamiento esta definida como la suma de dos términos: el MAE
de la salida intermedia }71 y el MAE de la salida final YQ del modelo. En cam-
bio, la métrica MAFE reportada por TensorBoard corresponde Unicamente al error
absoluto medio de la segunda salida Ys.

Debido a esta relaciéon directa ambas curvas siguen una tendencia paralela,
diferencidndose més en su escala numérica que en su forma.

A partir de la época 50, tanto las curvas de pérdida como las de error abso-
luto medio muestran una clara estabilizaciéon en el conjunto de validacién. Este
comportamiento coincide con la reduccion automatica de la tasa de aprendizaje
implementada en el cédigo, donde el learning rate se reduce en un factor de 10 cada
50 épocas. Al disminuir el tamanio de los pasos del optimizador en cada actualiza-
cién, el modelo realiza un ajuste mas fino, lo que se traduce en una convergencia
mas lenta pero mas estable de las métricas de validacién.

La mayor estabilidad observada en las curvas de validacién, en comparacién
con las de entrenamiento, podria estar asociada a la forma en que se construyen
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ambos conjuntos de datos. Durante el entrenamiento, los segmentos se contaminan
en tiempo real mediante la adicién de ruido, asignandoles en cada iteracién una
SNR aleatoria dentro del intervalo 2-20 dB. Esta variabilidad hace que, dentro
de un mismo lote, coexistan ejemplos muy ruidosos y otros con ruido moderado,
lo que podria introducir una dispersiéon importante en los valores de la pérdida
y dar lugar a curvas de entrenamiento mas inestables. En cambio, el conjunto
de validacién se genera una tunica vez antes de iniciar el entrenamiento: a cada
segmento se le asigna una SNR aleatoria, también dentro del rango 2-20 dB, y
esa configuracién se mantiene fija a lo largo de todas las épocas. De esta forma, la
evaluacién se realiza siempre sobre los mismos ejemplos y niveles de ruido, lo que
tenderia a producir curvas de validaciéon maés suaves y estables.

Ademas, el rango de SNR considerado (2-20 dB) es relativamente amplio y
abarca condiciones muy distintas de degradacién. Para valores préximos a 2 dB,
el error esperado suele ser significativamente mayor que para SNR altos, de modo
que la combinacién de todos estos casos en un unico proceso de entrenamiento
podria contribuir a la dispersién observada en las curvas.

Por otro lado, al contrastar los resultados entre modelos, se observa que el mo-
delo entrenado tinicamente con la base MagTapeDB presenta valores de pérdida de
validacion ligeramente superiores a los del modelo entrenado con la base combina-
da MagTapeDB 4+ Graméfono. Sin embargo, esta diferencia no resulta concluyente
dado que puede deberse a variaciones inherentes al proceso de entrenamiento, co-
mo el ordenamiento aleatorio de los datos o la distribucién de los ejemplos en cada
conjunto.

Finalmente, en el presente trabajo las condiciones de entrenamiento difieren
sustancialmente respecto a las del estudio original de Moliner y Véaliméki. No se
dispone de las curvas de entrenamiento y validacién correspondientes al modelo
original, entrenado exclusivamente sobre la base de datos de graméfono, sin embar-
go, es razonable suponer que los autores contaban con un hardware més potente,
dado que durante la replicacién del entrenamiento en este trabajo se registraron
errores de asignacién de memoria al intentar utilizar configuraciones equivalen-
tes. Como se mencioné en el el entrenamiento se realizé en una GPU
con 12 GB de VRAM, lo que obligd a reducir el tamano de lote y ajustar otros
hiperparametros para adaptarse a la capacidad de memoria. Estas limitaciones,
detalladas en [4.4.2] , pueden explicar en parte la inestabilidad observada en las
curvas de entrenamiento.

5.3. Analisis objetivo de los modelos

Con el objetivo de evaluar cuantitativamente el desempenio de los distintos
métodos de reduccion de ruido, se procesaron todos los casos de prueba y se cal-
cularon las variaciones promedio de las métricas objetivas de calidad perceptual
PEAQ y PAQM, descritas previamente en las Secciones [£.2.3y [{.2.4]

Previo al comienzo del analisis, es importante destacar que la eleccién de estas
dos métricas no fue arbitraria: ambas ofrecen una estimacién objetiva del impacto
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perceptual que introduce un proceso, pero desde perspectivas ligeramente diferen-
tes y, por tanto, complementarias.

Durante el andlisis experimental se observé que PEAQ tiende a favorecer enfo-
ques de denoising més agresivos, en los cuales la supresién del ruido es prioritaria,
incluso a costa de introducir cierta distorsién residual en la senal limpia. Por el
contrario, PAQM penaliza con mayor severidad ese tipo de distorsiones, valorando
en cambio una preservacién mas fiel del contenido arménico y timbrico original,
aun cuando el ruido residual es algo mayor.

Esta diferencia de comportamiento hace que la combinacién de ambas métricas
proporcione una visién mas equilibrada y representativa del rendimiento real de
los modelos.

5.3.1. Desempeino general

La Figura resume el comportamiento global de cada modelo, promediando
todas las condiciones de SNR y tipos de audio. La Tabla [2.I] acompana a esta
figura y presenta los valores promedio y desviaciones estdndar de las métricas
APEAQ y APAQM para cada método, lo cual aporta una visién cuantitativa del
desempenio general.

Métrica
N APEAQ
4 - mmm APAQM

ij_}__.[..ﬁ__

T T T T T
SS SS DL DL DL
Cléasico Denoisify Graméfono MagTapeDB MagTapeDB + Graméfono

APEAQ/APAQM
o

Figura 5.7: Resumen global del desempeiio de los distintos métodos de reduccién de ruido,
evaluados mediante las métricas objetivas APEAQ y APAQM. La figura ilustra el contraste
entre las técnicas clasicas de sustraccion espectral —que muestran resultados consistentes y
relativamente estables— y los modelos basados en aprendizaje profundo, cuyo rendimiento
evidencia una mayor variabilidad y una fuerte dependencia del conjunto de entrenamiento.

En primer lugar, los métodos de sustraccién espectral exhiben desempenos
muy similares entre si, con valores promedio comparables en ambas métricas y
variabilidades moderadas. Esto sugiere que, pese a las diferencias metodoldgicas
entre ambas variantes, su comportamiento general frente a las sefiales evaluadas
es consistente.
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Tabla 5.9: Resumen global de los valores promedio y desviacién estdndar de las métricas
objetivas por modelo.

Método APEAQ oapeaq APAQM  oapagm
SS Clasico 0.392 0.439 1.963 1.390
SS Denoisify 0.202 0.489 1.856 1.360
DL Graméfono 0.070 0.835 0.532 3.477
DL MagTapeDB 0.439 0.465 1.575 3.151
DL MagTapeDB + Gramoéfono  0.638 0.696 -0.230 4.635

En contraste, los modelos basados en aprendizaje profundo muestran una di-
vergencia clara entre si, lo que indica una fuerte dependencia respecto del conjunto
de entrenamiento utilizado. En particular, el modelo DL MagTapeDB tiende a ob-
tener mejores resultados en APEAQ y APAQM que los modelos entrenados con
Gramdfono, lo cual es coherente con las condiciones de la evaluacién: todas las
pruebas se realizaron exclusivamente con ruido de cinta proveniente de la base
Analog Audio Tape Recordings. Dado que las caracteristicas espectrales y tempo-
rales del ruido de cinta difieren del ruido propio de grabaciones en gramoéfono,
es ragonable que un modelo entrenado con este iltimo no logre generalizar ade-
cuadamente al dominio del ruido de cinta. En cambio, el modelo entrenado con
MagTapeDB dispone de ejemplos representativos del tipo de ruido presente en la
evaluacién, lo que explica su desempefio superior.

Aun asi, en términos generales, los métodos de aprendizaje profundo presen-
tan un rendimiento significativamente inferior en comparacién con las técnicas
de sustraccion espectral, especialmente en la métrica APAQM, donde muestran
medias sensiblemente menores —incluso negativas en el caso del modelo DL Mag-
TapeDB+Gramdfono— y desviaciones estandar mucho mas elevadas. Esto indica
no solo una menor eficacia en la restauracién de la senal, sino también una mayor
inestabilidad frente a la variabilidad del conjunto de evaluacién. Por su parte, en
APEAQ los modelos de aprendizaje profundo pueden alcanzar valores competiti-
vos; el modelo DL MagTapeDB+Gramdfono es el que obtiene el mejor desempenio
global en esta métrica. Sin embargo, esta mejora viene acompatniada nuevamen-
te de una variabilidad considerable, lo que limita su fiabilidad en escenarios mas
generales.

Resulta relevante senalar que, en general, el margen de mejora en la restaura-
cién de las senales es mayor que el margen de deterioro: las variaciones positivas en
las métricas aparecen con mayor frecuencia que las negativas. No obstante, los mo-
delos basados en aprendizaje profundo exhiben niveles de degradacién mucho mas
pronunciados que las técnicas de sustraccién espectral, evidenciando una mayor
vulnerabilidad frente a senales que se desvian del dominio visto durante el entre-
namiento. Esto refuerza la importancia tanto del conjunto de entrenamiento como
de la capacidad de generalizacion del modelo, especialmente cuando se trabajan
sefiales con caracteristicas acusticas diferentes.
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5.3.2. Desempeno por SNR

La Figura [5.8] y la Figura ilustran la evolucién de las métricas APEAQ y
APAQM para cada modelo bajo condiciones de 10 y 16 dB de SNR. Complemen-
tariamente, las Tablas[5.10]y [5.11] presentan los valores promedio y las desviaciones
estandar correspondientes a cada caso.

1.5 SNR
. 10 dB
w16 dB
1.01
0.5
(o4
<
w
o
0.0 A
—0.5 A
-1.0 A
SS SS DL DL DL
Clasico Denoisify Gramoéfono MagTapeDBMagTapeDB + Graméfono

Figura 5.8: Variacién promedio de APEAQ para cada modelo bajo las dos condiciones de SNR
consideradas (10 y 16 dB). La figura permite observar cémo se modifica la calidad perceptual
estimada segtn el nivel de ruido de entrada y comparar la sensibilidad de cada método frente
a esta condicién.

SNR
= 10 dB
4 = 16 dB

APAQM

SS SS DL DL DL
Cléasico Denoisify Graméfono MagTapeDB MagTapeDB + Graméfono

Figura 5.9: Variacién promedio de APAQM por modelo para SNR de 10 y 16 dB. Se muestra

cémo cada técnica preserva o degrada la calidad perceptual segtin el nivel de ruido de la sefial
ruidosa, permitiendo identificar patrones de estabilidad o sensibilidad frente al SNR.
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Tabla 5.10: Resultados promedio y desviacion estdndar de las métricas objetivas para un SNR
de 10 dB.

Método APEAQ oapeaq APAQM  oapagm
SS Clasico 0.351 0.400 2.104 1.409
SS Denoisify 0.178 0.473 2.023 1.331
DL Graméfono 0.191 0.668 0.356 3.800
DL MagTapeDB 0.261 0.317 1.725 3.169
DL MagTapeDB + Gramoéfono  0.665 0.555 -0.338 5.038

Tabla 5.11: Resultados promedio y desviacion estandar de las métricas objetivas para un SNR
de 16 dB.

Método APEAQ OAPEAQ APAQM OAPAQM
SS Clésico 0.434 0.476 1.823 1.371
SS Denoisify 0.227 0.509 1.689 1.383
DL Graméfono -0.051 0.965 0.708 3.153
DL MagTapeDB 0.618 0.521 1.425 3.159
DL MagTapeDB + Gramoéfono 0.611 0.819 -0.122 4.244

Tanto SS Cldsico como SS Denoisify presentan un comportamiento estable
entre las dos condiciones analizadas. Las variaciones entre los valores medios de
APEAQ y APAQM para ambos casos son relativamente pequenias, y sus desviacio-
nes estandar se mantienen acotadas, lo que indica que la eficacia de estas técnicas
no depende principalmente del SNR del audio de entrada. Esto es coherente con
los algoritmos de sustraccion espectral, cuyo funcionamiento no incorpora explici-
tamente el valor del SNR para el procesamiento de la senal ruidosa.

Por el contrario, los modelos basados en aprendizaje profundo denotan un com-
portamiento mucho maés irregular y sin una tendencia clara asociada al SNR. Tanto
DL Gramdéfono como DL MagTapeDB y su combinacion muestran variaciones sig-
nificativas entre 10 y 16 dB, tanto en el sentido de mejora o deterioro como en la
magnitud de la dispersién. Esta inestabilidad puede explicarse por la fuerte depen-
dencia de estos modelos respecto de los datos utilizados durante el entrenamiento.
En particular, las redes, como se describe en la[Subseccion 3.2.1] se entrenaron con
un rango considerablemente amplio de SNR —entre 2 y 20 dB—, por lo que el
modelo debe aprender simultaneamente a manejar niveles de ruido muy distintos,
lo cual dificulta una generalizacién adecuada para condiciones especificas como las
evaluadas en este trabajo.

Estos resultados muestran que las técnicas cldsicas mantienen un desempeno
mas predecible y robusto frente a cambios en el SNR, mientras que los modelos
neuronales son mas sensibles al rango de condiciones visto en entrenamiento y, por
ello, muestran una estabilidad mucho menor.
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5.3.3. Desempeiio por categoria de audio

Las Figuras y junto con las Tablas [5.13H5.15] resumen el compor-
tamiento de cada modelo segun la categoria de contenido musical presente en la

senal. Este andlisis permite evaluar hasta qué punto la caracteristica espectral y
temporal de las grabaciones de audio influye en la eficacia del algoritmo de denoi-
$ing.
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Figura 5.10: Comparacién de APEAQ por tipo de contenido musical. Las barras indican valores
promedio y las lineas de error su desviacién estandar.
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Figura 5.11: Comparacién de APAQM por tipo de contenido musical. Las barras indican valores
promedio y las lineas de error su desviacién estandar.
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Método APEAQ oapeaq APAQM  oapagm
SS Clasico 0.770 0.332 0.758 0.596
SS Denoisify 0.607 0.402 0.663 0.659
DL Graméfono -0.297 0.794 -1.625 2.326
DL MagTapeDB 0.379 0.352 0.226 1.050
DL MagTapeDB + Gramoéfono 0.145 0.806 -2.595 2.899

Método APEAQ OAPEAQ APAQM OAPAQM
SS Clasico 0.112 0.432 2.138 1.444
SS Denoisify -0.180 0.537 2.081 1.314
DL Graméfono 0.170 1.071 1.625 2.475
DL MagTapeDB 0.484 0.508 2.393 2.179
DL MagTapeDB + Gramoéfono  0.932 0.616 1.372 2.779

Método APEAQ OAPEAQ APAQM OAPAQM
SS Clésico 0.281 0.284 3.117 1.084
SS Denoisify 0.168 0.293 3.007 1.052
DL Graméfono 0.374 0.783 3.845 2.303
DL MagTapeDB 0.481 0.465 3.807 3.331
DL MagTapeDB + Graméfono  0.851 0.502 3.322 3.173

Método APEAQ OAPEAQ APAQM OAPAQM
SS Clasico 0.407 0.418 1.839 1.188
SS Denoisify 0.213 0.357 1.672 1.192
DL Graméfono 0.033 0.488 -1.717 3.205
DL MagTapeDB 0.414 0.535 -0.128 3.639
DL MagTapeDB + Gramoéfono — 0.622 0.576 -3.021 5.720

Tabla 5.12: Resultados promedio y desviacién estandar de las métricas objetivas para el tipo
de audio Mdsica popular.

Tabla 5.13: Resultados promedio y desviacién estandar de las métricas objetivas para el tipo
de audio Muchas fuentes.

Tabla 5.14: Resultados promedio y desviacién estandar de las métricas objetivas para el tipo
de audio Pocas fuentes.

Tabla 5.15: Resultados promedio y desviacién estandar de las métricas objetivas para el tipo
de audio Vocal.

En primer lugar, se observa que, en promedio, la mayoria de los valores de
APEAQ y APAQM son positivos en casi todas las categorias, lo que indica que
los modelos tienden a mejorar la calidad perceptual de las senales en términos
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globales. Sin embargo, los valores medios difieren de manera sustancial entre los
tipos de senal, y las desviaciones estdndar son elevadas, lo cual sugiere que el
grado de mejora no depende exclusivamente del tipo de contenido, sino también
de caracteristicas particulares de cada grabacion.

Entre todas las categorias analizadas, la clase de Pocas Fuentes es la que mues-
tra un desempeno més estable y consistente. Tanto los métodos de sustraccion
espectral como los modelos de aprendizaje profundo alcanzan en este grupo sus
mejores resultados, especialmente segin la métrica APEAQ. Esto sugiere que la
menor complejidad espectral de estas seniales —con armonicos bien definidos y
poca superposicion de fuentes sonoras— facilita tanto el modelado espectral y la
sustraccion iterativa como la generalizacion de los modelos entrenados con cate-
gorfas de audio diferentes.

Por otro lado, la categoria Muchas Fuentes representa el caso méas desafiante.
En términos de PEAQ, los modelos de aprendizaje profundo —particularmente
aquellos entrenados con MagTapeDB— muestran un desempeflo competitivo e
incluso superior al de los métodos de sustraccién espectral. Una posible explicacién
de este comportamiento es la presencia de musica clasica y material polifénico
dentro de esta categoria, cuyo contenido resulta més afin al dominio actstico de
las grabaciones incluidas en MusicNet, utilizada durante el entrenamiento. Esta
mayor cercania entre los patrones espectrales del conjunto evaluado y los datos de
entrenamiento facilita la capacidad de generalizacién de los modelos basados en
aprendizaje profundo, lo cual se refleja en el mejor desempeno observado para este
tipo de senales.

En esta categoria se observa, ademas, una diferencia marcada entre los dos
métodos de sustraccién espectral. Segun los valores de APEAQ, SS Denoisify ob-
tiene un desempeno considerablemente peor que SS Cléasico, lo que sugiere que
el modelado espectral puede volverse contraproducente cuando la senal presenta
una alta complejidad espectral, caracterizada por multiples fuentes superpuestas
y patrones armonicos dificiles de representar mediante el modelado sinusoidal. En
estos casos, el enfoque mas simple y directo resulta mas adecuado y preserva de
mejor manera la estructura original del audio.

Por otra parte, en el caso de Musica Popular, el comportamiento muestra
una mayor dependencia al tipo de modelo. Los métodos de sustraccién espectral
logran mejoras claras y estables, mientras que los modelos basados en aprendizaje
profundo presentan, en promedio, un deterioro claro de la senial. A diferencia del
grupo Muchas Fuentes, esta disparidad puede explicarse por la distancia entre la
categoria Musica Popular y el contenido presente en las bases de entrenamiento,
ya que dicha musica del conjunto personalizado no se encuentra suficientemente
representada en el conjunto de datos de MusicNet.

La categoria Vocal también revela contrastes importantes. En este caso, SS De-
noisify muestra un rendimiento inferior al de SS Cldsico en ambas métricas, po-
siblemente porque su etapa de modelado espectral intenta preservar o reconstruir
transitorios en un tipo de senal que, por lo general, carece de ellos. Este desajuste
puede introducir artefactos indeseados provenientes de los transitorios preservados
del ruido, afectando negativamente la calidad de la reconstruccién y explicando el
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deterioro observado en esta categoria.

En los modelos de aprendizaje profundo ocurre un patrén similar al observado
en otras categorias: PEAQ tiende a registrar mejoras o valores moderadamente
positivos, mientras que PAQM identifica degradaciones significativas. Segun lo
observado empiricamente, esta discrepancia sugiere que estos modelos aplican una
supresién del ruido mas agresiva, priorizando la eliminacion del ruido por sobre la
preservacion de la estructura armoénica de la senal.

Este comportamiento puede observarse de forma clara en el modelo DL Mag-
TapeDB + Gramdfono, cuya dualidad resulta particularmente marcada: alcanza
algunos de los valores mas altos de APEAQ, pero simultdneamente obtiene algunos
de los peores resultados en APAQM. En otras palabras, logra una reduccién del
ruido muy efectiva —aspecto que PEAQ tiende a valorar positivamente—, pero lo
hace a costa de introducir distorsiones que alteran componentes musicales relevan-
tes. Dado que PAQM es més sensible a la preservacién timbrica y a la fidelidad de
los arménicos, penaliza con severidad estas distorsiones, lo que explica el deterioro
observado en esta métrica.

Para complementar el andlisis, las Figuras [5.12H5.15| presentan gréaficos de dis-
persién que muestran la relacion entre APEAQ (eje z) y APAQM (eje y) para cada
senal procesada. Esta representaciéon permite evaluar simultdneamente el efecto del
denoising en ambas dimensiones perceptuales: los puntos en el cuadrante superior
derecho indican mejoras conjuntas, mientras que los del cuadrante inferior izquier-
do reflejan deterioro en ambas métricas.
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Figura 5.12: Distribucién de APEAQ y APAQM para la categoria Musica Popular.

De manera consistente con los resultados anteriores, los métodos de sustraccién
espectral exponen una distribuciéon compacta y estable en todas las categorias. En
la Figura[5.12] por ejemplo, SS Cldsico y SS Denoisify se concentran mayoritaria-
mente en la regién positiva, con una dispersion moderada y muy pocos casos de
degradacién simultanea. Este comportamiento confirma su naturaleza robusta e
independiente del tipo de contenido musical: aun cuando la categoria es exigente,
el método rara vez produce distorsiones severas.
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Figura 5.14: Distribucién de APEAQ y APAQM para la categoria Pocas Fuentes.

Por el contrario, los modelos basados en aprendizaje profundo muestran una
variabilidad notablemente mayor. Un ejemplo claro se observa también en la Figu-
ra[5.12 donde varios puntos correspondientes a DL Gramdfono y DL MagTapeDB
+ Gramdfono se sitian en la regién negativa, indicando un deterioro perceptual
en ambas métricas. Sin embargo, esta tendencia cambia drasticamente en cate-
gorias mas afines al contenido de sus bases de entrenamiento. En la Figura [5.13
dichos modelos pasan a registrar numerosos casos positivos —en algunos casos en-
tre los mejores del conjunto— aunque manteniendo una dispersién considerable.
Este comportamiento reafirma su capacidad de lograr mejoras significativas, pero
principalmente cuando la senal de entrada se asemeja al dominio de MusicNet.

Los resultados evidencian que la eficacia de cada método depende fuertemente
de las caracteristicas del contenido espectral de la senal. Los métodos de sustraccién
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espectral muestran

mayor estabilidad y predictibilidad entre categorias, mientras

que los modelos de aprendizaje profundo exponen un desempeno mas variable,
fuertemente condicionado por el dominio actistico de su entrenamiento.

5.3.4. Desempeio en tiempos de ejecucion

Ademaés de las métricas perceptuales, se analizé el tiempo promedio de pro-
cesamiento de cada modelo, considerando la duracién total del flujo de inferencia
o del algoritmo correspondiente. La Figura [5.16| muestra los tiempos medios y su
dispersién, mientras que la Tabla [5.16] resume los valores numéricos obtenidos.

N N w
o (%] o
L L L

Tiempo promedio [s]

-
v
L

10

SS SS DL DL DL
Clasico Denoisify Graméfono MagTapeDB MagTapeDB + Gramdéfono
Modelo

Figura 5.16: Tiempos

promedio de procesamiento por modelo. La figura evidencia las diferen-

cias de demanda computacional entre técnicas de sustraccién espectral y modelos de aprendi-

zaje profundo.
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Tabla 5.16: Tiempos promedio de procesamiento por modelo, con su desviacién estandar.

Método Tiempo medio [s] Desv. estdndar [s]
SS Clasico 0.592 0.020
SS Denoisify 14.774 0.509
DL Gramoéfono 37.462 2.378
DL MagTapeDB 38.861 3.743
DL MagTapeDB + Gramoéfono 37.650 2.276

Los resultados evidencian una diferencia significativa en la demanda compu-
tacional entre los métodos basados en procesamiento de senales y los modelos de
aprendizaje profundo. El algoritmo S5 Cldsico presenta el menor tiempo prome-
dio de ejecucion (alrededor de 0.6 s por archivo), seguido por SS Denoisify, cuyo
tiempo medio asciende a unos 15 s. En este ultimo caso, el incremento se debe
principalmente a la incorporacién de modelado espectral y de la sustraccion ite-
rativa, cuyo tiempo total depende del nimero de iteraciones configuradas (en este
caso 30). Ambos métodos son totalmente ejecutables en CPU sin necesidad de
aceleracién por GPU, lo que refuerza su aplicabilidad en contextos de bajo costo
computacional o en entornos de procesamiento en tiempo real.

Por otra parte, los modelos de aprendizaje profundo presentan tiempos de
inferencia considerablemente mayores, en torno a 37-39 s por archivo. Aunque
tampoco requieren GPU para la inferencia, su ejecucion se beneficia notablemente
de su uso, como en este caso. Ademds, debe considerarse que estos valores no
reflejan los requisitos computacionales del entrenamiento de las redes neuronales,
los cuales son 6rdenes de magnitud superiores tanto en tiempo como en demanda
de recursos, y constituyen una etapa sustancial en el desarrollo de estos modelos.

En total, los resultados de esta seccion muestran que los métodos de sustrac-
cién espectral —tanto el clasico como su versién con modelado espectral— ofrecen
una buena relacién entre desempeiio perceptual y eficiencia computacional. Si bien
los modelos de aprendizaje profundo logran en algunos casos resultados percep-
tualmente superiores, los métodos basados en procesamiento de senales alcanzan
rendimientos comparables, e incluso mejores en ciertos contextos, con tiempos de
procesamiento mucho menores. Esto sugiere que, al menos dentro del alcance de
este experimento, las soluciones de procesamiento clasico continian siendo una al-
ternativa altamente competitiva en tareas de restauracién de audio, especialmente
cuando la eficiencia es un factor determinante.

En la siguiente seccién se complementa este andlisis con una evaluacion sub-
jetiva de las grabaciones procesadas, contrastando las observaciones perceptuales
con los resultados cuantitativos obtenidos en las métricas objetivas.

5.4. Escucha critica de las senales restauradas

En esta seccion se presentan los resultados de la escucha critica realizada so-
bre las grabaciones restauradas. No se trata de un andélisis exhaustivo, sino de la
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seleccién de algunas grabaciones representativas que permiten ilustrar ciertos pro-
blemas observados y valorar de manera cualitativa el desempeno de las técnicas
evaluadas.

En términos generales, ambas técnicas —tanto la sustraccién espectral como
el modelo de aprendizaje profundo— producen senales con una reduccién de ruido
claramente perceptible y, en la mayoria de los casos, una preservacion adecuada
de la senal, obteniendo un resultado final satisfactorio. No obstante, con el fin de
complementar el andlisis objetivo, se describen aqui las principales distorsiones
detectadas en los casos donde estas técnicas presentan limitaciones.

Se realizard un anélisis cualitativo de las distorsiones introducidas por los mo-
delos DL MagTapeDB y SS Cldsico / SS Denoisify, dado que fueron los métodos
que mostraron el mejor desempeno global en las evaluaciones objetivas. Para este
fin se seleccioné un ejemplo en el que las distorsiones resultan particularmente
evidentes, lo cual permite ilustrar con claridad los limites y comportamientos ca-
racteristicos de cada enfoque.

A fin de mantener la comparacién en un escenario realista, se utilizaron senales
con una SNR de 16 dB, valor que se aproxima al nivel de ruido tipico observado
en las grabaciones histéricas de Lauro Ayestaran, segun el trabajo de L.Irigaray et
al. [5].

Es importante destacar que las distorsiones aqui presentadas no aparecen de
forma sistemédtica en todas las senales: su presencia y magnitud varian segun el
contenido musical y las particularidades de cada audio. El ejemplo seleccionado
corresponde, por tanto, a un caso representativo pero deliberadamente exigente que
permite examinar con mayor claridad los artefactos generados por cada modelo.

Finalmente, se incluye también un andlisis auditivo sobre fragmentos reales
del archivo sonoro de la colecciéon de Lauro Ayestardn, procesados con los tres
modelos considerados. Estos ejemplos permiten observar cémo se trasladan los
comportamientos identificados en senales sintéticas o controladas a un escenario
histérico y acusticamente méas complejo. Ademds, para acompanar el analisis y
facilitar la exploracion de los resultados obtenidos, se desarrollé una péagina web
interactiva [44].

5.4.1. Distorsiones resultantes de la restauracion
Ruido tonal y agudo

La primera distorsién analizada aparece al procesar una balada interpretada
por piano y voz femenina. En este caso, la distorsién producida por el modelo
DL MagTapeDB se manifiesta como un tono agudo en torno a los 6 kHz, clara-
mente audible aunque de impacto menor en comparacién con otras distorsiones
que se describirdn més adelante. En la se muestran los espectrogra-
mas correspondientes a este ejemplo, en el siguiente orden: audio limpio, audio
contaminado con ruido a 16 dB, audio restaurado y residuo. En el tercer espectro-
grama se aprecia con claridad la aparicién del tono en cuestién, visible como una
linea horizontal localizada aproximadamente entre 5 y 6 kHz, ausente en la senal
original.
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Figura 5.17: Espectrogramas del ejemplo seleccionado: audio limpio, audio contaminado con
ruido de cinta a 16dB, sefial restaurada mediante DL MagTapeDB y residuo. En la sefal
restaurada se aprecia un tono agudo artificial —marcado en rojo— alrededor de 5—6 kHz,
producto del realce involuntario de un componente del ruido que el modelo interpreta errénea-
mente como parte de la sefial original.

Esto ocurre porque el ruido original contiene una componente marcada en esa
banda, y el modelo atenia fuertemente el contenido circundante, dejando dicha
componente aislada. De este modo, no se trata de un artefacto generado desde
cero por el modelo, sino de un componente del propio ruido que es interpretado
erréneamente como parte de la senal ttil. Esto también explica su presencia in-
termitente a lo largo del conjunto de evaluaciones: bajo otras condiciones puede
quedar enmascarado o, directamente, no aparecer en el ruido especifico utilizado.

Este fenémeno ilustra nuevamente una limitacién estructural de los modelos
de aprendizaje profundo aplicados a la restauracién de audio: al basar sus decisio-
nes en patrones estadisticos aprendidos durante el entrenamiento, pueden realzar
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inadvertidamente componentes del ruido que coinciden con dichas regularidades,
generando asi distorsiones nuevas o amplificando elementos espurios presentes en
la senal de entrada.

Los valores correspondientes a esta restauracién se presentan en la
donde se observa el desempeno del modelo frente al ejemplo analizado en com-
paracién con sus promedios globales y con los promedios obtenidos dentro de la
categoria Pocas Fuentes.

Tabla 5.17: Valores de APEAQ y APAQM obtenidos por el modelo DL MagTapeDB al restau-
rar un ejemplo con ruido de cinta a 16 dB. Se incluyen, a modo de referencia, los promedios:
global y correspondiente a la categoria Pocas fuentes.

Referencia APEAQ APAQM
Ejemplo (16 dB) 0.311 5.525
Promedio Pocas Fuentes 0.481 3.807
Promedio Global 0.439 1.575

Vale la pena destacar que el valor de APEAQ obtenido es inferior tanto al
promedio global del modelo como al promedio especifico de la categoria Pocas
Fuentes, lo que indica que la restauracién resulta perceptualmente menos efectiva
que en la mayoria de los casos evaluados. No obstante, el valor de APAQM supera
ampliamente ambos promedios, reflejando que, pese a la presencia de distorsién
tonal, el método logra una mejora sustancial desde la perspectiva de esta métrica.

Filtrado de bajas frecuencias

El filtrado de bajas frecuencias esta presente en varios audios de la base de
datos para el modelo DL MagTapeDB, aunque en la mayoria de los casos con
menor impacto perceptual. Sin embargo, en el ejemplo que se presenta a continua-
cion, la distorsion adquiere un cardcter severo y modifica de forma significativa la
estructura espectral de la senal.

La distorsién analizada consiste en una atenuacién pronunciada de las bajas
frecuencias por parte del modelo, fenémeno claramente visible en la
En el espectrograma del audio limpio se aprecian ataques percutivos con alta
energia en las bandas graves; estos ataques siguen presentes tras la adiciéon de ruido,
pero resultan notablemente reducidos luego del proceso de denoising. El residuo
—cuarto espectrograma— concentra gran parte de la energia eliminada justamente
en esas zonas de baja frecuencia, evidenciando que el modelo suprime componentes
legitimos de la senal. Este efecto también se percibe, aunque de forma maés sutil,
en el audio restaurado, donde la region grave aparece visiblemente empobrecida
respecto del audio original.

El fragmento considerado posee una instrumentaciéon particularmente diversa,
con timbres poco habituales y una mezcla compleja. Podria suponerse que la au-
sencia de varios de estos instrumentos en la base de entrenamiento conduciria a una
eliminacién mas agresiva de los mismos; sin embargo, el modelo no atentia de forma
significativa estos timbres inusuales, sino que afecta principalmente los elementos
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Figura 5.18: Espectrogramas del ejemplo analizado: audio limpio, audio contaminado con ruido
de cinta a 16 dB, audio restaurado con DL MagTapeDB vy residuo, respectivamente. En este
Gltimo puede observarse la atenuacién excesiva de componentes de baja frecuencia introducida
por el método.

percutivos de la mezcla, aun cuando dicho tipo de contenido esté representado en
los datos de entrenamiento.

Este comportamiento sugiere que la distorsién observada no se explica Uni-
camente por la falta de familiaridad con ciertos timbres, sino por la forma en
que el modelo interpreta la energfa transitoria en bajas frecuencias, tendiendo a
confundirla con ruido y suprimiéndola en exceso.

En este caso, las métricas objetivas presentadas en la evalian la
restauracion de forma marcadamente negativa. Ambas métricas muestran valores
muy inferiores a sus respectivos promedios —e incluso negativos en el caso de
APAQM— lo que indica que el proceso de denoising no solo no mejora la senal,
sino que la degrada perceptualmente en comparaciéon con el audio ruidoso. Esta
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penalizacion severa es coherente con la distorsion analizada anteriormente, donde el
modelo atenia de manera excesiva las componentes de baja frecuencia, eliminando
informacién estructural relevante del audio original.

Tabla 5.18: Valores de APEAQ y APAQM obtenidos por el modelo DL MagTapeDB al res-
taurar un ejemplo contaminado con ruido de cinta a 16 dB. Se incluyen, como referencia, los
promedios globales del modelo y los promedios correspondientes a la categoria Muchas fuentes.

Referencia APEAQ APAQM
Ejemplo (16 dB) 0.376 -1.337
Promedio Muchas Fuentes 0.484 2.393
Promedio Global 0.439 1.575

Eliminacién de transitorios

Esta distorsién es la mas frecuente identificada en la base de datos de musica
personalizada y aparece en todos los modelos evaluados. En el caso del modelo
DL MagTapeDB, su impacto es particularmente severo, generando una sensacion
perceptual de audio “ahogado” debido a la supresion sistematica de transitorios.

Un ejemplo representativo se muestra en la donde se ilustran
los segundos finales de un audio de folklore uruguayo interpretado con guitarra
vy voz. En el espectrograma del audio restaurado, las regiones marcadas en rojo
corresponden a transitorios que son eliminados por completo, mientras que otros
son atenuados parcialmente.

Esta pérdida se refleja en el espectrograma del residuo, donde aparecen barras
verticales de alta energia asociadas a estos eventos transitorios descartados. Dado
que estructuras de este tipo no estan adecuadamente representadas en el conjunto
de entrenamiento del modelo, su supresion resulta consistente con lo observado en
otros audios con caracteristicas similares.

Aunque de manera menos pronunciada, los métodos de sustraccién espectral
también presentan pérdidas parciales de transitorios. En la se muestra
el mismo fragmento procesado mediante 5SS Denoisify. A diferencia del modelo
de aprendizaje profundo, el transitorio marcado en rojo se preserva, aunque con
menor intensidad. El residuo revela lineas verticales que confirman una atenuacién
generalizada de estos eventos.

Ademids de la pérdida de transitorios, ambas figuras permiten identificar otras
distorsiones relevantes. Las regiones marcadas en violeta muestran la supresién
completa de componentes agudas que, si bien estaban fuertemente enmascaradas
por el ruido, forman parte de la senal original. Un fenémeno relacionado ocurre
en el decaimiento final del audio: al encontrarse parcialmente oculto por el rui-
do, el modelo lo interpreta como ruido residual y lo elimina, generando un final
perceptualmente mas abrupto que el presente en la grabacién limpia.

A pesar de la presencia de las distorsiones descritas, las métricas objetivas
confirman que, en ambos modelos, el resultado restaurado constituye una mejora
respecto al audio ruidoso, tal como se aprecia en las[Tabla 5.19| y [Tabla 5.20}
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Frecuencia [Hz] Frecuencia [Hz] Frecuencia [Hz]

Frecuencia [Hz]

Tiempo [s]

Figura 5.19: Espectrogramas de un pasaje de guitarra y voz: audio limpio, audio contaminado
con ruido de cinta a 16 dB, audio restaurado con DL MagTapeDB y residuo, respectivamente.
En rojo se indican transitorios eliminados y en violeta la supresién de componentes agudas
enmascaradas por el ruido.

En el caso de DL MagTapeDB, el desempeiio obtenido para este ejemplo se
sitia por encima tanto del promedio global del modelo como del promedio corres-
pondiente a la categoria Pocas fuentes. Esto indica que, si bien el audio restaurado
presenta artefactos perceptibles, no se trata de uno de los casos més severos den-
tro del conjunto evaluado; por el contrario, mantiene un rendimiento claramente
superior al promedio. Algo similar ocurre con SS Denoisify, cuyos valores tam-
bién se mantienen por encima del promedio global, aun cuando la distorsién de
transitorios sigue siendo apreciable en la senal restaurada.
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Frecuencia [Hz] Frecuencia [Hz] Frecuencia [Hz]

Frecuencia [Hz]

Tiempo [s]

Figura 5.20: Espectrogramas del mismo fragmento procesado con SS Denoisify. En rojo se
preserva un transitorio; en violeta se observan componentes agudas suprimidas; el tercer es-
pectrograma muestra ruido musical introducido por el método.

Tabla 5.19: Tabla de APEAQ y APAQM para el tema Milagro (Larbanois - Carrero) elimi-
nando ruido de SNR 10dB y 16dB a travez del método DL MagTapeDB, en comparacién con
valores promedio

Referencia APEAQ APAQM
Ejemplo (16dB) 0.608 3.242
Promedio Pocas Fuentes 0.481 3.807
Promedio Global 0.439 1.575

Ruido musical

La distorsion predominante en los modelos de sustraccién espectral es el ruido
musical, presente en todos los audios de la base de datos con distintos grados de
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Tabla 5.20: Valores de APEAQ y APAQM obtenidos por el método SS Denoisify al restaurar
un ejemplo con ruido de cinta a 16 dB. Se incluyen, como referencia, los promedios globales
del modelo y los correspondientes a la categoria Pocas fuentes.

Referencia APEAQ APAQM
Ejemplo (16 dB) 0.266 2.755
Promedio Pocas Fuentes 0.168 3.007
Promedio Global 0.202 1.856

intensidad.

Tal como se observa en la[Figura 5.20] el ruido musical se identifica con claridad
al comparar las regiones de silencio entre los distintos espectrogramas. En el audio
limpio, estas zonas aparecen como areas lisas y uniformes, de color azul oscuro,
reflejando la ausencia de energia. Tras la adicién de ruido, dichas regiones se aclaran
y adoptan un tono celeste y verde, coherente con el incremento de energia de banda
ancha, aunque atin conservan un patron visual relativamente homogéneo. En el
audio restaurado, si bien la energia del ruido disminuye —visible por la tonalidad
mas oscura—, la textura se vuelve granular, fragmentada y no uniforme, lo que
constituye la firma tipica del ruido musical.

Tabla 5.21: Valores de APEAQ y APAQM obtenidos por el método SS Clasico al restaurar un
ejemplo con ruido de cinta a 16 dB. Se incluyen, como referencia, los promedios globales del
modelo y los correspondientes a la categoria Pocas fuentes.

Referencia APEAQ APAQM
Ejemplo (16 dB) 0.386 2.651
Promedio Pocas Fuentes 0.281 3.117
Promedio Global 0.392 1.963

Los valores objetivos correspondientes se presentan en la Aunque
la restauracién recibe una calificacién positiva —indicando una mejora respecto al
audio contaminado—, el desempeno se sitiia por debajo de los promedios globales
y especificos de la categoria. Esto sugiere que, en este ejemplo en particular, la
presencia de ruido musical es mas intensa que en otros casos del conjunto evaluado.

Como era de esperar, el audio procesado mediante SS Cldsico presenta un com-
portamiento muy similar. La tabla incluida en la confirma esta cercania
en el rendimiento, lo que pone de manifiesto que ambos métodos comparten las
mismas limitaciones estructurales inherentes a la sustraccién espectral.

5.4.2. Analisis sobre grabaciones de archivo musical

Con el fin de analizar el comportamiento de los algoritmos frente a material
histérico real, se presentan a continuacion dos estudios de caso basados en graba-
ciones auténticas, es decir, registros cuyo ruido no ha sido agregado sintéticamente.
Al tratarse de materiales sin versiéon “limpia”, no es posible aplicar las métricas
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objetivas previamente utilizadas. No obstante, resulta pertinente realizar una escu-
cha critica y un anélisis cualitativo de los resultados obtenidos con los tres métodos
con mejor desempeno general: los dos enfoques de sustraccion espectral y el modelo
entrenado con la base MagTapeDB.

Caso 1: “Estilo”, por Amalia de la Vega

Para este analisis se seleccioné una grabacion historica de Amalia de la Vega
perteneciente al archivo de Lauro Ayestardan. Tal como documenta Ruiz , y
citando textualmente:

“El 19 de marzo de 1949 Amalia de la Vega grab6 para Ayestaran en
una sesion hecha en la casa del musicélogo, en ese entonces ubicada
en la calle Chuy 3208, en Montevideo. Tenia 35 anos e interpretd
cinco estilos, cinco milongas, dos cifras y una vidalita. Se trata de las
Unicas grabaciones conocidas en las que se acompaifia a si misma con
guitarra.” [45]

Este registro corresponde a 30 segundos de uno de los estilosEl interpretados por
la artista en dicha sesién. En la Figura [5.21] se muestra una fotografia de Amalia
de la Vega durante la década en que fue registrada por Ayestaran.

Figura 5.21: Amalia de la Vega, quien en 1949 realizd para Ayestaran una sesién de grabacién
en la que se acompafi6é a si misma con guitarra.

Es importante aclarar que la fuente original no es una cinta, sino un disco
instantaneo de 78 rpm, que posteriormente fue respaldado en cinta magnética.
Por lo tanto, el ruido presente en el material actual es, principalmente, la suma
de dos degradaciones distintas: el ruido de superficie caracteristico de los discos
instantdneos y el propio de la cinta magnética. (Ver Anexo y Anexo .

En 1992, Walter Diaz realizé una transferencia en casetes C90 de las cintas y
posteriormente, se presume en 1993, se efectué una nueva copia de esos casetes
hacia cinta de audio digital.

'El Estilo es un género musical folclérico rioplatense caracterizado por el canto acom-
panado de guitarra. También se lo conoce como Triste, por su cardcter melancélico, o
Décima, debido a su estructura poética de diez versos. [46].
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En consecuencia, el archivo que llega a la actualidad no solo hereda los ruidos
propios del disco instantaneo original y de la cinta analdgica intermedia, sino que
también incorpora el ruido anadido en la copia a casete y los posibles artefactos
menores de la digitalizacion, como el ruido de cuantizacién.

En consecuencia, el archivo que llega a la actualidad no solo hereda los ruidos
propios del disco instantaneo original y de la cinta analdgica intermedia, sino que
también incorpora el ruido anadido en la copia a casete y los posibles artefactos
menores de la digitalizaciéon, como el ruido de cuantizacién.

La Figura ilustra el disco instantdneo de acetato utilizado en la sesién.

Figura 5.22: Disco de acetato de base metélica de 25 cm de didametro utilizado por Lauro
Ayestaran para grabar a Amalia de la Vega en 1949. Archivo del CDM.

En el audio original se perciben con claridad la voz de Amalia de la Vega y el
acompafiamiento de guitarra, ambos inmersos en un ruido de fondo. Aunque parte
de ese ruido proviene del hiss de la cinta, la textura granular e irregular podria
estar relacionada con el disco de 78 rpm.

En el espectrograma del audio original (Fig. se observa que el ruido
concentra buena parte de su energia en las bandas altas, por encima de aproxi-
madamente 4 kHz. Esta energia no es completamente uniforme: existen regiones
donde el ruido es mdas denso y otras donde disminuye notablemente. El ruido pre-
senta una textura marcadamente irregular, con aspecto estriado o rasgado. Esto
podria deberse a las microimperfecciones del surco del disco original, que generan
fluctuaciones finas en las altas frecuencias.

La voz y la guitarra, aunque discernibles y con presencia timbrica definida,
no estan libres de distorsion, lo que produce un efecto levemente apagado o “aho-
gado”. En este caso es importante remarcar que dicha distorsién es inherente al
registro original y no un artefacto introducido por los métodos de reduccién de
ruido evaluados.

Por otro lado, en la voz de Amalia se perciben pequenas oscilaciones que
podrian sugerir la presencia de dropouts. Sin embargo, dado el origen en disco
instantaneo, es igualmente plausible que se trate de ligeras variaciones mecanicas
propias del soporte (pérdida momentanea de contacto, rugosidad superficial, etc.),
por lo que no es posible confirmarlo con certeza en el espectrograma.
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Si bien los dropouts pueden mitigarse parcialmente, no constituyen ruido adi-
tivo y por ende no son el objetivo de este trabajo ni de las técnicas utilizadas. Su
tratamiento requiere métodos alternativos, como técnicas de inpainting que
reconstruyen la region faltante a partir del contexto.
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Figura 5.23: Espectrograma del audio original de Amalia de la Vega, donde se observa la
distribucién espectral del ruido y la presencia conjunta de la voz y la guitarra antes de cualquier
proceso de reduccién de ruido.

En el resultado obtenido a partir de SS Cldsico, tanto en la escucha como en
el espectrograma procesado se aprecia una reduccion de ruido claramente percep-
tible. El método atenia de manera efectiva el soplido de fondo, Si bien algunas de
las bandas descritas previamente permanecen presentes, el efecto de denoising es
evidente y contribuye a una mayor limpieza general del registro.

Al tener menos ruido, la guitarra se distingue con mayor claridad y su textura
es muy similar a la del material original, pese a la degradacién propia ya men-
cionada. En la Fig. [5.24] puede apreciarse que el método atenia principalmente
las componentes de ruido en las bandas altas, particularmente por encima de los
4 kHz.

No obstante, al analizar el espectrograma del residuo y escuchar el audio co-
rrespondiente, se advierte que también se elimina una cantidad muy pequena de
contenido de baja frecuencia asociado a la guitarra, aunque se requiere una escucha
cuidadosa para percibirlo.

Por otra parte, la voz aparece de forma marcada en el residuo, lo que indica
que parte de su energia se solapa espectralmente con el ruido y es parcialmente
retirada junto con él.

En el caso de SS Denoisify se opté por hacer una reduccién de ruido mas agre-
siva que la utilizada en la version clasica, ajustando algunos de los hiperparametros
por defecto del método Denoisify a fin de obtener una mayor atenuacién del ruido.
El resultado es coherente con lo esperado: se percibe una reduccién de ruido mas
profunda, pero acompanada de la apariciéon de ruido musical.

En el espectrograma correspondiente (Fig. |5.25) este fenémeno se ve como
pequenos puntos o trazas aisladas de energia, especialmente en las bandas altas
donde originalmente predominaba el ruido.

El residuo de este método muestra, efectivamente, una mayor cantidad de
contenido removido en comparacion con la versién cldsica, incluyendo tanto mas
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Figura 5.24: Espectrogramas del método SS Clasico aplicado al audio de Amalia de la Vega.
Arriba: sefal procesada, donde se observa la atenuacién del ruido de alta frecuencia y la mejora
general de la claridad. Abajo: espectrograma del residuo, que muestra las componentes ruidosas
eliminadas y la pequefia porcién de seiial Gtil retirada.

ruido como una pequena fraccién adicional de senial til, lo cual coincide con la
impresién auditiva.

Como es habitual en este tipo de técnicas, se observa nuevamente el compromi-
so entre una mayor reduccién de ruido y el incremento de artefactos perceptuales.
En este caso particular, el método puede permitirse ser més agresivo debido a que
el registro original ya presenta una degradacion inherente en la voz y la guitarra;
es decir, la riqueza timbrica del material no es especialmente alta. No obstante, el
grado de agresividad adecuado continta siendo una decision subjetiva y depende
del criterio y las prioridades de cada oyente.

En términos globales, los resultados obtenidos con este método son similares
a los de la sustraccién espectral clasica, salvo por las diferencias ya mencionadas.
No obstante, una ventaja importante de esta variante radica en la flexibilidad que
ofrece a través de los hiperparametros descritos anteriormente en la Seccion [2.6
Dependiendo del aspecto del audio que se desee priorizar, es posible ajustar el
comportamiento del algoritmo para obtener un resultado mas centrado en las com-
ponentes tonales de la voz o, alternativamente, para preservar en mayor medida
los transitorios y el caracter ritmico de la guitarra.

El método basado en aprendizaje profundo (DL MagTapeDB) presenta un
comportamiento claramente diferenciado respecto a las variantes de sustraccién
espectral. En primer lugar, se observa una atenuacién mucho més agresiva en las
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Figura 5.25: Espectrogramas del método SS Denoisify. Arriba: sefial procesada, donde se
aprecia una reduccién de ruido mas agresiva acompafada de ruido musical. Abajo: residuo
correspondiente, evidenciando la mayor cantidad de ruido removido y pequefias porciones adi-
cionales de senal til.

bandas altas: en la Fig. [5.26] puede verse que, a partir de aproximadamente 14 kHz,
el contenido es practicamente eliminado.

A diferencia de lo observado en los métodos anteriores, el residuo apenas con-
tiene componentes de la voz; esta se conserva casi completamente en la senal
procesada y solo puede detectarse minimamente alrededor del segundo 15. Es-
te comportamiento sugiere que el modelo tiende a preservar con mayor fidelidad
las fuentes tonales y armoénicas, especialmente la voz, incluso bajo una reduccion
fuerte del ruido.

En cuanto al caracter del ruido restante, el método elimina casi por completo
la granularidad descrita anteriormente y produce un soplido més uniforme, percep-
tualmente més cercano a un ruido blanco suave. Esta “desgranularizaciéon” aporta
un fondo maés limpio, pero también introduce una cualidad algo mas artificial. En
términos subjetivos, esto puede percibirse como una ventaja o una desventaja: pa-
ra algunos oyentes el resultado puede sonar mas pulido, mientras que para otros la
ausencia de granularidad hace que el soplido remanente se perciba més expuesto,
al no estar enmascarado por la textura original.

Es importante subrayar que dicha granularidad no corresponde a artefactos
de tipo ruido musical, sino que forma parte de la textura original del audio. Al
suprimirla, el método no introduce ruido musical nuevo, como si puede ocurrir con
los métodos de sustraccién espectral.
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Figura 5.26: Espectrogramas del modelo DL MagTapeDB. Arriba: sehal procesada, donde se
observa la supresién casi total del ruido en las bandas altas. Abajo: residuo generado por el
modelo, que muestra la eliminacién del ruido granular original y la ausencia de energia vocal
significativa.

En términos generales, el modelo realiza un denoising eficaz y preserva adecua-
damente la voz, pero introduce esta nueva forma de artificialidad que lo distingue
de los métodos basados en sustraccion espectral. Se trata, nuevamente, de un com-
promiso perceptual cuya valoracion depende del oyente.

Caso 2: “Salite de la esquina” por Rosa Blanca Rodriguez

En 1952, Ayestardn adquiere un grabador de cinta magnética y, a partir de
ese momento, sus registros de campo comienzan a realizarse en dicho formato. El
fragmento seleccionado forma parte de una serie de canciones infantiles interpre-
tadas por Rosa Blanca Rodriguez, registradas por Ayestaran el 19 de febrero de
1955. Ese dia la intérprete grabd al menos seis piezas, entre ellas “Mambrt se fue
a la guerra”, “La torre en guardia”, “Se va, se va la lancha”, “En Galicia hay una
nina”, “En el portal de Belén” y la cancién aqui analizada, “Salite de la esquina”.
No se dispone de informacién biogréafica adicional sobre la cantante fuera de los
propios metadatos del archivo.

A diferencia del caso anterior, cuyo origen se remontaba a una grabacién en
disco instantdneo posteriormente copiada en multiples soportes, este ejemplo pro-
viene del proyecto MagTapeDB , descrito en la Seccién una base de datos
que reune digitalizaciones directas de las cintas originales del archivo musicoldgico
de Lauro Ayestaran, evitando asi las degradaciones acumuladas observadas en el
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caso de estudio anterior.

De esta forma, el ruido presente en este fragmento corresponde a las degra-
daciones propias de la cinta magnética que se describen en el Anexo En el
espectrograma del audio original, Figura se observa, en comparacién con el
caso anterior, un registro claramente mas limpio, lo cual es coherente con el origen
de los materiales. El contraste visual es nitido: el fondo aparece mayormente en
tonos violetas de baja intensidad, mientras que la voz de la intérprete se distingue
con claridad en colores verdes y amarillos.
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Figura 5.27: Espectrograma del audio original de Rosa Blanca Rodriguez. Se observa un fondo
de baja energia, asi como la presencia definida de la voz en las bandas medias. En las frecuencias
mas bajas aparece una linea horizontal persistente, correspondiente a un ruido grave, y en los
pasajes de mayor intensidad vocal puede advertirse un leve incremento de energia de banda
ancha que rodea los picos de la sefial.

A muy bajas frecuencias se aprecia una linea horizontal, correspondiente a
un ruido grave, perceptible también en la escucha. Esto podria corresponderse
con ruido llamado hum descrito en el Anexo caracterizado por un zumbido
estable de baja frecuencia tipico de interferencias eléctricas en equipos analdgicos.
Ademsds, en los pasajes de mayor intensidad vocal se percibe un leve ruido de
banda ancha, similar a un ruido blanco, que envuelve los picos de energia de la
senal. Este ruido es sutil y requiere cierta atenciéon para advertirse.

En la Figura [5.28] se observa el resultado obtenido mediante SS Cldsico. Por
un lado, el espectrograma superior corresponde a la senal procesada, donde la
atenuacién del ruido es evidente: la linea horizontal de baja frecuencia desaparece
casi por completo y el fondo adquiere una textura significativamente mas limpia.

Por otro lado, el espectrograma inferior muestra el residuo, en el que se distin-
gue con claridad la franja horizontal previamente identificada, asi como la energia
sustraida en bandas mas altas, particularmente por debajo de 4 kHz. También
aparece una pequena cantidad de energia asociada a la voz. La escucha confirma
estas observaciones: el ruido grave deja de percibirse y la voz pierde la envolvente
ruidosa que la acompanaba en el registro original, resultando més clara y definida.

En la escucha aparece también una leve presencia de ruido musical, pero en
este caso localizada en las frecuencias bajas. Esto ocurre porque el método realizé
la mayor parte de la sustraccion por debajo de 4 kHz, que es donde se concentraba
el ruido original. A diferencia de lo observado en casos anteriores, donde este

89



Capitulo 5. Analisis de resultados

16384 +110dB

+100 dB
8192
+90 dB

4096 +80 dB

iz

N +70 dB

2048
" ' +60 dB

1024
| +50 dB

iy luv'h,“ “_ ' ;u' 'h,,fu,n

i "‘*“\{ +40 dB

M“"" u"\li:' .\l"l'lqﬁlg. “ll'”. AR

+30 dB

+110dB

+100 dB
8192
+90 dB

4096 +80 dB

N +70 dB

2048
+60 dB

1024 +50 dB
512 +40 dB

+30 dB

Figura 5.28: Espectrogramas del resultado obtenido mediante SS Clasico aplicado al audio de
Rosa Blanca Rodriguez. Arriba: sefial procesada, donde se observa la reduccién del ruido grave
y del leve ruido de banda ancha que acompanaba los pasajes mas intensos de la voz. Abajo:
espectrograma del residuo, que muestra las componentes ruidosas eliminadas y una porcién de
sefial Gtil retirada.

artefacto surgia en las bandas altas, aqui los puntos aislados aparecen en la zona
donde efectivamente se aplico la atenuacion.

En este caso particular, el nivel de ruido presente en la senial original es relati-
vamente bajo, lo que hace que el método clasico ya capture con suficiente precisiéon
las regiones ruidosas. Al tratarse ademds de un fragmento compuesto tnicamente
por voz, el comportamiento de SS Denoisify no difiere de manera significativa del
de SS Cldasico, incluso al modificar sus hiperparametros. El resultado obtenido es,
en la practica, muy similar en términos tanto espectrales como perceptuales, por
lo que un analisis detallado de esta variante no aportaria elementos nuevos en este
contexto.

En el caso del modelo DL MagTapeDB, se puede observar en la Figura[5.29 que
la senal procesada presenta un espectrograma visualmente distinto al observado
en los métodos de sustraccién espectral: Se ve un fondo de tonalidad diferente
(més cercano al azul que al violeta del espectrograma original), aun cuando no se
introduce ruido adicional. Mas alla de esa variacién de color, el resultado auditivo
es notablemente limpio.

Ademas, el modelo opera internamente a 44,1 kHz, por lo que el audio original
—registrado a 48 kHz— es remuestreado durante el proceso de inferencia. Este
remuestreo no introduce artefactos audibles.

90



5.4. Escucha critica de las senales restauradas

16384 +110 dB

+100 dB
8192
+90 dB

4096 +80 dB

¥ Lo +70 dB

+60 dB

i " | T ! \ k. § | “ i +50 dB
[ ‘ I h,
512 " ' 1 !‘r. r. :: hﬁ ' ia wil +40 dB

-l""'l +30 dB

16384 +110 dB

+100 dB
8192
+90 dB

4096 +80 dB

£ 2048 +70 dB
+60 dB
1024
+50 dB

512 +40 dB

+30 dB

Time

Figura 5.29: Espectrogramas del resultado obtenido mediante DL MagTapeDB aplicado al
audio de Rosa Blanca Rodriguez. Arriba: sefial procesada, donde el fondo se ve ligeramente
mas azulado, junto con la eliminacién del ruido grave presente en la sefal original. Abajo:
espectrograma del residuo, en el que se distingue claramente la franja de bajas frecuencias y
se observan pequeiias componentes por debajo de 4 kHz, junto con una traza muy tenue de
la voz.

El modelo elimina con eficacia el ruido grave identificado anteriormente, algo
que se aprecia tanto en el espectrograma de salida como en el residuo, donde esa
franja de bajas frecuencias aparece completamente aislada. A diferencia de los
métodos de sustraccién espectral, no se observan artefactos perceptibles: el audio
no presenta ruido musical ni irregularidades en las bandas altas. La voz se escucha
con claridad y sin la envolvente ruidosa presente en la senal de entrada. En el
residuo puede percibirse una traza muy tenue de la voz, aunque considerablemente
mas atenuada que en el residuo de la sustraccion espectral, lo cual indica que
el modelo es mejor preservando la senal tutil. Desde una perspectiva subjetiva,
el resultado constituye una mejora perceptual més marcada que en los métodos
basados en sustraccién espectral.
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Capitulo 6

Conclusiones

En este capitulo se presentan las conclusiones generales del trabajo, integrando
los principales resultados obtenidos y reflexionando sobre su alcance. Para situar
adecuadamente estas conclusiones, es pertinente recordar el objetivo central que
motivé la investigacién: desarrollar, implementar y comparar dos enfoques comple-
mentarios para la reduccién de ruido en la restauracién de grabaciones musicales,
combinando técnicas clasicas de procesamiento de senales con modelos basados en
aprendizaje profundo.

La motivacién que dio origen a este estudio se fundamenta en la necesidad
de disponer de herramientas abiertas, comprensibles y reproducibles que permitan
mitigar el ruido presente en registros histéricos —en particular, en grabaciones en
cinta magnética— sin comprometer la informacion sonora relevante. Este proposi-
to se encuentra directamente vinculado con la preservacién del acervo patrimonial
asociado a los registros del musicélogo uruguayo Lauro Ayestaran, cuyo valor cul-
tural y documental resalta la importancia de desarrollar metodologias confiables
de restauracién sonora.

El capitulo se organiza de la siguiente manera: primero, se presentan conjun-
tamente los principales resultados obtenidos y las limitaciones identificadas tanto
para las técnicas de sustraccién espectral como para los enfoques basados en apren-
dizaje profundo. A continuacién, se discuten las implicaciones précticas derivadas
de estos hallazgos. Finalmente, se exponen diversas lineas de trabajo futuro que
emergen del andlisis realizado y que buscan consolidar y ampliar las contribuciones
desarrolladas en este estudio.

6.1. Resultados y limitaciones halladas

A partir del analisis conjunto de las métricas objetivas, los tiempos de pro-
cesamiento y la escucha critica realizada, fue posible extraer varias conclusiones
generales sobre el comportamiento de los métodos implementados y estudiados.

En primer lugar, los resultados obtenidos muestran que las técnicas clasicas
de procesamiento de senales continian siendo altamente competitivas para la re-
ducciéon de ruido en grabaciones musicales. En particular, alcanzan los valores
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promedio més elevados en el desempeno general segin APAQM (1,963 y 1,856),
y aunque presentan valores menores en APEAQ (0,392 y 0,202), exponen de las
desviaciones estandar més reducidas (0,439 y 0,489). Tanto SS Cldsico como la im-
plementacién SS Denoisify logran un equilibrio robusto entre mejora perceptual,
estabilidad y costo computacional, manteniendo un desempeno consistente frente
a variaciones en la relacion senal-ruido y en el tipo de contenido evaluado.

Por otro lado, en los modelos de aprendizaje profundo, cuando el tipo de ruido
v el contenido musical de la senal coinciden con los utilizados durante el entrena-
miento —como ocurre en el modelo entrenado con MagTapeDB— el rendimiento
perceptual resulta competitivo e incluso superior en ciertos conjuntos. Por ejemplo,
en la categoria Muchas Fuentes, el modelo DL MagTapeDB alcanza el mejor valor
de APAQM (2,393) y, como se menciond anteriormente, dicho conjunto presenta
caracteristicas que se asemejan considerablemente al contenido de la base de datos
utilizada para entrenar, MusicNet.

No obstante, cuando el modelo se enfrenta a ruidos o contenidos musicales
cuyas caracteristicas difieren de aquellas presentes durante su entrenamiento, su
desemperno se deteriora de manera notable, evidenciando una capacidad de gene-
ralizacién limitada frente a condiciones actsticas no contempladas. En la préctica,
esto implica la necesidad de recopilar y curar bases de datos especializadas, ademas
de contar con tiempos de entrenamiento prolongados y hardware dedicado —gene-
ralmente mediante GPU—. Estas exigencias contrastan con la simplicidad y bajo
costo computacional de la sustraccién espectral.

Ademsds, los tiempos de procesamiento obtenidos evidencian diferencias sig-
nificativas entre ambas familias de métodos. Mientras que las técnicas clasicas
alcanzan tiempos de ejecucién reducidos en CPU (0,592 s y 14,774 s), los modelos
de aprendizaje profundo requieren intervalos de inferencia considerablemente ma-
yores (aproximadamente 38 s). Esta disparidad condiciona su implementacién en
sistemas donde el procesamiento en tiempo real constituye un requisito critico. Sin
embargo, los tiempos de inferencia pueden reducirse de forma sustancial cuando
se dispone de aceleracién mediante GPU.

Por otra parte, la escucha critica revelé que, si bien tanto la sustraccion es-
pectral como el modelo de aprendizaje profundo logran una reduccién de ruido
perceptible y, en general, satisfactoria, cada técnica introduce patrones de distor-
sién caracteristicos. La ausencia de una solucién universalmente éptima implica
que la eleccién del método debe adecuarse a las particularidades del material y a
criterios subjetivos acerca de qué aspectos de la sefial se desea priorizar. Vale la
pena aclarar que las distorsiones observadas no invalidan la utilidad de estas técni-
cas, sino que establecen los limites operativos dentro de los cuales cada enfoque
resulta méas adecuado.

En los modelos de aprendizaje profundo, las distorsiones percibidas resultaron
en muchos casos impredecibles, manifestdandose como artefactos tonales agudos,
atenuacién excesiva de componentes graves, eliminacién de transitorios o pérdida
de detalles en las altas frecuencias. Este comportamiento, altamente dependiente
del tipo de senal procesada, carece de un patrén claro y estable, lo que dificulta
anticipar el impacto perceptual de la restauracién en distintos escenarios.
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Por el contrario, las distorsiones asociadas a la sustraccién espectral —prin-
cipalmente el ruido musical—, si bien no son despreciables y pueden afectar la
calidad del audio restaurado, presentan un comportamiento mucho méas predeci-
ble. Su aparicion y gravedad pueden anticiparse a partir de las caracteristicas de
la senal de entrada.

Es importante destacar que la severidad de estas distorsiones puede mitigarse
mediante la seleccién adecuada de los parametros de la implementacion, especial-
mente en el caso de SS Denoisify. Esta capacidad de control ofrece una flexibilidad
que contrasta con la rigidez de los modelos de aprendizaje profundo, los cuales,
una vez entrenados, no permiten modificar el comportamiento de la restauracion
en caso de que el resultado presente artefactos indeseados. En consecuencia, la
sustraccion espectral no solo ofrece un comportamiento méas estable, sino también
un margen de ajuste que facilita su adaptacién a distintos tipos de contenido.

En resumen, los resultados obtenidos reflejan un compromiso claro entre flexi-
bilidad, estabilidad y desempefio. Cuando se requiere un método adaptable, con
parametros ajustables y bajo costo computacional, la sustracciéon espectral es una
opcién adecuada, ofreciendo un comportamiento estable y consistente. En contex-
tos donde se dispone de bases de datos suficientemente representativas y del hard-
ware necesario para el entrenamiento —preferentemente con aceleracion mediante
GPU—, los modelos de aprendizaje profundo presentan un potencial considera-
ble. No obstante, la obtencion de estos datos supone un desafio significativo, y el
desempeno resultante tiende a mostrar una mayor variabilidad e imprevisibilidad.
Aun asi, con un entrenamiento adecuado, estos modelos pueden alcanzar niveles
de restauracion superiores, lo que los posiciona como una alternativa prometedora
siempre que se satisfagan sus requisitos fundamentales.

6.2. Implicaciones practicas

El desarrollo realizado en este trabajo no se limita al analisis comparativo entre
métodos, sino que también ofrece recursos practicos orientados a facilitar la com-
prension, la experimentacién y la reutilizacién de las herramientas implementadas.
En primer lugar, se cred el repositorio SS Denoisify, disponible piblicamente en
GitHub [48]. Allf se incluye la implementacién completa del algoritmo de sustrac-
cion espectral desarrollada a lo largo del trabajo, organizada en distintos médulos
y scripts de Python. Ademds, el repositorio incorpora un Jupyter Notebook di-
senado con fines didéacticos, en el cual se ilustra paso a paso el funcionamiento del
método y se muestra el proceso de restauracién de una senal ruidosa de ejemplo.

Ademids, con el objetivo de acompafar el informe y facilitar la exploracién de
los resultados obtenidos, se desarrollé una péagina web interactiva |44] donde es
posible visualizar las senales originales utilizadas en el andlisis, junto con sus co-
rrespondientes versiones restauradas mediante cada uno de los métodos evaluados.
El sitio incluye también espectrogramas comparativos y ejemplos auditivos que
permiten apreciar de forma directa las diferencias entre las técnicas.

Por ultimo, este trabajo destaca la vigencia y el valor del procesamiento tradi-
cional de seniales en un contexto dominado por el aprendizaje automatico. Si bien
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las técnicas basadas en aprendizaje profundo constituyen hoy en dia el principal
foco de investigacién y aplicacion en tareas de restauracién de audio, los resultados
obtenidos muestran que los métodos clasicos siguen siendo herramientas relevantes.
Su eficiencia, estabilidad y ausencia de requisitos de entrenamiento los convierten
en alternativas especialmente valiosas en escenarios donde la obtenciéon de datos
adecuados es dificil o directamente inviable. En este sentido, este proyecto contri-
buye a reivindicar el rol del procesamiento tradicional como un enfoque plenamente
vigente, capaz de ofrecer soluciones sélidas en aplicaciones donde los modelos de
aprendizaje profundo no resultan précticos.

6.3. Lineas futuras de trabajo

A partir de los resultados obtenidos, las limitaciones identificadas y las impli-
caciones practicas del estudio, esta seccién presenta diversas propuestas de lineas
de investigacion futura orientadas a profundizar, complementar y mejorar los de-
sarrollos realizados en el presente trabajo.

6.3.1. Deteccidon de inactividad de la senal

En primer lugar, tal como exhiben los resultados obtenidos en la bisqueda de
hiperpardmetros del algoritmo de deteccién de inactividad, un valor de precision de
62,03 % indica que una proporcién considerable de frames con actividad relevante
de la senal fue clasificada erréneamente como inactiva. Como se pudo observar,
estas detecciones incorrectas afectan negativamente el cédlculo del perfil de ruido
empleado en los procesos de sustraccién espectral. Si bien el andlisis permitio
identificar que este fenémeno puede deberse, en parte, al enmascaramiento de la
senal por el ruido, es fundamental mejorar la precision.

En este sentido, una linea de trabajo a futuro consiste en explorar estrategias
alternativas para la deteccién de inactividad que no se limiten exclusivamente al
dominio musical o del audio, con el fin de identificar e implementar un algoritmo
potencialmente mas robusto que el presentado en la

Por otra parte, dado el creciente desarrollo de los modelos de aprendizaje pro-
fundo, también podria considerarse el disenio o adopcién de una arquitectura neu-
ronal capaz de identificar automdaticamente los segmentos inactivos de una senal.
Sin embargo, este enfoque requeriria un proceso exhaustivo de etiquetado de datos
para definir con precisién los intervalos de silencio y disenar una funcién de pérdida
adecuada, lo que representa un desafio considerable debido a la gran cantidad de
ejemplos necesarios para lograr un entrenamiento y un aprendizaje efectivo.

6.3.2. Combinacién de ambas técnicas

Como se ha senalado a lo largo del andlisis, ambas familias de métodos pre-
sentan limitaciones propias. La sustraccién espectral, si bien efectiva y flexible,
tiende a generar ruido musical con caracteristicas bien definidas —descritas en
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la [Subseccién 2.5.1}—, mientras que los modelos de aprendizaje profundo depen-
den fuertemente de la disponibilidad de bases de datos que representen fielmente
el dominio de las senales que se desean restaurar, lo cual constituye un desafio
complejo.

En este escenario, una linea de trabajo futura especialmente prometedora con-
siste en explorar enfoques hibridos que integren ambas metodologias. Una posibi-
lidad es aplicar primero una sustracciéon espectral para reducir el ruido de fondo
—aceptando la aparicion de ruido musical— y, en una segunda etapa, utilizar un
modelo de aprendizaje profundo especificamente entrenado para suprimir este ar-
tefacto. Para ello podria emplearse una base de datos generada artificialmente,
donde las senales limpias sean degradadas unicamente mediante la introduccién
controlada de ruido musical.

Bajo la hipotesis de que el ruido musical surge principalmente del propio meca-
nismo de sustraccién espectral y no del tipo de ruido original (cinta, graméfono u
otras fuentes), este enfoque permitiria entrenar un tinico modelo capaz de eliminar
sistematicamente dicho artefacto en una amplia variedad de situaciones. De este
modo, el sistema resultante combinaria la capacidad generalizada de reduccion de
ruido de la sustraccién espectral con la potencia de los modelos neuronales para
refinar el resultado final, sin requerir grandes bases de datos especificas para cada
escenario de degradacion real.

6.3.3. Desarrollo de bases de datos para el entrenamiento

En continuidad con la propuesta anterior, futuras lineas de trabajo deberian
orientarse a la construccién o ampliacién de bases de datos de ruido que abarquen
distintos soportes y contextos histéricos, incluyendo no solo la captura del ruido
residual propio de cada medio, sino también su variabilidad asociada al envejeci-
miento, las condiciones ambientales y los procesos de digitalizacién.

Una estrategia complementaria podria consistir en ampliar las bases existentes
mediante técnicas de data augmentation, generando ejemplos sintéticos que emulen
degradaciones tipicas del audio analégico. La aplicaciéon controlada de estas trans-
formaciones permitiria diversificar los escenarios de entrenamiento y aumentar la
capacidad de generalizaciéon de los modelos.

6.3.4. Dinamica del aprendizaje del modelo

Del anélisis de las curvas de aprendizaje surge un aspecto importante: el des-
empeno de un modelo de aprendizaje profundo no puede evaluarse tnicamente
mediante métricas como el MAE. Si bien esta medida cuantifica la discrepancia
promedio entre el espectrograma estimado y su referencia limpia, no refleja ne-
cesariamente la presencia de artefactos perceptuales ni la calidad subjetiva del
audio resultante. En consecuencia, un MAE reducido no implica, por si mismo,
una restauracién auditivamente satisfactoria.

Tal como se expuso en capitulos previos, este trabajo incorporé métricas per-
ceptuales como PEAQ y PAQM para complementar esas limitaciones. No obstan-
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te, dichas métricas pueden ofrecer valoraciones diferentes sobre qué constituye una
mejora perceptual. Tal como se observé en el andlisis objetivo, cada una se basa en
criterios distintos y, en consecuencia, no necesariamente evalian la calidad sonora
de la misma manera.

En este contexto, una linea futura de investigacién consiste en desarrollar es-
quemas de entrenamiento donde la funcién de pérdida integre directamente cri-
terios perceptuales mas estrechamente vinculados con la escucha humana. Esto
permitiria orientar el proceso de aprendizaje hacia mejoras cuantitativas que se
correlacionen de manera mas consistente con la experiencia auditiva real. Sin em-
bargo, es importante sefialar que la restauracién de audio contintia siendo una
tarea intrinsecamente subjetiva: distintos oyentes —asi como distintas métricas—
pueden priorizar atributos diferentes del sonido. En consecuencia, la determina-
ciéon de un “mejor” resultado constituye un desafio complejo y, en muchos casos,
dependiente del criterio adoptado.
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Apéndice A

Analisis de las métricas para la
deteccidn de inactividad

Si bien existe una amplia bibliografia sobre detecciéon automaética de inacti-
vidad, la mayor parte de los desarrollos se enfocan en senales de voz, donde la
deteccién de actividad vocal es una herramienta esencial en aplicaciones de teleco-
municaciones, codificacién de voz y asistentes virtuales [49-56]. No obstante, estos
métodos estan disenados para las caracteristicas propias del habla y no se adap-
tan directamente a senales musicales, lo que motiva la necesidad de una solucién
especifica para el contexto abordado en este trabajo.

A continuacion, se analizan y evaliuan algunas de las métricas y caracteristicas
empleadas en dichos trabajos, con el fin de identificar cudles de ellas pueden ser
adaptadas e integradas en el médulo de deteccion de inactividad desarrollado para
este proyecto.

A.1. Técnicas implementadas para VAD

Los algoritmos de deteccién de actividad de voz han evolucionado notablemen-
te desde sus primeras propuestas. Inicialmente se emplearon enfoques heuristicos
basados en caracteristicas simples de la senal, lo que permitié implementacio-
nes eficientes en tiempo real. Entre los trabajos pioneros destaca Atal y Rabiner
(1976) [52], quienes propusieron un método de clasificacién de segmentos de voz
mediante parametros acusticos como la energia, los cruces por cero o coeficientes
LPC, logrando una segmentacion eficaz incluso en intervalos cortos. Posteriormen-
te, Tucker (1992) [53] introdujo un algoritmo basado en la estimacién de periodici-
dad, robusto en condiciones de bajo SNR. Otros enfoques relevantes incorporaron
andlisis cepstral para discriminacién entre habla y ruido [54], asi como medidas de
entropia espectral para robustez en entornos ruidosos [55./56].

Ademi4s, se desarrollaron técnicas basadas en energia y umbrales dindmicos
[57559], que ajustan la deteccién en funcién de las variaciones del entorno acusti-
co. Estas estrategias, aunque simples, contintian siendo tiles por su bajo costo
computacional.
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A.2. Analisis

Si bien la deteccién de actividad en senales de voz humana es un campo am-
pliamente estudiado, las caracteristicas propias de este tipo de senales no siempre
se trasladan directamente a otros dominios, como el musical. Las grabaciones de
voz presentan rasgos distintivos, entre los que se destacan: la presencia habitual
de silencios prolongados, una concentracion energética predominante en las bajas
frecuencias, una densidad espectral menos distribuida, variaciones de volumen ge-
neralmente suaves y graduales, y la emisién desde una tunica fuente sonora o, en
su defecto, desde un niimero muy limitado de fuentes simultaneas.

Las senales musicales no necesariamente comparten estas particularidades. Por
ejemplo, en una orquesta se encuentran una gran variedad de instrumentos con
diferentes timbres y rangos sonoros, lo que hace que este tipo de senales sea con-
siderablemente mas complejo.

Por otro lado, existen diferencias fundamentales en cuanto al propédsito del
algoritmo de deteccién segun el contexto de aplicaciéon. Por ejemplo, en las te-
lecomunicaciones, el proposito principal es identificar los frames que contienen
actividad vocal con el fin de evitar la transmisién innecesaria de datos durante
los periodos de silencio o ruido de fondo. Esto permite reducir significativamente
la cantidad de informacion enviada, optimizando el uso del ancho de banda sin
comprometer la inteligibilidad del mensaje. En ese escenario, la pérdida ocasional
de algunos frames de audio no suele ser critica, siempre que no sea perceptible
para el oyente.

En cambio, en el enfoque adoptado en este trabajo, el interés no radica en
preservar la senial til, sino en obtener muestras representativas del ruido de fondo.
Por ello, no es prioritario detectar todos los frames de silencio, sino garantizar que
los frames seleccionados correspondan efectivamente a segmentos sin actividad
atil.

Otra diferencia importante radica en la hipétesis sobre la estacionariedad del
ruido. En los algoritmos descritos en [57-59], los umbrales utilizados para la detec-
cién de segmentos activos o pasivos se actualizan dindmicamente, bajo la suposicién
de que el ruido es aditivo y localmente estacionario. Es decir, se asume que du-
rante los breves periodos en los que una persona estd hablando, las caracteristicas
estadisticas del ruido de fondo permanecen aproximadamente constantes.

Sin embargo, esta suposicién no se traslada facilmente al contexto de las graba-
ciones musicolégicas. A diferencia del habla, que estd naturalmente segmentada por
pausas y silencios, la musica suele presentar fragmentos extensos sin interrupciones
marcadas, lo que dificulta identificar regiones sin actividad tutil. En consecuencia,
la hipdtesis de ruido localmente estacionario resulta menos adecuada, y debe ser
reemplazada por una condicién mas estricta: que el ruido sea aproximadamente
estacionario a lo largo de toda la senal. Esta restricciéon es considerablemente més
exigente y plantea nuevos desafios para la deteccidén y estimacion del perfil de
ruido.

A partir de las observaciones realizadas, se decidié analizar las métricas utili-
zadas en los algoritmos previamente mencionados para la deteccién de inactividad,
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con el objetivo de adaptarlas a las caracteristicas especificas del presente caso. Las
métricas evaluadas fueron las siguientes:

» Energia en tiempo corto.

= Periodicidad.

= Métricas basadas en la Autocorrelacién entre Muestras.
= Métricas basadas en la Entropia espectral.

= Métricas basadas en Cepstrum.

» Tasa de cruces por cero en tiempo corto.

A.2.1. Energia en tiempo corto

En el contexto de senales musicales contaminadas con ruido, esta métrica re-
sulta especialmente 1til para detectar periodos de inactividad siempre que la SNR
sea razonable. Bajo estas condiciones, la senal musical suele dominar sobre el ruido
durante los tramos activos, generando una energia significativamente mayor que
en los momentos de silencio. De este modo, los intervalos donde solo persiste el
ruido tienden a presentar niveles de energia mas bajos y estables, lo que permite
separarlos mediante umbrales adecuados.

La energia en tiempo corto tiene la ventaja de ser una métrica sencilla de
calcular y relativamente robusta frente a variaciones arménicas o instrumentales
propias de la musica, siempre que el ruido no sea excesivamente intrusivo. Por estas
razones, ha sido empleada de forma recurrente en distintos trabajos de deteccion
de actividad [52,57-59].

A.2.2. Periodicidad

La aplicabilidad de los estimadores de periodicidad, como el basado en minimos
cuadrados propuesto en [53], resulta limitada en el contexto de grabaciones musica-
les polifénicas. Cuando miltiples instrumentos suenan simultdneamente, cada uno
con sus propias caracteristicas espectrales y temporales, la senal resultante carece
de una unica periodicidad, convirtiéndose en una superposiciéon densa de distintas
componentes. Esto dificulta la identificacion de un patrén peridédico principal y
puede provocar estimaciones inestables o erréneas.

También, en grabaciones que contienen instrumentos de percusion, los cuales
pueden implicar la presencia de transitorios abruptos y variaciones rapidas, la
capacidad del modelo para representar adecuadamente la estructura periddica de
la senal se ve aun mas comprometida. Por estas razones, el uso de la periodicidad
como criterio para la deteccién de inactividad en grabaciones musicolégicas resulta
poco confiable.
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A.2.3. Métricas basadas en la autocorrelacion entre muestras

Las métricas basadas en la autocorrelacion entre muestras de la senal, tales
como Maximum Autocorrelation Peak, Autocorrelation Peak Count o Windowed
Autocorrelation Lag Energy, abordadas en [52},60-62], pueden resultar ttiles en el
andlisis de senales de voz, asi como en grabaciones musicales con pocas fuentes
sonoras.

Sin embargo, al igual que ocurre con las métricas basadas en la periodicidad,
su desempeno se ve limitado en grabaciones con multiples instrumentos sonando
simultdneamente, ya que las senales generadas por distintas fuentes no necesa-
riamente presentan una correlacion temporal entre si. Las grabaciones musicales
suelen ser altamente dindamicas y estructuralmente variadas, lo que complica ain
mas la deteccién de correlaciones consistentes entre muestras, reduciendo la con-
fiabilidad de estas métricas para identificar segmentos con actividad o con solo
ruido de fondo en el contexto del presente trabajo.

A.2.4. Meétricas basadas en la entropia espectral

La entropia espectral se basa en interpretar la distribucion de energia en fre-
cuencia de una senal como una distribucion de probabilidad, sobre la cual se calcula
la entropia de C. E. Shannon [63]. De este modo, esta métrica describe cuan dis-
persa o concentrada estd la energia en el dominio espectral. Una alta entropia
espectral indica que la energia estd distribuida de manera relativamente uniforme
a lo largo de las frecuencias, lo que sugiere una senal con amplio contenido fre-
cuencial y sin componentes dominantes. En cambio, una baja entropia espectral
refleja que la energia se encuentra concentrada en unas pocas frecuencias, lo que
es caracteristico de sefiales tonales o estructuradas.

Esta métrica puede resultar util en escenarios donde el ruido de fondo es apro-
ximadamente blanco, ya que en tales casos la energia del ruido esta distribuida de
manera uniforme en el espectro, generando una entropia espectral alta y facilmente
distinguible de senales estructuradas.

Sin embargo, en el presente trabajo, el ruido no es necesariamente blanco ni
gaussiano, y puede presentar una distribuciéon espectral con picos de energia en
ciertas bandas. Como consecuencia, la entropia espectral del ruido puede no diferir
sustancialmente de la de la senal de interés, lo que reduce la capacidad discrimi-
natoria de esta métrica para detectar actividad frente a ruido de fondo.

En la [Figura A.l|se presentan los espectrogramas de tres senales de ruido de
cinta, extraidas del trabajo [4]. Dicho estudio considera el ruido generado por dis-
tintos dispositivos de grabacién, entre los que se incluyen el Revoxr A77, el Uher
4000 Report Ly el Technics TR-575, cuyas caracteristicas espectrales pueden ob-
servarse en la figura mencionada. Como se aprecia, los espectros no son uniformes
ni planos, lo que los distingue de un ruido blanco o gaussiano. En consecuencia,
métricas como la entropia espectral no resultan completamente efectivas para de-
tectar actividad en seniales contaminadas con estos tipos de ruido.
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Figura A.1: Espectrogramas de sefiales de ruido de cinta normalizadas, obtenidas a partir
de tres grabadores analdgicos (Revox A77, Uher 4000 Report L'y Technics TR-575) . Se
observa que las caracteristicas espectrales difieren de las de un ruido blanco o gaussiano ideal,
presentando distribuciones no uniformes. Esta particularidad dificulta la aplicaciéon de métricas
clasicas como la entropia espectral para la deteccién de actividad en sefiales contaminadas con
este tipo de ruido.

A.2.5. Métricas basadas en Cepstrum

El cepstrum es una representacion de senales obtenida al aplicar la transforma-
da de Fourier al logaritmo del espectro de magnitud de una senal. Esta transforma-
ciéon permite analizar estructuras periddicas en el dominio de la frecuencia, como
la deteccion de armonicos en seniales de audio o la separacion entre la envolvente
espectral y la senal de excitacion en sistemas actusticos. Una de sus propiedades
fundamentales es que convierte convoluciones en el dominio temporal en sumas en
el dominio de las quefrencies. Esto se debe a que, en el dominio de Fourier, una
convolucién temporal se traduce en un producto espectral, y al aplicar el logarit-
mo, dicho producto se transforma en una suma, lo cual facilita la separaciéon de
componentes como la envolvente y la estructura arménica.

Cuando la senial proviene de miultiples fuentes la representacién cepstral se
vuelve més compleja debido a la superposicién de miltiples estructuras periédicas.
Esta superposicion genera varios picos en diferentes valores de quefrency, dificul-
tando la identificaciéon de una periodicidad dominante, al igual que en el caso de
las métricas basadas en la autocorrelacion entre muestras y en la periodicidad.
Como consecuencia, los coeficientes cepstrales tienden a dispersarse, lo que com-
plica su interpretacién y reduce la robustez de estas métricas para el caso de uso
considerado en este trabajo.
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A.2.6. Taza de cruces por cero en tiempo corto

La tasa de cruces por cero (Zero Crossing Rate, ZCR) es una métrica que
cuantifica cudntas veces una senal cambia de signo en un intervalo de tiempo
determinado. En el contexto del procesamiento de senales de audio, se calcula
usualmente en ventanas de tiempo cortas y representa la cantidad de veces que la
senial cruza el eje horizontal (pasa de positiva a negativa o viceversa). Una ZCR alta
indica una senal con componentes de frecuencia elevada o con variaciones répidas,
como ocurre en el ruido blanco, mientras que una ZCR baja sugiere la presencia de
componentes de baja frecuencia o una senal mas suave. Por su simplicidad y bajo
costo computacional, esta métrica ha sido utilizada para la deteccién de actividad
en senales de audio como en .

Cuando el ruido presente en la senal tiene media aproximadamente nula y
componentes de alta frecuencia, la ZCR resulta especialmente 1til para detectar
actividad en senales musicales. Por ejemplo, al combinar la ZCR con la energia de
la senal, se pueden identificar como ruido los segmentos que presentan energia casi
nula pero una ZCR alta. Esta metodologia es efectiva siempre que la energia del
ruido sea significativamente menor que la de la senal (es decir, que la SNR, sea
suficientemente alta) y que el ruido tenga una media cercana a cero. Sin embargo, es
importante tener precaucion, ya que ciertos fragmentos agudos de la senal, también
pueden exhibir una ZCR alta, lo que podria ocasionar errores en la detecciéon si no
se manejan adecuadamente.

— Sefial
--- Media

Amplitud

Amplitud

Amplitud

0 10 20 30 40 50 60
Tiempo [5]

Figura A.2: Sefales temporales normalizadas de ruido de cinta, correspondientes a los gra-
badores anal6gicos Revox A77, Uher 4000 Report L y Technics TR-575, respectivamente. Se
aprecia que las sefiales presentan un comportamiento aproximadamente estacionario, con com-
ponentes de alta frecuencia y valores medios cercanos a cero, en concordancia con las hipdtesis
asumidas en el andlisis.
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En la se presentan las senales temporales y sus valores medios
correspondientes a los ruidos de cinta mencionados anteriormente. Junto con la
informacién mostrada en la se puede observar que estos ruidos son
aproximadamente estacionarios, que contienen componentes de alta frecuencia y
que tienen una media cercana a cero, cumpliendo asi con las hipdtesis planteadas
previamente.
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Apéndice B

Descripcion de los tipos de ruido en
soportes historicos

Este anexo presenta una caracterizacién de los ruidos tipicos presentes en dos
soportes analdgicos de relevancia histérica: los discos de 78 RPM (graméfono)
y las cintas magnéticas. El objetivo es documentar las degradaciones propias de
cada medio y establecer el marco actstico en el que operan los métodos de res-
tauracién estudiados en esta tesis. Si bien ambos soportes comparten problemas
generales relacionados con el envejecimiento y las limitaciones tecnoldgicas de la
época, cada uno introduce artefactos especificos derivados de su naturaleza fisica
y su mecanismo de reproduccion.

B.1. Ruido caracteristico de los discos de graméfono (78
RPM)

Las grabaciones de discos de 78 RPM presentan una variedad de artefactos
acusticos propios del soporte y del equipamiento de reproducciéon. En primer lugar,
el hiss corresponde a un ruido de banda ancha generado por las etapas analégicas
del sistema (preamplificadores, circuiteria y ruido térmico), que se manifiesta co-
mo un siseo constante con mayor concentracién de energia en las altas frecuencias.
Otro componente caracteristico es el rumble, un zumbido de muy baja frecuencia
producido por vibraciones mecéanicas del motor, desalineaciones del eje o resonan-
cias estructurales del giradiscos; su energia se concentra tipicamente por debajo
de 80-100 Hz y resulta especialmente audible en pasajes silenciosos.

Ademis del ruido continuo, los discos de goma laca suelen presentar artefactos
impulsivos. Los clicks son chasquidos de muy corta duracién originados por raya-
duras finas, acumulacion de polvo o microfisuras en el surco; su espectro es amplio
y con fuerte contenido de alta frecuencia, lo que los hace perceptualmente agudos y
bien definidos. Por su parte, los thumps son golpes mas largos y predominantemen-
te de baja frecuencia, asociados a deformaciones mas profundas del surco, danos
estructurales o impactos en la cdpsula durante la reproduccién. Finalmente, las
digitalizaciones histéricas también incorporan ruido ambiental propio del entorno
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de captura —como ventilacién, interferencias eléctricas o vibraciones transmitidas
al plato— que anade componentes adicionales de fondo con un espectro variable
segun la fuente.

Estos artefactos conforman un perfil de ruido altamente heterogéneo y depen-
diente del estado fisico del disco. La ausencia de estandarizacion en los procesos de
grabacién y reproduccién de la época anade ain mas variabilidad, lo que convierte
al dominio del graméfono en un entorno dificil para la restauracién automatica.

B.2. Ruido caracteristico en cinta magnética

En contraste con el graméfono, la cinta magnética introduce degradaciones
menos asociadas al desgaste del soporte fisico superficial y mas vinculadas a los
principios electromagnéticos del registro analdgico [1]. A continuacién, se descri-
ben en mayor detalle los fenémenos relevantes para la restauracién y el andlisis
desarrollados en este trabajo.

B.2.1. Ruido de banda ancha (hiss)

El hiss es un ruido de fondo continuo, similar a un “siseo”, que aparece de
forma natural en las grabaciones en cinta magnética. Proviene del propio material
del soporte: con el paso del tiempo, la superficie de la cinta desarrolla pequenas
irregularidades y variaciones aleatorias que generan ruido incluso cuando no hay
senal registrada [1]. Este efecto se vuelve mds evidente a medida que la cinta
envejece o pierde estabilidad magnética [2]. El hiss se concentra sobre todo en las
frecuencias altas y suele estar presente en toda la duracién de la grabacion.

B.2.2. Interferencias eléctricas (hum)

El hum es un zumbido de baja frecuencia que aparece cuando la grabadora
o el reproductor captan interferencias provenientes de la red eléctrica [2]. Suele
escucharse en 50 Hz o 60 Hz, junto con sus arménicos, y puede deberse a transfor-
madores, motores del transporte de cinta, fuentes de alimentacién desgastadas o
problemas de masa. Este ruido resulta especialmente molesto en pasajes silenciosos
0 con poca dindmica.

B.2.3. Inestabilidades de velocidad (wow and flutter)

Las grabaciones en cinta también pueden sufrir variaciones en la velocidad de
arrastre, lo que produce fluctuaciones audibles en el tono. El wow corresponde a
cambios lentos y periddicos en la velocidad, generalmente provocados por proble-
mas mecanicos en el capstan, los rodillos o las gufas del transporte [64]. El flutter,
por su parte, es una variacién mas rapida e irregular causada por desgaste en el
motor, rodillos endurecidos o vibraciones de la estructura [1]. Ambos efectos ge-
neran pequenas oscilaciones del tono que afectan la estabilidad y naturalidad del
sonido.
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B.2.4. Saturaciéon magnética y distorsién

La saturacién ocurre cuando la senal registrada es demasiado intensa y el so-
porte ya no puede almacenar mas magnetizacion [1]. En ese punto, la cinta deja
de responder de forma lineal y aparecen distorsién arménica, recorte y una com-
presion no deseada del sonido. Este problema suele deberse a una mala calibracién
durante la grabacién o a intentos de aumentar la relaciéon senal-ruido llevando el
nivel demasiado cerca del limite fisico de la cinta [2].

B.2.5. Caidas de sefial (dropouts)

Los dropouts son pequenas pérdidas momentaneas de audio que ocurren cuando
alguna parte de la capa magnética de la cinta estd danada o debilitada [65]. Pueden
deberse a abrasién, suciedad, moho o defectos mecéanicos de la superficie. Como la
informacién se almacena en una capa muy fina, cualquier interrupcién en esa zona
provoca una caida abrupta del nivel registrado. Segin su tamano y duracién, los
dropouts pueden percibirse como breves “huecos” en el sonido, cambios de timbre
o pérdidas instantdneas de alta frecuencia.

B.2.6. Degradacién quimica del aglutinante (sticky-shed syndro-
me)

Otro fenémeno frecuente en cintas antiguas es el sticky-shed syndrome o “sindro-
me de la capa pegajosa”. Ocurre cuando el material que mantiene adheridas las
particulas magnéticas al soporte comienza a degradarse con el paso del tiempo. La
cinta absorbe humedad y el aglutinante se descompone, haciendo que la superficie
se ablande y se vuelva pegajosa [64]. Esto provoca friccién excesiva durante la
reproduccion, acumulacion de residuos en los cabezales e incluso, en casos graves,
que la cinta no pueda reproducirse sin riesgo de danarla.

En el sonido, este problema puede percibirse como ruidos intermitentes, pérdi-
da de agudos y pequenas variaciones de velocidad debido al arrastre irregular.
Su tratamiento requiere procedimientos de conservaciéon especificos, como el seca-
do controlado o “horneado” previo a la digitalizacion, una solucién que permite
reproducir la cinta de forma temporal pero no detiene su deterioro a largo plazo.

B.2.7. Otros artefactos relevantes

Ademas de los problemas principales, el deterioro quimico de la cinta puede
generar otros efectos, como variaciones en el azimut, ruidos provocados por un
deslizamiento irregular sobre los cabezales o aumentos de fricciéon que afectan la
velocidad de arrastre [64,/66]. También los propios cabezales pueden degradarse
con el uso, lo que provoca pérdidas de altas frecuencias debido a desgaste fisico o
desmagnetizacién parcial [1].
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aplicado al audio de Rosa Blanca Rodriguez. Arriba: senal proce-

sada, donde el fondo se ve ligeramente mas azulado, junto con la

eliminacion del ruido grave presente en la senal original. Abajo: es-

pectrograma del residuo, en el que se distingue claramente la franja

de bajas frecuencias y se observan pequenas componentes por de-

bajo de 4 kHz, junto con una traza muy tenue de la voz.| . . . ..

AL

Espectrogramas de senales de ruido de cinta normalizadas, obteni-

das a partir de tres grabadores analogicos (Revoxr A77, Uher 4000

Report L'y Technics TR-575) |4]. Se observa que las caracteristicas

espectrales difieren de las de un ruido blanco o gaussiano ideal, pre-

sentando distribuciones no uniformes. Esta particularidad dificulta

la aplicacion de meétricas clasicas como la entropia espectral para

la deteccion de actividad en senales contaminadas con este tipo de

A2

Senales temporales normalizadas de ruido de cinta, correspondientes

a los grabadores analogicos Revox A77, Uher 4000 Report L v Tech-

nics T'R-575, respectivamente. Se aprecia que las senales presentan

un comportamiento aproximadamente estacionario, con componen-

tes de alta frecuencia y valores medios cercanos a cero, en concor-

dancia con las hipotesis asumidas en el analisis.| . . . . . . ... ..
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