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Restauración de grabaciones
musicológicas mediante técnicas de
denoising: Sustracción espectral y

Aprendizaje profundo

Memoria de proyecto presentada a la Facultad de
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El Folklore que por definición es la ciencia que es-
tudia los saberes populares, eso que lleva el hom-
bre, no recibido por v́ıa institucional, sino que por
la v́ıa de la tradición, nos hace conocernos, justa-
mente, a nosotros mismos, y ustedes saben muy
bien que conocerse a śı mismo es comenzar a me-
jorarse...

Lauro Ayestarán
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Resumen

Este trabajo aborda la restauración de grabaciones musicales de cinta analógica
mediante técnicas de reducción de ruido (denoising), combinando enfoques clásicos
de procesamiento de señales con estrategias modernas basadas en aprendizaje pro-
fundo. El proyecto surge de la necesidad de preservar el acervo sonoro del Centro
Nacional de Documentación Musical Lauro Ayestarán, que reúne grabaciones de
campo y de estudio afectadas por la degradación propia de los medios magnéticos
y las limitaciones tecnológicas de su época.

El objetivo principal consistió en desarrollar, implementar y comparar dos en-
foques representativos para la reducción de ruido en grabaciones musicales: (1)
un sistema automatizado de sustracción espectral, que incluye mejoras orientadas
a la restauración musical —como modelado armónico/percusivo, análisis sinusoi-
dal, un esquema iterativo de atenuación progresiva y un detector automático de
inactividad de señal—, y (2) un modelo de aprendizaje profundo basado en arqui-
tecturas U-Net de dos etapas, entrenadas con diferentes bases de datos de ruido
(MagTapeDB, con ruido de cinta magnética, y grabaciones de gramófono).

Los entrenamientos se realizaron en el ClusterUY, considerando limitaciones
de hardware y explorando la influencia del dominio del ruido sobre la capacidad
de generalización de los modelos. La evaluación experimental combinó métricas
perceptuales objetivas (PEAQ y PAQM), análisis por tipo de contenido musical,
variación según la relación señal–ruido (10 dB y 16 dB), tiempos de procesamiento,
y escucha cŕıtica cualitativa.

Los resultados demuestran que las técnicas clásicas de procesamiento de señales
continúan ofreciendo un rendimiento altamente competitivo. En particular, la sus-
tracción espectral —tanto en su versión estándar como alternativa— logra un
equilibrio sólido entre calidad perceptual, estabilidad y eficiencia computacional,
manteniendo un desempeño consistente en diversos escenarios, aunque la técnica
presente artefactos conocidos como el ruido musical.

Por otro lado, los modelos de aprendizaje profundo muestran un comporta-
miento más variable: alcanzan resultados competitivos cuando el tipo de ruido y el
contenido de las señales coincide con el utilizado en el entrenamiento, pero experi-
mentan una degradación significativa al enfrentarse a dominios no representados.
Además, tienden a eliminar transitorios y componentes de alta frecuencia, introdu-
ciendo una cierta artificialidad perceptual. Esto evidencia tanto la dependencia de
los modelos respecto a los datos de entrenamiento como la limitada explicabilidad
de sus decisiones.

Desde el punto de vista práctico, las técnicas basadas en redes neuronales re-



quieren recursos computacionales elevados, tiempos de entrenamiento prolongados
y conocimientos especializados para su ajuste y validación, lo cual contrasta con
la simplicidad y robustez de los métodos clásicos.

En conjunto, los resultados permiten concluir que las técnicas clásicas siguen
siendo una herramienta eficaz y accesible para la restauración de grabaciones pa-
trimoniales, mientras que los enfoques basados en aprendizaje profundo, aunque
prometedores, requieren adaptaciones espećıficas para alcanzar una calidad per-
ceptual comparable en contextos reales y diversos.
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4.2.1. Error Cuadrático Medio Relativo (RMSE) . . . . . . . . . . 39
4.2.2. Precisión, Recuperación y Fβ-Score . . . . . . . . . . . . . . 39
4.2.3. Evaluación Perceptual de la Calidad del Audio (PEAQ) . . 40
4.2.4. Medida Perceptual de la Calidad del Audio (PAQM) . . . . 40
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Índice de figuras 119

vii



Esta página ha sido intencionalmente dejada en blanco.



Caṕıtulo 1

Introducción

El denoising busca atenuar el ruido presente en una señal sin degradar la infor-
mación sonora relevante. Su importancia radica en que incluso niveles moderados
de ruido pueden afectar la inteligibilidad, la percepción musical y el rendimiento
de sistemas automáticos basados en audio.

En el caso del habla, la presencia de ruido puede dificultar la comprensión del
mensaje, especialmente en ambientes con bajo nivel de señal o con interferencias
acústicas significativas. Esto no solo afecta la experiencia del oyente, sino que
también puede limitar la eficacia de sistemas automáticos de reconocimiento de
voz, asistentes virtuales, o subtitulado automático. La inteligibilidad del habla,
es decir, la capacidad de entender las palabras pronunciadas, depende en gran
medida de la relación señal-ruido (Signal-to-Noise Ratio, SNR), aśı como de ciertas
caracteŕısticas del habla, como los formantes y las consonantes fricativas.

El ruido en grabaciones musicales puede opacar detalles importantes del sonido,
como los matices de los instrumentos o la claridad de las voces. Este problema
adquiere particular relevancia en el contexto de la preservación del patrimonio
musical, donde grabaciones históricas presentan degradaciones caracteŕısticas de
los medios analógicos que requieren intervención técnica para su restauración.

Este proyecto tiene como objetivo desarrollar, implementar y comparar dos en-
foques fundamentales de denoising para la restauración de grabaciones musicales:
la sustracción espectral con mejoras propuestas y modelos basados en aprendizaje
profundo.

La sustracción espectral es una técnica clásica del procesamiento de audio, cu-
yo principio consiste en estimar el espectro del ruido y sustraerlo del espectro de la
señal contaminada. Dado que las implementaciones abiertas disponibles suelen ser
limitadas o poco accesibles, parte del proyecto se centró en desarrollar una versión
automatizada del algoritmo clásico. Además, se implementó una variante que in-
corpora modelado espectral mediante técnicas de separación armónica/percusiva
y análisis sinusoidal, un esquema iterativo para reducción progresiva del ruido, y
algoritmos espećıficos para mitigación del ruido musical. Un componente clave del
sistema desarrollado es el detector automático de inactividad de señal, basado en
múltiples métricas (enerǵıa en tiempo corto, tasa de cruces por cero y magnitud es-
pectral en altas frecuencias), que permite estimar el perfil de ruido sin intervención
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manual.
En paralelo, se entrenaron modelos de denoising basados en aprendizaje pro-

fundo, empleando una arquitectura U-Net de dos etapas para aprender patrones
de ruido y restaurar el espectrograma limpio. Los modelos se entrenaron utilizando
dos bases de datos de ruidos —MagTapeDB (ruido de cinta magnética) y grabacio-
nes de gramófono—, aśı como combinaciones de ambas, con el fin de analizar cómo
vaŕıa su desempeño según el dominio de ruido considerado y evaluar su capacidad
de generalización.

La evaluación experimental incorpora múltiples dimensiones: métricas percep-
tuales objetivas (PEAQ y PAQM), análisis por tipo de contenido musical (música
popular, muchas fuentes, pocas fuentes, vocal), variación según relación señal-
ruido, tiempos de procesamiento, y escucha cŕıtica cualitativa. Esta evaluación
integral permite no solo cuantificar el desempeño técnico de cada enfoque, sino
también comprender sus ventajas relativas, limitaciones prácticas y artefactos ca-
racteŕısticos.

1.1. Motivación
El estudio y desarrollo de técnicas de reducción de ruido en audio responde

tanto a necesidades prácticas como cient́ıficas. En el ámbito de la restauración de
grabaciones musicales históricas, estas técnicas adquieren especial relevancia, ya
que permiten recuperar información sonora valiosa afectada por las limitaciones
inherentes de los medios analógicos. Sin embargo, muchas de las herramientas
disponibles en el entorno profesional son de carácter propietario, presentan un
funcionamiento opaco y requieren recursos computacionales elevados o licencias de
alto costo, lo que dificulta su adopción en contextos académicos y patrimoniales.

En este escenario, resulta necesario contar con enfoques abiertos, comprensi-
bles y reproducibles que permitan estudiar los mecanismos de reducción de ruido
y adaptarlos a distintos tipos de degradación. Este trabajo se propone contribuir
en esa dirección, explorando dos paradigmas complementarios: las técnicas clási-
cas basadas en procesamiento de señales y los modelos modernos de aprendizaje
profundo.

La sustracción espectral fue seleccionada como punto de partida por su solidez
teórica, su bajo costo computacional y su capacidad de ofrecer control expĺıcito
sobre los parámetros de atenuación. Además, su comportamiento y artefactos son
bien comprendidos en la literatura, lo que facilita proponer variantes mejoradas y
analizar sus efectos. A partir de esta base, se implementó una versión extendida que
incorpora modelado armónico/percusivo, análisis sinusoidal y esquemas iterativos
de reducción progresiva.

En paralelo, el rápido avance de las redes neuronales profundas abre nuevas
posibilidades para la restauración de audio, especialmente en contextos donde el
ruido presenta estructuras complejas o no estacionarias. Los modelos tipo U-Net
han demostrado un desempeño notable en tareas de separación y limpieza de audio.

En definitiva, este trabajo busca aportar una base experimental sólida que per-
mita comprender las ventajas y limitaciones de cada enfoque, y sirva de referencia
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1.2. Grabaciones en cinta magnética y su degradación

para futuros desarrollos en restauración de audio histórico.

1.2. Grabaciones en cinta magnética y su degradación
A mediados del siglo XX, el ruido en las grabaciones analógicas representaba un

desaf́ıo significativo debido a las limitaciones tecnológicas de la época. Los sistemas
de grabación y reproducción utilizaban medios f́ısicos como cintas magnéticas y
discos de vinilo, goma, laca o acetato, los cuales eran susceptibles a diversas fuentes
de interferencia. El ruido de fondo, a menudo causado por imperfecciones en el
medio de grabación, fluctuaciones en la corriente eléctrica, o el desgaste del equipo,
se manifestaba como silbidos, zumbidos o distorsiones no deseadas.

Aunque muchas grabaciones profesionales alcanzaban una calidad sonora no-
table, el ruido segúıa presente como una caracteŕıstica inherente del formato, espe-
cialmente al realizar copias sucesivas [1]. A diferencia del audio digital, donde las
copias pueden ser idénticas al original, en el dominio analógico cada duplicación
generaba una pérdida acumulativa de calidad.

Si bien se desarrollaron técnicas para mitigar estos problemas —como el uso de
filtros, cintas de mayor calidad y sistemas de reducción de ruido tipo Dolby—, estas
soluciones no lograban eliminar completamente las degradaciones, y en algunos
casos introdućıan artefactos propios [2].

Se profundiza sobre estas degradaciones en el Anexo B.2.

1.3. Centro Nacional de Documentación Musical Lauro
Ayestarán

Lauro Ayestarán (1913-1966) fue un destacado musicólogo, investigador y do-
cente uruguayo, considerado el pionero de la musicoloǵıa en el páıs. Su trabajo fue
fundamental para la recopilación, estudio y preservación del patrimonio musical
uruguayo, abarcando tanto la música académica como las expresiones musicales
populares y folklóricas.

Uno de sus aportes más significativos fue la realización de extensas grabacio-
nes de campo a lo largo de Uruguay, donde documentó diversas manifestaciones
musicales tradicionales. Estas grabaciones constituyen un acervo invaluable para
la investigación musicológica y la preservación de la cultura sonora del páıs. Su
labor ha sido reconocida internacionalmente, y su legado sigue vigente a través del
Centro de Documentación Musical Lauro Ayestarán (CDM) [3], que se dedica a
la conservación y estudio de sus archivos. En la Figura 1.1 se observan dos mo-
mentos de su trabajo de documentación sonora, tanto en entornos de grabación
controlados como en el registro de campo.

El Centro Nacional de Documentación Musical Lauro Ayestarán fue creado
por resolución del Ministerio de Educación y Cultura de fecha 26 de marzo de
2009, sobre la base de los materiales del archivo del gran musicólogo adquiridos en
2002 por el Estado uruguayo. El proyecto del CDM se basa en el esṕıritu de Lauro
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Figura 1.1: Lauro Ayestarán en distintas instancias de su labor de documentación musical: en
estudio y en trabajo de campo, registrando interpretaciones de músicos populares uruguayos
mediante grabadores de cinta.

Ayestarán, pionero de una musicoloǵıa uruguaya, abarcativa de todos los ámbitos
de actividad cultural que presentan aspectos musicales, con una visión abierta a
otras expresiones culturales, a otros ámbitos antropológicos, a otras manifestacio-
nes art́ısticas [3].

El trabajo de campo de Lauro Ayestarán se inicia en 1943 y, a partir de 1946,
incorpora el registro sistemático en discos de 25 cm a 78 rpm. En 1952 adquiere
su primer grabador de cinta magnética, formato que pasa a utilizarse de forma
habitual en las campañas posteriores. Algunos años más tarde, hacia 1955, Ayes-
tarán realiza además un respaldo en cinta del material registrado originalmente en
disco, de modo que el acervo conservado en el CDM combina registros efectuados
directamente en cinta con transferencias posteriores desde soportes de 78 rpm.

En la Fig. 1.2 se observa una cinta magnética de carrete abierto empleados por
Ayestarán en estas campañas.

Figura 1.2: Cinta magnética de carrete abierto utilizada por Lauro Ayestarán para el registro
sonoro. Imágen del CDM [3].

4



1.4. Antecedentes

En este contexto, el presente trabajo se centra expĺıcitamente en el estudio y
tratamiento del ruido asociado a las grabaciones en cinta magnética. Esta elección
responde, por un lado, a una continuidad natural con el trabajo previo de Irigaray
et al. [4], también focalizado en ruido de cinta, y por otro, al objetivo de desarrollar
una herramienta con mayor grado de generalidad, que pueda aplicarse no sólo al
caso particular de las transferencias desde discos de 78 rpm, sino también a otros
archivos sonoros registrados o preservados en cinta magnética. De este modo, la
motivación histórica vinculada al archivo de Ayestarán convive con un enfoque
metodológico que prioriza la utilidad del método en escenarios más amplios de
restauración de audio.

1.4. Antecedentes
El proyecto de denoising que se propone tiene como antecedentes varios tra-

bajos y estudios previos que abordan la eliminación de ruido en grabaciones de
audio, utilizando tanto técnicas tradicionales como enfoques basados en aprendi-
zaje profundo.

Uno de los antecedentes es el art́ıculo titulado Aproximación interdisciplinaria
al trabajo con documentos sonoros. Estudio de caso: las grabaciones de campo de
Lauro Ayestarán [5], presentado por Ignacio Irigaray y Federico Sallés. Este tra-
bajo aborda la necesidad de re-digitalizar estas grabaciones utilizando tecnoloǵıas
modernas y procedimientos actualizados de limpieza y digitalización. El proceso
incluye la evaluación del estado de los materiales originales, el desarrollo de nue-
vos algoritmos de procesamiento digital y la implementación de técnicas como la
sustracción espectral y eliminación de clicks.

Recientemente, se ha visto un auge en el uso de técnicas de aprendizaje profun-
do para la reducción de ruido en grabaciones de audio. Un ejemplo es el art́ıculo A
Two-Stage U-Net for High-Fidelity Denoising [6], donde se trabajó sobre discos de
78 rpm. Otro art́ıculo relevante es Bandwidth Extension of Historical Music using
Generative Adversarial Networks [7].

Además, se cuenta con un art́ıculo de Ignacio Irigaray, Martin Rocamora y Luiz
W. P. Biscainho del 2023, titulado Noise reduction in analog tape audio recordings
with deep learning models [4], que aborda el problema de la reducción de ruido en
grabaciones de cinta utilizando un enfoque de aprendizaje profundo.

Finalmente, existen herramientas comerciales especializadas, como iZotope RX
[8], que ofrecen soluciones para la restauración de audio.

1.5. Estructura del documento
El presente trabajo se organiza de la siguiente manera:

Caṕıtulo 2: introduce la técnica de sustracción espectral, desde sus funda-
mentos teóricos hasta la implementación desarrollada. Se describe el algo-
ritmo clásico, el detector automático de inactividad propuesto y la variante
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mejorada SS Denoisify, que incorpora modelado espectral, procesamiento
iterativo y técnicas de reducción de ruido musical.

Caṕıtulo 3: presenta el modelo de aprendizaje profundo basados en arqui-
tecturas U-Net de dos etapas. Se revisan los antecedentes del uso de redes
neuronales en procesamiento de audio musical y se detalla el modelo adop-
tado como base para este trabajo.

Caṕıtulo 4: describe la metodoloǵıa experimental, incluyendo las bases de
datos utilizadas (MusicNet, ruido de cinta magnética, ruido de gramófono y
música personalizada), las métricas de evaluación empleadas, el proceso de
búsqueda de hiperparámetros para los algoritmos de sustracción espectral,
los procedimientos de entrenamiento de los modelos de aprendizaje profundo
en el ClusterUY, aśı como la forma en que se llevó a cabo la evaluación final
de los modelos propuestos.

Caṕıtulo 5: presenta el análisis de resultados, organizado en cuatro dimen-
siones: los hiperparámetros óptimos encontrados, las curvas de aprendizaje
de los modelos neuronales, la evaluación objetiva mediante métricas per-
ceptuales (considerando el desempeño general, la variación según SNR, el
análisis por categoŕıa de contenido y los tiempos de procesamiento), y la
escucha cŕıtica cualitativa de las señales restauradas.

Caṕıtulo 6: sintetiza las conclusiones principales del trabajo, identificando
las ventajas y limitaciones de cada enfoque, y propone ĺıneas futuras de
investigación.

Finalmente, se incluyen dos Apéndices. El Apéndice A analiza métricas alter-
nativas evaluadas para la detección de inactividad, mientras que el Apéndice B
caracteriza en detalle los tipos de ruido presentes en discos de gramófono y cintas
magnéticas.
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Sustracción espectral

En el presente caṕıtulo se introduce la primera técnica de denoising abordada
en este trabajo: la sustracción espectral. Se comienza con una reseña histórica que
contextualiza el surgimiento de esta metodoloǵıa y su relevancia en el procesa-
miento de señales ruidosas. A continuación, se presenta la formulación clásica del
algoritmo y su implementación fundamental.

Posteriormente, se desarrolla en detalle uno de los módulos centrales para su
correcto funcionamiento: el detector de inactividad, encargado de identificar de
manera autónoma los segmentos de la señal donde no existe actividad relevante
y que, por tanto, pueden emplearse para estimar el perfil de ruido. Finalmente,
se discuten variantes y extensiones del enfoque tradicional, lo que culmina en el
desarrollo de una implementación alternativa propuesta en este trabajo, orientada
a mejorar la eficacia del algoritmo en la restauración de grabaciones de audio.

2.1. Introducción
La primera propuesta formal de sustracción espectral fue presentada por Ste-

ven F. Boll en 1979, en su art́ıculo “Suppression of Acoustic Noise in Speech Using
Spectral Subtraction” [9]. Este trabajo dio origen a uno de los métodos más influ-
yentes y ampliamente utilizados en la reducción de ruido en señales de voz [10–12].
Su popularidad se debe principalmente a su sencillez conceptual, bajo costo compu-
tacional y facilidad de implementación en tiempo real [10,11,13]. Además, diversas
variantes del método han sido incorporadas en sistemas comerciales, incluyendo
algoritmos de cancelación de ruido en teléfonos móviles [10].

La técnica propuesta por Boll se fundamenta en que, durante las pausas de
habla, la señal registrada está compuesta mayoritariamente por el ruido de fondo.
Esto permite estimar su espectro y sustraerlo posteriormente del resto de la señal
para obtener una versión más limpia de la voz. El enfoque asume que el ruido
es aditivo, independiente y localmente estacionario, de modo que la estimación
obtenida en segmentos sin voz se mantiene válida en los instantes inmediatamente
posteriores.

A pesar de su efectividad y simplicidad, el método presenta un problema bien
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conocido: la generación de ruido musical (musical noise), considerado uno de los
mayores desaf́ıos de la técnica [9, 10, 13, 14]. Este artefacto se manifiesta percep-
tualmente como tonos breves, fluctuantes y molestos, resultado de la estructura
discontinua que produce la sustracción espectral.

Para mitigar estas distorsiones, se han propuesto numerosas variantes del méto-
do original. Entre los aportes más influyentes se encuentra la propuesta de Berouti
et al. [14], quienes introdujeron un factor de sobreestimación del ruido y un pi-
so espectral. Otras ĺıneas de trabajo relevantes incluyen la sustracción espectral
multibanda [15, 16], los métodos basados en filtrado de Wiener [17], las técni-
cas iterativas [10,16,18–20], los enfoques perceptuales [21], y modelos estad́ısticos
avanzados como los estimadores MMSE de Ephraim y Malah [22].

2.2. Formulación matemática de la técnica
En esta sección se presentan los fundamentos y procedimientos matemáticos

que describen la técnica de sustracción espectral [9,10,13,14]. En primer lugar, se
considera una señal ruidosa y compuesta por L muestras. El ruido se modela como
señal estocástica, aditiva y no correlacionada con la señal determinista original.
Bajo este supuesto, puede escribirse:

y[m] = x[m] + n[m], (2.1)

donde x[m] representa la señal libre de ruido y n[m] una realización del ruido
aditivo que la contamina. La transformada de Fourier de tiempo corto (STFT) de
la señal y se define como:

Y [f, k] =

Lfft−1∑
m=0

y[m+ fLhop]w[m] e
−j 2π

Lfft
km

, (2.2)

donde w[m] es una ventana de Hann1 de longitud Lfft, que corresponde con el
tamaño de la FFT2, y Lhop es el desplazamiento (hop-size) entre ventanas conse-
cutivas. El ı́ndice f corresponde al número de frame, con f ∈ F = {0, . . . , Lf −1},
siendo Lf la cantidad total de frames. Por su parte, k indica el bin frecuencial y
puede tomar los valores k = 0, . . . , Lfft − 1. La cantidad total de frames está dada
por:

Lf =

⌊
L− Lfft

Lhop

⌋
+ 1. (2.3)

1La ventana de Hann es una función suavizante que atenúa los bordes de cada segmen-
to para disminuir el efecto de las discontinuidades introducidas por el enventanado y la
superposición.

2La Fast Fourier Transform (FFT) es un algoritmo eficiente para calcular la trans-
formada discreta de Fourier (DFT), reduciendo su complejidad computacional de O(N2)
a O(N logN) y permitiendo obtener el contenido espectral de un frame de una señal de
manera rápida.
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A partir de la Ecuación 2.2, y dado que la STFT es un operador lineal, se
obtiene inmediatamente:

Y [f, k] = X[f, k] +N [f, k], (2.4)

donde X[f, k] corresponde a la STFT de x[m] y N [f, k] a la STFT de n[m].
Para caracterizar el comportamiento espectral, se define el frame f de la STFT

del ruido como:

Nf =
[
|N [f, 0]|, |N [f, 1]|, . . . , |N [f, Lfft − 1]|

]
. (2.5)

Cada uno de estos frames son realizaciones de un vector estocástico con media µ
y varianza σ2.

Dado el escenario matemático anterior, la técnica de sustracción espectral tiene
como objetivo atenuar la media introducida por el ruido. El caso ideal para estimar
la media espectral del ruido —lo que en este trabajo se denominará perfil del
ruido— consiste en emplear el siguiente estimador insesgado:

N̄ [k] =
1

|F|
∑
f∈F

Nf [k]. (2.6)

Sin embargo, es evidente que este cálculo resulta inviable en la práctica, ya que
exige disponer de la STFT del ruido de forma independiente a la STFT de la señal
ruidosa; en otras palabras, asumir esto equivale a resolver de antemano el propio
problema de la restauración.

Por este motivo, la técnica de sustracción espectral propone modelar el ruido
como un proceso estacionario a lo largo de toda la señal, es decir, asumir que
sus propiedades estad́ısticas —en particular, su media y su varianza espectral—
permanecen aproximadamente constantes en el tiempo. Bajo esta hipótesis, las
distintas realizaciones del ruido, observadas en los frames donde no hay contenido
relevante de la señal, pueden emplearse para estimar de manera consistente su
perfil espectral.

Para ello, se asume la existencia de un subconjunto de frames F̃ ⊆ F en los
cuales la señal está ausente y solo se encuentra presente el ruido. En dichos frames
se cumple:

Y [f, k] = N [f, k] ∀ f ∈ F̃ . (2.7)

De este modo, a partir de la condición de estacionariedad del ruido, se define
el siguiente estimador del perfil espectral:

N̂ [k] =
1

|F̃ |

∑
f∈F̃

|Y [f, k]| = 1

|F̃ |

∑
f∈F̃

Yf [k], (2.8)

donde Yf [k] denota la componente k-ésima del frame f de la STFT de la señal
ruidosa Y .

La sustracción espectral para cada frame se define como:

X̂f = máx
{
Yf − α N̂, βYf

}
, f ∈ F , (2.9)
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donde los parámetros α > 1, β ∈ (0, 1) controlan, respectivamente, la cantidad de
enerǵıa espectral sustráıda y el piso mı́nimo permitido para cada componente. Es-
tos valores determinan el compromiso entre la reducción de ruido y la preservación
de la calidad de la señal procesada.

Por un lado, el factor de sobreestimación α permite incrementar la cantidad de
ruido sustráıdo, multiplicando el espectro estimado del ruido por un valor mayor
que uno [9]. Esto atenúa o elimina la mayoŕıa de los picos anchos del espectro
de ruido. Sin embargo, en algunas frecuencias permanecen ciertos picos angostos,
rodeados por frecuencias de menor potencia, formando lo que [14] denomina valles.
Estos valles generan transiciones abruptas en el espectro que se perciben auditi-
vamente como el denominado ruido musical, el cual se analiza en detalle en la
Sección 2.5.

Para suavizar estas transiciones, se introduce el parámetro β, que evita que
la magnitud espectral se reduzca abruptamente a cero. De este modo, se atenúan
las oscilaciones bruscas entre picos y valles, reduciendo el ruido musical. En la
Figura 2.1 se ilustran los resultados de la sustracción espectral aplicada a un frame
de una señal musical con su correspondiente perfil de ruido. Alĺı se observan los
denominados valles, generados por la sustracción espectral sin el parámetro β, y
cómo la incorporación del mismo permite suavizar dichas discontinuidades.

Figura 2.1: Comparación de la sustracción espectral en un frame de señal musical. Se muestran:
(i) espectro de la señal limpia, (ii) espectro de la señal ruidosa, (iii) perfil de ruido, (iv)
resultado de la sustracción espectral con factor de sobreestimación α, donde aparecen los
mencionados valles, y (v) sustracción espectral reforzada con el parámetro β, el cual suaviza
dichas transiciones y reduce las fluctuaciones.
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Finalmente, para reconstruir la señal en el dominio temporal se utiliza la mag-
nitud procesada X̂f [k], obtenida mediante la sustracción espectral, junto con la
fase original de la STFT ruidosa ∠Y [f, k]. Aśı, el espectro complejo estimado para
cada frame se define como:

X̂[f, k] = X̂f [k] e
j ∠Y [f,k]. (2.10)

Luego, cada frame temporal se obtiene aplicando la transformada inversa de
Fourier iFFT:

x̂f [t] =
1

Lfft

Lfft−1∑
k=0

X̂[f, k] e
j 2π

Lfft
kt
, t = 0, 1, . . . , Lfft − 1. (2.11)

La reconstrucción completa (iSTFT) se obtiene mediante el procedimiento de
overlap–add, sumando las contribuciones de cada frame en sus posiciones tempo-
rales correspondientes:

x̂[m] =
1

C

Lf−1∑
f=0

ℜ{x̂f [m− fLhop]} 1{0≤m−fLhop<Lfft}, m = 0, 1, . . . , L̃− 1, (2.12)

donde L̃ = (Lf − 1)Lhop + Lfft, y el factor de normalización C se define como:

C =
1

Lhop

Lfft−1∑
m=0

w[m]. (2.13)

Aqúı, 1{·} denota la función indicatriz, que toma el valor 1 cuando la condición
especificada se cumple y 0 en caso contrario.

Cabe destacar que, en general, no necesariamente se cumple que L = L̃. Por
lo tanto, la señal original x[m] y la señal restaurada x̂[m] pueden diferir en su
cantidad total de muestras.

2.3. Algoritmo SS Clásico
Como punto de partida, se implementó un algoritmo básico de sustracción es-

pectral: SS Clásico. La implementación se basó principalmente en el enfoque pre-
sentado por Vaseghi en [13], donde se detallan diversos métodos para la reducción
de ruido, incluyendo variantes de esta técnica, aśı como sus fundamentos estad́ısti-
cos y perceptuales. El esquema general del algoritmo desarrollado se presenta en
la Figura 2.2.

Inicialmente, la señal de audio y[m] es transformada al dominio tiempo fre-
cuencia mediante la STFT, utilizando una ventana de tipo Hann. El resultado es
la matriz compleja Y [f, k], donde cada columna representa el espectro de un frame
temporal.

Posteriormente, se aplica un algoritmo de detección de no actividad, cuyo ob-
jetivo es identificar segmentos (frames) donde no hay contenido musical ni vocal,
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Figura 2.2: Diagrama de bloques del algoritmo básico de sustracción espectral implementado,
SS Clásico, que incluye el análisis y śıntesis STFT, detección de segmentos de inactividad,
filtrado pasabajos y la sustracción con parámetros α y β.

sino únicamente ruido (F̃). Vale la pena recordar que la detección automática
de estas regiones es uno de los objetivos principales del presente trabajo, ya que
permite adaptar el algoritmo de forma dinámica a diferentes entornos de ruido
sin una intervención manual. Esto será desarrollado con mayor profundidad en la
Sección 2.4.

Los espectros de los segmentos identificados como ruido se promedian para ob-
tener un perfil espectral estimado N̂, que representa el módulo promedio del ruido
por cada bin de frecuencia sobre el conjunto F̃ de frames, definido anteriormente.

Como se describió en la formulación matemática de la técnica, la presencia de
ruido estocástico aditivo sobre una señal modifica su distribución estad́ıstica. En
particular, la media y la desviación estándar de la señal original se ven afectadas.
El estimador propuesto por S. F. Boll [9] plantea corregir la alteración en la media
introducida por el ruido a través de la sustracción, pero no compensa la dispersión
(varianza) de la señal.

Por esta razón, en [13] se propone aplicar un filtro pasabajos de primer orden
(low-pass filter, LPF) en la dimensión temporal, con el objetivo de atenuar la
varianza no deseada introducida por el ruido. Para ello, se toma el módulo de la
STFT Y [f, k] y luego se procesa cada uno de sus frames mediante la siguiente
función recursiva:

YLPF
f =

Y0, f = 0,

ρYLPF
f−1 + (1− ρ)Yf , f > 0,

donde ρ ∈ (0, 1) es un parámetro que controla la suavidad del filtrado: valores cer-
canos a 1 producen un filtrado más agresivo y, por lo tanto, una mayor atenuación
de las variaciones rápidas.

Si bien una señal de audio puede presentar variaciones abruptas en el tiempo
—por ejemplo, debido a transiciones rápidas entre formantes o a cambios súbitos en
su estructura espectral— se asume que estas variaciones son menos pronunciadas
que las generadas por el ruido analógico.

Bajo esta hipótesis, el uso de un LPF en el tiempo implica un compromiso:
se acepta cierto riesgo de suavizar componentes leǵıtimas de la señal a cambio de
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suprimir las fluctuaciones más rápidas asociadas al ruido. Según [13], este suavi-
zado espectral contribuye a reducir la varianza del ruido y, por ende, a mitigar la
aparición de ruido musical.

Finalmente, se aplica la sustracción espectral sobre los frames resultantes del
filtrado pasabajos, siguiendo el mismo procedimiento definido en la Ecuación 2.9.
La señal en el dominio temporal se reconstruye luego mediante la iSTFT, emplean-
do como espectro complejo el producto entre la magnitud estimada X̂[f, k] y la
fase de la STFT ruidosa, esto es, X̂[f, k] ej∠Y [f,k].

2.4. Detector de inactividad de la señal
En la técnica de sustracción espectral es fundamental disponer de un perfil de

ruido representativo, obtenido a partir de segmentos de la señal donde no existe
actividad útil. Tradicionalmente, esta identificación de regiones inactivas se realizó
de forma manual, lo que limita la autonomı́a y escalabilidad del proceso.

En este trabajo se propone un enfoque completamente automático para la
detección de inactividad, cuyo objetivo es localizar de manera robusta los tramos
libres de contenido relevante y, a partir de ellos, estimar el perfil de ruido sin una
intervención manual. Este módulo constituye una etapa clave dentro del sistema
de denoising, ya que la calidad de la estimación del ruido condiciona directamente
el desempeño de la sustracción espectral.

A continuación se detalla la implementación completa del algoritmo propuesto
para la detección automática de inactividad. Dado que las decisiones de diseño
adoptadas en este módulo se fundamentan en el comportamiento de las métricas
evaluadas, se recomienda revisar previamente el análisis presentado en el Apéndi-
ce A, donde se discuten en profundidad las propiedades, ventajas y limitaciones
de cada métrica considerada.

Implementación del algoritmo
En primer lugar, el detector de inactividad analiza la señal en el dominio tempo-

ral mediante ventanas solapadas (frames temporales), utilizando el mismo tamaño
de ventana y el mismo desplazamiento que los utilizdos en la STFT. Es importante
recordar que el funcionamiento del algoritmo implementado se basa en la hipótesis
de que el ruido presente en la grabación es aproximadamente estacionario a lo largo
de toda su duración. Bajo este supuesto, se asume que los últimos frames de la
señal contienen únicamente ruido, lo cual permite obtener una primera estimación
de su perfil. Esta elección se justifica en que, t́ıpicamente, las piezas musicales y
las grabaciones musicológicas no finalizan de forma abrupta, sino que incluyen una
breve sección final sin contenido musical relevante, que puede aprovecharse como
referencia inicial para caracterizar el ruido presente en toda la señal.

Posteriormente, se aplican umbrales espećıficos sobre cada una de las métricas
extráıdas, con el objetivo de detectar de forma robusta los segmentos de inac-
tividad. Para evitar clasificaciones erróneas causadas por transiciones graduales
entre regiones activas e inactivas —como los ataques o decaimientos al inicio o
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final de un sonido— se incorporan márgenes adicionales al comienzo y al final de
cada segmento detectado como silencio. Estos márgenes permiten excluir los fra-
mes limı́trofes que podŕıan estar contaminados por contenido mixto de sonido y
ruido. Por defecto, el margen inicial es mayor que el final, ya que el crecimiento
de amplitud al inicio de un sonido suele ser más abrupto que su decaimiento.

Además, el algoritmo impone restricciones de duración mı́nima tanto para los
segmentos de silencio como para los de actividad. Un segmento es considerado
silencio únicamente si su longitud excede un umbral mı́nimo, lo cual previene
detecciones falsas provocadas por fluctuaciones breves en las métricas. De forma
similar, si se detecta un sonido entre dos silencios cuya duración no alcanza el
umbral mı́nimo para el sonido, se lo considera parte del silencio anterior, evitando
aśı la fragmentación innecesaria de los tramos inactivos.

Inicialmente, para la implementación del algoritmo se consideraron dos métri-
cas: la enerǵıa en tiempo corto (STE) y la taza de cruces por cero en
tiempo corto (ZCR). Ambas se calculan aplicando una ventana deslizante de
tamaño fijo sobre la señal ruidosa en el dominio temporal, avanzando con un salto
definido. En el caso de la STE, se estima la enerǵıa de cada frame como la suma de
los cuadrados de las muestras contenidas en la ventana, de acuerdo con la siguiente
expresión:

STE[n] =
M−1∑
m=0

x2[nR+m] (2.14)

donde x[n] es la señal, M = Lfft es el tamaño de la ventana y R = Lhop el salto
entre ventanas. Por otro lado, la ZCR se calcula contando cuántas veces la señal
cambia de signo dentro de cada ventana, lo cual se obtiene a partir del signo de
muestras consecutivas. El resultado se normaliza por el tamaño de la ventana, lo
que conduce a la siguiente expresión:

ZCR[n] =
1

M

M−1∑
m=1

|sgn(x[nR+m])− sgn(x[nR+m− 1])| /2 (2.15)

donde sgn(·) representa la función signo.
No obstante, como se discute en el Apéndice A, es fundamental tener en cuenta

los casos en los que ciertos fragmentos de la señal, particularmente aquellos con
componentes agudas, puedan presentar una tasa de cruces por cero elevada sin
corresponder necesariamente a ruido. Para abordar esta situación, se introdujo
una nueva métrica: la magnitud espectral promedio en altas frecuencias
(MHF). Esta métrica se calcula a partir de la STFT de la señal, utilizando el
mismo valor de ventana que en las métricas anteriores. En cada frame, se computa
el promedio de la magnitud espectral a partir de una frecuencia umbral fcut, con
el objetivo de estimar la presencia de contenido espectral en altas frecuencias. La
fórmula utilizada para calcular esta métrica es:

MHF[n] =
1

K − kc

K−1∑
k=kc

|X[n, k]| (2.16)
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donde X[n, k] representa el valor complejo de la STFT en el frame n y bin k, kc
es el bin de frecuencia correspondiente a fcut, y K = Lfft / 2 es el total de bins de
frecuencia.

Para determinar la frecuencia de corte fcut y su correspondiente ı́ndice espectral
kc, se tomó como referencia el comportamiento de una señal sinusoidal, aśı como la
tasa de cruces por cero promedio en los últimos frames de la señal, de los cuales se
asume que contienen únicamente ruido. En particular, una sinusoide de frecuencia
f , muestreada a una frecuencia fs, tiene una tasa de cruces por cero dada por:

ZCRsin =
2f

fs
(2.17)

A partir del cálculo de la ZCR para cada ventana de análisis, se estima la
media sobre los últimos frames de silencio, que se denota como ZCRnoise. Este
valor permite estimar una frecuencia de referencia cuya tasa de cruces por cero sea
equivalente, despejando de la ecuación anterior:

fref =
ZCRnoise · fs

2
(2.18)

Con el fin de introducir un margen de tolerancia, se define la frecuencia de corte
como una fracción de esta frecuencia de referencia:

fcut = (1− αpct) · fref (2.19)

donde αpct ∈ (0, 1) es un parámetro de tolerancia que define cuán estricta será
la exclusión de componentes de frecuencia inferior. Finalmente, el ı́ndice espectral
correspondiente a esta frecuencia de corte se obtiene como:

kc =

⌊
fcut ·M

fs

⌋
. (2.20)

Los umbrales utilizados para cada una de las métricas fueron definidos en
función de su valor promedio estimado sobre los últimos frames. Para cada métrica,
el umbral se establece como una fracción de su media en esta región de referencia,
según las siguientes expresiones:

TSTE = (1 + αSTE) · STEnoise (2.21)

TZCR = (1− αZCR) · ZCRnoise (2.22)

TMHF = (1 + αMHF) ·MHFnoise (2.23)

donde αSTE, αZCR, αMHF ∈ [0, 1] son parámetros de sensibilidad que determinan
qué tan estrictos serán los umbrales respecto a la enerǵıa, la tasa de cruces por
cero y la magnitud espectral en altas frecuencias, respectivamente.

Una vez definidos los umbrales, se procede a recorrer todos los frames, clasi-
ficando como inactivos aquellos que cumplan simultáneamente las siguientes tres
condiciones:

STE[n] < TSTE

ZCR[n] > TZCR

MHF[n] < TMHF

(2.24)
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Caṕıtulo 2. Sustracción espectral

Las condiciones 2.24 aseguran que un frame será considerado como inactivo si
presenta baja enerǵıa, alta tasa de cruces por cero y baja magnitud espectral en
altas frecuencias.

En el Algoritmo 1 se puede apreciar la implementación para la detección de
inactividad de la señal. La máscara de segmentos inactivos utilizada en este algo-
ritmo es un arreglo del mismo tamaño que la cantidad total de frames, donde cada
elemento indica si el frame correspondiente está activo o inactivo.

Algoritmo 1 Detección de segmentos de inactividad de la señal.

Entrada: Señal x y su frecuencia de muestreo; parámetros: tamaño de ven-
tana, salto entre ventanas, control de umbrales, márgenes, largos
mı́nimos de segmentos, cantidad de ventanas iniciales.

Salida: Máscara de segmentos inactivos.
1. Inicialización
Calcular la magnitud de la STFT de la señal x.
Calcular: STE, ZCR, STEruido, ZCRruido.
Calcular: MHF, MHFruido.
Calcular: TSTE, TZCR, TMHF.
Inicializar la máscara de segmentos inactivos con las ventanas iniciales.
2. Detección de Inactividad
for n: resto de ventanas do

if STE[n] < TSTE and ZCR[n] > TZCR and MHF [n] < TMHF then
Marcar ventana como inicio de segmento de inactividad.

else if se detectó un inicio y el segmento es suficientemente largo then
Aplicar márgenes.
Verificar el tamaño del segmento activo entre los segmentos inactivos.
Actualizar máscara de segmentos inactivos.

3. Postprocesamiento
Procesar el último segmento de silencio (si corresponde).
Retornar máscara de segmentos inactivos

2.5. Propuestas de mejora del algoritmo básico
La sustracción espectral, desde su formulación original propuesta por Boll,

se consolidó rápidamente como una técnica simple y eficiente para la reducción
de ruido en señales de audio, especialmente de voz. Sin embargo, su aplicación
práctica evidenció limitaciones importantes, entre ellas la aparición del denomina-
do ruido musical y la incorporación de ciertas distorsiones cuando la sustracción
es demasiado agresiva y atenúa componentes relevantes de la señal.

Estas dificultades motivaron el desarrollo de diversas variantes orientadas a
mejorar la robustez y la calidad perceptual del método. Entre ellas se destacan
las estrategias espećıficas para mitigar el ruido musical —como la eliminación de
componentes espectrales de muy baja magnitud o el uso de sustracción espectral

16



2.5. Propuestas de mejora del algoritmo básico

iterativa— y la incorporación de etapas de modelado espectral, destinadas a pre-
servar la estructura relevante de la señal antes y después del proceso de atenuación.

En esta sección se describen las técnicas empleadas para abordar estas limi-
taciones y mejorar el desempeño del algoritmo básico de sustracción espectral,
desarrollado en la Sección 2.3.

2.5.1. Ruido musical
El fenómeno conocido como ruido musical se refiere a un conjunto de arte-

factos tonales que aparecen en señales procesadas mediante algoritmos de reduc-
ción de ruido basados en la sustracción espectral. En una representación tiempo–
frecuencia, estos artefactos se manifiestan como picos breves e irregulares, distri-
buidos aleatoriamente en ambas dimensiones y con mayor predominancia en las
bandas altas de frecuencia.

En la Figura 2.3, que muestra el espectrograma de una señal restaurada con
el algoritmo SS Clásico, pueden identificarse como pequeños picos de color celeste
que sobresalen del fondo azul oscuro, el cual corresponde a los valles espectrales
donde la enerǵıa es considerablemente menor.

Figura 2.3: Espectrograma de una señal restaurada mediante SS Clásico, donde se observan
picos espectrales breves e irregulares —caracteŕısticos del ruido musical— que sobresalen del
fondo de baja enerǵıa (valles).

Perceptualmente, estos picos no guardan relación con la estructura armónica
de la señal original, por lo que se perciben como tonos breves y fluctuantes. Steven
F. Boll [9] señala que estos eventos pueden aparecer incluso en regiones donde
existe actividad relevante, especialmente cuando la señal no logra enmascararlos,
siendo más notorios en regiones de silencio o baja enerǵıa.

Diversos trabajos [9, 10, 13, 14] atribuyen la aparición del ruido musical a dos
factores principales. En primer lugar, debido al procedimiento descrito en la Ecua-
ción 2.9 que atenúa aquellos coeficientes espectrales cuya enerǵıa se encuentra por
debajo de la estimación del perfil de ruido, en un factor controlado por la variable
β. Este mecanismo genera valles espectrales —huecos abruptos en la distribución
del espectro— y produce una representación tiempo–frecuencia irregular y discon-
tinua, tal como se ilustra en la figura anterior.

En segundo lugar, desde una perspectiva estad́ıstica, el fenómeno está asociado
a la varianza del ruido. La estimación del perfil espectral representa t́ıpicamente el
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valor promedio del ruido, de modo que los coeficientes que superan aleatoriamente
dicha media no son eliminados y permanecen en el residuo. Estas fluctuaciones
estocásticas originan dichos picos intermitentes. Dado que este residuo no siempre
queda enmascarado por la enerǵıa armónica de la señal, sus componentes sobresa-
lientes se vuelven audibles durante la reconstrucción temporal, especialmente en
las bandas de frecuencia más altas.

A partir del análisis teórico anterior, se presentan a continuación dos técnicas
implementadas con el propósito de mitigar la presencia de ruido musical en la
restauración de grabaciones de audio.

Algoritmo de reducción de ruido musical
En este trabajo se implementó una función de detección y supresión de ruido

musical que opera en el dominio espectral mediante la STFT. El algoritmo analiza
frame por frame la evolución temporal de los coeficientes espectrales y aplica un
proceso de eliminación selectiva: si un componente presenta simultáneamente una
duración breve y una magnitud reducida (por debajo de un cierto umbral), se
clasifica como ruido musical y su magnitud es anulada. La fase original se conserva
y la señal se reconstruye mediante la iSTFT. El procedimiento completo se presenta
en el Algoritmo 2.

Algoritmo 2 Algoritmo de atenuación del ruido musical basado en detección
espectro-temporal de eventos de baja enerǵıa y corta duración.

Entrada: Señal x; parámetros: tamaño FFT NFFT, salto H, umbral en dB
TdB, duración máxima permitida Lmax.

Salida: Señal y con el ruido musical atenuado.
1. Análisis STFT
Calcular la STFT de x: X ← STFT(x,NFFT, H).
Separar magnitud M = |X| y fase Φ = ∠X.
2. Conversión de umbral
Convertir el umbral de dB a escala lineal: Tlin = 10TdB/20.
3. Detección de eventos de baja enerǵıa
Construir máscara binaria B: B[f, n] = 1 si M [f, n] < Tlin, en otro caso 0.
4. Eliminación de eventos cortos
for cada frecuencia f do

Detectar inicios y finales de secuencias consecutivas con B[f, :] = 1.
Calcular la longitud L = fin− inicio.
if 0 < L ≤ Lmax then

Anular: M [f, inicio : inicio + L]← 0.

5. Reconstrucción
Obtener y mediante iSTFT(M · ejΦ, NFFT, H). Retornar y
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La Figura 2.4, extráıda de [13], ilustra gráficamente este procedimiento: se
utiliza una ventana temporal deslizante sobre la magnitud espectral de cada frame,
comparando su duración y nivel con un umbral predefinido. Los componentes que
no cumplen estos criterios son eliminados (marcados con una x), mientras que
aquellos considerados válidos se conservan (marcados con un ✓).

Figura 2.4: Ejemplo del procedimiento de identificación y supresión de ruido musical a par-
tir de caracteŕısticas espectro-temporales. La magnitud espectral se recorre con una ventana
deslizante, comparando cada evento con un umbral de enerǵıa y una duración máxima. Los
componentes descartados se marcan con una x, mientras que los preservados aparecen con un
✓. Imagen extráıda de [13].

Sustracción espectral iterativa
Por otro lado, el trabajo Reinforced Spectral Subtraction Method to Enhance

Speech Signal [10] propone una versión iterativa de la sustracción espectral cu-
yo propósito es adaptar dinámicamente el perfil de ruido en función del residuo
generado en cada etapa. Bajo este enfoque, el ruido musical —aunque no estacio-
nario— se modela como un nuevo ruido aditivo que puede estimarse y atenuarse
progresivamente. El método inicia con una sustracción espectral convencional; la
señal obtenida, que aún contiene ruido musical, se analiza en segmentos sin presen-
cia musical para estimar el espectro de dicho residuo. Esta estimación se emplea
en una nueva sustracción sobre la señal procesada, y el procedimiento se repite de
manera iterativa, refinando en cada paso la caracterización del ruido y permitiendo
una adaptación continua del algoritmo.

Además, dado que el ruido musical presenta variaciones temporales, Ogata [10]
propone realizar estimaciones locales del perfil de ruido en marcos temporales se-
parados para cada iteración, lo que mejora la capacidad de seguimiento de la
estructura del ruido residual. El autor reporta resultados considerablemente sa-
tisfactorios con esta metodoloǵıa, mostrando mejoras claras en la calidad de las
señales procesadas bajo distintos escenarios de ruido.

La sustracción espectral ha sido comparada ampliamente con el filtro de Wie-
ner [13, 16, 22]. En particular, en [16] se analiza cómo, bajo ciertas condiciones,
la versión iterativa del método puede aproximarse progresivamente al comporta-
miento del filtro de Wiener. A medida que la estimación del ruido se vuelve más
precisa y la señal procesada se asemeja a la señal limpia, la función de ganancia
utilizada en la sustracción espectral tiende a converger hacia una forma cercana a
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la del filtro de Wiener, el cual es óptimo en el sentido del error cuadrático medio
(mean square error, MSE). Si bien dicha convergencia no se garantiza en todos
los casos, este análisis aporta una justificación teórica relevante para el uso de
esquemas iterativos.

2.5.2. Modelado espectral
Una posible forma de mejorar la eficacia de la sustracción espectral consiste

en preservar, antes de aplicar el proceso de sustracción, aquellas componentes que
resultan relevantes para la estructura de la señal. La idea central de la propuesta es
que, si se logra separar o modelar adecuadamente la porción útil de la señal—por
ejemplo, sus componentes armónicas o transitorias—, entonces la sustracción pue-
de concentrarse casi exclusivamente en atenuar las componentes del ruido. De este
modo, se evita alterar el contenido relevante de la señal original y se reduce la
probabilidad de introducir distorsiones o artefactos durante la restauración.

Para llevar a cabo esta idea, se empleó el modelado espectral, una técnica
de procesamiento digital de señales que representa una señal —particularmente de
audio— como la combinación de componentes de distinta naturaleza. Formalmente,
una señal x puede representarse como la suma de las siguientes tres componentes
principales:

x = xs + xt + xe, (2.25)

donde:

xs: corresponde con la componente sinusoidal, que representa la parte tonal
de la señal. Se modela como la suma de sinusoides con frecuencia, amplitud
y fase variables en el tiempo.

xt: se define como la componente transitoria, que captura eventos abruptos
de corta duración, como ataques de instrumentos o consonantes plosivas.

xe: es la componente estocástica, que representa la enerǵıa no armónica o
aleatoria, incluyendo consonantes fricativas, ruido ambiental u otras fluctua-
ciones no estructuradas.

La propuesta se centra en desarrollar un método que permita extraer dichas
componentes de la señal original x a partir de la señal ruidosa x+n, de manera que
la sustracción espectral no las distorsione y se enfoque únicamente en atenuar las
componentes estocásticas del ruido n. Para ello, se realizó una revisión bibliográfica
con el objetivo de identificar las herramientas más adecuadas para llevar a cabo esta
tarea. A continuación, se describen los trabajos más relevantes que se consideraron
para el presente trabajo.

En primer lugar, los estudios de McAulay y Quatieri [23], junto con los de
Serra [24–27], ofrecieron aportes relevantes que han influido en la evolución del
modelado espectral. Por un lado, McAulay y Quatieri propusieron una técnica
basada en una representación sinusoidal, donde la señal de voz se descompone en
componentes cuya frecuencia, amplitud y fase vaŕıan suavemente en el tiempo, per-
mitiendo una reconstrucción precisa incluso en entornos ruidosos. Posteriormente,
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Serra extendió este enfoque mediante el modelo Spectral Modeling Synthesis (SMS),
al introducir una descomposición más general en componentes deterministas (si-
nusoides) y estocásticas (ruido), lo cual permitió una mayor calidad de śıntesis y
una mayor flexibilidad en la transformación de señales complejas.

Una implementación destacada de este modelo es SMS Tools [28], desarrollada
por el Music Technology Group de la Universitat Pompeu Fabra, bajo la dirección
del mismo Xavier Serra. Este conjunto de herramientas de código abierto permite
el análisis, transformación y śıntesis de señales de audio basándose en el modelo
de descomposición determinista-estocástico propuesto por Serra y Smith [25] y,
también, en las publicaciones [24,26,27,29].

Por otro lado, en paralelo a estos avances, se desarrollaron técnicas orientadas
a la separación de componentes dentro de señales de audio complejas. Una de estas
técnicas se denomina Harmonic/Percussive Source Separation (HPSS) propuesta
por Fitzgerald [30], quien introduce un método simple y eficiente basado en el
filtrado por mediana aplicado sobre el espectrograma de la señal. El enfoque se
fundamenta en la observación de que las componentes armónicas se manifiestan
como estructuras horizontales en el dominio tiempo-frecuencia, mientras que las
percusivas aparecen como estructuras verticales. Mediante la aplicación de filtros
de mediana en direcciones temporales y frecuenciales, se obtienen representaciones
separadas que permiten generar máscaras para aislar cada tipo de componente,
como se ilustra en la Figura 2.5. Además, en los FMP Notebooks del laborato-
rio AudioLabs Erlangen [31] se puede encontrar una implementación didáctica y
extensible de este enfoque.

Figura 2.5: Esquema del algoritmo Harmonic/Percussive Source Separation (HPSS) propuesto
en [31]. A partir del espectrograma de potencia de la señal se aplican filtros de mediana en
dirección horizontal y vertical, lo que permite resaltar las estructuras asociadas a componentes
armónicas y percusivas, respectivamente. Posteriormente, mediante enmascaramiento binario
e iSTFT, se reconstruyen las señales correspondientes a cada tipo de componente.
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Caṕıtulo 2. Sustracción espectral

2.6. Algoritmo SS Denoisify
A partir de las técnicas descritas previamente, se diseñó el algoritmo SS De-

noisify, ilustrado en la Figura 2.6, con el objetivo de mejorar tanto el rendimiento
como la eficiencia del método de reducción de ruido basado en sustracción espectral
presentado en la Sección 2.3.
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Figura 2.6: Diagrama de bloques del algoritmo SS Denoisify propuesto para la reducción de
ruido. El proceso combina separación armónica/percusiva (HPSS), modelado sinusoidal (SMS
Tools) y un esquema de sustracción espectral iterativa. Además, incorpora detección de inac-
tividad para estimar el perfil de ruido y una etapa final de supresión de ruido musical.

Inicialmente, se buscó separar las estructuras de la señal que contienen infor-
mación relevante, como las componentes tonales, los armónicos y los transitorios.
Para ello, se empleó la técnica HPSS [31], que descompone la señal ruidosa y en dos:
una señal obtenida mediante el filtrado de mediana vertical, y|v, y otra mediante
el filtrado de mediana horizontal, y|h, donde se verifica que

HPSS{y} = {y|v, y|h}, y = y|v + y|h.

En este caso, si se asume que la señal ruidosa puede expresarse como

y = x+ n = xs + xt + xe + n,

donde xs, xt y xe son las componentes correspondientes con el modelado espectral,
entonces las señales resultantes de los filtrados de mediana pueden escribirse de la
siguiente forma: y|v = xs|v + xt|v + xe|v + n|v,

y|h = xs|h + xt|h + xe|h + n|h.
(2.26)

Si se considera además que la componente sinusoidal puede obtenerse en su
totalidad a partir del filtrado de mediana horizontal [30], xs|h = xs, y que la
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componente transitoria se puede extraer del filtrado de mediana vertical [30], xt|v =
xt, se obtiene: y|v = xt + xe|v + n|v,

y|h = xs + xe|h + n|h.
(2.27)

Como se observa en la expresión anterior, el ruido puede presentar tanto ca-
racteŕısticas armónicas como transitorias, de modo que ambas salidas generadas
por el algoritmo HPSS estarán contaminadas por dicho ruido. Por esta razón, so-
bre la componente y|h se aplica además un análisis de modelado sinusoidal, con el
objetivo de identificar las sinusoides estables a lo largo del tiempo, idealmente aso-
ciadas al contenido tonal, melódico o estructurado de la señal. Sea SMS la función
encargada del modelado sinusoidal; entonces, se obtiene la siguiente expresión:

SMS{y|h} = SMS{xs + xe|h + n|h} = xs. (2.28)

Para ilustrar este proceso, en la Figura 2.7 se presenta un ejemplo del funciona-
miento del modelado espectral. El primer espectrograma muestra la señal ruidosa
original con una SNR de 16 dB; el segundo exhibe las componentes transitorias
estimadas; el tercero corresponde a las componentes armónicas obtenidas tras sus-
traer dichos transitorios; y el cuarto muestra el modelado sinusoidal aplicado sobre
la parte armónica residual.

Como puede observarse en los espectrogramas segundo y tercero, los transito-
rios se separan correctamente de la parte armónica de la señal, aunque el ruido
permanece presente en ambas representaciones, tal cual se muestra en la Ecua-
ción 2.27. En cambio, en el último espectrograma —correspondiente al modelado
sinusoidal— se aprecia que este enfoque no preserva el ruido en todo el espectro,
lo cual permite aislar de forma precisa la componente sinusoidal de la señal, como
lo denota la Ecuación 2.28.

A continuación, se define la señal

y∗ = y|v + xs = (xt + xe|v + n|v) + xs,

la cual se sustrae de la señal ruidosa y para obtener el residuo

r = y − y∗ = xe|h + n|h,

que mantiene las componentes estocásticas de la señal y el ruido resultantes tras el
filtrado de mediana horizontal. Esta señal residual se utiliza como entrada para la
segunda etapa del algoritmo: la sustracción espectral iterativa. Tal como se ilustra
en la Figura 2.6, dicha etapa se divide en dos fases: (i) una sustracción iterativa
aplicada sobre dicho residuo, preservando la señal y∗ previamente calculada, y (ii)
una sustracción iterativa aplicada a la señal completa.

Esta estrategia permite, en primera instancia, realizar una atenuación más in-
tensa del ruido presente en la señal residual (n|h), mediante un mayor número
de iteraciones. Posteriormente, se aplica una sustracción más suave sobre la señal
total, abarcando tanto la residual r como las componentes transitorias xt, sinusoi-
dales xs y estocásticas xe.
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Caṕıtulo 2. Sustracción espectral

Figura 2.7: Ejemplo del proceso de modelado espectral. El primer espectrograma corresponde
a la señal ruidosa original (SNR = 16 dB); el segundo muestra las componentes transitorias
estimadas; el tercero presenta las componentes armónicas tras la sustracción de los transitorios;
y el cuarto ilustra el modelado sinusoidal aplicado al residuo armónico.

En un escenario ideal, la primera fase de sustracción iterativa sobre r se encarga
de atenuar las componentes del ruido asociadas al filtrado de mediana horizontal
n|h. A continuación, se reincorpora la señal y∗ y se realiza la segunda fase de
sustracción, destinada a reducir la componente restante n|v. De este modo, se
espera obtener una estimación de la señal limpia

x̂∗ ≈ xs + xt + xe = x.

24
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Es importante destacar que, como se muestra en la Figura 2.6 y al igual que
en el algoritmo básico descrito en la Sección 2.3, se emplean los frames inactivos,
identificados mediante la detección de inactividad de la señal, para estimar el
perfil de ruido que posteriormente se utilizará en la sustracción espectral de cada
iteración, como se describió en algoritmo iterativo de la Subsección 2.5.1.

Finalmente, la señal obtenida tras la etapa iterativa del algoritmo x̂∗ se utiliza
como entrada del método de reducción de ruido musical descrito en la Subsec-
ción 2.5.1, con el fin de aplicar un procesamiento final que atenúe este tipo de
ruido en el resultado global del algoritmo. Esto resulta en la restauración final x̂
de la señal x.

2.7. Parámetros de los algoritmos
En las Tablas 2.1–2.4 se resumen los parámetros utilizados por los algorit-

mos propuestos, organizados en función de su finalidad dentro del procesamiento.
La Tabla 2.1 presenta los parámetros generales y aquellos asociados a la sustrac-
ción espectral, tanto en su versión clásica como iterativa. La Tabla 2.2 agrupa los
parámetros empleados para la detección de inactividad o silencio en la señal de
entrada. La Tabla 2.3 reúne los parámetros vinculados al modelado espectral, in-
cluyendo tanto el análisis sinusoidal como la detección de transitorios. La Tabla 2.4
detalla los parámetros espećıficos para la reducción de ruido musical.

Tabla 2.1: Parámetros generales y de la Sustracción espectral (clásica e iterativa).

Parámetro Tipo Descripción

x ndarray Señal de entrada con ruido.
fs int Frecuencia de muestreo (Hz).
nfft int Tamaño de la FFT para el análisis y śıntesis STFT.
hop int Tamaño del salto para el análisis y śıntesis STFT.
alpha float Factor de sobre-sustracción.
beta float Factor de suelo espectral.
rho float Factor de suavizado del filtro paso bajo.
n iter int Número de iteraciones de la sustracción espectral.
sm keep pct float Porcentaje de iteraciones en las que se preserva el mo-

delo espectral (0–1).
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Tabla 2.2: Parámetros de la Detección de inactividad de la señal.

Parámetro Tipo Descripción

th energy float Umbral de enerǵıa para la detección de silencio.
th zcr float Umbral de tasa de cruces por cero para la detección de

silencio.
th he float Umbral de magnitud en alta frecuencia para la detección

de silencio.
zcr hf pct cut float Porcentaje de corte en alta frecuencia para el cálculo de

ZCR.
min silence len int Duración mı́nima (en frames) de un segmento de silencio.
min sound len int Duración mı́nima (en frames) de un segmento sonoro.
start silence int Número mı́nimo de frames de silencio al inicio.
end silence int Número mı́nimo de frames de silencio al final.
num init frames int Número de frames iniciales para referencia de ruido.

Tabla 2.3: Parámetros del Modelado espectral.

Parámetro Tipo Descripción

sm nfft int Tamaño de la FFT para el modelado sinusoidal.
sm hop int Tamaño del salto para el modelado sinusoidal.
peak thresh float Umbral para detección de picos (dB).
min sine dur float Duración mı́nima de una sinusoide (segundos).
max sines int Número máximo de sinusoides por frame.
fdev offset float Desplazamiento de desviación de frecuencia para la

continuación de sinusoides.
fdev slope float Pendiente de desviación de frecuencia para la conti-

nuación de sinusoides.
td nfft int Tamaño de la FFT para detección de transitorios.
td Lh int Longitud del filtro mediano horizontal (en segundos o

frames).
td Lp int Longitud del filtro mediano percusivo (en Hz o bins).

Tabla 2.4: Parámetros de la Reducción de ruido musical.

Parámetro Tipo Descripción

mn nfft int Tamaño de la FFT para reducción de ruido musical.
mn hop int Tamaño del salto para reducción de ruido musical.
mn thresh db float Umbral (en dB) para supresión de ruido musical.
mn win len int Longitud de la ventana de suavizado para eliminación

de ruido musical.

26



Caṕıtulo 3

Aprendizaje profundo

En este caṕıtulo se presentan las técnicas de aprendizaje profundo empleadas
para la reducción de ruido en grabaciones musicales. En primer lugar, se revisan
brevemente los antecedentes más relevantes del uso de redes neuronales en procesa-
miento de audio, con especial énfasis en su aplicación al denoising. A continuación,
se describe en detalle el modelo en dos etapas propuesto por Moliner et al. [6], que
constituye la base de este trabajo.

3.1. Introducción
El uso del aprendizaje automático para resolver problemas de procesamiento

de señales ha crecido de forma significativa en los últimos años, y el procesamiento
de música no es la excepción. El trabajo [32], muestra cómo en la última década
los art́ıculos que aplican aprendizaje profundo en música pasaron de poco más de
diez en 2014 a más de doscientos en 2021.

El uso de aprendizaje automático permite superar las limitaciones de los méto-
dos clásicos, los cuales suponen caracteŕısticas del ruido (como estacionareidad o
su distribución espectral) que no se cumplen estrictamente en contextos reales,
teniendo que tratar las imperfecciones con técnicas independientes.

En 2020, Li et al. presentaron en [33] un algoritmo de denoising supervisado
orientado a la restauración de grabaciones musicales históricas. Con los avances
en aprendizaje profundo, los métodos basados en datos ofrecieron una alternati-
va flexible: eliminar del procesamiento los métodos tradicionales, no imponiendo
suposiciones expĺıcitas sobre el ruido y aprendiendo directamente de datos reales.

Este enfoque introduce nuevos desaf́ıos: por un lado, diseñar un modelo capaz
de capturar la complejidad estructural de la música. manteniendo una arquitectura
suficientemente simple para ser entrenable, y por otro, construir un conjunto de
datos adecuado, ya que las grabaciones musicales antiguas o degradadas carecen
de versiones limpias de referencia [33].

El modelo propuesto por Li convierte internamente la señal en su representa-
ción tiempo–frecuencia mediante la STFT. El espectrograma resultante (represen-
tado como una imagen de dos canales, correspondientes a las componentes real e
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imaginaria) se procesa con una red neuronal convolucional tipo U-Net 2D. Final-
mente, la señal se reconstruye en el dominio temporal aplicando la iSTFT. Este
proceso se puede observar en la Figura 3.1.

Figura 3.1: Esquema del método propuesto por Li et al. [33] para la restauración de grabacio-
nes musicales históricas. El modelo convierte la señal de audio al dominio tiempo–frecuencia
mediante la STFT, procesa el espectrograma complejo con una arquitectura U-Net 2D y re-
construye la señal en el dominio temporal mediante la iSTFT. Imagen tomada de [33].

El trabajo de Li fue continuado en 2022 por Moliner et al. [6], quienes realizaron
diversas modificaciones a la arquitectura propuesta en [33] y entrenaron la red para
el caso de ruido de gramófono. De esta manera, se propuso, por un lado, el uso de
datos de ruido más realistas y, por otro, una arquitectura refinada basada en dos
etapas de U-Net.

Los autores comentan que, en distintas pruebas con música artificialmente
contaminada con ruido, el sistema alcanzó una calidad perceptual indistinguible
del audio limpio original según la evaluación subjetiva de oyentes, siendo capaz de
eliminar colored noise, rumble y eventos impulsivos [6]. En las secciones siguientes
se describirá en detalle el trabajo desarrollado por Eloi Moliner et al., sobre el cual
se basa este estudio, dado que su implementación y documentación son de libre
acceso.

Posteriormente, este enfoque fue retomado en 2023 por Irigaray et al. [4], quie-
nes aplicaron y adaptaron la metodoloǵıa al problema de la reducción de ruido en
grabaciones analógicas en cinta magnética. En este contexto, los autores destacan
—en consonancia con Moliner et al. [6]— que uno de los factores decisivos para el
alto rendimiento obtenido fue el uso de datos de ruido realistas. Para ello, desa-
rrollaron una base de datos espećıfica de ruido de cinta magnética [34], registrada
a partir de diversos equipos funcionales. Con dicho material, entrenaron el modelo
de aprendizaje automático propuesto en [6], empleando mezclas entre estos ruidos
y fragmentos musicales limpios bajo distintos niveles de SNR.

Además, tanto la evaluación objetiva como la subjetiva confirmaron la eficacia
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del método en la restauración de grabaciones analógicas, resaltando nuevamente
los beneficios de entrenar con ruido real proveniente del dominio de aplicación
espećıfico.

3.2. Modelo de dos etapas U-Net
En esta sección se presenta el trabajo de Eloi Moliner y Vesa Välimäki, titu-

lado “A two-stage U-Net for high-fidelity denoising of historical recordings” [6],
orientado a la reducción del ruido en grabaciones históricas. En primer lugar, se
describe el preprocesamiento aplicado a los datos de entrenamiento y, posterior-
mente, se detalla la arquitectura propuesta e implementada por los autores.

3.2.1. Preprocesamiento de los datos
En términos generales, los datos ruidosos utilizados durante el entrenamiento

se crearon según la siguiente expresión:

X = β
(
Y + αN

)
, (3.1)

donde X denota la señal contaminada, Y la señal limpia, N el ruido, α un factor de
escalado que determina la SNR resultante y β un factor que ajusta el nivel global de
la mezcla. La variación de estos parámetros introduce diversidad en las condiciones
de entrenamiento, aumentando la robustez del modelo frente a distintos niveles de
ruido e intensidad al simular múltiples escenarios de grabación y degradación. Esta
estrategia forma parte de la técnica conocida como data augmentation.

La base de datos de grabaciones limpias considerada fue MusicNet [35], cu-
ya descripción se presenta en la Subsección 4.1.1. Para evitar sesgos asociados a
artefactos no deseados, se descartaron las grabaciones más antiguas del conjun-
to, cuya calidad se encontraba sensiblemente deteriorada. En cuanto al conjunto
de ruidos, los autores utilizaron fragmentos extráıdos del proyecto “The Great 78
Project” [36], descrito en la Subsección 4.1.3.

En la Figura 3.2 se muestran los diagramas de bloques correspondientes a los
procedimientos utilizados para generar los datos ruidosos de entrenamiento.

Para construir cada audio limpio, primero se barajan (shuffle) las grabaciones
de la base MusicNet para aleatorizar su orden de acceso y procesamiento. Luego,
cada señal se carga de forma individual, se convierte a mono (si corresponde) y se
normaliza por su valor máximo absoluto. La señal resultante se divide en frames
sin solapamiento y de longitud fija, rellenando con ceros (zero-padding) cuando su
duración es menor que la requerida.

Para cada frame, se seleccionan aleatoriamente un valor de SNR en el rango
de 2 a 20 dB y un valor de escalado entre –6 y 4 dB. Con estos parámetros y un
cierto segmento de ruido, se ajusta el nivel de la señal ruidosa de modo de obtener
la SNR y la escala especificadas según la Ecuación 3.1.

La generación de los audios de validación sigue esencialmente el mismo pro-
cedimiento utilizado para el conjunto de entrenamiento. La única diferencia signi-
ficativa es que no se aplica el shuffle inicial a la lista de grabaciones, por lo que
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Mezcla Aleatoria

Normalización

Segmentación

Frames 
Limpios

Frames 
Ruidosos

Segmento de Ruido

Datos de Entrenamiento
MusicNet

(train)

FIltrado
(train/val)

Mezcla Aleatoria

Datos de Ruido

Ajustar Largo

The Great 78 Project

Mono

Figura 3.2: Diagrama de flujo del generador de datos de entrenamiento (izquierda) y del
generador de segmentos de ruido (derecha). El primer bloque muestra las etapas de mezcla,
conversión a mono, normalización, segmentación y generación de frames con SNR y nivel
de escala aleatorios. El segundo bloque ilustra el proceso de selección y preparación de los
segmentos de ruido.

las señales se procesan en el orden original en que aparecen en la base de datos
destinada a validación.

Por otro lado, el preprocesamiento de los segmentos de ruido, también ilustrado
en la Figura 3.2, sigue una serie de pasos espećıficos. En primer lugar, se filtran los
audios de ruido correspondientes al conjunto de entrenamiento o validación, según
sea necesario. A continuación, se realiza una mezcla aleatoria entre las señales
filtradas. Finalmente, se ajusta la duración de cada segmento para que coincida
con la longitud fija utilizada en los frames de los audios limpios.

Este ajuste consiste en recortar el segmento cuando su longitud excede la reque-
rida, o bien extenderlo cuando resulta más corto. En este último caso, la extensión
se realiza mediante un procedimiento overlap–add con ventanas de Hann: la señal
se repite de forma circular, utilizando una periodicidad coherente con la rotación
de discos de 78 rpm, y cada repetición se solapa suavemente con la anterior gra-
cias a la ponderación de la ventana, evitando aśı discontinuidades audibles en los
ĺımites.

3.2.2. Descripción de la arquitectura
La arquitectura propuesta en [6] está compuesta por dos subredes U-Net co-

nectadas en serie, con distintas entradas y objetivos de entrenamiento espećıficos,
complementadas por un módulo de atención supervisada (Supervised Attention
Module, SAM), como se ilustra en la Figura 3.3.
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Figura 3.3: Arquitectura propuesta en [6], compuesta por dos subredes U-Net en serie y un
módulo de atención supervisada (SAM). La primera U-Net modela el ruido residual, mientras
que la segunda refina la estimación utilizando las representaciones generadas en la etapa previa.
Imagen extráıda de [6].

Esta separación permite abordar el denoising en dos fases sucesivas: la primera
subred se encarga de estimar el ruido residual presente en la señal, mientras que la
segunda realiza una atenuación refinada, considerando tanto la señal ruidosa como
las estimaciones generadas por la primera etapa.

El modelo opera directamente sobre la STFT de la señal, utilizando como
canales independientes las partes real e imaginaria del espectrograma. Para su
cálculo se emplea una ventana de Hamming de 2048 muestras y un desplazamiento
de 512 muestras.

A estos dos canales se le suman diez canales adicionales que corresponden a
los llamados frequency-positional embeddings, los cuales permiten que las primeras
capas convolucionales tomen en cuenta expĺıcitamente la posición de cada compo-
nente espectral en el eje de frecuencia.

Cada uno de estos vectores dependen únicamente de la frecuencia f del bin
correspondiente, y se construyen utilizando funciones coseno de diferentes frecuen-
cias. La fórmula general es la siguiente:

ρ(f) =

(
cos

(
π
f

F

)
, cos

(
2π

f

F

)
, . . . , cos

(
2k−1π

f

F

))
, (3.2)

donde F representa el ancho de banda total del espectrograma y k = 10 es el
número de componentes del vector.
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Esta técnica está inspirada en los positional embeddings utilizados en arqui-
tecturas tipo Transformer, y tiene como objetivo proporcionar al modelo una re-
presentación expĺıcita de la ubicación en frecuencia. Al concatenar estos vectores
con los canales originales, el modelo puede distinguir mejor las caracteŕısticas del
espectro según su posición [37].

En cada etapa del modelo, la entrada de 12 canales se procesa inicialmente
mediante un extractor de caracteŕısticas compuesto por una capa convolucional
seguida de una función de activación no lineal Exponential Linear Unit (ELU), tal
como se ilustra en la Figura 3.3. En la primera etapa, las caracteŕısticas obtenidas,
denotadas como Fin,1, se alimentan directamente a la subred U-Net. En cambio, en
la segunda etapa, las caracteŕısticas de entrada Fin,2 se construyen concatenando
las caracteŕısticas generadas por el módulo SAM de la etapa anterior, representadas
por FSAM.

El espectrograma limpio final, denotado como Ŷ2, se obtiene procesando las
caracteŕısticas de salida de la segunda subred U-Net, Fout,2, mediante una última
capa convolucional de tamaño 3× 3.

Arquitectura U-Net
La arquitectura U-Net tiene una estructura simétrica en forma de “U”, com-

puesta por una etapa de codificación (encoder), que reduce progresivamente la
resolución para capturar el contexto global, y una etapa de decodificación (de-
coder), que recupera la resolución original mediante operaciones de upsampling.
En este enfoque, las skip connections constituyen un elemento fundamental, ya
que enlazan directamente las capas correspondientes del encoder y del decoder, lo
que permite conservar detalles locales relevantes al mismo tiempo que se integra
información contextual de mayor nivel.

Figura 3.4: Estructura de la subred U-Net. La figura ilustra la estructura codificador-
decodificador simétrica con cuatro niveles de reducción y expansión de resolución (izquierda),
conectados mediante skip connections. Cada nivel incorpora un bloque intermedio denomina-
do I-Block (derecha). El descenso en resolución se realiza mediante convoluciones con salto
(strided convolutions). Imagen extráıda de [6].
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Tal como se muestra en la Figura 3.4, las U-Net empleadas en este estudio in-
corporan en cada nivel un bloque intermedio (I-Block) que actúa como un módulo
de refinamiento local. Estos bloques combinan convoluciones densamente conecta-
das con una conexión residual, lo que permite capturar patrones espectrales finos
sin perder estabilidad numérica ni capacidad de generalización. Su función es pro-
cesar la información a cada escala antes de modificar su resolución.

La ruta de codificación se implementa mediante convoluciones con salto (strided
convolutions) de kernel 4 × 4 y paso 2 × 2. Estas operaciones no solo reducen la
resolución temporal y frecuencial, sino que también expanden el campo receptivo
de la red, permitiendo que los niveles más profundos integren información global
del espectrograma. Esta caracteŕıstica es útil para modelar estructuras ruidosas
amplias, como el hiss de banda ancha o patrones espectrales estables del ruido
propio del soporte [6].

La etapa de decodificación reconstruye la resolución utilizando convoluciones
transpuestas configuradas de manera simétrica respecto a las de la ruta de codifi-
cación. Durante esta fase, las caracteŕısticas recuperan un mayor nivel de detalle
y se combinan con las activaciones correspondientes del codificador mediante skip
connections. Según los autores, estas conexiones evitan la pérdida de información
local provocada por las operaciones de reducción de resolución y permiten que el
modelo preserve bordes espectrales, armónicos débiles y transitorios relevantes que
de otro modo podŕıan degradarse.

Módulo SAM
El módulo SAM se incorpora para ayudar al modelo a concentrarse en las

regiones del espectrograma donde el ruido es más notorio. Su función es guiar
la segunda etapa del proceso de denoising mediante un mecanismo de atención
supervisada.

Durante el entrenamiento, este módulo aprende a generar un mapa que resalta
las zonas tiempo-frecuencia con mayor presencia de ruido. Al aplicar este mapa
sobre las representaciones internas del modelo, se refuerza la información relevante
y se atenúa la menos útil, permitiendo una supresión de ruido más precisa en la
segunda etapa de la red.

Como se puede notar en la Figura 3.3, el residuo estimado N se obtiene a partir
de las caracteŕısticas de salida de la primera subred U-Net, Fout,1, mediante una
capa convolucional de tamaño 3× 3. La salida intermedia de la primera etapa, Ŷ1,
se calcula entonces como Ŷ1 = X + N̂ , donde X es el espectrograma de entrada.
A partir de esta salida, se generan las caracteŕısticas FSAM siguiendo el esquema
ilustrado en dicha figura, utilizando máscaras de atención M que se calculan di-
rectamente a partir de Ŷ1 mediante una convolución 1× 1 seguida de una función
sigmoide.

Parámetros del entrenamiento
Para entrenar el modelo, se empleó una función de pérdida basada en el error

absoluto medio (Mean Absolute Error, MAE) entre las salidas de cada etapa y
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el espectrograma limpio de referencia. La expresión matemática de la función de
pérdida es:

L =
1

K

∑
k

(∣∣∣Ŷ k
1 − Y k

∣∣∣+ ∣∣∣Ŷ k
2 − Y k

∣∣∣) , (3.3)

donde Y representa el espectrograma limpio y K la cantidad total de coeficientes
de la STFT.

El proceso de entrenamiento se ejecuta de forma distribuida mediante la es-
trategia MirroredStrategy de TensorBoard, lo que permite aprovechar múltiples
GPUs. Según los autores, el entrenamiento se llevó a cabo durante 300,000 steps
(2000 por época) utilizando un tamaño de lote de 8 y un optimizador Adam. La
tasa de aprendizaje inició en 1× 10−4 y se redujo en un factor de 10 cada 100,000
steps (50 épocas). Además, no se aplicaron técnicas de normalización como batch
normalization o weight normalization, ya que no mostraron mejoras en el rendi-
miento durante las pruebas [6].
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Metodoloǵıa

En el presente caṕıtulo se describen en detalle los procedimientos metodológicos
seguidos durante el desarrollo de este trabajo. En primer lugar, se definen las
bases de datos utilizadas y las métricas consideradas para la experimentación.
A continuación, se presenta el proceso de búsqueda de hiperparámetros llevado
a cabo para los diferentes módulos de la implementación de sustracción espectral
desarrollada en la sección 2.6. Posteriormente, se describe la metodoloǵıa empleada
para los entrenamientos del modelo propuesto en el Caṕıtulo 3 y, finalmente, se
detallan las estrategias de evaluación aplicadas a los modelos finales con el objetivo
de analizar su desempeño en la reducción de ruido.

4.1. Bases de datos
4.1.1. Música clásica (MusicNet)

La base de datos MusicNet, introducida por John Thickstun, Zaid Harchaoui
y Sham M. Kakade en el art́ıculo Learning Features of Music from Scratch [35],
consiste en 330 grabaciones de música clásica con licencia libre. Cada grabación
incluye tanto el archivo de audio en formato WAV como anotaciones temporales
detalladas de las notas musicales, instrumentos y compositores, almacenadas en un
archivo CSV asociado. Los audios presentan una duración variable, se encuentran
en formato mono, con una frecuencia de muestreo de 44.1 kHz y una resolución de
32 bits por muestra.

El conjunto contiene interpretaciones de obras de reconocidos compositores co-
mo Schubert y Mozart, entre otros. Algunos ejemplos incluidos son la Piano Sonata
in D major de Schubert —con movimientos como Allegro vivace y Scherzo. Alle-
gro vivace— y el String Quartet No. 19 in C major de Mozart —con movimientos
como Adagio–Allegro y Andante cantabile.
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4.1.2. Base de música personalizada
En el marco de este proyecto, se desarrolló una base de datos propia con el

propósito de evaluar el desempeño de las técnicas de procesamiento propuestas
en escenarios acústicos diversos. La colección incluye 48 grabaciones en formato
estéreo, almacenadas como archivos WAV codificados a 16 bits por muestra y
con una frecuencia de muestreo de 44,1 kHz. Las piezas abarcan distintos géneros
musicales, épocas e instrumentaciones, y se organizan en cuatro categoŕıas de 12
grabaciones cada una: Música Popular, Muchas Fuentes, Pocas Fuentes y Vocal.

La primera categoŕıa Música Popular está conformada por grabaciones de
géneros como rock, pop, blues, bossa nova y cumbia. Estas piezas presentan for-
maciones instrumentales t́ıpicas —guitarra eléctrica o acústica, bajo, bateŕıa y voz
principal—, a menudo complementadas por teclados, percusión menor u otros ins-
trumentos de acompañamiento. Este conjunto resulta representativo de produccio-
nes musicales modernas, con estructuras ŕıtmicas marcadas y un equilibrio sonoro
caracteŕıstico de mezclas comerciales. Algunos ejemplos incluidos son canciones de
Red Hot Chili Peppers, Jaime Roos y Madonna, entre otros.

Luego, la segunda categoŕıa Muchas Fuentes agrupa música con una alta
densidad instrumental, que abarca desde orquestas clásicas hasta conjuntos con-
temporáneos con instrumentación diversa. Estas grabaciones se caracterizan por
la coexistencia de numerosas fuentes —cuerdas, vientos, metales y percusión—
que generan una elevada complejidad espectral y temporal. Entre los ejemplos se
encuentran piezas de la banda sonora de Indiana Jones y El Señor de los Anillos,
aśı como obras orquestales como Liszt – Hungarian Rhapsody No. 2 in D minor,
S.359 No. 2 interpretada por la Orchestre symphonique de Montréal, y Pixinguinha
e Sua Orquestra – Marreco Quer Água.

La categoŕıa Pocas Fuentes está compuesta por obras con un número reduci-
do de instrumentos, tales como duetos de voz y guitarra o interpretaciones solistas.
Este tipo de material permite analizar con mayor precisión los efectos del procesa-
miento sobre señales simples y bien definidas. Algunos ejemplos son baladas como
Blowin’ in the Wind (Bob Dylan), Into My Arms (Nick Cave) y Someone Like
You (Adele).

Finalmente, la categoŕıa Vocal reúne grabaciones a capela, incluyendo coros,
interpretaciones de ópera sin acompañamiento y piezas contemporáneas centradas
exclusivamente en la voz humana. Este conjunto resulta de particular interés, dado
el papel fundamental de la voz en la mayoŕıa de los contextos musicales y su
relevancia para el estudio de la reducción de ruido en señales vocales. Ejemplos
de esta categoŕıa incluyen Fernando Cabrera – Te Abracé en la Noche y Perotá
Chingó – Coral.

4.1.3. Ruido de gramófono
El conjunto de datos de gramófono (gramophone record noise dataset), desarro-

llado por Eloi Moliner y Vesa Välimäki [6], fue creado con el propósito de disponer
de muestras de ruido altamente realistas para el entrenamiento de modelos de
denoising. Para ello, se extrajeron segmentos de ruido a partir de grabaciones de
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discos de gramófono de 78 rpm, pertenecientes a la colección pública y digitalizada
del The Great 78 Project [36].

Las muestras incluyen una combinación de degradaciones procedentes de diver-
sas fuentes: ruido eléctrico de los circuitos (como hiss), ruido ambiental del entorno
de grabación, ruido de baja frecuencia (rumble) generado por el giradiscos, e irre-
gularidades del soporte f́ısico que producen clics y golpes (clicks y thumps). Se
profundiza sobre estas degradaciones en el Anexo B.1.

Para seleccionar automáticamente los segmentos que conteńıan únicamente
ruido, Moliner y Välimäki entrenaron un clasificador binario basado en redes neu-
ronales, con una arquitectura similar a la propuesta en PoCoNet por İsik et al. [37],
utilizando un subconjunto de ejemplos etiquetados manualmente como referencia.
Este enfoque permitió reducir los falsos positivos habituales en métodos basados
únicamente en umbrales de enerǵıa, los cuales tienden a confundir pasajes musi-
cales suaves, colas de reverberación o desvanecimientos con ruido puro [6, 33].

El conjunto final comprende 139 minutos de audio en mono, con una resolución
de 16 bits por muestra y una frecuencia de muestreo de 44,1 kHz, divididos en 2430
segmentos extráıdos de 1386 grabaciones diferentes, entre los años 1902 y 1966.

4.1.4. Grabaciones analógicas de cintas de audio
El conjunto de datos de grabaciones en cinta de audio analógica (Analog Au-

dio Tape Recordings) fue desarrollado por Ignacio Irigaray, Mart́ın Rocamora y
Luiz W. P. Biscainho [4], con el objetivo de caracterizar el ruido inherente al me-
dio magnético y al mecanismo de reproducción. Para ello, se reprodujeron cintas
v́ırgenes en distintos equipos de cinta abierta y cassette, registrando exclusivamente
el ruido generado por el sistema sin contenido musical. Las grabaciones se reali-
zaron en el Centro Nacional de Documentación Musical (Montevideo, Uruguay)
utilizando una interfaz M-Audio Fast Track Pro, con una frecuencia de muestreo
de 44,1 kHz y una resolución de 16 bits por muestra. Todos los equipos fueron
previamente calibrados y mantenidos para garantizar su correcto funcionamiento.

Se utilizaron cinco grabadores de cinta abierta: dos modelos semi-profesionales
Revox A77 (versiones normal-speed y high-speed), un grabador a válvulas Revox C-
36, y dos grabadores portátiles Uher (modelos 4000 Report S y 4000 Report L).
Además, se empleó un reproductor de cassette Technics TR-575 de doble deck,
con un cassette virgen TDK HX-S60. Para las grabaciones en cinta abierta se
utilizó Premium Analog Recording Tape de ATRMagnetics. Las sesiones abarcaron
distintas velocidades de reproducción (inches per second, IPS) según el dispositivo:
1.875, 3.75, 7.5 y 15 IPS. En la Figura 4.1 se pueden apreciar algunos de los
grabadores y reproductores utilizados para la creación de la base de datos.

El ruido caracteŕıstico del medio incluye principalmente hiss (ruido de alta fre-
cuencia generado por la aleatoriedad del grano magnético y el ancho de banda del
sistema), hum y buzz (componentes tonales producidas por interferencias eléctri-
cas, t́ıpicamente en 50/60 Hz y sus armónicos), y ruido de modulación (variaciones
del nivel de ruido dependientes de la señal grabada). En la Sección B.1 del Anexo
B se describe cada una detalladamente.
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Caṕıtulo 4. Metodoloǵıa

Revox A77 Uher 4000 Report L Technics TR-575 Revox C-36

Figura 4.1: Grabadores y reproductor utilizados en las sesiones de grabación analógica.

En total, el conjunto de datos contiene aproximadamente 2 horas de audio en
mono, equivalentes a 10 minutos por cada combinación de dispositivo y velocidad.

4.1.5. MagTapeDB: Una base de datos de grabaciones históricas
en cinta magnética

MagTapeDB [34] es una base de datos diseñada para el desarrollo y evaluación
de técnicas de restauración de audio aplicadas a grabaciones musicales históricas
almacenadas en cintas magnéticas. Su objetivo principal es proporcionar material
realista que refleje las caracteŕısticas y degradaciones propias del medio analógico,
tales como hiss, hum, wow and flutter, saturación y cáıdas de señal, las cuales
no suelen estar representadas en los conjuntos de datos sintéticos o modernos
empleados habitualmente en el procesamiento digital de audio.

La colección está compuesta por más de 800 fragmentos de audio provenientes
del archivo musicológico de Lauro Ayestarán [3]. En total, la versión actual del
conjunto incluye 894 fragmentos (aproximadamente 351 minutos) distribuidos en
tres categoŕıas: grabaciones musicales, tonos de diapasón (pitchpipe tones) y seg-
mentos de ruido de cinta. Cada archivo de audio cuenta con metadatos asociados
que incluyen información como el número de carrete, año de grabación, velocidad
de cinta, presencia de instrumentos, localización geográfica y, cuando es posible,
frecuencia de afinación estimada.

Las digitalizaciones se realizaron a partir de cintas de 1/4 de pulgada en for-
mato mono, reproducidas mediante una grabadora Revox A77 y digitalizadas a
través de una interfaz Universal Audio Apollo Solo. Posteriormente, los audios fue-
ron segmentados y anotados manualmente, identificando regiones musicales, tonos
de referencia y fragmentos de ruido, a partir de los cuales se generaron extractos
estandarizados de 30 segundos.

4.2. Métricas para la evaluación
En esta sección se describen las métricas utilizadas para evaluar los modelos

finales obtenidos. Estas métricas permiten cuantificar de forma objetiva el desem-
peño de los distintos enfoques analizados y establecer una base de comparación
consistente entre los resultados experimentales presentados posteriormente.
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4.2.1. Error Cuadrático Medio Relativo (RMSE)
El Error Cuadrático Medio Relativo, o Relative Mean Square Error (RMSE), es

una métrica utilizada para cuantificar el error promedio entre una señal estimada
y su referencia, normalizado con respecto a la enerǵıa de la señal original. De esta
manera, se puede expresar la magnitud del error en términos relativos, facilitando
la comparación entre señales de distinta escala o amplitud. Matemáticamente, se
define como:

RMSE =

∑N
i=1(yi − ŷi)

2∑N
i=1 y

2
i

(4.1)

donde yi representa la señal de referencia, ŷi la señal estimada y N el número total
de muestras.

El valor de RMSE es adimensional y toma valores no negativos. Un RMSE
igual a cero indica una coincidencia perfecta entre ambas señales, mientras que
valores mayores reflejan un incremento proporcional del error relativo.

4.2.2. Precisión, Recuperación y Fβ-Score
Las métricas de Precisión (Precision) y Recuperación (Recall) son ampliamen-

te utilizadas en problemas de clasificación y detección, ya que permiten evaluar el
desempeño de un sistema en términos de su capacidad para identificar correcta-
mente los elementos de interés.

La Precisión mide la proporción de verdaderos positivos entre todas las pre-
dicciones positivas realizadas por el sistema, y se define como

Precision =
TP

TP + FP
(4.2)

donde TP corresponde a los verdaderos positivos (instancias correctamente detec-
tadas) y FP a los falsos positivos (instancias incorrectamente clasificadas como
positivas). Una alta precisión indica que la mayoŕıa de las detecciones son correc-
tas, es decir, que el sistema comete pocos falsos positivos.

Por otro lado, la Recuperación o Sensibilidad (Recall) cuantifica la propor-
ción de verdaderos positivos detectados respecto al total de positivos reales, y se
expresa como

Recall =
TP

TP + FN
(4.3)

donde FN representa los falsos negativos (instancias positivas que el sistema no
logró detectar). Un alto valor de Recall implica que el sistema detecta la mayoŕıa
de los casos relevantes, aunque podŕıa incluir algunos errores adicionales.

Dado que la Precisión y el Recall tienden a presentar un compromiso entre
śı, se introduce el Fβ-Score, una medida combinada que pondera ambas métricas
según un parámetro β que controla la importancia relativa de la Recuperación
frente a la Precisión. Su definición general es

Fβ = (1 + β2) · Precision · Recall
(β2 · Precision) + Recall

(4.4)
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Cuando β = 1, ambas métricas se ponderan de forma equitativa, obteniéndose
el conocido F1-Score. Valores de β > 1 otorgan mayor peso a la Recuperación,
mientras que valores de β < 1 favorecen la Precisión.

4.2.3. Evaluación Perceptual de la Calidad del Audio (PEAQ)
La Evaluación Perceptual de la Calidad del Audio, o Perceptual Evaluation of

Audio Quality (PEAQ), desarrollada bajo la Recomendación ITU-R BS.1387 [38],
constituye una de las métricas más reconocidas y utilizadas en la industria del
audio para la evaluación objetiva de la calidad percibida. Este método emplea un
modelo psicoacústico que simula el funcionamiento del sistema auditivo humano
con el fin de identificar distorsiones y artefactos introducidos en señales procesadas,
generando un valor objetivo que se correlaciona estrechamente con las evaluaciones
subjetivas realizadas por oyentes expertos.

En este trabajo se emplea la implementación GstPEAQ, disponible pública-
mente en el repositorio de GitHub [39]. Dicha herramienta reproduce el algoritmo
descrito en la Recomendación ITU-R BS.1387-1 [38], y permite realizar medicio-
nes objetivas de la calidad percibida del audio tanto en su versión básica como
avanzada.

La degradación perceptual de una grabación se cuantifica mediante la Cali-
ficación de Diferencia Objetiva (Objective Difference Grade, ODG), la cual
busca aproximar la puntuación promedio que otorgaŕıa un oyente humano exper-
to. Este ı́ndice se expresa en una escala continua cuyos valores de referencia se
presentan a continuación:

0: Degradación imperceptible.

-1: Degradación perceptible, pero no molesta.

-2: Degradación levemente molesta.

-3: Degradación molesta.

-4: Degradación muy molesta.

4.2.4. Medida Perceptual de la Calidad del Audio (PAQM)
De forma similar a PEAQ, laMedida Perceptual de la Calidad del Audio, o Per-

ceptual Audio Quality Measure (PAQM), es una métrica desarrollada para evaluar
de forma objetiva la calidad percibida de señales de audio, basada en un modelo
psicoacústico que simula el comportamiento del sistema auditivo humano. Este en-
foque permite estimar el grado de degradación introducido por un procesamiento
o codificación al comparar una señal procesada con su versión original.

En este trabajo se emplea la implementación de PAQM disponible en el repo-
sitorio de GitHub [40], desarrollada en PyTorch por J. G. Beerends y J. A. Ste-
merdink, según lo descrito en su publicación original [41].
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El modelo produce un puntaje que vaŕıa a partir de cero, donde un valor de
0 indica que la señal procesada es indistinguible de la original, reflejando una
degradación perceptual mı́nima o inexistente. A medida que el valor aumenta, se
interpreta una mayor diferencia perceptual entre ambas señales.

Esta métrica se utiliza en este trabajo como referencia complementaria a PEAQ
para la evaluación perceptual de la calidad de las grabaciones.

4.2.5. Relación señal–ruido estimada
Vale la pena recordar que la relación señal a ruido se define como

SNR = 10 log10

(
Pseñal

Pruido

)
(4.5)

donde Pseñal y Pruido representan las potencias promedio de la señal y del ruido,
respectivamente.

En este trabajo se emplea una versión estimada de la SNR, calculada a partir
de la representación espectro-temporal de la señal mediante la STFT. Para ello, se
calcula la enerǵıa promedio de cada trama temporal y se distingue entre regiones
con y sin señal de interés mediante un vector indicador.

La potencia promedio de cada trama se obtiene promediando sobre las bandas
de frecuencia:

P [m] =
1

K

K∑
k=1

|X(k,m)|2, (4.6)

donde X(k,m) es el valor complejo de la STFT en la banda de frecuencia k y el
frame temporal m, y K es el número total de bins de frecuencia. De esta manera,
P [m] representa la potencia promedio de la señal en el frame temporal m.

A partir de estas potencias, se definen los valores promedio en los frames de
señal (psr) y de ruido (pr), y la estimación final de la SNR se calcula como:

SNRestimado = 10 log10

(
psr − pr

pr

)
. (4.7)

Esta formulación no requiere disponer de una señal de referencia limpia, lo
que la hace especialmente útil para evaluar grabaciones reales o procesadas, donde
solo se tiene acceso a la señal resultante. De este modo, la SNR estimada propor-
ciona una medida objetiva del predominio de la señal útil sobre el ruido residual,
permitiendo cuantificar la calidad o la mejora alcanzada tras el procesamiento.

4.3. Búsqueda de hiperparámetros
La implementación final descrita en la Sección 2.6 presenta una complejidad

considerable debido al elevado número de parámetros y configuraciones involu-
cradas. Por esta razón, se optó por realizar una búsqueda de hiperparámetros de
manera modular, abordando cada componente del sistema de forma independiente.
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En primer lugar, se ajustaron los parámetros asociados al detector de inactivi-
dad, con el fin de establecer una segmentación adecuada entre regiones de silencio
y de señal.

Posteriormente, se realizaron dos procesos de búsqueda diferenciados:

Búsqueda de hiperparámetros del algoritmo básico de sustracción
espectral: destinada a optimizar el rendimiento del método clásico, consi-
derando parámetros como α, β y ρ.

Búsqueda de hiperparámetros de la implementación propuesta SS
Denoisify : enfocada en ajustar los parámetros de la versión iterativa desa-
rrollada y del módulo de reducción de ruido musical.

Esta estrategia permitió aislar el efecto de cada conjunto de parámetros sobre el
desempeño global del sistema, facilitando la comparación directa entre el algoritmo
clásico y la propuesta desarrollada en este trabajo.

Vale la pena aclarar que en todos los casos, a excepción del último módulo,
se utilizó una longitud de ventana FFT de nfft = 2048 muestras, con un des-
plazamiento (hop size) equivalente a una cuarta parte de dicha longitud (hop =
nfft / 4).

4.3.1. Detector de inactividad
Para el ajuste de los parámetros del algoritmo de detección de inactividad en

la señal, se seleccionaron aleatoriamente dos audios de cada grupo perteneciente
a la base de datos de música personalizada. En cada uno de ellos se etiquetaron
manualmente los segmentos temporales (en segundos) correspondientes a regiones
de silencio, es decir, aquellos tramos que el algoritmo debeŕıa identificar como
inactivos. Además, se incluyeron tres audios de ruido provenientes de la base de
datos Analog Audio Tape Recordings (con una SNR de 10 dB), correspondientes a
los dispositivos Revox A77, Uher 4000 Report S y Uher 4000 Report L. El análisis
se realizó considerando los últimos 30 segundos de cada grabación.

A cada segmento de audio limpio se le asignó un segmento de ruido corres-
pondiente a cada uno de los tres audios mencionados. Los tramos de ruido fueron
seleccionados sin solapamiento, de modo de evitar correlaciones entre los distintos
audios evaluados. En total, el procedimiento se aplicó sobre 8 × 3 = 24 señales
(ocho audios limpios y tres tipos de ruido).

Dado un conjunto de configuraciones posibles para el algoritmo, el proceso de
búsqueda consistió en evaluar cada combinación de parámetros sobre los audios se-
leccionados, con el objetivo de cuantificar la eficiencia con que el detector identifica
los intervalos inactivos.

Para ello, las señales fueron segmentadas en frames de duración fija, y para
cada trama se determinó si pertenećıa a una región activa o inactiva, tanto en
las etiquetas manuales como en la salida del algoritmo. De esta manera, cada
configuración de parámetros produjo una secuencia binaria de detecciones, que fue
comparada con la secuencia de referencia mediante la métrica Fβ-Score.
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4.3. Búsqueda de hiperparámetros

En este trabajo se utilizó un valor de β = 0,8, lo que otorga un mayor peso a
la precisión que a la recuperación. De esta forma, el detector se penaliza más por
clasificar erróneamente una trama activa como inactiva (FP) que por omitir una
región silenciosa real (FN). Este criterio busca favorecer un comportamiento con-
servador del detector, privilegiando la fiabilidad en la identificación de los silencios
reales.

Complementariamente, se buscó minimizar el RMSE entre el perfil de ruido
calculado a partir de los segmentos de 30 segundos y el perfil detectado sobre el
audio contaminado con ruido, de manera de asegurar una adecuada estimación
del ruido de fondo. Para ello, ambos perfiles se ponderaron utilizando la curva de
A-weighting (que se observa en la Figura 4.2), un filtro que refleja la sensibilidad
del óıdo humano a distintas frecuencias, otorgando mayor relevancia a aquellas
bandas donde la percepción auditiva es más sensible y reduciendo el peso de las
frecuencias menos audibles [42]. Esta ponderación permite que la evaluación del
ruido se alinee mejor con la percepción subjetiva de la calidad sonora.

Figura 4.2: Curva de ponderación en A-weighting, mostrando cómo se ajustan los pesos de las
distintas frecuencias para reflejar la sensibilidad del óıdo humano.

Tabla 4.1: Rangos de valores considerados en la búsqueda de hiperparámetros del detector de
inactividad.

Hiperparámetro Valores evaluados

th energy [0.15, 0.3, 0.45, 0.6, 0.75, 0.8, 0.85, 0.9, 0.95]
th zcr [0.15, 0.25, 0.3, 0.35, 0.45, 0.6, 0.75, 0.8, 0.86, 0.9, 0.92, 0.95]
th he [0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.45, 0.6, 0.75]
zcr hf pct cut [0.25, 0.45, 0.65, 0.85, 0.88, 0.9, 0.91, 0.94]
min silence len [5, 10, 15, 20, 30]
min sound len [10, 20, 25, 30, 35, 40]
start silence [1, 2, 4, 5, 6, 8]
end silence [1, 2, 4, 6, 8]
num init frames [5]
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Los rangos de valores considerados para los parámetros del algoritmo de detec-
ción de inactividad se presentan en la Tabla 4.1. Cada hiperparámetro fue evaluado
sobre un conjunto de valores representativos, con el objetivo de identificar la com-
binación que optimiza la detección de los frames inactivos en la señal.

4.3.2. Sustracción espectral
Una vez obtenidos los resultados de la búsqueda de hiperparámetros para el de-

tector de inactividad, se llevaron a cabo dos nuevas búsquedas: una correspondiente
al algoritmo básico de sustracción espectral y otra asociada a la implementación
propuesta en la Sección 2.6.

En ambos casos, se emplearon las mismas grabaciones utilizadas en la etapa
anterior y se evaluó el desempeño de cada configuración mediante tres métricas
principales: PEAQ, PAQM y la SNR estimada.

Para cada par de segmentos de audio limpio y ruido (a una SNR de 10 dB), se
calculó inicialmente el deterioro perceptual entre la señal original y la señal ruidosa
mediante las métricas PEAQ y PAQM. Posteriormente, la señal contaminada fue
procesada con el algoritmo de sustracción espectral correspondiente, obteniéndose
las métricas finales respecto a la señal original.

Las diferencias entre las métricas iniciales y finales permiten cuantificar la
mejora perceptual introducida por el algoritmo, según las siguientes expresiones:

∆PAQM = PAQMinicial − PAQMfinal (4.8)

∆PEAQ = PEAQfinal − PEAQinicial (4.9)

donde los valores positivos de ∆PAQM y ∆PEAQ indican una mejora perceptual
en la señal procesada.

Adicionalmente, se calculó la SNR estimada final utilizando los frames previa-
mente etiquetados como activos o inactivos de forma manual. Un mayor valor de
la SNR estimada indica que la potencia del ruido resulta relativamente menor en
comparación con la potencia de la señal original, lo cual puede corresponder con
una mejora en la calidad de la señal restaurada.

En el caso de la implementación del método de sustracción espectral fue ne-
cesario tener en cuenta dos consideraciones principales: la elevada cantidad de
parámetros disponibles y el tiempo de ejecución del algoritmo. Este último resultó
considerablemente mayor que el del método clásico, debido a su naturaleza itera-
tiva y a la inclusión de etapas adicionales de procesamiento, como el modelado
espectral.

Por esta razón, se decidió fijar los parámetros asociados al modelado espectral
siguiendo las recomendaciones presentadas en la bibliograf́ıa [28,30], con excepción
del parámetro peak thresh, que determina el umbral de potencia a partir del cual
se realiza la detección de picos utilizada posteriormente en la śıntesis sinusoidal.

Los parámetros sometidos a evaluación correspondientes al módulo iterativo
del algoritmo fueron: alpha, beta, n iter y sm keep pct. En este caso, se adoptó
un valor de rho igual a 0.01, considerado el menos restrictivo posible, con el objeti-
vo de permitir una mayor flexibilidad en las iteraciones del proceso de sustracción

44
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espectral. Asimismo, se seleccionaron valores de alpha y beta menos restrictivos.
Este enfoque busca lograr una sustracción más suave —mediante valores relati-
vamente bajos de alpha— y un umbral superior más permisivo, evitando una
eliminación excesiva de la enerǵıa espectral. En las Tablas 4.2 y 4.3 se presen-
tan los rangos de valores considerados para la evaluación de ambos algoritmos de
sustracción espectral.

Tabla 4.2: Rangos de valores considerados en la búsqueda de hiperparámetros para el algoritmo
SS Clásico.

Hiperparámetro Valores evaluados

alpha [0.4, 0.5, 0.6, 0.65, 0.7, 0.75, 0.8, 0.84, 0.88, 0.9, 0.92, 0.94, 0.96, 0.99]
beta [0.01, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.5, 0.6]
rho [0.01, 0.05, 0.1, 0.15]

Tabla 4.3: Rangos de valores considerados en la búsqueda de hiperparámetros para el algoritmo
SS Denoisify.

Hiperparámetro Valores evaluados

alpha [0.1, 0.15, 0.2, 0.25]
beta [0.93, 0.96, 0.99]
n iter [10, 20, 30]
sm keep pct [0.5, 0.7, 0.9]
peak thresh [-60, -50, -40]

Es importante destacar que en este trabajo se optó por utilizar valores de
alpha < 1, a diferencia de lo planteado originalmente en la técnica clásica de sus-
tracción espectral. El uso de factores de atenuación mayores (alpha > 1) puede
resultar adecuado en aplicaciones de procesamiento de voz, donde la supresión
agresiva del ruido residual no afecta de manera significativa la inteligibilidad. Sin
embargo, se comprobó experimentalmente que, en señales musicales, este enfo-
que tiende a eliminar enerǵıa espectral relevante, incluyendo armónicos y matices
t́ımbricos perceptualmente importantes. En consecuencia, la señal procesada puede
presentar una pérdida de naturalidad y una modificación perceptible de su timbre.

4.3.3. Algoritmo de reducción de ruido musical
Finalmente, se realizó la búsqueda de hiperparámetros correspondiente al al-

goritmo de reducción de ruido musical, asociado al último módulo de la implemen-
tación detallada en la Sección 2.6.

De forma análoga a las evaluaciones previas, se utilizaron los mismos segmentos
de audio y las métricas objetivas PEAQ y PAQM. En este caso, no se consideró
el uso de la SNR estimada, dado que las componentes espectrales asociadas al
ruido musical presentan una potencia relativamente baja, por lo que su impacto
en el valor global de SNR resulta despreciable.
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Caṕıtulo 4. Metodoloǵıa

Las variaciones de PEAQ y PAQM se calcularon con respecto a la salida del
módulo iterativo de sustracción espectral, en lugar de hacerlo sobre el audio conta-
minado. De esta manera, la comparación refleja espećıficamente la mejora atribui-
ble a la etapa de reducción de ruido musical y su efecto sobre la calidad perceptual
del resultado final.

En la Tabla 4.4 se presentan los rangos de valores considerados en la búsqueda
de hiperparámetros para este módulo. En particular, se evaluaron distintos ta-
maños de ventana FFT y longitudes de ventana temporal expresadas en segundos,
de modo que:

mn win len = int(mn win len (s)× sampling rate)

Tabla 4.4: Rangos de valores considerados en la búsqueda de hiperparámetros para el algoritmo
de reducción de ruido musical.

Hiperparámetro Valores evaluados

mn nfft [256, 512, 1024, 2048, 4096, 8192]
mn thresh db [-5, -10, -15, -20, -25, -30]
mn win len (s) [1e-3, 5e-3, 1e-2, 5e-2, 1e-1]

4.3.4. Elección de la configuración óptima
Dado que las métricas mencionadas en las secciones anteriores no comparten

necesariamente los mismos rangos ni escalas de valores, se decidió normalizarlas
en el intervalo [0, 1] con el fin de garantizar una comparación equitativa entre las
distintas configuraciones evaluadas. Esta normalización permitió, además, definir
una métrica ponderada que integra de manera conjunta la información de las
distintas medidas de desempeño, facilitando la selección de la configuración óptima
de parámetros para cada módulo.

Por cada configuración de hiperparámetros se calcularon la media y la des-
viación estándar de las métricas correspondientes a las señales utilizadas en la
evaluación.

Sea una métrica X asociada a un conjunto de valores medios {x0, x1, x2, . . . }
y desviaciones estándar {σ0, σ1, σ2, . . . }, uno por cada configuración evaluada. En
primer lugar, con el fin de penalizar configuraciones que presenten una alta varia-
bilidad, se aplicó un ajuste suave a los valores medios. En el caso de las métricas
donde un valor mayor implica una mejora —tales como ∆PEAQ, ∆PAQM , SNR
estimada y Fβ-Score— se utilizó la siguiente penalización:

x̃i =
xi

1 + σi
100

, i = 0, 1, 2, . . . (4.10)

Por otro lado, para métricas donde una menor media representa un mejor
desempeño, como es el caso del RMSE, la penalización se aplicó de manera inversa,
es decir, multiplicando por el factor correspondiente:
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x̃i = xi

(
1 +

σi
100

)
, i = 0, 1, 2, . . . (4.11)

Posteriormente, todos los valores ajustados x̃i se normalizaron en el intervalo
[0, 1] mediante una normalización min-max:

x̄i =
x̃i −mı́n(x̃)

máx(x̃)−mı́n(x̃)
, i = 0, 1, 2, . . . (4.12)

De esta forma, todas las métricas quedan expresadas en una escala común,
lo que habilita su combinación en una única métrica ponderada destinada a se-
leccionar la configuración óptima de hiperparámetros. A continuación, se detalla
la ponderación aplicada en cada uno de los módulos, dado que cada componen-
te del sistema persigue objetivos espećıficos y, en consecuencia, requiere priorizar
determinadas métricas por encima de otras.

En el caso del detector de inactividad, la métrica final se estableció como una
combinación ponderada del Fβ-Score con un peso del 80% y del RMSE con un
20%. Esta elección refleja la importancia central del Fβ-Score para evaluar la
capacidad del detector de distinguir entre actividad e inactividad, mientras que
el RMSE, aunque menos relevante para esta tarea, se incorpora para favorecer
configuraciones que, además, permitan obtener estimaciones más representativas
del ruido.

Para los algoritmos de sustracción espectral —tanto el método Clásico como
la variante SS Denoisify— se definió una métrica final basada en una ponderación
del 45% para cada una de las métricas diferenciales ∆PEAQ y ∆PAQM , y del
10% para la SNR estimada. Esta asignación prioriza expĺıcitamente el impacto
perceptual del proceso de denoising, ya que las métricas diferenciales capturan
de forma directa las mejoras o degradaciones respecto a la señal limpia, mientras
que la SNR estimada, si bien aporta una medida complementaria, no siempre se
correlaciona de manera consistente con la calidad perceptual.

Finalmente, en la búsqueda de hiperparámetros del algoritmo de reducción
de ruido musical, también se emplearon las métricas diferenciales ∆PAQM y
∆PEAQ, aunque en este caso calculadas con respecto a la salida del módulo
iterativo de SS Denoisify. Como se mencionó anteriormente, esta elección permite
evaluar espećıficamente si este último módulo aporta una contribución adicional
al proceso de reducción del ruido residual. Dado que ambas métricas reflejan la
calidad perceptual del resultado generado por el módulo, la métrica final se definió
mediante una ponderación equitativa del 50% para cada una.

4.4. Entrenamiento del modelo de aprendizaje profundo
Uno de los objetivos de este trabajo es presentar y comparar dos enfoques sus-

tancialmente distintos para la restauración de grabaciones: la sustracción espectral
y el aprendizaje automático. En las secciones anteriores se describió la metodo-
loǵıa utilizada para optimizar el desempeño de ambos algoritmos —tanto el clásico
como el propuesto— mediante la exploración sistemática de sus hiperparámetros.
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En lo que respecta al aprendizaje profundo, en el Caṕıtulo 3 se desarrolló
un modelo espećıfico basado en el trabajo de Eloi Moliner y Vesa Välimäki [6].
En la presente sección se detalla la metodoloǵıa empleada para realizar distintos
entrenamientos sobre dicho modelo, con el fin de evaluar su rendimiento en el
contexto planteado en este estudio.

4.4.1. Recurso ClusterUY
El entrenamiento del modelo se realizó en el Centro Nacional de Supercompu-

tación (ClusterUY) [43], una infraestructura compuesta por 45 nodos con sistema
operativo Linux CentOS 7, interconectados mediante una red Ethernet de 10 Gbps.

Para este trabajo se solicitó un entorno de cómputo con 64 GB de memoria
RAM y una GPU NVIDIA Tesla P100, equipada con 12 GB de memoria y
5384 núcleos CUDA. El entorno de ejecución se configuró mediante Conda, utili-
zando CUDA 10.1 y cuDNN 7, junto con las bibliotecas indicadas en el entorno
provisto por Moliner et al. [6].

Durante el entrenamiento se presentaron algunas limitaciones asociadas a la
infraestructura del clúster, entre las que se destacan: la imposibilidad de asignar
más de una GPU a un mismo trabajo, las restricciones de memoria de la GPU que
condicionaron el tamaño del batch y la longitud de las secuencias de audio, y la
necesidad de dividir los experimentos debido a que el sistema de colas no permite
solicitar recursos por más de tres d́ıas consecutivos.

4.4.2. Entrenamientos
Una vez analizado en profundidad el modelo de dos etapas basado en U-Net,

presentado en el Caṕıtulo 3, se decidió realizar una serie de experimentos orientados
a evaluar la capacidad del modelo bajo diferentes condiciones de ruido, adaptadas
al contexto del presente trabajo: la restauración de grabaciones históricas de Lauro
Ayestarán [3].

Con este objetivo, además del entrenamiento original implementado por Eloi
Moliner en [6], se consideraron las siguientes variantes experimentales:

Modelo MusicNet + MagTapeDB: entrenado utilizando la base Music-
Net para las señales limpias y la base MagTapeDB como fuente de ruidos
de cinta.

Modelo MusicNet + MagTapeDB + Gramófono: entrenado con la
base MusicNet para las señales limpias, y con las bases MagTapeDB y
Gramófono combinadas como fuentes de ruido.

Es importante aclarar que la decisión de emplear ambas bases de ruidos respon-
de al interés de analizar cómo la diversidad espectral y temporal de los distintos
tipos de ruido analógico influye en la capacidad del modelo para generalizar y
adaptarse a distintos escenarios de degradación sonora.

Por otra parte, no se modificó la base de datos de audios limpios, manteniéndo-
seMusicNet como fuente principal. Esta elección se fundamenta en su accesibilidad
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y extensión, además de la complejidad que implicaŕıa construir una base alterna-
tiva de tamaño y diversidad comparables. Además, el uso en común de MusicNet
también se justifica por la comparabilidad que ofrece con otros modelos entrenados
sobre el mismo conjunto de grabaciones limpias. No obstante, esta decisión impli-
ca ciertas limitaciones, las cuales serán discutidas en la evaluación de los modelos
entrenados, en el Caṕıtulo 5.

La etapa de preprocesamiento de las bases de datos se mantuvo idéntica a la
descrita en [6]. En el caso particular del conjunto conformado por MagTapeDB
y Gramófono, ambos fueron preprocesados de manera independiente y, posterior-
mente, sus segmentos de ruido se combinaron de forma aleatoria. Una vez con-
formado el conjunto final, se realizó una división estratificada en un 70% para
entrenamiento y un 30% para validación.

Como se mencionó anteriormente, debido a las limitaciones de recursos del
ClusterUY, fue necesario restringir algunos de los hiperparámetros utilizados du-
rante el entrenamiento. En particular, se redujo la duración de cada segmento de
audio de 5 a 3 segundos, el tamaño del batch de 8 a 2, y la cantidad de épocas
se estableció con un máximo de 150, aunque en cada corrida este valor depende
exclusivamente del ĺımite de tiempo asignado por el ClusterUY, cómo máximo tres
d́ıas de uso. Es importante destacar que estas modificaciones tienen un impacto
directo en el desempeño y la capacidad de generalización de los modelos resultantes
del entrenamiento.

Durante el entrenamiento se monitorizaron dos métricas principales para eva-
luar el desempeño del modelo: la función de pérdida total y el MAE asociado a la
segunda etapa de la U-Net (correspondiente a la sumatoria del segundo módulo en
la Ecuación 3.3). Ambas métricas se calcularon tanto sobre el conjunto de entre-
namiento como sobre el conjunto de validación. El seguimiento conjunto de estas
curvas permitió analizar la evolución de la capacidad del modelo para aproximar
los datos, aśı como identificar posibles indicios de sobreajuste o subajuste.

4.5. Evaluación de los modelos finales
En esta sección se presentan el procedimiento y los criterios empleados para

evaluar el desempeño de los distintos modelos desarrollados en el contexto de
la restauración de grabaciones musicológicas mediante técnicas de denoising. El
objetivo principal es analizar comparativamente la capacidad de cada enfoque
para atenuar el ruido sin degradar la calidad perceptual ni alterar la estructura
armónica de las señales originales.

Para ello, se consideran tanto los métodos clásicos de sustracción espectral,
en sus variantes tradicional y alternativa (SS Clásico y SS Denoisify), como los
modelos basados en aprendizaje profundo entrenados con distintas combinaciones
de bases de datos: MusicNet, MagTapeDB y Gramófono. De este modo, se busca
evaluar el impacto que tiene la diversidad y naturaleza del conjunto de entrena-
miento en la capacidad de generalización del modelo y en la preservación de las
caracteŕısticas propias del material sonoro restaurado. En resumen, los modelos
sometidos a evaluación son los siguientes:
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SS Clásico: implementación tradicional del algoritmo de sustracción espec-
tral.

SS Denoisify: variante de la sustracción espectral basada en un esquema
iterativo con modelado espectral y algoritmos de reducción de ruido musical.

DL Gramófono: Modelo entrenado con la base de datos MusicNet y el
conjunto de ruidos de Gramófono.

DL MagTapeDB: Modelo entrenado con MusicNet y los ruidos provenien-
tes de la base MagTapeDB.

DL MagTapeDB + Gramófono: Modelo entrenado con MusicNet, Mag-
TapeDB y Gramófono.

Para la evaluación se consideraron las grabaciones de la Base de Música Per-
sonalizada como señales limpias, y los audios de la base de datos Grabaciones
Analógicas de Cintas de Audio como fuentes de ruido. Luego de una revisión
detallada de esta última, se decidió excluir las grabaciones correspondientes al dis-
positivo Revox C36, debido a la presencia de un ruido tipo buzz, de carácter tonal
y agudo, que resultaba perceptualmente dominante y poco representativo del tipo
de ruido analógico que se busca estudiar en este trabajo.

Es importante destacar que para la evaluación final de los modelos no se consi-
deró la base de datos MusicNet. Esto se debe a que uno de los objetivos centrales
de este proyecto es analizar el desempeño de las distintas técnicas de denoising
en un escenario más general y representativo del caso de estudio que motiva este
trabajo: las grabaciones musicológicas de Lauro Ayestarán. Con este propósito,
se construyó la Base de Música Personalizada, compuesta por señales altamente
diversas entre śı, lo que permite evaluar los modelos en un contexto más amplio
y exigente. Como algunas de estas señales presentan caracteŕısticas similares a las
incluidas en MusicNet, dicha base queda incorporada de forma impĺıcita dentro
de esta diversidad, evitando aśı sesgos hacia un conjunto espećıfico y favoreciendo
una evaluación más realista del rendimiento de cada modelo.

En primer lugar, cada una de las grabaciones de ruido de cinta, con una dura-
ción aproximada de 10 minutos, se segmentó en tramos de 30 segundos sin solapa-
miento, a fin de evitar posibles correlaciones entre las distintas combinaciones de
señales limpias y ruidosas. Posteriormente, cada grabación limpia perteneciente a
la Base de Música Personalizada se recortó considerando sus últimos 30 segundos,
a los cuales se les asignó uno de los segmentos de ruido previamente definidos,
conformando aśı las señales de evaluación contaminadas.

Este procedimiento se repitió para dos niveles de SNR, de 10 dB y 16 dB,
siguiendo el criterio establecido en [4], donde dichos valores fueron seleccionados
a partir de pruebas de escucha realizadas sobre grabaciones históricas de Lauro
Ayestarán. La asignación de los segmentos de ruido se efectuó de manera que las
grabaciones de los distintos dispositivos de cinta se distribuyeran uniformemente
entre los grupos de audio de la base de datos, garantizando una representación
equilibrada de las condiciones de evaluación.
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Para la evaluación del rendimiento de los modelos, las señales limpias y ruidosas
(en formato WAV) se organizaron en directorios independientes, clasificados por
grupo y nivel de SNR, con el fin de aplicar posteriormente los distintos métodos
de denoising y almacenar los resultados procesados en sus respectivas carpetas.

No obstante, este procedimiento presenta un posible inconveniente: al combinar
una señal limpia con su correspondiente segmento de ruido, la suma puede exceder
el rango normalizado de amplitud de las muestras, es decir, el intervalo [−1, 1]. Esto
podŕıa generar distorsión por saturación (wrap around) al guardar los archivos en
formato WAV. Para prevenirlo, se realizó una normalización conjunta de ambas
señales —limpia y ruidosa—, dividiendo cada una por el máximo absoluto entre
ambas. Sea x la señal limpia y n el segmento de ruido asignado. La señal ruidosa
se define como:

xn = x+ n. (4.13)

Luego, se determinó un factor de normalización como el máximo absoluto entre
ambas señales:

norm factor = máx (máx(|x|), máx(|xn|)) . (4.14)

Finalmente, ambas se normalizaron mediante:

x← x

norm factor
, xn ←

xn
norm factor

. (4.15)

De esta forma, se garantiza que la señal resultante permanezca dentro del
rango permitido, evitando saturaciones sin alterar de manera significativa la SNR
establecida. Además, se normalizó la señal limpia con el objetivo de mantener la
coherencia de escalas, de modo que las versiones limpias y restauradas puedan
compararse bajo las mismas condiciones de amplitud en cada una de las métricas
utilizadas.

Cabe destacar que, si bien este reescalado introduce un error de cuantización
mı́nimo, su impacto sobre la evaluación es despreciable frente a las diferencias
significativas que se analizan entre los distintos modelos.

Las métricas seleccionadas para la evaluación final de los modelos fueron las
variaciones ∆PAQM y ∆PEAQ, definidas en las Ecuaciones 4.8 y 4.9, junto con
el tiempo de ejecución correspondiente al proceso de restauración de cada modelo.
Estas métricas permiten cuantificar tanto la mejora perceptual resultante como la
eficiencia computacional de los distintos enfoques analizados.
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Caṕıtulo 5

Análisis de resultados

El presente caṕıtulo tiene por objetivo analizar y discutir los resultados obte-
nidos a partir de los distintos modelos y metodoloǵıas de reducción de ruido desa-
rrollados durante este trabajo. A lo largo de los caṕıtulos anteriores se abordaron
las bases teóricas, el diseño de los modelos de sustracción espectral y aprendizaje
profundo y los procedimientos experimentales empleados para su entrenamiento,
validación y evaluación. En este caṕıtulo se integran dichos elementos, presentan-
do y analizando los resultados obtenidos, organizados en cuatro niveles de estudio
complementarios que permiten una evaluación tanto cuantitativa como cualitativa
del desempeño alcanzado por cada enfoque.

En primer lugar, se presentan los hiperparámetros finales obtenidos a partir
de las búsquedas descritas en el Caṕıtulo 4, los cuales definen las configuracio-
nes óptimas encontradas para cada modelo de sustracción espectral. Estos valores
fueron seleccionados en función de su desempeño en las métricas perceptuales y
constituyen la base para las comparaciones realizadas en las siguientes secciones.

En segundo lugar, se examinan las curvas de aprendizaje, que reflejan la evo-
lución de las métricas de entrenamiento y validación a lo largo de las épocas,
permitiendo evaluar la convergencia y capacidad de generalización de los modelos
de aprendizaje profundo, aśı como el impacto del conjunto de datos utilizado.

Luego, se realiza una evaluación objetiva mediante las métricas perceptuales,
PEAQ y PAQM, que cuantifican la mejora en la calidad de las señales procesadas
y permiten contrastar la efectividad de cada enfoque bajo diferentes condiciones de
ruido y tipos de audio. Además, se incluye un estudio comparativo de los tiempos
de procesamiento, con el fin de contextualizar los resultados obtenidos en términos
de eficiencia computacional y viabilidad práctica de cada método.

Finalmente, se presenta una evaluación subjetiva, basada en la escucha cŕıti-
ca de las grabaciones restauradas, con el propósito de complementar el análisis
numérico y obtener una apreciación perceptual del desempeño real de los modelos.
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5.1. Búsqueda de hiperparámetros
A continuación se presentan los valores de los hiperparámetros obtenidos para

los distintos módulos del algoritmo SS Denoisify y para SS Clásico. Asimismo,
se realizó un análisis detallado del rendimiento alcanzado por cada una de las
configuraciones óptimas.

5.1.1. Detector de inactividad
La configuración óptima obtenida para el detector de inactividad corresponde

a la combinación de parámetros que alcanzó el mejor desempeño global según
las métrica ponderada, especificada en la Subsección 4.3.4. Los valores medios y
las desviaciones estándar del Fβ-Score, Precision, Recall y RMSE se presentan
en la Tabla 5.1. Además, los parámetros seleccionados para esta configuración se
muestran en la Tabla 5.2.

Tabla 5.1: Resultados obtenidos para la configuración óptima del Detector de Inactividad. La
metodoloǵıa utilizada se detalla en Subsección 4.3.1.

Métrica Media Desviación estándar

Fβ-Score (%) 68.65 17.28
Precision (%) 62.03 22.11
Recall (%) 91.84 9.18
RMSE 0.0047 0.0092

Tabla 5.2: Parámetros seleccionados para el Detector de Inactividad, entre los rangos de valores
especificados en la Tabla 4.1.

Parámetro Valor

th energy 0.75
th zcr 0.35
th he 0.05
zcr hf pct cut 0.90
min silence len 10
min sound len 25
start silence 8
end silence 1
num init frames 5

En primer lugar, los resultados obtenidos muestran que el detector de inactivi-
dad alcanzó un desempeño satisfactorio según el Fβ-Score. Sin embargo, el análisis
detallado de las métricas de Precision y Recall revela un comportamiento asimétri-
co: mientras que el Recall presenta un valor medio elevado, el Precision alcanza
un valor medio sensiblemente menor.

Dado que el objetivo principal del módulo es maximizar el Precision, evitando
clasificar como inactivos segmentos que en realidad contienen contenido sonoro, un
valor relativamente bajo (62.03%) evidencia un problema importante: el detector
introduce una cantidad apreciable de falsos positivos, lo que implica que fragmen-
tos con información musical pueden incorporarse erróneamente al cálculo del perfil
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de ruido, afectando potencialmente la calidad de la restauración. Este comporta-
miento señala una limitación del módulo que deberá ser abordada y mejorada en
posibles trabajos futuros.

Sin embargo, vale la pena destacar que el elevado Recall indica que la mayoŕıa
de los segmentos verdaderamente silenciosos śı son detectados correctamente, lo
que beneficia la estimación de dicho perfil.

Luego, las desviaciones estándar observadas en la Tabla 5.1 indican que el
desempeño del detector vaŕıa de forma considerable entre grabaciones. Esto su-
giere que la efectividad del módulo depende fuertemente de las caracteŕısticas
particulares de cada señal —como su dinámica, instrumentación o presencia de
transitorios—, lo que repercute en la estabilidad de la detección.

Cabe destacar que los resultados obtenidos para la métrica RMSE —una me-
dia de 0.0047 y una desviación estándar de 0.0092— son satisfactorios para el
objetivo planteado. Estos valores reflejan una estimación consistente del perfil de
ruido, incluso considerando que el desempeño puede verse afectado por errores en
la Precision, ya que la inclusión incorrecta de frames activos dentro del perfil de
ruido introduce cierta distorsión en la estimación.

Por otro lado, dentro de los parámetros seleccionados resulta especialmente
interesante analizar los valores asociados a las longitudes mı́nimas de frames re-
queridas para considerar un segmento como activo o inactivo. A una frecuencia
de muestreo de 44,1 kHz, la duración mı́nima establecida para un segmento de
actividad es de aproximadamente 330 ms, mientras que la correspondiente a un
segmento inactivo es cercana a 150 ms, es decir, casi la mitad de la anterior.

Asimismo, los márgenes temporales definidos al inicio y al final de cada seg-
mento de silencio muestran una asimetŕıa significativa: los frames de margen inicial
corresponden aproximadamente a 130 ms, mientras que los del margen final re-
presentan cerca de 50 ms. Esta diferencia sugiere que, en términos prácticos, un
segmento activo tiende a presentar una transición más gradual al finalizar que al
iniciarse, lo cual indica que la aparición de actividad en la señal suele ser más
abrupta que su finalización.

Para ilustrar con mayor precisión el desempeño alcanzado, se seleccionó una
señal ruidosa del conjunto de evaluación que obtuvo un resultado particularmente
desfavorable. Sobre esta señal se analizaron en detalle sus caracteŕısticas tanto
temporales como espectrales. En la Figura 5.1 se representan la STE, la ZCR y
la MHF. Por otro lado, en la Figura 5.2 se muestran los resultados del proceso de
detección junto con los perfiles de ruido estimados y etiquetados.

La Figura 5.1 debe interpretarse considerando que la señal analizada corres-
ponde a los últimos 30 segundos de una grabación musical de la Base de Música
Personalizada. Por lo tanto, es coherente observar que, a partir de aproximada-
mente los 20–22 segundos, tanto la STE como la MHF disminuyen de manera
significativa, reflejando el final natural de la pieza musical y la desaparición pro-
gresiva de sus componentes estructurales.

Es importante destacar que los umbrales utilizados para la STE y la MHF son
extremadamente bajos. Esto se debe a que, incluso para una SNR = 10 dB, la
enerǵıa y la magnitud espectral del ruido de cinta son considerablemente menores
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Figura 5.1: Evolución temporal de las tres métricas utilizadas en el detector de inactividad:
STE, ZCR y MHF, junto con sus umbrales respectivos. La figura ilustra cómo, hacia los últimos
segundos del fragmento (∼ 20–22 s), las métricas basadas en enerǵıa y magnitud espectral
descienden de manera significativa debido al final natural de la pieza musical, mientras que la
ZCR aumenta en ausencia de contenido tonal, reflejando la presencia dominante del ruido de
cinta en altas frecuencias.

que las de la señal musical. En contraste, el umbral de la ZCR es más elevado, lo
cual resulta esperable dado que el ruido analógico presenta variaciones de signo
mucho más frecuentes que la señal original, aun cuando su potencia es baja.

Un comportamiento particularmente ilustrativo se observa hacia el final del
fragmento, cuando la música se extingue: la ZCR aumenta de manera sostenida.
Esto indica que, en ausencia del contenido armónico de la señal original, prevalece
únicamente el ruido de cinta. Este incremento en la ZCR coincide con la hipótesis
discutida en el Apéndice A, donde se plantea que el ruido de cinta considerado en
este trabajo posee una componente espectral que se intensifica en las bandas altas,
lo que naturalmente incrementa su tasa de cruces por cero.

Por otra parte, la señal elegida obtuvo valores de Precision, Recall y RMSE
iguales a 34.27, 68.69 y 0.0013, respectivamente. Como se mencionó anteriormen-
te, estos resultados no son satisfactorios y esto se puede ver reflejado directamente
en la Figura 5.2. En el primer panel se observa que una proporción considerable
de los segmentos activos fue clasificada erróneamente como inactiva, lo cual ex-
plica el valor relativamente bajo de Precision. Al mismo tiempo, puede apreciarse
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Figura 5.2: Desempeño del detector de inactividad para una señal del conjunto de evaluación.
En el panel superior se muestran la señal ruidosa, la señal limpia y los segmentos inactivos
detectados en comparación con los segmentos etiquetados manualmente. En los paneles cen-
trales e inferiores se ilustran los perfiles espectrales de ruido esperados y detectados, tanto
sin ponderación como aplicando A-Weighting. La figura permite visualizar simultáneamente
los aciertos y fallos en la detección temporal, aśı como la elevada precisión alcanzada en la
estimación espectral del ruido.

que la mayoŕıa de los segmentos etiquetados manualmente como inactivos fueron
detectados correctamente por el algoritmo, lo que se corresponde con un Recall
significativamente más alto.

El bajo desempeño del Precision puede justificarse a partir del comportamiento
temporal de la señal: cuando la canción comienza a finalizar (aproximadamente
a partir de los 22 s), su potencia se vuelve muy baja en comparación con la del
ruido de cinta presente a un SNR = 10dB. En estas condiciones, el algoritmo
no logra distinguir adecuadamente la señal limpia en esos tramos, interpretando
dichos segmentos como inactivos.

Este comportamiento también puede observarse en la Figura 5.1, donde alrede-
dor de los 22 s se evidencia un valor de ZCR excesivamente elevado, caracteŕıstico
del ruido, en lugar de un ZCR más reducido que correspondeŕıa a la señal original.
Debido a que dicho valor queda por encima del umbral utilizado para identifi-
car tramos inactivos, estos frames son erróneamente clasificados pese a contener
actividad relevante de la señal.

Por otro lado, los dos paneles inferiores de Figura 5.2 muestran los perfiles es-
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pectrales de ruido —esperado y detectado— tanto sin ponderación como aplicando
A-Weighting. En ambos casos se observa una coincidencia notable entre los perfi-
les, lo cual respalda el valor extremadamente bajo del RMSE obtenido y confirma
que, pese a los errores en la detección temporal, la estimación espectral del ruido
sigue siendo altamente precisa.

5.1.2. Sustracción espectral
El rendimiento obtenido por la configuración óptima del algoritmo SS Clásico

se resume en la Tabla 5.3, donde se presentan los valores medios y las desviacio-
nes estándar de ∆PAQM, ∆PEAQ y la SNR estimada. Los hiperparámetros que
permitieron obtener estos resultados se detallan en la Tabla 5.5.

En el caso del algoritmo SS Denoisify, la configuración óptima alcanzada mues-
tra un desempeño consistente según las mismas métricas, cuyos valores se reportan
en la Tabla 5.4. Los hiperparámetros asociados a esta configuración se presentan
en la Tabla 5.6.

Tabla 5.3: Rendimiento obtenido para la configuración óptima del algoritmo SS Clásico.

Métrica Media Desviación estándar

∆PAQM 1.94 0.91
∆PEAQ 0.50 0.73
SNR (dB) 22.32 3.10

Tabla 5.4: Rendimiento obtenido para la configuración óptima del algoritmo SS Denoisify.

Métrica Media Desviación estándar

∆PAQM 1.87 0.93
∆PEAQ 0.33 0.45
SNR (dB) 22.35 3.24

Tabla 5.5: Configuración óptima encontrada para el algoritmo SS Clásico, a partir de los rangos
de valores elegidos en la Tabla 4.2.

Hiperparámetro Valor

alpha 0.99
beta 0.01
rho 0.15

Tanto la versión clásica como SS Denoisify lograron mejoras perceptuales posi-
tivas, reflejadas en los valores de ∆PAQM y ∆PEAQ. No obstante, la sustracción
espectral clásica presentó un desempeño superior, alcanzando incrementos prome-
dio mayores en ambas métricas en comparación con SS Denoisify. Dado que la
SNR estimada resultó prácticamente equivalente en ambos casos, las diferencias
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Tabla 5.6: Configuración óptima encontrada para el algoritmo SS Denoisify, a partir de los
rangos de valores elegidos en la Tabla 4.3.

Hiperparámetro Valor

n iter 30
alpha 0.10
beta 0.93
rho 0.01
sm keep pct 0.50
peak thresh -60

observadas no se deben a la cantidad de ruido atenuado, sino al impacto que cada
algoritmo introduce sobre la estructura temporal y espectral de la señal.

Las desviaciones estándar relativamente elevadas en todas las métricas indican
que el rendimiento de ambos enfoques depende fuertemente de las caracteŕısticas
espećıficas de cada señal musical, un comportamiento esperable dada la diversidad
armónica y dinámica presente en las grabaciones evaluadas.

Un aspecto particularmente relevante de estos resultados son las configuracio-
nes óptimas encontradas para cada algoritmo. En el caso de la sustracción espectral
clásica, los parámetros seleccionados corresponden sistemáticamente a los valores
más extremos dentro de los rangos evaluados: un α = 0,99 que maximiza la can-
tidad de ruido sustráıdo, un β = 0,01 que fija un piso espectral extremadamente
bajo, y un ρ = 0,15 que aplica un filtro pasabajos más agresivo. Esta combinación
sugiere que, para el tipo de ruido analógico considerado, la versión clásica del al-
goritmo se beneficia de una estrategia extremadamente agresiva en la eliminación
del ruido, incluso a costa de un mayor riesgo de distorsión. Además, el hecho de
que los valores óptimos se encuentren en los extremos del espacio de búsqueda su-
giere que la configuración verdaderamente óptima podŕıa ubicarse más allá de los
ĺımites evaluados, lo cual puede ser interesante para explorar en trabajos futuros.

En contraste, la configuración óptima de SS Denoisify presenta un comporta-
miento significativamente distinto: prioriza el uso del número máximo de iteracio-
nes (n iter = 30), una proporción moderada de iteraciones dedicadas al modelado
espectral (sm keep pct= 0.50), y un umbral de detección de picos sinusoidales muy
bajo (peak thresh = -60 dB), lo que implica una detección amplia de componentes
tonales durante la śıntesis del modelado sinusoidal. Asimismo, los valores óptimos
de α = 0,10 y β = 0,93 indican un enfoque considerablemente menos agresivo
tanto en la sustracción como en el piso espectral. En conjunto, estos parámetros
sugieren que SS Denoisify obtiene su mejor rendimiento cuando atenúa el ruido
de forma más moderada y delega un papel preponderante al modelado sinusoidal
y a la sustracción iterativa.

Es importante mencionar que el análisis detallado del rendimiento de ambos
algoritmos se desarrollará en profundidad en las secciones siguientes.
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5.1.3. Algoritmo de reducción de ruido musical
Los resultados obtenidos para la configuración óptima del algoritmo se resumen

en la Tabla 5.7, donde se presentan los valores medios y las desviaciones estándar
de ∆PEAQ y ∆PAQM. La configuración de hiperparámetros asociada a estos
resultados se muestra en la Tabla 5.8.

Tabla 5.7: Rendimiento obtenido para la configuración óptima del algoritmo.

Métrica Media Desviación estándar

∆PEAQ -0.0750 1.1120
∆PAQM 0.0109 0.1790

Tabla 5.8: Configuración óptima encontrada para el algoritmo de reducción de ruido musical,
a partir de los rangos de valores elegidos en la Tabla 4.4.

Hiperparámetro Valor

mn nfft 256
mn thresh db -25
mn win len 44

En ambas tablas se puede destacar que el desempeño alcanzado por la confi-
guración óptima del algoritmo de reducción de ruido musical no es favorable. Los
valores obtenidos para ∆PEAQ y ∆PAQM son prácticamente nulos en prome-
dio, lo que indica que el módulo no aporta mejoras significativas al proceso de
denoising. Además, al igual que en los casos anteriores, las desviaciones estándar
asociadas a ambas métricas son considerablemente elevadas, lo que refleja una fuer-
te dependencia del rendimiento respecto de las caracteŕısticas particulares de cada
grabación. En conjunto, estos resultados sugieren que, bajo las configuraciones
evaluadas, el módulo de reducción de ruido musical no logra contribuir de forma
consistente a la restauración de las señales. Debido a esta razón, en las evaluaciones
y análisis posteriores no se consideró el último módulo de la implementación.

5.2. Curvas de aprendizaje
En los caṕıtulos anteriores se presentaron los fundamentos teóricos y meto-

dológicos que sustentan el desarrollo y entrenamiento de los modelos de denoising
basado en redes neuronales profundas.

En particular, se entrenaron dos versiones del modelo: una utilizando exclusi-
vamente la base de datos de ruidos de cinta MagTapeDB, y otra combinando dicha
base con la colección de ruidos de gramófono empleada por Moliner y Välimäki [6].
El objetivo de esta comparación fue evaluar si un modelo entrenado con una base
espećıfica para el tipo de ruido presente en las grabaciones de cinta logra un mejor
desempeño que uno entrenado con una combinación más diversa de ruidos, anali-
zando aśı el efecto de la generalización frente a la especialización del conjunto de
entrenamiento.
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En este contexto, las curvas de aprendizaje presentadas a continuación permi-
ten analizar la evolución del error durante el proceso de entrenamiento, tanto en
el conjunto de entrenamiento como en el de validación. Su observación resulta fun-
damental para evaluar la convergencia del modelo, su capacidad de generalización
y el impacto de la base de datos empleada en el desempeño final.

Las Figuras 5.3 a 5.6 muestran la evolución de la pérdida y del error absoluto
medio registrados durante el proceso de entrenamiento para ambos modelos con-
siderados. En cada caso se presentan las métricas de entrenamiento y validación a
lo largo de las épocas.

Figura 5.3: Evolución de la pérdida durante el entrenamiento y la validación para el modelo
entrenado con la base MagTapeDB.

Figura 5.4: Evolución de la pérdida durante el entrenamiento y la validación para el modelo
entrenado con la base combinada MagTapeDB + Gramófono.

Al comparar las curvas correspondientes a cada modelo, se observa que la evo-
lución de la pérdida y del MAE presentan comportamientos muy similares dentro
de una misma base de datos. En ambos casos, las curvas siguen una tendencia de-
creciente durante las primeras épocas y una posterior estabilización en validación,
lo que indica que ambas métricas reflejan de manera coherente la dinámica del
proceso de aprendizaje, aunque cuantifican magnitudes distintas.
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Figura 5.5: Evolución del MAE durante el entrenamiento y la validación para el modelo entre-
nado con la base MagTapeDB.

Figura 5.6: Evolución del MAE durante el entrenamiento y la validación para el modelo entre-
nado con la base combinada MagTapeDB + Gramófono.

Tal como se detalla en la Subsección 3.2.2, la función de pérdida utilizada
durante el entrenamiento está definida como la suma de dos términos: el MAE
de la salida intermedia Ŷ1 y el MAE de la salida final Ŷ2 del modelo. En cam-
bio, la métrica MAE reportada por TensorBoard corresponde únicamente al error
absoluto medio de la segunda salida Ŷ2.

Debido a esta relación directa ambas curvas siguen una tendencia paralela,
diferenciándose más en su escala numérica que en su forma.

A partir de la época 50, tanto las curvas de pérdida como las de error abso-
luto medio muestran una clara estabilización en el conjunto de validación. Este
comportamiento coincide con la reducción automática de la tasa de aprendizaje
implementada en el código, donde el learning rate se reduce en un factor de 10 cada
50 épocas. Al disminuir el tamaño de los pasos del optimizador en cada actualiza-
ción, el modelo realiza un ajuste más fino, lo que se traduce en una convergencia
más lenta pero más estable de las métricas de validación.

La mayor estabilidad observada en las curvas de validación, en comparación
con las de entrenamiento, podŕıa estar asociada a la forma en que se construyen
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ambos conjuntos de datos. Durante el entrenamiento, los segmentos se contaminan
en tiempo real mediante la adición de ruido, asignándoles en cada iteración una
SNR aleatoria dentro del intervalo 2–20 dB. Esta variabilidad hace que, dentro
de un mismo lote, coexistan ejemplos muy ruidosos y otros con ruido moderado,
lo que podŕıa introducir una dispersión importante en los valores de la pérdida
y dar lugar a curvas de entrenamiento más inestables. En cambio, el conjunto
de validación se genera una única vez antes de iniciar el entrenamiento: a cada
segmento se le asigna una SNR aleatoria, también dentro del rango 2–20 dB, y
esa configuración se mantiene fija a lo largo de todas las épocas. De esta forma, la
evaluación se realiza siempre sobre los mismos ejemplos y niveles de ruido, lo que
tendeŕıa a producir curvas de validación más suaves y estables.

Además, el rango de SNR considerado (2–20 dB) es relativamente amplio y
abarca condiciones muy distintas de degradación. Para valores próximos a 2 dB,
el error esperado suele ser significativamente mayor que para SNR altos, de modo
que la combinación de todos estos casos en un único proceso de entrenamiento
podŕıa contribuir a la dispersión observada en las curvas.

Por otro lado, al contrastar los resultados entre modelos, se observa que el mo-
delo entrenado únicamente con la base MagTapeDB presenta valores de pérdida de
validación ligeramente superiores a los del modelo entrenado con la base combina-
da MagTapeDB + Gramófono. Sin embargo, esta diferencia no resulta concluyente
dado que puede deberse a variaciones inherentes al proceso de entrenamiento, co-
mo el ordenamiento aleatorio de los datos o la distribución de los ejemplos en cada
conjunto.

Finalmente, en el presente trabajo las condiciones de entrenamiento difieren
sustancialmente respecto a las del estudio original de Moliner y Välimäki. No se
dispone de las curvas de entrenamiento y validación correspondientes al modelo
original, entrenado exclusivamente sobre la base de datos de gramófono, sin embar-
go, es razonable suponer que los autores contaban con un hardware más potente,
dado que durante la replicación del entrenamiento en este trabajo se registraron
errores de asignación de memoria al intentar utilizar configuraciones equivalen-
tes. Como se mencionó en el Caṕıtulo 4, el entrenamiento se realizó en una GPU
con 12 GB de VRAM, lo que obligó a reducir el tamaño de lote y ajustar otros
hiperparámetros para adaptarse a la capacidad de memoria. Estas limitaciones,
detalladas en 4.4.2 , pueden explicar en parte la inestabilidad observada en las
curvas de entrenamiento.

5.3. Análisis objetivo de los modelos
Con el objetivo de evaluar cuantitativamente el desempeño de los distintos

métodos de reducción de ruido, se procesaron todos los casos de prueba y se cal-
cularon las variaciones promedio de las métricas objetivas de calidad perceptual
PEAQ y PAQM, descritas previamente en las Secciones 4.2.3 y 4.2.4.

Previo al comienzo del análisis, es importante destacar que la elección de estas
dos métricas no fue arbitraria: ambas ofrecen una estimación objetiva del impacto
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perceptual que introduce un proceso, pero desde perspectivas ligeramente diferen-
tes y, por tanto, complementarias.

Durante el análisis experimental se observó que PEAQ tiende a favorecer enfo-
ques de denoising más agresivos, en los cuales la supresión del ruido es prioritaria,
incluso a costa de introducir cierta distorsión residual en la señal limpia. Por el
contrario, PAQM penaliza con mayor severidad ese tipo de distorsiones, valorando
en cambio una preservación más fiel del contenido armónico y t́ımbrico original,
aun cuando el ruido residual es algo mayor.

Esta diferencia de comportamiento hace que la combinación de ambas métricas
proporcione una visión más equilibrada y representativa del rendimiento real de
los modelos.

5.3.1. Desempeño general
La Figura 5.7 resume el comportamiento global de cada modelo, promediando

todas las condiciones de SNR y tipos de audio. La Tabla 2.1, acompaña a esta
figura y presenta los valores promedio y desviaciones estándar de las métricas
∆PEAQ y ∆PAQM para cada método, lo cual aporta una visión cuantitativa del
desempeño general.

Figura 5.7: Resumen global del desempeño de los distintos métodos de reducción de ruido,
evaluados mediante las métricas objetivas ∆PEAQ y ∆PAQM. La figura ilustra el contraste
entre las técnicas clásicas de sustracción espectral —que muestran resultados consistentes y
relativamente estables— y los modelos basados en aprendizaje profundo, cuyo rendimiento
evidencia una mayor variabilidad y una fuerte dependencia del conjunto de entrenamiento.

En primer lugar, los métodos de sustracción espectral exhiben desempeños
muy similares entre śı, con valores promedio comparables en ambas métricas y
variabilidades moderadas. Esto sugiere que, pese a las diferencias metodológicas
entre ambas variantes, su comportamiento general frente a las señales evaluadas
es consistente.
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Tabla 5.9: Resumen global de los valores promedio y desviación estándar de las métricas
objetivas por modelo.

Método ∆PEAQ σ∆PEAQ ∆PAQM σ∆PAQM

SS Clásico 0.392 0.439 1.963 1.390
SS Denoisify 0.202 0.489 1.856 1.360
DL Gramófono 0.070 0.835 0.532 3.477
DL MagTapeDB 0.439 0.465 1.575 3.151
DL MagTapeDB + Gramófono 0.638 0.696 -0.230 4.635

En contraste, los modelos basados en aprendizaje profundo muestran una di-
vergencia clara entre śı, lo que indica una fuerte dependencia respecto del conjunto
de entrenamiento utilizado. En particular, el modelo DL MagTapeDB tiende a ob-
tener mejores resultados en ∆PEAQ y ∆PAQM que los modelos entrenados con
Gramófono, lo cual es coherente con las condiciones de la evaluación: todas las
pruebas se realizaron exclusivamente con ruido de cinta proveniente de la base
Analog Audio Tape Recordings. Dado que las caracteŕısticas espectrales y tempo-
rales del ruido de cinta difieren del ruido propio de grabaciones en gramófono,
es razonable que un modelo entrenado con este último no logre generalizar ade-
cuadamente al dominio del ruido de cinta. En cambio, el modelo entrenado con
MagTapeDB dispone de ejemplos representativos del tipo de ruido presente en la
evaluación, lo que explica su desempeño superior.

Aun aśı, en términos generales, los métodos de aprendizaje profundo presen-
tan un rendimiento significativamente inferior en comparación con las técnicas
de sustracción espectral, especialmente en la métrica ∆PAQM, donde muestran
medias sensiblemente menores —incluso negativas en el caso del modelo DL Mag-
TapeDB+Gramófono— y desviaciones estándar mucho más elevadas. Esto indica
no solo una menor eficacia en la restauración de la señal, sino también una mayor
inestabilidad frente a la variabilidad del conjunto de evaluación. Por su parte, en
∆PEAQ los modelos de aprendizaje profundo pueden alcanzar valores competiti-
vos; el modelo DL MagTapeDB+Gramófono es el que obtiene el mejor desempeño
global en esta métrica. Sin embargo, esta mejora viene acompañada nuevamen-
te de una variabilidad considerable, lo que limita su fiabilidad en escenarios más
generales.

Resulta relevante señalar que, en general, el margen de mejora en la restaura-
ción de las señales es mayor que el margen de deterioro: las variaciones positivas en
las métricas aparecen con mayor frecuencia que las negativas. No obstante, los mo-
delos basados en aprendizaje profundo exhiben niveles de degradación mucho más
pronunciados que las técnicas de sustracción espectral, evidenciando una mayor
vulnerabilidad frente a señales que se desv́ıan del dominio visto durante el entre-
namiento. Esto refuerza la importancia tanto del conjunto de entrenamiento como
de la capacidad de generalización del modelo, especialmente cuando se trabajan
señales con caracteŕısticas acústicas diferentes.
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5.3.2. Desempeño por SNR
La Figura 5.8 y la Figura 5.9 ilustran la evolución de las métricas ∆PEAQ y

∆PAQM para cada modelo bajo condiciones de 10 y 16 dB de SNR. Complemen-
tariamente, las Tablas 5.10 y 5.11 presentan los valores promedio y las desviaciones
estándar correspondientes a cada caso.

Figura 5.8: Variación promedio de ∆PEAQ para cada modelo bajo las dos condiciones de SNR
consideradas (10 y 16 dB). La figura permite observar cómo se modifica la calidad perceptual
estimada según el nivel de ruido de entrada y comparar la sensibilidad de cada método frente
a esta condición.

Figura 5.9: Variación promedio de ∆PAQM por modelo para SNR de 10 y 16 dB. Se muestra
cómo cada técnica preserva o degrada la calidad perceptual según el nivel de ruido de la señal
ruidosa, permitiendo identificar patrones de estabilidad o sensibilidad frente al SNR.
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Tabla 5.10: Resultados promedio y desviación estándar de las métricas objetivas para un SNR
de 10 dB.

Método ∆PEAQ σ∆PEAQ ∆PAQM σ∆PAQM

SS Clásico 0.351 0.400 2.104 1.409
SS Denoisify 0.178 0.473 2.023 1.331
DL Gramófono 0.191 0.668 0.356 3.800
DL MagTapeDB 0.261 0.317 1.725 3.169
DL MagTapeDB + Gramófono 0.665 0.555 -0.338 5.038

Tabla 5.11: Resultados promedio y desviación estándar de las métricas objetivas para un SNR
de 16 dB.

Método ∆PEAQ σ∆PEAQ ∆PAQM σ∆PAQM

SS Clásico 0.434 0.476 1.823 1.371
SS Denoisify 0.227 0.509 1.689 1.383
DL Gramófono -0.051 0.965 0.708 3.153
DL MagTapeDB 0.618 0.521 1.425 3.159
DL MagTapeDB + Gramófono 0.611 0.819 -0.122 4.244

Tanto SS Clásico como SS Denoisify presentan un comportamiento estable
entre las dos condiciones analizadas. Las variaciones entre los valores medios de
∆PEAQ y ∆PAQM para ambos casos son relativamente pequeñas, y sus desviacio-
nes estándar se mantienen acotadas, lo que indica que la eficacia de estas técnicas
no depende principalmente del SNR del audio de entrada. Esto es coherente con
los algoritmos de sustracción espectral, cuyo funcionamiento no incorpora expĺıci-
tamente el valor del SNR para el procesamiento de la señal ruidosa.

Por el contrario, los modelos basados en aprendizaje profundo denotan un com-
portamiento mucho más irregular y sin una tendencia clara asociada al SNR. Tanto
DL Gramófono como DL MagTapeDB y su combinación muestran variaciones sig-
nificativas entre 10 y 16 dB, tanto en el sentido de mejora o deterioro como en la
magnitud de la dispersión. Esta inestabilidad puede explicarse por la fuerte depen-
dencia de estos modelos respecto de los datos utilizados durante el entrenamiento.
En particular, las redes, como se describe en la Subsección 3.2.1, se entrenaron con
un rango considerablemente amplio de SNR —entre 2 y 20 dB—, por lo que el
modelo debe aprender simultáneamente a manejar niveles de ruido muy distintos,
lo cual dificulta una generalización adecuada para condiciones espećıficas como las
evaluadas en este trabajo.

Estos resultados muestran que las técnicas clásicas mantienen un desempeño
más predecible y robusto frente a cambios en el SNR, mientras que los modelos
neuronales son más sensibles al rango de condiciones visto en entrenamiento y, por
ello, muestran una estabilidad mucho menor.
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5.3.3. Desempeño por categoŕıa de audio
Las Figuras 5.10 y 5.11, junto con las Tablas 5.13–5.15, resumen el compor-

tamiento de cada modelo según la categoŕıa de contenido musical presente en la
señal. Este análisis permite evaluar hasta qué punto la caracteŕıstica espectral y
temporal de las grabaciones de audio influye en la eficacia del algoritmo de denoi-
sing.

Figura 5.10: Comparación de ∆PEAQ por tipo de contenido musical. Las barras indican valores
promedio y las ĺıneas de error su desviación estándar.

Figura 5.11: Comparación de ∆PAQM por tipo de contenido musical. Las barras indican valores
promedio y las ĺıneas de error su desviación estándar.
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Tabla 5.12: Resultados promedio y desviación estándar de las métricas objetivas para el tipo
de audio Música popular.

Método ∆PEAQ σ∆PEAQ ∆PAQM σ∆PAQM

SS Clásico 0.770 0.332 0.758 0.596
SS Denoisify 0.607 0.402 0.663 0.659
DL Gramófono -0.297 0.794 -1.625 2.326
DL MagTapeDB 0.379 0.352 0.226 1.050
DL MagTapeDB + Gramófono 0.145 0.806 -2.595 2.899

Tabla 5.13: Resultados promedio y desviación estándar de las métricas objetivas para el tipo
de audio Muchas fuentes.

Método ∆PEAQ σ∆PEAQ ∆PAQM σ∆PAQM

SS Clásico 0.112 0.432 2.138 1.444
SS Denoisify -0.180 0.537 2.081 1.314
DL Gramófono 0.170 1.071 1.625 2.475
DL MagTapeDB 0.484 0.508 2.393 2.179
DL MagTapeDB + Gramófono 0.932 0.616 1.372 2.779

Tabla 5.14: Resultados promedio y desviación estándar de las métricas objetivas para el tipo
de audio Pocas fuentes.

Método ∆PEAQ σ∆PEAQ ∆PAQM σ∆PAQM

SS Clásico 0.281 0.284 3.117 1.084
SS Denoisify 0.168 0.293 3.007 1.052
DL Gramófono 0.374 0.783 3.845 2.303
DL MagTapeDB 0.481 0.465 3.807 3.331
DL MagTapeDB + Gramófono 0.851 0.502 3.322 3.173

Tabla 5.15: Resultados promedio y desviación estándar de las métricas objetivas para el tipo
de audio Vocal.

Método ∆PEAQ σ∆PEAQ ∆PAQM σ∆PAQM

SS Clásico 0.407 0.418 1.839 1.188
SS Denoisify 0.213 0.357 1.672 1.192
DL Gramófono 0.033 0.488 -1.717 3.205
DL MagTapeDB 0.414 0.535 -0.128 3.639
DL MagTapeDB + Gramófono 0.622 0.576 -3.021 5.720

En primer lugar, se observa que, en promedio, la mayoŕıa de los valores de
∆PEAQ y ∆PAQM son positivos en casi todas las categoŕıas, lo que indica que
los modelos tienden a mejorar la calidad perceptual de las señales en términos
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globales. Sin embargo, los valores medios difieren de manera sustancial entre los
tipos de señal, y las desviaciones estándar son elevadas, lo cual sugiere que el
grado de mejora no depende exclusivamente del tipo de contenido, sino también
de caracteŕısticas particulares de cada grabación.

Entre todas las categoŕıas analizadas, la clase de Pocas Fuentes es la que mues-
tra un desempeño más estable y consistente. Tanto los métodos de sustracción
espectral como los modelos de aprendizaje profundo alcanzan en este grupo sus
mejores resultados, especialmente según la métrica ∆PEAQ. Esto sugiere que la
menor complejidad espectral de estas señales —con armónicos bien definidos y
poca superposición de fuentes sonoras— facilita tanto el modelado espectral y la
sustracción iterativa como la generalización de los modelos entrenados con cate-
goŕıas de audio diferentes.

Por otro lado, la categoŕıa Muchas Fuentes representa el caso más desafiante.
En términos de PEAQ, los modelos de aprendizaje profundo —particularmente
aquellos entrenados con MagTapeDB— muestran un desempeño competitivo e
incluso superior al de los métodos de sustracción espectral. Una posible explicación
de este comportamiento es la presencia de música clásica y material polifónico
dentro de esta categoŕıa, cuyo contenido resulta más af́ın al dominio acústico de
las grabaciones incluidas en MusicNet, utilizada durante el entrenamiento. Esta
mayor cercańıa entre los patrones espectrales del conjunto evaluado y los datos de
entrenamiento facilita la capacidad de generalización de los modelos basados en
aprendizaje profundo, lo cual se refleja en el mejor desempeño observado para este
tipo de señales.

En esta categoŕıa se observa, además, una diferencia marcada entre los dos
métodos de sustracción espectral. Según los valores de ∆PEAQ, SS Denoisify ob-
tiene un desempeño considerablemente peor que SS Clásico, lo que sugiere que
el modelado espectral puede volverse contraproducente cuando la señal presenta
una alta complejidad espectral, caracterizada por múltiples fuentes superpuestas
y patrones armónicos dif́ıciles de representar mediante el modelado sinusoidal. En
estos casos, el enfoque más simple y directo resulta más adecuado y preserva de
mejor manera la estructura original del audio.

Por otra parte, en el caso de Música Popular, el comportamiento muestra
una mayor dependencia al tipo de modelo. Los métodos de sustracción espectral
logran mejoras claras y estables, mientras que los modelos basados en aprendizaje
profundo presentan, en promedio, un deterioro claro de la señal. A diferencia del
grupo Muchas Fuentes, esta disparidad puede explicarse por la distancia entre la
categoŕıa Música Popular y el contenido presente en las bases de entrenamiento,
ya que dicha música del conjunto personalizado no se encuentra suficientemente
representada en el conjunto de datos de MusicNet.

La categoŕıa Vocal también revela contrastes importantes. En este caso, SS De-
noisify muestra un rendimiento inferior al de SS Clásico en ambas métricas, po-
siblemente porque su etapa de modelado espectral intenta preservar o reconstruir
transitorios en un tipo de señal que, por lo general, carece de ellos. Este desajuste
puede introducir artefactos indeseados provenientes de los transitorios preservados
del ruido, afectando negativamente la calidad de la reconstrucción y explicando el
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deterioro observado en esta categoŕıa.
En los modelos de aprendizaje profundo ocurre un patrón similar al observado

en otras categoŕıas: PEAQ tiende a registrar mejoras o valores moderadamente
positivos, mientras que PAQM identifica degradaciones significativas. Según lo
observado emṕıricamente, esta discrepancia sugiere que estos modelos aplican una
supresión del ruido más agresiva, priorizando la eliminación del ruido por sobre la
preservación de la estructura armónica de la señal.

Este comportamiento puede observarse de forma clara en el modelo DL Mag-
TapeDB + Gramófono, cuya dualidad resulta particularmente marcada: alcanza
algunos de los valores más altos de ∆PEAQ, pero simultáneamente obtiene algunos
de los peores resultados en ∆PAQM. En otras palabras, logra una reducción del
ruido muy efectiva —aspecto que PEAQ tiende a valorar positivamente—, pero lo
hace a costa de introducir distorsiones que alteran componentes musicales relevan-
tes. Dado que PAQM es más sensible a la preservación t́ımbrica y a la fidelidad de
los armónicos, penaliza con severidad estas distorsiones, lo que explica el deterioro
observado en esta métrica.

Para complementar el análisis, las Figuras 5.12–5.15 presentan gráficos de dis-
persión que muestran la relación entre ∆PEAQ (eje x) y ∆PAQM (eje y) para cada
señal procesada. Esta representación permite evaluar simultáneamente el efecto del
denoising en ambas dimensiones perceptuales: los puntos en el cuadrante superior
derecho indican mejoras conjuntas, mientras que los del cuadrante inferior izquier-
do reflejan deterioro en ambas métricas.

Figura 5.12: Distribución de ∆PEAQ y ∆PAQM para la categoŕıa Música Popular.

De manera consistente con los resultados anteriores, los métodos de sustracción
espectral exponen una distribución compacta y estable en todas las categoŕıas. En
la Figura 5.12, por ejemplo, SS Clásico y SS Denoisify se concentran mayoritaria-
mente en la región positiva, con una dispersión moderada y muy pocos casos de
degradación simultánea. Este comportamiento confirma su naturaleza robusta e
independiente del tipo de contenido musical: aun cuando la categoŕıa es exigente,
el método rara vez produce distorsiones severas.
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Figura 5.13: Distribución de ∆PEAQ y ∆PAQM para la categoŕıa Muchas Fuentes.

Figura 5.14: Distribución de ∆PEAQ y ∆PAQM para la categoŕıa Pocas Fuentes.

Por el contrario, los modelos basados en aprendizaje profundo muestran una
variabilidad notablemente mayor. Un ejemplo claro se observa también en la Figu-
ra 5.12, donde varios puntos correspondientes a DL Gramófono y DL MagTapeDB
+ Gramófono se sitúan en la región negativa, indicando un deterioro perceptual
en ambas métricas. Sin embargo, esta tendencia cambia drásticamente en cate-
goŕıas más afines al contenido de sus bases de entrenamiento. En la Figura 5.13,
dichos modelos pasan a registrar numerosos casos positivos —en algunos casos en-
tre los mejores del conjunto— aunque manteniendo una dispersión considerable.
Este comportamiento reafirma su capacidad de lograr mejoras significativas, pero
principalmente cuando la señal de entrada se asemeja al dominio de MusicNet.

Los resultados evidencian que la eficacia de cada método depende fuertemente
de las caracteŕısticas del contenido espectral de la señal. Los métodos de sustracción
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Figura 5.15: Distribución de ∆PEAQ y ∆PAQM para la categoŕıa Vocal.

espectral muestran mayor estabilidad y predictibilidad entre categoŕıas, mientras
que los modelos de aprendizaje profundo exponen un desempeño más variable,
fuertemente condicionado por el dominio acústico de su entrenamiento.

5.3.4. Desempeño en tiempos de ejecución
Además de las métricas perceptuales, se analizó el tiempo promedio de pro-

cesamiento de cada modelo, considerando la duración total del flujo de inferencia
o del algoritmo correspondiente. La Figura 5.16 muestra los tiempos medios y su
dispersión, mientras que la Tabla 5.16 resume los valores numéricos obtenidos.

Figura 5.16: Tiempos promedio de procesamiento por modelo. La figura evidencia las diferen-
cias de demanda computacional entre técnicas de sustracción espectral y modelos de aprendi-
zaje profundo.
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Caṕıtulo 5. Análisis de resultados

Tabla 5.16: Tiempos promedio de procesamiento por modelo, con su desviación estándar.

Método Tiempo medio [s] Desv. estándar [s]

SS Clásico 0.592 0.020
SS Denoisify 14.774 0.509
DL Gramófono 37.462 2.378
DL MagTapeDB 38.861 3.743
DL MagTapeDB + Gramófono 37.650 2.276

Los resultados evidencian una diferencia significativa en la demanda compu-
tacional entre los métodos basados en procesamiento de señales y los modelos de
aprendizaje profundo. El algoritmo SS Clásico presenta el menor tiempo prome-
dio de ejecución (alrededor de 0.6 s por archivo), seguido por SS Denoisify, cuyo
tiempo medio asciende a unos 15 s. En este último caso, el incremento se debe
principalmente a la incorporación de modelado espectral y de la sustracción ite-
rativa, cuyo tiempo total depende del número de iteraciones configuradas (en este
caso 30). Ambos métodos son totalmente ejecutables en CPU sin necesidad de
aceleración por GPU, lo que refuerza su aplicabilidad en contextos de bajo costo
computacional o en entornos de procesamiento en tiempo real.

Por otra parte, los modelos de aprendizaje profundo presentan tiempos de
inferencia considerablemente mayores, en torno a 37–39 s por archivo. Aunque
tampoco requieren GPU para la inferencia, su ejecución se beneficia notablemente
de su uso, como en este caso. Además, debe considerarse que estos valores no
reflejan los requisitos computacionales del entrenamiento de las redes neuronales,
los cuales son órdenes de magnitud superiores tanto en tiempo como en demanda
de recursos, y constituyen una etapa sustancial en el desarrollo de estos modelos.

En total, los resultados de esta sección muestran que los métodos de sustrac-
ción espectral —tanto el clásico como su versión con modelado espectral— ofrecen
una buena relación entre desempeño perceptual y eficiencia computacional. Si bien
los modelos de aprendizaje profundo logran en algunos casos resultados percep-
tualmente superiores, los métodos basados en procesamiento de señales alcanzan
rendimientos comparables, e incluso mejores en ciertos contextos, con tiempos de
procesamiento mucho menores. Esto sugiere que, al menos dentro del alcance de
este experimento, las soluciones de procesamiento clásico continúan siendo una al-
ternativa altamente competitiva en tareas de restauración de audio, especialmente
cuando la eficiencia es un factor determinante.

En la siguiente sección se complementa este análisis con una evaluación sub-
jetiva de las grabaciones procesadas, contrastando las observaciones perceptuales
con los resultados cuantitativos obtenidos en las métricas objetivas.

5.4. Escucha cŕıtica de las señales restauradas
En esta sección se presentan los resultados de la escucha cŕıtica realizada so-

bre las grabaciones restauradas. No se trata de un análisis exhaustivo, sino de la
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selección de algunas grabaciones representativas que permiten ilustrar ciertos pro-
blemas observados y valorar de manera cualitativa el desempeño de las técnicas
evaluadas.

En términos generales, ambas técnicas —tanto la sustracción espectral como
el modelo de aprendizaje profundo— producen señales con una reducción de ruido
claramente perceptible y, en la mayoŕıa de los casos, una preservación adecuada
de la señal, obteniendo un resultado final satisfactorio. No obstante, con el fin de
complementar el análisis objetivo, se describen aqúı las principales distorsiones
detectadas en los casos donde estas técnicas presentan limitaciones.

Se realizará un análisis cualitativo de las distorsiones introducidas por los mo-
delos DL MagTapeDB y SS Clásico / SS Denoisify, dado que fueron los métodos
que mostraron el mejor desempeño global en las evaluaciones objetivas. Para este
fin se seleccionó un ejemplo en el que las distorsiones resultan particularmente
evidentes, lo cual permite ilustrar con claridad los ĺımites y comportamientos ca-
racteŕısticos de cada enfoque.

A fin de mantener la comparación en un escenario realista, se utilizaron señales
con una SNR de 16 dB, valor que se aproxima al nivel de ruido t́ıpico observado
en las grabaciones históricas de Lauro Ayestarán, según el trabajo de I.Irigaray et
al. [5].

Es importante destacar que las distorsiones aqúı presentadas no aparecen de
forma sistemática en todas las señales: su presencia y magnitud vaŕıan según el
contenido musical y las particularidades de cada audio. El ejemplo seleccionado
corresponde, por tanto, a un caso representativo pero deliberadamente exigente que
permite examinar con mayor claridad los artefactos generados por cada modelo.

Finalmente, se incluye también un análisis auditivo sobre fragmentos reales
del archivo sonoro de la colección de Lauro Ayestarán, procesados con los tres
modelos considerados. Estos ejemplos permiten observar cómo se trasladan los
comportamientos identificados en señales sintéticas o controladas a un escenario
histórico y acústicamente más complejo. Además, para acompañar el análisis y
facilitar la exploración de los resultados obtenidos, se desarrolló una página web
interactiva [44].

5.4.1. Distorsiones resultantes de la restauración
Ruido tonal y agudo

La primera distorsión analizada aparece al procesar una balada interpretada
por piano y voz femenina. En este caso, la distorsión producida por el modelo
DL MagTapeDB se manifiesta como un tono agudo en torno a los 6 kHz, clara-
mente audible aunque de impacto menor en comparación con otras distorsiones
que se describirán más adelante. En la Figura 5.17 se muestran los espectrogra-
mas correspondientes a este ejemplo, en el siguiente orden: audio limpio, audio
contaminado con ruido a 16 dB, audio restaurado y residuo. En el tercer espectro-
grama se aprecia con claridad la aparición del tono en cuestión, visible como una
ĺınea horizontal localizada aproximadamente entre 5 y 6 kHz, ausente en la señal
original.
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Figura 5.17: Espectrogramas del ejemplo seleccionado: audio limpio, audio contaminado con
ruido de cinta a 16 dB, señal restaurada mediante DL MagTapeDB y residuo. En la señal
restaurada se aprecia un tono agudo artificial —marcado en rojo— alrededor de 5–6 kHz,
producto del realce involuntario de un componente del ruido que el modelo interpreta errónea-
mente como parte de la señal original.

Esto ocurre porque el ruido original contiene una componente marcada en esa
banda, y el modelo atenúa fuertemente el contenido circundante, dejando dicha
componente aislada. De este modo, no se trata de un artefacto generado desde
cero por el modelo, sino de un componente del propio ruido que es interpretado
erróneamente como parte de la señal útil. Esto también explica su presencia in-
termitente a lo largo del conjunto de evaluaciones: bajo otras condiciones puede
quedar enmascarado o, directamente, no aparecer en el ruido espećıfico utilizado.

Este fenómeno ilustra nuevamente una limitación estructural de los modelos
de aprendizaje profundo aplicados a la restauración de audio: al basar sus decisio-
nes en patrones estad́ısticos aprendidos durante el entrenamiento, pueden realzar
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inadvertidamente componentes del ruido que coinciden con dichas regularidades,
generando aśı distorsiones nuevas o amplificando elementos espurios presentes en
la señal de entrada.

Los valores correspondientes a esta restauración se presentan en la Tabla 5.17,
donde se observa el desempeño del modelo frente al ejemplo analizado en com-
paración con sus promedios globales y con los promedios obtenidos dentro de la
categoŕıa Pocas Fuentes.

Tabla 5.17: Valores de ∆PEAQ y ∆PAQM obtenidos por el modelo DL MagTapeDB al restau-
rar un ejemplo con ruido de cinta a 16 dB. Se incluyen, a modo de referencia, los promedios:
global y correspondiente a la categoŕıa Pocas fuentes.

Referencia ∆PEAQ ∆PAQM

Ejemplo (16 dB) 0.311 5.525
Promedio Pocas Fuentes 0.481 3.807
Promedio Global 0.439 1.575

Vale la pena destacar que el valor de ∆PEAQ obtenido es inferior tanto al
promedio global del modelo como al promedio espećıfico de la categoŕıa Pocas
Fuentes, lo que indica que la restauración resulta perceptualmente menos efectiva
que en la mayoŕıa de los casos evaluados. No obstante, el valor de ∆PAQM supera
ampliamente ambos promedios, reflejando que, pese a la presencia de distorsión
tonal, el método logra una mejora sustancial desde la perspectiva de esta métrica.

Filtrado de bajas frecuencias
El filtrado de bajas frecuencias esta presente en varios audios de la base de

datos para el modelo DL MagTapeDB, aunque en la mayoŕıa de los casos con
menor impacto perceptual. Sin embargo, en el ejemplo que se presenta a continua-
ción, la distorsión adquiere un carácter severo y modifica de forma significativa la
estructura espectral de la señal.

La distorsión analizada consiste en una atenuación pronunciada de las bajas
frecuencias por parte del modelo, fenómeno claramente visible en la Figura 5.18.
En el espectrograma del audio limpio se aprecian ataques percutivos con alta
enerǵıa en las bandas graves; estos ataques siguen presentes tras la adición de ruido,
pero resultan notablemente reducidos luego del proceso de denoising. El residuo
—cuarto espectrograma— concentra gran parte de la enerǵıa eliminada justamente
en esas zonas de baja frecuencia, evidenciando que el modelo suprime componentes
leǵıtimos de la señal. Este efecto también se percibe, aunque de forma más sutil,
en el audio restaurado, donde la región grave aparece visiblemente empobrecida
respecto del audio original.

El fragmento considerado posee una instrumentación particularmente diversa,
con timbres poco habituales y una mezcla compleja. Podŕıa suponerse que la au-
sencia de varios de estos instrumentos en la base de entrenamiento conduciŕıa a una
eliminación más agresiva de los mismos; sin embargo, el modelo no atenúa de forma
significativa estos timbres inusuales, sino que afecta principalmente los elementos
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Figura 5.18: Espectrogramas del ejemplo analizado: audio limpio, audio contaminado con ruido
de cinta a 16 dB, audio restaurado con DL MagTapeDB y residuo, respectivamente. En este
último puede observarse la atenuación excesiva de componentes de baja frecuencia introducida
por el método.

percutivos de la mezcla, aun cuando dicho tipo de contenido está representado en
los datos de entrenamiento.

Este comportamiento sugiere que la distorsión observada no se explica úni-
camente por la falta de familiaridad con ciertos timbres, sino por la forma en
que el modelo interpreta la enerǵıa transitoria en bajas frecuencias, tendiendo a
confundirla con ruido y suprimiéndola en exceso.

En este caso, las métricas objetivas presentadas en la Tabla 5.18 evalúan la
restauración de forma marcadamente negativa. Ambas métricas muestran valores
muy inferiores a sus respectivos promedios —e incluso negativos en el caso de
∆PAQM— lo que indica que el proceso de denoising no solo no mejora la señal,
sino que la degrada perceptualmente en comparación con el audio ruidoso. Esta
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penalización severa es coherente con la distorsión analizada anteriormente, donde el
modelo atenúa de manera excesiva las componentes de baja frecuencia, eliminando
información estructural relevante del audio original.

Tabla 5.18: Valores de ∆PEAQ y ∆PAQM obtenidos por el modelo DL MagTapeDB al res-
taurar un ejemplo contaminado con ruido de cinta a 16 dB. Se incluyen, como referencia, los
promedios globales del modelo y los promedios correspondientes a la categoŕıa Muchas fuentes.

Referencia ∆PEAQ ∆PAQM

Ejemplo (16 dB) 0.376 -1.337
Promedio Muchas Fuentes 0.484 2.393
Promedio Global 0.439 1.575

Eliminación de transitorios
Esta distorsión es la más frecuente identificada en la base de datos de música

personalizada y aparece en todos los modelos evaluados. En el caso del modelo
DL MagTapeDB, su impacto es particularmente severo, generando una sensación
perceptual de audio “ahogado” debido a la supresión sistemática de transitorios.

Un ejemplo representativo se muestra en la Figura 5.19, donde se ilustran
los segundos finales de un audio de folklore uruguayo interpretado con guitarra
y voz. En el espectrograma del audio restaurado, las regiones marcadas en rojo
corresponden a transitorios que son eliminados por completo, mientras que otros
son atenuados parcialmente.

Esta pérdida se refleja en el espectrograma del residuo, donde aparecen barras
verticales de alta enerǵıa asociadas a estos eventos transitorios descartados. Dado
que estructuras de este tipo no están adecuadamente representadas en el conjunto
de entrenamiento del modelo, su supresión resulta consistente con lo observado en
otros audios con caracteŕısticas similares.

Aunque de manera menos pronunciada, los métodos de sustracción espectral
también presentan pérdidas parciales de transitorios. En la Figura 5.20 se muestra
el mismo fragmento procesado mediante SS Denoisify. A diferencia del modelo
de aprendizaje profundo, el transitorio marcado en rojo se preserva, aunque con
menor intensidad. El residuo revela ĺıneas verticales que confirman una atenuación
generalizada de estos eventos.

Además de la pérdida de transitorios, ambas figuras permiten identificar otras
distorsiones relevantes. Las regiones marcadas en violeta muestran la supresión
completa de componentes agudas que, si bien estaban fuertemente enmascaradas
por el ruido, forman parte de la señal original. Un fenómeno relacionado ocurre
en el decaimiento final del audio: al encontrarse parcialmente oculto por el rui-
do, el modelo lo interpreta como ruido residual y lo elimina, generando un final
perceptualmente más abrupto que el presente en la grabación limpia.

A pesar de la presencia de las distorsiones descritas, las métricas objetivas
confirman que, en ambos modelos, el resultado restaurado constituye una mejora
respecto al audio ruidoso, tal como se aprecia en las Tabla 5.19 y Tabla 5.20.
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Figura 5.19: Espectrogramas de un pasaje de guitarra y voz: audio limpio, audio contaminado
con ruido de cinta a 16 dB, audio restaurado con DL MagTapeDB y residuo, respectivamente.
En rojo se indican transitorios eliminados y en violeta la supresión de componentes agudas
enmascaradas por el ruido.

En el caso de DL MagTapeDB, el desempeño obtenido para este ejemplo se
sitúa por encima tanto del promedio global del modelo como del promedio corres-
pondiente a la categoŕıa Pocas fuentes. Esto indica que, si bien el audio restaurado
presenta artefactos perceptibles, no se trata de uno de los casos más severos den-
tro del conjunto evaluado; por el contrario, mantiene un rendimiento claramente
superior al promedio. Algo similar ocurre con SS Denoisify, cuyos valores tam-
bién se mantienen por encima del promedio global, aun cuando la distorsión de
transitorios sigue siendo apreciable en la señal restaurada.
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Figura 5.20: Espectrogramas del mismo fragmento procesado con SS Denoisify. En rojo se
preserva un transitorio; en violeta se observan componentes agudas suprimidas; el tercer es-
pectrograma muestra ruido musical introducido por el método.

Tabla 5.19: Tabla de ∆PEAQ y ∆PAQM para el tema Milagro (Larbanois - Carrero) elimi-
nando ruido de SNR 10dB y 16dB a travez del método DL MagTapeDB, en comparación con
valores promedio

Referencia ∆PEAQ ∆PAQM

Ejemplo (16dB) 0.608 3.242
Promedio Pocas Fuentes 0.481 3.807
Promedio Global 0.439 1.575

Ruido musical
La distorsión predominante en los modelos de sustracción espectral es el ruido

musical, presente en todos los audios de la base de datos con distintos grados de
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Tabla 5.20: Valores de ∆PEAQ y ∆PAQM obtenidos por el método SS Denoisify al restaurar
un ejemplo con ruido de cinta a 16 dB. Se incluyen, como referencia, los promedios globales
del modelo y los correspondientes a la categoŕıa Pocas fuentes.

Referencia ∆PEAQ ∆PAQM

Ejemplo (16 dB) 0.266 2.755
Promedio Pocas Fuentes 0.168 3.007
Promedio Global 0.202 1.856

intensidad.
Tal como se observa en la Figura 5.20, el ruido musical se identifica con claridad

al comparar las regiones de silencio entre los distintos espectrogramas. En el audio
limpio, estas zonas aparecen como áreas lisas y uniformes, de color azul oscuro,
reflejando la ausencia de enerǵıa. Tras la adición de ruido, dichas regiones se aclaran
y adoptan un tono celeste y verde, coherente con el incremento de enerǵıa de banda
ancha, aunque aún conservan un patrón visual relativamente homogéneo. En el
audio restaurado, si bien la enerǵıa del ruido disminuye —visible por la tonalidad
más oscura—, la textura se vuelve granular, fragmentada y no uniforme, lo que
constituye la firma t́ıpica del ruido musical.

Tabla 5.21: Valores de ∆PEAQ y ∆PAQM obtenidos por el método SS Clásico al restaurar un
ejemplo con ruido de cinta a 16 dB. Se incluyen, como referencia, los promedios globales del
modelo y los correspondientes a la categoŕıa Pocas fuentes.

Referencia ∆PEAQ ∆PAQM

Ejemplo (16 dB) 0.386 2.651
Promedio Pocas Fuentes 0.281 3.117
Promedio Global 0.392 1.963

Los valores objetivos correspondientes se presentan en la Tabla 5.20. Aunque
la restauración recibe una calificación positiva —indicando una mejora respecto al
audio contaminado—, el desempeño se sitúa por debajo de los promedios globales
y espećıficos de la categoŕıa. Esto sugiere que, en este ejemplo en particular, la
presencia de ruido musical es más intensa que en otros casos del conjunto evaluado.

Como era de esperar, el audio procesado mediante SS Clásico presenta un com-
portamiento muy similar. La tabla incluida en la Tabla 5.21 confirma esta cercańıa
en el rendimiento, lo que pone de manifiesto que ambos métodos comparten las
mismas limitaciones estructurales inherentes a la sustracción espectral.

5.4.2. Análisis sobre grabaciones de archivo musical
Con el fin de analizar el comportamiento de los algoritmos frente a material

histórico real, se presentan a continuación dos estudios de caso basados en graba-
ciones auténticas, es decir, registros cuyo ruido no ha sido agregado sintéticamente.
Al tratarse de materiales sin versión “limpia”, no es posible aplicar las métricas
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objetivas previamente utilizadas. No obstante, resulta pertinente realizar una escu-
cha cŕıtica y un análisis cualitativo de los resultados obtenidos con los tres métodos
con mejor desempeño general: los dos enfoques de sustracción espectral y el modelo
entrenado con la base MagTapeDB.

Caso 1: “Estilo”, por Amalia de la Vega
Para este análisis se seleccionó una grabación histórica de Amalia de la Vega

perteneciente al archivo de Lauro Ayestarán. Tal como documenta Ruiz [45], y
citando textualmente:

“El 19 de marzo de 1949 Amalia de la Vega grabó para Ayestarán en
una sesión hecha en la casa del musicólogo, en ese entonces ubicada
en la calle Chuy 3208, en Montevideo. Teńıa 35 años e interpretó
cinco estilos, cinco milongas, dos cifras y una vidalita. Se trata de las
únicas grabaciones conocidas en las que se acompaña a śı misma con
guitarra.” [45]

Este registro corresponde a 30 segundos de uno de los estilos1 interpretados por
la artista en dicha sesión. En la Figura 5.21 se muestra una fotograf́ıa de Amalia
de la Vega durante la década en que fue registrada por Ayestarán.

Figura 5.21: Amalia de la Vega, quien en 1949 realizó para Ayestarán una sesión de grabación
en la que se acompañó a śı misma con guitarra.

Es importante aclarar que la fuente original no es una cinta, sino un disco
instantáneo de 78 rpm, que posteriormente fue respaldado en cinta magnética.
Por lo tanto, el ruido presente en el material actual es, principalmente, la suma
de dos degradaciones distintas: el ruido de superficie caracteŕıstico de los discos
instantáneos y el propio de la cinta magnética. (Ver Anexo B.1 y Anexo B.2).

En 1992, Walter Dı́az realizó una transferencia en casetes C90 de las cintas y
posteriormente, se presume en 1993, se efectuó una nueva copia de esos casetes
hacia cinta de audio digital.

1El Estilo es un género musical folclórico rioplatense caracterizado por el canto acom-
pañado de guitarra. También se lo conoce como Triste, por su carácter melancólico, o
Décima, debido a su estructura poética de diez versos. [46].
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En consecuencia, el archivo que llega a la actualidad no solo hereda los ruidos
propios del disco instantáneo original y de la cinta analógica intermedia, sino que
también incorpora el ruido añadido en la copia a casete y los posibles artefactos
menores de la digitalización, como el ruido de cuantización.

En consecuencia, el archivo que llega a la actualidad no solo hereda los ruidos
propios del disco instantáneo original y de la cinta analógica intermedia, sino que
también incorpora el ruido añadido en la copia a casete y los posibles artefactos
menores de la digitalización, como el ruido de cuantización.

La Figura 5.22 ilustra el disco instantáneo de acetato utilizado en la sesión.

Figura 5.22: Disco de acetato de base metálica de 25 cm de diámetro utilizado por Lauro
Ayestarán para grabar a Amalia de la Vega en 1949. Archivo del CDM.

En el audio original se perciben con claridad la voz de Amalia de la Vega y el
acompañamiento de guitarra, ambos inmersos en un ruido de fondo. Aunque parte
de ese ruido proviene del hiss de la cinta, la textura granular e irregular podŕıa
estar relacionada con el disco de 78 rpm.

En el espectrograma del audio original (Fig. 5.23) se observa que el ruido
concentra buena parte de su enerǵıa en las bandas altas, por encima de aproxi-
madamente 4 kHz. Esta enerǵıa no es completamente uniforme: existen regiones
donde el ruido es más denso y otras donde disminuye notablemente. El ruido pre-
senta una textura marcadamente irregular, con aspecto estriado o rasgado. Esto
podŕıa deberse a las microimperfecciones del surco del disco original, que generan
fluctuaciones finas en las altas frecuencias.

La voz y la guitarra, aunque discernibles y con presencia t́ımbrica definida,
no están libres de distorsión, lo que produce un efecto levemente apagado o “aho-
gado”. En este caso es importante remarcar que dicha distorsión es inherente al
registro original y no un artefacto introducido por los métodos de reducción de
ruido evaluados.

Por otro lado, en la voz de Amalia se perciben pequeñas oscilaciones que
podŕıan sugerir la presencia de dropouts. Sin embargo, dado el origen en disco
instantáneo, es igualmente plausible que se trate de ligeras variaciones mecánicas
propias del soporte (pérdida momentánea de contacto, rugosidad superficial, etc.),
por lo que no es posible confirmarlo con certeza en el espectrograma.
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Si bien los dropouts pueden mitigarse parcialmente, no constituyen ruido adi-
tivo y por ende no son el objetivo de este trabajo ni de las técnicas utilizadas. Su
tratamiento requiere métodos alternativos, como técnicas de inpainting [47] que
reconstruyen la región faltante a partir del contexto.

Figura 5.23: Espectrograma del audio original de Amalia de la Vega, donde se observa la
distribución espectral del ruido y la presencia conjunta de la voz y la guitarra antes de cualquier
proceso de reducción de ruido.

En el resultado obtenido a partir de SS Clásico, tanto en la escucha como en
el espectrograma procesado se aprecia una reducción de ruido claramente percep-
tible. El método atenúa de manera efectiva el soplido de fondo, Si bien algunas de
las bandas descritas previamente permanecen presentes, el efecto de denoising es
evidente y contribuye a una mayor limpieza general del registro.

Al tener menos ruido, la guitarra se distingue con mayor claridad y su textura
es muy similar a la del material original, pese a la degradación propia ya men-
cionada. En la Fig. 5.24 puede apreciarse que el método atenúa principalmente
las componentes de ruido en las bandas altas, particularmente por encima de los
4 kHz.

No obstante, al analizar el espectrograma del residuo y escuchar el audio co-
rrespondiente, se advierte que también se elimina una cantidad muy pequeña de
contenido de baja frecuencia asociado a la guitarra, aunque se requiere una escucha
cuidadosa para percibirlo.

Por otra parte, la voz aparece de forma marcada en el residuo, lo que indica
que parte de su enerǵıa se solapa espectralmente con el ruido y es parcialmente
retirada junto con él.

En el caso de SS Denoisify se optó por hacer una reducción de ruido más agre-
siva que la utilizada en la versión clásica, ajustando algunos de los hiperparámetros
por defecto del método Denoisify a fin de obtener una mayor atenuación del ruido.
El resultado es coherente con lo esperado: se percibe una reducción de ruido más
profunda, pero acompañada de la aparición de ruido musical.

En el espectrograma correspondiente (Fig. 5.25) este fenómeno se ve como
pequeños puntos o trazas aisladas de enerǵıa, especialmente en las bandas altas
donde originalmente predominaba el ruido.

El residuo de este método muestra, efectivamente, una mayor cantidad de
contenido removido en comparación con la versión clásica, incluyendo tanto más
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Figura 5.24: Espectrogramas del método SS Clásico aplicado al audio de Amalia de la Vega.
Arriba: señal procesada, donde se observa la atenuación del ruido de alta frecuencia y la mejora
general de la claridad. Abajo: espectrograma del residuo, que muestra las componentes ruidosas
eliminadas y la pequeña porción de señal útil retirada.

ruido como una pequeña fracción adicional de señal útil, lo cual coincide con la
impresión auditiva.

Como es habitual en este tipo de técnicas, se observa nuevamente el compromi-
so entre una mayor reducción de ruido y el incremento de artefactos perceptuales.
En este caso particular, el método puede permitirse ser más agresivo debido a que
el registro original ya presenta una degradación inherente en la voz y la guitarra;
es decir, la riqueza t́ımbrica del material no es especialmente alta. No obstante, el
grado de agresividad adecuado continúa siendo una decisión subjetiva y depende
del criterio y las prioridades de cada oyente.

En términos globales, los resultados obtenidos con este método son similares
a los de la sustracción espectral clásica, salvo por las diferencias ya mencionadas.
No obstante, una ventaja importante de esta variante radica en la flexibilidad que
ofrece a través de los hiperparámetros descritos anteriormente en la Sección 2.6.
Dependiendo del aspecto del audio que se desee priorizar, es posible ajustar el
comportamiento del algoritmo para obtener un resultado más centrado en las com-
ponentes tonales de la voz o, alternativamente, para preservar en mayor medida
los transitorios y el carácter ŕıtmico de la guitarra.

El método basado en aprendizaje profundo (DL MagTapeDB) presenta un
comportamiento claramente diferenciado respecto a las variantes de sustracción
espectral. En primer lugar, se observa una atenuación mucho más agresiva en las
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Figura 5.25: Espectrogramas del método SS Denoisify. Arriba: señal procesada, donde se
aprecia una reducción de ruido más agresiva acompañada de ruido musical. Abajo: residuo
correspondiente, evidenciando la mayor cantidad de ruido removido y pequeñas porciones adi-
cionales de señal útil.

bandas altas: en la Fig. 5.26 puede verse que, a partir de aproximadamente 14 kHz,
el contenido es prácticamente eliminado.

A diferencia de lo observado en los métodos anteriores, el residuo apenas con-
tiene componentes de la voz; esta se conserva casi completamente en la señal
procesada y solo puede detectarse mı́nimamente alrededor del segundo 15. Es-
te comportamiento sugiere que el modelo tiende a preservar con mayor fidelidad
las fuentes tonales y armónicas, especialmente la voz, incluso bajo una reducción
fuerte del ruido.

En cuanto al carácter del ruido restante, el método elimina casi por completo
la granularidad descrita anteriormente y produce un soplido más uniforme, percep-
tualmente más cercano a un ruido blanco suave. Esta “desgranularización” aporta
un fondo más limpio, pero también introduce una cualidad algo más artificial. En
términos subjetivos, esto puede percibirse como una ventaja o una desventaja: pa-
ra algunos oyentes el resultado puede sonar más pulido, mientras que para otros la
ausencia de granularidad hace que el soplido remanente se perciba más expuesto,
al no estar enmascarado por la textura original.

Es importante subrayar que dicha granularidad no corresponde a artefactos
de tipo ruido musical, sino que forma parte de la textura original del audio. Al
suprimirla, el método no introduce ruido musical nuevo, como si puede ocurrir con
los métodos de sustracción espectral.
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Figura 5.26: Espectrogramas del modelo DL MagTapeDB. Arriba: señal procesada, donde se
observa la supresión casi total del ruido en las bandas altas. Abajo: residuo generado por el
modelo, que muestra la eliminación del ruido granular original y la ausencia de enerǵıa vocal
significativa.

En términos generales, el modelo realiza un denoising eficaz y preserva adecua-
damente la voz, pero introduce esta nueva forma de artificialidad que lo distingue
de los métodos basados en sustracción espectral. Se trata, nuevamente, de un com-
promiso perceptual cuya valoración depende del oyente.

Caso 2: “Salite de la esquina” por Rosa Blanca Rodŕıguez
En 1952, Ayestarán adquiere un grabador de cinta magnética y, a partir de

ese momento, sus registros de campo comienzan a realizarse en dicho formato. El
fragmento seleccionado forma parte de una serie de canciones infantiles interpre-
tadas por Rosa Blanca Rodŕıguez, registradas por Ayestarán el 19 de febrero de
1955. Ese d́ıa la intérprete grabó al menos seis piezas, entre ellas “Mambrú se fue
a la guerra”, “La torre en guardia”, “Se va, se va la lancha”, “En Galicia hay una
niña”, “En el portal de Belén” y la canción aqúı analizada, “Salite de la esquina”.
No se dispone de información biográfica adicional sobre la cantante fuera de los
propios metadatos del archivo.

A diferencia del caso anterior, cuyo origen se remontaba a una grabación en
disco instantáneo posteriormente copiada en múltiples soportes, este ejemplo pro-
viene del proyecto MagTapeDB [34], descrito en la Sección 4.1.5, una base de datos
que reúne digitalizaciones directas de las cintas originales del archivo musicológico
de Lauro Ayestarán, evitando aśı las degradaciones acumuladas observadas en el
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caso de estudio anterior.
De esta forma, el ruido presente en este fragmento corresponde a las degra-

daciones propias de la cinta magnética que se describen en el Anexo B.2. En el
espectrograma del audio original, Figura 5.27, se observa, en comparación con el
caso anterior, un registro claramente más limpio, lo cual es coherente con el origen
de los materiales. El contraste visual es ńıtido: el fondo aparece mayormente en
tonos violetas de baja intensidad, mientras que la voz de la intérprete se distingue
con claridad en colores verdes y amarillos.

Figura 5.27: Espectrograma del audio original de Rosa Blanca Rodŕıguez. Se observa un fondo
de baja enerǵıa, aśı como la presencia definida de la voz en las bandas medias. En las frecuencias
más bajas aparece una ĺınea horizontal persistente, correspondiente a un ruido grave, y en los
pasajes de mayor intensidad vocal puede advertirse un leve incremento de enerǵıa de banda
ancha que rodea los picos de la señal.

A muy bajas frecuencias se aprecia una ĺınea horizontal, correspondiente a
un ruido grave, perceptible también en la escucha. Esto podŕıa corresponderse
con ruido llamado hum descrito en el Anexo B.2, caracterizado por un zumbido
estable de baja frecuencia t́ıpico de interferencias eléctricas en equipos analógicos.
Además, en los pasajes de mayor intensidad vocal se percibe un leve ruido de
banda ancha, similar a un ruido blanco, que envuelve los picos de enerǵıa de la
señal. Este ruido es sutil y requiere cierta atención para advertirse.

En la Figura 5.28 se observa el resultado obtenido mediante SS Clásico. Por
un lado, el espectrograma superior corresponde a la señal procesada, donde la
atenuación del ruido es evidente: la ĺınea horizontal de baja frecuencia desaparece
casi por completo y el fondo adquiere una textura significativamente más limpia.

Por otro lado, el espectrograma inferior muestra el residuo, en el que se distin-
gue con claridad la franja horizontal previamente identificada, aśı como la enerǵıa
sustráıda en bandas más altas, particularmente por debajo de 4 kHz. También
aparece una pequeña cantidad de enerǵıa asociada a la voz. La escucha confirma
estas observaciones: el ruido grave deja de percibirse y la voz pierde la envolvente
ruidosa que la acompañaba en el registro original, resultando más clara y definida.

En la escucha aparece también una leve presencia de ruido musical, pero en
este caso localizada en las frecuencias bajas. Esto ocurre porque el método realizó
la mayor parte de la sustracción por debajo de 4 kHz, que es donde se concentraba
el ruido original. A diferencia de lo observado en casos anteriores, donde este
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Figura 5.28: Espectrogramas del resultado obtenido mediante SS Clásico aplicado al audio de
Rosa Blanca Rodŕıguez. Arriba: señal procesada, donde se observa la reducción del ruido grave
y del leve ruido de banda ancha que acompañaba los pasajes más intensos de la voz. Abajo:
espectrograma del residuo, que muestra las componentes ruidosas eliminadas y una porción de
señal útil retirada.

artefacto surǵıa en las bandas altas, aqúı los puntos aislados aparecen en la zona
donde efectivamente se aplicó la atenuación.

En este caso particular, el nivel de ruido presente en la señal original es relati-
vamente bajo, lo que hace que el método clásico ya capture con suficiente precisión
las regiones ruidosas. Al tratarse además de un fragmento compuesto únicamente
por voz, el comportamiento de SS Denoisify no difiere de manera significativa del
de SS Clásico, incluso al modificar sus hiperparámetros. El resultado obtenido es,
en la práctica, muy similar en términos tanto espectrales como perceptuales, por
lo que un análisis detallado de esta variante no aportaŕıa elementos nuevos en este
contexto.

En el caso del modelo DL MagTapeDB, se puede observar en la Figura 5.29 que
la señal procesada presenta un espectrograma visualmente distinto al observado
en los métodos de sustracción espectral: Se ve un fondo de tonalidad diferente
(más cercano al azul que al violeta del espectrograma original), aun cuando no se
introduce ruido adicional. Más allá de esa variación de color, el resultado auditivo
es notablemente limpio.

Ademas, el modelo opera internamente a 44,1 kHz, por lo que el audio original
—registrado a 48 kHz— es remuestreado durante el proceso de inferencia. Este
remuestreo no introduce artefactos audibles.
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Figura 5.29: Espectrogramas del resultado obtenido mediante DL MagTapeDB aplicado al
audio de Rosa Blanca Rodŕıguez. Arriba: señal procesada, donde el fondo se ve ligeramente
más azulado, junto con la eliminación del ruido grave presente en la señal original. Abajo:
espectrograma del residuo, en el que se distingue claramente la franja de bajas frecuencias y
se observan pequeñas componentes por debajo de 4 kHz, junto con una traza muy tenue de
la voz.

El modelo elimina con eficacia el ruido grave identificado anteriormente, algo
que se aprecia tanto en el espectrograma de salida como en el residuo, donde esa
franja de bajas frecuencias aparece completamente aislada. A diferencia de los
métodos de sustracción espectral, no se observan artefactos perceptibles: el audio
no presenta ruido musical ni irregularidades en las bandas altas. La voz se escucha
con claridad y sin la envolvente ruidosa presente en la señal de entrada. En el
residuo puede percibirse una traza muy tenue de la voz, aunque considerablemente
más atenuada que en el residuo de la sustracción espectral, lo cual indica que
el modelo es mejor preservando la señal útil. Desde una perspectiva subjetiva,
el resultado constituye una mejora perceptual más marcada que en los métodos
basados en sustracción espectral.
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Caṕıtulo 6

Conclusiones

En este caṕıtulo se presentan las conclusiones generales del trabajo, integrando
los principales resultados obtenidos y reflexionando sobre su alcance. Para situar
adecuadamente estas conclusiones, es pertinente recordar el objetivo central que
motivó la investigación: desarrollar, implementar y comparar dos enfoques comple-
mentarios para la reducción de ruido en la restauración de grabaciones musicales,
combinando técnicas clásicas de procesamiento de señales con modelos basados en
aprendizaje profundo.

La motivación que dio origen a este estudio se fundamenta en la necesidad
de disponer de herramientas abiertas, comprensibles y reproducibles que permitan
mitigar el ruido presente en registros históricos —en particular, en grabaciones en
cinta magnética— sin comprometer la información sonora relevante. Este propósi-
to se encuentra directamente vinculado con la preservación del acervo patrimonial
asociado a los registros del musicólogo uruguayo Lauro Ayestarán, cuyo valor cul-
tural y documental resalta la importancia de desarrollar metodoloǵıas confiables
de restauración sonora.

El caṕıtulo se organiza de la siguiente manera: primero, se presentan conjun-
tamente los principales resultados obtenidos y las limitaciones identificadas tanto
para las técnicas de sustracción espectral como para los enfoques basados en apren-
dizaje profundo. A continuación, se discuten las implicaciones prácticas derivadas
de estos hallazgos. Finalmente, se exponen diversas ĺıneas de trabajo futuro que
emergen del análisis realizado y que buscan consolidar y ampliar las contribuciones
desarrolladas en este estudio.

6.1. Resultados y limitaciones halladas
A partir del análisis conjunto de las métricas objetivas, los tiempos de pro-

cesamiento y la escucha cŕıtica realizada, fue posible extraer varias conclusiones
generales sobre el comportamiento de los métodos implementados y estudiados.

En primer lugar, los resultados obtenidos muestran que las técnicas clásicas
de procesamiento de señales continúan siendo altamente competitivas para la re-
ducción de ruido en grabaciones musicales. En particular, alcanzan los valores
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promedio más elevados en el desempeño general según ∆PAQM (1,963 y 1,856),
y aunque presentan valores menores en ∆PEAQ (0,392 y 0,202), exponen de las
desviaciones estándar más reducidas (0,439 y 0,489). Tanto SS Clásico como la im-
plementación SS Denoisify logran un equilibrio robusto entre mejora perceptual,
estabilidad y costo computacional, manteniendo un desempeño consistente frente
a variaciones en la relación señal–ruido y en el tipo de contenido evaluado.

Por otro lado, en los modelos de aprendizaje profundo, cuando el tipo de ruido
y el contenido musical de la señal coinciden con los utilizados durante el entrena-
miento —como ocurre en el modelo entrenado con MagTapeDB— el rendimiento
perceptual resulta competitivo e incluso superior en ciertos conjuntos. Por ejemplo,
en la categoŕıa Muchas Fuentes, el modelo DL MagTapeDB alcanza el mejor valor
de ∆PAQM (2,393) y, como se mencionó anteriormente, dicho conjunto presenta
caracteŕısticas que se asemejan considerablemente al contenido de la base de datos
utilizada para entrenar, MusicNet.

No obstante, cuando el modelo se enfrenta a ruidos o contenidos musicales
cuyas caracteŕısticas difieren de aquellas presentes durante su entrenamiento, su
desempeño se deteriora de manera notable, evidenciando una capacidad de gene-
ralización limitada frente a condiciones acústicas no contempladas. En la práctica,
esto implica la necesidad de recopilar y curar bases de datos especializadas, además
de contar con tiempos de entrenamiento prolongados y hardware dedicado —gene-
ralmente mediante GPU—. Estas exigencias contrastan con la simplicidad y bajo
costo computacional de la sustracción espectral.

Además, los tiempos de procesamiento obtenidos evidencian diferencias sig-
nificativas entre ambas familias de métodos. Mientras que las técnicas clásicas
alcanzan tiempos de ejecución reducidos en CPU (0,592 s y 14,774 s), los modelos
de aprendizaje profundo requieren intervalos de inferencia considerablemente ma-
yores (aproximadamente 38 s). Esta disparidad condiciona su implementación en
sistemas donde el procesamiento en tiempo real constituye un requisito cŕıtico. Sin
embargo, los tiempos de inferencia pueden reducirse de forma sustancial cuando
se dispone de aceleración mediante GPU.

Por otra parte, la escucha cŕıtica reveló que, si bien tanto la sustracción es-
pectral como el modelo de aprendizaje profundo logran una reducción de ruido
perceptible y, en general, satisfactoria, cada técnica introduce patrones de distor-
sión caracteŕısticos. La ausencia de una solución universalmente óptima implica
que la elección del método debe adecuarse a las particularidades del material y a
criterios subjetivos acerca de qué aspectos de la señal se desea priorizar. Vale la
pena aclarar que las distorsiones observadas no invalidan la utilidad de estas técni-
cas, sino que establecen los ĺımites operativos dentro de los cuales cada enfoque
resulta más adecuado.

En los modelos de aprendizaje profundo, las distorsiones percibidas resultaron
en muchos casos impredecibles, manifestándose como artefactos tonales agudos,
atenuación excesiva de componentes graves, eliminación de transitorios o pérdida
de detalles en las altas frecuencias. Este comportamiento, altamente dependiente
del tipo de señal procesada, carece de un patrón claro y estable, lo que dificulta
anticipar el impacto perceptual de la restauración en distintos escenarios.
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Por el contrario, las distorsiones asociadas a la sustracción espectral —prin-
cipalmente el ruido musical—, si bien no son despreciables y pueden afectar la
calidad del audio restaurado, presentan un comportamiento mucho más predeci-
ble. Su aparición y gravedad pueden anticiparse a partir de las caracteŕısticas de
la señal de entrada.

Es importante destacar que la severidad de estas distorsiones puede mitigarse
mediante la selección adecuada de los parámetros de la implementación, especial-
mente en el caso de SS Denoisify. Esta capacidad de control ofrece una flexibilidad
que contrasta con la rigidez de los modelos de aprendizaje profundo, los cuales,
una vez entrenados, no permiten modificar el comportamiento de la restauración
en caso de que el resultado presente artefactos indeseados. En consecuencia, la
sustracción espectral no solo ofrece un comportamiento más estable, sino también
un margen de ajuste que facilita su adaptación a distintos tipos de contenido.

En resumen, los resultados obtenidos reflejan un compromiso claro entre flexi-
bilidad, estabilidad y desempeño. Cuando se requiere un método adaptable, con
parámetros ajustables y bajo costo computacional, la sustracción espectral es una
opción adecuada, ofreciendo un comportamiento estable y consistente. En contex-
tos donde se dispone de bases de datos suficientemente representativas y del hard-
ware necesario para el entrenamiento —preferentemente con aceleración mediante
GPU—, los modelos de aprendizaje profundo presentan un potencial considera-
ble. No obstante, la obtención de estos datos supone un desaf́ıo significativo, y el
desempeño resultante tiende a mostrar una mayor variabilidad e imprevisibilidad.
Aun aśı, con un entrenamiento adecuado, estos modelos pueden alcanzar niveles
de restauración superiores, lo que los posiciona como una alternativa prometedora
siempre que se satisfagan sus requisitos fundamentales.

6.2. Implicaciones prácticas
El desarrollo realizado en este trabajo no se limita al análisis comparativo entre

métodos, sino que también ofrece recursos prácticos orientados a facilitar la com-
prensión, la experimentación y la reutilización de las herramientas implementadas.
En primer lugar, se creó el repositorio SS Denoisify, disponible públicamente en
GitHub [48]. Alĺı se incluye la implementación completa del algoritmo de sustrac-
ción espectral desarrollada a lo largo del trabajo, organizada en distintos módulos
y scripts de Python. Además, el repositorio incorpora un Jupyter Notebook di-
señado con fines didácticos, en el cual se ilustra paso a paso el funcionamiento del
método y se muestra el proceso de restauración de una señal ruidosa de ejemplo.

Además, con el objetivo de acompañar el informe y facilitar la exploración de
los resultados obtenidos, se desarrolló una página web interactiva [44] donde es
posible visualizar las señales originales utilizadas en el análisis, junto con sus co-
rrespondientes versiones restauradas mediante cada uno de los métodos evaluados.
El sitio incluye también espectrogramas comparativos y ejemplos auditivos que
permiten apreciar de forma directa las diferencias entre las técnicas.

Por último, este trabajo destaca la vigencia y el valor del procesamiento tradi-
cional de señales en un contexto dominado por el aprendizaje automático. Si bien
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las técnicas basadas en aprendizaje profundo constituyen hoy en d́ıa el principal
foco de investigación y aplicación en tareas de restauración de audio, los resultados
obtenidos muestran que los métodos clásicos siguen siendo herramientas relevantes.
Su eficiencia, estabilidad y ausencia de requisitos de entrenamiento los convierten
en alternativas especialmente valiosas en escenarios donde la obtención de datos
adecuados es dif́ıcil o directamente inviable. En este sentido, este proyecto contri-
buye a reivindicar el rol del procesamiento tradicional como un enfoque plenamente
vigente, capaz de ofrecer soluciones sólidas en aplicaciones donde los modelos de
aprendizaje profundo no resultan prácticos.

6.3. Ĺıneas futuras de trabajo
A partir de los resultados obtenidos, las limitaciones identificadas y las impli-

caciones prácticas del estudio, esta sección presenta diversas propuestas de ĺıneas
de investigación futura orientadas a profundizar, complementar y mejorar los de-
sarrollos realizados en el presente trabajo.

6.3.1. Detección de inactividad de la señal
En primer lugar, tal como exhiben los resultados obtenidos en la búsqueda de

hiperparámetros del algoritmo de detección de inactividad, un valor de precision de
62,03% indica que una proporción considerable de frames con actividad relevante
de la señal fue clasificada erróneamente como inactiva. Como se pudo observar,
estas detecciones incorrectas afectan negativamente el cálculo del perfil de ruido
empleado en los procesos de sustracción espectral. Si bien el análisis permitió
identificar que este fenómeno puede deberse, en parte, al enmascaramiento de la
señal por el ruido, es fundamental mejorar la precision.

En este sentido, una ĺınea de trabajo a futuro consiste en explorar estrategias
alternativas para la detección de inactividad que no se limiten exclusivamente al
dominio musical o del audio, con el fin de identificar e implementar un algoritmo
potencialmente más robusto que el presentado en la Sección 2.4.

Por otra parte, dado el creciente desarrollo de los modelos de aprendizaje pro-
fundo, también podŕıa considerarse el diseño o adopción de una arquitectura neu-
ronal capaz de identificar automáticamente los segmentos inactivos de una señal.
Sin embargo, este enfoque requeriŕıa un proceso exhaustivo de etiquetado de datos
para definir con precisión los intervalos de silencio y diseñar una función de pérdida
adecuada, lo que representa un desaf́ıo considerable debido a la gran cantidad de
ejemplos necesarios para lograr un entrenamiento y un aprendizaje efectivo.

6.3.2. Combinación de ambas técnicas
Como se ha señalado a lo largo del análisis, ambas familias de métodos pre-

sentan limitaciones propias. La sustracción espectral, si bien efectiva y flexible,
tiende a generar ruido musical con caracteŕısticas bien definidas —descritas en
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la Subsección 2.5.1—, mientras que los modelos de aprendizaje profundo depen-
den fuertemente de la disponibilidad de bases de datos que representen fielmente
el dominio de las señales que se desean restaurar, lo cual constituye un desaf́ıo
complejo.

En este escenario, una ĺınea de trabajo futura especialmente prometedora con-
siste en explorar enfoques h́ıbridos que integren ambas metodoloǵıas. Una posibi-
lidad es aplicar primero una sustracción espectral para reducir el ruido de fondo
—aceptando la aparición de ruido musical— y, en una segunda etapa, utilizar un
modelo de aprendizaje profundo espećıficamente entrenado para suprimir este ar-
tefacto. Para ello podŕıa emplearse una base de datos generada artificialmente,
donde las señales limpias sean degradadas únicamente mediante la introducción
controlada de ruido musical.

Bajo la hipótesis de que el ruido musical surge principalmente del propio meca-
nismo de sustracción espectral y no del tipo de ruido original (cinta, gramófono u
otras fuentes), este enfoque permitiŕıa entrenar un único modelo capaz de eliminar
sistemáticamente dicho artefacto en una amplia variedad de situaciones. De este
modo, el sistema resultante combinaŕıa la capacidad generalizada de reducción de
ruido de la sustracción espectral con la potencia de los modelos neuronales para
refinar el resultado final, sin requerir grandes bases de datos espećıficas para cada
escenario de degradación real.

6.3.3. Desarrollo de bases de datos para el entrenamiento
En continuidad con la propuesta anterior, futuras ĺıneas de trabajo debeŕıan

orientarse a la construcción o ampliación de bases de datos de ruido que abarquen
distintos soportes y contextos históricos, incluyendo no solo la captura del ruido
residual propio de cada medio, sino también su variabilidad asociada al envejeci-
miento, las condiciones ambientales y los procesos de digitalización.

Una estrategia complementaria podŕıa consistir en ampliar las bases existentes
mediante técnicas de data augmentation, generando ejemplos sintéticos que emulen
degradaciones t́ıpicas del audio analógico. La aplicación controlada de estas trans-
formaciones permitiŕıa diversificar los escenarios de entrenamiento y aumentar la
capacidad de generalización de los modelos.

6.3.4. Dinámica del aprendizaje del modelo
Del análisis de las curvas de aprendizaje surge un aspecto importante: el des-

empeño de un modelo de aprendizaje profundo no puede evaluarse únicamente
mediante métricas como el MAE. Si bien esta medida cuantifica la discrepancia
promedio entre el espectrograma estimado y su referencia limpia, no refleja ne-
cesariamente la presencia de artefactos perceptuales ni la calidad subjetiva del
audio resultante. En consecuencia, un MAE reducido no implica, por śı mismo,
una restauración auditivamente satisfactoria.

Tal como se expuso en caṕıtulos previos, este trabajo incorporó métricas per-
ceptuales como PEAQ y PAQM para complementar esas limitaciones. No obstan-
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te, dichas métricas pueden ofrecer valoraciones diferentes sobre qué constituye una
mejora perceptual. Tal como se observó en el análisis objetivo, cada una se basa en
criterios distintos y, en consecuencia, no necesariamente evalúan la calidad sonora
de la misma manera.

En este contexto, una ĺınea futura de investigación consiste en desarrollar es-
quemas de entrenamiento donde la función de pérdida integre directamente cri-
terios perceptuales más estrechamente vinculados con la escucha humana. Esto
permitiŕıa orientar el proceso de aprendizaje hacia mejoras cuantitativas que se
correlacionen de manera más consistente con la experiencia auditiva real. Sin em-
bargo, es importante señalar que la restauración de audio continúa siendo una
tarea intŕınsecamente subjetiva: distintos oyentes —aśı como distintas métricas—
pueden priorizar atributos diferentes del sonido. En consecuencia, la determina-
ción de un “mejor” resultado constituye un desaf́ıo complejo y, en muchos casos,
dependiente del criterio adoptado.
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Apéndice A

Análisis de las métricas para la
detección de inactividad

Si bien existe una amplia bibliograf́ıa sobre detección automática de inacti-
vidad, la mayor parte de los desarrollos se enfocan en señales de voz, donde la
detección de actividad vocal es una herramienta esencial en aplicaciones de teleco-
municaciones, codificación de voz y asistentes virtuales [49–56]. No obstante, estos
métodos están diseñados para las caracteŕısticas propias del habla y no se adap-
tan directamente a señales musicales, lo que motiva la necesidad de una solución
espećıfica para el contexto abordado en este trabajo.

A continuación, se analizan y evalúan algunas de las métricas y caracteŕısticas
empleadas en dichos trabajos, con el fin de identificar cuáles de ellas pueden ser
adaptadas e integradas en el módulo de detección de inactividad desarrollado para
este proyecto.

A.1. Técnicas implementadas para VAD
Los algoritmos de detección de actividad de voz han evolucionado notablemen-

te desde sus primeras propuestas. Inicialmente se emplearon enfoques heuŕısticos
basados en caracteŕısticas simples de la señal, lo que permitió implementacio-
nes eficientes en tiempo real. Entre los trabajos pioneros destaca Atal y Rabiner
(1976) [52], quienes propusieron un método de clasificación de segmentos de voz
mediante parámetros acústicos como la enerǵıa, los cruces por cero o coeficientes
LPC, logrando una segmentación eficaz incluso en intervalos cortos. Posteriormen-
te, Tucker (1992) [53] introdujo un algoritmo basado en la estimación de periodici-
dad, robusto en condiciones de bajo SNR. Otros enfoques relevantes incorporaron
análisis cepstral para discriminación entre habla y ruido [54], aśı como medidas de
entroṕıa espectral para robustez en entornos ruidosos [55,56].

Además, se desarrollaron técnicas basadas en enerǵıa y umbrales dinámicos
[57–59], que ajustan la detección en función de las variaciones del entorno acústi-
co. Estas estrategias, aunque simples, continúan siendo útiles por su bajo costo
computacional.
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A.2. Análisis
Si bien la detección de actividad en señales de voz humana es un campo am-

pliamente estudiado, las caracteŕısticas propias de este tipo de señales no siempre
se trasladan directamente a otros dominios, como el musical. Las grabaciones de
voz presentan rasgos distintivos, entre los que se destacan: la presencia habitual
de silencios prolongados, una concentración energética predominante en las bajas
frecuencias, una densidad espectral menos distribuida, variaciones de volumen ge-
neralmente suaves y graduales, y la emisión desde una única fuente sonora o, en
su defecto, desde un número muy limitado de fuentes simultáneas.

Las señales musicales no necesariamente comparten estas particularidades. Por
ejemplo, en una orquesta se encuentran una gran variedad de instrumentos con
diferentes timbres y rangos sonoros, lo que hace que este tipo de señales sea con-
siderablemente más complejo.

Por otro lado, existen diferencias fundamentales en cuanto al propósito del
algoritmo de detección según el contexto de aplicación. Por ejemplo, en las te-
lecomunicaciones, el propósito principal es identificar los frames que contienen
actividad vocal con el fin de evitar la transmisión innecesaria de datos durante
los peŕıodos de silencio o ruido de fondo. Esto permite reducir significativamente
la cantidad de información enviada, optimizando el uso del ancho de banda sin
comprometer la inteligibilidad del mensaje. En ese escenario, la pérdida ocasional
de algunos frames de audio no suele ser cŕıtica, siempre que no sea perceptible
para el oyente.

En cambio, en el enfoque adoptado en este trabajo, el interés no radica en
preservar la señal útil, sino en obtener muestras representativas del ruido de fondo.
Por ello, no es prioritario detectar todos los frames de silencio, sino garantizar que
los frames seleccionados correspondan efectivamente a segmentos sin actividad
útil.

Otra diferencia importante radica en la hipótesis sobre la estacionariedad del
ruido. En los algoritmos descritos en [57–59], los umbrales utilizados para la detec-
ción de segmentos activos o pasivos se actualizan dinámicamente, bajo la suposición
de que el ruido es aditivo y localmente estacionario. Es decir, se asume que du-
rante los breves peŕıodos en los que una persona está hablando, las caracteŕısticas
estad́ısticas del ruido de fondo permanecen aproximadamente constantes.

Sin embargo, esta suposición no se traslada fácilmente al contexto de las graba-
ciones musicológicas. A diferencia del habla, que está naturalmente segmentada por
pausas y silencios, la música suele presentar fragmentos extensos sin interrupciones
marcadas, lo que dificulta identificar regiones sin actividad útil. En consecuencia,
la hipótesis de ruido localmente estacionario resulta menos adecuada, y debe ser
reemplazada por una condición más estricta: que el ruido sea aproximadamente
estacionario a lo largo de toda la señal. Esta restricción es considerablemente más
exigente y plantea nuevos desaf́ıos para la detección y estimación del perfil de
ruido.

A partir de las observaciones realizadas, se decidió analizar las métricas utili-
zadas en los algoritmos previamente mencionados para la detección de inactividad,
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con el objetivo de adaptarlas a las caracteŕısticas espećıficas del presente caso. Las
métricas evaluadas fueron las siguientes:

Enerǵıa en tiempo corto.

Periodicidad.

Métricas basadas en la Autocorrelación entre Muestras.

Métricas basadas en la Entropia espectral.

Métricas basadas en Cepstrum.

Tasa de cruces por cero en tiempo corto.

A.2.1. Enerǵıa en tiempo corto
En el contexto de señales musicales contaminadas con ruido, esta métrica re-

sulta especialmente útil para detectar peŕıodos de inactividad siempre que la SNR
sea razonable. Bajo estas condiciones, la señal musical suele dominar sobre el ruido
durante los tramos activos, generando una enerǵıa significativamente mayor que
en los momentos de silencio. De este modo, los intervalos donde solo persiste el
ruido tienden a presentar niveles de enerǵıa más bajos y estables, lo que permite
separarlos mediante umbrales adecuados.

La enerǵıa en tiempo corto tiene la ventaja de ser una métrica sencilla de
calcular y relativamente robusta frente a variaciones armónicas o instrumentales
propias de la música, siempre que el ruido no sea excesivamente intrusivo. Por estas
razones, ha sido empleada de forma recurrente en distintos trabajos de detección
de actividad [52,57–59].

A.2.2. Periodicidad
La aplicabilidad de los estimadores de periodicidad, como el basado en mı́nimos

cuadrados propuesto en [53], resulta limitada en el contexto de grabaciones musica-
les polifónicas. Cuando múltiples instrumentos suenan simultáneamente, cada uno
con sus propias caracteŕısticas espectrales y temporales, la señal resultante carece
de una única periodicidad, convirtiéndose en una superposición densa de distintas
componentes. Esto dificulta la identificación de un patrón periódico principal y
puede provocar estimaciones inestables o erróneas.

También, en grabaciones que contienen instrumentos de percusión, los cuales
pueden implicar la presencia de transitorios abruptos y variaciones rápidas, la
capacidad del modelo para representar adecuadamente la estructura periódica de
la señal se ve aún más comprometida. Por estas razones, el uso de la periodicidad
como criterio para la detección de inactividad en grabaciones musicológicas resulta
poco confiable.
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A.2.3. Métricas basadas en la autocorrelación entre muestras
Las métricas basadas en la autocorrelación entre muestras de la señal, tales

como Maximum Autocorrelation Peak, Autocorrelation Peak Count o Windowed
Autocorrelation Lag Energy, abordadas en [52,60–62], pueden resultar útiles en el
análisis de señales de voz, aśı como en grabaciones musicales con pocas fuentes
sonoras.

Sin embargo, al igual que ocurre con las métricas basadas en la periodicidad,
su desempeño se ve limitado en grabaciones con múltiples instrumentos sonando
simultáneamente, ya que las señales generadas por distintas fuentes no necesa-
riamente presentan una correlación temporal entre śı. Las grabaciones musicales
suelen ser altamente dinámicas y estructuralmente variadas, lo que complica aún
más la detección de correlaciones consistentes entre muestras, reduciendo la con-
fiabilidad de estas métricas para identificar segmentos con actividad o con solo
ruido de fondo en el contexto del presente trabajo.

A.2.4. Métricas basadas en la entroṕıa espectral
La entroṕıa espectral se basa en interpretar la distribución de enerǵıa en fre-

cuencia de una señal como una distribución de probabilidad, sobre la cual se calcula
la entroṕıa de C. E. Shannon [63]. De este modo, esta métrica describe cuán dis-
persa o concentrada está la enerǵıa en el dominio espectral. Una alta entroṕıa
espectral indica que la enerǵıa está distribuida de manera relativamente uniforme
a lo largo de las frecuencias, lo que sugiere una señal con amplio contenido fre-
cuencial y sin componentes dominantes. En cambio, una baja entroṕıa espectral
refleja que la enerǵıa se encuentra concentrada en unas pocas frecuencias, lo que
es caracteŕıstico de señales tonales o estructuradas.

Esta métrica puede resultar útil en escenarios donde el ruido de fondo es apro-
ximadamente blanco, ya que en tales casos la enerǵıa del ruido está distribuida de
manera uniforme en el espectro, generando una entroṕıa espectral alta y fácilmente
distinguible de señales estructuradas.

Sin embargo, en el presente trabajo, el ruido no es necesariamente blanco ni
gaussiano, y puede presentar una distribución espectral con picos de enerǵıa en
ciertas bandas. Como consecuencia, la entroṕıa espectral del ruido puede no diferir
sustancialmente de la de la señal de interés, lo que reduce la capacidad discrimi-
natoria de esta métrica para detectar actividad frente a ruido de fondo.

En la Figura A.1 se presentan los espectrogramas de tres señales de ruido de
cinta, extráıdas del trabajo [4]. Dicho estudio considera el ruido generado por dis-
tintos dispositivos de grabación, entre los que se incluyen el Revox A77, el Uher
4000 Report L y el Technics TR-575, cuyas caracteŕısticas espectrales pueden ob-
servarse en la figura mencionada. Como se aprecia, los espectros no son uniformes
ni planos, lo que los distingue de un ruido blanco o gaussiano. En consecuencia,
métricas como la entroṕıa espectral no resultan completamente efectivas para de-
tectar actividad en señales contaminadas con estos tipos de ruido.
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Figura A.1: Espectrogramas de señales de ruido de cinta normalizadas, obtenidas a partir
de tres grabadores analógicos (Revox A77, Uher 4000 Report L y Technics TR-575) [4]. Se
observa que las caracteŕısticas espectrales difieren de las de un ruido blanco o gaussiano ideal,
presentando distribuciones no uniformes. Esta particularidad dificulta la aplicación de métricas
clásicas como la entroṕıa espectral para la detección de actividad en señales contaminadas con
este tipo de ruido.

A.2.5. Métricas basadas en Cepstrum
El cepstrum es una representación de señales obtenida al aplicar la transforma-

da de Fourier al logaritmo del espectro de magnitud de una señal. Esta transforma-
ción permite analizar estructuras periódicas en el dominio de la frecuencia, como
la detección de armónicos en señales de audio o la separación entre la envolvente
espectral y la señal de excitación en sistemas acústicos. Una de sus propiedades
fundamentales es que convierte convoluciones en el dominio temporal en sumas en
el dominio de las quefrencies. Esto se debe a que, en el dominio de Fourier, una
convolución temporal se traduce en un producto espectral, y al aplicar el logarit-
mo, dicho producto se transforma en una suma, lo cual facilita la separación de
componentes como la envolvente y la estructura armónica.

Cuando la señal proviene de múltiples fuentes la representación cepstral se
vuelve más compleja debido a la superposición de múltiples estructuras periódicas.
Esta superposición genera varios picos en diferentes valores de quefrency, dificul-
tando la identificación de una periodicidad dominante, al igual que en el caso de
las métricas basadas en la autocorrelación entre muestras y en la periodicidad.
Como consecuencia, los coeficientes cepstrales tienden a dispersarse, lo que com-
plica su interpretación y reduce la robustez de estas métricas para el caso de uso
considerado en este trabajo.
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A.2.6. Taza de cruces por cero en tiempo corto
La tasa de cruces por cero (Zero Crossing Rate, ZCR) es una métrica que

cuantifica cuántas veces una señal cambia de signo en un intervalo de tiempo
determinado. En el contexto del procesamiento de señales de audio, se calcula
usualmente en ventanas de tiempo cortas y representa la cantidad de veces que la
señal cruza el eje horizontal (pasa de positiva a negativa o viceversa). Una ZCR alta
indica una señal con componentes de frecuencia elevada o con variaciones rápidas,
como ocurre en el ruido blanco, mientras que una ZCR baja sugiere la presencia de
componentes de baja frecuencia o una señal más suave. Por su simplicidad y bajo
costo computacional, esta métrica ha sido utilizada para la detección de actividad
en señales de audio como en [52].

Cuando el ruido presente en la señal tiene media aproximadamente nula y
componentes de alta frecuencia, la ZCR resulta especialmente útil para detectar
actividad en señales musicales. Por ejemplo, al combinar la ZCR con la enerǵıa de
la señal, se pueden identificar como ruido los segmentos que presentan enerǵıa casi
nula pero una ZCR alta. Esta metodoloǵıa es efectiva siempre que la enerǵıa del
ruido sea significativamente menor que la de la señal (es decir, que la SNR, sea
suficientemente alta) y que el ruido tenga una media cercana a cero. Sin embargo, es
importante tener precaución, ya que ciertos fragmentos agudos de la señal, también
pueden exhibir una ZCR alta, lo que podŕıa ocasionar errores en la detección si no
se manejan adecuadamente.

Figura A.2: Señales temporales normalizadas de ruido de cinta, correspondientes a los gra-
badores analógicos Revox A77, Uher 4000 Report L y Technics TR-575, respectivamente. Se
aprecia que las señales presentan un comportamiento aproximadamente estacionario, con com-
ponentes de alta frecuencia y valores medios cercanos a cero, en concordancia con las hipótesis
asumidas en el análisis.
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En la Figura A.2 se presentan las señales temporales y sus valores medios
correspondientes a los ruidos de cinta mencionados anteriormente. Junto con la
información mostrada en la Figura A.1, se puede observar que estos ruidos son
aproximadamente estacionarios, que contienen componentes de alta frecuencia y
que tienen una media cercana a cero, cumpliendo aśı con las hipótesis planteadas
previamente.
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Apéndice B

Descripción de los tipos de ruido en
soportes históricos

Este anexo presenta una caracterización de los ruidos t́ıpicos presentes en dos
soportes analógicos de relevancia histórica: los discos de 78 RPM (gramófono)
y las cintas magnéticas. El objetivo es documentar las degradaciones propias de
cada medio y establecer el marco acústico en el que operan los métodos de res-
tauración estudiados en esta tesis. Si bien ambos soportes comparten problemas
generales relacionados con el envejecimiento y las limitaciones tecnológicas de la
época, cada uno introduce artefactos espećıficos derivados de su naturaleza f́ısica
y su mecanismo de reproducción.

B.1. Ruido caracteŕıstico de los discos de gramófono (78
RPM)

Las grabaciones de discos de 78 RPM presentan una variedad de artefactos
acústicos propios del soporte y del equipamiento de reproducción. En primer lugar,
el hiss corresponde a un ruido de banda ancha generado por las etapas analógicas
del sistema (preamplificadores, circuiteŕıa y ruido térmico), que se manifiesta co-
mo un siseo constante con mayor concentración de enerǵıa en las altas frecuencias.
Otro componente caracteŕıstico es el rumble, un zumbido de muy baja frecuencia
producido por vibraciones mecánicas del motor, desalineaciones del eje o resonan-
cias estructurales del giradiscos; su enerǵıa se concentra t́ıpicamente por debajo
de 80–100 Hz y resulta especialmente audible en pasajes silenciosos.

Además del ruido continuo, los discos de goma laca suelen presentar artefactos
impulsivos. Los clicks son chasquidos de muy corta duración originados por raya-
duras finas, acumulación de polvo o microfisuras en el surco; su espectro es amplio
y con fuerte contenido de alta frecuencia, lo que los hace perceptualmente agudos y
bien definidos. Por su parte, los thumps son golpes más largos y predominantemen-
te de baja frecuencia, asociados a deformaciones más profundas del surco, daños
estructurales o impactos en la cápsula durante la reproducción. Finalmente, las
digitalizaciones históricas también incorporan ruido ambiental propio del entorno
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de captura —como ventilación, interferencias eléctricas o vibraciones transmitidas
al plato— que añade componentes adicionales de fondo con un espectro variable
según la fuente.

Estos artefactos conforman un perfil de ruido altamente heterogéneo y depen-
diente del estado f́ısico del disco. La ausencia de estandarización en los procesos de
grabación y reproducción de la época añade aún más variabilidad, lo que convierte
al dominio del gramófono en un entorno dif́ıcil para la restauración automática.

B.2. Ruido caracteŕıstico en cinta magnética
En contraste con el gramófono, la cinta magnética introduce degradaciones

menos asociadas al desgaste del soporte f́ısico superficial y más vinculadas a los
principios electromagnéticos del registro analógico [1]. A continuación, se descri-
ben en mayor detalle los fenómenos relevantes para la restauración y el análisis
desarrollados en este trabajo.

B.2.1. Ruido de banda ancha (hiss)
El hiss es un ruido de fondo continuo, similar a un “siseo”, que aparece de

forma natural en las grabaciones en cinta magnética. Proviene del propio material
del soporte: con el paso del tiempo, la superficie de la cinta desarrolla pequeñas
irregularidades y variaciones aleatorias que generan ruido incluso cuando no hay
señal registrada [1]. Este efecto se vuelve más evidente a medida que la cinta
envejece o pierde estabilidad magnética [2]. El hiss se concentra sobre todo en las
frecuencias altas y suele estar presente en toda la duración de la grabación.

B.2.2. Interferencias eléctricas (hum)
El hum es un zumbido de baja frecuencia que aparece cuando la grabadora

o el reproductor captan interferencias provenientes de la red eléctrica [2]. Suele
escucharse en 50 Hz o 60 Hz, junto con sus armónicos, y puede deberse a transfor-
madores, motores del transporte de cinta, fuentes de alimentación desgastadas o
problemas de masa. Este ruido resulta especialmente molesto en pasajes silenciosos
o con poca dinámica.

B.2.3. Inestabilidades de velocidad (wow and flutter)
Las grabaciones en cinta también pueden sufrir variaciones en la velocidad de

arrastre, lo que produce fluctuaciones audibles en el tono. El wow corresponde a
cambios lentos y periódicos en la velocidad, generalmente provocados por proble-
mas mecánicos en el capstan, los rodillos o las gúıas del transporte [64]. El flutter,
por su parte, es una variación más rápida e irregular causada por desgaste en el
motor, rodillos endurecidos o vibraciones de la estructura [1]. Ambos efectos ge-
neran pequeñas oscilaciones del tono que afectan la estabilidad y naturalidad del
sonido.
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B.2.4. Saturación magnética y distorsión
La saturación ocurre cuando la señal registrada es demasiado intensa y el so-

porte ya no puede almacenar más magnetización [1]. En ese punto, la cinta deja
de responder de forma lineal y aparecen distorsión armónica, recorte y una com-
presión no deseada del sonido. Este problema suele deberse a una mala calibración
durante la grabación o a intentos de aumentar la relación señal–ruido llevando el
nivel demasiado cerca del ĺımite f́ısico de la cinta [2].

B.2.5. Cáıdas de señal (dropouts)
Los dropouts son pequeñas pérdidas momentáneas de audio que ocurren cuando

alguna parte de la capa magnética de la cinta está dañada o debilitada [65]. Pueden
deberse a abrasión, suciedad, moho o defectos mecánicos de la superficie. Como la
información se almacena en una capa muy fina, cualquier interrupción en esa zona
provoca una cáıda abrupta del nivel registrado. Según su tamaño y duración, los
dropouts pueden percibirse como breves “huecos” en el sonido, cambios de timbre
o pérdidas instantáneas de alta frecuencia.

B.2.6. Degradación qúımica del aglutinante (sticky-shed syndro-
me)

Otro fenómeno frecuente en cintas antiguas es el sticky-shed syndrome o “śındro-
me de la capa pegajosa”. Ocurre cuando el material que mantiene adheridas las
part́ıculas magnéticas al soporte comienza a degradarse con el paso del tiempo. La
cinta absorbe humedad y el aglutinante se descompone, haciendo que la superficie
se ablande y se vuelva pegajosa [64]. Esto provoca fricción excesiva durante la
reproducción, acumulación de residuos en los cabezales e incluso, en casos graves,
que la cinta no pueda reproducirse sin riesgo de dañarla.

En el sonido, este problema puede percibirse como ruidos intermitentes, pérdi-
da de agudos y pequeñas variaciones de velocidad debido al arrastre irregular.
Su tratamiento requiere procedimientos de conservación espećıficos, como el seca-
do controlado o “horneado” previo a la digitalización, una solución que permite
reproducir la cinta de forma temporal pero no detiene su deterioro a largo plazo.

B.2.7. Otros artefactos relevantes
Además de los problemas principales, el deterioro qúımico de la cinta puede

generar otros efectos, como variaciones en el azimut, ruidos provocados por un
deslizamiento irregular sobre los cabezales o aumentos de fricción que afectan la
velocidad de arrastre [64, 66]. También los propios cabezales pueden degradarse
con el uso, lo que provoca pérdidas de altas frecuencias debido a desgaste f́ısico o
desmagnetización parcial [1].
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uruguay,” tech. rep., Universidad de la República, Facultad de Humanidades
y Ciencias de la Educación, 2019. Publicado el 8 de noviembre de 2019.

[46] Uruguay Educa, ANEP, “Estilo (música criolla).” https://uruguayeduca.
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para un SNR de 16 dB. . . . . . . . . . . . . . . . . . . . . . . . . 67
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del ruido musical— que sobresalen del fondo de baja enerǵıa (valles). 17

2.4. Ejemplo del procedimiento de identificación y supresión de ruido
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correspondientes a cada tipo de componente. . . . . . . . . . . . . 21
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la detección temporal, aśı como la elevada precisión alcanzada en la
estimación espectral del ruido. . . . . . . . . . . . . . . . . . . . . 57
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de señal útil. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.26. Espectrogramas del modelo DL MagTapeDB. Arriba: señal pro-
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la detección de actividad en señales contaminadas con este tipo de
ruido. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
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