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Abstract

This thesis contributes to the development of a unified theory of parabolic-to-elliptic
transformations, which interprets parabolic partial differential equations as high-dimensional
limits of their elliptic counterparts. Our work advances this framework through two principal

contributions:

First, we extend this connection to fractional operators, enabling new derivations of
monotonicity formulae for fractional parabolic equations from known elliptic results. As
a central result, we establish the first monotonicity formula for the semilinear fractional
parabolic equation

(0 — A)*u = |ulPtu,

yielding a fractional analogue of the Giga-Kohn monotonicity formula and thereby extending

these techniques beyond their original local setting.

Second, we deepen the geometric understanding of the relationship between Colding’s
monotonic volume and Perelman’s entropy functional for the Ricci flow. While Perelman’s
reduced volume was previously known to emerge as a high-dimensional limit of the Bishop-
Gromov relative volume, the geometric origins of the entropy functional W had remained elu-
sive. We demonstrate that both functionals naturally arise from a unified high-dimensional
framework via Perelman’s N-space, providing a complete elliptic foundation for these fun-

damental parabolic quantities.



Resumen

Esta tesis contribuye al desarrollo de una teoria unificada de transformaciones parabdlico-
elipticas, que interpreta ecuaciones diferenciales parciales parabdlicas como limites en alta
dimensién de sus contrapartes elipticas. Nuestro trabajo avanza este marco mediante dos

contribuciones principales:

En primer lugar, extendemos esta conexién a operadores fraccionarios, permitiendo
nuevas derivaciones de férmulas de monotonia para ecuaciones parabdlicas fraccionarias a
partir de resultados elipticos conocidos. Como resultado central, establecemos la primera

férmula de monotonia para la ecuacion parabdlica fraccionaria semilineal
s —1
(0 = A)u = [u]"" u,

obteniendo un andlogo fraccionario de la célebre férmula de monotonia de Giga-Kohn y

extendiendo asi estas técnicas mas alla de su contexto original local.

En segundo lugar, profundizamos la comprensién geométrica de la relacion entre el volu-
men monotonico introducido por Colding y el funcional de entropia de Perelman en el flujo
de Ricci. Si bien es sabido que el volumen reducido de Perelman emerge como un limite
en dimension alta del volumen relativo de Bishop-Gromov, los origenes geométricos de su
funcional de entropia W no poseian semejante explicaciéon. Aqui, demostramos que ambos
funcionales surgen naturalmente de un marco unificado en dimensién alta a través del N-
espacio de Perelman, proporcionando asi una base eliptica completa para estas cantidades

parabdlicas fundamentales.
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Chapter 1
Introduction

Many central problems in geometric analysis and partial differential equations (PDEs)
rely on understanding how quantities evolve under scaling, deformation, or time-dependent
processes. A powerful technique for such problems, employed, for example, in Almgren’s
study of harmonic functions [3], Alt-Caffarelli-Friedman’s analysis of free boundaries [4], and
Huisken’s work on mean curvature flow [39], involves constructing integral functionals that
exhibit monotonic behavior along natural parameter families. Over the past decades, this
approach has become increasingly prominent, with monotonicity formulas yielding diverse
applications including compactness, regularity, and rigidity theorems in elliptic and parabolic
PDEs, as well as in geometric flows [19].

An intriguing pattern emerges when comparing parabolic and elliptic settings: many
parabolic monotonic quantities appear to have elliptic counterparts. For instance, Huisken’s
monotonicity for the mean curvature flow parallels Allard’s monotonicity for minimal sur-
faces [2], while Struwe’s monotonicity for the harmonic map heat flow [61] corresponds
to Schoen-Uhlenbeck’s monotonicity for harmonic maps [55]. Further examples include
Hamilton’s monotonicity for the Yang-Mills heat flow [37], which relates to Price’s formula
for the elliptic Yang-Mills equation [49], and Almgren’s frequency for harmonic functions
[3], contrasted with Poon’s parabolic frequency for the heat equation [48] (later extended
to manifolds by Colding-Minicozzi [22]). These parabolic monotonicity formulas are often
more challenging to derive than their elliptic counterparts, as they typically rely on subtle
applications of backward heat-type equations.

Given the prevalence of this parabolic-elliptic duality, it is natural to ask whether it
reflects a general principle. While elliptic theory is often viewed as the stationary case of
parabolic theory, recent work has explored the reverse perspective: expressing parabolic
theory as a limiting case of elliptic theory when the spatial dimension tends to infinity. The
many parallels between these theories suggest a connection beyond mere analogy, raising

the possibility of systematically deriving parabolic monotonicity formulas from their elliptic



counterparts. This novel idea was first employed by Perelman [47] in his completion of

Hamilton’s program for the Ricci flow on 3-manifolds [17}38].

The present work aims to deepen the understanding of the connection between parabolic
theory and high-dimensional elliptic theory. To this end, we first demonstrate that the same
underlying principle extends to fractional operators, where fractional parabolic monotonicity
emerges as a high-dimensional limit of fractional elliptic monotonicity. As an application,
we derive a monotonicity formula for a semilinear fractional parabolic equation.

Furthermore, building on Perelman’s work on the Ricci flow, we show that Perelman’s
entropy functional (commonly known as the W-functional) arises as a high-dimensional limit
of Colding’s monotonic volume for level sets of appropriately scaled Green functions on non-

parabolic manifolds with nonnegative Ricci curvature.

We begin by introducing the general framework for heat-type equations, followed by a
review of Perelman’s original derivation of his celebrated reduced volume. We then provide

a detailed exposition of the results obtained in this work.

1.0.1 Parabolic theory as a limit of elliptic theory

To formalize the parabolic-to-elliptic perspective, consider a smooth, ancient solution

u: R? x (—00,0] — R of the heat equation on Euclidean space,
ou — Ayzu = 0.

Let y € RN, and express it in polar coordinates as y = (r, ), where r > 0 and 0 is a
coordinate on the (NN — 1)-dimensional sphere of radius 1, S ' ¢ RY. In these coordinates,
the Laplacian becomes,

N -1 1

Ayf=02f+ o-f + ﬁASN—lfa

’
where Agnv-1 denotes the Laplace-Beltrami operator on the (N — 1)-dimensional sphere. For

spherically symmetric functions f = f(r), this simplifies to

N -1

Ayf:(?ff—l—T&f.

As N — o0, the first-order term dominates. To use this asymptotic behavior, we intro-

duce ) X )
Lo _ Yt YN
2N 2N ’
which represents the average squared norm of y, and set t = —7. A direct application of the



chain rule yields,
2t
A = ~S0kf ~af.

In regions where 72 = O(N) and thus 7 = O(1), we have

Ayf = =0 f as N — oo.

This convergence suggests the following construction. Given an ancient solution u for

the heat equation, we consider the lift of © which we denote by uy, defined as,

e sk

o) = ) = (2

A calculation shows that uy satisfies,
2 r2
A%yuN = mafu — (9tu + Axu = mafu = O(l/N),

thus becoming approximately harmonic as N grows large.

The geometric interpretation of this transformation becomes clearer when we express the

Euclidean metric g5 on RV*! x R? in polar coordinates with respect to y,

N
gg = dr* + r?gen + gpa = ZdTQ + Tgsn + grd, (1.0.1)
where gsn is the standard metric on S with constant curvature 1/2N. This metric decom-

position mirrors Perelman’s construction for the Ricci flow.

The elliptic approximation relates parabolic theory to elliptic theory as N — oo. To
illustrate its utility, we apply this transformation to the mean value property for harmonic
functions as follows. Since uy is almost-harmonic we expect the mean value formula to hold

for uy, and therefore we have

1
un(0,0) ¥ rmge un(z,y) dy dz,
[BY*4(0,70)] Jyyj2-41af2<r
where |BN*(0,79)| = Cnary ™ is the volume of the ball in R¥*%. Rewriting in polar

coordinates gives

un(0,0) %chdrO_(Ner)/ / un(x, —r?/2N)r" " dr de,
R4 JO<r<y/r2—|z|?

for some constant cy 4 > 0.



The key step involves setting 73 = 2N7 and analyzing the regime where r = O(1)
and 7 = O(1). The term rV~! localizes the integral near its endpoint, leading to the

approximation

1 N
un (x, =1 QNTN_ldex%—(\/Tz—IQ) u(z, —(rg — |z|*)/2N).
/Rd /0<T<1/r8|x|2 w( /2N) N 0 || ( ( 0 [z])/2N)

Since 2 = O(N) and z = O(1), we can further approximate u(z, —(r¢ — |z|?)/2N) ~
N
u(z, —7). Moreover, the term (x/rg — |x\2> behaves asymptotically as

N
Nlz|?
()=o)
0

Substituting 72 = 2N7 and combining these approximations yields the familiar heat

kernel representation,

u(0,0) =~ lim nd /Rd e 1Py (2, —7) da.

0+ T74/2

This connection has been further developed by several authors: the exposition here
follows Tao’s lectures on the Ricci flow [62], while Svérak [68] offers a complementary prob-
abilistic perspective by recalling several ideas dating back to Weiner. Next, we discuss this

probabilistic formalism.

1.0.2 A probabilistic approach

Following Svérak [61] (see also [23]), we model a random walk in R, in which a particle
begins at (z,t) = (0,0) and takes N steps yi, ..., yn. Instead of fixing step sizes, we enforce
a global constraint: for the particle located at (x,t) = (0,0), we assume that up to time ¢

the random steps, y1,...,yn are subject to the constraint
vty =t

After completing all steps, the particle’s final position is
T=Y2+ T UYN-

We now define the probability law governing (yi,...,yx). The natural assumption is that
the vectors (yi,...,yn) are uniformly distributed over the (N — 1) dimensional sphere of

radius /¢ with respect to the canonical surface measure on the sphere. Let uh denote the
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normalized measure, with unit mass. We may write

1 o T2,

N _ 7
He = |SN—1|t(N—1)/2 N—-1"7 9 N/24(N-1)/2 " N-1>
where ok, _; is the canonical surface measure. Define

In@) =y + -+ yn,

as the projection of the high-dimensional space onto R by the rule previously described. The

pushforward measure fyx(uly) is explicitly computed as

N/2-3/2
L T(V2) ra )
S i) = V2rt D((N — 1)/2)/N/2 (1 %%) e

Stirling’s formula gives,
[(N/2)

e T(N - 1)/2)/N2

Y

and, combined with the identity

N—oo

: a\~N
lim <1 + N> =e”,
we recover the limiting measure,

Leﬂﬂ/?t(m

as N — oo, which is the heat kernel for
1

The same procedure can be carried out for R?, allowing us to relate integral quantities in the
high-dimensional and original spaces via the pushforward, with the heat kernel appearing
naturally as the pushforward of our probabilistic law. Davey [23] (see also Davey-Smit [25])
recently used this interpretation to systematically derive parabolic monotonicity formulae
from elliptic counterparts, recovering classical results by applying elliptic monotonicity to
high-dimensional equations and passing to the limit as N — oo. These high-dimensional
equations are equivalent to the parabolic case (holding if and only if the parabolic equation

does) and converge formally to the elliptic equation as N — oo.



1.0.3 Perelman’s reduced volume

Using similar ideas, we now outline Perelman’s original derivation of his celebrated re-
duced volume for the Ricci flow [47]. Let M™ be a closed n-dimensional manifold, and let

g(T) be a backward solution to the Ricci flow
0.9 = 2Ric, (1.0.2)
on M defined on the interval [0,T]. Let 72 = 2N, and define Perelman’s N-space,
M™ = (0,V2NT), x SY x M? c RN*!' x M"™, where m =N +n+1,

endowed with the metric

2

. R
G :=1r%gsn + (1 + TTQ> dr® + g. (1.0.3)

where R is the scalar curvature of g, and at a point (r,6,z) € M , gsv is evaluated at 6,

and R and g are evaluated at (7 = 7?/2N,xz) € (0,T) x M. Note that (1.0.3) reduces to
(1.0.1) when M = R" endowed with the Euclidean metric. One can show that M becomes
asymptotically flat as N — oo, with its Ricci tensor satisfying |Ric| = O(1/N).

Stationary solutions to ([1.0.2)) satisfy the Ricci-flat equation,
Ric = 0, (1.0.4)

for which the Bishop-Gromov relative volume serves as a fundamental monotonic quantity,
and states the following.

Let M be a complete n-dimensional Riemannian manifold whose Ricci curvature satisfies
the lower bound Ric > (n — 1)K for some constant K € R. Let M} denote the complete,
simply connected n-dimensional space form of constant sectional curvature K, that is, the
n-sphere of radius 1/ VK when K > 0, Euclidean space for K = 0, or a rescaled hyperbolic
space when K < 0. Then, for any p € M and px € M}, the ratio

_ Vol B(p,r)

o(r) = Vol Blpe.7)

is a non-increasing function of r. This result has found broad applications throughout

differential geometry.

The near Ricci-flatness of (M ,§) enables a heuristic derivation of monotonic quantities

for the Ricci flow via the Bishop-Gromov inequality, which we apply assuming K = 0. We
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examine metric balls centered at (p,s,0) € M, where the SV fiber degenerates to a point
at 7 = 0. Length-minimizing geodesics v(7) connecting (p,s,0) to (¢,5,7) € M must be
orthogonal to the spherical fibers, since the angular variable only influences the term r?ggn

of the metric. The length of such a geodesic must then be given by

/\/ +R +|v<>g(T

A Taylor expansion yields the asymptotic behavior

() = \/_+—/ (B+ B, ) dr+0 (N3),

and therefore, a shortest geodesic should minimize the N-independent functional

o) = [ vE (R BOE,) dr

0

Let L(q,T) denote the infimum of this quantity over all paths joining both endpoints.

A metric sphere Sy, (vV2N7) in M of radius v2N7 centered at (p, s,0) € M x SN x R,
is O (N1 close to the hypersurface {7 = 7}. Indeed, for (x,s,7(x)) € Sy (V2NT), the
distance between (z, s, 7(z)) and (p, s,0) is

- 1 3
V2N7 = \/2N71(zx) + ﬁ[/(x,r(x)) +0 (N 2> :

Rearranging gives,

N —%L(az, r(2) + 0 (N7?) =0 (N7,

Since the metric 2N g5 on SV has constant sectional curvature 1/2N,
Vol (S;(V2NT) ) = / < / dvT(x)gaB> dv,, (x)
M \JsN
= / (r(x)) Vol (SV) dVs
M 1 N
/ (ﬁ— —L(z,7(z))+ O (N2)> AV
M 2N
1 N

M\Z

~ (2N)2w

N\Z

~(2N)2w

where wy is the volume of the standard N-dimensional sphere. Comparing with Euclidean
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sphere volumes,
N+n

Vol <SRn+N+1( 2N77')> = (QNf) 2 Wp4N,

yields the ratio

Vol (SM( 2N7")> . By - 1 _
Vol <S]Rn+zv+1( 2Nf)) e /M(T) e {_ﬁ (z, T)} o

Consequently, the asymptotic Ricci-flatness of M and Bishop-Gromov theorem suggest the

V() = /M(zw)’% exp{—#[j(m‘j)} Vi,

known as Perelman’s reduced volume. This fact was rigorously proved in [47].

monotonicity of

1.1 Overview and results

Having established the general framework, we now present the specific problems ad-

dressed in this thesis.

1.1.1 Fractional operators

Fractional operators provide the mathematical foundation for modeling anomalous dif-
fusion (that is, stochastic processes deviating from Brownian motion), a field of growing re-
search interest. These processes are characterized by nonlocal integro-differential operators,
chief among them the fractional Laplacian introduced by Riesz [52], defined for v : R — R

as

(—A)v(z) = —485(2d/2 +5) lim / vlz) —v(z) dz, where0<s<1. (1.1.1)
T2D(=5)[ ro0t Jpa\p, @) € — 22

This operator of order 2s continuously interpolates between the identity (s — 07) and
the standard Laplacian (s — 17), making it particularly versatile for capturing a wide
range of diffusive behaviors. Its nonlocal nature allows it to model systems with long-range
interactions and memory effects that elude classical diffusion operators, while maintaining
many useful analytic properties of elliptic operators. The combination of such features
explains its growing importance across physics, biology, and engineering applications where
complex, multiscale transport phenomena occur.

Notable applications include modified gravity theories, where, for example, Benetti et

al. [7] investigate whether known galactic dark matter observations could arise from frac-

12



tional gravity effects. In this context, while the standard law of inertia remains valid, the
gravitational potential is determined by a modified Poisson equation incorporating frac-
tional derivatives that capture nonlocal interactions. Subsequent work [6] has extended this
approach to galaxy clusters, and in [35,65,66] a fractional-dimension gravity model that suc-
cessfully reproduces flat rotation curves through modifications to the Newtonian potential

was also explored.

Additional applications include the study of anomalous diffusion and transport processes.
In porous media, fractional diffusion equations describe contaminant transport exhibiting
heavy-tailed particle jumps [8], while in neuroscience, fractional cable equations provide
more accurate modeling of electrodiffusion of ions in nerve cells [41]. Turbulent systems and
plasma physics similarly benefit from fractional dynamics in describing anomalous particle
motion [44]. Beyond the natural sciences, the fractional Laplacian finds applications in fi-
nancial mathematics, where it models extreme market movements through Lévy processes
[54] and in image processing, where fractional order filters have been studied for enhanced
edge detection and noise reduction [34]. In social sciences, it has also been employed to con-
struct superdiffusive models explaining criminal activity patterns through long-range jump
processes [56]. Several applications are also available in geometric analysis and probability
theory [32].

The natural parabolic counterpart to the fractional Laplacian, the fractional heat oper-

ator, is defined as

(0 — A)’u(z,t) :== /_ /Rd(u(x, t) —u(z,7))Ks(x — z,t — 7)dzdr, (1.1.2)

where ,
1 e_‘zl /4T

(47)4/2|T (—s)| rd/2+1+s

and is non-local in both space and time. This operator has also found several interesting

K(z,7) = (1.1.3)

applications, since it models systems exhibiting anomalous diffusion and memory effects.
For example, in statistical physics, it arises in the study of continuous-time random walks
with Lévy flights or subdiffusive trapping events, providing a model for particle motion that
deviates from classical Brownian behavior due to heavy-tailed jump distributions or waiting
times [44]. In ecology, it models population dynamics in heterogeneous environments, where
species propagation can be accelerated by fast-diffusion channels such as river networks or
transportation corridors [9]. In finance, it has been used to model scenarios where the waiting
time between transactions is correlated with ensuing price jumps [51]. The flat parabolic
Signorini problem has also been shown to be equivalent to the obstacle problem for (9; —

A)Y/2. Additional applications in physics include the modeling of viscoelastic materials and

13



non-Newtonian fluids, where it describes memory-dependent stress-strain relationships 28],
and chaotic Hamiltonian systems, where it characterizes anomalous transport phenomena

arising from fractal phase-space structures [67].

Given the significant similarities shared by both operators with their local counterparts,

a natural question is whether parabolic monotonicity can also be recovered from elliptic

monotonicity in fractional contexts. This work establishes that the parabolic-to-elliptic

framework extends to both fractional operators, allowing to recover fractional parabolic

monotonicity formulae from elliptic ones. This is illustrated by studying solutions of the
semilinear fractional equation,

(0 — A)*u = |ulP~u. (1.1.4)

The local analogue of this equation,
O — Au = |ulP~tu (1.1.5)

is well-understood, with established results for its well-posedness, regularity theory, and
blow-up profiles (see [50] and references therein). For the local case, Giga and Kohn [33]
derived a fundamental monotonicity formula: if u is a solution of , applying a time
reversal t — —t =: 7 to u, the function

|Vu|? 1 1 / u?
D)= [ (N - 2 ) eder —— [ Lo 1.1,
(7) /Rd( > i det =7 | 9724 (1.1.6)

is non-decreasing for the time-reversed variable 7, and its derivative is explicitly given by,

d T 2w\
—D = — — | ddz. 1.1.7
o (1) /]Rd (&u + 5 Vu + p— 27_) dx ( )

Here,

p+1 1
O(x,7) = (47‘(7‘)1’% _ eIzl /A
(4mT)z

is an appropriate rescaling of the backward heat kernel. This formula plays a crucial role in
characterizing the blow-up profiles of solutions [33].

Notably, nonlocal monotonicity formulas are derived via their corresponding extension
problems for both the fractional Laplacian and the fractional heat operator. These results,
first established for the fractional Laplacian in Cafarelli and Silvestre’s seminal work [14],
interprets the fractional Laplacian as a Dirichlet-to-Neumann opreator for a degenerate but
local PDE on the half space Rffrl. Similarly, these techniques were adapted to the fractional
heat operator by Stinga and Torrea [60] and independently, by Nystrom and Sande [45],

allowing us to reinterpret the fractional heat operator as a local but degenerate parabolic

14



d
problem on the half space R ++1 )

Using the extension problem for the fractional Laplacian, several examples of mono-
tonicity formulas were found for fractional elliptic problems. Some of those are an Almgren
frequency-type parabolic monotonicity formula due to Caffarelli and Silvestre |14] and an
Alt-Caffarelli-Friedman type monotonicity formula proved by Terracini, Verzini and Zilio
[63]. For the fractional heat operator, an Almgren frequency-type parabolic monotonicity

formula was found by Stinga and Torrea [60], by adapting the techniques discussed in [14].

Going back to equation ((1.1.4]), we observe that its stationary solutions correspond to

solutions of the fractional Lane-Emden equation,
(—=A)u = |ulP~tu, (1.1.8)

since, as shown in [60], although the fractional heat operator is nonlocal in both space and
time, it reduces to the fractional Laplacian (—A)® when applied to a function that solely

depends on x.

The fractional Lane-Emden equation has been extensively studied, with many
classical results extended to the nonlocal setting (see [16}[29,42] and references therein).
The Davila-Dupaigne-Wei monotonicity formula [29] for this equation, which was used to
classify solutions of finite Morse index, proves particularly relevant in our setting. This
quantity, which we will discuss in Section [2.1}, can be thought of as the fractional analogue
to the local monotonicity formula for the equation —Au = |u|P~'u, as discussed by Fazly
and Shahgholian [30] (see also the article by Pacard [46] for a similar monotonicity formula

in the case —Au = uP).

By using the monotonic quantity for the fractional Lane-Emden equation , we develop a
new monotonicity formula for solutions of (L.1.4). Specifically, let u = u(z,t) be a solution
to (1.1.4) on a time interval (=77, Tg), where T7,Tr > 0. Due to the nonlocal nature of
(L.1.2), u needs to be defined in (—oo,TF), so we may either prescribe u(.,t) = f(.,t) for
t < —T7j, or consider ancient solutions instead. Let U(zg,xz,t) be its parabolic Caffarelli-
Silvestre extension, also defined in (=77, Tr). Then, under appropriate growth and regularity

assumptions, by applying a time-reversal ¢t — —t to both u and U, the function

S

2 ~ 2
gty = [ a6 ax - T [ e+ g ax,
Riﬂ 2t

2 p""]_ R4 P — 1 Ri+1
(1.1.9)

where X = (z9,7) € Ry x R? is non-decreasing for the time-reversed variable ¢, and its

15



derivative is explicitly given by,

d X 25 U\?>
—J(t) = V2t 1=2s —. — dXx. 1.
dtg( ) RY+H %o (8tU + 2t VU p—1 2t> Js (1.1.10)

Here, the functions
G.(X,t) :==trTG(X,t) and Gy(x,t) =t 1TG((0,2),1),

are appropriate rescalings of the fundamental solution G for the extension problem of the
equation (9, — A)*u = 0,

1 e~ | X12/4t
§(X,t) = (@)L (s) (s (1.1.11)
where X € Riﬂ, t > 0, and 7, is a constant given by,
2s|I'(—s)|

Our result establishes the fractional analogue to the Giga-Kohn monotonicity formula,
and is, to the best of our knowledge, the first such formula for semilinear fractional parabolic
equations. In order to achieve this, we develop and apply a similar parabolic-to-elliptic
procedure to the one we previously described: we use the elliptic monotonicity for the
extension problem of the nonlocal equation to construct our parabolic monotonicity,
but extra difficulties arise when treating the boundary in the extension problem.

We remark that, during the final preparation stages of this work, a new article by Davey
and Smit was made public on ArXiv also discussing the extension of Perelman’s ideas to the
fractional framework [24]. Though related to [24], our methodology primarily follows the
methods proposed by Perelman [47] and later explored in [23,25]. Through careful variable
changes and a redefinition of the dimension for the high-dimensional limit procedure, our
high-dimensional space can be reinterpreted within the framework discussed in these earlier
works. Another key distinction is that [24] focuses on the equation (0 — A)*u = 0, whereas
our nonlinear case presents additional challenges, particularly when addressing the boundary
of the space in which the extension problem is defined. By studying the geometry of the
high-dimensional space and precisely controlling volume elements on integration domains, we
also obtain explicit formulas for the derivative of our monotonic quantity. The existence of
multiple viable approaches to this high-dimensional transformation underscores the method’s

versatility.

The techniques discussed here naturally extend to derive the classical Giga-Kohn mono-
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tonicity formula for du — Au = |u[P~'u from the monotonicity formula for —Au = |u[P~ u
introduced by Fazly and Shahgholian [30]. Since the computations are carried out in a simi-
lar manner, we omit them in the interest of brevity. The methods we present hold potential

for application in other nonlinear settings, as well as for systems of equations.

1.1.2 A unified framework for Perelman’s Ricci flow

The second part of this thesis revisits Perelman’s framework to derive new monotonicity
formulas for the Ricci flow. In his groundbreaking work [47], Perelman introduced two
fundamental quantities: the reduced volume and the entropy. As established earlier, the
reduced volume arises from a careful analysis of the Bishop-Gromov inequality in the high-
dimensional limit of Perelman’s N-space. Perelman’s work, however, left the entropy’s
geometric origin unexplained. We therefore extend this approach to the entropy, revealing
both quantities as manifestations of a unified high-dimensional limit in Perelman’s N-space.

Perelman’s entropy is defined as follows. For a backward solution to the Ricci flow ([1.0.2)),
consider u a solution to,

0-u = Au — Ru, (1.1.13)

positive at the initial time 7 = 0, and hence, also positive for all times by the maximum

principle. Define f by u = 77"/2¢~/ so that f satisfies,
8Tf:Af—|Vf|2+R—%. (1.1.14)
Then, the entropy W (for the function f) is given by,
W(r) = /M (r(IVfI*+ R) + f —n) (4n1) "2 dv, (1.1.15)
and its derivative takes the form,

iW:—/ 2T
dr M

from where it follows that it is monotonically decreasing in 7.

E
Ric+VV f — 5.9 (4m7) 2 dv, (1.1.16)
T

Deriving the entropy as a high-dimensional limit requires identifying suitable elliptic
monotonicity, thus enabling the application of our earlier framework. The elliptic mono-
tonicity we employ is Colding’s monotonic volume, introduced in [18]. This quantity, defined
via level sets of positive Green functions, was used to study asymptotic cones on Ricci flat
non-parabolic manifolds [18,20]. Generalizations of Colding’s monotonic volume were later

given by Colding and Minicozzi in [21] and applications to General Relativity were explored
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by Agostiniani, Mazzieri and Oronzio in [1].

The monotonic volume is defined as follows: on a manifold (N, g) admitting a a positive
and proper Green function G, define b = G'/>™). Then, we define ‘area’ A and the ‘volume’

V', on the level sets of b as,

1
As) = Sm_l/ (IVB]? — 1) V| dA, (11.17)
b=s
and,
1
Vi(s) = S—m/ (IVb]* = 1)|Vb|* dV. (1.1.18)
b<s

Then, the monotonic volume is defined as
Wi(s) =2(m—1)V(s) — A(s), (1.1.19)

and the derivative of W is given by the expression (see Theorem 2.4 in [18]),

d 1 Ab?
Bl - [ —
dsW(S) 2gm+1 /bgs ('VV m g

from which it follows that it is monotonically decreasing in s.

2

+ Ric(Vb?, VbQ)) dv, (1.1.20)

The flat Euclidean space R™, provides a computable example for these quantities, where
the Green function at the origin is given by G(z) = 1/|z|™ 2. If we define b = G*/?~™) then
b = |z|, and therefore, |[Vb| = 1. Consequently, in R™, the area, volume, and monotonic

volume are all identically zero.

The ideas outlined in Section [1.0.1| can also be applied here. Following this procedure,
we analyze the level sets b = const, and show that Perelman’s entropy emerges a high
dimensional limit of Colding’s monotonic volume on Perelman’s N-space. From (1.1.20]), we
recover the known expression for the derivative of the W functional, showing that Perelman’s
volume and entropy can be thought of as emerging from a single, unified high dimensional
elliptic framework from its elliptic counterpart, the Ricci flat equation. As a byproduct of
our proof, we show that the entropy also emerges as a high-dimensional limit of Colding’s
area. This behavior also reflects the boundary mass concentration phenomenon discussed in
Section [1.0.1] in the high-dimensional limit of Perelman’s N-space.

This approach could also lead to new, previously unknown monotonic quantities for
the Ricci flow, derived from known elliptic quantities on manifolds with nonnegative Ricci

curvature.
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1.1.3 Contributions

Chapter 2 collects results from the work,

[12] I. Bustamante - A monotonicity formula for a semilinear fractional parabolic
equation, ArXiv, (2025).

Chapter 3 is an expanded version of the results on the article,

[13] 1. Bustamante, M. Reiris - Deriving Perelman’s entropy from Colding’s monotonic
volume, J. Reine Angew. Math., (2025).
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Chapter 2

Applications of parabolic-to-elliptic
transformations to fractional

operators

The parabolic-to-elliptic procedure outlined in Chapter [, which connects parabolic evo-
lution equations to high-dimensional elliptic problems, can be extended to nonlocal opera-
tors. In this chapter, we show that this is indeed the case, by applying a similar procedure
to the fractional Laplacian and fractional heat operator instead of their classical counter-
parts. The extension problems associated with these operators play a central role here since
they localize their behavior via degenerate elliptic and parabolic equations on a half-space

respectively, allowing us to proceed as in Section [1.0.1]

We begin by introducing the fractional Laplacian and its parabolic counterpart, the frac-
tional heat operator, and recalling their extension properties. We then derive the correspond-
ing parabolic-to elliptic procedure, and illustrate how to use it by obtaining a monotonicity
formula for solutions of the fractional semilinear parabolic equation , adapting the

elliptic monotonicity of its stationary analogue, the fractional Lane-Emden equation ((1.1.8)).

2.1 Elliptic and parabolic fractional operators

Both the fractional Laplacian ([1.1.1]) and the fractional heat operator have several
interesting properties as well as multiple definitions. Here, we focus on the ones relevant to
our approach. For convenience and to distinguish between the different setups, we will work
on RY for elliptic problems, and on R? x R for parabolic problems, and we will later take

N=d+nasn— oo.
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2.1.1 The fractional Laplacian

The fractional Laplacian admits multiple equivalent definitions; for example, [40] catalogs
ten distinct characterizations and establishes their equivalence. In this work, we use the
pointwise definition (T.1.1)), which is well-defined provided that v € C?**¢(RY) for some

e > 0 and v satisfies

e,
fo T < —

as shown in [27].

It is particularly useful to employ different definitions to showcase different properties of
this operator. For this reason, and to motivate the pointwise definition we adopt, we start
by showcasing the definition of the fractional Laplacian as a pseudo-differential operator

acting on the Schwartz class §

8= { e C(RY) : sup [a°07v(x)| < oVar, § € NN} |

zeRYN

via the Fourier transform.

We start by recalling the Fourier transform §, defined as

S0)(E) = gy [ ¢l de

for any v € 8. Similarly, the inverse Fourier transform of v is defined for z € RY as

Observe that §(v)(£) = F1(v)(—€), so the properties of F(v) also hold for F~'(v). A

thorough discussion of the Fourier transform can be found in [59].

Proposition 2.1.1. Let v € L'(R™). For any z € RY, define Tov(x) := v(x — 2). Then,

F(T0)(€) = e F (0)(€). (2.1.3)

Ifv €S8,
§(0%)(§) = (i€)*T(v)(8), (2.1.4)
for any multiindez o € N*.

Ifv e L*(RY), then the inversion formula holds,

S FW)(z) =v(z) ae xRV, (2.1.5)



In particular, if F(v) € L'(RY), then v is continuous and

1 .
_ ix.§
,U('I) - (27T)N/2 /]RN S(U)(g)e d€
Moreover, the Foruier transform is an isomorphism of the Schwartz class §.

From ([2.1.4) we observe that

F(—Av)(¢) = [¢1*F(v)(S).

and from ([2.1.5)),

~oa) = s [ eSIERRE) de (2.16)

follows. Therefore, the Laplacian can be represented by an integral formula in the frequency

space, where its symbol is o(§) = [£]?. In a similar manner, one can prove the following.

Proposition 2.1.2. Let s € (0,1), and let (—A)® denote the operator defined in (1.1.1)). If
v €S, then
(—=A) v =F (g (v)).

In particular, the fractional Laplacian is an elliptic pseudo-differential operator of order 2s.

Proof. See Proposition 3.3 in [27]. O

Proposition shows that we can define the fractional Laplacian (—A)*® as the pseudo-
differential operator with symbol o(£) = |£|*. We remark that the constant

LT(N/2 + )

CN,S = 7TN/2|F<—S)| )

appearing on the definition (T.1.1]) of the fractional Laplacian acting on functions v : R —
R, ensures consistency between the pointwise and the Fourier definition of this operator.

Furthermore, it can also be shown that, when s — 0" and s — 1~, we have
Cns~s(l—s) for s —» {0, 17}
Using this asymptotic behavior of Cy 5, we can also show the following.
Proposition 2.1.3. For any u € S, the following statements hold:
lim (—A)*u = u,

s—0t
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and

Proof. The case for s — 17 can be found in [11], and the case s — 07 in [43]. For a direct

computation, see Proposition 4.4 in [27]. H

We now discuss two other equivalent definitions that will become useful for our analysis.
First, we recall the semigroup definition of the fractional Laplacian, since it will also be
relevant when discussing fractional heat operators.

Recall that for any 0 < s < 1, we have the formula,

NG Gk /Ooo(ew -y,

Let A > 0, and define w = rA. We then get,

1 o dt
A= ——— 1) —— 2.1.
e BRI (217)

which also holds when A = 0. Now let A = |¢|>, multiply by §(v) and use the Fourier

definition of the fractional Laplacian to obtain

B0 = 6506 = 75 | (€300 — 50)€)

After applying the inverse Fourier transform, we have

(—A)v(z) = ) N/QF é N / (e F(0) (&)™ — F(v)(&)e “f) g, (21.8)

which is absolutely convergent since, by (2.1.7)),

Y1 — e dr 2s
L, [ = e s e = - r/ €17 [30)(€)] de.

Applying Fubini’s Theorem in and recalling (|2 , we obtain the semigroup defini-
tion of the fractional Laplac1an,

(—A)o(z) = r(i3> /Ooo(er%@) _ m«))%, (2.1.9)

for v € 8.

The family of operators {e"*},>¢ is the heat difussion semigroup generated by A. If we
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consider the solution u of the heat equation on the whole space with initial temperature v,

du=Au forzeRY r>0

(2.1.10)
u(z,0) =v(r) for x € RY,

we may apply the Fourier transform in the z-variable for each fixed r, to obtain

Fu)(&r) = e FF)(E) = F(e0)(©).

Moreover, it is well-known that v may be written as a convolution with the Gauss-Weierstrass
heat kernel,
W, () := (4r) N2 l2F/4r (2.1.11)

that is,
u(z,r) =W, xv(z).

Substituting this expression back onto (2.1.9)) and using that

W(x)de =1, (2.1.12)
RN
Wwe recover expression , as shown in Theroem 12.1 of [59]. Moreover, the semigroup
definition of the fractional Laplacian holds for a more general class than the Schwartz
class, since it can also be applied to compute the fractional Laplacian of any v € C?+¢(RY)
obeying (2.1.1]), as mentioned in Remark 2 of [58] (see also Chapter 12 in [59]).

The final definition of the fractional Laplacian we address in this work is the one given
through harmonic extensions. This definition, which will serve as our main tool in later
sections, characterizes the fractional Laplacian via a Dirichlet-to-Neumann operator using
an extension problem in the half-space ]Rf *+1 as established by Caffarelli and Silvestre [14],

and is given as follows.

Let v : RY — R be such that v € C?***(R") for some ¢ > 0, and assume that v obeys

ETT). Set
a:=1-2se(—1,1),

and let V : Rf“ — R be defined as

Vo 2) = [ oz = 9)Pleayds
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where we denote (29, z) € Rf“, 2o > 0, and P is the Poisson kernel,
P(20,2) == Cnazy “|(20, Z)|_(N+1_“).

The constant Cly,, > 0 is chosen so that [,x P(20,2)dz = 1. Then, V € C*(RY™)NC(RY),

280,,V € C(RY™) and V is a solution of the extension problem,

V- (4VV)=0 for (zo,2) € RYT,
2.1.13
lim V(z,2) =v(z) forzeRY. ( )
ZO*)O-’—
Observe that the first equation of (2.1.13)) is equivalent to,
AV + ZianOV +O2V =0 for (z,2) € RVF!. (2.1.14)

Then, the function V' obeys,

— lim 200,,V (20, 2) = ks(—A)%v,

z0—0t

with
I'l—ys)
Kg 1= ————.
22s—11(s)
In particular, this procedure allows us to recover (—A)*v from the normal derivative of the

extension V.

2.1.2 The monotonicity formula for the fractional Lane-Emden

equation

In order to apply the previous dicussion to the Lane-Emden equation ([1.1.8)), we let
0<s<1landv:RY — R such that v € C**5(R") for some £ > 0, and assume v obeys
(2.1.1)) so that its fractional Laplacian, (—A)®v, is well defined. Then, its Caffarelli-Silvestre

extension V obeys ([2.1.13]), and moreover, it satisfies

— lim 280,V (20, 2) = k[P0 (2), (2.1.15)

Z0—>0+

as discussed in [29]. For such V| the following monotonicity formula is known.

Theorem 2.1.4 (Theorem 1.4 in [29]). Let V(2p,2) € C2(RY™) N CRY™), such that V
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obeys (2.1.15) and (2.1.14), and suppose 230,V € C(RYT). For R > 0, let

p+1 1 S
E(R) =RV (2 |VV Pdzdz — — V[Pdz
2 N41 -~ pN+1 0 +1 N41 -~ pN+1
RY ' NBY p OR, " NBR (2.1.16)

2s2FL_N_1 S
+ R*p—1 ngQda.
p—1 8By TInRY T

Then, E is a non-decreasing function of R. Moreover,

dE ov 25 V\?
ot _ RQS?WV“/ P (AR W (2.1.17)
dR OBN 1R+ or  p—1r
Here, By *! denotes the Euclidean ball in R¥*! centered at the origin of radius R, o is
the N-dimensional Hausdorff measure restricted to the hypersurface 9By !, r = |(20, 2)|

the Euclidean norm of a point (zg, 2) € RY ™ and 9, = (Zgﬂ—z) -V is the radial derivative.

2.1.3 The fractional heat operator

We now turn to the fractional heat operator ([1.1.2)). Analogously to the fractional Lapla-

cian, this operator admits a definition via the Fourier transform, given by

§((0 = A)u)(€, p) = (ip + [E]7)*F(w) (€, p),

for a given function u = u(z,t) : R? x R. However, a limitation of this definition is that
it only applies to functions defined on all of space-time. Therefore, if we want to apply
the operator to functions defined up to a finite time Tr, we need a pointwise formula. For
this reason, we define the fractional heat operator via the pointwise formula (1.1.2)), where,
following [60], we additionally require that u : R% x(—o0,Tr) — R is parabolic Hélder
continuous of order 2s + ¢ for some € > 0. The space of parabolic Holder continuous

functions is defined as follows.
Definition 2.1.5. We say u : 0 — R is parabolic Holder continuous of order 0 < v <1 if
u € L>(Q), and there exists v > 0 such that

u(@, t) = u(z,5)] < Ol — 2 + |t = s])772,

for every (x,t),(z,s) € Q. In this case, we write u € C{ ().
For 1 < <2, we say that u € C},(Q) if u € L>(Q), u is v/2-Hélder continuous in t

uniformly in x and its gradient V u is (v — 1)—Hélder continuous in x uniformly in t.

We notice that, although our operator cannot be the fractional heat operator in the
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Fourier sense, their pointwise formulas coincide whenever the Fourier definition holds [60].
As in the case of the fractional Laplacian, it can also be shown that our operator is the
fractional heat operator in the sense of semigroups [31]. To see this, let £ = J; — A be
the classical heat operator. The formula used for the semigroup definition of the
fractional Laplacian holds for general operators, as shown in [10,57]. Specifically, given an

operator L, the semigroup formula for L® reads,

s 1 > —rL dr
L V= m/{) (6 v — ”U)m, 0 < s <l1. (2118)

Then, £° may be written as,

JRJ— /O(I—e—?"‘);ﬁs, (2.1.19)

rL

where, as before, v := e " is the solution of

ov=—-Lv, r>0
V|,_o = u.
Now, v obeys
0, +0)v=~2Av, z€RN tr>0
v(z,t,0) = u(z,t), reRY >0
and therefore we may write,
v(z,t,s) = | We(2)u(z —2,t —r)dz,
R4

where W, is the d-dimensional Gauss-Weierstrass kernel (2.1.11)). We may now use this
expression together with (2.1.19) and (2.1.12)) to obtain

ds
Lou(x,t) = ’/ u(z,t) xtr))Ha

_ m/o /RNW(J:’t)_u($_27t_r))Wr(z)dz%,

which coincides with our pointwise expression for the fractional heat operator. Since
this calculation remains valid regardless of whether u is defined for all positive times, and
since the integral is well-defined for any u € CZ5*(R” x (—o00, TF)), we conclude that our
operator coincides with (9; — A)” in the semigroup sense. Henceforth, we will make no

distinction between these two operators.
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General properties of the fractional heat operator (9, — A)® can be found in [60] (see
also [45]). Some relevant properties are its invariance under translations in space and time
and its homogeneity of order 2s under the scaling z — A\x,t — \?t. We also remark that a

strong maximum principle holds for this operator [60].

When applied to functions depending only on t or x, space or time, the fractional heat
operator simplifies to the Marchaud derivative or the fractional Laplacian respectively. In

fact we have, for u = u(t),

Oy — A)*u( / dT,
6:=4) sl t—TI“ (2.1.20)

( ) ult

which is the Marchaud derivative of order s [53].

On the other hand, if u(x,t) = u(x), we define r = t — 7 and observe that

(@ — / /R (2)) Ku(x — 2,7) dz dr,
- /R (u(z) — u(2)) (/O Ky(z — 2,7) dr) dz.

o ST(E+s) 1
Ky(x —z,r)dr = 2 :

(9, — AYu(z) = /]R (u(z) — u(2)) (/OOO Ky (x—2,7) dr) dz

:am/'ww—u@uz (2.1.21)

Since

we find,

As in the case of the fractional Laplacian, we can also define an extension problem the

fractional heat operator. Given u a solution to ([2.1.26)), define the parabolic extension U of

U(xg,x,t) == / / Py (z,m)u(x — 2,t — 7)dzdr, (2.1.22)
0o JRr?

where X = (z9,2) € Ry x R? and P3 (2, 7) is the fractional Poisson kernel,

u as

s 1 L5 (el ar
P 7-):4d/2+s7Td/2F(S)7-d/2+l+se ’ ’
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and the constant is chosen so that

/0 /Rd P} (z,7)dzdT = 1. (2.1.23)

As shown in [60], U is well defined whenever u € C75"(R? x(—00, TF)) is parabolic Hélder
continuous and, moreover, it satisfies two key properties: first, it solves the extension prob-
lem,

U = AU + 20,,U+ 32U, for (X,t) € RE x (=T, T),
lim U(xg,x,t) = u(z,t), for (z,t) € R? x (=171, Tr),
—0

Zo

(2.1.24)

and second, the fractional heat operator can be recovered using the normal derivative at the
boundary 9 R,

ns|ulP "t = ny(9; — A)u = — lim 220,,U(z0,7,1),

1‘04)0"'

where 7, is the constant defined in (1.1.12)). The proof of this fact presented in [60] relies
on the Fourier transform. Nevertheless, as discussed in Section 2 of [31], U obeys these

properties whenever the integrals involved are well defined.

The extension (2.1.22)) can alternatively be expressed in terms of the fundamental solution

G. If w is a solution to the master equation
(O — A)°u = h,

for some h regular enough, the solution of the parabolic extension problem ([2.1.24) for u

can be written as,
Ul(xg,x,t) := / G(zo, 2z, T)h(x — 2z,t — T)dzdT, (2.1.25)
0 JRd
where G is defined in (1.1.11)), see [60]. As before, U obeys
nsh(z,t) = — lim x52%0,,U(x0, 7,1).
$0—>0+

Moreover, it can be checked that the function G obeys

x(}i_{%Jr x§0x,G(x0, x,t) = 0,
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for any (z,t) € R x Ry, and

for any positive time ¢.

2.1.4 A fractional semilinear parabolic equation

Let 0 < s < 1, and assume that u € C;5"(R? x(—o0, Tr)) solves
(0 — A)’u=|ulP"'u for (z,t) € R x (=17, Tr), (2.1.26)
where T7,Tr > 0. The data u|(_,—7,] may be prescribed, thereby considering the problem,

(0 — A)*u = |ulP~'u for (z,t) € R x (=T}, Tp)

(2.1.27)
u(z,t) = f(x,t) for (z,t) € R x(—o0, —T7].

In [31], a similar problem has been studied, considering instead (0; — A)*u = u? with
nonnegative memory data f. For this problem, they show the following: if the memory data
f is nonnegative, f is C' in time and both f and 0;f decay as |[t|~7 for some o > s, then
the problem is well-posed. We note that this is a special case of our equation since, by the
maximum principle, for such nonnegative memory data f, we have u > 0 and therefore our
problem reduces to the case discussed there.

Another case of interest is ancient solutions to the equation , that is, functions
u : R x(—o00, Tr) — R such that u solves (9, — A)*u = |ulP" u for (z,t) € R x(—o0, Tr).
For any of the two problems the following discussion holds, where, in the case of ancient

solutions, we set 17 = oc.

We consider backward solutions of equation (1.1.4]), which are defined as follows: for
any function g : R x R, we let g(z,t) := g(x, —t) denote its time reversal. Then, given a
function u : (—oo, Tr) — R which solves (2.1.26)), we have that @ : R x (=T, 4-00) solves

(=0, — A)*u = [ulP~ u for (z,t) € R x(=Tp, T), (2.1.28)

where

(=0 — A)*u(x,t) ‘u(x, —t)

/ / u(z,t) (2,7))Ks(x — 2,t — 7)dzdr,
R4
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see [24,/60]. To show this, notice that if u solves ([2.1.26)), then
(=0 — A)¥u(x,t) = (0 — A)u(z, —t) = [uf " u(z, —t) = |afP a(z, t). (2.1.29)

Similarly, starting from a function u : R? x(—Tp, +00) — R which solves the backward

fractional heat equation ([2.1.28)), its time reversal u is a solution of the forward fractional
heat equation (2.1.26)), and from ([2.1.22)) it follows that the extension associated to u is

Uz, z,t) = U(zo, @ u(x — z,t — 7)dzdr, (2.1.30)

Rd

where U is the extension ([2.1.22)) associated to the (forward) solution u. By (2.1.24), it
follows that U is a solution to the backward extension problem,

WU + AU + 20,,U + 02U =0, for (X,t) € R x (=Tp, Ty),

(2.1.31)
III% Ulzo, z,t) = u(z,t), for (x,t) € R x (=Tp,T}).
xo~>
As before, we find that
— lim 280,,U (w0, ,t) = 1n5(—0; — A)*u(w,t) = ns|ulP " u(z, 1), (2.1.32)

zg—0t1

for every (z,t) € R? x(—Tg, T;). We remark that the solution U also admits a heat kernel
representation similar to (2.1.25)) for the memory problem, see [31].

From this point forward, we will exclusively consider backward solutions, defined in
R x (=T}, +00) for some Tr > 0, and obey equation in (=T%,Tr). We will restrict
our attention to compact time intervals which, by a time translation, we may assume to be
[0, 7] for some T € (0,7y). Backward solutions will be denoted by u, and their extensions

will be denoted by U. We will work within the class of functions we now define.

Definition 2.1.6. We say that U : R4 x[0, T] — R belongs to the function class U([0,T])
if U € CHREIT x[0,T]) N C(RE x [0,T]) and the following hold:

(a) lim x5™0,U(wg,x,t) =0 for (z,t) € R x[0,T] and 280,,U € C(RE x [0, 7).

xQA)O
(b) The functions fy belong to C((0,T); LQ(RiH’ 24d X)), and
Sup ||fU(X t)||L2 Rd+l adx) < OO?
te(0,7)
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for any of the following fy:

e XPBg o IXPst o SIXPs Y g o IXPR g,

(¢) We have

< 400,

SUP) | |9U(X’ t)e_IXF/M‘ |L1(Rdj1,xgd)<)

te(0,T

for any of the following gy :
(X-VU)o,U, UH, oUH, H(X- -VU),

where

Here V denotes the gradient with respect to the X wvariables, and V x; denotes the
gradient with respect to the (X, t) variables.

Items (b) and (c) of Definition impose moderate growth controls over U and its
derivatives. While these conditions suffice for our proof, the results may remain valid under
less restrictive assumptions. We also note that related classes of functions (adapted to the
method of proof employed and the hypotheses needed for each problem) have been considered
when deriving monotonicity formulae for variable coefficient parabolic operators in [25] and,
recently, for solutions of the extension problem of the fractional parabolic equation (—0; —
A)*u = 0 in [24]. The following proposition presents a class of functions for which its

backward extensions obey Definition [2.1.6]

Proposition 2.1.7. Assume u : R? x [0, +00) — R is a parabolic Hélder continuous function
of order 2s + ¢ such that its time reversal @ : R x(—o0,0] — R is an ancient solution of
. Assume also that u € C*(R? x[0, +00)) and that its first and second derivatives are
bounded. Then, U € U([0,T]) for any T > 0.

Similarly, let u : R? X (—00,Tr) — R be a solution of the problem with memory ,
such that the memory data is twice differentiable and satisfies |(0y — A)®f(x,t)| < C. Then,
its backward extension obeys U € U([0,T]) for any 0 < T < T7.

Proof. Since |u| < C, using the bounds on the derivatives together with expressions
and (2.1.23), we can show that |U| < C, |9,,U| < C for i € {1,...,d}, and |8,U| < C. The
fact that |0,,U| < Czy follows by using the last line of the representation formula (1.5) in
[60].

For the problem with memory, we may use the representation formula (2.23) in [31] to

prove the last bound instead. The other bounds for U and its derivatives are also valid in

this case, and they can be obtained using expression ([2.1.30)) directly.
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From the previous estimates, we see that for any fixed ¢t > 0, fy(-,t) € L2(Ri+1, xddX),
the supremum of their squared norms is finite and the bounds are explicitly computable.
Continuity of the functions fy (-, t) to L2(RI, 23d X) follows from the Dominated Conver-
gence Theorem, by employing the Gaussian decay. Condition (c) follows in a similar manner.

The regularity properties of U discussed in [60] ensure the ones in our definition hold. [

2.2 Parabolic-to-elliptic transformations for fractional

operators

Next, we adapt the parabolic-to-elliptic transformations discussed in the Section [1.0.1]
to the fractional setting as follows. First, we note that the extension problems arising for
fractional operators are local (yet degenerate) problems. Then, we work with the extension
problems, and interpret the variable xy as another variable that needs to be lifted, and
perform the lift. Observe that, if ¢ is the backward time (as is the case when considering
backward solutions), Perelman’s original variables require ¢t = r? /2N, where the variable x
remains unchanged. Here we perform a slight modification of the variables for convenience,

by absorbing the N-dependence to the high dimensional variables instead of ¢.
Let (20, 2,7) € Ry x R x R™. Then, set

To = +/nz,
: = i (2.2.1)
20 =R =23+ |22+ |y~

We now write

Fn(20,2,9) == (Vnzo, Vnz, R?/2).

Definition 2.2.1. Let U : R‘fl xR — R. Then, its n-dimensional lift V,, : R‘f"“ — R of
U 1s,
Vi(20, 2,y) := U o F (20, 2,y) = U(xg, x, t). (2.2.2)

Observe that, if U is defined on a region Riﬂ x[0,T), then V,, is defined on the region

Ri—i—n—i—l de-ﬁ-n-ﬁ-l

VoL A direct application of the chain rule yields the following.
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Lemma 2.2.2. Let V,, : R?f‘”l — R as in 1) Then V,, satisfies:

0.,Vyy = V/n0,, U + 20U,
aijn = y;0.U,
2V, =nd2 U + 23,02 ,U + 220;U + 0,U,
92 Voo = 0uU + 307U,
IVV,|? =n|VU]? +2(X - VU)O,U + 2t(9,U)?,

foranyi=0,1,...,d, and j =1,...,n. In particular,

L0,V = — (V10U + 200,U) = = 8,,U + adyU, (2.2.3)
20 20 Zo
and
AGyVn + Zgazovn + 02V, =n (atU + AU + g&roU + 830U> + H, (2.2.4)
0 0

where H is defined in (2.1.35).

Proof. We start with the first derivatives. For ¢ = 0,1,...,d, we have

0.,V = 00,U - 0.1 + 0,U - 0, t

For y=1,...,n,
8ijn = (9tU . (9yjt = yjatU.

Now, we compute |VV,,|* using the previously computed first derivatives.

d

VVal? = (0:Va)? + D (0:Va)* + 3 (0,,Va)?
i=1 j=1

n

d
= (Vnds,U + 20,0)" + 3 (Vndo,U + z0U)" + 3 (y;0U)°
i=1

j=1
(3ZOU)2 + 2\/_z08x0U8tU + Zg(atU>2

n

+Z )2 4 2v/nz0,, UOU + 22(0,U +Zy3 (8,U
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Rearranging the previous terms, we find,

d

(OaoU)* + ) (02,U)?

i=1

d n
+ (9,U)? (zg - sz + Zyj)
=1 =1

=n|VU* + 2y/n0U(z - VU + 20,,U) + R*(9,U)?
=n|VU|> +2(X - VU)O,U + 2t(6,U)?,

IVV,.|> =n

d
+ 2\/58tU (ZoﬁxoU + Z zz(“)IlU)

=1

where in the last step we used ([2.2.1]).

Now, we compute the second derivatives. For i = 0,1,...,d,

2V, = 0.,(vnd,, U + 20,U)
= /n(vVnd2 U + 20,,U) + 0,U + 2i(v/n0u,U + 2,0;U)
=nd; U + 22,0,,U + O,U + ;07 U.

In particular,
02 Vi = n02,U + 2200, U + O,U + 250;U. (2.2.5)

Forj=1,...,n,

02V, = 0y, (y;0,U) = OU + y>02U.

Yj J
We now compute the term %820 V.

a a
_azo Vv, =—
20 20

= "9,.U + ad,U.
Zo

(Vs U + 200,U)
(2.2.6)

For the Laplacian, we first compute A, \V,,

d n
Ay Vn = Z agi Vo + Z 5;- Vi
i=1 j=1

d d n
=nAU +2) i0,,U +doU + Y 220;U +ndU + Y y;07U.
=1

i=1 j=1
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Simplifying,
d
AGy)Vn =ndU +2 Z 230,:U + (d +n)O,U + (2t — 23)02U. (2.2.7)
=1

We can then then combine, (2.2.5)), (2.2.6) and (2.2.7) to obtain,

d
AV + —0 Vi + 02 Ve = [nAU +2 > 20U + (d+n)OU + (2t — 23)07U]
<0

i=1

+ [00,U + adhU] + [n02,U + 2200500 + U + 230}V
0

— (AU + U + %GIOU)

d
+ 220000t U + Y 2:004U + OU) + (d + a+ 1)0,U + 2t0;U

i=1

= n(0U + AU + xﬁaxoU +2U) + H,
0
where
H=2(X,t) - VixnoU+ (d+ 1+ a)o,U,

and X = (z9,7) € RE™. O
Let u € CZY(R? x (=T, +00)) such that u solves (2.1.28)), and let [0, 7] C (—TF, Ty).
Let U : RE x[0,7] — R be its associated extension, and assume that U € U([0,7]). We

now establish the extension problems satisfied by the lifts V,, of U. First, notice that since
U is a solution of (2.1.31)), by (2.2.4)) we have,

A(z,y)v'n, + gaz()vn + agovn = H, (228)

<0
and H does not depend on n. Then, notice that

lim Vn('anZay) = lim U(\/ﬁ’an\/ﬁZaRQ/Z) = lim U(ﬁzm\/ﬁZ? (Z§+ ‘Z|2+ |y|2)/2)

z0—0t z0—0t z0—0t

Since U € U([0,T]), U is continuous in R4 x [0, 7] and therefore,

lim Vi (20, 2,y) = U(0, vinz, (|2 + [y[*)/2).

z0—0t

We define t; as
_ 2P+l

tll 9 s

(2.2.9)
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and since R? = 2t, we have R* = 2t; for any (0, 2,y) € 8Ri+l . Then, using (2.1.31)),

lim V,(z0,2,9) =U(0,z,t;) = u(z,t1), (2.2.10)

z0—0t

and, by Lemma [2.2.2]

25024 Vi (20, 2,y) = 2§ (V/n0z U + 20,U)

_ (%) (\/ﬁ&mU + %aw)

= n'3"af (0.,U + 220U .
n
Using (a) of Definition and (2.1.32)),

lim z((]lazovn(z()) Z, y) = lim nl_%xg (a:coU + @atU> (ZL'(), C(I,tl + |x0|2/2n)
n

z0—0t zg—0t

= lim nkTaxgﬁxOU(xo,x,tl)
£E0~>0Jr
= —nsn%awp_lu(x,tl).

Finally, observe that
—nn 7 JulP (e t) = e T VPO, 2, ),

since 2t; = |z|? + |y|>. Combining the previous observations, we have the following.

Proposition 2.2.3. Let u € C75™(R? x(—TF, +00)) such that u solves (2.1.28), and let
0,7 C (=Tp,Tr). Let U be its associated extension. If U € U([0,T1]), then V,, obeys

V- (28VV,) = 28H 0o F,, =n~%222H  in RE"npdintt

_ ver (2.2.11)
zoh—{%"' Vn(Zo,Z,y) = U(l’,tl) fOT’ (Zvy) E Bﬁ?

and

. a l-a — n n
— Z(}l_{l& 280,V = 0 2 |V, P 1V,(0, 2,y)  for (2,y) € ORI HB%H. (2.2.12)

Moreover, since Vy,(29,2,y) = U(xo, x,t), we have

Vn c CZ(Ri+n+1 de—;;—&-1> N C(le_+n+1 N Bd;;—H)

VaT var )
and
260:0Va € C(RE N BILAH),
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2.3 An almost monotonicity formula for V..

Proposition [2.2.3| enables us to derive an “almost monotonicity formula” for the lifts V,,
by leveraging the similarities between and . The term “almost monotonic”
reflects the fact that the formula becomes strictly monotonic in the limit n — oco. This
will become clear later in our analysis, where we demonstrate that the contribution of the
source terms vanishes asymptotically. We will relate the integral quantities defined for the
high-dimensional lift to those associated with U in ]Rffrl x[0,T]. To prove our formula, we

adapt the arguments used in the proof of Theorem 1.4 in [29].

Theorem 2.3.1. Let u € C/5P(R? x(—Tp, +00)) such that u solves (2.1.28), and let
0,T] C (=Tg,Tr). Let U € U([0,T)) be its associated extension, and V,, its n-dimensional
lift. Then the function &, : (0,v/2T) — R defined as,

1 o s
&.(R) :=R¥rm1~N 3 / 20|V, deodzdy — n' 2" 7 - / (V[P dzdy
RY+1nBN+! P+ 1 JorN+1npN+1

s
—/ 20V2 do,
p—1 dBNTIRY !

+1
+ RQS%—N—].

(2.3.1)
obeys,
2
Cf;; :R2S§E—N+1/ 8 (a@vn n 231E> s
N+1~pN+1 T —1r
OBy TINRY ) p o (2.3.2)
_ RSB -N-1 / (—Svn n r—") (20H 0 F,) dzodzdy,
R$+lmBg+l P — 1 87”
where N =n +d, r = |(z0, 2,y)|, and 0, = M -V is the radial derivative.
Proof. Since U € U((0,T]), Proposition holds. Now, For (zg, 2,y) € RY ™!, let
W (20, 2, y; R) := Rv-1V,(Rz, Rz, Ry).
Then,
V. (ngw)<z07 %, Y, R) - RQs/(p—l)—i—Q—a (V ’ (Z((levn)) (R’ZO? RZ? Ry) (2 3 3)

= R¥/0=D¥2=e (e 1] o F,) (R, Rz, Ry),
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and,

— lim 280, W (20, 2,y; R) = —R*/®=V+ lim 220, V,,(Rz0, Rz, Ry)

Zo~)0+ Zo%0+

— —R2/=D+1=e Ny (Rz)0,,Vi,(Rz, Rz, Ry)

Z0 —0t

= —R»/0=DH=a iy (220, V,)(Rz, Rz, Ry)
Z0—>0+

= R¥/ 0003 (Vo [P-1V,)(0, Rz, Ry)

1—a

=n 2 n((W[PTW)(0, 2, R).

Therefore, W obeys,

V- (28VW)((20, 2,y); R) = R¥/(=D+2=a(0 ] o F,)(Rzy, Rz, Ry),

l—a (234)
— lim (2§0:,W)(20, 2, y: R) = n = n|W[P~'W(0, 2,y R).
20—0
Define,
1 2 b
&, (Vi; R) := REFTN / wa YVl — T / IV, P dydz | .
RY+1ABN+! 2 P+ 1 Jord+inpy+t
(2.3.5)

It is straightforward to show that
E,(Vi; R) = E,(W; 1).

Now,

l1—a

2 ~—a
&, (W:1) :/ YW g — "5/ WP dydz.  (2.3.6)
RY T BN+ 2 ORY T nBYV T

p+1
Since,
2s
RWp = =1 + W,

differentiating &, (W;1), we find

dén a l-a —1

— (Vs R) = 2o VW - VWgrdydzdzg —n 2 n; (WP WWgdydz.

dR RY T BN+ RN BN+
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Now, observe that,

VW -V Wr =V - (28 WRVIW) — WRV - (28VIW)
=V - (28WrVW) (2, 2,y; R) — R*/(?=U+2=e(,a 1 o F,)(Rzy, Rz, Ry),
(2.3.7)

and, to simplify notation, define
A(zg, z,y; R) := R¥/@=D+2a(a 7 6 F )(Rzy, Rz, Ry).

We integrate by parts, and use the boundary condition to write,

dé,
— (Vs R) = / 2o W, Wgdo — / WgrAdzydydz
dR oBy IRV RY T nBN
2
=R W do — — / W Wrdo — / WrA
OBN 1R+ p—1 JopN+iapi+t RY+H N+
= / 2aWEhdo — i Or / 22W?do | — / WrA.
B RN p—1 B T nR7 ! RY T ABN !
(2.3.8)
Now, since

2s V,(Rzy, Rz, Ry)
p—1 R

WR('ZOa Z,Y; R) = R2S/(P—1) ( + (207 Z, y) ' VVN(RZOa RZ) Ry))

2
_ RQS/(p—l)—l (pTSan + (207 z’y) . an) (RZO7 RZ, Ry)7
(2.3.9)

we have,

/ WrA dzydzdy
RY T B!

2
_ pis/(-1)+1-a /R — (p _S Vo o+ (20,2,9) - vvn) (26H o F,)(Rz, Rz, Ry)
+ NbB

p+1

2
_ stplNl/ ( S Vi + (20,2, 9) - an) (20H 0 F,,) dzpdzdy.
RYTInBY T

p—1
(2.3.10)

The result follows after similarly scaling back the first two terms on the last line of equation
(12.3.8). O
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2.4 Volume elements and convergence lemmas

Lemma[2.2.2)shows that all the quantities appearing in Theorem can be represented
in terms of the functions U and u. To effectively express integral quantities in terms of the
radial variable and X = (9, ) € Rfl, we first examine the volume form on the subsets

where integration takes place.

2.4.1 Induced volume elements

We now let (zg,2,9) € R xR™. Notice that here zy € R. We will restrict these
variables to different subsets of interest later. Now let (I,¢) € Ry xS?% denote the polar

RdJrl

coordinates in the factor, i.e., (20,2) = (I, ¢). Similarly, for the R" factor, we denote

the polar coordinates R, xS7~' by y = (s, 6).

Rn+d+1

The Euclidean metric in , g5 = dz2+dz*+dy?, can be written in these coordinates

as,
5= di2 + 12d0% + ds® + s2d02_,, (2.4.1)

where d2, denotes the standard metric in ST*. Notice that if we define 7 = |(z0, 2, y)|, then

s = (r> — 1?)"/2. We introduce coordinates (r, X,0) in R"***! via the map

F(r, X,0) <\/_ > (2.4.2)

where 7 € Ry, X € R¥™ 9 € S"1. Here, (2,2) = X/v/n, and 1> = |X|?>/\/n ensuring
r?2 > 1? and thus s > 0. Then, the following relations hold:

(l,9) = (20,2) = X/V/n,

(2.4.3)
(s,0) =y=(/(r*=[X]*/n),0).

Since r> = 52 + 12, on the (n + d)-dimensional spheres {r = R = const} C R"™*! we have
12 < R? and
ds ‘T{T:R} - _gdl’T{rzR}’
where T'{r = R} denotes the tangent space to the (n + d)-dimensional sphere {r = R}. The
metric induced by (2.4.1)) is,
2

Tr )+ A+ (B2 = P)dSY; . (2.4.4)

9elpr=ry = (1 +
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Therefore,

l2
V gE|{7‘:R} = \/(1 —+ 2 l2)l2d(,r2 - l?)n—l

= rlf(r® — 1?)n 22 (2.4.5)

1 l2 (n—2)/2
=T l (1 — ﬁ) s

where [? < r? = R?. Then, the Euclidean volume form is,

l2
2

(n—2)/2
dV =1 (1 ) dl A dé A dr A db.

Since the Euclidean metric in R*! is given by gp = dz2 + dz* = di? + 12dQ2, we have,
dzo Adzi A -~ Ndzg = 14l A dop.
Now, using that X = (zo, ) = /n(20, 2), it is straightforward to show,
_dn1
dzoNdzy N -+~ Ndzg=n"""2 dxg Adx,
where dz = dx; A -+ - A dzg. We can combine this with [? = | X|/n < r? to obtain,

R
nr?

(n—2)/2
dzg A dz A dy = n~(@HD/2pn=1 (1 — > dzo A\ dx A dr A d6. (2.4.6)

Recall that R+ = {2, = 0} = {xy = 0}, and denote by B} the ball of radius R in R™.

We now write  R7F1 NBEF* in the coordinates (r, X, ) as,

ORI ARt = {(r, X, 0): 0<r <R, X = (z¢,2), 70 =0, 7 € Bfl/m, 6 S},

(2.4.7)
and since 0,, = \/nd,,, the induced volume form over this region is given by,
dz Ndy = 1p,, dV|{ZO:0}mBg+d+l
|:C|2 (n—2)/2
= p 2l <1 — —2> dz Adr A db.
nr
Similarly, we obtain
OBR T NRY T = {(r, X,0) :r =R, X e RE'NBIL e S} (2.4.8)
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The induced volume form on this region is,

do = LaTdV|{r:R}

X

— p-@+)/2pn-1 [
" ( nR?

(n—2)/2
) dxg A dx N db.
Finally,
B AR = {(r, X,0): 0 <r < R, X e RETINBI, 0 € ST,

and the volume form on this region is,

| X
nr?

dzg Ndz Ndy = n—(d+1)/2,n-1 (1

Define G,, : R xR, — R by

n—2)/2
Go(X,t):=1- ’X|2 - Xpat+1 apatt (X)
e 2nt Ry 0B o ’

and G,, : R xR, — R by

_ |22 (n—2)/2
Gn(xvt) = <1 - %) XB

d
V2nt

(n—2)/2
) dxg N dx N\ dr A db.

(2.4.9)

Using G,, and G,,, by (2.4.7), (2.4.8) and (2.4.9) we can write the resulting volume elements

as,
dZdbeT’d“mBR = n_d/Qr”_lén(x, r?/2) dxdrdd,

dolppraripgorar = n~ DR RIG (X, R?/2) dX d6,

and
dzodzdy| gnrivipgnrin = n~HD2m=1G (X 12 /2) dX drdb,

where dX = dxqdzx.

2.4.2 Convergence lemmas

(2.4.10)

(2.4.11)

(2.4.12)

Now, we establish some convergence lemmas for the integral quantities defined from V/,.

Our analysis begins with an observation about the limits of the functions G,, and G,,.

Define
G(X,t) = eI XA o0 G~'($,t) — €—|$|2/4t’
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where G is a function on Riﬂ x R, ,and G is a function on R? x R,. As shown in Proposition

in the Appendix, we have
Go(X,t) > G(X,t) and Gy(x,t) — G(x,1),

uniformly in Riﬂ x{t > to} and R? x{t > t,} for any to, > 0, respectively. Moreover, we
can show

Gn(X,t) < eG(X,1),

for every (X,t) € Rfl x R, and, similarly we have,

Gn(z,t) < eé(a:, t),

for every (z,t) € R? x R, , see Lemma in the Appendix for a proof. The Dominated
Convergence Theorem now ensures that, if f(-,¢) is integrable with respect to G(-,t) z3d X,
it is also integrable with respect to G,,(+,t) z3dX for every n € N;¢ > 0, and similarly for
the measures G(-,t) dz and G, (-, t) dz respectively.

Lemma 2.4.1. Let 0 < ty < t;. Suppose f : Riﬂ X[to, t1] — R is continuous and fG €
C([to, t1]; L*(REM, dp)), where du = x3dX . Define

ha(t) = [ F(X,)Gn(X, 1) dp,

d+1
R

and

h(t) := FXLHG(X, ) dp.

Ry
Then h,, — h uniformly in [ty,t1].
The proof of Lemma [2.4.T] can be found in Section of the Appendix.

Remark 2.4.2. By examining the proof of Lemma |2.4.1], we see that the result also holds
if f:RYx[ty,t1] — R is continuous and fG € C([ty, t1]; L'(RY, dx)), where the functions
h, and h are replaced by h,(t) = [pa f(2, )Gz, t)dr and h(t) == [pa f(z,t)G(2,t)dx
respectively.

In particular, if u € C75™ (R x (=T, +00)), this holds for f = |u[Pt' on compact inter-
vals of (0,T). To show this, first observe that |ulP™'G < CG for some positive constant C.
Continuity of |u[PT G (-,t) in L*(RY, dz) follows from the continuity of u and the Dominated
Convergence Theorem applied to sequences t, — t. Moreover, \u|p+1(~? < CG also implies
that

sup luPH Gz, t) dz < oo,

te(0,T) J R
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We will use both properties in the following section.

Remark 2.4.3. Note that if U € U([0,T]), Lemmal[2.4.1| applies to the functions |VU|?, U,
| X.VU|?, and (8;U)? on compact intervals of (0,T), since by property (b) of Deﬁnition
and the Cauchy-Schwarz inequality, the functions |VU]*G, UG, |X.VU|*G, and (0,U)*G
belong to C((0,T); Ll(]Rﬁlfl, dp)). In particular, it also applies to

2 2
F(X, 1) = (X VU + 20,U + pTSlU> , (2.4.14)

since

g(X,t) = (X VU + 2t0,U + pz_s : U) e IXIP /8t (2.4.15)

is a sum of continuous functions from (0,T) to Lz(Rfl, du), and therefore it must also be

continuous as a function from (0,T) to LR du).

Lemma 2.4.4. Let ¢ € (0,1). Define F,, : C([e,1]) — R such that

&U%:n/%"ﬁ@ﬁ,

and

Then F,(f) — F(f).

Proof. Clearly F), is linear for every n € N. To see that F}, is bounded, we compute

1 &

1
FI< e [ etar = (5= S ) 1l < 1

n

and thus |F,,| <1 for every n > 1. Since

Rt =n (o )

n+k ntk

we see that
lim F,(t*) =1 =t*(1).

n—oo
Since F, is uniformly bounded and converges on the dense subset of polynomials, a standard

approximation argument shows that the limit

lim F, = F

n—oo
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exists, |F| < +oo and F(f) = f(1) for every f € C([e, 1]). O

Lemma 2.4.5. Let ¢ > 0 and suppose h,, : [e,1] — R is a sequence of continuous functions
that converges uniformly to h : e, 1] — R. Then F,(h,) — F(h).

Proof.
< |F - Fth‘oo + ’Fn’oom o hn|oo — 0
as n — 0o, since |F,| is uniformly bounded by 1 if n > 1. O

2.5 A monotonicity formula for the fractional semilin-

ear heat equation

Now, we derive the main result of this chapter. First, observe that if (r, X,0) €
Ry x RE xSP~1
Valzo,2,y) = Voo F(r, X, 0) = U(X,r%/2),

and the same applies for the quantities listed in Lemma [2.2.2] Therefore, whenever we
are integrating with respect to the X and r variables, the functions will be evaluated in
(X,r%/2) and, if r = R is fixed, the quantities will be evaluated in (X, R?/2) = (X,t), by
(2.2.1). Similarly, if we are integrating with respect to the z and r variables, observe that
V(0,2z,y) =VoF(r,0,z,0) = u(zx,r?/2) = u(z,t1), where ¢; is defined in ([2.2.9). Then, the
functions are evaluated in (x,72/2) and, for any fixed » = R the quantities are evaluated in
(z, R?/2) = (x,t), by (2.2.1). We follow this convention by default unless explicit evaluations

are provided.

Let

n(d+1+a)/2

1

We have the following proposition.

Proposition 2.5.1. Let u € C25t(R? x (=T, +00)) such that u solves ([2.1.28) in [0,T] C
(—=Tg,Tr) and suppose its associated extension satisfies U € U([0,T]). Let V, be its n-
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dimensional lift. Define,

p+1 1
&(R) :==R* zfl—dz/ 28 VU|*(X, R?/2)G(X, R?/2) dX
Ri‘*‘l

PR [t o R )Gl B 2) da

_p+1

+R28;’ﬂd2ﬁ / w2U(X, R?/2)G(X, R%/2) dX
— Rd+1

Then, for any 0 < e < T2,
Chén(R) — E(R),

for every R € [\/2e,\/2(T — ¢)|, where &, is defined in ([2.3.1)).

Proof. Let 0 < e < T/2. We write

Cun(R) = E,(R) + EL(R) + E,(R),

where,
b, g1
eY(R) = C, R "¢ / 28|V V,|? dydzdz,
2 RO+ g+l
€2(R) = —n'2"C, R / Voo |PH dzdy,
p+1 oRM A+ grtd+
and,

ptl_p g1 S a
& (R) = C,R*»1 "1 2 / 23V do.
p — 1 aBn+d+1ﬁRn+d+1

We start by computing the limit of €!. By (2.4.9)) and (2.4.12)) we have,

1
an-z—(”—”5 /R N— 28|V, |? dydzdz

ISy i

(2.5.2)

(2.5.3)

(2.5.4)

(2.5.5)

(2.5.6)

xz r n—1
= dﬂm/ /R( “) (n|VU? +2(X - VU)O,U + r2(9,U)%) <E) G, dXdr

_ - a 2
= 2n/0 /Ri“ 7 x0|VU| G dXdr

e (T)"_lazx VU)OU + 48U G, dXd
50 R‘j_ﬂﬁ xo(( ' t‘|‘7"(t))n "
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In particular, we can write,
p+l R n—1 p+1 R n—1
EL(R) = stzfl—d—ln/ (5) Aae?/2) dr+R28P+1_d_1/ (%) mi2/2)ar,
0 0

where

1
BL(F) = -/ 2| VURG (X, 1) dX,
2 Ri+1

and
BI(E) = / 28 (20X - VU)OU + 2(0,U)) Go(X, 1) dX.
RYH

Using that U € U([0, T]) we can apply Lemma to show that Al (¢) converges uniformly
to

1
R'(t) := = 28| VUPG(X,t) dX,
2 Ri‘i—l

for t € [¢/2,T — €]. Now, since R € [v/2¢,/2(T — ¢)],

R

n/OR (%)nl B (r2/2) dr = n/\/E (%)“ B (r2)2) dr + n/OVg (%)nl B (r2/2) dr.
(2.5.9)
Given that the convergence hl (t) — h'(t) is uniform in [¢/2,T — €|, the convergence
hl(R?/2) — h'(R?/2) must be uniform for R € [/, \/2(T — ¢)]. We perform the change of
variables 7 = r/R, and apply Lemma to show,

R n—1
n/ (L) h;,(r2/2) dr — RhI(RQ/Q) - E/ JJS|VU|2G(X, R2/2) X, (2.5.10)
Vi R 2 Jpan

for every R € [v/2¢,/2(T — ¢)]. Moreover, since U € U([0, T]), we have,

[ ()] <

N ®

sup / 2 VUPPG(X,t)dX < C, (2.5.11)
te(0,7) JREH

for every t € (0,7T) and some constant C' > 0. Therefore,

/f (}%)”_1 B (12/2) dr

for every R € [v/2¢,/2(T — ¢)], where we used r2/2 < T for r € [0,+/¢]. Combining both

n

1\"/?
< CR'™(VE)" < CV2T <§> — 0, (2.5.12)
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computations we obtain,

Brryn=t R a 2 2
n (-) KL (r2/2)dr — = [ 28| VUPG(X, R?/2) dX. (2.5.13)
o \R 2 RO+

In order to control the term involving A, a similar argument to the one discussed in (2.5.11))
shows
|h, ()] < C, (2.5.14)

for some constant C' > 0 and for every t € (0,7).

Therefore,

/0 ! (5)" w22y ar

<C (2.5.15)
V2T
<C— =0,
n
for every R € [v/2¢e,/2(T — ¢)]. Combining ([2.5.13) and (2.5.15)), we find,
P 1
ENR) — RQspﬂ‘dé/ 2| VUPG(X, R?/2) dX. (2.5.16)
RIH
For the second term, €2, we use (2.4.7) and (2.4.10)) to compute,
—n'3* 0, R-(-1) / V[P dzdy
p+1 ORTTINBNH
—a— R n—1 _
e eI / / up (5)" G ddr (2.5.17)
p“[‘ ]_ 0 8Ri+l R

R n—1 _
= —p— / |u|Pt (L) G, dzdr.
P -+ 1 0 R4 R
Since u is parabolic Holder continuous of order 2s + ¢, by Remark we have that
\u[P G (2, ) de — / |u[PTL G (z,t) dx
R? R4

uniformly for ¢ € [¢/2,T — ¢] and,

sup luPH G dz < +oo.
te(0,T) JRY
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Then, we proceed as for A}, in (2.5.9), (2.5.11)) and (2.5.12)) to obtain,

&2(R) — —LRQSTH/ lu[PG du, (2.5.18)
p“" 1 Rd

for every R in [v/2e,/2(T — ¢)].
For the third term, &2, we use (2.4.8)) and (2.4.11)) to deduce,

3 252+ _pg-1 S
€3(R) = C,R*» -
p—1 oBp T NRY AT

_ prition-d-1_S 1n(d+“+1)/2 /d+1 (ﬂ) U?n~ @02 pn=1q qx (2.5.19)
R+

ay/2
2V, do,

p— vn
— gt L [ @, dx.
p—1/pint

Since U € U([0, T]), we have B3 1~ 202G (-, R2/2) € C([v/2e, \/2(T — &)]; L' (R, z8d X)),
and we can directly apply Lemma to show,

€3 (R) — @42 / 28U%G dX, (2.5.20)
p—1Jgin

for R € [v/2¢,/2(T — ¢)]. Combining (2.5.16)), (2.5.18) and (2.5.20) the result follows. [J

We now examine the convergence of the derivatives of C,&,,.

Proposition 2.5.2. Let U € U([0,T]) and let 0 < e < T/2. Define,

D(R) := R¥ 142 /

d+1
R+

9 2
28 (X VU + R2,U + pTSlU) G(X,R?/2)dX. (2.5.21)

Then
d

ECnEn(R) — D(R),

uniformly in [v/2¢,/2(T — €)].

Proof. Fix 0 < e < T/2. Using ([2.3.2)), we write

d

E{Cngn(R) = An(R) — Ba(R), (2.5.22)
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where

; W2 V)’
An(R) = CnRQSpi‘”‘d“/ 28 (av + = K) do, (2.5.23)
DB AR or p—1r

and

B,(R) := C, B>t /

n+d+1 n+d+1
RIHHINBY

2

( i Vi + Rlz0,2,1) vvn> (20H o F,,) dzodzdy.
p_

(2.5.24)

To examine the limit of A,, first observe that for any (zg,2,y) € OBEt* N R+

|(20,2,y)| = R, and therefore
av, 1

1
— : - (X - 2 .
o R(zo,z,y) vV, R( VU + R?*9,U)

Then,

2 a 2
2 (avn+ 2 E) :(ﬂ) (1<X-VU+R2atU)+ 2 g)

o p—1r vn) \R 2 p-1R (2.5.25)
—a ng 2 5
—n T (X-VU+R8tU+p_1U) :
By (2.4.8) and ([2.4.11}),
2 n 2 n i
Ap(R) = O, R¥ 5 i+ / 2 (al T K) do,
8Bg+d+lﬂRi+d+1 or p— 1r
P 0 2 i
_ stpiri_n_d_‘_l/ LU_(; (X . VU + RQatU + _SU) RnilGn dX (2526)
RA+1 R p—- 1

2 2
=R p—l““/ g <X VU + R?O,U + — U) G dX.
Ri—u — 1

Since U € U([0,T1]), Remark and Lemma imply,

A, — D,
uniformly for R € [v/2¢, \/2(T — ¢)]. Finally, we examine the non-homogeneous contribution,
and show that it converges uniformly to zero. First notice that, by (2.2.1]), we can rewrite

2 2
p_slvn + (20, 2,y) - VV,, = p—SlU + (20, ) - VU + r?9,U. (2.5.27)
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Then,

28P+1 —2-d R a 28 2 T n—1
B.(R) = B> 20 H U+X-VU+r20,U (—) G, dXdr.
0o JR{H R

p—1
(2.5.28)

2
sn(t) ::/ x8H< " U+X- VU+2t6’tU> G, dX.
Ri+1 1

Using that U € U([0, T7),
sn(t)| < C,

for t € (0,T) and some constant C' > 0. Now,

r

p+1 R n—1
BB < B () ) ar

R e
< R%m_z_dc/ (%) Y (2.5.29)
0

< g(@)%%flfd,

n

for every R € [v/2¢,1/2(T —¢)]. Since the last bound is independent of R, it converges
uniformly to zero in [v/2e,1/2(T — ¢)]. O

Combining the previous results, we obtain the following.

Theorem 2.5.3. Let u € O3 (R? x(—Tp,+00)) such that u solves ([2.1.28), and let
0,7 C (=Tp,Tr). Let U € U([0,T1]) be its associated extension, and V;, be its n-dimensional
lift. Then, the quantity is non-decreasing in (0,T). Furthermore, its derivative obeys
[0,

Proof. Let 0 < ¢ < T/2, and let t € [¢,T — ¢]. Then, R € [v/2¢,/2(T —¢)] and, by
Proposition the convergence

d
— D
—=Co&u(R) — D(R)
is uniform in [v/2¢, 1/2(T — €)]. Furthermore, by Proposition we have
lim C,&,(R) = E(R), (2.5.30)
n—oo
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for every R € [v/2¢,/2(T — ¢)]. Then, a standard argument shows,

d o d
T=E(R) = lim —-C,E.(R) = D(R), (2.5.31)

for every R € [v/2e,1/2(T —¢)]. Since € > 0 is arbitrary, (2.5.30) and (2.5.31)) must hold
for every R € (0,v2T).
We may now define

3(t) = — L (v,

(Am) 72T (s) g a2

and since d/dt = (2t)~'/2d/dR,

d 1 1 1 dé
E3<t) - (47r)d/2F(s) QSﬁ_d/Q\/Q_tE(@)'

Using the expression ((1.1.11f) for the fundamental solution, and denoting

S(z,t) = §((0,2),t),

we find,
2s 1 (1 1-2s 2 1s 416
J(t) =tr1 3 zy CIVU|*GdX — 1 |u|P™ G dx
d+1 d
Ry bt e (2.5.32)
2s S
tpj 1-2s 2 dX
Ty /Riﬂ T TSR,
and
P thl—é/ o2 (20U + X - VU + 21U 2s;dX (2.5.33)
dt - 2\/§ Rt 0 t p—l . ..
¢
The result readily follows. O]
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Chapter 3

A unified high-dimensional framework

for the Ricci flow

The final part of this thesis focuses on the Ricci flow, particularly on how entropy emerges
as a high-dimensional limit of Colding’s monotonic volume. We begin by revisiting Perel-

man’s original derivation of his entropy formula for the Ricci flow.

3.1 Perelman’s modified Ricci flow

Since Hamilton introduced the Ricci flow [36], it was widely believed that it lacked a
variational characterization as the gradient flow of any natural geometric functional. This
view was further supported by the work of Bryant and Hamilton, who showed that, ex-
cept in dimension two, the Ricci flow cannot be realized as a gradient flow on the space of
smooth Riemannian metrics et under the standard L? metric. As discussed in Chapter [1]
variational methods are fundamental in the study of heat-type equations, making it natural
to expect that a geometric flow as natural as the Ricci flow should admit such a charac-
terization. Remarkably, Perelman uncovered this structure by working on the extended

space Met x C°(M). Below, we outline this approach, which laid the foundation for the

W-functional (|1.1.15]).

The gradient flow associated to an energy functional is defined as follows: for a Hilbert
space H and a smooth functional F : H — R, the gradient vector field VE : H — H is
defined at u € H as the unique vector VE(u) € H that obeys

(VE(u),v) = dE(u)(v),
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for every v € H. Then, VE defines a gradient flow ¢, given by

d
—ou(t) = =V E(¢p,(t)),
S0u0) = ~VE(6u(0)
Cbu(o) = u,
for any given u € H. Observe that the flow lines ¢, are paths of steepest descent with
respect to the graph I'(F) = {(u, E(u)) € H x R}. To see this, notice that if u = u(t) € H,

%E(u(t)) = dBE(u)(u) = (VE(u),u) > —|VE|dl,

and the equality holds when @ = —AVE(u) for A > 0.

For the Ricci flow on a closed Riemannian manifold (M, g), the natural candidate for the
functional F is the Einstein-Hilbert functional E : Met — R given by,

E(g) Z/MRdv,

where R is the scalar curvature of the metric g, and dv is the measure induced by g.

Nevertheless, the variation of E in the direction of h gives,

nE(g) :/ <§g — Ric,h> dv,
M

with the scalar curvature term coming from the variation of the volume element. From this,

it follows that (twice) the metric obeys,
d
P 2(VE);; = Rgij — 2Ry,

which appears similar to the Ricci flow, but its symbol does not possess a definite real part
and is therefore not parabolic, see Chapter 10 in [5]. In particular, short-time existence is

not ensured.

To overcome this problem, Perelman considers an expanded space et x C°°(M) and

defines the functional,

F(g, f) = /M(R VR du, (3.1.1)

where f is known as the dilaton field in the String Theory literature (see for example Section

6 in [26]). The variation of F can be explicitly computed to yield the following.
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Proposition 3.1.1. On a closed manifold M, the variation of F is

SnmJF(g, f) = — / (Ric + V'V f, hye ™ dv
M

1 (3.1.2)
+ /M(Etrgh —E)2Af — |Vf|? + R)e ' av.
Proof. See Proposition 10.4 in [5]. O
As a corollary, it also follows,
Corollary 3.1.2. For measure preserving variations, that 1is, (5(h,k)e_fdu(g,f) = 0, the
variation of the F-functional is
ST (g, f) = —/ (Ric +VV f, h)e™ dv. (3.1.3)
M

Now, fix a smooth background measure dw on M, and define X : et — Met x C°(M)

as,
X:g— <g,10g dy(Q)) ;

dw

where dv/dw is the Radon-Nykodym derivative. Then, the composition F* = Fo X : Met —
R is given by

ffw(g):/M <R+‘v1og;l—: 2) dw:/M(R+|Vf]2)dw, (3.1.4)

where we define f = log g—:. From Corollary ,it follows that
0nF*(g) = —/ h7(Ri; + V¥V, f) dw,
M

since dw is fixed and dw = e~/dv. Then, (twice) the gradient structure of * on the space
Mtet results,

d W
agij =2V3F¥(g) = —2(Ry; + ViV, f),

and the evolution equation for f reads,

d 1 ..d
_ — _ Y _ 4. = _ _
dtf 29" g9 Af - R

57



Therefore, for the coupled modified Ricci flow,

0ig = —2(Ric+VVY)

(3.1.5)
atf = _Af - R7

we have the following.

Corollary 3.1.3. If (g(t), f(t)) is a solution to the coupled modified Ricci flow (3.1.5)), then

d
—F(g) = 2/ |Ry; + vivjf|2 dw. (3.1.6)
dt v

The solution to the coupled modified Ricci flow can be related to the solution of the
coupled Ricci flow,

atg = —2Ric

(3.1.7)
Of = —Af +|Vf]2—R.

To see this, observe that given a solution (g, f) to the system (3.1.5), we can construct a
solution (g, f) to the coupled system (3.1.7), by flowing along the gradient V) f(t). Now
we show how to construct solutions to (3.1.5)) from a solution of the Ricci flow.

Let g(t) be a solution to the Ricci flow d,g = —2Ric in [0, 7] forward in time. Next, we
show that can use g(t) to solve the backward equation

0f = =Af+ V- R,

in [0,77]. In order to do this, we set
w:=e7, (3.1.8)

and note that, by reparametrising time by 7 =T — ¢, we have
Oru = —0wu = ud,f = (Af +|Vf|* — R)u = Au — Ru,
and therefore u solves the forward, linear equation
0;u = Au — Ru,

for which there exists a unique solution u given initial data u(0). Then we solve this equation
for u, and we recover f from (3.1.8). Now that we have constructed a solution (g, f) to (3.1.7))
from a solution to the Ricci flow, we can flow by the gradient V) f backwards to define

a one-parameter family of diffeomorphisms ®, and compute the pullbacks of ®*g(¢) and
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f o ®(t) to obtain a solution to (3.1.5)). Details of this construction can be found in Section
1.5 in [15], or Section 10.4.1 in [5]. From this, we obtain the following.

Proposition 3.1.4. Given a solution g(t) to the Ricci flow in [0,T] on a closed manifold
M, let (g(t), f(t)) be the unique solution to (3.1.7). Then,

d

G0, 10) =2 [ |Rie+vVfEe v 3.19)

Thus, the Ricci flow admits a gradient flow structure on the expanded space 9let x

C(M).

3.1.1 The W-functional

To analyze the flow near developing singularities, Perelman introduced the W-functional,
which can be thought of as a scale invariant version of the F-functional. On a closed n-
dimensional manifold M, define Perelman’s W-functional (or entropy functional) on the
extended space W : Met x C°(M) x RT — R by

W(g, f, 1) := / (T (IVf?+R) + f —n) udy, (3.1.10)

M

where R is the scalar curvature of g, u := (477)""/2¢~/ and 7 > 0 is the scale parameter.
Note that u differs from by a factor of (477)~"/2. The W-functional is diffeomorphism-
invariant: If ® € Diff (M) then W (®*g, ®*f,7) = W(g, f,7), where ®*g is the pullback
metric and ®*f = f o . Moreover, under the scaling transformation (g, f,7) — (cg, f, c7),
we have W(cg, f,cr) = W(g, f, 7).

we can also relate F and 'W by the identity

Wig, f.7) = 0. 0)+ [

M

W ( (f = n)efdv> : (3.1.11)

We now show how to compute the 7-derivative of W in the classical way.

Proposition 3.1.5. On a closed manifold M, the variation of W is

1
S c)Wl(g, f,7) = / <RiC +VV [ — 5.9 —7h + C9> udv

M

(3.1.12)
1 n f—n-—1

Proof. We separate the variation 6, k) W(g, f,7) of W at (g, f,7) in the direction (h, k, ()

59



in two parts, since

i yW(9, [, 7) = 0n ey W(g, £, 7) + 60,000 W(g, f,T)

In order to compute ¢, ,0)W(g, f,7) with 7 fixed, use (3.1.11) together with Proposition
We obtain,

T

O(h,ke,0) (W?(g’f)) (9, f,7) = —/MT<R1C +VV £, hyudv
]' 2
+/MT(§trgh_k> (2Af = |Vf? + R) udv,

and by direct computation

S0 (W /M(f - n)e_fdl/) (g, f,7) = /M <k + (%trg h— k) (f - n)) udv.

To compute §(g0,cyW(g, f, 7) with g and f fixed, we see,

S0,00W(g, f,7) = / (C (1 — g) (R+ ]Vf\2) — Z—f(f — n)) udy.

M

Combining the two variations, we find

Sk )W(g, f,7) = / [(Ric +VVf,—1h+(g)

M
+T(%H‘gh—k> (QAf— IVf>+ R+ f;”)
+k+C(IVP-Af) - Z—g(f—n) - %C (R + \Vf|2)} udy.

Now reorder the terms by absorbing —2-( into the first bracket of the terms on the second

line. We get,

S W(g, f.7) = /M (Ric +VV f, —h + Cg)

+T<1trgh—k—ﬁ<) (R+2Af—ny|2+f_”)
2 2T T

+k+ (n—=1)C(Af = |Vf]*)] udv.
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Similarly, reorder to absorb —% g into the angled bracket terms, and combine this with

1 1 n
<—§g7 —7h + C9> =5trgh—5-¢

to obtain

5(h,k,C)W(g7 f7 T) :/

M

1
[<Ric +VVf— Eg, —7h + Cg>

+T(%nﬂy—k—££)(R+2Af—WUP+i:£:i)
+(n— 1) (Af — [V F*)] udv.

The result now follows after observing that

[ @r-1wrpyeta=— [ actav=o

M
]
Next, observe that defining
dm = udv,
we may fix dm so that the variation 6,k dm(g, f, 7) vanishes, that is,
1 n
We solve for f to find,
f=log & — Mog(arr) (3.1.13)
=log— — = : 1.
g~ — 5 log(dnT

As a corollary, we obtain

Corollary 3.1.6 (Measure-preserving variations of the entropy). For any variation (h,k, ()
satisfying o kcyudv(g, f,7) = 0, the variation of W obeys

6(h,k,C)W(g7 f7 T) = /

M

1
<Ric +VVf— 5.9 —7h + (g> udv.

We now heuristically formulate an appropriate gradient flow for W so that W is also
monotonic. Using the function f defined in (3.1.13) and considering the gradient flow for
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gi; previously used in (3.1.5), we obtain the following coupled gradient flow for (g, f,7):

0

af n

- = — — — 1.1
5= Af Rt o (3.1.15)
dr

- - d.1
T -1, (3.0.16)

where the last condition is imposed in order to ensure monotonicity, since, by Corollary

mv

d 1 ) .
aw = /]\/[ (RU -+ VZV]f — Zgz]) <_7_.gij + Tgij) dm

2
:27'/
M

dm,
whenever dm = udyp is fixed, ¢;; = =2 (R;; + V;V, f) and 7 = —1. A similar diffeomorphism
change to the one already discussed for (3.1.5)) allows us to rewrite the coupled system of
equations as,

1
Rij + ViVif = 5-9i;

) .

E——ZRIC

of 9 n

9 _ _ _ n 3.1.17
o = ASHIVIP R+ o ( )
dr

@t

To simplify notation, we introduce the following.

Definition 3.1.7. Given a solution (g(t), f(t),7(t)) to the coupled system (3.1.17)) on a
closed manifold M, we define the entropy W(1) as

W(T) :=W(g(t), f(t), (1)), (3.1.18)

as introduced in (1.1.15)).

Putting all together, we obtain the following formula for the derivative of W(r).

Proposition 3.1.8. The derivative of the entropy obeys (1.1.16|), that is,

%W(T) - /M or

Interestingly, the monotonicity of Perelman’s W-functional can also be derived from a

2

1
Ric4+VV — —g| udv.
2T
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pointwise estimate using the conjugate heat operator. To see this, consider a Ricci flow
defined for ¢t € [0, 7. By defining the heat operator,

0
O=—-A
ot ’
acting on C*°(M x [0,T]) we see, by evaluating
T o vw dv,
that the conjugate heat operator
0
0=———-A+R
ot M

is conjugate to [ in the following sense.

Proposition 3.1.9. If g(t),t € [0,T] is a solution to the Ricci flow and v,w € C®(M x
[0,77), then

/OT (f @owan)ae=| [ vdeLT N /OT (] vera)a

Proof. See Lemma 11.5 in [5]. O

Now, let
w:= (1 (R+2Af = |Vf*)+ f—n)u.

Then,
W(T):/ wdv, (3.1.19)
M

since [,, (Af — |V f|*)udv = — [, Audv = 0. The function w obeys the following.

Proposition 3.1.10 ([47], Proposition 9.1, [64], p. 77). Let (f,g,T) be a solution of (3.1.17)).

Then w satisfies
2

1
0w = —27 |Ric + Hess(f) — 5.9 (3.1.20)

The monotonicity of W now follows immediately since, setting v = 1 in Proposition|3.1.9}

by (3.1.19)) and (3.1.20) we have,

iW = i wdy = —/ O"wdp.
dt dt [y M
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3.2 Colding’s Monotonic Volume

Similarly to Perelman’s derivation of his reduced volume from the Bishop-Gromov in-
equality discussed in Section [1.0.1} we want to derive the W-functional as a high dimensional
limit of an elliptic monotonic quantity. The appropriate quantity for this process is Colding’s

monotonic volume, which we now discuss.

Let (N, g) be an m-dimensional manifold admitting a a positive and proper Green func-

tion G, and set
b= GYE™),

Definition 3.2.1. We define the area A on the level sets of b as,

1
As) = s / (Vb — 1)|Vb| dA, (3.2.1)
b=s
and the ‘volume’ V as,
1
V(s):= —/ (VD> — 1)|Vb|?dV, (3.2.2)
sm b<s
and the ‘monotonic volume’ as,
W(s):=2(m—1)V(s) — A(s). (3.2.3)

The main purpose of this section is to provide an explicit computation of the derivative
of W, and show that W is non-decreasing and obeys ([1.1.20]). We begin with a few routine

computations.

Lemma 3.2.2. We have,

. ]' m—1
Vb= 5——"VG, (3.2.4)
Ab= (m —1)b7'|Vb|?, (3.2.5)
Ab* = 2m|Vb|?, (3.2.6)

Proof. Equation ({3.2.4) is immediate. To see (3.2.5)), use (3.2.4)) and note that AG = 0. For
(3.2.6[), use that
Ab* = 2|Vb|? + 2bAb, (3.2.7)

and combine it with (3.2.5)). O

In order to compute the derivative of W, we begin by computing the derivative of two

auxilliary functions, I and J.
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Proposition 3.2.3. The function
I(s) := slm/ |Vb|dA (3.2.8)
b=s

15 constant.

Proof. First, observe that

J - T 1(s) + s-ma, (/ |Vb|dA> : (3.2.9)
b=s

S

Since

Vb
bl = b ——
V| g(V , !Vb!>’

by the coarea formula we have,

0, (/ beydA) = 9, (/ Ade)
b=s b<s
N
= 0, / / —dAdr) (3.2.10)
( 0 b=r |Vb|
Ab

= | —-dA.
I

Using (3.2.5)), we find,
I'(s) =0.

Moreover, it can also be shown that the constant is
I(s) =1(1) = Vol(0B4(0)),

where B;(0) C R™ is the Euclidean unit ball, see [1§].

Proposition 3.2.4. Let
J(s) = sm/ |Vb|*dV.
b<s

Then, J is constant and moreover,
J(s) = Vol(B1(0)).
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Proof. To see this, notice that by the coarea formula,

- m// IVb| dA dr
b=r

_s—m/ ™= (r)dr (3.2.11)

_ (1)
=
Now, since
1
Vol(B4(0)) = EVol(aBl(O)),
the result follows. O

The previous computations show that, if we consider

A(s) = — / Vb dA, (3.2.12)
b=s

Sm—l

we have

A= A—Vol(dB,(0))

and, similarly, if we define

_ 1
V(s) = — / Vbl v, (3.2.13)
b<s

then,
V =V — Vol(B;(0)).

Therefore, the derivative of the function

W:=2m-1)V-A

coincides with the derivative of W. We now proceed to obtain an explicit formula for the

derivative of this quantity. We will need the following lemma.

Lemma 3.2.5. V obeys,

= —(A(s) —mV ().

Proof. By the coarea formula, we can rewrite V (s) as

V(s) = -m/ / IVb|3dA dr.
b=r

Deriving, the lemma follows. O
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We now compute the derivative of W.

Theorem 3.2.6 (Theorem 2.4 in [18]). W obeys,

_ —1-m AbZ
W(s) =2 5 /b< (’VVbQ—Tg

Proof. First, observe that

2

+ Ric (V0% Vb2)> dv.

|Vb]? = [2bVb]* = 4b%|VD|?,
and therefore we can rewrite A(s) as

sflfm

A(s>:sl—m/ VbPdA = / V82 [ |VbldA.
b=s b=s

We now compute,

—1-m
572 (52121), (s) . / d ‘Vb2|2 dA
b

4 J_.dn
—1-m
=2 A |V av.
4 b<s

Using Bochner’s formula, we obtain

—1-m S—l—m

: / A VB dV = / (IVVE[ + (VAR V1%) + Ric (V0%, VE2) ) dV
4 b<s 2 b<s

S—l—m

— /bSSvizﬂ?— A0+ Ric (V2 V1) ) av
Sflfm ) d )
+— /b_s (Ab?) —-b%dA

_ / (IVVe) — |ar?* + Ric (V02, V12) ) av
2 b<s

+2msm/ IVb*dA
b=s

—1-m
=- / (‘VV52‘2— ‘A62‘2—|—Ric (Vbz,Vb2)>dV+2_mA(S).
2 b<s S
Now, since
2 |2 212 212 212
’VW_A_Z)Q _ [wwir 4 1B 2IAVTggpep 180T
m m m —
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we have,
2 |2
(VVR[* — |ap?|* = 'vwﬂ _Ar (1 - l) |Av?|*
n m
2 |2
= 'VVZ)2 — A—bg — 4m? (1 — i) |Vb|*.
m m

Therefore,

2 |2

—1-m
2/ 271\ S 2 Ab
s (s*A) (s) = 5 /b<8 (‘VVb 9

1 2m -
2 (1 - —) m%—l—m/ IVb[*d Vol + == A(s).
m b<s S

+ Ric (V7 vzﬁ)) av

We can now rewrite the expression above as
_ -\/
s (s*A) (s)

—1-m Ab2
_ 3 / (‘vvzﬂ — =y
2 b<s n

2 2= Um)m o 2™ 4gs)

+ Ric (V2 Vb2)> v — : -

—1-m 2
=2 / <'vvzﬁ _Ar,
2 b<r n

Now, since s~2 (s24)" = A’ + 24/s,

_ 2m, —

2 + Ric (Vb7 Vb2)> dV + %m(A(s) —mV(s)) + TV(s).

2 12

—1-m
a="2 / (‘VV62—A—bg
2 b<s n

and therefore, by Lemma [3.2.5

+ Ric (Vb vzﬁ)) dV + ———

2 12

B B —1-m Ab
(A—2(m-1)V)y =" / (‘vw?— —y
2 b<s n

+ Ric (VF, vzﬁ)) dv.

]

Now, since W and W only differ by a constant, this also shows that W obeys (1.1.20)).

3.3 High dimensional limits on Perelman’s N-space:

Preliminaries

The rest of the chapter is devoted to showing that the W-functional arises as a limit of

Colding’s monotonic volume W on Perelman’s N-space, and that we can effectively recover
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the derivative of W from the formula by explicitly using the derivation of Theorem
[3.2.6] In this section, we recall the setup as well as Perelman’s N-space, and then proceed to
outline some necessary results regarding orders of convergence as the dimension approaches
infinity.

3.3.1 Perelman’s N-space and the rescaled area, volume and mono-

tonic volume

On a closed manifold M™ of dimension n, let g(7) be a solution to the backward Ricci
flow equation,
0.9 = 2 Ric,

where 7 € [0,7]. Similarly to the approach discussed for the coupled system of equations
(3.1.17)), we let u be a solution to,
O"u = 0, (3.3.1)

positive at time 7 = 0. We can trivially rewrite this as
O-u = Au — Ru,

and hence, u is also positive for all times by the maximum principle, see Section in
the Appendix. Next, define f by the relation

wi=1"2e, (3.3.2)

in a similar manner to that of Section [3.1.1} but here we drop the constant (47)~"/2 in the

definition of u for convenience. Then, f satisfies,
an:Af—|Vf|2+R—%, (3.3.3)

and in particular, (g, f,7) obeys (3.1.17)).

Next, we recall Perelman’s N-space.

Definition 3.3.1. Let g(7) be a solution to the backward Ricci flow equation on [0,T].
Denote by SV the N-dimensional unit-sphere of RN+L. Let r be the distance to the origin in
RN+ and let 6 denote points in SN. Then, the Perelman N -space (M,g) s the manifold,

M™ := (0,V2NT), x S x M* c RN*!' x M™, where m =N +n+1,
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endowed with the metric,

R ) Rr?

g:=r°gsn + (1 + W)dr +g, (3.3.4)
where R is the scalar curvature of g and where at a point (r,0,x) € M, gsn 1S evaluated at

0 and R and g at (1 =1?/2N,z) € (0,T) x M.

Define h: M — R by,
R A (3.3.5)

where f satisfies and 7 = r?/2N. The function h will serve as the analog to the
Green function when applying Colding’s monotonic formula to Perelman’s N-space. The
fact that h is almost harmonic, which justifies the replacement of the Green function G in
Colding’s argument for the function h considered here, is essentially due to Perelman: In
Section 6.1 of [47], it is observed that

=TT u= (ZN)mTﬁh,

is harmonic modulo N~ if and only if f satisfies (3.3.3) (the precise statement is Aa* =
72=m)/20(1/N), see Proposition [3.5.2)). From this definition, and following the arguments
by Colding discussed in Section , we define b: M — R as,

b — pl/C@=m) _ o f/(m=2) (3.3.6)

We will need to adapt the area, volume and monotonic volume from Definition in
order to take high dimensional limits. We define the following rescaled quantities.

Definition 3.3.2. Let
(47.[_)—n/2(2N)n/2+1

TR
We define the area Ay : (0,V/2NT) — R (resp. the raw area Ay : (0,v/2NT) — R) as,

Sm—l

An(s) = N / (VB2 — 1)[Vb| dA, (resp. An(s) = X, / |©b|3d,21) (337
b=s b=s
the volume Vy : (0,vV/2NT) — R as,
Sm

Va(s) = X /b< (VB2 — 1)[Vb|2 dV, (3.3.8)

and the monotonic volume Wy : (0, V2NT) — R as,
Wn(s) = (2(m —1)Vy — An)(s). (3.3.9)
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Notice that these quantities only differ from the ones discussed in Definition by a

constant ¢y depending only on the dimension N.

Remark 3.3.3. We associate A € (0,T) with s = V2N € (0,V2NT). Quantities that are
functions of s, for instance An(s), will be considered sometimes as functions of A € (0,7,
in which case we will write, for example, An(\) instead of Ax(s = V2NX). Convergence of

An or Vy to the entropy W occurs when considering them as functions of A € (0,T).

3.3.2 Orders of convergence

Most of the quantities employed depend on the dimension of the N-space. For example,
the metric g depends on N, but we will omit the subscript N to simplify notation. In a
similar manner, we will omit the subscript N in most parts of the upcoming sections. For
instance, the Ricci curvature of g will be denoted by Pﬁc, the covariant derivative will be V,

and so on.

The metric coefficient (1 + Rr?/N?) = (1 + 27R/N) will appear often, so to simplify

notation we define,
Rr?
vi=1+ N7 (3.3.10)
Note that ¢ is invariant under rotations in R¥*! and therefore, scalar quantities like the
scalar curvature R, or the norm of the Ricci tensor |R§c|, are also invariant under rotations
and thus f-independent. For this reason, they will often be considered as functions on
(0,T) x M. For instance, v can be viewed as a function on M or (0,T) x M, depending on
the context, and similarly for any other function depending only on = € M and 7 € [0, T].
In [47], Perelman showed that |Ric| = O(1/N), (see Section in the Appendix for
details). This means that the sequence of functions N|Ric|, as functions on (0,T') x M, are

uniformly bounded on compact sets.
Regarding the definition of order, we will need to adapt it in the following way.

Definition 3.3.4. Let i > 0 be an integer. A sequence of real-valued functions Fn(1,0,x)
is an Og(1/N?) if for every 0 < 7y < T there exists K > 0 such that,

N’L|FN(T797$)‘ < K7

for all N > 0 and for all (1,0, z) such that m <7 <T.
We say that Fy(7,0,2) is an Oi(1/N*) if 0°Fy is an Og(1/N*), for any multi-index

la| < k, where the derivatives are taken in the T or z* variables.

Definition 3.3.5. We say that a sequence of real-valued functions Fy(\), defined in (0,T),
is an Oy(e~N) if for each \g € (0,T), given \; > )g, there exists K > 0 and ¢ > 0 such
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that,
eNFy(\)| € K, (3.3.11)

for all N > 0 and for all \y < X <T. We say that Fx(\) is an Or(e”N) if & Fy/dN is an
Oo(e=N) for every j < k.

A direct application of the Taylor expansion with the remainder in integral form allows

us to derive the following lemma, which we will frequently reference.

Lemma 3.3.6. Let F': (a,b) — R be a smooth, real-valued function. Let w(t,z,N) be a

smooth real-valued function with range in (a,b), such that,
w(r,z, N) = wo(r,z) + (1,2, N),

where,

1
N3
for some integers k > 0 and j > 0. Then, for any | > 1, F(w(r,z, N)) has the following

decomposition (where we omit the T,z and N dependence for notational convenience),

d(r,x, N) = Og(

2 -1

0 5
F(w) = F(wo) + F'(wo)d + F"(wo) 7 + ... + F(l*”(wo)m YR,

and,
1
i)
Proof. See Section in the Appendix. O

Rl(TaxaN) = Ok‘(

Note that the usual rules of orders hold: the sum
Ow(1/N") + Oi(1/N7),
is an O (k,l)(l/Nmin (23)) and the product
Ow(1/N")Oy(1/NY),

is an Oyyin (k) (1/N*™7). For instance, in Lemma3.3.6} if 6 = Oy (1/N7), then ' = Ox(1/N7%).

As an example, of Lemma [3.3.6] we observe that
v=14+27R/N =146, where d =27R/N = O(1/N),

and therefore,
1
1/yV/v=1—-7R/N + Og(m).
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We also note that, while as in this and other cases, § = Oy(1/N) for any k£ > 0, for our

purposes it will be enough to use £ < 2. Similarly,
1 1
S N RN LN S PO W
e + ot Q(Nz) + Q(N)

We will not delve into detail for most order computations, as they primarily involve combi-
nations of compositions and products of the previous examples, along with straightforward

applications of Lemma 3.3.6]

3.4 Derivation of Perelman’s entropy from Colding’s

monotonic volume

We start our derivation of the entropy by making some key observations about the level
sets of b. Since b/v2N = /7ef/("=2) for every k > 0 we have,

b 1
—— =7+ Ok(—=). 3.4.1
NG VT + O N) ( )
Therefore, for every small § > 0 and k > 0, the sequence of functions b*/2N : [0, T — §], x
M, — R converge in C* to the function (coordinate) 7 : [§,T — 6] x M — R. By standard
calculus, it follows that there exists Ny > 0 such that for every N > Ny and A € [26,T — 24],

the level set b/v/2N = v/X is given by an immersion
r € M (pya(z),z) € (0,T) x M, (3.4.2)

for some smooth function ¢y : M — R. Furthermore, from (3.4.1)) we get,

b? 1 1

A= ﬁ(qm,x(x),x) = 1(pna(7), ) + Ok(ﬁ) = ona(x) + Ok(ﬁ), (3.4.3)

that is, the immersion approaches the level set 7 = A. Since we will be interested in taking
limits, we will always assume that N is sufficiently big such that (3.4.2)) holds inside a region
A € [6,T — §], where ¢ is sufficiently small.

We will make repeated use of the following results.

Lemma 3.4.1. Let f = f(7,x) be any smooth real-valued function, that we consider as a

function on M. Then,
A 1 1
Vb2 =1+ ¥ (2f —27R+ 27|V f|* + 470.f) + (b(m). (3.4.4)
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In particular, if f satisfies ((3.5.5), then,
N - 5 9 1
3(|Vb| —1)=7RAf—-|VfF+R)+f—n+ OQ(N), (3.4.5)

and therefore,

A 1
Vbl = 1+ 0u(): (3.4.6)

Proof. We compute,

v/, (3.4.7)

. F/(m=2) 9 9 1/(m=2)
op_ € 14t . f b el
Voo om—2

m— 2

Thus,

VD) = 1+

e2//(m=2)
< m — 2

ro, f 2 p2e2f/(m-2) 9
> (m — 2y IV f]°. (3.4.8)

Now, r0,f = 270, f. Therefore,

ro.f \? . Aro.f 1
(1+m_2) =1+ —+Ox(553) (3.4.9)

Also, by virtue of Lemma [3.3.6] (see also the discussion below the Lemma),

e2f/(m=2) 2f 1 2TR 1 2f  27R 1
— = (1+m—+02(—)) <1_T+02(ﬁ>> —1+W—T+Og(m>,

and similarly,

27|V f]? 1

r2e2f/(m=2) 2NT
- N O

 (m—2)?

Combining these expressions with (3.4.8]), we obtain (3.4.4)). Finally, we can replace 0. f by
E33) to get (B45). 0

Proposition 3.4.2. For any A € (0,T), the volume element for the level set b =s = V2N

can be expressed as,

le/(m—2)|vf|2 _

~ 1
dA = sNe 70D (1 4 OQ(N))dVdVSN, (3.4.10)

where dvgn is the standard volume element in S, and dv is the volume element in (M, g()\)).

In particular, we have
N 1
dA = (2NX)N2e= 100 (1 4 Oa(57))dvdvsy. (3.4.11)
Proof. Since A € (0,T), there exists 6 > 0 such that A\ € [0, T — §]. Then, using (3.4.2)), for
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every N > N, we define a map ¢y : SV x M — M as

YN0, 2) = (V2N on (), 0, 2). (3.4.12)

Let 6% be coordinates in S and 2’ coordinates on M. Since r = \/2N ¢y (z) and by 1}
we have ¢y = A+ Ox(N~1), we compute,

VN 29(0:,05) = g(donA(0:), dn A(0;))

v N v N
=0 | —=—=0i9np0; + 0i, ——=0;0N 0, + 0;
( 2¢N7)\ N, 2¢N’>\ FPN A j
1
= Gij +02(N)’

¢7v,,\§(aaa aﬂ) = é(aow 85) = (2N¢N,)\)gSNaﬁv
w}k\f,/\g(aa> az) =0,

for every N > Ny. Therefore, we can express the volume element dA as,
. 1
dA = (2Non )21+ Oa())dvdvsy,

where we are using Lemma [3.3.6| when computing . /¥% _g. Since 7?/2N = 7 = ¢y () for
N,S )

any (r,0,x) € b= s, we have,

r = /2Ny a(2) = selOna@@)/2=m) (3.4.13)
and by (3.4.3) and Lemma we can write,

(2N oy ) V/? = 5N e /AHORA/N),2)+02(1/N)

1
= SNeif()\’m)(l -+ OQ(N)),

which completes the proof. ]

We now demonstrate that Perelman’s W-functional and its derivative emerge as the

limits of the area Ay and its derivative, respectively, when considered as functions of A (see

Remark [3.3.3]).

Theorem 3.4.3. The following equality holds:

An() = WOV + Oy~

=) (3.4.14)
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where W is Perelman’s entropy functional (1.1.15). In particular,

Ax =W, (3.4.15)
and dAy  dW
N

uniformly on compact sets in (0,T).

Proof. Let s = v2N)X. We compute,

Ay = - / (b2 — 1)|VbldA
b=s

Smfl
— (47TA)”/2/ (ARAF = |Vf?+R)+ f—n) ef<”>(1+02(%))du
- v L) e IO g 4 Oy~
= (47)) /M(/\(2Af IV +R)+ f—n) d +O(N),

where we used (3.4.5)) and (3.4.11)) together with the fact that the integrand does not depend

on 6 € SV. Since M is a closed manifold,

/(Af—|Vf|2)e_de:—/ Ae fdv =0,
M M

and we use it to rewrite,

Ay = (m)"/?/ (V2 + R) + f —n) edeJrOQ(%),
M

from which (3.4.14]) follows. The previous expression also shows that Ay — W uniformly
on compact sets in (0,7"), and differentiating with respect to A on both sides of (3.4.14]),

dAy  dW 1
N O

W = ﬁ + 1(N), (3.4.17)

which also shows that the convergence of the derivatives is uniform on compact sets in (0, 7).
]

Now, we proceed to study the convergence of the volume functional (3.3.8). To begin,

we introduce the following lemma.

Lemma 3.4.4. Let \o < A € (0,T). Define s =+/2NXg and s = V2N\. Then,

Vy(s) = X / (VHP = DIV AV £ Oy ). (3.4.18)

Sm
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Proof. We write,

Vy(s) = X LK (|VD|? — 1)|Vb]2dV + z—ﬁ (IVD)? — 1)|Vb|?aV.

sm 0<b<s

Since f = —Inu—(n/2)In7, a straightforward computation using (3.4.7)) shows that we can

write [Vb[? in terms of u as,

u(m — 2) m—2)2 u?

= (2N)"/(m*2) (ur")2/(2*m)HN(r2/2N, x),

2
|@b|2 _ (QN)n/(m_z)(uTn)z/(z_m) [(1 B 270, u — nu) ( r2 ]Vu|2]

and, since u is everywhere positive in [0, \g] x M and its first derivatives are bounded, it
follows that |[Hy| < C and 0 < ¢; < u < ¢ in [0, Ag] x M, for some constants C, ¢y, co > 0.
In particular, the same bounds hold for the region 0 < b < §, and since v =V drdvdvgn ,

we use the previous expression for |@b|2 to find,

Sm

R R o\ N+1
C—N/ yvm%v‘ <K, <f> , (3.4.19)
0<b<5 S

for some constant K7 > 0. Since §/s = A\g/\ < 1, it decays exponentially fast. Similarly,

Sm

. . o\ N+1
C—N/ |Vb|2dv‘ < K, <f> , (3.4.20)
0<b<s s
for some constant Ky > 0, which shows

Vy = z—ﬁ (IVb|2 — 1)| Vb2 dV + Op(e~N).

5<b<s

Finally, in order to see that the term Oy(e™*") is in fact O;(e~“Y), we note that

d (cn o o ~ ds d (cn o . .

— | = b2 — |V dV | = —— —/ b|? — 1)|Vb|* dV

5 (5 [ - nwpar) = 22 (2] o -y

N\Y2m CcN - - ~
== — b|? — 1)|Vb|*d
(3x) 2o [ (v = neoear,

and apply (3.4.19) and (3.4.20) to see that its derivative is also an Oy(e=V). O]
Proposition 3.4.5. The following equality holds:

1
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In particular,

d d 1
5(2(7’)1 — 1)VN — .AN) = %AN + Oo(m)

Proof. Let A € (0,T), and define s = V2N A. Next, we choose A\g < A and define 5 = /2N ).

By the coarea formula and equation ([3.4.18)) we obtain,

(3.4.22)

. A N 1 /7
V=S [ (O = )WY+ Oue ) = o [ M (w)du + Oy ).
5<b<s s

Using (3.4.17)), we deduce,

dA N _ dAdAN
ds ds d\
d\ (dW d 1
— (4222 2D —
) s <d)\ T (OQ(N)>)
DNV 1 (3.4.23)
— n/2 [ 27 - _
e (2) (G r o)
1
= Ol(W)?
and,
d*Ay  d\ d 1 1
_drd ) oL 4.4
ds?  ds d\ (01<N1/2)) Ooly): (3.4.24)
since dW/d\ = Oy(1). A Taylor expansion around s shows,
dA
An(w) = Ay (s) + (0 — 5) = (Eus),

ds

for some V2N Xy < &, s < V2NA. The bound on §, s implies the respective bound for its
associated T—coordinate between Ay and A, and therefore by (3.4.23)),

1

An(w) = An(s) + (w — S)OO(W%

for any w € [3, s]. Now, we notice that, since |Og(N~1/2)| < ON~Y2,

_ smtl C +O(7CN)<L me1 ( —)O(L) d
s™(m + 1)m N1/2 0\¢ = sm . w W= 5P\ w
(3.4.25)
< O Oy )
~ sm(m+1)m N1/? 0 ’
which shows,
1o 1 1
S—m/ w1 ((w—s)OO(W)) dw = Oy( ) (3.4.26)
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Then,

1 [® 1
Vy=— [ w™! <.AN(S) + (w — S)Oo(—l)) dw + Oy (e™N)
sm [ N /2
) s ) (3.4.27)
= —An +0o(—)

In order to see that the term Og(N~2) is actually an O;(N~2), we use a Taylor expansion

of order 2 to compute,

dv d (1 [°
_dsN = (s_m/— wm_lle(w)dw) + Oo(e™ )
m (7 1 —cN
= i w" Ay (w)dw + E.A]\](S) + Op(e™)

w e ; 0 — o2 Ay (3.4.28)
= [ (At + - ) (s + T ) )

1
+ E‘AN(S) + Oo(eicN),

where &, 5 € [w, s]. Now, since d®*Ay /ds* = Oy(1/N), we proceed as in (3.4.25) and show,

s _ d.AN (w — 8)2 dQ.AN
m—1
[amt (axto) + w9 220+ ST ) ) du
g™ Sm—i—l d.AN Sm+2 1
= —A — Oo(=) + Op(e™N).
m w(s) m(m+1) ds (S)+m(m+1)(m+2) O(N)+ o(e™)
(3.4.29)
Use this in (3.4.28) and the fact that dAy/ds = O;(N~'/?) to write,
dVy 1 dAN 1 1 dAN 1
_ L _ LdAy . 4.
ds m+1 ds (s)+OD(N5/2) m ds (S)+OO(N5/2) (34.30)
This implies,
va . ds va B 1 dAN ds 1 B 1 d.AN 1
v ds modn R T T OR)
which we combine with (3.4.27)) to obtain,
Vy = Ay + Oy (=) (3.4.31)
N = AN ly2): 4.

From here, a straightforward computation shows (3.4.21)). We finish the proof by differ-
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entiating ((3.4.21]) with respect to s and noting that

2 (0)) = 24 (01 = 0t

]

As a consequence of Theorem and Proposition [3.4.5, and recalling the definition of
the monotonic volume (3.3.9) we immediately derive the following result.

Corollary 3.4.6. The monotonic volume obeys,

Wy(\) = W) + 01(%), (3.4.32)
anh d d 1
TWN() = W) + Ool): (3.4.33)

In particular, Wy — W and dWyx /d\ — dW/dX uniformly on compact sets in (0,T).

3.5 The derivative of the entropy

We now recover Perelman’s formula for the derivative of W as a limit of derivatives of

Wy. To achieve this, several auxiliary results are in order.

Proposition 3.5.1. Let h = h(r,x) be any smooth, real-valued function, that we consider

as a function on M. Then,

i, 1 1+27R  2(tR+ 72°0,R) 27
Ah = ((1 t—x V2o O-h + W(?Th (3.5.1)
1
+ Ah + m(VR, Vh). (3.5.2)

Proof. Let 6% be coordinates in SV and z° coordinates on M. Then, the inverse metric

components of § are,

AT ATQ ~oul ~ 1 ~1] i o 1 «
gt=g=g"=0, g=- §7=¢" =g (3.5.3)
and the Laplacian therefore is,
~ 1 1 . 1
Ah = —=0,(V/§50,h) + —=0:(V/3§70;h) + —=0a(\/35°°9sh). (3.5.4)
NG Vi ]

A straightforward computation shows that the first term of the r.h.s of (3.5.4) is equal to
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the r.h.s of (3.5.1), the second term is equal to the two summands in (3.5.2)) and the last

term is equal to zero. O

The following assertion is drawn from Perelman (as mentioned in p.13 of [47]), where we

needed to include factor of r2~™.
Proposition 3.5.2 (Perelman, [47]). Let f = f(r,x) be any smooth real valued function

that we consider as a function on ]\7[, and let h = r®>=™e=/. Then,
. 1
Ah = r2m (an ~Af+|VIP-R+ %) e+ 10y (1), (3.5.5)

Therefore, if f satisfies, (3.5.5), then

1

Ah = TQ_mOQ(N

). (3.5.6)
Proof. Let u = 7= ("D/2¢=/ 50 that h = (2N)2~™)/27=N/2y To simplify notation, we will
we will disregard the multiplicative factor (2N)?~™/2 in h during the computations, and

add it back in afterwards. We compute,

N
O-h = —ET_N/Q_lu + 7 N9 u, (3.5.7)
N (N
O*h = 5 (? + 1) 7 N22y - NN g V202, (3.5.8)

We can write 0?u = 7~ ("+1)/20,(1). Therefore,

2T N 1 1
ﬁafh — 7~ N/2 (Zu +-u— 28Tu> + T_m/202(ﬁ). (3.5.9)
Similarly, writing (3.5.7) as,
N
O-h = 7 N/? (——u + aTu) , (3.5.10)
2T
we obtain,
14+27R  2(tR+ 7%0,R)
1 _ _h = 511
(1+25 L0 (35.11)
N 1 1
— N2 <Zu + (Z + R)u — 8Tu) + T_m/ZOQ(N). (3.5.12)

Summing (3.5.9)) and (3.5.11)), and after the crucial mutual cancellation of the terms 7=V/2=1 N, /2,
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we deduce,

27 14+27R  2(tR+7%0.R) B
N Ot (1 TN T N2y Orh = (35.13)
1 1
T*N/Q(—Eu — Ru — 0ru) + Tﬁm/202(ﬁ)- (3.5.14)

Going back to the expression (3.5.1)) for Ah, and taking into account that 1/v = 1+05(1/N)
and (VR,Vh)/Nv = Oy(1/N), we arrive at,

1

. 1
Ah = 77N2(—8,u+ Au— Ru+ ——u) +7"205( ).
2T N

(3.5.15)

Finally, recalling that v = 7~("~1/2¢=/ and multiplying by the factor (2V)?~"™)/2 we deduce
B53). 0

From the previous proposition we obtain the following.
Proposition 3.5.3. Let h be defined as in (5.3.5) and b as in (3.3.0). Then,
. . 1
A = 2m|Vb|* + Oa(57)- (3.5.16)
Proof. Direct computation shows,
A 12 S 2 —m) A
Ab® =2m|Vb|* + ——h Ah.
2—m

Using that Ah = r2-m0,(1/N) and that b = h*/@=™) we get,

2 A 2 1 2 1
_hm/(me)Ah —_ 2 pm 2me Sy 2 mf/(m72)0 ) =
2—m gm0 = g ()

4N 1 1

The following formula for the derivative of the raw area Ay follows essentially from
Theorem [3.2.6] but with two key differences: (i) additional terms appear due to the fact that
Ah # 0, and (ii) when integrating applying Gauss’s theorem, the integration is performed
over the region on § < b < s, for some 0 < § < s, rather than on b < s.
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Proposition 3.5.4.

~ 2

d— CN SN Ab2 ~ ~ ~ ~

Ay = 02— 275 4+ Rie(Vi2, vb?) | d

Ay = /S<b<5 YV = 24| 4 Ric(VIE, Vi) | dV

2(m —1) — =
+ 200 =D G, mT) + 34x] + [Ba] + (O] + (Dl
where,

— CN PSR
Vy =N V[tV

8™ Js<b<s

(Ay] = =N / Tb|ARdA,
2 m Jp=s

_ _CON S 11212\ A
[By] = P HVﬁ(Wb %) dA,

_ CN AR\ 12 7 A
[Cn] = — gt /bg(Ab )Vab® dA,

E)Qsmﬂ 2—m (2—m)

1 A « 4p>m A
[Dy] = —(1 - C—N/ ( sm IVO2b™ Ah + b—Q(Ah)Q) d
5<b<s

and where i = Vb/|Vb| is the unit-normal to b = 3.

(3.5.17)

(3.5.18)
(3.5.19)
(3.5.20)

(3.5.21)

(3.5.22)

Proof. The proof mirrors that of Theorem but, when computing (s>Ax)’/s?, use that
Ab? = 2m|Vb[? 4 206m(AR) /(2 — m) instead of Ab? = 2m|Vb|2. Furthermore, when using

Gauss’s theorem, integrate on § < b < s rather than on b < s.

Proposition 3.5.5. We have,

d c - p 1
s (Sle /b:S |Vb|dA) = [ANn] + OQ(W).

Proof. Since Vb = |Vb|, we compute,

d (1 o\ d Vab . 1 d . R
el bldA | =— dA| = ——— — AhdA
ds (Sm_l /bvs |v ’ > ds < b=s pm—1 ) 2—mds ( b=s v )

1 Ah

__- [ 2rhia
2 —m b=s |Vb|
Appeal now to ((3.4.6)) to obtain,
L = = [VB(1 + On()) = |Vb] + On( )
V| Vb]2 1+05(3) N SN
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Then, using (3.4.13) in (3.5.6), we get Ah = s27"0y(1/N) on the level set b = 5. Now,

combining this, (3.5.26) and ((3.4.10)) all in (3.5.25]), we deduce,

d CN A ~
— bldA | =
ds (Sm_l /b:s |v | )

CN 2—m 1
=[A —
[ N]+2—m MS 02(]\[

1
N

)Osf

But, as cy = (47)7"/2(2N)"/>1 /(4|SN]) and s = (2N X)'/2, we obtain,

CN 2—m i i N i 7f o
Y Ms OQ(N)OQ(N>S (1+02(N))e dvdvgy =

(2N)n/2+1 1

= T (2NN)EE0,(1) = Oy

1
N3/2>)

as wished.

1V (1 + 02(%))9»“ dvdves.

]

We now proceed to simplify the expression (3.5.17)). From this point onward, we set

5 =+/2N )\, where \g < \.

Proposition 3.5.6. The following equality holds,

1

3[An] + [By] + [On] + [Dn] = ~[An] + Oo(5755):

(3.5.27)

Proof. We first show that [By] and [Cx| decay exponentially fast. In order to control [By],
observe that Vi (|Vb2|?) = §(V|VH2|2, 7). Now, we write |[VB2[2 = 4b2|Vb[? and use (3.4.4)

to obtain,

PSR PPN - 1
VIVV?|)? = 8b|Vb]*Vb + 4b°V (Oz(ﬁ)> :
Using that 0, = /N9, and b = Oy(N'/?), we get,

VIVO? = Oy(N')0, + )~ O1(NV/?)0,.

i=1
Since by (3.4.6) and (3.4.7)) we have i = O4(1)d, + Oo( N1V f, we see,

Va(|VO[?)| = O1(N'72).
We integrate using (3.4.10)) to find,
C ~ 3 N A N/2
Bl =12 [ owvmai- o (5) o ()
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and since A\g < A, it decays exponentially fast.

In order to control [Cly], we observe that since (Ab?)Vzb? = (Ab?)2b|Vb|, we can combine

this with (3.5.16]) and (3.4.6)) to show that,
(AD?)Vb* = O5(N3/?),

and now a similar computation as the one peformed for [By] shows that [Cy| also decays

exponentially fast.

For [Dy] we proceed as follows. By the coarea formula,

el / S b2 A d7

23m+1 <b<s 2 — m

1 4 s AP,
_ T gym (CN / IVb|AR dA) duw.
b=w

Sm+12_m s

(3.5.28)

Then, perform a Taylor expansion on the term multiplying w™ around s to obtain,

ey / |Vb|AhdA
b=w

A A~ A~ d CN / A A~ A
=c VblAhdA+ (2 —m)(w — s)— Vbl|AhdA |,
v 1o (2— m)( >d5<(2_m) I )

for some &, v € [w, s (in particular, &, v € [3, s]), and observe that the term inside paren-

theses is [Ay] evaluated at s = &, n. Using 1} and 1) we see that |@6]Ah =
r2=™0y(1/N). Then, by (3.4.13)) and (3.4.10)),

(3.5.29)

cn 2oag oa 2N / 2omiN_—f oy (L 1
An] = AhdA = NI 0y(=)(1 ~
[An] 2—m/bS|Vb| hd 242 Jyy R R (3.5.30)
1

We use this to compute,

d d cN foA s d\ d 1 1
—[ANn] = — b|ARdA ) = —— —) | =01(= 5.31
ds[ ] ds (2—7’I7J/bzs|V | ) ds d\ (02(N1/2>) Ol(N)7 (3:5.31)

and combine it with (3.5.29) to find,

cN/ |%|AhdA:cN/ IVb|AhdA + (w — 5)O4(1).
b=w

b=s
Using this expression together with ((3.5.28)), we can proceed as in (3.4.25) and (3.4.27)) to
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show,

C—N/ S G Pym AR Y = 4[Ax] + O (3.5.32)
5<b<s

2Sm+1 2_m N3/2)'

In order to control the remaining term, we write
N / e (Ah)2aVv
2™t Jiches (2 —m)?

2 [f N / (AR)? .
= w" | ——— w"—"—dA | dw,
sm“/g ((Z—m)2 b= VD]

and using (3.5.6)), (3.4.6), (3.4.13]) and (3.4.10)), we notice that the term in parentheses is of

order Oy(N73/2). Therefore, we proceed as in (3.4.25)) and (3.4.27)) to show,

CN 4b2m N 2 A~ 1 1
—— (AR dV =
25m+1 /5<b<s (2 — m)Q( ) dv m + 1OO(N3/2)

. (3.5.33)
= OO(W)-
Combining ((3.5.32)) and (3.5.33), it follows that
1
[Dn] = —4[AN] + OO(W)' (3.5.34)

Given that [By] and [Cy] decay exponentially fast, substituting (3.5.34) into the Lh.s. of
(3.5.27)) completes the proof. n

Proposition 3.5.7. We have,

2(m—1) = d 1

S

Proof. We use the coarea formula to write,

_ ~ ~ 1 s _
Vy=X V|t dV = —/ W™ Ay (w)dw,
s™m s s™ Js

5<b<
and perform a Taylor expansion of Ay around s, to obtain,

_ _ d— (w— s)> d*Ay
2 ds?

(Ew.N)s (3.5.36)

for some &, x € [w, s]. In order to control the second derivative, we notice that

An = Ay +

CN o ~
= /b _IVbjaA (3.5.37)

Sm
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By (3.4.23) and (3.4.24) respectively, we have dAy/ds = O;(N~Y?) and d®Ay/ds* =
Oo(N™1). Using Proposition [3.5.5, we compute the second derivative of the second term

on the r.h.s of (3.5.37) as,

@2 [ cy SN d d\ d 1
o (= bldA ) = —[An] + - | O2557
ds2 (Sm—l /bzs VOl ) ds[ vl ds d\ ( 2(N3/2)> (3.5.38)

since d[Ay]/ds was already computed in (3.5.31)). This shows,

d* — 1
a2 = Oolyg)

and therefore,

1
N

— — d— w — 5)?

AN(w) = .AN(S) + (w - S)E‘AN(S) + %O(ﬁ
Now integrate using the bound |Oy(1/N)| < C/N for some C' > 0 and proceed as in (3.4.25)
and (3.4.27)) to show,

1 R 1 s d— 1
o | w" T An(w)dw = mAN(s) mm 1) dsAN(S) +00(N3)7

where we have absorbed the term decaying exponentially fast into Oy(1/N?). We finish the
proof by expanding the Lh.s. of (3.5.35|) to show,

2(m—1) — = 2(m —1) s d— 1
o S — V) = - —
s (Ay =mVy) s (m+1) dsAN(S) + OO(NQ)
d— 1
= Q%AN(S) + Ool5p):
[
Combining the previous results, we obtain the following theorem.
Theorem 3.5.8. We have,

d o cey AV ) 1
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In particular,

%(2(771 — 1)\7]\[ — .AN) (8)
Aj2 (3.5.40)

s AR
VAV S
m

+ Ric(VV?, V?) | dV + O

)

Proof. To prove (3.5.39), subtract (3.5.23]) from (3.5.17)), and simplify the expression using
(3.5.27)) and (3.5.35)). To prove (3.5.40)), apply (3.4.22)). O

The integrand in (3.5.39)) and ([3.5.40) can be written as follows.
Proposition 3.5.9. The following equality holds,

2 2

oo AV R = - |oviarie Lo 1oil) @san
m Y ’ - (2—-m)? or? NN o
Proof. Computing the partial derivatives of b?, we see
2b2 2b? 1 2b2 1
0;b" = Q_m&f, 0.b* = " +02(N1/2), 0,0;b° = 2_m8183f+02(N).

Using (3.5.16)) and the fact that b*/(2 —m) = —27 + Oy(1/N) we write,

Ab? 20 (1 1.
w9 T (E“MN)) f

To calculate the components of @@bQ, we can compute the Christoffel symbols of the metric

g. Using that

1
Loy = 590d(aagbd + Ob9ad — Oalab),

where we are using abstract index notation, we find that the Christoffel symbols are,

r Ty - o
Iy = —NY Ry, =Ty, T5=0 (3.5.42)
[y =T05 Ihg=—1§"gas, I[iz=0 (3.5.43)
. 1. (R, 2R L 2 .
v = égrr <7’N3 + T;) N —#g”&ﬂ, re =0 (3.5.44)
2
[, =2r8%, TH = gMRy,, TI7 = #g”@ﬂ, (3.5.45)

where g,5 is the standard metric on S¥, Flg are its Christoffel symbols, and I" fj are the
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Christoffel symbols of the metric g on M. A lengthy yet straightforward inspection shows
that the only contributions of order O(1) to the squared norm of

. Ab?
S = VVb — =4,
m

which, on its expanded form reads,

39" Sy Seq = gikgjlsijskl + G 9% Sj0k0 + @ikgaﬁsmskg
+ (§%S00)* + 3% S0 S0 + 65" SoaSos (3.5.47)
+ ga’ygﬁésaﬁsws + ga’ygijsaiswj + QOWQOOS&OS”/O-

arise from the {ij} indices during the norm computation. Using the previously computed

Christoffel symbols, we show,

. 20° 1 20°

N) 2—m

1
Rz‘j + OQ(N),

and therefore,

- - Ab?
Sij = 0;0;6> — T5.0,b% — T'0,b* — — 0
2b° 1 1
i (Wff - ;%) Ol

Given that v = 1 — 27R/N + O5(1/N?), it is straightforward to verify that, after crucial
cancellations in S,g and S,, between VVH? and AbZQ/ m, the the remaining components of

S are,

1

1
Saﬁ = 02(1)7 STT = OQ(N): S’ir - 02(N1/2>7 SZ = S’ra = 07
from where we compute,
A | 1
Vb — =g = §"*§s,; — 5.4
\VAY/ 3 " G" Si; Sk +02(N) (3.5.48)
Ab* 1 1
=— ic—— —). 5.4
G mp VV f + Ric 5.9 +02(N) (3.5.49)

Now, using the coordinate expression for Ric in terms of the Christoffel symbols, a straight-
forward computation (see Section in the Appendix) reveals that its components with
respect to the (7,6, x)-coordinates are of order O;(1/N). Using (3.4.7)) and 0, = (r/N)0;, it
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follows that .
Ric(Vb?, Vb?) = Oi(5)-

(3.5.50)
0

Finally, we reproduce Perelman’s formula for the derivative of the W-functional as the

limit of the derivatives of Wy;.

Theorem 3.5.10. The derivative of Perelman’s W— functional is,

dW 1
SN =— [ 9 T
) (A) /M A (’VVf—I—Rlc 59

Proof. Define

~ 2
A A Ab? A A
VvV — —g| + Ric(V?, Vb?)

CN
FN = /
N+4
Ch b=s

Then, using (3.4.10) and (3.5.41)), it is straightforward to show that

2

Fy = 4(4m)™2(2N)"/27} (/ ‘VVf + Ric —ig
M 2T

It follows that Fy = (2N)™?710;(1) and therefore,

d d\ d

ds ¥ 7 ds dx

Then, a Taylor expansion of order one centered at s = vV2N A shows,

d
d—(2(m —1)Vy — An)

s
cn s, A ey ey .
—__N [ —— b*, Vb d
Sam i /S<b<8 \YAYS 3 + Ric(Vb*, V%) | dV + Og(
b sz+4F (w)dw + O (L)
T 9gmtl . N OV N3/2

1

) d
= T ogmit /S w4 (FN(S) + (w — S)EFN@“”S)) dw + O (

1

o 28m+1

= [8 W (Fn(s) + (w — 8)(2N)"273204(1)) dw + Op(
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) (4m\)"2e fdv.

1
€_de + 01(N>> .

—Fy — ((2N)"27104(1)) = (2N)"/27320,(1).

(3.5.51)

(3.5.52)

(3.5.53)

(3.5.54)



Integrating, bounding the integral of the Oy(1) term by above and below as in (3.4.25)), and
absorbing the terms that decay exponentially fast into Og(N~%/2), we find,

i(2(7’I’L — 1)VN — .AN>

ds
T e ST Ny E20,(1) + Op(—e)
2N +5) YN T (N+6)(N+5) 0 O\ N3/
3—n 1
- __F
(N5 N Ool 372)
Finally, since
dWy  d ds d

(2(m — 1)\7]\[ — .AN) = (2(m - 1>VN - ‘AN)J

dh  dr d\ds

we use the expression (3.5.53)) and s = V2N X to obtain,

AW N /2 <m)3—n 1 1
() (_WF v +O°(W>> ")

1 2
= —2(47) 73 (V2N N> (2N)"/2 ! (/ 'VVerRic—Zg
M

1
I

n 1
= _2(477)*5)\141/2 </ ‘VVf—i—RiC——g
M 2T

|
—— [ 9 o
/M A(‘VVerRlc 9

1
€_de + Ol(ﬁ)>

+ Oy(

2

e Tdv + Oﬂ%)) + OO(%)

2
n 1
A\ 5! ).
)( TA) ze d1/+OO(N)

By Corollary |3.4.6],
) = im D220
Y T N Ay Y
which finishes the proof. m
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Appendix A

Auxiliary results

Here we prove some technical and computational results cited in the main text. We
divide it in two sections: the first one is devoted to results used in Chapter 2, and the

second one for those needed in Chapter 3.

A.1 Auxiliary results for Chapter

A.1.1 Uniform convergence and bounds for the functions G,

~ || (n—2)/2
Gn(l',t) = (1 - _) XBd (IL‘),

Recall that

2nt Vant

n—2)/2
G (X t) =11- ﬁ | ! Xpd+1 d+1 (X)
e 2nt RyTOB o

and
G(X,t) = e WP Ga, t) = e 1#1°/4,

We will prove the following results for G, and G. Identical arguments hold for G,, and G

respectively, replacing R? with R‘fl where appropriate.

Proposition A.1.1 (Lemma 3.1 of [25]). G, — G uniformly in R? x{t > to}, for any
to > 0.

Proof. Since G, is radial for every n, we may change variables, and consider w = |z|?/4t,
m = n/2. With this, we rewrite G, as,



We will show
fm(w) = f(w) == e""xr, (w),

from where the result will follow.

We first observe that if w > m, then |f(w) — f(w)] = e™ < e™ — 0 as m — oc.

Now, if 0 < w < m, we estimate

)= ot = (1= 27 1) - (-2

In order to work with
m—2 m m -1
-2 (- (-7 (0-2) ),
m m m m

a simple computation with the derivative shows that w = 1— (1 — %) isa global maximum,

and the maximum is bounded by

m _1
mox (1= 2)" (1= 2) 7 -1) < 5
weR4 m m 2m
(-2
m

Since logu < u — 1 for every u € (0, 1), we see that

og (1- ) < -2
m m

We now estimate

and therefore,
w m
log <1 — —) < —w
m
for every w € (0,m). On the other hand, a standard Taylor expansion shows that
log(1 —u) = —u — u?/2m + O(u?).
Setting u = —w/m we find that
w 2 3/, 2
mlog (1 - —) = —w —w/2m + O(w’/m?).
m

Exponentiating from both sides, we arrive to the expression,

(1 o E)m _ e—w—w2/2m+0(w3/m2)
m
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In order to find the appropriate bound for

max ‘e_“’— (1—£> ’,

we[0,m]

we observe that previous step implies

‘e—w . (1 . E)m‘ — W (1 . €—w2/2m+0(w3/m2)> )
m

Using the Taylor expansion for the exponential at 0,

2 2
(1 _ e—w2/2m+0(w3/m2>) —0 (“’_> <o

2m om’

Now, by Taylor approximation of e again, we also find

2 w2

e~V <1 _ €—w2/2m+0(w3/m2)> < C’w_ = 0_7 (A]_]_)

- 2m m

where we absorbed the 2 in the constant C'. Now observe that if a > 0,

w m
max ‘e_“’ - (1 - —) < max e ¥ <e %
wela,m] m wela,m]

Finally, taking a = logm and using (A.1.1]), we see that

max
we(0,a]

m | 2 | 2
N () P L e
m 2m m

Therefore

m 1
oo (1) ey Ly ol
m
Combining the previous bounds, we find

1 log m)?
|fm—f|m§e‘m+—+0—< gm) :
m m

which concludes the proof. ]

Lemma A.1.2. We have,
Gn(z,t) < eG(x,t),

for everyx € R4, t >0 andn > 1.

Proof. Fix n > 2. First, observe that G, (x,t) is supported in the ball || < v/2nt, so the
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result trivially holds outside |z| < +/2nt. Within this region, we can express G, as

Gn(z,t) = ( - %) :

noting that y < % since 2| < v2nt. The function G,, can then be rewritten

Let y = %,

in terms of y as,

n—2

Gn(z,t) = (1 - @> i

n

Taking logarithms from both sides,
~ n—2 2
log G, (X, t) = ——1 1-——=.
0g G (X, t) = —— log ( - )

Using the inequality In(1 — z) < —z for z € [0, 1), which follows from a Taylor expansion we

2 2
og (1-2) < -2
n n

- -2 2 2

2 n n

obtain,

Therefore,

Exponentiating both sides yields
Gn(z,t) < eV = e Ve
Since y < 7, the term %y is bounded above by 1, and thus e < e. Consequently,

G(x,t) < ee™ = eG(x,1).

Since this bound is independent of n, the lemma follows. O

A.1.2 Proof of Lemma 2.4.1]

Here we prove Lemma [2.4.1] We will use the following proposition.

Proposition A.1.3. Let g € C([to, t1]; Ll(Rfl, du)). Then, for every e > 0 there ezists a
compact set K C R‘fl such that

/d l9(z, )] dp < e,
RYT\K

96



for every t € [tg, t;].

Proof. Fix ¢ > 0. Since g is continuous, g([to,1]) C L*(R%™, du) is compact. In particular
it must be totally bounded and we can find ¢1,...,9, € Ll(RiH, dpu) such that for any
t € [to,t1], there exists i € {1,..., N} with

Hg<7t) - giHLl(Ri“,du) < 5/2

Now, since g; is integrable for every 7, for each g; we may find a compact set K; such that

Lo laOldu<2/2
RE\K

k3

Then, let

We have,

[ Jowoldus [ lglet) - g@ldns [ o]
RYT\K RYT\K RYTI\K

<Ilg(:t) = gill Lrgasr gy +6/25

for every i € {1,...,N}. Choosing ¢ such that ||g(-,t) — giHLl(Riﬂ a4y < €/2 the result
follows. H

Proof of Lemma[2.7.1. Let ¢ > 0. We first observe that since G,, < eG,
mt) < [ AGuduse [ \iGdu< .
Rfll:'—l Ri+1

Now,

Ihn(t)—h(t)IS/K|f||Gn—G|d/~L+/H\K|f||Gn—G\du, (A1.2)

Rt
for every compact set K. Since fG(-,t) € C([ty,t1]; L*(RE™, dpu)), by Proposition
there exists a compact set K such that

€
fGldy < —,
/Riﬂ\K' |y 2(1+e)
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for every t € [to, t1]. Then,

3

/ G — Gldy < <1+e>/ 7C du <
RYT\K RYTI\K

Now,
G, —Gldu < |K max max G, — Gl
J11G = Gl < || s 1f] w16 =G
Since G,, — G uniformly, the lemma follows. m

A.2 Auxiliary results for Chapter

A.2.1 The Scalar Maximum Principle

Here we prove the Scalar Maximum Principle. Generalizations to vector bundles can be

found, for example, in [5].

Theorem A.2.1 (Scalar Maximum Principle). Let M be a closed Riemannian manifold and
g(t) a family of metrics on M. Suppose that u : M x [0,T] — R satisfies the differential

inequality

d
i > Agpyu+ g(X (1), Vu) + F(u), (A.2.1)

where X (t) is a time-dependent vector field and F is a locally Lipschitz function. Let h(t) be
a solution of the associated ODE 4Lh = F(h) with u(-,0) > h(0). Then u > h for allz € M
and t € [0,T].

Proof. This theorem follows from the fact that at a local minimum, the Laplacian is non-
negative and the gradient vanishes. Consider a function u. := u + €(6 + t). Note that
M x [0,T] is compact, so we can choose a uniform Lipschitz constant K for F'. We select a
small 0 that depends only on K such that u. —h > 0 for ¢ € [0, d]; and we can let £ — 0 to
prove the result on [0, d] and then repeat the argument with the same § to cover the interval
[0,T7.

Note that u, > h at ¢ = 0. Suppose there exists a first time ¢y such that u. = h at

a point zo. Since for all times ¢ < ty we have (u. — h)(xg,tg) > 0, the time derivative is
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non-positive and we are at a spatial minimum. Then at (zg, %) we have,

0

> —(u.—h
025 u==1)
> e+ Agy(ue —h) + g(X(t),V(ue — h)) + F(u. — (6 +1t)) — F(h) (A.2.2)
>e—Kluc—h—¢e(0+1)]
=e(l—-K|0+1]).
Taking 6 < %, this expression is strictly positive on [0, §], which is a contradiction. O

It is important to note that these results also hold for the minimum; that is, if we consider
the differential inequality

d
pri < Agpu+ g(X(t), Vu) + F(u), (A.2.3)

where X (¢) is a time-dependent vector field and F' is a locally Lipschitz function. Let h(¢)
be a solution of the associated ODE £h = F(h) with u(-,0) < h(0). Then u < h for every
x € M andte€|0,T].

A.2.2 Proof of Lemma [3.3.6

Proof of Lemma(3.3.6. We prove the lemma by analyzing the Taylor expansion of F(w)

around wy, and estimating the remainder term R;.

For a smooth function F', the Taylor expansion of F'(w) around wy up to order [ — 1 with
remainder is given by,
1—
F(w) = Z —!(w — wo)™ + Ry,

m
=0

where the remainder term R; in integral form is,

R, = ! / (w — ) EO(t) at.

wo

1 wo+0
R = / (wo + 6 — ) LFO(#) dt.




We now bound the remainder. Since F is smooth, F) is continuous and hence bounded
on compact subsets of (a,b). Let M be a bound for |F® (w4 u)| where u € [0,6]. Then,

/05((5 — )"t du

We now estimate the derivatives of the remainder. By assumption, § = Oy(1/N?),

M
|By| < ——

M l
(I—1)! = ol

meaning that for any multi-index |a| <k,
N’|9%5] < K,

for some constant K >0 and forall N >0, 7 <7 <7T,and x € M.
To show that R; = O (1/N’'), we need to bound the derivatives 9*R; for || < k. Using

the Leibniz rule, we see that the derivative of the integral expression for R; involves terms

of the form,

TR=2 (2) 0 . D! I 5 (6 = )] 7O g + )

BLa B

Each term in the sum can be bounded by
|ao¢7ﬂ [(5 . u)lfl:| ‘ < 0‘5’l717|a7,8|’

where C' depends on [ and the multi-index «. Since F® is smooth, its derivatives are

bounded, and we obtain,

. e K\ K
o < et < ¢ (1) = S
for some constant C’ > 0. This shows that
1
Rl = Ok (W) )
completing the proof. O

A.2.3 The Riemann tensor of Perelman’s N-space

Here we compute the Riemann curvature tensor of the manifold M = M x SV x R, . For

convenience, we doit on the (z, 6, 7) coordinates. For these coordinates, the metric takes the

100



form,

A

9i5 = YGij,

gaﬁ = T4Gaps,

R N

Goo = 7 + Ra
2T

Gia = Gio = Yoo, = 0
where i, j are coordinate indices on M, «, B are coordinate indices on S%, and the coordinate
7 on R has index o. Since g;; evolves by the backward Ricci flow

0
Egij = 2Ry,

and the metric g, on SV is a metric with constant sectional curvature ﬁ, we can cdirectly

ompute the Christoffel symbols of the metric g, which are given by the following list:
Pk _ ik
f,’fﬁ:() and ij:O
Mfy=0 and I7,=0
f‘fo = gklRli and f?j = —AOORij

M, = 5" TR and = g
[%=0,I% =0 and I, =0

Iy =T%

= i(W and 19, = —lgoogaﬁ

2r ¢ “ 2
7, =0 and fgﬁ =

1 A~ O

2

( N 0
g (—ﬁ * ER)

Fix a point (p,s,7) € M x SV x Rtand choose normal coordinates around p € M and
normal coordinates around s € SV such that I'};(p) = 0 and T'}4(s) = 0 for all ¢,j, k and

Mo
1_‘oo -
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a, 3,v. We compute the curvature tensor Rm of the metric g at the point as follows:

. e e e 1
Rijii = Riju + T L% = Th 19 = Ryju + O (N)

Rijrs =0

A ) T 1, !
Rijs = 0 and Rigys = I‘fofg5 — FZOF% = —59 gﬂéngRzz‘ =0 <N)

~

Riﬁ% =0
’ 8 a r AO [ Ao ]_
Rz’jko = %R]k - %Rzk + Ffol“jo — F?orio = -Pijk: —+ 0) (N)
- 1 02 0 . S
= R — o= (Rag") + T35, — T4, = TGI%,

ko = 9 Oxioxk T Or

1 0 1 1
= —§VinR - ERH@ + 2Ry Ry, — ZRik: — RijRj + O (N)

1
=: ik—i-O(N),

Rijfyo =0 and Ri'yjo =0

A A A 1 A
Riﬂ'yo = —TIW FQ = O (N) and Rioyé =0

Bo™ 1o

and,

Rio*yo =0
Repro =0

. 1 e
Rao*yo = <2_7_25(Z + Floroo - FZBF50> T=0 (

. 1
Rapys = O <N)

Taking traces, we arrive at the following.

2|~
~—

Corollary A.2.2 (Corollary 3.1.2 of [15]). The components of the Ricci tensor of § are
O(N—1).
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