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Abstract

This thesis contributes to the development of a unified theory of parabolic-to-elliptic

transformations, which interprets parabolic partial differential equations as high-dimensional

limits of their elliptic counterparts. Our work advances this framework through two principal

contributions:

First, we extend this connection to fractional operators, enabling new derivations of

monotonicity formulae for fractional parabolic equations from known elliptic results. As

a central result, we establish the first monotonicity formula for the semilinear fractional

parabolic equation

(∂t −∆)su = |u|p−1u,

yielding a fractional analogue of the Giga-Kohn monotonicity formula and thereby extending

these techniques beyond their original local setting.

Second, we deepen the geometric understanding of the relationship between Colding’s

monotonic volume and Perelman’s entropy functional for the Ricci flow. While Perelman’s

reduced volume was previously known to emerge as a high-dimensional limit of the Bishop-

Gromov relative volume, the geometric origins of the entropy functionalW had remained elu-

sive. We demonstrate that both functionals naturally arise from a unified high-dimensional

framework via Perelman’s N -space, providing a complete elliptic foundation for these fun-

damental parabolic quantities.



Resumen

Esta tesis contribuye al desarrollo de una teoŕıa unificada de transformaciones parabólico-

eĺıpticas, que interpreta ecuaciones diferenciales parciales parabólicas como ĺımites en alta

dimensión de sus contrapartes eĺıpticas. Nuestro trabajo avanza este marco mediante dos

contribuciones principales:

En primer lugar, extendemos esta conexión a operadores fraccionarios, permitiendo

nuevas derivaciones de fórmulas de monotońıa para ecuaciones parabólicas fraccionarias a

partir de resultados eĺıpticos conocidos. Como resultado central, establecemos la primera

fórmula de monotońıa para la ecuación parabólica fraccionaria semilineal

(∂t −∆)su = |u|p−1u,

obteniendo un análogo fraccionario de la célebre fórmula de monotońıa de Giga-Kohn y

extendiendo aśı estas técnicas más allá de su contexto original local.

En segundo lugar, profundizamos la comprensión geométrica de la relación entre el volu-

men monotónico introducido por Colding y el funcional de entroṕıa de Perelman en el flujo

de Ricci. Si bien es sabido que el volumen reducido de Perelman emerge como un ĺımite

en dimensión alta del volumen relativo de Bishop-Gromov, los oŕıgenes geométricos de su

funcional de entroṕıa W no poséıan semejante explicación. Aqúı, demostramos que ambos

funcionales surgen naturalmente de un marco unificado en dimensión alta a través del N -

espacio de Perelman, proporcionando aśı una base eĺıptica completa para estas cantidades

parabólicas fundamentales.
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Chapter 1

Introduction

Many central problems in geometric analysis and partial differential equations (PDEs)

rely on understanding how quantities evolve under scaling, deformation, or time-dependent

processes. A powerful technique for such problems, employed, for example, in Almgren’s

study of harmonic functions [3], Alt-Caffarelli-Friedman’s analysis of free boundaries [4], and

Huisken’s work on mean curvature flow [39], involves constructing integral functionals that

exhibit monotonic behavior along natural parameter families. Over the past decades, this

approach has become increasingly prominent, with monotonicity formulas yielding diverse

applications including compactness, regularity, and rigidity theorems in elliptic and parabolic

PDEs, as well as in geometric flows [19].

An intriguing pattern emerges when comparing parabolic and elliptic settings: many

parabolic monotonic quantities appear to have elliptic counterparts. For instance, Huisken’s

monotonicity for the mean curvature flow parallels Allard’s monotonicity for minimal sur-

faces [2], while Struwe’s monotonicity for the harmonic map heat flow [61] corresponds

to Schoen-Uhlenbeck’s monotonicity for harmonic maps [55]. Further examples include

Hamilton’s monotonicity for the Yang-Mills heat flow [37], which relates to Price’s formula

for the elliptic Yang-Mills equation [49], and Almgren’s frequency for harmonic functions

[3], contrasted with Poon’s parabolic frequency for the heat equation [48] (later extended

to manifolds by Colding-Minicozzi [22]). These parabolic monotonicity formulas are often

more challenging to derive than their elliptic counterparts, as they typically rely on subtle

applications of backward heat-type equations.

Given the prevalence of this parabolic-elliptic duality, it is natural to ask whether it

reflects a general principle. While elliptic theory is often viewed as the stationary case of

parabolic theory, recent work has explored the reverse perspective: expressing parabolic

theory as a limiting case of elliptic theory when the spatial dimension tends to infinity. The

many parallels between these theories suggest a connection beyond mere analogy, raising

the possibility of systematically deriving parabolic monotonicity formulas from their elliptic
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counterparts. This novel idea was first employed by Perelman [47] in his completion of

Hamilton’s program for the Ricci flow on 3-manifolds [17,38].

The present work aims to deepen the understanding of the connection between parabolic

theory and high-dimensional elliptic theory. To this end, we first demonstrate that the same

underlying principle extends to fractional operators, where fractional parabolic monotonicity

emerges as a high-dimensional limit of fractional elliptic monotonicity. As an application,

we derive a monotonicity formula for a semilinear fractional parabolic equation.

Furthermore, building on Perelman’s work on the Ricci flow, we show that Perelman’s

entropy functional (commonly known as the W-functional) arises as a high-dimensional limit

of Colding’s monotonic volume for level sets of appropriately scaled Green functions on non-

parabolic manifolds with nonnegative Ricci curvature.

We begin by introducing the general framework for heat-type equations, followed by a

review of Perelman’s original derivation of his celebrated reduced volume. We then provide

a detailed exposition of the results obtained in this work.

1.0.1 Parabolic theory as a limit of elliptic theory

To formalize the parabolic-to-elliptic perspective, consider a smooth, ancient solution

u : Rd × (−∞, 0] → R of the heat equation on Euclidean space,

∂tu−∆xu = 0.

Let y ∈ RN , and express it in polar coordinates as y = (r, θ), where r > 0 and θ is a

coordinate on the (N −1)-dimensional sphere of radius 1, SN−1
1 ⊂ RN . In these coordinates,

the Laplacian becomes,

∆yf = ∂2rf +
N − 1

r
∂rf +

1

r2
∆SN−1f,

where ∆SN−1 denotes the Laplace-Beltrami operator on the (N −1)-dimensional sphere. For

spherically symmetric functions f = f(r), this simplifies to

∆yf = ∂2rf +
N − 1

r
∂rf.

As N → ∞, the first-order term dominates. To use this asymptotic behavior, we intro-

duce

τ =
r2

2N
=
y21 + · · ·+ y2N

2N
,

which represents the average squared norm of y, and set t = −τ . A direct application of the
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chain rule yields,

∆yf = −2t

N
∂2t f − ∂tf.

In regions where r2 = O(N) and thus τ = O(1), we have

∆yf → −∂tf as N → ∞.

This convergence suggests the following construction. Given an ancient solution u for

the heat equation, we consider the lift of u which we denote by uN , defined as,

uN(x, y) := u(x, t) = u

(
x,−y

2
1 + · · ·+ y2N

2N

)
.

A calculation shows that uN satisfies,

∆x,yuN =
r2

N2
∂2t u− ∂tu+∆xu =

r2

N2
∂2t u = O(1/N),

thus becoming approximately harmonic as N grows large.

The geometric interpretation of this transformation becomes clearer when we express the

Euclidean metric gE on RN+1 × Rd in polar coordinates with respect to y,

gE = dr2 + r2gSN + gRd =
N

2τ
dτ 2 + τgS̃N + gRd , (1.0.1)

where gS̃N is the standard metric on SN with constant curvature 1/2N . This metric decom-

position mirrors Perelman’s construction for the Ricci flow.

The elliptic approximation relates parabolic theory to elliptic theory as N → ∞. To

illustrate its utility, we apply this transformation to the mean value property for harmonic

functions as follows. Since uN is almost-harmonic we expect the mean value formula to hold

for uN , and therefore we have

uN(0, 0) ≈
1

|BN+d(0, r0)|

ˆ
|y|2+|x|2≤r20

uN(x, y) dy dx,

where |BN+d(0, r0)| = CN,dr
N+d
0 is the volume of the ball in RN+d. Rewriting in polar

coordinates gives

uN(0, 0) ≈ cN,dr
−(N+d)
0

ˆ
Rd

ˆ
0≤r≤

√
r20−|x|2

uN(x,−r2/2N)rN−1 dr dx,

for some constant cN,d > 0.
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The key step involves setting r20 = 2Nτ and analyzing the regime where x = O(1)

and τ = O(1). The term rN−1 localizes the integral near its endpoint, leading to the

approximation

ˆ
Rd

ˆ
0≤r≤

√
r20−|x|2

uN(x,−r2/2N)rN−1 dr dx ≈ 1

N

(√
r20 − |x|2

)N

u(x,−(r20 − |x|2)/2N).

Since r20 = O(N) and x = O(1), we can further approximate u(x,−(r20 − |x|2)/2N) ≈
u(x,−τ). Moreover, the term

(√
r20 − |x|2

)N
behaves asymptotically as

(√
r20 − |x|2

)N

≈ rN0 exp

(
−N |x|2

2r20

)
.

Substituting r20 = 2Nτ and combining these approximations yields the familiar heat

kernel representation,

u(0, 0) ≈ lim
τ→0+

c̃N,d

τ d/2

ˆ
Rd

e−|x|2/4τu(x,−τ) dx.

This connection has been further developed by several authors: the exposition here

follows Tao’s lectures on the Ricci flow [62], while Svérak [68] offers a complementary prob-

abilistic perspective by recalling several ideas dating back to Weiner. Next, we discuss this

probabilistic formalism.

1.0.2 A probabilistic approach

Following Svérak [61] (see also [23]), we model a random walk in R, in which a particle

begins at (x, t) = (0, 0) and takes N steps y1, . . . , yN . Instead of fixing step sizes, we enforce

a global constraint: for the particle located at (x, t) = (0, 0), we assume that up to time t

the random steps, y1, . . . , yN are subject to the constraint

y21 + · · ·+ y2N = t.

After completing all steps, the particle’s final position is

x = y2 + · · ·+ yN .

We now define the probability law governing (y1, . . . , yN). The natural assumption is that

the vectors (y1, . . . , yN) are uniformly distributed over the (N − 1) dimensional sphere of

radius
√
t with respect to the canonical surface measure on the sphere. Let µt

N denote the
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normalized measure, with unit mass. We may write

µN
t =

1

|SN−1|t(N−1)/2
σt
N−1 =

Γ(N/2)

2πN/2t(N−1)/2
σt
N−1,

where σt
N−1 is the canonical surface measure. Define

fN(y) = y1 + · · ·+ yN ,

as the projection of the high-dimensional space onto R by the rule previously described. The

pushforward measure fN#(µ
t
N) is explicitly computed as

fN#(µ
t
N) =

1√
2πt

Γ(N/2)

Γ((N − 1)/2)
√
N/2

(
1− x2

N
2
2t

)N/2−3/2

dx.

Stirling’s formula gives,

lim
N→∞

Γ(N/2)

Γ((N − 1)/2)
√
N/2

= 1,

and, combined with the identity

lim
N→∞

(
1 +

a

N

)N
= ea,

we recover the limiting measure,

fN#(µ
t
N) →

1√
2πt

e−x2/2tdx

as N → ∞, which is the heat kernel for

∂tu−
1

2
∂2xu = 0.

The same procedure can be carried out for Rd, allowing us to relate integral quantities in the

high-dimensional and original spaces via the pushforward, with the heat kernel appearing

naturally as the pushforward of our probabilistic law. Davey [23] (see also Davey-Smit [25])

recently used this interpretation to systematically derive parabolic monotonicity formulae

from elliptic counterparts, recovering classical results by applying elliptic monotonicity to

high-dimensional equations and passing to the limit as N → ∞. These high-dimensional

equations are equivalent to the parabolic case (holding if and only if the parabolic equation

does) and converge formally to the elliptic equation as N → ∞.
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1.0.3 Perelman’s reduced volume

Using similar ideas, we now outline Perelman’s original derivation of his celebrated re-

duced volume for the Ricci flow [47]. Let Mn be a closed n-dimensional manifold, and let

g(τ) be a backward solution to the Ricci flow

∂τg = 2Ric, (1.0.2)

on M defined on the interval [0, T ]. Let r2 = 2Nτ , and define Perelman’s N -space,

M̂m := (0,
√
2NT )r × SN

θ ×Mn
x ⊂ RN+1 ×Mn, where m = N + n+ 1,

endowed with the metric

ĝ := r2gSN +

(
1 +

Rr2

N2

)
dr2 + g. (1.0.3)

where R is the scalar curvature of g, and at a point (r, θ, x) ∈ M̂ , gSN is evaluated at θ,

and R and g are evaluated at (τ = r2/2N, x) ∈ (0, T ) ×M . Note that (1.0.3) reduces to

(1.0.1) when M = Rn endowed with the Euclidean metric. One can show that M̂ becomes

asymptotically flat as N → ∞, with its Ricci tensor satisfying |R̂ic| = O(1/N).

Stationary solutions to (1.0.2) satisfy the Ricci-flat equation,

Ric = 0, (1.0.4)

for which the Bishop-Gromov relative volume serves as a fundamental monotonic quantity,

and states the following.

LetM be a complete n-dimensional Riemannian manifold whose Ricci curvature satisfies

the lower bound Ric ≥ (n − 1)K for some constant K ∈ R. Let Mn
K denote the complete,

simply connected n-dimensional space form of constant sectional curvature K, that is, the

n-sphere of radius 1/
√
K when K > 0, Euclidean space for K = 0, or a rescaled hyperbolic

space when K < 0. Then, for any p ∈M and pK ∈Mn
K , the ratio

ϕ(r) =
VolB(p, r)

VolB(pk, r)
,

is a non-increasing function of r. This result has found broad applications throughout

differential geometry.

The near Ricci-flatness of (M̂, ĝ) enables a heuristic derivation of monotonic quantities

for the Ricci flow via the Bishop-Gromov inequality, which we apply assuming K = 0. We
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examine metric balls centered at (p, s, 0) ∈ M̂ , where the SN fiber degenerates to a point

at τ = 0. Length-minimizing geodesics γ(τ) connecting (p, s, 0) to (q, s̄, τ̄) ∈ M̂ must be

orthogonal to the spherical fibers, since the angular variable only influences the term r2gSN

of the metric. The length of such a geodesic must then be given by

ℓ(γ) =

ˆ τ̄

0

√(
N

2τ
+R

)
+ |γ̇(τ)|2gij(τ) dτ.

A Taylor expansion yields the asymptotic behavior

ℓ(γ) =
√
2Nτ̄ +

1√
2N

ˆ τ̄

0

√
τ
(
R + |γ̇(τ)|2gij

)
dτ +O

(
N− 3

2

)
,

and therefore, a shortest geodesic should minimize the N -independent functional

L(γ) =

ˆ τ̄

0

√
τ
(
R + |γ̇(τ)|2gij

)
dτ.

Let L(q, τ̄) denote the infimum of this quantity over all paths joining both endpoints.

A metric sphere SM̂(
√
2Nτ̄) in M̂ of radius

√
2Nτ̄ centered at (p, s, 0) ∈ M × SN × R+

is O (N−1) close to the hypersurface {τ = τ̄}. Indeed, for (x, s′, τ(x)) ∈ SM̂(
√
2Nτ̄), the

distance between (x, s′, τ(x)) and (p, s, 0) is

√
2Nτ̄ =

√
2Nτ(x) +

1√
2N

L(x, τ(x)) +O
(
N− 3

2

)
.

Rearranging gives,

√
τ(x)−

√
τ̄ = − 1

2N
L(x, τ(x)) +O

(
N−2

)
= O

(
N−1

)
,

Since the metric 2Ngαβ on SN has constant sectional curvature 1/2N,

Vol
(
SM̃(

√
2Nτ̄)

)
≈
ˆ
M

(ˆ
SN
dVτ(x)gαβ

)
dVgij(x)

=

ˆ
M

(τ(x))
N
2 Vol

(
SN
)
dVM

≈ (2N)
N
2 ωN

ˆ
M

(√
τ̄ − 1

2N
L(x, τ(x)) +O

(
N−2

))N

dVM

≈ (2N)
N
2 ωN

ˆ
M

(√
τ̄ − 1

2N
L(x, τ̄) +O

(
N−1

))N

dVM ,

where ωN is the volume of the standard N -dimensional sphere. Comparing with Euclidean
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sphere volumes,

Vol
(
SRn+N+1(

√
2Nτ̄)

)
= (2Nτ̄)

N+n
2 ωn+N ,

yields the ratio

Vol
(
SM̃(

√
2Nτ̄)

)
Vol
(
SRn+N+1(

√
2Nτ̄)

) ≈ const ·N−n
2 ·
ˆ
M

(τ̄)−
n
2 exp

{
− 1

2
√
τ̄
L(x, τ̄)

}
dVM .

Consequently, the asymptotic Ricci-flatness of M̃ and Bishop-Gromov theorem suggest the

monotonicity of

V̄ (τ̄) :=

ˆ
M

(4πτ̄)−
n
2 exp

{
− 1

2
√
τ̄
L(x, τ̄)

}
dVM ,

known as Perelman’s reduced volume. This fact was rigorously proved in [47].

1.1 Overview and results

Having established the general framework, we now present the specific problems ad-

dressed in this thesis.

1.1.1 Fractional operators

Fractional operators provide the mathematical foundation for modeling anomalous dif-

fusion (that is, stochastic processes deviating from Brownian motion), a field of growing re-

search interest. These processes are characterized by nonlocal integro-differential operators,

chief among them the fractional Laplacian introduced by Riesz [52], defined for v : Rd → R
as

(−∆)sv(x) :=
4sΓ(d/2 + s)

πd/2|Γ(−s)|
lim
r→0+

ˆ
Rd \Br(x)

v(x)− v(z)

|x− z|d+2s
dz, where 0 < s < 1. (1.1.1)

This operator of order 2s continuously interpolates between the identity (s → 0+) and

the standard Laplacian (s → 1−), making it particularly versatile for capturing a wide

range of diffusive behaviors. Its nonlocal nature allows it to model systems with long-range

interactions and memory effects that elude classical diffusion operators, while maintaining

many useful analytic properties of elliptic operators. The combination of such features

explains its growing importance across physics, biology, and engineering applications where

complex, multiscale transport phenomena occur.

Notable applications include modified gravity theories, where, for example, Benetti et

al. [7] investigate whether known galactic dark matter observations could arise from frac-
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tional gravity effects. In this context, while the standard law of inertia remains valid, the

gravitational potential is determined by a modified Poisson equation incorporating frac-

tional derivatives that capture nonlocal interactions. Subsequent work [6] has extended this

approach to galaxy clusters, and in [35,65,66] a fractional-dimension gravity model that suc-

cessfully reproduces flat rotation curves through modifications to the Newtonian potential

was also explored.

Additional applications include the study of anomalous diffusion and transport processes.

In porous media, fractional diffusion equations describe contaminant transport exhibiting

heavy-tailed particle jumps [8], while in neuroscience, fractional cable equations provide

more accurate modeling of electrodiffusion of ions in nerve cells [41]. Turbulent systems and

plasma physics similarly benefit from fractional dynamics in describing anomalous particle

motion [44]. Beyond the natural sciences, the fractional Laplacian finds applications in fi-

nancial mathematics, where it models extreme market movements through Lévy processes

[54] and in image processing, where fractional order filters have been studied for enhanced

edge detection and noise reduction [34]. In social sciences, it has also been employed to con-

struct superdiffusive models explaining criminal activity patterns through long-range jump

processes [56]. Several applications are also available in geometric analysis and probability

theory [32].

The natural parabolic counterpart to the fractional Laplacian, the fractional heat oper-

ator, is defined as

(∂t −∆)su(x, t) :=

ˆ t

−∞

ˆ
Rd

(u(x, t)− u(z, τ))Ks(x− z, t− τ)dzdτ, (1.1.2)

where

Ks(z, τ) =
1

(4π)d/2|Γ(−s)|
e−|z|2/4τ

τ d/2+1+s
, (1.1.3)

and is non-local in both space and time. This operator has also found several interesting

applications, since it models systems exhibiting anomalous diffusion and memory effects.

For example, in statistical physics, it arises in the study of continuous-time random walks

with Lévy flights or subdiffusive trapping events, providing a model for particle motion that

deviates from classical Brownian behavior due to heavy-tailed jump distributions or waiting

times [44]. In ecology, it models population dynamics in heterogeneous environments, where

species propagation can be accelerated by fast-diffusion channels such as river networks or

transportation corridors [9]. In finance, it has been used to model scenarios where the waiting

time between transactions is correlated with ensuing price jumps [51]. The flat parabolic

Signorini problem has also been shown to be equivalent to the obstacle problem for (∂t −
∆)1/2. Additional applications in physics include the modeling of viscoelastic materials and
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non-Newtonian fluids, where it describes memory-dependent stress-strain relationships [28],

and chaotic Hamiltonian systems, where it characterizes anomalous transport phenomena

arising from fractal phase-space structures [67].

Given the significant similarities shared by both operators with their local counterparts,

a natural question is whether parabolic monotonicity can also be recovered from elliptic

monotonicity in fractional contexts. This work establishes that the parabolic-to-elliptic

framework extends to both fractional operators, allowing to recover fractional parabolic

monotonicity formulae from elliptic ones. This is illustrated by studying solutions of the

semilinear fractional equation,

(∂t −∆)su = |u|p−1u. (1.1.4)

The local analogue of this equation,

∂tu−∆u = |u|p−1u (1.1.5)

is well-understood, with established results for its well-posedness, regularity theory, and

blow-up profiles (see [50] and references therein). For the local case, Giga and Kohn [33]

derived a fundamental monotonicity formula: if u is a solution of (1.1.5), applying a time

reversal t 7→ −t =: τ to u, the function

D(τ) :=

ˆ
Rd

(
|∇u|2

2
− 1

p+ 1
|u|p+1

)
Φdx+

1

p− 1

ˆ
Rd

u2

2τ
Φ dx, (1.1.6)

is non-decreasing for the time-reversed variable τ , and its derivative is explicitly given by,

d

dτ
D(τ) =

ˆ
Rd

(
∂τu+

x

2τ
· ∇u+ 2

p− 1

u

2τ

)2

Φ dx. (1.1.7)

Here,

Φ(x, τ) = (4πτ)
p+1
p−1

1

(4πτ)
d
2

e−|x|2/4τ

is an appropriate rescaling of the backward heat kernel. This formula plays a crucial role in

characterizing the blow-up profiles of solutions [33].

Notably, nonlocal monotonicity formulas are derived via their corresponding extension

problems for both the fractional Laplacian and the fractional heat operator. These results,

first established for the fractional Laplacian in Cafarelli and Silvestre’s seminal work [14],

interprets the fractional Laplacian as a Dirichlet-to-Neumann opreator for a degenerate but

local PDE on the half space Rd+1
+ . Similarly, these techniques were adapted to the fractional

heat operator by Stinga and Torrea [60] and independently, by Nyström and Sande [45],

allowing us to reinterpret the fractional heat operator as a local but degenerate parabolic

14



problem on the half space Rd+1
+ .

Using the extension problem for the fractional Laplacian, several examples of mono-

tonicity formulas were found for fractional elliptic problems. Some of those are an Almgren

frequency-type parabolic monotonicity formula due to Caffarelli and Silvestre [14] and an

Alt-Caffarelli-Friedman type monotonicity formula proved by Terracini, Verzini and Zilio

[63]. For the fractional heat operator, an Almgren frequency-type parabolic monotonicity

formula was found by Stinga and Torrea [60], by adapting the techniques discussed in [14].

Going back to equation (1.1.4), we observe that its stationary solutions correspond to

solutions of the fractional Lane-Emden equation,

(−∆)su = |u|p−1u, (1.1.8)

since, as shown in [60], although the fractional heat operator is nonlocal in both space and

time, it reduces to the fractional Laplacian (−∆)s when applied to a function that solely

depends on x.

The fractional Lane-Emden equation (1.1.8) has been extensively studied, with many

classical results extended to the nonlocal setting (see [16, 29, 42] and references therein).

The Dávila-Dupaigne-Wei monotonicity formula [29] for this equation, which was used to

classify solutions of finite Morse index, proves particularly relevant in our setting. This

quantity, which we will discuss in Section 2.1, can be thought of as the fractional analogue

to the local monotonicity formula for the equation −∆u = |u|p−1u, as discussed by Fazly

and Shahgholian [30] (see also the article by Pacard [46] for a similar monotonicity formula

in the case −∆u = up).

By using the monotonic quantity for the fractional Lane-Emden equation , we develop a

new monotonicity formula for solutions of (1.1.4). Specifically, let u = u(x, t) be a solution

to (1.1.4) on a time interval (−TI , TF ), where TI , TF > 0. Due to the nonlocal nature of

(1.1.2), u needs to be defined in (−∞, TF ), so we may either prescribe u(., t) = f(., t) for

t ≤ −TI , or consider ancient solutions instead. Let U(x0, x, t) be its parabolic Caffarelli-

Silvestre extension, also defined in (−TI , TF ). Then, under appropriate growth and regularity

assumptions, by applying a time-reversal t 7→ −t to both u and U , the function

J(t) :=

ˆ
Rd+1
+

x1−2s
0

|∇U |2

2
Gs dX − ηs

p+ 1

ˆ
Rd

|u|p+1G̃s dx+
s

p− 1

ˆ
Rd+1
+

x1−2s
0

U2

2t
Gs dX,

(1.1.9)

where X = (x0, x) ∈ R+×Rd, is non-decreasing for the time-reversed variable t, and its
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derivative is explicitly given by,

d

dt
J(t) =

√
2t

ˆ
Rd+1
+

x1−2s
0

(
∂tU +

X

2t
· ∇U +

2s

p− 1

U

2t

)2

Gs dX. (1.1.10)

Here, the functions

Gs(X, t) := t
2s

p−1
+1
G(X, t) and G̃s(x, t) := t

2s
p−1

+1
G((0, x), t),

are appropriate rescalings of the fundamental solution G for the extension problem of the

equation (∂t −∆)su = 0,

G(X, t) =
1

(4π)d/2Γ(s)

e−|X|2/4t

td/2+1−s
, (1.1.11)

where X ∈ Rd+1
+ , t > 0, and ηs is a constant given by,

ηs :=
2s|Γ(−s)|
4sΓ(s)

. (1.1.12)

Our result establishes the fractional analogue to the Giga-Kohn monotonicity formula,

and is, to the best of our knowledge, the first such formula for semilinear fractional parabolic

equations. In order to achieve this, we develop and apply a similar parabolic-to-elliptic

procedure to the one we previously described: we use the elliptic monotonicity for the

extension problem of the nonlocal equation (1.1.8) to construct our parabolic monotonicity,

but extra difficulties arise when treating the boundary in the extension problem.

We remark that, during the final preparation stages of this work, a new article by Davey

and Smit was made public on ArXiv also discussing the extension of Perelman’s ideas to the

fractional framework [24]. Though related to [24], our methodology primarily follows the

methods proposed by Perelman [47] and later explored in [23,25]. Through careful variable

changes and a redefinition of the dimension for the high-dimensional limit procedure, our

high-dimensional space can be reinterpreted within the framework discussed in these earlier

works. Another key distinction is that [24] focuses on the equation (∂t −∆)su = 0, whereas

our nonlinear case presents additional challenges, particularly when addressing the boundary

of the space in which the extension problem is defined. By studying the geometry of the

high-dimensional space and precisely controlling volume elements on integration domains, we

also obtain explicit formulas for the derivative of our monotonic quantity. The existence of

multiple viable approaches to this high-dimensional transformation underscores the method’s

versatility.

The techniques discussed here naturally extend to derive the classical Giga-Kohn mono-
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tonicity formula for ∂tu −∆u = |u|p−1u from the monotonicity formula for −∆u = |u|p−1u

introduced by Fazly and Shahgholian [30]. Since the computations are carried out in a simi-

lar manner, we omit them in the interest of brevity. The methods we present hold potential

for application in other nonlinear settings, as well as for systems of equations.

1.1.2 A unified framework for Perelman’s Ricci flow

The second part of this thesis revisits Perelman’s framework to derive new monotonicity

formulas for the Ricci flow. In his groundbreaking work [47], Perelman introduced two

fundamental quantities: the reduced volume and the entropy. As established earlier, the

reduced volume arises from a careful analysis of the Bishop-Gromov inequality in the high-

dimensional limit of Perelman’s N -space. Perelman’s work, however, left the entropy’s

geometric origin unexplained. We therefore extend this approach to the entropy, revealing

both quantities as manifestations of a unified high-dimensional limit in Perelman’s N -space.

Perelman’s entropy is defined as follows. For a backward solution to the Ricci flow (1.0.2),

consider u a solution to,

∂τu = ∆u−Ru, (1.1.13)

positive at the initial time τ = 0, and hence, also positive for all times by the maximum

principle. Define f by u = τ−n/2e−f so that f satisfies,

∂τf = ∆f − |∇f |2 +R− n

2τ
. (1.1.14)

Then, the entropy W (for the function f) is given by,

W(τ) =

ˆ
M

(
τ(|∇f |2 +R) + f − n

)
(4πτ)−n/2e−fdν, (1.1.15)

and its derivative takes the form,

d

dτ
W = −

ˆ
M

2τ

∣∣∣∣Ric+∇∇f − 1

2τ
g

∣∣∣∣2 (4πτ)−n/2e−fdν, (1.1.16)

from where it follows that it is monotonically decreasing in τ .

Deriving the entropy as a high-dimensional limit requires identifying suitable elliptic

monotonicity, thus enabling the application of our earlier framework. The elliptic mono-

tonicity we employ is Colding’s monotonic volume, introduced in [18]. This quantity, defined

via level sets of positive Green functions, was used to study asymptotic cones on Ricci flat

non-parabolic manifolds [18, 20]. Generalizations of Colding’s monotonic volume were later

given by Colding and Minicozzi in [21] and applications to General Relativity were explored
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by Agostiniani, Mazzieri and Oronzio in [1].

The monotonic volume is defined as follows: on a manifold (N, ḡ) admitting a a positive

and proper Green function G, define b = G1/(2−m). Then, we define ‘area’ A and the ‘volume’

V , on the level sets of b as,

A(s) =
1

sm−1

ˆ
b=s

(|∇b|2 − 1)|∇b| dA, (1.1.17)

and,

V (s) =
1

sm

ˆ
b≤s

(|∇b|2 − 1)|∇b|2 dV. (1.1.18)

Then, the monotonic volume is defined as

W (s) = 2(m− 1)V (s)− A(s), (1.1.19)

and the derivative of W is given by the expression (see Theorem 2.4 in [18]),

d

ds
W (s) = − 1

2sm+1

ˆ
b≤s

(∣∣∣∣∇∇b2 − ∆b2

m
g

∣∣∣∣2 +Ric(∇b2,∇b2)

)
dV, (1.1.20)

from which it follows that it is monotonically decreasing in s.

The flat Euclidean space Rm, provides a computable example for these quantities, where

the Green function at the origin is given by G(x) = 1/|x|m−2. If we define b = G1/(2−m), then

b = |x|, and therefore, |∇b| = 1. Consequently, in Rm, the area, volume, and monotonic

volume are all identically zero.

The ideas outlined in Section 1.0.1 can also be applied here. Following this procedure,

we analyze the level sets b = const, and show that Perelman’s entropy emerges a high

dimensional limit of Colding’s monotonic volume on Perelman’s N -space. From (1.1.20), we

recover the known expression for the derivative of theW functional, showing that Perelman’s

volume and entropy can be thought of as emerging from a single, unified high dimensional

elliptic framework from its elliptic counterpart, the Ricci flat equation. As a byproduct of

our proof, we show that the entropy also emerges as a high-dimensional limit of Colding’s

area. This behavior also reflects the boundary mass concentration phenomenon discussed in

Section 1.0.1 in the high-dimensional limit of Perelman’s N -space.

This approach could also lead to new, previously unknown monotonic quantities for

the Ricci flow, derived from known elliptic quantities on manifolds with nonnegative Ricci

curvature.
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1.1.3 Contributions

Chapter 2 collects results from the work,

[12] I. Bustamante - A monotonicity formula for a semilinear fractional parabolic

equation, ArXiv, (2025).

Chapter 3 is an expanded version of the results on the article,

[13] I. Bustamante, M. Reiris - Deriving Perelman’s entropy from Colding’s monotonic

volume, J. Reine Angew. Math., (2025).
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Chapter 2

Applications of parabolic-to-elliptic

transformations to fractional

operators

The parabolic-to-elliptic procedure outlined in Chapter 1, which connects parabolic evo-

lution equations to high-dimensional elliptic problems, can be extended to nonlocal opera-

tors. In this chapter, we show that this is indeed the case, by applying a similar procedure

to the fractional Laplacian and fractional heat operator instead of their classical counter-

parts. The extension problems associated with these operators play a central role here since

they localize their behavior via degenerate elliptic and parabolic equations on a half-space

respectively, allowing us to proceed as in Section 1.0.1.

We begin by introducing the fractional Laplacian and its parabolic counterpart, the frac-

tional heat operator, and recalling their extension properties. We then derive the correspond-

ing parabolic-to elliptic procedure, and illustrate how to use it by obtaining a monotonicity

formula for solutions of the fractional semilinear parabolic equation (1.1.4), adapting the

elliptic monotonicity of its stationary analogue, the fractional Lane-Emden equation (1.1.8).

2.1 Elliptic and parabolic fractional operators

Both the fractional Laplacian (1.1.1) and the fractional heat operator (1.1.2) have several

interesting properties as well as multiple definitions. Here, we focus on the ones relevant to

our approach. For convenience and to distinguish between the different setups, we will work

on RN for elliptic problems, and on Rd ×R for parabolic problems, and we will later take

N = d+ n as n→ ∞.
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2.1.1 The fractional Laplacian

The fractional Laplacian admits multiple equivalent definitions; for example, [40] catalogs

ten distinct characterizations and establishes their equivalence. In this work, we use the

pointwise definition (1.1.1), which is well-defined provided that v ∈ C2s+ε(RN) for some

ε > 0 and v satisfies ˆ
RN

|v(z)|
(1 + |z|)N+2s

dz < +∞, (2.1.1)

as shown in [27].

It is particularly useful to employ different definitions to showcase different properties of

this operator. For this reason, and to motivate the pointwise definition we adopt, we start

by showcasing the definition of the fractional Laplacian as a pseudo-differential operator

acting on the Schwartz class S

S :=

{
v ∈ C∞(RN) : sup

x∈RN

|xα∂βv(x)| <∞∀α, β ∈ NN

}
,

via the Fourier transform.

We start by recalling the Fourier transform F, defined as

F(v)(ξ) :=
1

(2π)N/2

ˆ
RN

e−iξ.xv(x) dx,

for any v ∈ S. Similarly, the inverse Fourier transform of v is defined for x ∈ RN as

F−1(v)(x) :=
1

(2π)N/2

ˆ
RN

eiξ.xv(x) dx. (2.1.2)

Observe that F(v)(ξ) = F−1(v)(−ξ), so the properties of F(v) also hold for F−1(v). A

thorough discussion of the Fourier transform can be found in [59].

Proposition 2.1.1. Let v ∈ L1(RN). For any z ∈ RN , define Tzv(x) := v(x− z). Then,

F(Tzv)(ξ) = e−iξ.zF(v)(ξ). (2.1.3)

If v ∈ S,

F(∂αv)(ξ) = (iξ)αF(v)(ξ), (2.1.4)

for any multiindex α ∈ Nk.

If v ∈ L2(RN), then the inversion formula holds,

F−1(F(v))(x) = v(x) a.e. x ∈ RN . (2.1.5)
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In particular, if F(v) ∈ L1(RN), then v is continuous and

v(x) =
1

(2π)N/2

ˆ
RN

F(v)(ξ)eix.ξdξ.

Moreover, the Foruier transform is an isomorphism of the Schwartz class S.

From (2.1.4) we observe that

F(−∆v)(ξ) = |ξ|2F(v)(ξ),

and from (2.1.5),

−∆v(x) =
1

(2π)N/2

ˆ
RN

eiξ.x|ξ|2F(v)(ξ) dξ (2.1.6)

follows. Therefore, the Laplacian can be represented by an integral formula in the frequency

space, where its symbol is σ(ξ) = |ξ|2. In a similar manner, one can prove the following.

Proposition 2.1.2. Let s ∈ (0, 1), and let (−∆)s denote the operator defined in (1.1.1). If

v ∈ S, then

(−∆)sv = F−1(|ξ|2sF(v)).

In particular, the fractional Laplacian is an elliptic pseudo-differential operator of order 2s.

Proof. See Proposition 3.3 in [27].

Proposition 2.1.2 shows that we can define the fractional Laplacian (−∆)s as the pseudo-

differential operator with symbol σ(ξ) = |ξ|2s. We remark that the constant

CN,s :=
4sΓ(N/2 + s)

πN/2|Γ(−s)|
,

appearing on the definition (1.1.1) of the fractional Laplacian acting on functions v : RN →
R, ensures consistency between the pointwise and the Fourier definition of this operator.

Furthermore, it can also be shown that, when s→ 0+ and s→ 1−, we have

CN,s ∼ s(1− s) for s→ {0+, 1−}.

Using this asymptotic behavior of CN,s, we can also show the following.

Proposition 2.1.3. For any u ∈ S, the following statements hold:

lim
s→0+

(−∆)su = u,
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and

lim
s→1+

(−∆)su = −∆u.

Proof. The case for s → 1+ can be found in [11], and the case s → 0− in [43]. For a direct

computation, see Proposition 4.4 in [27].

We now discuss two other equivalent definitions that will become useful for our analysis.

First, we recall the semigroup definition of the fractional Laplacian, since it will also be

relevant when discussing fractional heat operators.

Recall that for any 0 < s < 1, we have the formula,

Γ(−s) = Γ(1− s)

−s
=

ˆ ∞

0

(e−w − 1)
dw

w1+s
< 0.

Let λ > 0, and define w = rλ. We then get,

λs =
1

Γ(−s)

ˆ ∞

0

(erλ − 1)
dt

t1+s
, (2.1.7)

which also holds when λ = 0. Now let λ = |ξ|2, multiply by F(v) and use the Fourier

definition of the fractional Laplacian to obtain

F((−∆)sv)(ξ) = |ξ|2sF(v)(ξ) = 1

Γ(−s)

ˆ ∞

0

(e−r|ξ|2F(v)(ξ)− F(v)(ξ))
dr

r1+s
.

After applying the inverse Fourier transform, we have

(−∆)sv(x) =
1

(2π)N/2Γ(−s)

ˆ
RN

ˆ ∞

0

(e−r|ξ|2F(v)(ξ)eix.ξ − F(v)(ξ)eix.ξ)
dr

r1+s
dξ, (2.1.8)

which is absolutely convergent since, by (2.1.7),

ˆ
RN

ˆ ∞

0

(1− e−r|ξ|2)|F(v)(ξ)| dr
r1+s

dξ = |Γ(−s)|
ˆ
RN

|ξ|2s|F(v)(ξ)| dξ.

Applying Fubini’s Theorem in (2.1.8) and recalling (2.1.2), we obtain the semigroup defini-

tion of the fractional Laplacian,

(−∆)sv(x) =
1

Γ(−s)

ˆ ∞

0

(er∆v(x)− v(x))
dr

r1+s
, (2.1.9)

for v ∈ S.

The family of operators {er∆}r≥0 is the heat difussion semigroup generated by ∆. If we
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consider the solution u of the heat equation on the whole space with initial temperature v,∂ru = ∆u for x ∈ RN , r > 0

u(x, 0) = v(x) for x ∈ RN ,
(2.1.10)

we may apply the Fourier transform in the x-variable for each fixed r, to obtain

F(u)(ξ, r) = e−r|ξ|2F(v)(ξ) = F(er∆v)(ξ).

Moreover, it is well-known that umay be written as a convolution with the Gauss-Weierstrass

heat kernel,

Wr(x) := (4πr)−N/2e−|x|2/4r, (2.1.11)

that is,

u(x, r) = Wr ∗ v(x).

Substituting this expression back onto (2.1.9) and using that

ˆ
RN

Wr(x) dx = 1, (2.1.12)

we recover expression (1.1.1), as shown in Theroem 12.1 of [59]. Moreover, the semigroup

definition of the fractional Laplacian (2.1.9) holds for a more general class than the Schwartz

class, since it can also be applied to compute the fractional Laplacian of any v ∈ C2s+ε(RN)

obeying (2.1.1), as mentioned in Remark 2 of [58] (see also Chapter 12 in [59]).

The final definition of the fractional Laplacian we address in this work is the one given

through harmonic extensions. This definition, which will serve as our main tool in later

sections, characterizes the fractional Laplacian via a Dirichlet-to-Neumann operator using

an extension problem in the half-space RN+1
+ , as established by Caffarelli and Silvestre [14],

and is given as follows.

Let v : RN → R be such that v ∈ C2s+ε(RN) for some ε > 0, and assume that v obeys

(2.1.1). Set

a := 1− 2s ∈ (−1, 1),

and let V : RN+1
+ → R be defined as

V (z0, z) :=

ˆ
RN

v(z − y)P (z0, y)dy,
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where we denote (z0, z) ∈ RN+1
+ , z0 > 0, and P is the Poisson kernel,

P (z0, z) := CN,az
1−a
0 |(z0, z)|−(N+1−a).

The constant CN,a > 0 is chosen so that
´
RN P (z0, z)dz = 1. Then, V ∈ C2(RN+1

+ )∩C(RN+1
+ ),

za0∂z0V ∈ C(RN+1
+ ) and V is a solution of the extension problem,∇ · (za0∇V ) = 0 for (z0, z) ∈ RN+1

+ ,

lim
z0→0+

V (z0, z) = v(z) for z ∈ RN .
(2.1.13)

Observe that the first equation of (2.1.13) is equivalent to,

∆zV +
a

z0
∂z0V + ∂2z0V = 0 for (z0, z) ∈ RN+1

+ . (2.1.14)

Then, the function V obeys,

− lim
z0→0+

za0∂z0V (z0, z) = κs(−∆)sv,

with

κs :=
Γ(1− s)

22s−1Γ(s)
.

In particular, this procedure allows us to recover (−∆)sv from the normal derivative of the

extension V .

2.1.2 The monotonicity formula for the fractional Lane-Emden

equation

In order to apply the previous dicussion to the Lane-Emden equation (1.1.8), we let

0 < s < 1 and v : RN → R such that v ∈ C2s+ε(RN) for some ε > 0, and assume v obeys

(2.1.1) so that its fractional Laplacian, (−∆)sv, is well defined. Then, its Caffarelli-Silvestre

extension V obeys (2.1.13), and moreover, it satisfies

− lim
z0→0+

za0∂z0V (z0, z) = κs|v|p−1v (z), (2.1.15)

as discussed in [29]. For such V , the following monotonicity formula is known.

Theorem 2.1.4 (Theorem 1.4 in [29]). Let V (z0, z) ∈ C2(RN+1
+ ) ∩ C(RN+1

+ ), such that V
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obeys (2.1.15) and (2.1.14), and suppose za0∂z0V ∈ C(RN+1
+ ). For R > 0, let

E (R) :=R2s p+1
p−1

−N

(
1

2

ˆ
RN+1
+ ∩BN+1

R

za0 |∇V |2dzdz0 −
κs
p+ 1

ˆ
∂RN+1

+ ∩BN+1
R

|V |p+1dz

)
+R2s p+1

p−1
−N−1 s

p− 1

ˆ
∂BN+1

R ∩RN+1
+

za0V
2dσ.

(2.1.16)

Then, E is a non-decreasing function of R. Moreover,

dE

dR
= R2s p+1

p−1
−N+1

ˆ
∂BN+1

R ∩RN+1
+

za0

(
∂V

∂r
+

2s

p− 1

V

r

)2

dσ. (2.1.17)

Here, BN+1
R denotes the Euclidean ball in RN+1 centered at the origin of radius R, σ is

the N -dimensional Hausdorff measure restricted to the hypersurface ∂BN+1
R , r = |(z0, z)|

the Euclidean norm of a point (z0, z) ∈ RN+1
+ , and ∂r =

(z0,z)
r

· ∇ is the radial derivative.

2.1.3 The fractional heat operator

We now turn to the fractional heat operator (1.1.2). Analogously to the fractional Lapla-

cian, this operator admits a definition via the Fourier transform, given by

F((∂t −∆)su)(ξ, ρ) := (iρ+ |ξ|2)sF(u)(ξ, ρ),

for a given function u = u(x, t) : Rd ×R. However, a limitation of this definition is that

it only applies to functions defined on all of space-time. Therefore, if we want to apply

the operator to functions defined up to a finite time TF , we need a pointwise formula. For

this reason, we define the fractional heat operator via the pointwise formula (1.1.2), where,

following [60], we additionally require that u : Rd ×(−∞, TF ) → R is parabolic Hölder

continuous of order 2s + ε for some ε > 0. The space of parabolic Hölder continuous

functions is defined as follows.

Definition 2.1.5. We say u : Ω → R is parabolic Hölder continuous of order 0 < γ ≤ 1 if

u ∈ L∞(Ω), and there exists γ > 0 such that

|u(x, t)− u(z, s)| ≤ C(|x− z|2 + |t− s|)γ/2,

for every (x, t), (z, s) ∈ Ω. In this case, we write u ∈ Cγ
t,x(Ω).

For 1 < γ ≤ 2, we say that u ∈ Cγ
t,x(Ω) if u ∈ L∞(Ω), u is γ/2-Hölder continuous in t

uniformly in x and its gradient ∇xu is (γ − 1)−Hölder continuous in x uniformly in t.

We notice that, although our operator cannot be the fractional heat operator in the
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Fourier sense, their pointwise formulas coincide whenever the Fourier definition holds [60].

As in the case of the fractional Laplacian, it can also be shown that our operator is the

fractional heat operator in the sense of semigroups [31]. To see this, let L = ∂t − ∆ be

the classical heat operator. The formula (2.1.7) used for the semigroup definition of the

fractional Laplacian holds for general operators, as shown in [10, 57]. Specifically, given an

operator L, the semigroup formula for Ls reads,

Lsv =
1

Γ(−s)

ˆ ∞

0

(e−rLv − v)
dr

r1+s
, 0 < s < 1. (2.1.18)

Then, Ls may be written as,

Ls =
1

|Γ(−s)|

ˆ ∞

0

(
I − e−rL

) dr

r1+s
, (2.1.19)

where, as before, v := e−rLu is the solution of∂rv = −Lv, r > 0

v|r=0 = u.

Now, v obeys (∂r + ∂t) v = ∆v, x ∈ RN , t, r > 0

v(x, t, 0) = u(x, t), x ∈ RN , t > 0

and therefore we may write,

v(x, t, s) =

ˆ
Rd

Wr(z)u(x− z, t− r) dz,

where Wr is the d-dimensional Gauss-Weierstrass kernel (2.1.11). We may now use this

expression together with (2.1.19) and (2.1.12) to obtain

Lsu(x, t) =
1

|Γ(−σ)|

ˆ ∞

0

(u(x, t)− v(x, t, r))
ds

s1+σ

=
1

|Γ(−σ)|

ˆ ∞

0

ˆ
RN

(u(x, t)− u(x− z, t− r))Wr(z)dz
dr

r1+s
,

which coincides with our pointwise expression (1.1.2) for the fractional heat operator. Since

this calculation remains valid regardless of whether u is defined for all positive times, and

since the integral is well-defined for any u ∈ C2s+ε
t,x (Rd ×(−∞, TF )), we conclude that our

operator coincides with (∂t −∆)s in the semigroup sense. Henceforth, we will make no

distinction between these two operators.
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General properties of the fractional heat operator (∂t −∆)s can be found in [60] (see

also [45]). Some relevant properties are its invariance under translations in space and time

and its homogeneity of order 2s under the scaling x → λx, t → λ2t. We also remark that a

strong maximum principle holds for this operator [60].

When applied to functions depending only on t or x, space or time, the fractional heat

operator simplifies to the Marchaud derivative or the fractional Laplacian respectively. In

fact we have, for u = u(t),

(∂t −∆)su(t) =
1

|Γ(−s)|

ˆ t

−∞

u(t)− u(τ)

(t− τ)1+s
dτ,

= (∂t)
su(t),

(2.1.20)

which is the Marchaud derivative of order s [53].

On the other hand, if u(x, t) = u(x), we define r = t− τ and observe that

(∂t −∆)su(x) =

ˆ ∞

0

ˆ
Rd

(
u(x)− u(z)

)
Ks(x− z, r) dz dr,

=

ˆ
Rd

(
u(x)− u(z)

)(ˆ ∞

0

Ks(x− z, r) dr

)
dz.

Since ˆ ∞

0

Ks(x− z, r) dr =
4sΓ

(
d
2
+ s
)

πd/2|Γ(−s)|
· 1

|x− z|d+2s
,

we find,

(∂t −∆)su(x) =

ˆ
Rd

(
u(x)− u(z)

)(ˆ ∞

0

Ks(x− z, r) dr

)
dz

= Cd,s

ˆ
Rd

u(x)− u(z)

|x− z|d+2s
dz

= (−∆)su(x).

(2.1.21)

As in the case of the fractional Laplacian, we can also define an extension problem the

fractional heat operator. Given u a solution to (2.1.26), define the parabolic extension U of

u as

U(x0, x, t) :=

ˆ ∞

0

ˆ
Rd

P s
x0
(z, τ)u(x− z, t− τ)dzdτ, (2.1.22)

where X = (x0, x) ∈ R+×Rd and P s
x0
(z, τ) is the fractional Poisson kernel,

P s
x0
(z, τ) =

1

4d/2+sπd/2Γ(s)

x2s0
τ d/2+1+s

e−(x2
0+|z|2)/4τ ,
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and the constant is chosen so that

ˆ ∞

0

ˆ
Rd

P s
x0
(z, τ)dzdτ = 1. (2.1.23)

As shown in [60], U is well defined whenever u ∈ C2s+ε
t,x (Rd ×(−∞, TF )) is parabolic Hölder

continuous and, moreover, it satisfies two key properties: first, it solves the extension prob-

lem, ∂tU = ∆xU + a
x0
∂x0U + ∂2x0

U, for (X, t) ∈ Rd+1
+ × (−TI , TF ),

lim
x0→0+

U(x0, x, t) = u(x, t), for (x, t) ∈ Rd × (−TI , TF ),
(2.1.24)

and second, the fractional heat operator can be recovered using the normal derivative at the

boundary ∂ Rd+1
+ ,

ηs|u|p−1u = ηs(∂t −∆)su = − lim
x0→0+

xa0∂x0U(x0, x, t),

where ηs is the constant defined in (1.1.12). The proof of this fact presented in [60] relies

on the Fourier transform. Nevertheless, as discussed in Section 2 of [31], U obeys these

properties whenever the integrals involved are well defined.

The extension (2.1.22) can alternatively be expressed in terms of the fundamental solution

G. If u is a solution to the master equation

(∂t −∆)su = h,

for some h regular enough, the solution of the parabolic extension problem (2.1.24) for u

can be written as,

U(x0, x, t) :=

ˆ ∞

0

ˆ
Rd

G(x0, z, τ)h(x− z, t− τ)dzdτ, (2.1.25)

where G is defined in (1.1.11), see [60]. As before, U obeys

ηsh(x, t) = − lim
x0→0+

x1−2s
0 ∂x0U(x0, x, t).

Moreover, it can be checked that the function G obeys

lim
x0→0+

xa0∂x0G(x0, x, t) = 0,
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for any (x, t) ∈ Rd ×R+, and

∂tG = ∆xG+
a

x0
∂x0G+ ∂2x0

G,

for any positive time t.

2.1.4 A fractional semilinear parabolic equation

Let 0 < s < 1, and assume that u ∈ C2s+ε
t,x (Rd ×(−∞, TF )) solves

(∂t −∆)su = |u|p−1u for (x, t) ∈ Rd ×(−TI , TF ), (2.1.26)

where TI , TF > 0. The data u|(−∞,−TI ] may be prescribed, thereby considering the problem,(∂t −∆)su = |u|p−1u for (x, t) ∈ Rd ×(−TI , TF )

u(x, t) = f(x, t) for (x, t) ∈ Rd ×(−∞,−TI ].
(2.1.27)

In [31], a similar problem has been studied, considering instead (∂t − ∆)su = up with

nonnegative memory data f . For this problem, they show the following: if the memory data

f is nonnegative, f is C1 in time and both f and ∂tf decay as |t|−σ for some σ > s, then

the problem is well-posed. We note that this is a special case of our equation since, by the

maximum principle, for such nonnegative memory data f , we have u ≥ 0 and therefore our

problem reduces to the case discussed there.

Another case of interest is ancient solutions to the equation (1.1.4), that is, functions

u : Rd ×(−∞, TF ) → R such that u solves (∂t −∆)su = |u|p−1u for (x, t) ∈ Rd ×(−∞, TF ).

For any of the two problems the following discussion holds, where, in the case of ancient

solutions, we set TI = ∞.

We consider backward solutions of equation (1.1.4), which are defined as follows: for

any function g : Rd ×R, we let ḡ(x, t) := g(x,−t) denote its time reversal. Then, given a

function u : (−∞, TF ) → R which solves (2.1.26), we have that ū : Rd ×(−TF ,+∞) solves

(−∂t −∆)su = |u|p−1u for (x, t) ∈ Rd ×(−TF , TI), (2.1.28)

where

(−∂t −∆)su(x, t) = (∂t −∆)sū(x,−t)

=

ˆ ∞

t

ˆ
Rd

(u(x, t)− u(z, τ))Ks(x− z, t− τ)dzdτ,
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see [24, 60]. To show this, notice that if u solves (2.1.26), then

(−∂t −∆)sū(x, t) = (∂t −∆)su(x,−t) = |u|p−1u(x,−t) = |ū|p−1ū(x, t). (2.1.29)

Similarly, starting from a function u : Rd ×(−TF ,+∞) → R which solves the backward

fractional heat equation (2.1.28), its time reversal ū is a solution of the forward fractional

heat equation (2.1.26), and from (2.1.22) it follows that the extension associated to u is

U(x0, x, t) = Ū(x0, x,−t) =
ˆ 0

−∞

ˆ
Rd

P s
x0
(z, τ)u(x− z, t− τ)dzdτ, (2.1.30)

where Ū is the extension (2.1.22) associated to the (forward) solution ū. By (2.1.24), it

follows that U is a solution to the backward extension problem,∂tU +∆xU + a
x0
∂x0U + ∂2x0

U = 0, for (X, t) ∈ Rd+1
+ × (−TF , TI),

lim
x0→0+

U(x0, x, t) = u(x, t), for (x, t) ∈ Rd × (−TF , TI).
(2.1.31)

As before, we find that

− lim
x0→0+

xa0∂x0U(x0, x, t) = ηs(−∂t −∆)su(x, t) = ηs|u|p−1u(x, t), (2.1.32)

for every (x, t) ∈ Rd ×(−TF , TI). We remark that the solution U also admits a heat kernel

representation similar to (2.1.25) for the memory problem, see [31].

From this point forward, we will exclusively consider backward solutions, defined in

Rd ×(−TF ,+∞) for some TF > 0, and obey equation (2.1.29) in (−TF , TI). We will restrict

our attention to compact time intervals which, by a time translation, we may assume to be

[0, T ] for some T ∈ (0, TI). Backward solutions will be denoted by u, and their extensions

will be denoted by U . We will work within the class of functions we now define.

Definition 2.1.6. We say that U : Rd+1
+ ×[0, T ] → R belongs to the function class U([0, T ])

if U ∈ C2(Rd+1
+ ×[0, T ]) ∩ C(Rd+1

+ × [0, T ]) and the following hold:

(a) lim
x0→0+

x1+a
0 ∂tU(x0, x, t) = 0 for (x, t) ∈ Rd ×[0, T ] and xa0∂x0U ∈ C(Rd+1

+ × [0, T ]).

(b) The functions fU belong to C((0, T );L2(Rd+1
+ , xa0dX)), and

sup
t∈(0,T )

||fU(X, t)||2L2(Rd+1
+ , xa

0dX)
<∞,
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for any of the following fU :

e−|X|2/8t∇U, e−|X|2/8tU, e−|X|2/8tX.∇U, e−|X|2/8t∂tU.

(c) We have

sup
t∈(0,T )

∣∣∣∣gU(X, t)e−|X|2/4t∣∣∣∣
L1(Rd+1

+ , xa
0dX)

< +∞,

for any of the following gU :

(X · ∇U)∂tU, UH, ∂tUH, H(X · ∇U),

where

H := 2(X, t) · ∇(X,t)∂tU + (d+ 1 + a)∂tU. (2.1.33)

Here ∇ denotes the gradient with respect to the X variables, and ∇(X,t) denotes the

gradient with respect to the (X, t) variables.

Items (b) and (c) of Definition 2.1.6 impose moderate growth controls over U and its

derivatives. While these conditions suffice for our proof, the results may remain valid under

less restrictive assumptions. We also note that related classes of functions (adapted to the

method of proof employed and the hypotheses needed for each problem) have been considered

when deriving monotonicity formulae for variable coefficient parabolic operators in [25] and,

recently, for solutions of the extension problem of the fractional parabolic equation (−∂t −
∆)su = 0 in [24]. The following proposition presents a class of functions for which its

backward extensions obey Definition 2.1.6.

Proposition 2.1.7. Assume u : Rd ×[0,+∞) → R is a parabolic Hölder continuous function

of order 2s + ε such that its time reversal ū : Rd ×(−∞, 0] → R is an ancient solution of

(1.1.4). Assume also that u ∈ C2(Rd ×[0,+∞)) and that its first and second derivatives are

bounded. Then, U ∈ U([0, T ]) for any T > 0.

Similarly, let u : Rd ×(−∞, TF ) → R be a solution of the problem with memory (2.1.27),

such that the memory data is twice differentiable and satisfies |(∂t −∆)sf(x, t)| ≤ C. Then,

its backward extension obeys U ∈ U([0, T ]) for any 0 < T < TI .

Proof. Since |u| < C, using the bounds on the derivatives together with expressions (2.1.30)

and (2.1.23), we can show that |U | < C, |∂xi
U | < C for i ∈ {1, . . . , d}, and |∂tU | < C. The

fact that |∂x0U | < Cx−a
0 follows by using the last line of the representation formula (1.5) in

[60].

For the problem with memory, we may use the representation formula (2.23) in [31] to

prove the last bound instead. The other bounds for U and its derivatives are also valid in

this case, and they can be obtained using expression (2.1.30) directly.
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From the previous estimates, we see that for any fixed t > 0, fU(·, t) ∈ L2(Rd+1
+ , xa0dX),

the supremum of their squared norms is finite and the bounds are explicitly computable.

Continuity of the functions fU(·, t) to L2(Rd+1
+ , xa0dX) follows from the Dominated Conver-

gence Theorem, by employing the Gaussian decay. Condition (c) follows in a similar manner.

The regularity properties of U discussed in [60] ensure the ones in our definition hold.

2.2 Parabolic-to-elliptic transformations for fractional

operators

Next, we adapt the parabolic-to-elliptic transformations discussed in the Section 1.0.1

to the fractional setting as follows. First, we note that the extension problems arising for

fractional operators are local (yet degenerate) problems. Then, we work with the extension

problems, and interpret the variable x0 as another variable that needs to be lifted, and

perform the lift. Observe that, if t is the backward time (as is the case when considering

backward solutions), Perelman’s original variables require t = r2/2N , where the variable x

remains unchanged. Here we perform a slight modification of the variables for convenience,

by absorbing the N -dependence to the high dimensional variables instead of t.

Let (z0, z, y) ∈ R+×Rd ×Rn. Then, set
x0 =

√
nz0,

x =
√
nz,

2t = R2 = z20 + |z|2 + |y|2.

(2.2.1)

We now write

Fn(z0, z, y) := (
√
nz0,

√
nz,R2/2).

Definition 2.2.1. Let U : Rd+1
+ ×R → R. Then, its n-dimensional lift Vn : Rd+n+1

+ → R of

U is,

Vn(z0, z, y) := U ◦ Fn(z0, z, y) = U(x0, x, t). (2.2.2)

Observe that, if U is defined on a region Rd+1
+ ×[0, T ), then Vn is defined on the region

Rd+n+1
+ ∩Bd+n+1√

2T
. A direct application of the chain rule yields the following.
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Lemma 2.2.2. Let Vn : Rn+d+1
+ → R as in (2.2.2). Then Vn satisfies:

∂ziVn =
√
n∂xi

U + zi∂tU,

∂yjVn = yj∂tU,

∂2ziVn = n∂2xi
U + 2xi∂

2
xit
U + z2i ∂

2
tU + ∂tU,

∂2yjVn = ∂tU + y2j∂
2
tU,

|∇Vn|2 = n|∇U |2 + 2(X · ∇U)∂tU + 2t(∂tU)
2,

for any i = 0, 1, . . . , d, and j = 1, . . . , n. In particular,

a

z0
∂z0Vn =

a

z0

(√
n∂x0U + z0∂tU

)
=
na

x0
∂x0U + a∂tU, (2.2.3)

and

∆(z,y)Vn +
a

z0
∂z0Vn + ∂2z0Vn = n

(
∂tU +∆xU +

a

x0
∂x0U + ∂2x0

U

)
+H, (2.2.4)

where H is defined in (2.1.33).

Proof. We start with the first derivatives. For i = 0, 1, . . . , d, we have

∂ziVn = ∂xi
U · ∂zixi + ∂tU · ∂zit

=
√
n∂xi

U + zi∂tU.

For j = 1, . . . , n,

∂yjVn = ∂tU · ∂yj t = yj∂tU.

Now, we compute |∇Vn|2 using the previously computed first derivatives.

|∇Vn|2 = (∂z0Vn)
2 +

d∑
i=1

(∂ziVn)
2 +

n∑
j=1

(∂yjVn)
2

=
(√

n∂x0U + z0∂tU
)2

+
d∑

i=1

(√
n∂xi

U + zi∂tU
)2

+
n∑

j=1

(yj∂tU)
2

= n(∂x0U)
2 + 2

√
nz0∂x0U∂tU + z20(∂tU)

2

+
d∑

i=1

[
n(∂xi

U)2 + 2
√
nzi∂xi

U∂tU + z2i (∂tU)
2
]
+

n∑
j=1

y2j (∂tU)
2.
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Rearranging the previous terms, we find,

|∇Vn|2 = n

[
(∂x0U)

2 +
d∑

i=1

(∂xi
U)2

]
+ 2

√
n∂tU

(
z0∂x0U +

d∑
i=1

zi∂xi
U

)

+ (∂tU)
2

(
z20 +

d∑
i=1

z2i +
n∑

j=1

y2j

)
= n|∇U |2 + 2

√
n∂tU(z · ∇xU + z0∂x0U) +R2(∂tU)

2

= n|∇U |2 + 2(X · ∇U)∂tU + 2t(∂tU)
2,

where in the last step we used (2.2.1).

Now, we compute the second derivatives. For i = 0, 1, . . . , d,

∂2ziVn = ∂zi(
√
n∂xi

U + zi∂tU)

=
√
n(
√
n∂2xi

U + zi∂xitU) + ∂tU + zi(
√
n∂txi

U + zi∂
2
tU)

= n∂2xi
U + 2xi∂xitU + ∂tU + z2i ∂

2
tU.

In particular,

∂2z0Vn = n∂2x0
U + 2x0∂x0tU + ∂tU + z20∂

2
tU. (2.2.5)

For j = 1, . . . , n,

∂2yjVn = ∂yj(yj∂tU) = ∂tU + y2j∂
2
tU.

We now compute the term a
z0
∂z0Vn.

a

z0
∂z0Vn =

a

z0
(
√
n∂x0U + z0∂tU)

=
na

x0
∂x0U + a∂tU.

(2.2.6)

For the Laplacian, we first compute ∆(z,y)Vn,

∆(z,y)Vn =
d∑

i=1

∂2ziVn +
n∑

j=1

∂2yjVn

= n∆xU + 2
d∑

i=1

xi∂xitU + d∂tU +
d∑

i=1

z2i ∂
2
tU + n∂tU +

n∑
j=1

y2j∂
2
tU.
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Simplifying,

∆(z,y)Vn = n∆xU + 2
d∑

i=1

xi∂xitU + (d+ n)∂tU + (2t− z20)∂
2
tU. (2.2.7)

We can then then combine, (2.2.5), (2.2.6) and (2.2.7) to obtain,

∆(z,y)Vn +
a

z0
∂z0Vn + ∂2z0Vn =

[
n∆xU + 2

d∑
i=1

xi∂xitU + (d+ n)∂tU + (2t− z20)∂
2
tU
]

+
[na
x0
∂x0U + a∂tU

]
+
[
n∂2x0

U + 2x0∂x0tU + ∂tU + z20∂
2
tU
]

= n(∆xU + ∂2x0
U +

a

x0
∂x0U)

+ 2(x0∂x0tU +
d∑

i=1

xi∂xitU + ∂tU) + (d+ a+ 1)∂tU + 2t∂2tU

= n(∂tU +∆xU +
a

x0
∂x0U + ∂2x0

U) +H,

where

H = 2(X, t) · ∇(X,t)∂tU + (d+ 1 + a)∂tU,

and X = (x0, x) ∈ Rd+1
+ .

Let u ∈ C2s+ε
t,x (Rd ×(−TF ,+∞)) such that u solves (2.1.28), and let [0, T ] ⊂ (−TF , TI).

Let U : Rd+1
+ ×[0, T ] → R be its associated extension, and assume that U ∈ U([0, T ]). We

now establish the extension problems satisfied by the lifts Vn of U . First, notice that since

U is a solution of (2.1.31), by (2.2.4) we have,

∆(z,y)Vn +
a

z0
∂z0Vn + ∂2z0Vn = H, (2.2.8)

and H does not depend on n. Then, notice that

lim
z0→0+

Vn(z0, z, y) = lim
z0→0+

U(
√
nz0,

√
nz,R2/2) = lim

z0→0+
U(

√
nz0,

√
nz, (z20 + |z|2 + |y|2)/2).

Since U ∈ U([0, T ]), U is continuous in Rd+1
+ × [0, T ] and therefore,

lim
z0→0+

Vn(z0, z, y) = U(0,
√
nz, (|z|2 + |y|2)/2).

We define t1 as

t1 :=
|z|2 + |y|2

2
, (2.2.9)
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and since R2 = 2t, we have R2 = 2t1 for any (0, z, y) ∈ ∂ Rd+1
+ . Then, using (2.1.31),

lim
z0→0+

Vn(z0, z, y) = U(0, x, t1) = u(x, t1), (2.2.10)

and, by Lemma 2.2.2,

za0∂z0Vn(z0, z, y) = za0
(√

n∂x0U + z0∂tU
)

=

(
x0√
n

)a(√
n∂x0U +

x0√
n
∂tU

)
= n

1−a
2 xa0

(
∂x0U +

x0
n
∂tU

)
.

Using (a) of Definition 2.1.6 and (2.1.32),

lim
z0→0+

za0∂z0Vn(z0, z, y) = lim
x0→0+

n
1−a
2 xa0

(
∂x0U +

x0
n
∂tU

)
(x0, x, t1 + |x0|2/2n)

= lim
x0→0+

n
1−a
2 xa0∂x0U (x0, x, t1)

= −ηsn
1−a
2 |u|p−1u(x, t1).

Finally, observe that

−ηsn
1−a
2 |u|p−1u(x, t1) = −ηsn

1−a
2 |Vn|p−1Vn(0, z, y),

since 2t1 = |z|2 + |y|2. Combining the previous observations, we have the following.

Proposition 2.2.3. Let u ∈ C2s+ε
t,x (Rd ×(−TF ,+∞)) such that u solves (2.1.28), and let

[0, T ] ⊂ (−TF , TI). Let U be its associated extension. If U ∈ U([0, T ]), then Vn obeys∇ · (za0∇Vn) = za0H ◦ Fn = n−a/2xa0H in Rd+n+1
+ ∩Bd+n+1√

2T

lim
z0→0+

Vn(z0, z, y) = u(x, t1) for (z, y) ∈ Bd+n√
2T
,

(2.2.11)

and

− lim
z0→0+

za0∂z0Vn = ηsn
1−a
2 |Vn|p−1Vn(0, z, y) for (z, y) ∈ ∂ Rd+n+1

+ ∩Bd+n+1√
2T

. (2.2.12)

Moreover, since Vn(z0, z, y) = U(x0, x, t), we have

Vn ∈ C2(Rd+n+1
+ ∩Bd+n+1√

2T
) ∩ C(Rd+n+1

+ ∩Bd+n+1√
2T

),

and

za0∂z0Vn ∈ C(Rd+n+1
+ ∩Bd+n+1√

2T
).
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2.3 An almost monotonicity formula for Vn.

Proposition 2.2.3 enables us to derive an “almost monotonicity formula” for the lifts Vn,

by leveraging the similarities between (2.2.11) and (2.1.13). The term “almost monotonic”

reflects the fact that the formula becomes strictly monotonic in the limit n → ∞. This

will become clear later in our analysis, where we demonstrate that the contribution of the

source terms vanishes asymptotically. We will relate the integral quantities defined for the

high-dimensional lift to those associated with U in Rd+1
+ ×[0, T ]. To prove our formula, we

adapt the arguments used in the proof of Theorem 1.4 in [29].

Theorem 2.3.1. Let u ∈ C2s+ε
t,x (Rd ×(−TF ,+∞)) such that u solves (2.1.28), and let

[0, T ] ⊂ (−TF , TI). Let U ∈ U([0, T ]) be its associated extension, and Vn its n-dimensional

lift. Then the function En : (0,
√
2T ) → R defined as,

En(R) :=R
2s p+1

p−1
−N

(
1

2

ˆ
RN+1
+ ∩BN+1

R

za0 |∇Vn|2 dz0dzdy − n
1−a
2

ηs
p+ 1

ˆ
∂RN+1

+ ∩BN+1
R

|Vn|p+1 dzdy

)
+R2s p+1

p−1
−N−1 s

p− 1

ˆ
∂BN+1

R ∩RN+1
+

za0V
2
n dσ,

(2.3.1)

obeys,

dEn

dR
=R2s p+1

p−1
−N+1

ˆ
∂BN+1

R ∩RN+1
+

za0

(
∂Vn
∂r

+
2s

p− 1

Vn
r

)2

dσ

−R2s p+1
p−1

−N−1

ˆ
RN+1
+ ∩BN+1

R

(
2s

p− 1
Vn + r

∂Vn
∂r

)
(za0H ◦ Fn) dz0dzdy,

(2.3.2)

where N = n+ d, r = |(z0, z, y)|, and ∂r = (z0,z,y)
r

· ∇ is the radial derivative.

Proof. Since U ∈ U((0, T ]), Proposition 2.2.3 holds. Now, For (z0, z, y) ∈ RN+1
+ , let

W (z0, z, y;R) := R
2s

p−1Vn(Rz0, Rz,Ry).

Then,

∇ · (za0∇W )(z0, z, y;R) = R2s/(p−1)+2−a (∇ · (za0∇Vn)) (Rz0, Rz,Ry)
= R2s/(p−1)+2−a(za0H ◦ Fn)(Rz0, Rz,Ry),

(2.3.3)
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and,

− lim
z0→0+

za0∂z0W (z0, z, y;R) = −R2s/(p−1)+1 lim
z0→0+

za0∂z0Vn(Rz0, Rz,Ry)

= −R2s/(p−1)+1−a lim
z0→0+

(Rz0)
a∂z0Vn(Rz0, Rz,Ry)

= −R2s/(p−1)+1−a lim
z0→0+

(za0∂z0Vn)(Rz0, Rz,Ry)

= R2sp/(p−1)ηsn
1−a
2 (|Vn|p−1Vn)(0, Rz,Ry)

= n
1−a
2 ηs(|W |p−1W )(0, z, y;R).

Therefore, W obeys,∇ · (za0∇W )((z0, z, y);R) = R2s/(p−1)+2−a(za0H ◦ Fn)(Rz0, Rz,Ry),

− lim
z0→0+

(za0∂z0W )(z0, z, y;R) = n
1−a
2 ηs|W |p−1W (0, z, y;R).

(2.3.4)

Define,

Ẽn(Vn;R) := R2s p+1
p−1

−N

(ˆ
RN+1
+ ∩BN+1

R

za0
|∇Vn|2

2
dydzdz0 −

n
1−a
2 ηs

p+ 1

ˆ
∂RN+1

+ ∩BN+1
R

|Vn|p+1 dydz

)
.

(2.3.5)

It is straightforward to show that

Ẽn(Vn;R) = Ẽn(W ; 1).

Now,

Ẽn(W ; 1) =

ˆ
RN+1
+ ∩BN+1

1

za0
|∇W |2

2
dydzdz0 −

n
1−a
2 ηs

p+ 1

ˆ
∂RN+1

+ ∩BN+1
1

|W |p+1 dydz. (2.3.6)

Since,

RWR =
2s

p− 1
W + rWr,

differentiating Ẽn(W ; 1), we find

dẼn

dR
(Vn;R) =

ˆ
RN+1
+ ∩BN+1

1

za0∇W · ∇WR dydzdz0 − n
1−a
2 ηs

ˆ
∂RN+1

+ ∩BN+1
1

|W |p−1WWR dydz.

40



Now, observe that,

za0∇W · ∇WR = ∇ · (za0WR∇W )−WR∇ · (za0∇W )

= ∇ · (za0WR∇W )(z0, z, y;R)−R2s/(p−1)+2−a(za0H ◦ Fn)(Rz0, Rz,Ry),

(2.3.7)

and, to simplify notation, define

A(z0, z, y;R) := R2s/(p−1)+2−a(za0H ◦ Fn)(Rz0, Rz,Ry).

We integrate by parts, and use the boundary condition to write,

dẼn

dR
(Vn;R) =

ˆ
∂BN+1

1 ∩RN+1
+

za0WrWR dσ −
ˆ
RN+1
+ ∩BN+1

1

WRAdz0dydz

= R

ˆ
∂BN+1

1 ∩RN+1
+

za0W
2
R dσ − 2s

p− 1

ˆ
∂BN+1

1 ∩RN+1
+

za0WWR dσ −
ˆ
RN+1
+ ∩BN+1

1

WRA

= R

ˆ
∂BN+1

1 ∩RN+1
+

za0W
2
R dσ − s

p− 1
∂R

(ˆ
∂BN+1

1 ∩Rn+1
+

za0W
2 dσ

)
−
ˆ
RN+1
+ ∩BN+1

1

WRA.

(2.3.8)

Now, since

WR(z0, z, y;R) = R2s/(p−1)

(
2s

p− 1

Vn(Rz0, Rz,Ry)

R
+ (z0, z, y) · ∇Vn(Rz0, Rz,Ry)

)
= R2s/(p−1)−1

(
2s

p− 1
Vn + (z0, z, y) · ∇Vn

)
(Rz0, Rz,Ry),

(2.3.9)

we have,

ˆ
RN+1
+ ∩BN+1

1

WRAdz0dzdy

= R4s/(p−1)+1−a

ˆ
RN+1
+ ∩BN+1

1

(
2s

p− 1
Vn + (z0, z, y) · ∇Vn

)
(za0H ◦ Fn)(Rz0, Rz,Ry)

= R2s p+1
p−1

−N−1

ˆ
RN+1
+ ∩BN+1

R

(
2s

p− 1
Vn + (z0, z, y) · ∇Vn

)
(za0H ◦ Fn) dz0dzdy.

(2.3.10)

The result follows after similarly scaling back the first two terms on the last line of equation

(2.3.8).
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2.4 Volume elements and convergence lemmas

Lemma 2.2.2 shows that all the quantities appearing in Theorem 2.3.1 can be represented

in terms of the functions U and u. To effectively express integral quantities in terms of the

radial variable and X = (x0, x) ∈ Rd+1
+ , we first examine the volume form on the subsets

where integration takes place.

2.4.1 Induced volume elements

We now let (z0, z, y) ∈ Rd+1×Rn. Notice that here z0 ∈ R. We will restrict these

variables to different subsets of interest later. Now let (l, ϕ) ∈ R+×Sd
1 denote the polar

coordinates in the Rd+1 factor, i.e., (z0, z) = (l, ϕ). Similarly, for the Rn factor, we denote

the polar coordinates R+×Sn−1
1 by y = (s, θ).

The Euclidean metric in Rn+d+1, gE = dz20+dz
2+dy2, can be written in these coordinates

as,

gE = dl2 + l2dΩ2
d + ds2 + s2dΩ2

n−1, (2.4.1)

where dΩ2
m denotes the standard metric in Sm

1 . Notice that if we define r = |(z0, z, y)|, then
s = (r2 − l2)1/2. We introduce coordinates (r,X, θ) in Rn+d+1 via the map

F (r,X, θ) =

(
X√
n
,

√(
r2 − |X|2

n

)
, θ

)
, (2.4.2)

where r ∈ R+, X ∈ Rd+1, θ ∈ Sn−1
1 . Here, (z0, z) = X/

√
n, and l2 = |X|2/

√
n ensuring

r2 ≥ l2 and thus s ≥ 0. Then, the following relations hold:(l, ϕ) = (z0, z) = X/
√
n,

(s, θ) = y = (
√
(r2 − |X|2/n), θ).

(2.4.3)

Since r2 = s2 + l2, on the (n + d)-dimensional spheres {r = R = const} ⊂ Rn+d+1, we have

l2 ≤ R2 and

ds
∣∣
T{r=R} = − l

s
dl
∣∣
T{r=R},

where T{r = R} denotes the tangent space to the (n+ d)-dimensional sphere {r = R}. The
metric induced by (2.4.1) is,

gE|{r=R} = (1 +
l2

R2 − l2
)dl2 + l2dΩ2

d + (R2 − l2)dΩ2
n−1. (2.4.4)
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Therefore,

√
gE|{r=R} =

√
(1 +

l2

r2 − l2
)l2d(r2 − l2)n−1

= rld(r2 − l2)(n−2)/2

= rn−1ld
(
1− l2

r2

)(n−2)/2

,

(2.4.5)

where l2 ≤ r2 = R2. Then, the Euclidean volume form is,

dV = rn−1ld
(
1− l2

r2

)(n−2)/2

dl ∧ dϕ ∧ dr ∧ dθ.

Since the Euclidean metric in Rd+1 is given by g̃E = dz20 + dz2 = dl2 + l2dΩ2
d, we have,

dz0 ∧ dz1 ∧ · · · ∧ dzd = lddl ∧ dϕ.

Now, using that X = (x0, x) =
√
n(z0, z), it is straightforward to show,

dz0 ∧ dz1 ∧ · · · ∧ dzd = n− d+1
2 dx0 ∧ dx,

where dx = dx1 ∧ · · · ∧ dxd. We can combine this with l2 = |X|/n ≤ r2 to obtain,

dz0 ∧ dz ∧ dy = n−(d+1)/2rn−1

(
1− |X|2

nr2

)(n−2)/2

dx0 ∧ dx ∧ dr ∧ dθ. (2.4.6)

Recall that ∂ Rn+d+1 = {z0 = 0} = {x0 = 0}, and denote by Bm
R the ball of radius R in Rm.

We now write ∂ Rn+d+1
+ ∩Bn+d+1

R in the coordinates (r,X, θ) as,

∂ Rn+d+1
+ ∩Bn+d+1

R = {(r,X, θ) : 0 ≤ r ≤ R, X = (x0, x), x0 = 0, x ∈ Bd√
nr2
, θ ∈ Sn−1

1 },
(2.4.7)

and since ∂z0 =
√
n∂x0 , the induced volume form over this region is given by,

dz ∧ dy = ι∂z0dV |{z0=0}∩Bn+d+1
R

= n−d/2rn−1

(
1− |x|2

nr2

)(n−2)/2

dx ∧ dr ∧ dθ.

Similarly, we obtain

∂Bn+d+1
R ∩ Rn+d+1

+ = {(r,X, θ) : r = R, X ∈ Rd+1
+ ∩Bd+1√

nR2
, θ ∈ Sn−1

1 }. (2.4.8)
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The induced volume form on this region is,

dσ = ι∂rdV |{r=R}

= n−(d+1)/2Rn−1

(
1− |X|2

nR2

)(n−2)/2

dx0 ∧ dx ∧ dθ.

Finally,

Bn+d+1
R ∩ Rn+d+1

+ = {(r,X, θ) : 0 ≤ r ≤ R, X ∈ Rd+1
+ ∩Bd+1√

nr2
, θ ∈ Sn−1

1 }, (2.4.9)

and the volume form on this region is,

dz0 ∧ dz ∧ dy = n−(d+1)/2rn−1

(
1− |X|2

nr2

)(n−2)/2

dx0 ∧ dx ∧ dr ∧ dθ.

Define Gn : Rd+1×R+ → R by

Gn(X, t) :=

(
1− |X|2

2nt

)(n−2)/2

χRd+1
+ ∩Bd+1√

2nt

(X),

and G̃n : Rd ×R+ → R by

G̃n(x, t) :=

(
1− |x|2

2nt

)(n−2)/2

χBd√
2nt

(x).

Using Gn and G̃n, by (2.4.7), (2.4.8) and (2.4.9) we can write the resulting volume elements

as,

dzdy|∂ Rn+d+1
+ ∩BR

= n−d/2rn−1G̃n(x, r
2/2) dxdrdθ, (2.4.10)

dσ|∂Bn+d+1
R ∩Rn+d+1

+
= n−(d+1)/2Rn−1Gn(X,R

2/2) dXdθ, (2.4.11)

and

dz0dzdy|Bn+d+1
R ∩Rn+d+1

+
= n−(d+1)/2rn−1Gn(X, r

2/2) dXdrdθ, (2.4.12)

where dX = dx0dx.

2.4.2 Convergence lemmas

Now, we establish some convergence lemmas for the integral quantities defined from Vn.

Our analysis begins with an observation about the limits of the functions Gn and G̃n.

Define

G(X, t) := e−|X|2/4t and G̃(x, t) := e−|x|2/4t, (2.4.13)
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where G is a function on Rd+1
+ ×R+,and G̃ is a function on Rd ×R+. As shown in Proposition

A.1.1 in the Appendix, we have

Gn(X, t) → G(X, t) and G̃n(x, t) → G̃(x, t),

uniformly in Rd+1
+ ×{t ≥ t0} and Rd ×{t ≥ t0} for any t0 > 0, respectively. Moreover, we

can show

Gn(X, t) ≤ eG(X, t),

for every (X, t) ∈ Rd+1
+ ×R+, and, similarly we have,

G̃n(x, t) ≤ eG̃(x, t),

for every (x, t) ∈ Rd ×R+, see Lemma A.1.2 in the Appendix for a proof. The Dominated

Convergence Theorem now ensures that, if f(·, t) is integrable with respect to G(·, t)xa0dX,

it is also integrable with respect to Gn(·, t)xa0dX for every n ∈ N, t > 0, and similarly for

the measures G̃(·, t) dx and G̃n(·, t) dx respectively.

Lemma 2.4.1. Let 0 < t0 < t1. Suppose f : Rd+1
+ ×[t0, t1] → R is continuous and fG ∈

C([t0, t1];L
1(Rd+1

+ , dµ)), where dµ = xa0dX. Define

hn(t) :=

ˆ
Rd+1
+

f(X, t)Gn(X, t) dµ,

and

h(t) :=

ˆ
Rd+1
+

f(X, t)G(X, t) dµ.

Then hn → h uniformly in [t0, t1].

The proof of Lemma 2.4.1 can be found in Section A.1.2 of the Appendix.

Remark 2.4.2. By examining the proof of Lemma 2.4.1, we see that the result also holds

if f̃ : Rd ×[t0, t1] → R is continuous and f̃ G̃ ∈ C([t0, t1];L
1(Rd, dx)), where the functions

hn and h are replaced by h̃n(t) :=
´
Rd f̃(x, t)G̃n(x, t) dx and h̃(t) :=

´
Rd f̃(x, t)G̃(x, t) dx

respectively.

In particular, if u ∈ C2s+ε
t,x (Rd ×(−TF ,+∞)), this holds for f̃ = |u|p+1 on compact inter-

vals of (0, T ). To show this, first observe that |u|p+1G̃ < CG̃ for some positive constant C.

Continuity of |u|p+1G̃(·, t) in L1(Rd, dx) follows from the continuity of u and the Dominated

Convergence Theorem applied to sequences tn → t. Moreover, |u|p+1G̃ < CG̃ also implies

that

sup
t∈(0,T )

ˆ
Rd

|u|p+1G̃(x, t) dx <∞.
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We will use both properties in the following section.

Remark 2.4.3. Note that if U ∈ U([0, T ]), Lemma 2.4.1 applies to the functions |∇U |2, U2,

|X.∇U |2, and (∂tU)
2 on compact intervals of (0, T ), since by property (b) of Definition 2.1.6

and the Cauchy-Schwarz inequality, the functions |∇U |2G, U2G, |X.∇U |2G, and (∂tU)
2G

belong to C((0, T );L1(Rd+1
+ , dµ)). In particular, it also applies to

f(X, t) =

(
X · ∇U + 2t∂tU +

2s

p− 1
U

)2

, (2.4.14)

since

g(X, t) =

(
X · ∇U + 2t∂tU +

2s

p− 1
U

)
e−|X|2/8t (2.4.15)

is a sum of continuous functions from (0, T ) to L2(Rd+1
+ , dµ), and therefore it must also be

continuous as a function from (0, T ) to L2(Rd+1
+ , dµ).

Lemma 2.4.4. Let ε ∈ (0, 1). Define Fn : C([ε, 1]) 7→ R such that

Fn(f) := n

ˆ 1

ε

tn−1f(t) dt,

and

F (f) := f(1).

Then Fn(f) → F (f).

Proof. Clearly Fn is linear for every n ∈ N. To see that Fn is bounded, we compute

|Fn(f)|≤ n|f |∞
ˆ 1

ε

tn−1 dt = n

(
1

n
− εn

n

)
|f |∞ ≤ |f |∞,

and thus |Fn| ≤ 1 for every n ≥ 1. Since

Fn(t
k) = n

(
1

n+ k
− εn+k

n+ k

)
,

we see that

lim
n→∞

Fn(t
k) = 1 = tk(1).

Since Fn is uniformly bounded and converges on the dense subset of polynomials, a standard

approximation argument shows that the limit

lim
n→∞

Fn = F
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exists, |F | < +∞ and F (f) = f(1) for every f ∈ C([ε, 1]).

Lemma 2.4.5. Let ε > 0 and suppose hn : [ε, 1] → R is a sequence of continuous functions

that converges uniformly to h : [ε, 1] → R. Then Fn(hn) → F (h).

Proof.

|F (h)− Fn(hn)| ≤ |F (h)− Fn(h)|+|Fn(h)− Fn(hn)|
≤ |F − Fn||h|∞ + |Fn|∞|h− hn|∞ → 0

(2.4.16)

as n→ ∞, since |Fn| is uniformly bounded by 1 if n ≥ 1.

2.5 A monotonicity formula for the fractional semilin-

ear heat equation

Now, we derive the main result of this chapter. First, observe that if (r,X, θ) ∈
R+×Rd+1

+ ×Sn−1
1 ,

Vn(z0, z, y) = Vn ◦ F (r,X, θ) = U(X, r2/2),

and the same applies for the quantities listed in Lemma 2.2.2. Therefore, whenever we

are integrating with respect to the X and r variables, the functions will be evaluated in

(X, r2/2) and, if r = R is fixed, the quantities will be evaluated in (X,R2/2) = (X, t), by

(2.2.1). Similarly, if we are integrating with respect to the x and r variables, observe that

V (0, z, y) = V ◦F (r, 0, x, θ) = u(x, r2/2) = u(x, t1), where t1 is defined in (2.2.9). Then, the

functions are evaluated in (x, r2/2) and, for any fixed r = R the quantities are evaluated in

(x,R2/2) = (x, t), by (2.2.1). We follow this convention by default unless explicit evaluations

are provided.

Let

Cn :=
n(d+1+a)/2

|Sn−1
1 |

. (2.5.1)

We have the following proposition.

Proposition 2.5.1. Let u ∈ C2s+ε
t,x (Rd ×(−TF ,+∞)) such that u solves (2.1.28) in [0, T ] ⊂

(−TF , TI) and suppose its associated extension satisfies U ∈ U([0, T ]). Let Vn be its n-
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dimensional lift. Define,

E(R) :=R2s p+1
p−1

−d1

2

ˆ
Rd+1
+

xa0|∇U |2(X,R2/2)G(X,R2/2) dX

− ηs
p+ 1

R2s p+1
p−1

−d

ˆ
Rd

|u|p+1(x,R2/2)G̃(x,R2/2) dx

+R2s p+1
p−1

−d−2 s

p− 1

ˆ
Rd+1

xa0U
2(X,R2/2)G(X,R2/2) dX.

(2.5.2)

Then, for any 0 < ε < T/2,

CnEn(R) → E(R),

for every R ∈ [
√
2ε,
√

2(T − ε)], where En is defined in (2.3.1).

Proof. Let 0 < ε < T/2. We write

CnEn(R) = E1
n(R) + E2

n(R) + E3
n(R), (2.5.3)

where,

E1
n(R) = CnR

2s p+1
p−1

−n−d1

2

ˆ
Rn+d+1
+ ∩Bn+d+1

R

za0 |∇Vn|2 dydzdz0, (2.5.4)

E2
n(R) = −n

1−a
2 Cn

ηs
p+ 1

R2s p+1
p−1

−n−d

ˆ
∂Rn+d+1

+ ∩Bn+d+1
R

|Vn|p+1 dzdy, (2.5.5)

and,

E3
n(R) = CnR

2s p+1
p−1

−n−d−1 s

p− 1

ˆ
∂Bn+d+1

R ∩Rn+d+1
+

za0V
2
n dσ. (2.5.6)

We start by computing the limit of E1
n. By (2.4.9) and (2.4.12) we have,

CnR
−(n−1)1

2

ˆ
RN+1
+ ∩BN+1

R

za0 |∇Vn|2 dydzdz0

= Cn
|Sn−1

1 |
2n(d+1)/2

ˆ R

0

ˆ
Rd+1
+

(
x0√
n

)a (
n|∇U |2 + 2(X · ∇U)∂tU + r2(∂tU)

2
) ( r

R

)n−1

Gn dXdr

=
1

2
n

ˆ R

0

ˆ
Rd+1
+

( r
R

)n−1

xa0|∇U |2Gn dXdr

+
1

2

ˆ R

0

ˆ
Rd+1
+

( r
R

)n−1

xa0
(
2(X · ∇U)∂tU + r2(∂tU)

2
)
Gn dXdr.

(2.5.7)
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In particular, we can write,

E1
n(R) = R2s p+1

p−1
−d−1n

ˆ R

0

( r
R

)n−1

hI

n(r
2/2) dr +R2s p+1

p−1
−d−1

ˆ R

0

( r
R

)n−1

hII

n(r
2/2) dr,

(2.5.8)

where

hI

n(t) :=
1

2

ˆ
Rd+1
+

xa0|∇U |2Gn(X, t) dX,

and

hII

n(t) :=

ˆ
Rd+1
+

xa0
(
2(X · ∇U)∂tU + 2t(∂tU)

2
)
Gn(X, t) dX.

Using that U ∈ U([0, T ]) we can apply Lemma 2.4.1 to show that hI
n(t) converges uniformly

to

hI(t) :=
1

2

ˆ
Rd+1
+

xa0|∇U |2G(X, t) dX,

for t ∈ [ε/2, T − ε]. Now, since R ∈ [
√
2ε,
√
2(T − ε)],

n

ˆ R

0

( r
R

)n−1

hI

n(r
2/2) dr = n

ˆ R

√
ε

( r
R

)n−1

hI

n(r
2/2) dr + n

ˆ √
ε

0

( r
R

)n−1

hI

n(r
2/2) dr.

(2.5.9)

Given that the convergence hI
n(t) → hI(t) is uniform in [ε/2, T − ε], the convergence

hI
n(R

2/2) → hI(R2/2) must be uniform for R ∈ [
√
ε,
√
2(T − ε)]. We perform the change of

variables r̃ = r/R, and apply Lemma 2.4.5 to show,

n

ˆ R

√
ε

( r
R

)n−1

hI

n(r
2/2) dr → RhI(R2/2) =

R

2

ˆ
Rd+1
+

xa0|∇U |2G(X,R2/2) dX, (2.5.10)

for every R ∈ [
√
2ε,
√

2(T − ε)]. Moreover, since U ∈ U([0, T ]), we have,

|hI

n(t)| ≤
e

2
sup

t∈(0,T )

ˆ
Rd+1
+

xa0|∇U |2G(X, t) dX < C, (2.5.11)

for every t ∈ (0, T ) and some constant C > 0. Therefore,

n

∣∣∣∣∣
ˆ √

ε

0

( r
R

)n−1

hI

n(r
2/2) dr

∣∣∣∣∣ ≤ CR1−n(
√
ε)n ≤ C

√
2T

(
1

2

)n/2

→ 0, (2.5.12)

for every R ∈ [
√
2ε,
√

2(T − ε)], where we used r2/2 < T for r ∈ [0,
√
ε]. Combining both
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computations we obtain,

n

ˆ R

0

( r
R

)n−1

hI

n(r
2/2) dr → R

2

ˆ
Rd+1
+

xa0|∇U |2G(X,R2/2) dX. (2.5.13)

In order to control the term involving hII
n, a similar argument to the one discussed in (2.5.11)

shows

|hII

n(t)| < C, (2.5.14)

for some constant C > 0 and for every t ∈ (0, T ).

Therefore, ∣∣∣∣ˆ R

0

( r
R

)n−1

hII

n(r
2/2) dr

∣∣∣∣ ≤ C

ˆ R

0

( r
R

)n−1

dr

≤ C
R

n

≤ C

√
2T

n
→ 0,

(2.5.15)

for every R ∈ [
√
2ε,
√

2(T − ε)]. Combining (2.5.13) and (2.5.15), we find,

E1
n(R) → R2s p+1

p−1
−d1

2

ˆ
Rd+1
+

xa0|∇U |2G(X,R2/2) dX. (2.5.16)

For the second term, E2
n, we use (2.4.7) and (2.4.10) to compute,

−n
1−a
2 Cn

ηs
p+ 1

R−(n−1)

ˆ
∂Rn+1

+ ∩BN+1
R

|Vn|p+1 dzdy

= −n
1−a−d

2 Cn
ηs

p+ 1
|Sn−1|

ˆ R

0

ˆ
∂ Rd+1

+

|u|p+1
( r
R

)n−1

G̃n dxdr

= −n ηs
p+ 1

ˆ R

0

ˆ
Rd

|u|p+1
( r
R

)n−1

G̃n dxdr.

(2.5.17)

Since u is parabolic Hölder continuous of order 2s+ ε, by Remark 2.4.2 we have that

ˆ
Rd

|u|p+1G̃n(x, t) dx→
ˆ
Rd

|u|p+1G̃(x, t) dx

uniformly for t ∈ [ε/2, T − ε] and,

sup
t∈(0,T )

ˆ
Rd

|u|p+1G̃ dx < +∞.
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Then, we proceed as for hI
n in (2.5.9), (2.5.11) and (2.5.12) to obtain,

E2
n(R) → − ηs

p+ 1
R2s p+1

p−1
−d

ˆ
Rd

|u|p+1G̃ dx, (2.5.18)

for every R in [
√
2ε,
√

2(T − ε)].

For the third term, E3
n, we use (2.4.8) and (2.4.11) to deduce,

E3
n(R) = CnR

2s p+1
p−1

−n−d−1 s

p− 1

ˆ
∂Bn+d+1

R ∩Rn+d+1
+

za0V
2
n dσ,

= R2s p+1
p−1

−n−d−1 s

p− 1
n(d+a+1)/2

ˆ
Rd+1
+

(
x0√
n

)a

U2n−(d+1)/2Rn−1Gn dX

= R2s p+1
p−1

−d−2 s

p− 1

ˆ
Rd+1
+

xa0U
2Gn dX.

(2.5.19)

Since U ∈ U([0, T ]), we haveR2s p+1
p−1

−d−2U2G(·, R2/2) ∈ C([
√
2ε,
√

2(T − ε)];L1(Rd+1
+ , xa0dX)),

and we can directly apply Lemma 2.4.1 to show,

E3
n(R) → R2s p+1

p−1
−d−2 s

p− 1

ˆ
Rd+1
+

xa0U
2GdX, (2.5.20)

for R ∈ [
√
2ε,
√

2(T − ε)]. Combining (2.5.16), (2.5.18) and (2.5.20) the result follows.

We now examine the convergence of the derivatives of CnEn.

Proposition 2.5.2. Let U ∈ U([0, T ]) and let 0 < ε < T/2. Define,

D(R) := R2s p+1
p−1

−d−2

ˆ
Rd+1
+

xa0

(
X · ∇U +R2∂tU +

2s

p− 1
U

)2

G(X,R2/2) dX. (2.5.21)

Then
d

dR
CnEn(R) → D(R),

uniformly in [
√
2ε,
√

2(T − ε)].

Proof. Fix 0 < ε < T/2. Using (2.3.2), we write

d

dR
CnEn(R) = An(R)−Bn(R), (2.5.22)
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where

An(R) := CnR
2s p+1

p−1
−n−d+1

ˆ
∂Bn+d+1

R ∩Rn+d+1
+

za0

(
∂Vn
∂r

+
2s

p− 1

Vn
r

)2

dσ, (2.5.23)

and

Bn(R) := CnR
2s p+1

p−1
−1−n−d

ˆ
Rn+d+1
+ ∩Bn+d+1

R

(
2s

p− 1
Vn +R(z0, z, y) · ∇Vn

)
(za0H ◦Fn) dz0dzdy.

(2.5.24)

To examine the limit of An, first observe that for any (z0, z, y) ∈ ∂Bn+d+1
R ∩ Rn+d+1

+ ,

|(z0, z, y)| = R, and therefore

∂Vn
∂r

=
1

R
(z0, z, y) · ∇Vn =

1

R
(X · ∇U +R2∂tU).

Then,

za0

(
∂Vn
∂r

+
2s

p− 1

Vn
r

)2

=

(
x0√
n

)a(
1

R
(X · ∇U +R2∂tU) +

2s

p− 1

U

R

)2

= n−a/2 x
a
0

R2

(
X · ∇U +R2∂tU +

2s

p− 1
U

)2

.

(2.5.25)

By (2.4.8) and (2.4.11),

An(R) = CnR
2s p+1

p−1
−n−d+1

ˆ
∂Bn+d+1

R ∩Rn+d+1
+

za0

(
∂Vn
∂r

+
2s

p− 1

Vn
r

)2

dσ,

= R2s p+1
p−1

−n−d+1

ˆ
Rd+1
+

xa0
R2

(
X · ∇U +R2∂tU +

2s

p− 1
U

)2

Rn−1Gn dX.

= R2s p+1
p−1

−d−2

ˆ
Rd+1
+

xa0

(
X · ∇U +R2∂tU +

2s

p− 1
U

)2

Gn dX.

(2.5.26)

Since U ∈ U([0, T ]), Remark 2.4.3 and Lemma 2.4.1 imply,

An → D,

uniformly forR ∈ [
√
2ε,
√

2(T − ε)]. Finally, we examine the non-homogeneous contribution,

and show that it converges uniformly to zero. First notice that, by (2.2.1), we can rewrite

2s

p− 1
Vn + (z0, z, y) · ∇Vn =

2s

p− 1
U + (x0, x) · ∇U + r2∂tU. (2.5.27)
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Then,

Bn(R) = R2s p+1
p−1

−2−d

ˆ R

0

ˆ
Rd+1
+

xa0H

(
2s

p− 1
U +X · ∇U + r2∂tU

) ( r
R

)n−1

Gn dXdr.

(2.5.28)

Let

sn(t) :=

ˆ
Rd+1
+

xa0H

(
2s

p− 1
U +X · ∇U + 2t∂tU

)
Gn dX.

Using that U ∈ U([0, T ]),

|sn(t)| ≤ C,

for t ∈ (0, T ) and some constant C > 0. Now,

|Bn(R)| ≤ R2s p+1
p−1

−2−d

ˆ R

0

( r
R

)n−1

|sn(r2/2)| dr

≤ R2s p+1
p−1

−2−dC

ˆ R

0

( r
R

)n−1

dr

≤ C

n
(
√
2T )2s

p+1
p−1

−1−d,

(2.5.29)

for every R ∈ [
√
2ε,
√

2(T − ε)]. Since the last bound is independent of R, it converges

uniformly to zero in [
√
2ε,
√

2(T − ε)].

Combining the previous results, we obtain the following.

Theorem 2.5.3. Let u ∈ C2s+ε
t,x (Rd ×(−TF ,+∞)) such that u solves (2.1.28), and let

[0, T ] ⊂ (−TF , TI). Let U ∈ U([0, T ]) be its associated extension, and Vn be its n-dimensional

lift. Then, the quantity (1.1.9) is non-decreasing in (0, T ). Furthermore, its derivative obeys

(1.1.10).

Proof. Let 0 < ε < T/2, and let t ∈ [ε, T − ε]. Then, R ∈ [
√
2ε,
√

2(T − ε)] and, by

Proposition 2.5.2 the convergence

d

dR
CnEn(R) → D(R)

is uniform in [
√
2ε,
√

2(T − ε)]. Furthermore, by Proposition 2.5.1 we have

lim
n→∞

CnEn(R) = E(R), (2.5.30)
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for every R ∈ [
√
2ε,
√

2(T − ε)]. Then, a standard argument shows,

d

dR
E(R) = lim

n→∞

d

dR
CnEn(R) = D(R), (2.5.31)

for every R ∈ [
√
2ε,
√

2(T − ε)]. Since ε > 0 is arbitrary, (2.5.30) and (2.5.31) must hold

for every R ∈ (0,
√
2T ).

We may now define

J(t) :=
1

(4π)d/2Γ(s)

1

2s
p+1
p−1

−d/2
E(
√
2t),

and since d/dt = (2t)−1/2d/dR,

d

dt
J(t) =

1

(4π)d/2Γ(s)

1

2s
p+1
p−1

−d/2

1√
2t

dE

dR
(
√
2t).

Using the expression (1.1.11) for the fundamental solution, and denoting

G̃(x, t) = G((0, x), t),

we find,

J(t) =t
2s

p−1
+1

(
1

2

ˆ
Rd+1
+

x1−2s
0 |∇U |2G dX − ηs

p+ 1

ˆ
Rd

|u|p+1G̃ dx

)
+ t

2s
p−1

s

2(p− 1)

ˆ
Rd+1
+

x1−2s
0 U2G dX,

(2.5.32)

and

d

dt
J(t) =

1

2
√
2
t

2s
p−1

− 1
2

ˆ
Rd+1
+

x1−2s
0

(
2t∂tU +X · ∇U +

2s

p− 1
U

)2

G dX. (2.5.33)

The result readily follows.
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Chapter 3

A unified high-dimensional framework

for the Ricci flow

The final part of this thesis focuses on the Ricci flow, particularly on how entropy emerges

as a high-dimensional limit of Colding’s monotonic volume. We begin by revisiting Perel-

man’s original derivation of his entropy formula for the Ricci flow.

3.1 Perelman’s modified Ricci flow

Since Hamilton introduced the Ricci flow [36], it was widely believed that it lacked a

variational characterization as the gradient flow of any natural geometric functional. This

view was further supported by the work of Bryant and Hamilton, who showed that, ex-

cept in dimension two, the Ricci flow cannot be realized as a gradient flow on the space of

smooth Riemannian metrics Met under the standard L2 metric. As discussed in Chapter 1,

variational methods are fundamental in the study of heat-type equations, making it natural

to expect that a geometric flow as natural as the Ricci flow should admit such a charac-

terization. Remarkably, Perelman uncovered this structure by working on the extended

space Met × C∞(M). Below, we outline this approach, which laid the foundation for the

W-functional (1.1.15).

The gradient flow associated to an energy functional is defined as follows: for a Hilbert

space H and a smooth functional E : H → R, the gradient vector field ∇E : H → H is

defined at u ∈ H as the unique vector ∇E(u) ∈ H that obeys

⟨∇E(u), v⟩ = dE(u)(v),
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for every v ∈ H. Then, ∇E defines a gradient flow ϕ, given by

d

dt
ϕu(t) = −∇E(ϕu(t)),

ϕu(0) = u,

for any given u ∈ H. Observe that the flow lines ϕu are paths of steepest descent with

respect to the graph Γ(E) = {(u,E(u)) ∈ H×R}. To see this, notice that if u = u(t) ∈ H,

d

dt
E(u(t)) = dE(u)(u̇) = ⟨∇E(u), u̇⟩ ≥ −|∇E||u̇|,

and the equality holds when u̇ = −λ∇E(u) for λ > 0.

For the Ricci flow on a closed Riemannian manifold (M, g), the natural candidate for the

functional E is the Einstein-Hilbert functional E : Met → R given by,

E(g) =

ˆ
M

Rdν,

where R is the scalar curvature of the metric g, and dν is the measure induced by g.

Nevertheless, the variation of E in the direction of h gives,

δhE(g) =

ˆ
M

〈
R

2
g − Ric, h

〉
dν,

with the scalar curvature term coming from the variation of the volume element. From this,

it follows that (twice) the metric obeys,

d

dt
gij = 2(∇E)ij = Rgij − 2Rij,

which appears similar to the Ricci flow, but its symbol does not possess a definite real part

and is therefore not parabolic, see Chapter 10 in [5]. In particular, short-time existence is

not ensured.

To overcome this problem, Perelman considers an expanded space Met × C∞(M) and

defines the functional,

F(g, f) :=

ˆ
M

(R + |∇f |2)e−f dν, (3.1.1)

where f is known as the dilaton field in the String Theory literature (see for example Section

6 in [26]). The variation of F can be explicitly computed to yield the following.
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Proposition 3.1.1. On a closed manifold M , the variation of F is

δ(h,k)F(g, f) =−
ˆ
M

⟨Ric+∇∇f, h⟩e−f dν

+

ˆ
M

(
1

2
trgh− k)(2∆f − |∇f |2 +R)e−f dν.

(3.1.2)

Proof. See Proposition 10.4 in [5].

As a corollary, it also follows,

Corollary 3.1.2. For measure preserving variations, that is, δ(h,k)e
−fdν(g, f) = 0, the

variation of the F-functional is

δ(h,k)F(g, f) = −
ˆ
M

⟨Ric+∇∇f, h⟩e−f dν. (3.1.3)

Now, fix a smooth background measure dω on M , and define X : Met → Met×C∞(M)

as,

X : g 7→
(
g, log

dν(g)

dω

)
,

where dν/dω is the Radon-Nykodym derivative. Then, the composition Fω = F◦X : Met →
R is given by

Fω(g) =

ˆ
M

(
R +

∣∣∣∣∇ log
dν

dω

∣∣∣∣2
)
dω =

ˆ
M

(R + |∇f |2) dω, (3.1.4)

where we define f = log dν
dω
. From Corollary 3.1.2,it follows that

δhF
ω(g) = −

ˆ
M

hij(Rij +∇i∇jf) dω,

since dω is fixed and dω = e−fdν. Then, (twice) the gradient structure of Fω on the space

Met results,
d

dt
gij = 2∇Fω(g) = −2(Rij +∇i∇jf),

and the evolution equation for f reads,

d

dt
f =

1

2
gij

d

dt
gij = −∆f −R.
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Therefore, for the coupled modified Ricci flow,∂tg = −2(Ric+∇∇f)

∂tf = −∆f −R,
(3.1.5)

we have the following.

Corollary 3.1.3. If (g(t), f(t)) is a solution to the coupled modified Ricci flow (3.1.5), then

d

dt
Fω(g) = 2

ˆ
M

|Rij +∇i∇jf |2 dω. (3.1.6)

The solution to the coupled modified Ricci flow can be related to the solution of the

coupled Ricci flow, ∂tg = −2Ric

∂tf = −∆f + |∇f |2 −R.
(3.1.7)

To see this, observe that given a solution (ḡ, f̄) to the system (3.1.5), we can construct a

solution (g, f) to the coupled system (3.1.7), by flowing along the gradient ∇ḡ(t)f̄(t). Now

we show how to construct solutions to (3.1.5) from a solution of the Ricci flow.

Let g(t) be a solution to the Ricci flow ∂tg = −2Ric in [0, T ] forward in time. Next, we

show that can use g(t) to solve the backward equation

∂tf = −∆f + |∇f |2 −R,

in [0, T ]. In order to do this, we set

u := e−f , (3.1.8)

and note that, by reparametrising time by τ = T − t, we have

∂τu = −∂tu = u∂tf = (∆f + |∇f |2 −R)u = ∆u−Ru,

and therefore u solves the forward, linear equation

∂τu = ∆u−Ru,

for which there exists a unique solution u given initial data u(0). Then we solve this equation

for u, and we recover f from (3.1.8). Now that we have constructed a solution (g, f) to (3.1.7)

from a solution to the Ricci flow, we can flow by the gradient ∇g(t)f backwards to define

a one-parameter family of diffeomorphisms Φ, and compute the pullbacks of Φ∗g(t) and
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f ◦Φ(t) to obtain a solution to (3.1.5). Details of this construction can be found in Section

1.5 in [15], or Section 10.4.1 in [5]. From this, we obtain the following.

Proposition 3.1.4. Given a solution g(t) to the Ricci flow in [0, T ] on a closed manifold

M , let (g(t), f(t)) be the unique solution to (3.1.7). Then,

d

dt
F(g(t), f(t)) = 2

ˆ
M

|Ric+∇∇f |2e−f dν. (3.1.9)

Thus, the Ricci flow admits a gradient flow structure on the expanded space Met ×
C∞(M).

3.1.1 The W-functional

To analyze the flow near developing singularities, Perelman introduced the W-functional,

which can be thought of as a scale invariant version of the F-functional. On a closed n-

dimensional manifold M , define Perelman’s W-functional (or entropy functional) on the

extended space W : Met× C∞(M)× R+ → R by

W(g, f, τ) :=

ˆ
M

(
τ
(
|∇f |2 +R

)
+ f − n

)
u dν, (3.1.10)

where R is the scalar curvature of g, u := (4πτ)−n/2e−f and τ > 0 is the scale parameter.

Note that u differs from (3.1.8) by a factor of (4πτ)−n/2. TheW-functional is diffeomorphism-

invariant: If Φ ∈ Diff(M) then W (Φ∗g,Φ∗f, τ) = W(g, f, τ), where Φ∗g is the pullback

metric and Φ∗f = f ◦ Φ. Moreover, under the scaling transformation (g, f, τ) 7→ (cg, f, cτ),

we have W(cg, f, cτ) = W(g, f, τ).

we can also relate F and W by the identity

W(g, f, τ) =
1

(4πτ)n/2

(
τF(g, f) +

ˆ
M

(f − n)e−fdν

)
. (3.1.11)

We now show how to compute the τ -derivative of W in the classical way.

Proposition 3.1.5. On a closed manifold M , the variation of W is

δ(h,k,ζ)W(g, f, τ) =

ˆ
M

〈
Ric+∇∇f − 1

2τ
g,−τh+ ζg

〉
udν

+

ˆ
M

τ

(
1

2
trg h− k − n

2τ
ζ

)(
R + 2∆f − |∇f |2 + f − n− 1

τ

)
udν

(3.1.12)

Proof. We separate the variation δ(h,k,ζ)W(g, f, τ) of W at (g, f, τ) in the direction (h, k, ζ)
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in two parts, since

δ(h,k,ζ)W(g, f, τ) = δ(h,k,0)W(g, f, τ) + δ(0,0,ζ)W(g, f, τ)

In order to compute δ(h,k,0)W(g, f, τ) with τ fixed, use (3.1.11) together with Proposition

3.1.1 We obtain,

δ(h,k,0)

(
τ

(4πτ)n/2
F(g, f)

)
(g, f, τ) = −

ˆ
M

τ⟨Ric+∇∇f, h⟩udν

+

ˆ
M

τ

(
1

2
trg h− k

)(
2∆f − |∇f |2 +R

)
udν,

and by direct computation

δ(h,k,0)

(
1

(4πτ)n/2

ˆ
M

(f − n)e−fdν

)
(g, f, τ) =

ˆ
M

(
k +

(
1

2
trg h− k

)
(f − n)

)
udν.

To compute δ(0,0,ζ)W(g, f, τ) with g and f fixed, we see,

δ(0,0,ζ)W(g, f, τ) =

ˆ
M

(
ζ
(
1− n

2

) (
R + |∇f |2

)
− nζ

2τ
(f − n)

)
udν.

Combining the two variations, we find

δ(h,k,ζ)W(g, f, τ) =

ˆ
M

[
⟨Ric+∇∇f,−τh+ ζg⟩

+ τ

(
1

2
trg h− k

)(
2∆f − |∇f |2 +R +

f − n

τ

)
+ k + ζ

(
|∇f |2 −∆f

)
− nζ

2τ
(f − n)− nζ

2

(
R + |∇f |2

)]
udν.

Now reorder the terms by absorbing − n
2τ
ζ into the first bracket of the terms on the second

line. We get,

δ(h,k,ζ)W(g, f, τ) =

ˆ
M

[⟨Ric+∇∇f,−τh+ ζg⟩

+ τ

(
1

2
trg h− k − n

2τ
ζ

)(
R + 2∆f − |∇f |2 + f − n

τ

)
+k + (n− 1)ζ

(
∆f − |∇f |2

)]
udν.
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Similarly, reorder to absorb − 1
2τ
g into the angled bracket terms, and combine this with〈

− 1

2τ
g,−τh+ ζg

〉
=

1

2
trg h− n

2τ
ζ

to obtain

δ(h,k,ζ)W(g, f, τ) =

ˆ
M

[〈
Ric+∇∇f − 1

2τ
g,−τh+ ζg

〉
+ τ

(
1

2
trg h− k − n

2τ
ζ

)(
R + 2∆f − |∇f |2 + f − n− 1

τ

)
+(n− 1)ζ

(
∆f − |∇f |2

)]
udν.

The result now follows after observing that

ˆ
M

(
∆f − |∇f |2

)
e−fdν = −

ˆ
M

∆e−fdν = 0.

Next, observe that defining

dm := udν,

we may fix dm so that the variation δ(h,k,ζ)dm(g, f, τ) vanishes, that is,

1

2
trg h− k − n

2τ
ζ = 0.

We solve for f to find,

f = log
dν

dm
− n

2
log(4πτ). (3.1.13)

As a corollary, we obtain

Corollary 3.1.6 (Measure-preserving variations of the entropy). For any variation (h, k, ζ)

satisfying δ(h,k,ζ)udν(g, f, τ) = 0, the variation of W obeys

δ(h,k,ζ)W(g, f, τ) =

ˆ
M

〈
Ric+∇∇f − 1

2τ
g,−τh+ ζg

〉
udν.

We now heuristically formulate an appropriate gradient flow for W so that W is also

monotonic. Using the function f defined in (3.1.13) and considering the gradient flow for
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gij previously used in (3.1.5), we obtain the following coupled gradient flow for (g, f, τ):

∂

∂t
g = −2(Ric+∇∇f) (3.1.14)

∂f

∂t
= −∆f −R +

n

2τ
(3.1.15)

dτ

dt
= −1, (3.1.16)

where the last condition is imposed in order to ensure monotonicity, since, by Corollary

3.1.6,

d

dt
W =

ˆ
M

(
Rij +∇i∇jf − 1

2τ
gij

)
(−τ ġij + τ̇ gij) dm

= 2τ

ˆ
M

∣∣∣∣Rij +∇i∇jf − 1

2τ
gij

∣∣∣∣2 dm,
whenever dm = udµ is fixed, ġij = −2 (Rij +∇i∇jf) and τ̇ = −1. A similar diffeomorphism

change to the one already discussed for (3.1.5) allows us to rewrite the coupled system of

equations as,

∂

∂t
g = −2Ric

∂f

∂t
= −∆f + |∇f |2 −R +

n

2τ
dτ

dt
= −1.

(3.1.17)

To simplify notation, we introduce the following.

Definition 3.1.7. Given a solution (g(t), f(t), τ(t)) to the coupled system (3.1.17) on a

closed manifold M , we define the entropy W(τ) as

W(τ) := W(g(t), f(t), τ(t)), (3.1.18)

as introduced in (1.1.15).

Putting all together, we obtain the following formula for the derivative of W(τ).

Proposition 3.1.8. The derivative of the entropy obeys (1.1.16), that is,

d

dt
W(τ) =

ˆ
M

2τ

∣∣∣∣Ric+∇∇− 1

2τ
g

∣∣∣∣2 u dν.
Interestingly, the monotonicity of Perelman’s W-functional can also be derived from a
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pointwise estimate using the conjugate heat operator. To see this, consider a Ricci flow

defined for t ∈ [0, T ]. By defining the heat operator,

□ :=
∂

∂t
−∆,

acting on C∞(M × [0, T ]) we see, by evaluating

d

dt

ˆ
M

vw dν,

that the conjugate heat operator

□∗ := − ∂

∂t
−∆+R,

is conjugate to □ in the following sense.

Proposition 3.1.9. If g(t), t ∈ [0, T ] is a solution to the Ricci flow and v, w ∈ C∞(M ×
[0, T ]), then

ˆ T

0

(ˆ
M

(□v)wdµ

)
dt =

[ˆ
M

vwdµ

]T
0

+

ˆ T

0

(ˆ
M

v (□∗w) dµ

)
dt.

Proof. See Lemma 11.5 in [5].

Now, let

w :=
(
τ
(
R + 2∆f − |∇f |2

)
+ f − n

)
u.

Then,

W(τ) =

ˆ
M

wdν, (3.1.19)

since
´
M
(∆f − |∇f |2)udν = −

´
M
∆udν = 0. The function w obeys the following.

Proposition 3.1.10 ([47], Proposition 9.1, [64], p. 77). Let (f, g, τ) be a solution of (3.1.17).

Then w satisfies

□∗w = −2τ

∣∣∣∣Ric+Hess(f)− 1

2τ
g

∣∣∣∣2 u. (3.1.20)

The monotonicity of W now follows immediately since, setting v = 1 in Proposition 3.1.9,

by (3.1.19) and (3.1.20) we have,

d

dt
W =

d

dt

ˆ
M

wdν = −
ˆ
M

□∗wdν.
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3.2 Colding’s Monotonic Volume

Similarly to Perelman’s derivation of his reduced volume from the Bishop-Gromov in-

equality discussed in Section 1.0.1, we want to derive the W-functional as a high dimensional

limit of an elliptic monotonic quantity. The appropriate quantity for this process is Colding’s

monotonic volume, which we now discuss.

Let (N, ḡ) be an m-dimensional manifold admitting a a positive and proper Green func-

tion G, and set

b := G1/(2−m).

Definition 3.2.1. We define the area A on the level sets of b as,

A(s) :=
1

sm−1

ˆ
b=s

(|∇b|2 − 1)|∇b| dA, (3.2.1)

and the ‘volume’ V as,

V (s) :=
1

sm

ˆ
b≤s

(|∇b|2 − 1)|∇b|2 dV, (3.2.2)

and the ‘monotonic volume’ as,

W (s) := 2(m− 1)V (s)− A(s). (3.2.3)

The main purpose of this section is to provide an explicit computation of the derivative

of W , and show that W is non-decreasing and obeys (1.1.20). We begin with a few routine

computations.

Lemma 3.2.2. We have,

∇b = 1

2−m
bm−1∇G, (3.2.4)

∆b = (m− 1)b−1|∇b|2, (3.2.5)

∆b2 = 2m|∇b|2, (3.2.6)

Proof. Equation (3.2.4) is immediate. To see (3.2.5), use (3.2.4) and note that ∆G = 0. For

(3.2.6), use that

∆b2 = 2|∇b|2 + 2b∆b, (3.2.7)

and combine it with (3.2.5).

In order to compute the derivative of W , we begin by computing the derivative of two

auxilliary functions, I and J .
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Proposition 3.2.3. The function

I(s) := s1−m

ˆ
b=s

|∇b|dA (3.2.8)

is constant.

Proof. First, observe that

I ′ =
1−m

s
I(s) + s1−m∂s

(ˆ
b=s

|∇b|dA
)
. (3.2.9)

Since

|∇b| = g

(
∇b, ∇b

|∇b|

)
,

by the coarea formula we have,

∂s

(ˆ
b=s

|∇b|dA
)

= ∂s

(ˆ
b≤s

∆bdV

)
= ∂s

(ˆ s

0

ˆ
b=r

∆b

|∇b|
dAdr

)
=

ˆ
b=s

∆b

|∇b|
dA.

(3.2.10)

Using (3.2.5), we find,

I ′(s) = 0.

Moreover, it can also be shown that the constant is

I(s) = I(1) = Vol(∂B1(0)),

where B1(0) ⊂ Rm is the Euclidean unit ball, see [18].

Proposition 3.2.4. Let

J(s) := s−m

ˆ
b≤s

|∇b|2dV.

Then, J is constant and moreover,

J(s) = Vol(B1(0)).
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Proof. To see this, notice that by the coarea formula,

J(s) = s−m

ˆ s

0

ˆ
b=r

|∇b| dAdr

= s−m

ˆ s

0

rm−1I(r)dr

=
I(1)

m
.

(3.2.11)

Now, since

Vol(B1(0)) =
1

m
Vol(∂B1(0)),

the result follows.

The previous computations show that, if we consider

Ā(s) :=
1

sm−1

ˆ
b=s

|∇b|3 dA, (3.2.12)

we have

A = Ā− Vol(∂B1(0))

and, similarly, if we define

V̄ (s) :=
1

sm

ˆ
b≤s

|∇b|4 dV, (3.2.13)

then,

V = V̄ − Vol(B1(0)).

Therefore, the derivative of the function

W̄ := 2(m− 1)V̄ − Ā

coincides with the derivative of W . We now proceed to obtain an explicit formula for the

derivative of this quantity. We will need the following lemma.

Lemma 3.2.5. V̄ obeys,

V̄ ′(s) =
1

s
(Ā(s)−mV̄ (s)).

Proof. By the coarea formula, we can rewrite V̄ (s) as

V̄ (s) = s−m

ˆ s

−∞

ˆ
b=r

|∇b|3dAdr.

Deriving, the lemma follows.
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We now compute the derivative of W̄ .

Theorem 3.2.6 (Theorem 2.4 in [18]). W̄ obeys,

W̄ ′(s) =
s−1−m

2

ˆ
b≤s

(∣∣∣∣∇∇b2 − ∆b2

n
g

∣∣∣∣2 +Ric
(
∇b2,∇b2

))
dV.

Proof. First, observe that

|∇b|2 = |2b∇b|2 = 4b2|∇b|2,

and therefore we can rewrite A(s) as

Ā(s) = s1−m

ˆ
b=s

|∇b|3dĀ =
s−1−m

4

ˆ
b=s

∣∣∇b2∣∣2 |∇b|dA.
We now compute,

s−2
(
s2Ā

)′
(s) =

s−1−m

4

ˆ
b=s

d

dn

∣∣∇b2∣∣2 dA
=
s−1−m

4

ˆ
b≤s

∆
∣∣∇b2∣∣2 dV.

Using Bochner’s formula, we obtain

s−1−m

4

ˆ
b≤s

∆
∣∣∇b2∣∣2 dV =

s−1−m

2

ˆ
b≤s

(∣∣∇∇b2
∣∣2 + 〈∇∆b2,∇b2

〉
+Ric

(
∇b2,∇b2

))
dV

=
s−1−m

2

ˆ
b≤s

(∣∣∇∇b2
∣∣2 − ∣∣∆b2∣∣2 +Ric

(
∇b2,∇b2

))
dV

+
s−1−m

2

ˆ
b=s

(
∆b2

) d

dn
b2dA

=
s−1−m

2

ˆ
b≤s

(∣∣∇∇b2
∣∣2 − ∣∣∆b2∣∣2 +Ric

(
∇b2,∇b2

))
dV

+ 2ms−m

ˆ
b=s

|∇b|3dA

=
s−1−m

2

ˆ
b≤s

(∣∣∇∇b2
∣∣2 − ∣∣∆b2∣∣2 +Ric

(
∇b2,∇b2

))
dV +

2m

s
A(s).

Now, since∣∣∣∣∇∇b2 − ∆b2

m
g

∣∣∣∣2 = ∣∣∇∇b2
∣∣2 + |∆b2|2

m
− 2 |∆b2|2

m
=
∣∣∇∇b2

∣∣2 − |∆b2|2

m
,
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we have, ∣∣∇∇b2
∣∣2 − ∣∣∆b2∣∣2 = ∣∣∣∣∇∇b2 − ∆b2

n
g

∣∣∣∣2 − (1− 1

m

) ∣∣∆b2∣∣2
=

∣∣∣∣∇∇b2 − ∆b2

m
g

∣∣∣∣2 − 4m2

(
1− 1

m

)
|∇b|4.

Therefore,

s−2
(
s2Ā

)′
(s) =

s−1−m

2

ˆ
b≤s

(∣∣∣∣∇∇b2 − ∆b2

n
g

∣∣∣∣2 +Ric
(
∇b2,∇b2

))
dV

−2

(
1− 1

m

)
m2s−1−m

ˆ
b≤s

|∇b|4dVol+2m

s
Ā(s).

We can now rewrite the expression above as

s−2
(
s2Ā

)′
(s)

=
s−1−m

2

ˆ
b≤s

(∣∣∣∣∇∇b2 − ∆b2

n
g

∣∣∣∣2 +Ric
(
∇b2,∇b2

))
dV − 2(1− 1/m)m2

s
V̄ (s) +

2m

s
Ā(s)

=
s−1−m

2

ˆ
b≤r

(∣∣∣∣∇∇b2 − ∆b2

n
g

∣∣∣∣2 +Ric
(
∇b2,∇b2

))
dV +

2m

s
(Ā(s)−mV̄ (s)) +

2m

s
V̄ (s).

Now, since s−2
(
s2Ā

)′
= Ā′ + 2Ā/s,

Ā′ =
s−1−m

2

ˆ
b≤s

(∣∣∣∣∇∇b2 − ∆b2

n
g

∣∣∣∣2 +Ric
(
∇b2,∇b2

))
dV +

2(m− 1)

s
(Ā−mV̄ ),

and therefore, by Lemma 3.2.5,

(Ā− 2(m− 1)V̄ )′ =
s−1−m

2

ˆ
b≤s

(∣∣∣∣∇∇b2 − ∆b2

n
g

∣∣∣∣2 +Ric
(
∇b2,∇b2

))
dV.

Now, since W̄ and W only differ by a constant, this also shows that W obeys (1.1.20).

3.3 High dimensional limits on Perelman’s N-space:

Preliminaries

The rest of the chapter is devoted to showing that the W-functional arises as a limit of

Colding’s monotonic volume W on Perelman’s N -space, and that we can effectively recover
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the derivative of W from the formula (1.1.20) by explicitly using the derivation of Theorem

3.2.6. In this section, we recall the setup as well as Perelman’s N -space, and then proceed to

outline some necessary results regarding orders of convergence as the dimension approaches

infinity.

3.3.1 Perelman’s N-space and the rescaled area, volume and mono-

tonic volume

On a closed manifold Mn of dimension n, let g(τ) be a solution to the backward Ricci

flow equation,

∂τg = 2Ric,

where τ ∈ [0, T ]. Similarly to the approach discussed for the coupled system of equations

(3.1.17), we let u be a solution to,

□∗u = 0, (3.3.1)

positive at time τ = 0. We can trivially rewrite this as

∂τu = ∆u−Ru,

and hence, u is also positive for all times by the maximum principle, see Section A.2.1 in

the Appendix. Next, define f by the relation

u := τ−n/2e−f , (3.3.2)

in a similar manner to that of Section 3.1.1, but here we drop the constant (4π)−n/2 in the

definition of u for convenience. Then, f satisfies,

∂τf = ∆f − |∇f |2 +R− n

2τ
, (3.3.3)

and in particular, (g, f, τ) obeys (3.1.17).

Next, we recall Perelman’s N -space.

Definition 3.3.1. Let g(τ) be a solution to the backward Ricci flow equation on [0, T ].

Denote by SN the N-dimensional unit-sphere of RN+1. Let r be the distance to the origin in

RN+1 and let θ denote points in SN . Then, the Perelman N-space (M̂, ĝ) is the manifold,

M̂m := (0,
√
2NT )r × SN

θ ×Mn
x ⊂ RN+1 ×Mn, where m = N + n+ 1,
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endowed with the metric,

ĝ := r2gSN + (1 +
Rr2

N2
)dr2 + g, (3.3.4)

where R is the scalar curvature of g and where at a point (r, θ, x) ∈ M̂ , gSN is evaluated at

θ and R and g at (τ = r2/2N, x) ∈ (0, T )×M .

Define h : M̂ → R by,

h = r−(m−2)e−f(τ,x), (3.3.5)

where f satisfies (3.3.3) and τ = r2/2N . The function h will serve as the analog to the

Green function when applying Colding’s monotonic formula to Perelman’s N -space. The

fact that h is almost harmonic, which justifies the replacement of the Green function G in

Colding’s argument for the function h considered here, is essentially due to Perelman: In

Section 6.1 of [47], it is observed that

ũ∗ := τ−
N−1

2 u = (2N)
m−2

2 h,

is harmonic modulo N−1 if and only if f satisfies (3.3.3) (the precise statement is ∆̂ũ∗ =

τ (2−m)/2O(1/N), see Proposition 3.5.2). From this definition, and following the arguments

by Colding discussed in Section 3.2, we define b : M̂ → R as,

b = h1/(2−m) = ref/(m−2). (3.3.6)

We will need to adapt the area, volume and monotonic volume from Definition 3.2.1 in

order to take high dimensional limits. We define the following rescaled quantities.

Definition 3.3.2. Let

cN :=
(4π)−n/2(2N)n/2+1

4|SN |
.

We define the area AN : (0,
√
2NT ) → R (resp. the raw area AN : (0,

√
2NT ) → R) as,

AN(s) =
cN
sm−1

ˆ
b=s

(|∇̂b|2 − 1)|∇̂b| dÂ,
(
resp. AN(s) =

cN
sm−1

ˆ
b=s

|∇̂b|3 dÂ
)
, (3.3.7)

the volume VN : (0,
√
2NT ) → R as,

VN(s) =
cN
sm

ˆ
b≤s

(|∇̂b|2 − 1)|∇̂b|2 dV̂ , (3.3.8)

and the monotonic volume WN : (0,
√
2NT ) → R as,

WN(s) = (2(m− 1)VN −AN)(s). (3.3.9)
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Notice that these quantities only differ from the ones discussed in Definition 3.2.1 by a

constant cN depending only on the dimension N .

Remark 3.3.3. We associate λ ∈ (0, T ) with s =
√
2Nλ ∈ (0,

√
2NT ). Quantities that are

functions of s, for instance AN(s), will be considered sometimes as functions of λ ∈ (0, T ),

in which case we will write, for example, AN(λ) instead of AN(s =
√
2Nλ). Convergence of

AN or VN to the entropy W occurs when considering them as functions of λ ∈ (0, T ).

3.3.2 Orders of convergence

Most of the quantities employed depend on the dimension of the N -space. For example,

the metric ĝ depends on N , but we will omit the subscript N to simplify notation. In a

similar manner, we will omit the subscript N in most parts of the upcoming sections. For

instance, the Ricci curvature of ĝ will be denoted by R̂ic, the covariant derivative will be ∇̂,

and so on.

The metric coefficient (1 + Rr2/N2) = (1 + 2τR/N) will appear often, so to simplify

notation we define,

v := 1 +
Rr2

N2
. (3.3.10)

Note that ĝ is invariant under rotations in RN+1 and therefore, scalar quantities like the

scalar curvature R̂, or the norm of the Ricci tensor |R̂ic|, are also invariant under rotations

and thus θ-independent. For this reason, they will often be considered as functions on

(0, T )×M . For instance, v can be viewed as a function on M̂ or (0, T )×M , depending on

the context, and similarly for any other function depending only on x ∈M and τ ∈ [0, T ].

In [47], Perelman showed that |R̂ic| = O(1/N), (see Section A.2.3 in the Appendix for

details). This means that the sequence of functions N |R̂ic|, as functions on (0, T )×M , are

uniformly bounded on compact sets.

Regarding the definition of order, we will need to adapt it in the following way.

Definition 3.3.4. Let i ≥ 0 be an integer. A sequence of real-valued functions FN(τ, θ, x)

is an O0(1/N
i) if for every 0 < τ1 < T there exists K > 0 such that,

N i|FN(τ, θ, x)| ≤ K,

for all N > 0 and for all (τ, θ, x) such that τ1 ≤ τ ≤ T .

We say that FN(τ, θ, x) is an Ok(1/N
i) if ∂αFN is an O0(1/N

i), for any multi-index

|α| ≤ k, where the derivatives are taken in the τ or xi variables.

Definition 3.3.5. We say that a sequence of real-valued functions FN(λ), defined in (0, T ),

is an O0(e
−cN) if for each λ0 ∈ (0, T ), given λ1 > λ0, there exists K > 0 and c > 0 such
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that,

ecN |FN(λ)| ≤ K, (3.3.11)

for all N > 0 and for all λ1 ≤ λ ≤ T. We say that FN(λ) is an Ok(e
−cN) if djFN/dλ

j is an

O0(e
−cN) for every j ≤ k.

A direct application of the Taylor expansion with the remainder in integral form allows

us to derive the following lemma, which we will frequently reference.

Lemma 3.3.6. Let F : (a, b) → R be a smooth, real-valued function. Let w(τ, x,N) be a

smooth real-valued function with range in (a, b), such that,

w(τ, x,N) = w0(τ, x) + δ(τ, x,N),

where,

δ(τ, x,N) = Ok(
1

N j
),

for some integers k ≥ 0 and j ≥ 0. Then, for any l ≥ 1, F (w(τ, x,N)) has the following

decomposition (where we omit the τ, x and N dependence for notational convenience),

F (w) = F (w0) + F ′(w0)δ + F ′′(w0)
δ2

2
+ . . .+ F (l−1)(w0)

δl−1

(l − 1)!
+Rl,

and,

Rl(τ, x,N) = Ok(
1

N jl
).

Proof. See Section A.2.2 in the Appendix.

Note that the usual rules of orders hold: the sum

Ok(1/N
i) +Ol(1/N

j),

is an Omin (k,l)(1/N
min (i,j)) and the product

Ok(1/N
i)Ol(1/N

j),

is an Omin (k,l)(1/N
i+j). For instance, in Lemma 3.3.6, if δ = Ok(1/N

j), then δi = Ok(1/N
ji).

As an example, of Lemma 3.3.6, we observe that

v = 1 + 2τR/N = 1 + δ, where δ = 2τR/N = Ok(1/N),

and therefore,

1/
√
v = 1− τR/N +O2(

1

N2
).
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We also note that, while as in this and other cases, δ = Ok(1/N) for any k ≥ 0, for our

purposes it will be enough to use k ≤ 2. Similarly,

ef/(m−2) = 1 +
f

N
+O2(

1

N2
) = 1 +O2(

1

N
).

We will not delve into detail for most order computations, as they primarily involve combi-

nations of compositions and products of the previous examples, along with straightforward

applications of Lemma 3.3.6.

3.4 Derivation of Perelman’s entropy from Colding’s

monotonic volume

We start our derivation of the entropy by making some key observations about the level

sets of b. Since b/
√
2N =

√
τef/(m−2), for every k ≥ 0 we have,

b√
2N

=
√
τ +Ok(

1

N
). (3.4.1)

Therefore, for every small δ > 0 and k ≥ 0, the sequence of functions b2/2N : [δ, T − δ]τ ×
Mx → R converge in Ck to the function (coordinate) τ : [δ, T − δ]×M → R. By standard

calculus, it follows that there exists N0 > 0 such that for every N > N0 and λ ∈ [2δ, T −2δ],

the level set b/
√
2N =

√
λ is given by an immersion

x ∈M 7→ (ϕN,λ(x), x) ∈ (0, T )×M, (3.4.2)

for some smooth function ϕN,λ :M → R. Furthermore, from (3.4.1) we get,

λ =
b2

2N
(ϕN,λ(x), x) = τ(ϕN,λ(x), x) +Ok(

1

N
) = ϕN,λ(x) +Ok(

1

N
), (3.4.3)

that is, the immersion approaches the level set τ = λ. Since we will be interested in taking

limits, we will always assume that N is sufficiently big such that (3.4.2) holds inside a region

λ ∈ [δ, T − δ], where δ is sufficiently small.

We will make repeated use of the following results.

Lemma 3.4.1. Let f = f(τ, x) be any smooth real-valued function, that we consider as a

function on M̂ . Then,

|∇̂b|2 = 1 +
1

N

(
2f − 2τR + 2τ |∇f |2 + 4τ∂τf

)
+O2(

1

N2
). (3.4.4)
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In particular, if f satisfies (3.3.3), then,

N

2
(|∇̂b|2 − 1) = τ(2∆f − |∇f |2 +R) + f − n+O2(

1

N
), (3.4.5)

and therefore,

|∇̂b| = 1 +O2(
1

N
). (3.4.6)

Proof. We compute,

∇̂b = ef/(m−2)

√
v

(
1 +

r∂rf

m− 2

)
∂r√
v
+
ref/(m−2)

m− 2
∇f. (3.4.7)

Thus,

|∇̂b|2 = e2f/(m−2)

v

(
1 +

r∂rf

m− 2

)2

+
r2e2f/(m−2)

(m− 2)2
|∇f |2. (3.4.8)

Now, r∂rf = 2τ∂τf . Therefore,(
1 +

r∂rf

m− 2

)2

= 1 +
4τ∂τf

N
+O2(

1

N2
). (3.4.9)

Also, by virtue of Lemma 3.3.6 (see also the discussion below the Lemma),

e2f/(m−2)

v
=

(
1 +

2f

m− 2
+O2(

1

N2
)

)(
1− 2τR

N
+O2(

1

N2
)

)
= 1 +

2f

N
− 2τR

N
+O2(

1

N2
),

and similarly,

r2e2f/(m−2)

(m− 2)2
|∇f |2 = 2Nτ

(m− 2)2
e2f/(m−2)|∇f |2 = 2τ |∇f |2

N
+O2(

1

N2
).

Combining these expressions with (3.4.8), we obtain (3.4.4). Finally, we can replace ∂τf by

(3.3.3) to get (3.4.5).

Proposition 3.4.2. For any λ ∈ (0, T ), the volume element for the level set b = s =
√
2Nλ

can be expressed as,

dÂ = sNe−f(λ,x)(1 +O2(
1

N
))dνdνSN , (3.4.10)

where dνSN is the standard volume element in SN , and dν is the volume element in (M, g(λ)).

In particular, we have

dÂ = (2Nλ)N/2e−f(λ,x)(1 +O2(
1

N
))dνdνSN . (3.4.11)

Proof. Since λ ∈ (0, T ), there exists δ > 0 such that λ ∈ [δ, T − δ]. Then, using (3.4.2), for
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every N > N0 we define a map ψN,λ : SN ×M → M̂ as

ψN,λ(θ, x) = (
√
2NϕN,λ(x), θ, x). (3.4.12)

Let θα be coordinates in SN and xi coordinates onM . Since r =
√
2NϕN,λ(x) and by (3.4.3)

we have ϕN,λ = λ+Ok(N
−1), we compute,

ψ∗
N,λĝ(∂i, ∂j) = ĝ(dψN,λ(∂i), dψN,λ(∂j))

= ĝ

( √
N√

2ϕN,λ

∂iϕN,λ∂r + ∂i,

√
N√

2ϕN,λ

∂jϕN,λ∂r + ∂j

)
= gij +O2(

1

N
),

ψ∗
N,λĝ(∂α, ∂β) = ĝ(∂α, ∂β) = (2NϕN,λ)gSNαβ,

ψ∗
N,λĝ(∂α, ∂i) = 0,

for every N > N0. Therefore, we can express the volume element dÂ as,

dÂ = (2NϕN,λ)
N/2(1 +O2(

1

N
))dνdνSN ,

where we are using Lemma 3.3.6 when computing
√
ψ∗
N,sĝ. Since r

2/2N = τ = ϕN,λ(x) for

any (r, θ, x) ∈ b = s, we have,

r =
√
2NϕN,λ(x) = sef(ϕN,λ(x),x)/(2−m), (3.4.13)

and by (3.4.3) and Lemma 3.3.6 we can write,

(2NϕN,λ)
N/2 = sNe−f(λ+Ok(1/N),x)+O2(1/N)

= sNe−f(λ,x)(1 +O2(
1

N
)),

which completes the proof.

We now demonstrate that Perelman’s W-functional and its derivative emerge as the

limits of the area AN and its derivative, respectively, when considered as functions of λ (see

Remark 3.3.3).

Theorem 3.4.3. The following equality holds:

AN(λ) = W(λ) +O2(
1

N
), (3.4.14)
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where W is Perelman’s entropy functional (1.1.15). In particular,

AN → W, (3.4.15)

and
dAN

dλ
→ dW

dλ
, (3.4.16)

uniformly on compact sets in (0, T ).

Proof. Let s =
√
2Nλ. We compute,

AN =
cN
sm−1

ˆ
b=s

(|∇̂b|2 − 1)|∇̂b|dÂ

= (4πλ)−n/2

ˆ
M

(
λ(2∆f − |∇f |2 +R) + f − n

)
e−f(λ,x)(1 +O2(

1

N
))dν

= (4πλ)−n/2

ˆ
M

(
λ(2∆f − |∇f |2 +R) + f − n

)
e−f(λ,x)dν +O2(

1

N
),

where we used (3.4.5) and (3.4.11) together with the fact that the integrand does not depend

on θ ∈ SN . Since M is a closed manifold,

ˆ
M

(∆f − |∇f |2)e−fdν = −
ˆ
M

∆e−fdν = 0,

and we use it to rewrite,

AN = (4πλ)−n/2

ˆ
M

(
λ(|∇f |2 +R) + f − n

)
e−fdν +O2(

1

N
),

from which (3.4.14) follows. The previous expression also shows that AN → W uniformly

on compact sets in (0, T ), and differentiating with respect to λ on both sides of (3.4.14),

dAN

dλ
=
dW

dλ
+O1(

1

N
), (3.4.17)

which also shows that the convergence of the derivatives is uniform on compact sets in (0, T ).

Now, we proceed to study the convergence of the volume functional (3.3.8). To begin,

we introduce the following lemma.

Lemma 3.4.4. Let λ0 < λ ∈ (0, T ). Define s̄ =
√
2Nλ0 and s =

√
2Nλ. Then,

VN(s) =
cN
sm

ˆ
s̄≤b≤s

(|∇̂b|2 − 1)|∇̂b|2 dV̂ +O1(e
−cN). (3.4.18)
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Proof. We write,

VN(s) =
cN
sm

ˆ
s̄≤b≤s

(|∇̂b|2 − 1)|∇̂b|2 dV̂ +
cN
sm

ˆ
0≤b≤s̄

(|∇̂b|2 − 1)|∇̂b|2 dV̂ .

Since f = − lnu− (n/2) ln τ, a straightforward computation using (3.4.7) shows that we can

write |∇̂b|2 in terms of u as,

|∇̂b|2 = (2N)n/(m−2)(urn)2/(2−m)

[(
1− 2τ∂τu− nu

u(m− 2)

)2

+
r2

(m− 2)2
|∇u|2

u2

]
= (2N)n/(m−2)(urn)2/(2−m)HN(r

2/2N, x),

and, since u is everywhere positive in [0, λ0] ×M and its first derivatives are bounded, it

follows that |HN | ≤ C and 0 < c1 < u < c2 in [0, λ0]×M , for some constants C, c1, c2 > 0.

In particular, the same bounds hold for the region 0 ≤ b ≤ s̄, and since dV̂ = rNdrdνdνSN ,

we use the previous expression for |∇̂b|2 to find,∣∣∣∣cNsm
ˆ
0≤b≤s̄

|∇̂b|4dV̂
∣∣∣∣ ≤ K1

( s̄
s

)N+1

, (3.4.19)

for some constant K1 > 0. Since s̄/s = λ0/λ < 1, it decays exponentially fast. Similarly,∣∣∣∣cNsm
ˆ
0≤b≤s̄

|∇̂b|2dV̂
∣∣∣∣ ≤ K2

( s̄
s

)N+1

, (3.4.20)

for some constant K2 > 0, which shows

VN =
cN
sm

ˆ
s̄≤b≤s

(|∇̂b|2 − 1)|∇̂b|2 dV̂ +O0(e
−cN).

Finally, in order to see that the term O0(e
−cN) is in fact O1(e

−cN), we note that

d

dλ

(
cN
sm

ˆ
0≤b≤s̄

(|∇̂b|2 − 1)|∇̂b|2 dV̂
)

=
ds

dλ

d

ds

(
cN
sm

ˆ
0̄≤b≤s̄

(|∇̂b|2 − 1)|∇̂b|2 dV̂
)

= −
(
N

2λ

)1/2
m

s

cN
sm

ˆ
0̄≤b≤s̄

(|∇̂b|2 − 1)|∇̂b|2dV̂ ,

and apply (3.4.19) and (3.4.20) to see that its derivative is also an O0(e
−cN).

Proposition 3.4.5. The following equality holds:

2(m− 1)VN −AN = AN +O1(
1

N
). (3.4.21)
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In particular,
d

ds
(2(m− 1)VN −AN) =

d

ds
AN +O0(

1

N3/2
). (3.4.22)

Proof. Let λ ∈ (0, T ), and define s =
√
2Nλ. Next, we choose λ0 < λ and define s̄ =

√
2Nλ0.

By the coarea formula and equation (3.4.18) we obtain,

VN =
cN
sm

ˆ
s̄≤b≤s

(|∇̂b|2 − 1)|∇̂b|2dV̂ +O1(e
−cN) =

1

sm

ˆ s

s̄

wm−1AN(w)dw +O1(e
−cN).

Using (3.4.17), we deduce,

dAN

ds
=
dλ

ds

dAN

dλ

= (4π)n/2
dλ

ds

(
dW

dλ
+

d

dλ

(
O2(

1

N
)

))
= (4π)n/2

(
2λ

N

)1/2(
dW

dλ
+O1(

1

N
)

)
= O1(

1

N1/2
),

(3.4.23)

and,
d2AN

ds2
=
dλ

ds

d

dλ

(
O1(

1

N1/2
)

)
= O0(

1

N
), (3.4.24)

since dW/dλ = O2(1). A Taylor expansion around s shows,

AN(w) = AN(s) + (w − s)
dAN

ds
(ξw,s),

for some
√
2Nλ0 ≤ ξw,s ≤

√
2Nλ. The bound on ξw,s implies the respective bound for its

associated τ−coordinate between λ0 and λ, and therefore by (3.4.23),

AN(w) = AN(s) + (w − s)O0(
1

N1/2
),

for any w ∈ [s̄, s]. Now, we notice that, since |O0(N
−1/2)| ≤ CN−1/2,

− sm+1

sm(m+ 1)m

C

N1/2
+O0(e

−cN) ≤ 1

sm

ˆ s

s̄

wm−1

(
(w − s)O0(

1

N1/2
)

)
dw

≤ sm+1

sm(m+ 1)m

C

N1/2
+O0(e

−cN),

(3.4.25)

which shows,
1

sm

ˆ s

s̄

wm−1

(
(w − s)O0(

1

N1/2
)

)
dw = O0(

1

N2
). (3.4.26)
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Then,

VN =
1

sm

ˆ s

s̄

wm−1

(
AN(s) + (w − s)O0(

1

N1/2
)

)
dw +O1(e

−cN)

=
1

m
AN +O0(

1

N2
).

(3.4.27)

In order to see that the term O0(N
−2) is actually an O1(N

−2), we use a Taylor expansion

of order 2 to compute,

dVN

ds
=

d

ds

(
1

sm

ˆ s

s̄

wm−1AN(w)dw

)
+O0(e

−cN)

= − m

sm+1

ˆ s

s̄

wm−1AN(w)dw +
1

s
AN(s) +O0(e

−cN)

= − m

sm+1

ˆ s

s̄

wm−1

(
AN(s) + (w − s)

d

ds
AN(s) +

(w − s)2

2

d2AN

ds2
(ξw,s)

)
dw

+
1

s
AN(s) +O0(e

−cN),

(3.4.28)

where ξw,s ∈ [w, s]. Now, since d2AN/ds
2 = O0(1/N), we proceed as in (3.4.25) and show,

ˆ s

s̄

wm−1

(
AN(s) + (w − s)

dAN

ds
(s) +

(w − s)2

2

d2AN

ds2
(ξw,s)

)
dw

=
sm

m
AN(s)−

sm+1

m(m+ 1)

dAN

ds
(s) +

sm+2

m(m+ 1)(m+ 2)
O0(

1

N
) +O0(e

−cN).

(3.4.29)

Use this in (3.4.28) and the fact that dAN/ds = O1(N
−1/2) to write,

dVN

ds
=

1

m+ 1

dAN

ds
(s) +O0(

1

N5/2
) =

1

m

dAN

ds
(s) +O0(

1

N5/2
). (3.4.30)

This implies,

dVN

dλ
=
ds

dλ

dVN

ds
=

1

m

dAN

dλ
+
ds

dλ
O0(

1

N5/2
) =

1

m

dAN

dλ
+O0(

1

N2
),

which we combine with (3.4.27) to obtain,

VN =
1

m
AN +O1(

1

N2
). (3.4.31)

From here, a straightforward computation shows (3.4.21). We finish the proof by differ-
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entiating (3.4.21) with respect to s and noting that

d

ds

(
O1(

1

N
)

)
=
dλ

ds

d

dλ

(
O1(

1

N
)

)
= O0(

1

N3/2
).

As a consequence of Theorem 3.4.3 and Proposition 3.4.5, and recalling the definition of

the monotonic volume (3.3.9) we immediately derive the following result.

Corollary 3.4.6. The monotonic volume obeys,

WN(λ) = W(λ) +O1(
1

N
), (3.4.32)

and,
d

dλ
WN(λ) =

d

dλ
W(λ) +O0(

1

N
). (3.4.33)

In particular, WN → W and dWN/dλ→ dW/dλ uniformly on compact sets in (0, T ).

3.5 The derivative of the entropy

We now recover Perelman’s formula for the derivative of W as a limit of derivatives of

WN . To achieve this, several auxiliary results are in order.

Proposition 3.5.1. Let h = h(τ, x) be any smooth, real-valued function, that we consider

as a function on M̂ . Then,

∆̂h =
1

v

((
1 +

1 + 2τR

N
− 2(τR + τ 2∂τR)

N2v

)
∂τh+

2τ

N
∂2τh

)
(3.5.1)

+ ∆h+
1

Nv
⟨∇R,∇h⟩. (3.5.2)

Proof. Let θα be coordinates in SN and xi coordinates on M . Then, the inverse metric

components of ĝ are,

ĝri = ĝrα = ĝαi = 0, ĝ =
1

v
, ĝij = gij, ĝαβ =

1

r2
gαβSN , (3.5.3)

and the Laplacian therefore is,

∆̂h =
1√
ĝ
∂r(
√
ĝĝrr∂rh) +

1√
ĝ
∂i(
√
ĝĝij∂jh) +

1√
ĝ
∂α(
√
ĝĝαβ∂βh). (3.5.4)

A straightforward computation shows that the first term of the r.h.s of (3.5.4) is equal to
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the r.h.s of (3.5.1), the second term is equal to the two summands in (3.5.2) and the last

term is equal to zero.

The following assertion is drawn from Perelman (as mentioned in p.13 of [47]), where we

needed to include factor of r2−m.

Proposition 3.5.2 (Perelman, [47]). Let f = f(τ, x) be any smooth real valued function

that we consider as a function on M̂ , and let h = r2−me−f . Then,

∆̂h = r2−m
(
∂τf −∆f + |∇f |2 −R +

n

2τ

)
e−f + r2−mO2(

1

N
). (3.5.5)

Therefore, if f satisfies, (3.3.3), then

∆̂h = r2−mO2(
1

N
). (3.5.6)

Proof. Let u = τ−(n−1)/2e−f so that h = (2N)(2−m)/2τ−N/2u. To simplify notation, we will

we will disregard the multiplicative factor (2N)(2−m)/2 in h during the computations, and

add it back in afterwards. We compute,

∂τh = −N
2
τ−N/2−1u+ τ−N/2∂τu, (3.5.7)

∂2τh =
N

2

(
N

2
+ 1

)
τ−N/2−2u−Nτ−N/2−1∂τu+ τ−N/2∂2τu. (3.5.8)

We can write ∂2τu = τ−(n+1)/2O2(1). Therefore,

2τ

N
∂2τh = τ−N/2

(
N

2τ
u+

1

τ
u− 2∂τu

)
+ τ−m/2O2(

1

N
). (3.5.9)

Similarly, writing (3.5.7) as,

∂τh = τ−N/2

(
−N

2τ
u+ ∂τu

)
, (3.5.10)

we obtain,(
1 +

1 + 2τR

N
− 2(τR + τ 2∂τR)

N2v

)
∂τh = (3.5.11)

− τ−N/2

(
N

2τ
u+ (

1

2τ
+R)u− ∂τu

)
+ τ−m/2O2(

1

N
). (3.5.12)

Summing (3.5.9) and (3.5.11), and after the crucial mutual cancellation of the terms τ−N/2−1Nu/2,
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we deduce,

2τ

N
∂2τh+

(
1 +

1 + 2τR

N
− 2(τR + τ 2∂τR)

N2v

)
∂τh = (3.5.13)

τ−N/2(− 1

2τ
u−Ru− ∂τu) + τ−m/2O2(

1

N
). (3.5.14)

Going back to the expression (3.5.1) for ∆̂h, and taking into account that 1/v = 1+O2(1/N)

and ⟨∇R,∇h⟩/Nv = O2(1/N), we arrive at,

∆̂h = τ−N/2(−∂τu+∆u−Ru+
1

2τ
u) + τ−m/2O2(

1

N
). (3.5.15)

Finally, recalling that u = τ−(n−1)/2e−f and multiplying by the factor (2N)(2−m)/2, we deduce

(3.5.5).

From the previous proposition we obtain the following.

Proposition 3.5.3. Let h be defined as in (3.3.5) and b as in (3.3.6). Then,

∆̂b2 = 2m|∇̂b|2 +O2(
1

N
). (3.5.16)

Proof. Direct computation shows,

∆̂b2 = 2m|∇̂b|2 + 2

2−m
hm/(2−m)∆̂h.

Using that ∆̂h = r2−mO2(1/N) and that b = h1/(2−m), we get,

2

2−m
hm/(2−m)∆̂h =

2

2−m
bmr2−mO2(

1

N
) =

2

2−m
r2emf/(m−2)O2(

1

N
) =

=
4N

2−m
τemf/(m−2)O2(

1

N
) = O2(

1

N
).

The following formula for the derivative of the raw area AN follows essentially from

Theorem 3.2.6, but with two key differences: (i) additional terms appear due to the fact that

∆̂h ̸= 0, and (ii) when integrating applying Gauss’s theorem, the integration is performed

over the region on s̄ ≤ b ≤ s, for some 0 < s̄ < s, rather than on b ≤ s.
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Proposition 3.5.4.

d

ds
AN =

cN
2sm+1

ˆ
s̄≤b≤s

∣∣∣∣∣∇̂∇̂b2 − ∆̂b2

m
ĝ

∣∣∣∣∣
2

+ R̂ic(∇̂b2, ∇̂b2)

 dV̂

+
2(m− 1)

s
(AN −mVN) + 3[AN ] + [BN ] + [CN ] + [DN ],

(3.5.17)

where,

VN =
cN
sm

ˆ
s̄≤b≤s

|∇̂b|4 dV̂ , (3.5.18)

[AN ] =
cN

2−m

ˆ
b=s

|∇̂b|∆̂h dÂ, (3.5.19)

[BN ] =
cN

4sm+1

ˆ
b=s̄

∇̂n̂(|∇̂b2|2) dÂ, (3.5.20)

[CN ] = − cN
2sm+1

ˆ
b=s̄

(∆̂b2)∇̂n̂b
2 dÂ, (3.5.21)

[DN ] = −(1− 1

m
)
cN

2sm+1

ˆ
s̄≤b≤s

(
8m

2−m
|∇̂b|2bm∆̂h+

4b2m

(2−m)2
(∆̂h)2

)
dV̂ , (3.5.22)

and where n̂ = ∇̂b/|∇̂b| is the unit-normal to b = s̄.

Proof. The proof mirrors that of Theorem 3.2.6, but, when computing (s2AN)
′/s2, use that

∆̂b2 = 2m|∇̂b|2 + 2bm(∆̂h)/(2 − m) instead of ∆̂b2 = 2m|∇̂b|2. Furthermore, when using

Gauss’s theorem, integrate on s̄ ≤ b ≤ s rather than on b ≤ s.

Proposition 3.5.5. We have,

d

ds

(
cN
sm−1

ˆ
b=s

|∇̂b|dÂ
)

= [AN ] +O2(
1

N3/2
). (3.5.23)

Proof. Since ∇̂n̂b = |∇̂b|, we compute,

d

ds

(
1

sm−1

ˆ
b=s

|∇̂b| dÂ
)

=
d

ds

(ˆ
b=s

∇̂n̂b

bm−1
dÂ

)
=

1

2−m

d

ds

(ˆ
b=s

∇̂n̂h dÂ

)
(3.5.24)

=
1

2−m

ˆ
b=s

∆̂h

|∇̂b|
dÂ. (3.5.25)

Appeal now to (3.4.6) to obtain,

1

|∇̂b|
= |∇̂b| 1

|∇̂b|2
= |∇̂b| 1

1 +O2(
1
N
)
= |∇̂b|(1 +O2(

1

N
)) = |∇̂b|+O2(

1

N
). (3.5.26)
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Then, using (3.4.13) in (3.5.6), we get ∆̂h = s2−mO2(1/N) on the level set b = s. Now,

combining this, (3.5.26) and (3.4.10) all in (3.5.25), we deduce,

d

ds

(
cN
sm−1

ˆ
b=s

|∇̂b|dÂ
)

=

= [AN ] +
cN

2−m

ˆ
M

s2−mO2(
1

N
)O2(

1

N
)sN(1 +O2(

1

N
))e−f dνdνSN .

But, as cN = (4π)−n/2(2N)n/2+1/(4|SN |) and s = (2Nλ)1/2, we obtain,

cN
2−m

ˆ
M

s2−mO2(
1

N
)O2(

1

N
)sN(1 +O2(

1

N
))e−f dνdνSN =

=
(2N)n/2+1

2−m

1

N2
(2Nλ)1/2−n/2O2(1) = O2(

1

N3/2
),

as wished.

We now proceed to simplify the expression (3.5.17). From this point onward, we set

s̄ =
√
2Nλ0, where λ0 < λ.

Proposition 3.5.6. The following equality holds,

3[AN ] + [BN ] + [CN ] + [DN ] = −[AN ] +O0(
1

N3/2
). (3.5.27)

Proof. We first show that [BN ] and [CN ] decay exponentially fast. In order to control [BN ],

observe that ∇̂n̂(|∇̂b2|2) = ĝ(∇̂|∇̂b2|2, n̂). Now, we write |∇̂b2|2 = 4b2|∇̂b|2 and use (3.4.4)

to obtain,

∇̂|∇̂b2|2 = 8b|∇̂b|2∇̂b+ 4b2∇̂
(
O2(

1

N
)

)
.

Using that ∂r = r/N∂τ and b = O2(N
1/2), we get,

∇̂|∇̂b2|2 = O1(N
1/2)∂r +

n∑
i=1

O1(N
1/2)∂xi .

Since by (3.4.6) and (3.4.7) we have n̂ = O2(1)∂r +O2(N
−1)∇f , we see,

|∇̂n̂(|∇̂b2|2)| = O1(N
1/2).

We integrate using (3.4.10) to find,

[BN ] =
cN

4sm+1

ˆ
b=s̄

O1(N
1/2)dÂ = O1(N)

( s̄
s

)N
= O1(N)

(
λ0
λ

)N/2

,
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and since λ0 < λ, it decays exponentially fast.

In order to control [CN ], we observe that since (∆̂b
2)∇̂n̂b

2 = (∆̂b2)2b|∇̂b|, we can combine

this with (3.5.16) and (3.4.6) to show that,

(∆̂b2)∇̂n̂b
2 = O2(N

3/2),

and now a similar computation as the one peformed for [BN ] shows that [CN ] also decays

exponentially fast.

For [DN ] we proceed as follows. By the coarea formula,

cN
2sm+1

ˆ
s̄≤b≤s

8m

2−m
|∇̂b|2bm∆̂h dV̂

=
1

sm+1

4m

2−m

ˆ s

s̄

wm

(
cN

ˆ
b=w

|∇̂b|∆̂h dÂ
)
dw.

(3.5.28)

Then, perform a Taylor expansion on the term multiplying wm around s to obtain,

cN

ˆ
b=w

|∇̂b|∆̂h dÂ

= cN

ˆ
b=s

|∇̂b|∆̂h dÂ+ (2−m)(w − s)
d

ds

(
cN

(2−m)

ˆ
b=ξw,N

|∇̂b|∆̂h dÂ

)
,

(3.5.29)

for some ξw,N ∈ [w, s] (in particular, ξw,N ∈ [s̄, s]), and observe that the term inside paren-

theses is [AN ] evaluated at s = ξw,N . Using (3.4.6) and (3.5.6), we see that |∇̂b|∆̂h =

r2−mO2(1/N). Then, by (3.4.13) and (3.4.10),

[AN ] =
cN

2−m

ˆ
b=s

|∇̂b|∆̂hdÂ =
(2N)n/2

2(4π)n/2

ˆ
M

s2−m+Ne−fO2(
1

N
)(1 +O2(

1

N
))dν

= O2(
1

N1/2
).

(3.5.30)

We use this to compute,

d

ds
[AN ] =

d

ds

(
cN

2−m

ˆ
b=s

|∇̂b|∆̂hdÂ
)

=
dλ

ds

d

dλ

(
O2(

1

N1/2
)

)
= O1(

1

N
), (3.5.31)

and combine it with (3.5.29) to find,

cN

ˆ
b=w

|∇̂b|∆̂h dÂ = cN

ˆ
b=s

|∇̂b|∆̂h dÂ+ (w − s)O1(1).

Using this expression together with (3.5.28), we can proceed as in (3.4.25) and (3.4.27) to
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show,
cN

2sm+1

ˆ
s̄≤b≤s

8m

2−m
|∇̂b|2bm∆̂h dV̂ = 4[AN ] +O0(

1

N3/2
). (3.5.32)

In order to control the remaining term, we write

cN
2sm+1

ˆ
s̄≤b≤s

4b2m

(2−m)2
(∆̂h)2 dV̂

=
2

sm+1

ˆ s

s̄

wm

(
cN

(2−m)2

ˆ
b=w

wm (∆̂h)2

|∇̂b|
dÂ

)
dw,

and using (3.5.6), (3.4.6), (3.4.13) and (3.4.10), we notice that the term in parentheses is of

order O2(N
−3/2). Therefore, we proceed as in (3.4.25) and (3.4.27) to show,

cN
2sm+1

ˆ
s̄≤b≤s

4b2m

(2−m)2
(∆̂h)2 dV̂ =

1

m+ 1
O0(

1

N3/2
)

= O0(
1

N5/2
).

(3.5.33)

Combining (3.5.32) and (3.5.33), it follows that

[DN ] = −4[AN ] +O0(
1

N3/2
). (3.5.34)

Given that [BN ] and [CN ] decay exponentially fast, substituting (3.5.34) into the l.h.s. of

(3.5.27) completes the proof.

Proposition 3.5.7. We have,

2(m− 1)

s
(AN −mVN) = 2

d

ds
AN(s) +O0(

1

N3/2
). (3.5.35)

Proof. We use the coarea formula to write,

VN =
cN
sm

ˆ
s̄≤b≤s

|∇̂b|4 dV̂ =
1

sm

ˆ s

s̄

wm−1AN(w)dw,

and perform a Taylor expansion of AN around s, to obtain,

AN(w) = AN(s) + (w − s)
d

ds
AN(s) +

(w − s)2

2

d2AN

ds2
(ξw,N), (3.5.36)

for some ξw,N ∈ [w, s]. In order to control the second derivative, we notice that

AN = AN +
cN
sm−1

ˆ
b=s

|∇̂b|dÂ. (3.5.37)
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By (3.4.23) and (3.4.24) respectively, we have dAN/ds = O1(N
−1/2) and d2AN/ds

2 =

O0(N
−1). Using Proposition 3.5.5, we compute the second derivative of the second term

on the r.h.s of (3.5.37) as,

d2

ds2

(
cN
sm−1

ˆ
b=s

|∇̂b|dÂ
)

=
d

ds
[AN ] +

dλ

ds

d

dλ

(
O2(

1

N3/2
)

)
= O1(

1

N
),

(3.5.38)

since d[AN ]/ds was already computed in (3.5.31). This shows,

d2

ds2
AN = O0(

1

N
),

and therefore,

AN(w) = AN(s) + (w − s)
d

ds
AN(s) +

(w − s)2

2
O0(

1

N
).

Now integrate using the bound |O0(1/N)| ≤ C/N for some C > 0 and proceed as in (3.4.25)

and (3.4.27) to show,

1

sm

ˆ s

s̄

wm−1AN(w)dw =
1

m
AN(s)−

s

m(m+ 1)

d

ds
AN(s) +O0(

1

N3
),

where we have absorbed the term decaying exponentially fast into O0(1/N
3). We finish the

proof by expanding the l.h.s. of (3.5.35) to show,

2(m− 1)

s
(AN −mVN) =

2(m− 1)

s

(
s

(m+ 1)

d

ds
AN(s) +O0(

1

N2
)

)
= 2

d

ds
AN(s) +O0(

1

N3/2
).

Combining the previous results, we obtain the following theorem.

Theorem 3.5.8. We have,

d

ds
AN = − cN

2sm+1

ˆ
s̄≤b≤s

∣∣∣∣∣∇̂∇̂b2 − ∆̂b2

m
ĝ

∣∣∣∣∣
2

+ R̂ic(∇̂b2, ∇̂b2)

 dV̂ +O0(
1

N3/2
). (3.5.39)
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In particular,

d

ds

(
2(m− 1)VN −AN

)
(s)

= − cN
2sm+1

ˆ
s̄≤b≤s

∣∣∣∣∣∇̂∇̂b2 − ∆̂b2

m
ĝ

∣∣∣∣∣
2

+ R̂ic(∇̂b2, ∇̂b2)

 dV̂ +O0(
1

N3/2
).

(3.5.40)

Proof. To prove (3.5.39), subtract (3.5.23) from (3.5.17), and simplify the expression using

(3.5.27) and (3.5.35). To prove (3.5.40), apply (3.4.22).

The integrand in (3.5.39) and (3.5.40) can be written as follows.

Proposition 3.5.9. The following equality holds,∣∣∣∣∣∇̂∇̂b2 − ∆̂b2

m
ĝ

∣∣∣∣∣
2

+ R̂ic(∇̂b2, ∇̂b2) = 4b4

(2−m)2

∣∣∣∣∇∇f +Ric− 1

2τ
g

∣∣∣∣2 +O1(
1

N
). (3.5.41)

Proof. Computing the partial derivatives of b2, we see

∂ib
2 = − 2b2

2−m
∂if, ∂rb

2 =
2b2

r
+O2(

1

N1/2
), ∂i∂jb

2 = − 2b2

2−m
∂i∂jf +O2(

1

N
).

Using (3.5.16) and the fact that b2/(2−m) = −2τ +O2(1/N) we write,

∆̂b2

m
ĝ = − 2b2

2−m

(
1

2τ
+O2(

1

N
)

)
ĝ.

To calculate the components of ∇̂∇̂b2, we can compute the Christoffel symbols of the metric

ĝ. Using that

Γc
ab =

1

2
gcd(∂agbd + ∂bgad − ∂dgab),

where we are using abstract index notation, we find that the Christoffel symbols are,

Γ̂r
ij = − r

N
ĝrrRij, Γ̂k

ij = Γk
ik, Γ̂α

ij = 0 (3.5.42)

Γ̂γ
αβ = Γγ

αβ, Γ̂r
αβ = −rĝrrgαβ, Γ̂i

αβ = 0 (3.5.43)

Γ̂r
rr =

1

2
ĝrr
(
r3Rτ

N3
+

2Rr

N2

)
, Γ̂i

rr = − r2

2N2
gij∂iR, Γ̂α

rr = 0 (3.5.44)

Γ̂γ
αr = 2rδαγ , Γ̂k

ir = gkjRij, Γ̂r
ir =

r2

2N2
ĝrr∂iR, (3.5.45)

Γ̂j
iα = Γ̂γ

iβ = Γ̂r
iβ = Γ̂i

rβ = Γ̂α
rj = Γ̂0

rα = 0, (3.5.46)

where gαβ is the standard metric on SN , Γγ
αβ are its Christoffel symbols, and Γk

ij are the
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Christoffel symbols of the metric g on M . A lengthy yet straightforward inspection shows

that the only contributions of order O(1) to the squared norm of

S := ∇̂∇̂b2 − ∆̂b2

m
ĝ,

which, on its expanded form reads,

ĝacĝbdSabScd = ĝikĝjlSijSkl + ĝikĝ00Si0Sk0 + ĝikĝαβSiαSkβ

+ (ĝ00S00)
2 + ĝ00ĝjlS0jS0l + ĝ00ĝαβS0αS0β

+ ĝαγ ĝβδSαβSγδ + ĝαγ ĝijSαiSγj + ĝαγ ĝ00Sα0Sγ0.

(3.5.47)

arise from the {ij} indices during the norm computation. Using the previously computed

Christoffel symbols, we show,

−Γ̂r
ij∂rb

2 =
2b2

N
Rij +O2(

1

N
) = − 2b2

2−m
Rij +O2(

1

N
),

and therefore,

Sij = ∂i∂jb
2 − Γ̂k

ij∂kb
2 − Γ̂r

ij∂rb
2 − ∆̂b2

m
ĝij

= − 2b2

2−m

(
∇i∇jf +Rij −

1

2τ
gij

)
+O2(

1

N
).

Given that v = 1 − 2τR/N + O2(1/N
2), it is straightforward to verify that, after crucial

cancellations in Sαβ and Srr between ∇̂∇̂b2 and ∆̂b2ĝ/m, the the remaining components of

S are,

Sαβ = O2(1), Srr = O2(
1

N
), Sir = O2(

1

N1/2
), Siα = Srα = 0,

from where we compute,∣∣∣∣∣∇̂∇̂b2 − ∆̂b2

m
ĝ

∣∣∣∣∣
2

= ĝikĝjlSijSkl +O2(
1

N
) (3.5.48)

=
4b4

(2−m)2

∣∣∣∣∇∇f +Ric− 1

2τ
g

∣∣∣∣2 +O2(
1

N
). (3.5.49)

Now, using the coordinate expression for R̂ic in terms of the Christoffel symbols, a straight-

forward computation (see Section A.2.3 in the Appendix) reveals that its components with

respect to the (τ, θ, x)-coordinates are of order O1(1/N). Using (3.4.7) and ∂r = (r/N)∂τ , it
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follows that

R̂ic(∇̂b2, ∇̂b2) = O1(
1

N
). (3.5.50)

Finally, we reproduce Perelman’s formula for the derivative of the W-functional as the

limit of the derivatives of WN .

Theorem 3.5.10. The derivative of Perelman’s W−functional is,

dW

dλ
(λ) = −

ˆ
M

2λ

(∣∣∣∣∇∇f +Ric− 1

2τ
g

∣∣∣∣2
)
(4πλ)−

n
2 e−fdν. (3.5.51)

Proof. Define

FN :=
cN
sN+4

ˆ
b=s

∣∣∣∣∣∇̂∇̂b2 − ∆̂b2

m
ĝ

∣∣∣∣∣
2

+ R̂ic(∇̂b2, ∇̂b2)

 dÂ

|∇̂b|
. (3.5.52)

Then, using (3.4.10) and (3.5.41), it is straightforward to show that

FN = 4(4π)−n/2(2N)n/2−1

(ˆ
M

∣∣∣∣∇∇f +Ric− 1

2τ
g

∣∣∣∣2 e−fdν +O1(
1

N
)

)
. (3.5.53)

It follows that FN = (2N)n/2−1O1(1) and therefore,

d

ds
FN =

dλ

ds

d

dλ

(
(2N)n/2−1O1(1)

)
= (2N)n/2−3/2O0(1). (3.5.54)

Then, a Taylor expansion of order one centered at s =
√
2Nλ shows,

d

ds

(
2(m− 1)VN −AN

)
= − cN

2sm+1

ˆ
s̄≤b≤s

∣∣∣∣∣∇̂∇̂b2 − ∆̂b2

m
ĝ

∣∣∣∣∣
2

+ R̂ic(∇̂b2, ∇̂b2)

 dV̂ +O0(
1

N3/2
)

= − 1

2sm+1

ˆ s

s̄

wN+4FN(w)dw +O0(
1

N3/2
)

= − 1

2sm+1

ˆ s

s̄

wN+4

(
FN(s) + (w − s)

d

ds
FN(ξw,s)

)
dw +O0(

1

N3/2
)

= − 1

2sm+1

ˆ s

s̄

wN+4
(
FN(s) + (w − s)(2N)n/2−3/2O0(1)

)
dw +O0(

1

N3/2
).
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Integrating, bounding the integral of the O0(1) term by above and below as in (3.4.25), and

absorbing the terms that decay exponentially fast into O0(N
−3/2), we find,

d

ds

(
2(m− 1)VN −AN

)
= − s3−n

2(N + 5)
FN +

s4−n

(N + 6)(N + 5)
(2N)n/2−3/2O0(1) +O0(

1

N3/2
)

= − s3−n

2(N + 5)
FN +O0(

1

N3/2
).

Finally, since

dWN

dλ
=

d

dλ

(
2(m− 1)VN −AN

)
=
ds

dλ

d

ds

(
2(m− 1)VN −AN

)
,

we use the expression (3.5.53) and s =
√
2Nλ to obtain,

dWN

dλ
=

(
N

2λ

)1/2
(
−(

√
2Nλ)3−n

2(N + 5)
FN +O0(

1

N3/2
)

)
+O0(

1

N3/2
)

= −2(4π)−
n
2 (
√
2Nλ)2−n(2N)n/2−1

(ˆ
M

∣∣∣∣∇∇f +Ric− 1

2τ
g

∣∣∣∣2 e−fdν +O1(
1

N
)

)
+O0(

1

N
)

= −2(4π)−
n
2 λ1−n/2

(ˆ
M

∣∣∣∣∇∇f +Ric− 1

2τ
g

∣∣∣∣2 e−fdν +O1(
1

N
)

)
+O0(

1

N
)

= −
ˆ
M

2λ

(∣∣∣∣∇∇f +Ric− 1

2λ
g

∣∣∣∣2
)
(4πλ)−

n
2 e−fdν +O0(

1

N
).

By Corollary 3.4.6,
dW

dλ
(λ) = lim

N→∞

dWN

dλ
(λ),

which finishes the proof.
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Appendix A

Auxiliary results

Here we prove some technical and computational results cited in the main text. We

divide it in two sections: the first one is devoted to results used in Chapter 2, and the

second one for those needed in Chapter 3.

A.1 Auxiliary results for Chapter 2

A.1.1 Uniform convergence and bounds for the functions G̃n

Recall that

G̃n(x, t) :=

(
1− |x|2

2nt

)(n−2)/2

χBd√
2nt

(x),

Gn(X, t) :=

(
1− |X|2

2nt

)(n−2)/2

χRd+1
+ ∩Bd+1√

2nt

(X),

and

G(X, t) = e−|X|2/4t, G̃(x, t) = e−|x|2/4t.

We will prove the following results for G̃n and G̃. Identical arguments hold for Gn and G

respectively, replacing Rd with Rd+1
+ where appropriate.

Proposition A.1.1 (Lemma 3.1 of [25]). G̃n → G̃ uniformly in Rd ×{t ≥ t0}, for any

t0 > 0.

Proof. Since G̃n is radial for every n, we may change variables, and consider w = |x|2/4t,
m = n/2. With this, we rewrite G̃n as,

G̃n(x, t) = fm(w) :=
(
1− w

m

)m−1/2

χ{0≤w≤m}(w).
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We will show

fm(w) → f(w) := e−wχR+(w),

from where the result will follow.

We first observe that if w > m, then |f(w)− fm(w)| = e−w ≤ e−m → 0 as m → ∞.

Now, if 0 ≤ w ≤ m, we estimate

|f(w)− fm(w)| ≤
∣∣∣e−w −

(
1− w

m

)m∣∣∣+ ∣∣∣∣(1− w

m

)m− 1
2 −

(
1− w

m

)m∣∣∣∣
In order to work with(

1− w

m

)m− 1
2 −

(
1− w

m

)m
=
(
1− w

m

)m((
1− w

m

)− 1
2 − 1

)
,

a simple computation with the derivative shows that w = 1−
(
1− 1

2m

)2
is a global maximum,

and the maximum is bounded by

max
w∈R+

(
1− w

m

)m((
1− w

m

)− 1
2 − 1

)
≤ c

2m
.

We now estimate ∣∣∣e−w −
(
1− w

m

)m∣∣∣ .
Since log u < u− 1 for every u ∈ (0, 1), we see that

log
(
1− w

m

)
< −w

m
,

and therefore,

log
(
1− w

m

)m
< −w

for every w ∈ (0,m). On the other hand, a standard Taylor expansion shows that

log(1− u) = −u− u2/2m+O(u3).

Setting u = −w/m we find that

m log
(
1− w

m

)
= −w − w2/2m+O(w3/m2).

Exponentiating from both sides, we arrive to the expression,(
1− w

m

)m
= e−w−w2/2m+O(w3/m2).
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In order to find the appropriate bound for

max
w∈[0,m]

∣∣∣e−w −
(
1− w

m

)m∣∣∣ ,
we observe that previous step implies∣∣∣e−w −

(
1− w

m

)m∣∣∣ = e−w
(
1− e−w2/2m+O(w3/m2)

)
.

Using the Taylor expansion for the exponential at 0,(
1− e−w2/2m+O(w3/m2)

)
= O

(
w2

2m

)
≤ C

w2

2m
.

Now, by Taylor approximation of e−w again, we also find

e−w
(
1− e−w2/2m+O(w3/m2)

)
≤ C

w2

2m
= C

w2

m
, (A.1.1)

where we absorbed the 2 in the constant C. Now observe that if a > 0,

max
w∈[a,m]

∣∣∣e−w −
(
1− w

m

)m∣∣∣ ≤ max
w∈[a,m]

e−w ≤ e−a.

Finally, taking a = logm and using (A.1.1), we see that

max
w∈[0,a]

∣∣∣e−w −
(
1− w

m

)m∣∣∣ ≤ e−a ≤ C
(logm)2

2m
= C

(logm)2

m
.

Therefore ∣∣∣e−w −
(
1− w

m

)m∣∣∣
∞

≤ e−m +
1

m
+ C

(logm)2

m
.

Combining the previous bounds, we find

|fm − f |∞ ≤ e−m +
1

m
+ C

(logm)2

m
,

which concludes the proof.

Lemma A.1.2. We have,

G̃n(x, t) ≤ eG̃(x, t),

for every x ∈ Rd, t > 0 and n ≥ 1.

Proof. Fix n > 2. First, observe that G̃n(x, t) is supported in the ball |x| ≤
√
2nt, so the
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result trivially holds outside |x| ≤
√
2nt. Within this region, we can express G̃n as

G̃n(x, t) =

(
1− |x|2

2nt

)n−2
2

.

Let y = |x|2
4t
, noting that y ≤ n

2
since |x| ≤

√
2nt. The function G̃n can then be rewritten

in terms of y as,

G̃n(x, t) =

(
1− 2y

n

)n−2
2

.

Taking logarithms from both sides,

log G̃n(X, t) =
n− 2

2
log

(
1− 2y

n

)
.

Using the inequality ln(1− z) ≤ −z for z ∈ [0, 1), which follows from a Taylor expansion we

obtain,

log

(
1− 2y

n

)
≤ −2y

n
.

Therefore,

log G̃n(X, t) ≤
n− 2

2

(
−2y

n

)
= −y + 2y

n
.

Exponentiating both sides yields

G̃n(x, t) ≤ e−y+ 2y
n = e−ye

2y
n .

Since y ≤ n
2
, the term 2y

n
is bounded above by 1, and thus e

2y
n ≤ e. Consequently,

G̃n(x, t) ≤ ee−y = eG̃(x, t).

Since this bound is independent of n, the lemma follows.

A.1.2 Proof of Lemma 2.4.1

Here we prove Lemma 2.4.1. We will use the following proposition.

Proposition A.1.3. Let g ∈ C([t0, t1];L
1(Rd+1

+ , dµ)). Then, for every ε > 0 there exists a

compact set K ⊂ Rd+1
+ such that

ˆ
Rd+1
+ \K

|g(x, t)| dµ < ε,
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for every t ∈ [t0, t1].

Proof. Fix ϵ > 0. Since g is continuous, g([t0, t1]) ⊂ L1(Rd+1
+ , dµ) is compact. In particular

it must be totally bounded and we can find g1, . . . , gn ∈ L1(Rd+1
+ , dµ) such that for any

t ∈ [t0, t1], there exists i ∈ {1, . . . , N} with

||g(·, t)− gi||L1(Rd+1
+ , dµ) < ε/2.

Now, since gi is integrable for every i, for each gi we may find a compact set Ki such that

ˆ
Rd+1
+ \Ki

|gi(X)| dµ < ε/2.

Then, let

K :=
N⋃
i=1

Ki.

We have,

ˆ
Rd+1
+ \K

|g(x, t)| dµ ≤
ˆ
Rd+1
+ \K

|g(x, t)− gi(x)| dµ+

ˆ
Rd+1
+ \K

|gi(x)| dµ

< ||g(·, t)− gi||L1(Rd+1
+ , dµ) + ε/2,

for every i ∈ {1, . . . , N}. Choosing i such that ||g(·, t) − gi||L1(Rd+1
+ , dµ) < ε/2 the result

follows.

Proof of Lemma 2.4.1. Let ε > 0. We first observe that since Gn ≤ eG,

hn(t) ≤
ˆ
Rd+1
+

|f |Gn dµ ≤ e

ˆ
Rd+1
+

|f |Gdµ <∞.

Now,

|hn(t)− h(t)| ≤
ˆ
K

|f ||Gn −G| dµ+

ˆ
Rd+1
+ \K

|f ||Gn −G| dµ, (A.1.2)

for every compact set K. Since fG(·, t) ∈ C([t0, t1];L
1(Rd+1

+ , dµ)), by Proposition A.1.3

there exists a compact set K such that

ˆ
Rd+1
+ \K

|fG| dµ < ε

2(1 + e)
,
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for every t ∈ [t0, t1]. Then,

ˆ
Rd+1
+ \K

|f ||G̃n −G| dµ < (1 + e)

ˆ
Rd+1
+ \K

|fG| dµ < ε

2
.

Now, ˆ
K

|f ||G̃n −G| dµ < |K| max
(x,t)∈K×[t0,t1]

|f | max
(x,t)∈K×[t0,t1]

|G̃n −G|.

Since G̃n → G uniformly, the lemma follows.

A.2 Auxiliary results for Chapter 3

A.2.1 The Scalar Maximum Principle

Here we prove the Scalar Maximum Principle. Generalizations to vector bundles can be

found, for example, in [5].

Theorem A.2.1 (Scalar Maximum Principle). Let M be a closed Riemannian manifold and

g(t) a family of metrics on M . Suppose that u : M × [0, T ] → R satisfies the differential

inequality

d

dt
u ≥ ∆g(t)u+ g(X(t),∇u) + F (u), (A.2.1)

where X(t) is a time-dependent vector field and F is a locally Lipschitz function. Let h(t) be

a solution of the associated ODE d
dt
h = F (h) with u(·, 0) ≥ h(0). Then u ≥ h for all x ∈M

and t ∈ [0, T ].

Proof. This theorem follows from the fact that at a local minimum, the Laplacian is non-

negative and the gradient vanishes. Consider a function uε := u + ε(δ + t). Note that

M × [0, T ] is compact, so we can choose a uniform Lipschitz constant K for F . We select a

small δ that depends only on K such that uε − h > 0 for t ∈ [0, δ]; and we can let ε→ 0 to

prove the result on [0, δ] and then repeat the argument with the same δ to cover the interval

[0, T ].

Note that uε > h at t = 0. Suppose there exists a first time t0 such that uε = h at

a point x0. Since for all times t < t0 we have (uε − h)(x0, t0) > 0, the time derivative is
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non-positive and we are at a spatial minimum. Then at (x0, t0) we have,

0 ≥ ∂

∂t
(uε − h)

≥ ε+∆g(t)(uε − h) + g(X(t),∇(uε − h)) + F (uε − ε(δ + t))− F (h)

≥ ε−K|uε − h− ε(δ + t)|
= ε(1−K|δ + t|).

(A.2.2)

Taking δ < 1
2K

, this expression is strictly positive on [0, δ], which is a contradiction.

It is important to note that these results also hold for the minimum; that is, if we consider

the differential inequality

d

dt
u ≤ ∆g(t)u+ g(X(t),∇u) + F (u), (A.2.3)

where X(t) is a time-dependent vector field and F is a locally Lipschitz function. Let h(t)

be a solution of the associated ODE d
dt
h = F (h) with u(·, 0) ≤ h(0). Then u ≤ h for every

x ∈M and t ∈ [0, T ].

A.2.2 Proof of Lemma 3.3.6

Proof of Lemma 3.3.6. We prove the lemma by analyzing the Taylor expansion of F (w)

around w0, and estimating the remainder term Rl.

For a smooth function F , the Taylor expansion of F (w) around w0 up to order l−1 with

remainder is given by,

F (w) =
l−1∑
m=0

F (m)(w0)

m!
(w − w0)

m +Rl,

where the remainder term Rl in integral form is,

Rl =
1

(l − 1)!

ˆ w

w0

(w − t)l−1F (l)(t) dt.

Substituting w = w0 + δ, we obtain,

Rl =
1

(l − 1)!

ˆ w0+δ

w0

(w0 + δ − t)l−1F (l)(t) dt.

And writing u = t− w0, we find

Rl =
1

(l − 1)!

ˆ δ

0

(δ − u)l−1F (l)(w0 + u) du.
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We now bound the remainder. Since F is smooth, F (l) is continuous and hence bounded

on compact subsets of (a, b). Let M be a bound for |F (l)(w0 + u)| where u ∈ [0, δ]. Then,

|Rl| ≤
M

(l − 1)!

∣∣∣∣ˆ δ

0

(δ − u)l−1 du

∣∣∣∣ = M

l!
|δ|l.

We now estimate the derivatives of the remainder. By assumption, δ = Ok(1/N
j),

meaning that for any multi-index |α| ≤ k,

N j|∂αδ| ≤ K,

for some constant K > 0 and for all N > 0, τ1 ≤ τ ≤ T , and x ∈M .

To show that Rl = Ok(1/N
jl), we need to bound the derivatives ∂αRl for |α| ≤ k. Using

the Leibniz rule, we see that the derivative of the integral expression for Rl involves terms

of the form,

∂αRl =
∑
β≤α

(
α

β

)
1

(l − 1)!

ˆ δ

0

∂α−β
[
(δ − u)l−1

]
∂βF (l)(w0 + u) du.

Each term in the sum can be bounded by∣∣∂α−β
[
(δ − u)l−1

]∣∣ ≤ C|δ|l−1−|α−β|,

where C depends on l and the multi-index α. Since F (l) is smooth, its derivatives are

bounded, and we obtain,

|∂αRl| ≤ C ′|δ|l−|α| ≤ C ′
(
K

N j

)l

=
C ′K l

N jl
,

for some constant C ′ > 0. This shows that

Rl = Ok

(
1

N jl

)
,

completing the proof.

A.2.3 The Riemann tensor of Perelman’s N-space

Here we compute the Riemann curvature tensor of the manifold M̂ = M ×SN ×R+. For

convenience, we doit on the (x, θ, τ) coordinates. For these coordinates, the metric takes the
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form,

ĝij = gij,

ĝαβ = τgαβ,

ĝoo =
N

2τ
+R,

ĝiα = ĝio = ĝαo,= 0

where i, j are coordinate indices onM , α, β are coordinate indices on SN , and the coordinate

τ on R+ has index o. Since gij evolves by the backward Ricci flow

∂

∂τ
gij = 2Rij,

and the metric gαβ on SN is a metric with constant sectional curvature 1
2N

, we can cdirectly

ompute the Christoffel symbols of the metric ĝ, which are given by the following list:

Γ̂k
ij = Γk

ij

Γ̂k
iβ = 0 and Γ̂γ

ij = 0

Γ̂k
αβ = 0 and Γ̂γ

iβ = 0

Γ̂k
io = gklRli and Γ̂o

ij = −ĝooRij

Γ̂k
oo = −1

2
gkl

∂

∂xl
R and Γ̂o

io =
1

2
ĝoo

∂

∂xi
R

Γ̂o
iβ = 0, Γ̂k

oβ = 0 and Γ̂γ
oj = 0

Γ̂γ
αβ = Γγ

αβ

Γ̂γ
αo =

1

2τ
δγα and Γ̂o

αβ = −1

2
ĝoogαβ

Γ̂γ
oo = 0 and Γ̂o

oβ = 0

Γ̂o
oo =

1

2
ĝoo
(
− N

2τ 2
+

∂

∂τ
R

)
Fix a point (p, s, τ) ∈ M × SN × R+and choose normal coordinates around p ∈ M and

normal coordinates around s ∈ SN such that Γk
ij(p) = 0 and Γγ

αβ(s) = 0 for all i, j, k and
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α, β, γ. We compute the curvature tensor R̂m of the metric ĝ at the point as follows:

R̂ijkl = Rijkl + Γ̂k
ioΓ̂

o
jl − Γ̂k

joΓ̂
o
il = Rijkl +O

(
1

N

)
R̂ijkδ = 0

R̂ijγδ = 0 and R̂iβkδ = Γ̂k
ioΓ̂

o
βδ − Γ̂k

βoΓ̂
o
iδ = −1

2
ĝoogβδg

klRli = O

(
1

N

)
R̂iβγδ = 0

R̂ijko =
∂

∂xi
Rjk −

∂

∂xj
Rik + Γ̂k

ioΓ̂
o
jo − Γ̂k

joΓ̂
o
io = Pijk +O

(
1

N

)

R̂ioko = −1

2

∂2

∂xi∂xk
R− ∂

∂τ

(
Rilg

lk
)
+ Γ̂k

ioΓ̂
o
oo − Γ̂k

ojΓ̂
j
io − Γ̂k

ooΓ̂
o
io

= −1

2
∇i∇kR− ∂

∂τ
Rik + 2RikRlk −

1

2τ
Rik −RijRjk +O

(
1

N

)
=:Mik +O

(
1

N

)
,

and,

R̂ijγo = 0 and R̂iγjo = 0

R̂iβγo = −τ Γ̂γ
βoΓ̂

o
io = O

(
1

N

)
and R̂ioγδ = 0

R̂ioγo = 0

R̂αβγo = 0

R̂αoγo =

(
1

2τ 2
δγα + Γ̂γ

αoΓ̂
o
oo − Γ̂γ

oβΓ̂
β
αo

)
τ = O

(
1

N

)
R̂αβγδ = O

(
1

N

)
Taking traces, we arrive at the following.

Corollary A.2.2 (Corollary 3.1.2 of [15]). The components of the Ricci tensor of ĝ are

O(N−1).
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