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Resumen

La presente memoria documenta el desarrollo de una herramienta compu-
tacional para la resolución del problema de Coordinación Hidrotérmica de Cor-
to Plazo, centrado en la operación horaria del Complejo Hidroeléctrico del Ŕıo
Negro. El sistema fue implementado en C++ con una arquitectura modular y ex-
tensible, diseñada para representar de forma desacoplada agentes generadores,
demandas, esquemas de despacho y solvers.

El trabajo se basa en una formulación matemática de la literatura, que mo-
dela en detalle la operación de las represas de Bonete, Baygorria y Palmar. La
implementación se desarrolló en dos etapas: una versión inicial en Python para
validación conceptual, seguida por una migración a C++ con enfoque orientado
a objetos.

El sistema permite instanciar agentes dinámicamente, resolver el modelo con
distintos solvers y almacenar los resultados estructuradamente. Su diseño faci-
lita la incorporación de nuevas unidades, demandas o estrategias sin modificar
el núcleo. Como validación, se integró una unidad térmica rápida y un esquema
de costo de agua no lineal en Bonete, comprobando la extensibilidad del sistema.

Se presentan además ĺıneas de trabajo futuro, incluyendo agentes mixtos (co-
mo bateŕıas), despachos con penalizaciones dinámicas y generación masiva de
instancias para entrenamiento de modelos de aprendizaje automático. El resul-
tado es una herramienta validada, flexible y reutilizable, aplicable en contextos
académicos y de planificación energética.

Palabras clave: Optimización combinatoria, Coordinación Hidrotérmica de
Corto Plazo, Programación Entera Mixta, Modelado energético, Planificación
energética.
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3.3. Despacho eléctrico como problema de optimización . . . . . . . . 21

3.4. Programación orientada a objetos . . . . . . . . . . . . . . . . . . 22
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Caṕıtulo 1

Introducción

1.1. Contexto energético

La planificación y operación de sistemas eléctricos modernos constituye uno
de los desaf́ıos técnicos más relevantes de la actualidad, especialmente en con-
textos donde las enerǵıas renovables no convencionales adquieren un papel pro-
tagónico. En Uruguay, la transición energética desde mediados de los 2000 per-
mitió una matriz diversificada y sustentable, con más del 95% de la demanda
eléctrica cubierta por fuentes renovables (Risso, Nesmachnow, y cols., 2024).
Este cambio estructural ha reducido de forma significativa la dependencia de
los combustibles fósiles y ha transformado profundamente las herramientas de
gestión y control del sistema eléctrico nacional.

La integración masiva de fuentes eólica y solar —caracterizadas por su in-
termitencia y falta de control directo— ha introducido nuevos retos operativos,
entre ellos la necesidad de desarrollar modelos de optimización que permitan
anticipar y mitigar la variabilidad de la oferta renovable. En este marco, las
centrales hidroeléctricas adquieren un rol estratégico como unidades de respaldo
flexibles, capaces de compensar fluctuaciones horarias y diarias en la generación
no despachable. Su operación eficiente resulta esencial para preservar la estabi-
lidad y confiabilidad del sistema eléctrico (Risso, Nesmachnow, y cols., 2024).

El Complejo Hidroeléctrico del Rı́o Negro, conformado por las represas de
Rincón del Bonete, Baygorria y Palmar, es uno de los pilares fundamentales
de la estrategia energética nacional. Aunque la potencia combinada de estas
represas representa solo el 40 % del total hidroeléctrico del páıs (considerando
únicamente el 50 % de Salto Grande que corresponde a Uruguay), la capacidad
de almacenamiento del embalse de Bonete otorga al complejo una notable versa-
tilidad operativa. El tiempo de vaciado del lago de Bonete supera ampliamente
al de Salto Grande, lo que convierte a Bonete en el principal acumulador de
enerǵıa del páıs. Cuando el lago está a cota plena y en situaciones de seqúıa, la
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enerǵıa acumulada y utilizada eficientemente en el conjunto de represas sobre
el Ŕıo Negro puede alcanzar hasta el 90 % del total hidroeléctrico nacional. Es-
te comportamiento coordinado permite almacenar enerǵıa potencial y liberarla
según las necesidades del sistema, posicionando al complejo como un elemento
clave para el despacho eficiente de enerǵıa a corto plazo (Olivera, 2024).

La operación del Complejo Hidroeléctrico del Ŕıo Negro forma parte del
proceso de planificación operativa del sistema eléctrico nacional, que abarca ho-
rizontes temporales que van desde minutos hasta varios años. En el corto plazo
—usualmente entre 48 y 480 horas— se plantea el problema de despacho y com-
promiso de unidades, cuyo objetivo es determinar, para cada hora, qué centrales
deben operar y cuánta enerǵıa debe generar cada una. El propósito es satisfa-
cer la demanda al menor costo posible, respetando las restricciones técnicas y
operativas de cada unidad generadora (Risso, Nesmachnow, y cols., 2024).

Este proceso depende de información proveniente de múltiples fuentes: cos-
tos de generación, pronósticos de demanda, aportes h́ıdricos esperados, dispo-
nibilidad de enerǵıa renovable no controlable, intercambios internacionales y
cronogramas de mantenimiento. El resultado es un plan operativo que combina
generación hidroeléctrica, térmica y renovable, coordinando los distintos recur-
sos para alcanzar un equilibrio económico y técnico del sistema. Para ello, se
emplean modelos de optimización que representan con precisión las restriccio-
nes f́ısicas e hidráulicas de cada central, aśı como las interdependencias entre
sus decisiones de turbinación, vertido y almacenamiento (Risso, Nesmachnow,
y cols., 2024; Risso, Cabrera, Porteiro, y Ibarburu, 2024).

En horizontes de mediano y largo plazo —que abarcan desde semanas hasta
varios años— la planificación adquiere un enfoque estocástico. El objetivo en
este nivel es asignar un valor estratégico a los recursos almacenados, particular-
mente al agua en los embalses, considerando distintos escenarios hidrológicos y
de precios futuros. Estos modelos permiten cuantificar el valor de oportunidad
del recurso h́ıdrico y su influencia sobre las decisiones operativas de corto pla-
zo (Risso, Nesmachnow, y cols., 2024).

La interacción entre los distintos horizontes de planificación sigue una es-
tructura jerárquica bien definida: los modelos de largo plazo determinan las
inversiones óptimas y la expansión de la capacidad instalada; los de mediano
plazo estiman el valor del agua y establecen poĺıticas de uso eficiente de los em-
balses; y los modelos de corto plazo, como el que se desarrolla en este trabajo,
optimizan la operación horaria del sistema considerando las condiciones reales
de generación, demanda e intercambio energético (Risso, Cabrera, y cols., 2024).
Esta integración garantiza una gestión coherente de los recursos hidroeléctricos
y una operación confiable del sistema bajo distintos escenarios de oferta y de-
manda.

El presente trabajo se enfoca en el horizonte de corto plazo, tomando como
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condiciones de borde los costos de oportunidad del agua embalsada derivados de
los modelos de mediano y largo plazo. Estos modelos alimentan al despacho de
corto plazo mediante funciones de valor aproximadas que reflejan el costo espe-
rado de las decisiones operativas actuales sobre el desempeño futuro del sistema.
Se incorpora un elevado nivel de detalle operativo, modelando las restricciones
técnicas de cada agente generador y su coordinación, con el objetivo de propor-
cionar una herramienta de apoyo para la toma de decisiones del operador del
sistema.

1.2. Motivación y planteo del problema

La motivación principal de este trabajo radica en la necesidad de disponer
de herramientas computacionales robustas, flexibles y escalables que permitan
representar con precisión el funcionamiento horario del sistema hidroeléctrico en
cascada, respetando sus restricciones f́ısicas, hidrológicas y operativas. En par-
ticular, se apunta a superar las limitaciones de modelos simplificados o dif́ıciles
de adaptar, mediante una implementación moderna y modular de un modelo de
optimización combinatoria.

En este contexto, investigaciones recientes —como las desarrolladas en el
marco del simulador energético SimSEE (SimSEE, 2024)— han desarrollado
modelos de despacho horario que integran múltiples unidades hidroeléctricas,
restricciones técnicas complejas y criterios de eficiencia económica.

La fuerte no linealidad de la generación hidroeléctrica y la incertidumbre
inherente a datos cŕıticos —como la demanda, los aportes h́ıdricos, los precios
de combustibles y la generación renovable variable— han promovido el uso de
métodos basados en Programación Dinámica Estocástica (Stochastic Dynamic
Programming, SDP) (Bellman, 1957a, 1957b; van der Wal, 1980), especialmen-
te en los horizontes de planificación de mediano y largo plazo. Estos métodos
permiten representar la incertidumbre mediante escenarios y asignar valores es-
tratégicos a los recursos almacenados.

En la planificación de corto plazo, el enfoque se centra en definir un plan
optimizado de gestión para los d́ıas por venir, incorporando un elevado nivel de
detalle en la modelización de las restricciones operativas. El sistema eléctrico re-
quiere un control continuo que determine, entre otros aspectos, cuáles unidades
generadoras deben estar operativas y cómo debe coordinarse su entrada y salida
del sistema para satisfacer la demanda de manera eficiente y confiable (Olivera,
2024).

Dentro de los problemas de despacho a corto plazo, el que mejor se ajusta
al caso uruguayo es el problema de Coordinación Hidrotérmica de Corto Plazo
(Short-Term Hydrothermal Coordination, STHTC) (Farhat y El-Hawary, 2009).
Este problema busca determinar el cronograma óptimo de generación de enerǵıa
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para sistemas mixtos hidro-térmicos en un horizonte breve (generalmente de uno
a siete d́ıas), minimizando los costos de producción térmica mientras se satisface
la demanda y se garantiza el uso eficiente de los recursos h́ıdricos limitados. El
STHTC es particularmente relevante para Uruguay, páıs sin recursos de com-
bustibles fósiles y ĺıder mundial en integración de enerǵıas renovables, donde
más del 95 % de la demanda eléctrica se satisface t́ıpicamente mediante fuentes
renovables. Entre las fuentes despachables y controlables, la generación hidro-
eléctrica tiene un peso superlativo frente a otras renovables controlables como
la biomasa, siendo la primera considerablemente más grande en capacidad y
participación en la matriz energética (Risso, Nesmachnow, y cols., 2024; Risso
y cols., 2025).

Históricamente, como se analizará en el Caṕıtulo 2 (Revisión de anteceden-
tes), el problema STHTC se ha abordado mediante modelos de Programación
Matemática (MP). Una de sus principales ventajas es que permiten trabajar
con variables continuas —como el volumen de agua almacenado en cada embal-
se— sin necesidad de discretizarlas. Esto resulta especialmente valioso cuando
se busca reducir la cantidad de niveles discretos para acelerar los algoritmos
de Programación Dinámica (DP) o Programación Dinámica Estocástica (SDP).
En contraste, aunque la MP maneja naturalmente variables continuas, el mar-
co conceptual de Bellman para DP/SDP exige un conjunto finito y discreto de
estados, lo cual incrementa la complejidad computacional cuando dicho espacio
es amplio.

Volviendo a los modelos de Programación Matemática (MP) para el corto
plazo, los enfoques tradicionales explotaban el hecho de que el horizonte de
planificación abarcaba pocos d́ıas, lo que posibilitaba:

1. Linealizar las producciones hidráulicas en torno a sus puntos de operación
inicial;

2. Considerar los datos de la instancia —demanda, aportes hidrológicos y
costos— como conocidos y determińısticos con hasta 72 horas de antici-
pación (Risso, Nesmachnow, y cols., 2024).

Previo a 2005, la generación eléctrica uruguaya era predominantemente contro-
lable, y tanto los aportes hidrológicos como la demanda nacional pod́ıan ser
pronosticados con alta precisión en ese horizonte temporal, lo que permit́ıa que
los sistemas de planificación de corto plazo fueran esencialmente determińısticos.

Sin embargo, una de las premisas que sosteńıan el uso de modelos de pro-
gramación lineal en el corto plazo se vio afectada con la introducción a gran
escala de enerǵıa eólica y, más recientemente, de enerǵıa solar, transformando el
problema de despacho en uno de naturaleza estocástica. En el momento en que
se comenzó a desarrollar SimSEE, la matriz energética uruguaya estaba cam-
biando drásticamente con la incorporación de una gran cantidad de generación
renovable no controlable. Este cambio trajo consigo la necesidad de integrar
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estas nuevas fuentes en los modelos de despacho y optimización existentes —o
crear nuevos— que hab́ıan sido diseñados para un sistema mayoritariamente
hidro-térmico (Olivera, 2024). Con la integración de fuentes eólicas, solares y
de biomasa, estas fuentes renovables son priorizadas y suministran electricidad
siempre que no excedan la demanda. Las unidades controlables deben enton-
ces satisfacer la demanda residual : la diferencia entre la demanda total y la
generación renovable no convencional (Risso, Nesmachnow, y cols., 2024). Es-
ta formulación mediante demanda residual resulta particularmente conveniente
para el mercado eléctrico uruguayo, dado que la obligación de recibir y despa-
char la producción no convencional en la red permite enmascarar la presencia
expĺıcita de estas fuentes en el modelo de optimización, simplificando su re-
presentación. De este punto en adelante, y dado el carácter determińıstico del
modelo desarrollado en este trabajo, no se volverá a elaborar sobre las fuentes
eólica, solar o de biomasa. Actualmente, el problema se resuelve mediante SDP
con herramientas como SimSEE, pero este enfoque enfrenta desaf́ıos de escala-
bilidad que no pueden sostenerse indefinidamente.

Un problema inherente a la SDP es la llamada maldición de la dimensionali-
dad o maldición de Bellman, donde el espacio de estados sobre el que se trabaja
tiende a crecer exponencialmente, volviendo al problema intratable en términos
computacionales (Olivera, 2024; Risso, Nesmachnow, y cols., 2024; Risso y cols.,
2025). Este fenómeno dificulta la incorporación de nuevos componentes al siste-
ma cuando estos introducen estados adicionales. Ejemplos de tales componentes
incluyen:

➢ Gestión de sistemas de almacenamiento de enerǵıa en bateŕıas (Battery
Energy Storage Systems, BESS);

➢ Planificación de demandas gestionables, como contratos donde el opera-
dor dispone de ventanas de tiempo para carga de veh́ıculos eléctricos;

➢ Uso y gestión de contratos complejos de corto plazo, como intercambios
energéticos internacionales;

➢ Operación de unidades con ciclos de arranque (commitments) complejos,
como centrales de ciclo combinado.

Otro aspecto, más sutil pero igualmente relevante, es que la Programación
Dinámica es un método directo: un algoritmo que resuelve recursivamente cada
etapa del problema hasta completar el horizonte temporal, momento en el cual
recién se obtiene la solución óptima. Antes de llegar a ese punto, no se dis-
pone de soluciones intermedias factibles ni de información operativa útil. Esta
caracteŕıstica —que convierte a DP/SDP en un enfoque de “todo o nada”—,
combinada con el crecimiento exponencial del tiempo de ejecución con respec-
to al número de estados, genera un compromiso inevitable entre la cantidad
de componentes a incluir en el modelo (la dimensión del vector de estados, o
maldición de la dimensionalidad) y el nivel de refinamiento en la discretización
de dichos estados. Agregar detalle o incorporar componentes adicionales incre-
menta de forma significativa la complejidad computacional, pudiendo volver el

5



problema intratable. Además, este enfoque aumenta el riesgo de que la opera-
ción del sistema eléctrico uruguayo dependa excesivamente de implementaciones
de software particulares, lo que puede limitar la flexibilidad y dificultar la adap-
tación del sistema ante nuevos desaf́ıos operativos.

En particular, el trabajo de (Risso, Nesmachnow, y cols., 2024) propone una
formulación de Programación Entera Mixta (MIP) orientada a capturar de for-
ma precisa la operación coordinada del sistema en cascada del Ŕıo Negro. Este
modelo considera rezagos hidráulicos, restricciones operativas horarias, funcio-
nes de producción no lineales aproximadas mediante tramos lineales, y pena-
lizaciones por demanda no satisfecha. Su estructura permite evaluar con alto
nivel de detalle el impacto operativo de distintas decisiones de despacho bajo
condiciones realistas.

Entre las principales motivaciones para desarrollar un modelo MIP se en-
cuentran tres aspectos centrales. En primer lugar, trabajar dentro del marco
estándar de la programación matemática aporta simplicidad, transparencia y
facilidad para extender o adaptar la formulación. En segundo lugar, el uso de
variables continuas permite representar de manera directa magnitudes f́ısicas
sin recurrir a discretizaciones, evitando aśı los errores y limitaciones asociados
a ellas. Finalmente, la separación entre modelo e implementación posibilita em-
plear distintas herramientas de resolución, incluidas aquellas basadas en méto-
dos iterativos que mejoran progresivamente la solución y permiten fijar un gap
de optimalidad, como se hace en este trabajo.

Para el trabajo de referencia en el que este proyecto se enmarca, se ha fijado
el horizonte de planificación del despacho en 15 d́ıas. Este requerimiento sur-
ge ante la necesidad de gestionar contratos internacionales y unidades térmicas
con compromisos de arranque (commitments) complejos dentro del peŕıodo de
planificación. Ante la falta de pronósticos confiables de generación eólica y solar
más allá de las 72 horas, el modelo recurre a una aproximación determińıstica,
utilizando promedios estimados para los próximos quince d́ıas.

Respecto a los modelos de programación matemática utilizados en el páıs
con anterioridad, este MIP destaca porque captura la operación hidroeléctrica
de manera ajustada, incluso a lo largo de horizontes de planificación de 15 d́ıas;
peŕıodo superior al necesario para agotar el stock en los embalses de tres de las
cuatro represas que componen el parque hidroeléctrico uruguayo.

La formulación fue concebida con fines investigativos y ha sido utilizada
como base para posteriores desarrollos y experimentaciones computacionales,
incluyendo el trabajo de (Olivera, 2024), que aporta una caracterización deta-
llada de los cambios históricos en la gestión energética del páıs y el rol creciente
del modelo de despacho como herramienta de apoyo a la toma de decisiones.
En paralelo al desarrollo de esta tesis, el modelo de referencia ha incorporado
unidades nuevas (incluyendo Salto Grande) y refinado el ajuste de otras.
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1.3. Objetivos del trabajo

El presente proyecto se inscribe en la ĺınea de investigación iniciada por
(Risso, Nesmachnow, y cols., 2024), centrada en el modelado y optimización
del despacho hidroeléctrico del sistema del Ŕıo Negro. Esta ĺınea ha permitido
desarrollar formulaciones matemáticas robustas para representar el problema
de Coordinación Hidrotérmica de Corto Plazo, pero su implementación práctica
aún requiere mayor consolidación. En particular, es necesario traducir dichas
formulaciones en herramientas computacionales reproducibles, modulares y efi-
cientes, capaces de integrarse en flujos de trabajo reales y de evolucionar junto
con las necesidades del sistema eléctrico nacional.

En este contexto, el objetivo general del trabajo consiste en desarrollar una
herramienta computacional robusta y extensible que resuelva el MIP propuesto
por (Risso, Nesmachnow, y cols., 2024), garantizando la correcta representación
de las restricciones f́ısicas, hidráulicas y operativas del Complejo Hidroeléctrico
del Ŕıo Negro. La plataforma debe posibilitar la interacción con distintos solvers
de optimización, asegurar la trazabilidad de los resultados y permitir la incor-
poración controlada de nuevas funcionalidades sin comprometer la consistencia
del modelo.

Desde un enfoque de ingenieŕıa de software, se busca establecer una arqui-
tectura modular orientada a objetos que separe de forma expĺıcita las respon-
sabilidades de cada componente —carga y validación de datos, construcción
algebraica del modelo, interfaz con los solvers, resolución, posprocesamiento y
análisis de resultados—. Este esquema promueve la mantenibilidad, la reutili-
zación del código y la posibilidad de extender el sistema hacia futuras versiones
o nuevos horizontes temporales sin necesidad de modificaciones estructurales.

De manera complementaria, el proyecto apunta a evaluar experimentalmen-
te la fidelidad y desempeño del sistema mediante la resolución de un conjunto
amplio de instancias representativas, comparando los resultados con las imple-
mentaciones previas en MATLAB y Python. El análisis busca verificar la equiva-
lencia numérica de las soluciones, identificar cuellos de botella computacionales
y cuantificar la ganancia en eficiencia y escalabilidad obtenida a partir de la
nueva arquitectura.

Por último, el trabajo busca establecer una base tecnológica abierta y do-
cumentada que pueda ser reutilizada y ampliada en desarrollos futuros, tanto
académicos como aplicados. Con ello, los objetivos del proyecto apuntan a inte-
grar rigor técnico y utilidad práctica, facilitando la transición entre la formula-
ción teórica del modelo y su implementación como herramienta operativa.
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1.4. Alcance y resultados esperados

El alcance de este proyecto, según lo establecido en el bosquejo inicial, se
limita a la implementación y validación computacional del modelo de Programa-
ción Entera Mixta presentado en (Risso, Nesmachnow, y cols., 2024): A Mixed
Combinatorial Optimization Model for the Rı́o Negro Hydroelectric Complex.
Dicho modelo constituye la formulación base sobre la cual se estructura el de-
sarrollo de la herramienta y representa el contenido central reportado en la
Subsección 5.4.1 (Modelo base).

Este modelo base incorpora la operación coordinada de las tres represas
del Complejo Hidroeléctrico del Ŕıo Negro (Bonete, Baygorria y Palmar), con-
siderando rezagos hidráulicos, funciones de producción aproximadas mediante
tramos lineales, balance h́ıdrico intertemporal y penalizaciones por demanda
no satisfecha. Su resolución se realiza mediante solvers de programación entera
mixta, empleando un criterio de optimalidad basado en un GAP relativo del
0,1%.

No obstante, durante el desarrollo del proyecto se incorporaron elementos
adicionales provenientes del trabajo (Risso y cols., 2025): An Enriched Mixed
Combinatorial Optimization Model to Manage the Hydrothermal Dispatch for
the Rı́o Negro Hydroelectric Complex, los cuales constituyen extensiones del al-
cance original. Estas extensiones incluyen la incorporación de una unidad térmi-
ca de arranque rápido y la utilización de funciones no lineales para el costo del
agua en Bonete, junto con penalizaciones del costo de falla proporcionales a
la demanda total. Dichas ampliaciones se documentan en las secciones Subsec-
ción 4.3.4 y Subsección 4.3.5, y su implementación tiene como propósito demos-
trar la extensibilidad y modularidad de la arquitectura desarrollada.

De este modo, el presente documento se estructura en los siguientes caṕıtu-
los, cada uno abordando aspectos clave del desarrollo y validación del modelo
propuesto:

En el Caṕıtulo 2 (Revisión de antecedentes) se presenta una descripción
histórica y técnica de los modelos y herramientas utilizadas en la operación del
sistema eléctrico uruguayo para el despacho hidroeléctrico, junto con sus formu-
laciones matemáticas asociadas. El caṕıtulo combina la revisión de los sistemas
utilizados, como EDF, OPERGEN, SimSEE y MOP, el análisis de las metodo-
loǵıas de optimización en que se basan (LP, SDP, MIP), y una discusión de las
limitaciones prácticas observadas en implementaciones previas. Este recorrido
permite identificar los elementos que motivan el rediseño propuesto y establece
el marco conceptual y técnico sobre el cual se apoya el desarrollo posterior del
proyecto.

Por otro lado, en el Caṕıtulo 3 (Marco teórico) se presentan los fundamentos
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conceptuales y metodológicos que sustentan este trabajo. En dicho caṕıtulo se
introducen los elementos esenciales de la optimización matemática y las distin-
tas clases de problemas relevantes para este estudio (LP, IP y MIP), destacando
tanto sus aspectos teóricos como computacionales. Asimismo, se describe el rol
de los modelos MIP en la representación de sistemas reales que combinan deci-
siones continuas y discretas, y se analizan las técnicas de resolución más emplea-
das en la práctica. El caṕıtulo también aborda el despacho eléctrico como un
problema de optimización intertemporal en sistemas hidroeléctricos, detallando
sus variables, restricciones y criterios de operación. Finalmente, se desarrolla un
marco de programación orientada a objetos que incluye principios fundamen-
tales, estructuras de modelado y patrones de diseño —particularmente Facade,
Singleton y Strategy— utilizados para la construcción del software implementa-
do en este trabajo.

En el Caṕıtulo 4 (Desarrollo e implementación del modelo) se integran los
aspectos matemáticos, computacionales y experimentales del desarrollo de la he-
rramienta. En primer lugar, se formaliza y analiza la formulación MIP utilizada
para modelar la operación coordinada de Bonete, Baygorria y Palmar, explican-
do la función objetivo, las restricciones hidráulicas, los rezagos de tránsito entre
embalses y las aproximaciones mediante tramos lineales de las curvas de pro-
ducción. Posteriormente, dicha formulación es validada mediante un prototipo
en Python, el cual reproduce 204 instancias de referencia, permitiendo verifi-
car la consistencia del modelo e identificar aspectos prácticos de su resolución.
Finalmente, se presenta la arquitectura modular implementada en C++, la cuál
favorece la mantenibilidad y facilita la extensión del sistema, lo cual se demues-
tra mediante casos prácticos —como la incorporación de una unidad térmica de
arranque rápido y el uso de una función no lineal del costo del agua en Bonete—
que pueden añadirse sin modificar el núcleo del modelo.

Posteriormente, en el Caṕıtulo 5 (Experimentación) se presenta el análi-
sis emṕırico del desempeño del sistema en dos etapas diferenciadas. En primer
lugar, se evalúa el comportamiento del modelo MIP original, resolviendo 204
instancias independientes bajo un criterio de optimalidad basado en un GAP
relativo máximo del 0,1%. A continuación, se estudia el modelo extendido —que
incorpora un costo no lineal del agua en Bonete y un costo de falla proporcional
a la demanda total— mediante la ejecución de cinco instancias adicionales, lo
que permite una comparación preliminar con el escenario base.

En ambos casos, se adopta una metodoloǵıa experimental unificada que re-
gistra cuatro componentes temporales por ejecución: construcción del modelo
interno, traducción al formato del solver, tiempo de resolución y posprocesa-
miento. Esta estructura permite analizar la contribución de cada fase al tiempo
total y facilita la comparación entre escenarios sin modificar el flujo de trabajo
del sistema.

Por último, en el Caṕıtulo 6 (Conclusiones y trabajo futuro) se presentan

9



las principales conclusiones del trabajo y las ĺıneas de desarrollo futuro asocia-
das. A partir de la reimplementación del modelo de Coordinación Hidrotérmica
de Corto Plazo mediante una arquitectura modular en C++, se sintetizan los
avances obtenidos en términos de validación, extensibilidad y aplicabilidad del
sistema tanto en contextos operativos como de investigación. Asimismo, se dis-
cuten posibles direcciones de evolución del sistema, incluyendo la incorporación
de nuevos agentes y tecnoloǵıas, la ampliación del módulo de despacho y la in-
tegración con metodoloǵıas de aprendizaje automático orientadas a generar y
analizar grandes volúmenes de instancias.
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Caṕıtulo 2

Revisión de antecedentes

2.1. Antecedentes y Evolución de Modelos de
Despacho en Uruguay

Este proyecto se enmarca en la continuidad de una ĺınea aplicada de inves-
tigación impulsada conjuntamente por la Universidad de la República (Udelar)
y UTE, orientada al estudio y modelado de estrategias de operación del sistema
eléctrico nacional. El eje principal de esta ĺınea reside en la utilización eficiente
de la hidroelectricidad como recurso de respaldo frente a la creciente penetra-
ción de fuentes renovables no controlables.

Para comprender el contexto histórico y técnico de los modelos y herramien-
tas empleadas en Uruguay, se toma como referencia el trabajo de (Olivera, 2024),
donde se analizan en detalle las caracteŕısticas y evolución de las principales pla-
taformas desarrolladas y utilizadas en el páıs —entre ellas, EDF, OPERGEN y
SimSEE— (ver secciones 1.2.3–1.2.5 de dicha referencia).

Génesis y adopción del sistema EDF (1988–2018)
Los primeros modelos empleados en Uruguay incluyeron el software desarrollado
a medida por Électricité de France (EDF), contratado por UTE a fines de la
década de 1980 para resolver problemas de despacho de largo plazo (Ferreira,
2008; Poder Ejecutivo, 2002; Olivera, 2024). En la práctica, EDF se utilizó en
producción aproximadamente entre 1988 y 2018 para optimización estocástica
en horizontes anuales, con paso semanal, integrando demanda, aportes, dispo-
nibilidad de equipos e intercambios con páıses vecinos.

El sistema EDF se estructuraba en dos módulos principales: MURVAGUA, en-
cargado de valorar el agua en Rincón del Bonete mediante SDP, discretizando el
embalse en diez niveles y considerando cinco estados hidrológicos; y MURDOC,
encargado de la simulación de trayectorias operativas mediante Monte Carlo, a
partir de las valorizaciones estimadas (Ferreira, 2008; Olivera, 2024). En esta
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configuración, la valorización del agua se realizaba exclusivamente para Rincón
del Bonete, considerando valores nulos en Baygorria, Palmar y Salto Grande,
que eran tratadas como plantas de paso (Olivera, 2024).

La metodoloǵıa aplicada en EDF permitió capturar de forma expĺıcita el costo de
oportunidad del agua —concepto central en la planificación hidrotérmica— y fue
pionera en la representación del sistema como un proceso estocástico con retro-
alimentación dinámica. Este enfoque, aunque limitado por el poder de cómputo
de la época, sentó las bases conceptuales de los modelos posteriores, en parti-
cular en lo relativo al tratamiento de los estados hidrológicos, la discretización
temporal por postes horarios y el cálculo de valores del agua sobre horizontes
de varios años (Ferreira, 2008; Olivera, 2024).

A partir de la implantación del sistema EDF, se promovió además un entorno de
cooperación técnica y cient́ıfica entre UTE y la Universidad, que dio lugar a una
serie de proyectos de investigación aplicada orientados a mejorar los algoritmos
de optimización y simulación del sistema, aśı como al desarrollo de capacida-
des en modelado estocástico y cómputo de alto desempeño. Estas iniciativas
consolidaron un lenguaje técnico común y la formación de recursos humanos
especializados, generando una base de conocimiento nacional en torno a la pla-
nificación energética estocástica (Olivera, 2024).

OPERGEN: articulación de mediano y corto plazo (2002–2015)
Con el objetivo de complementar la visión de largo plazo de EDF, UTE incor-
poró el modelo OPERGEN, desarrollado por la consultora IBERDROLA–PSRI,
que fue utilizado entre aproximadamente 2002 y 2015. Este modelo abordó la
planificación de mediano y corto plazo (MP, CPC, CPS) mediante formulacio-
nes determińısticas y mixtas, integrando los resultados de EDF —en particular,
los valores del agua— como insumos iniciales para cada horizonte operativo
(Ferreira, 2008; Poder Ejecutivo, 2002; Olivera, 2024).

El modelo se basaba en técnicas de Programación Lineal y Programación Li-
neal Entera Mixta (MIP), lo que permit́ıa representar la dinámica térmica e
hidráulica de forma integrada. El v́ınculo entre EDF y OPERGEN se establećıa
de manera jerárquica: el modelo de largo plazo valoraba el recurso h́ıdrico y
generaba poĺıticas de almacenamiento, mientras que OPERGEN tradućıa esas
poĺıticas en decisiones operativas concretas, como la secuencia de arranques y
paradas de unidades térmicas, el manejo de los tiempos de tránsito hidráulico
y la evaluación de intercambios energéticos internacionales (Ferreira, 2008; Oli-
vera, 2024).

OPERGEN introdujo innovaciones relevantes en la representación técnica del
despacho, tales como:

➢ Modelos con variables binarias para representar arranques y paradas
térmicas.
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➢ Inclusión de postes horarios para capturar picos y valles de demanda
intra-semanales.

➢ Modelos de tránsito de caudales y restricciones hidrológicas expĺıcitas.

➢ Incorporación de contabilidades energéticas (como créditos de Salto Gran-
de) y ajustes por sobrecostos asociados a la frecuencia de operación.

Todas estas caracteŕısticas se encuentran documentadas en (Ferreira, 2008; Oli-
vera, 2024).

Estas mejoras permitieron un modelado más realista y operativo, aunque con
un aumento considerable en el costo computacional. Su estructura modular fa-
cilitó la calibración y el uso rutinario en la planificación operativa, pero carećıa
de flexibilidad para adaptarse a la irrupción masiva de enerǵıas renovables no
controlables que caracterizó la década de 2010 (Olivera, 2024).

SimSEE (desde 2012)
Desde 2012, la Administración del Mercado Eléctrico (ADME) y UTE emplean
la plataforma SimSEE, desarrollada en la Facultad de Ingenieŕıa (FING, Ude-
lar) bajo el proyecto PDT 47/12, con apoyo del MIEM, URSEA y el BID. A
diferencia de sus predecesores —EDF y OPERGEN—, diseñados como aplicacio-
nes cerradas, SimSEE fue concebido como una plataforma genérica y extensible,
estructurada en módulos de agentes que representan unidades de generación, de-
manda, almacenamiento e interconexiones (Casaravilla, Chaer, y Alfaro, 2009;
Chaer, 2008; Chaer y cols., 2013; Olivera, 2024).

En la etapa de optimización, el sistema resuelve poĺıticas de operación y valo-
res del agua de manera conjunta para los embalses Bonete–Baygorria–Palmar,
aplicando SDP (Casaravilla y cols., 2009; Olivera, 2024). En la etapa de simula-
ción, evalúa la poĺıtica bajo distintos escenarios (históricos o generados mediante
Monte Carlo), resolviendo en cada paso un problema lineal donde los agentes
actúan de forma colaborativa, aportando restricciones y objetivos individuales
(Chaer, 2008; Olivera, 2024). A diferencia de EDF y OPERGEN, la valorización
del agua se realiza de forma simultánea para los tres embalses del Ŕıo Negro
(Bonete, Baygorria y Palmar) (Olivera, 2024).

El diseño de SimSEE permite incorporar fácilmente nuevas tecnoloǵıas —como
parques eólicos, fotovoltaicos o distintas representaciones de demanda—, debido
a que estas fuentes no añaden estados adicionales al problema de optimización
estocástica. En esos casos, la estructura del modelo de SDP permanece inalte-
rada y el algoritmo continúa siendo escalable.

Sin embargo, la integración de agentes que śı poseen estados propios —por ejem-
plo, unidades de almacenamiento energético (bateŕıas), embalses adicionales o
dispositivos con dinámica interna relevante— modifica la dimensionalidad del
espacio de estados. Esto genera un crecimiento exponencial del número de nodos
en el árbol de decisiones y, por ende, del costo computacional del algoritmo de
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resolución hacia atrás. Si bien la arquitectura de SimSEE está preparada para
extenderse a este tipo de agentes, la escalabilidad del método por SDP se ve
comprometida, por lo que su implementación requiere un rediseño espećıfico o
el uso de heuŕısticas y aproximaciones adicionales (Chaer y cols., 2013; Olivera,
2024).

MOP (actualidad)
Como parte de esta evolución continua, UTE ha desarrollado e implementado
internamente MOP (Modelo de Operación), una herramienta para la planifica-
ción de mediano a largo plazo basada en Stochastic Dual Dynamic Programming
(SDDP) (Mauriz, Porteiro, y Ibarburu, 2024). De código abierto y disponible
públicamente (UTE, 2024), MOP representa el desarrollo más reciente en la
ĺınea de herramientas computacionales espećıficas para el sistema eléctrico uru-
guayo.

Śıntesis y continuidad
El recorrido histórico descrito pone de manifiesto la existencia de una ĺınea de
desarrollo coherente, que combina continuidad conceptual con modernización
tecnológica. En particular, pueden distinguirse tres capas metodológicas que
coexisten en la práctica:

1. Valorización del agua en el largo plazo (EDF/SDP), con discretización
semanal y representación estocástica de aportes hidrológicos.

2. Planificación de mediano y corto plazo (OPERGEN), que incorpora deta-
lle operativo y la dinámica térmica-hidráulica.

3. Plataformas colaborativas y genéricas (SimSEE), capaces de extender esas
abstracciones a un sistema con alta penetración renovable y estructura
multiagente.

Este acervo constituye el estado del arte local sobre el que se apoya el presente
trabajo (Olivera, 2024). A partir de esta base consolidada, se busca continuar la
ĺınea de desarrollo aplicada que ha caracterizado la cooperación UTE–Udelar,
aportando nuevas herramientas metodológicas y computacionales que contri-
buyan a la evolución de los modelos de optimización y simulación del sistema
eléctrico nacional.

En particular, SimSEE se distingue de otras herramientas desarrolladas espećıfi-
camente para el sistema uruguayo por su arquitectura basada en agentes. Este
paradigma permite modelar de forma flexible distintos tipos de participantes
—como generadores, demandas o elementos de la red— organizados en una to-
poloǵıa expĺıcita de nodos y arcos. Sobre esta estructura es posible ejecutar ciclos
de optimización y simulación que representan trayectorias de operación bajo in-
certidumbre (Casaravilla y cols., 2009; Chaer y cols., 2013). Esta capacidad
de abstracción ha consolidado a SimSEE como referencia para el desarrollo de
software de simulación energética en Uruguay, tanto para propósitos académicos
como operativos (Olivera, 2024).

14



2.2. Formulaciones de Modelos y Herramientas
de Software

Los modelos de despacho desarrollados y utilizados en Uruguay se sustentan tra-
dicionalmente en formulaciones anaĺıticas basadas en Programación Matemáti-
ca y Programación Dinámica, aplicadas tanto a horizontes de largo como de
corto plazo (Olivera, 2024). Estos enfoques, originados en los modelos EDF y
OPERGEN, se consolidaron en la plataforma SimSEE, que integra técnicas de
optimización determińıstica y estocástica dentro de una arquitectura modular
orientada a agentes.

Entre las formulaciones más relevantes se destacan:

➢ Programación Lineal (LP): empleada en los subproblemas semana-
les del módulo MURVAGUA del sistema EDF y en las simulaciones
de MURDOC, donde se linealizan funciones de costo y restricciones
hidráulicas para estimar costos marginales (shadow prices) de los em-
balses (Olivera, 2024).

➢ Programación Dinámica (DP) y SDP: aplicadas en la valorización
del agua en Bonete y extendidas en SimSEE para representar simultánea-
mente múltiples embalses y estados hidrológicos. Estas metodoloǵıas se
basan en el Principio de Optimalidad de Bellman y permiten modelar
decisiones secuenciales bajo incertidumbre hidrológica (Olivera, 2024).

➢ Programación Lineal Entera Mixta (MIP): formulaciones deriva-
das de (Risso, Nesmachnow, y cols., 2024), que incorporan restricciones
hidráulicas, discretización de curvas de producción y tiempos de tránsito
de caudales. Este enfoque posibilita representar decisiones binarias —co-
mo arranques térmicos o vertidos discretos— y restricciones no lineales
mediante aproximaciones lineales por tramos.

En este contexto, el modelo desarrollado por (Risso, Nesmachnow, y cols., 2024)
constituye una alternativa que evita la explosión dimensional t́ıpica de la SDP.
A diferencia del enfoque utilizado en SimSEE —donde cada nueva unidad con
estado propio incrementa la dimensión del espacio de estados y, con ello, el cos-
to del proceso— la propuesta de (Risso, Nesmachnow, y cols., 2024) formula
el problema de operación del Complejo del Ŕıo Negro dentro de un esquema
completamente determinista de Programación Entera Mixta. De esta forma, la
dinámica de los embalses, los retardos hidráulicos, las curvas de producción no
lineales y las decisiones horarias se expresan directamente como restricciones
lineales o linealizadas, en lugar de expandir el espacio de estados. En otras pa-
labras, el “estado del sistema” deja de generar nuevas ramas en un árbol de
decisiones y pasa a representarse mediante variables internas dentro de un úni-
co problema de optimización.

El modelo incorpora los estados hidráulicos de Bonete, Baygorria y Palmar co-
mo variables continuas y se resuelve mediante solvers de propósito general como
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CPLEX o Gurobi. Estos solvers aplican métodos iterativos altamente optimiza-
dos —como variantes avanzadas de Branch-and-Bound, cortes fraccionarios y
heuŕısticas de incumbencia— que permiten enfrentar con éxito instancias de
gran escala, como se analizará en el Caṕıtulo 5 (Experimentación). A su vez, el
hecho de separar expĺıcitamente el modelo matemático del algoritmo de resolu-
ción habilita la posibilidad de explorar otras familias de técnicas, como métodos
de descomposición (por ejemplo, Benders o Lagrangiana), metaheuŕısticas espe-
cializadas o enfoques basados en inteligencia artificial, ampliando el conjunto de
herramientas disponibles para abordar problemas de despacho de caracteŕısticas
similares.

Limitaciones y desaf́ıos de las implementaciones actuales
Si bien las implementaciones prototipo desarrolladas en entornos comoMATLAB
y Python —entre ellas el modelo MIP de (Risso, Nesmachnow, y cols., 2024)—
demostraron la validez funcional del enfoque, también evidencian las limitacio-
nes t́ıpicas de los desarrollos iniciales: acoplamiento elevado entre componentes,
dificultades de mantenimiento y una escalabilidad reducida para simulaciones de
gran porte. En particular, la falta de separación clara entre la capa de modelado
y la de resolución restringe la extensión de estos modelos hacia horizontes de
planificación más amplios o hacia esquemas con acoplamiento hidráulico comple-
to (Olivera, 2024). Estas limitaciones constituyen uno de los principales puntos
de partida del presente trabajo, que busca diseñar un entorno de modelado flexi-
ble, mantenible y escalable, capaz de integrar técnicas de optimización h́ıbridas
y enfoques basados en agentes.

Śıntesis
El examen histórico–técnico realizado permite identificar una trayectoria evo-
lutiva bien definida en los modelos de despacho utilizados en Uruguay. Los
enfoques basados en SDP han proporcionado, durante décadas, una solución
metodológicamente sólida para la valorización del agua y la toma de decisio-
nes bajo incertidumbre hidrológica. No obstante, estos métodos se encuentran
inevitablemente limitados por la maldición de la dimensionalidad inherente al
enfoque de Bellman, lo que restringe su capacidad para incorporar de forma
escalable agentes con estados adicionales o dinámicas complejas.

En contraste, los solvers del estado del arte de Programación Matemática con-
temporáneos exhiben un rendimiento robusto al resolver modelos de tamaño
operativo realista —particularmente en horizontes quincenales con paso hora-
rio— permitiendo representar simultáneamente la dinámica hidráulica, térmica
y renovable con un nivel de detalle elevado. La evidencia emṕırica reciente mues-
tra que su desempeño mantiene escalabilidad incluso ante la incorporación de
nuevos agentes y restricciones, lo que constituye una ventaja comparativa deci-
siva respecto de las soluciones basadas exclusivamente en SDP.

Por otra parte, SimSEE ha demostrado ser una herramienta madura y altamente
efectiva desde la perspectiva de ingenieŕıa de software. Su arquitectura modular,

16



su modelo de agentes y su interfaz orientada al usuario final proporcionan un
grado de usabilidad y parametrización que ha facilitado su adopción operati-
va y académica. Este nivel de integración contrasta con las implementaciones
prototipo desarrolladas en entornos como MATLAB o Python, las cuales, si bien
han permitido validar modelos recientes —incluido (Risso, Nesmachnow, y cols.,
2024) y los nuevos desarrollos actualmente en preparación— presentan limita-
ciones en términos de mantenibilidad, extensibilidad y experiencia de usuario.

En conjunto, estos elementos ponen de manifiesto una brecha tecnológica clara:
la ausencia de una arquitectura unificada que combine la expresividad y esca-
labilidad de los modelos modernos basados en Programación Matemática, con
la modularidad, parametrización y facilidad de uso que caracterizan a SimSEE.
Abordar esta brecha constituye el objetivo central de este proyecto.

En consecuencia, el presente trabajo se orienta al diseño de una abstracción ar-
quitectónica y metodológica basada en la formulación MIP propuesta por (Risso,
Nesmachnow, y cols., 2024), pero implementada en un entorno de software man-
tenible, extensible y accesible para el usuario final. El objetivo es contar con una
base técnica que permita hacer evolucionar el sistema sin requerir reestructura-
ciones profundas ante futuras extensiones. En este sentido, en la Subsección 4.3.4
y en la Subsección 4.3.5 se presentan dos extensiones aplicadas a la formulación
original: la incorporación de una unidad térmica rápida y la introducción de un
costo del agua no lineal en Bonete, junto con una penalización del costo de falla
proporcional a la demanda total.

Además, la arquitectura planteada habilita la incorporación de metodoloǵıas
h́ıbridas —como combinaciones entre SDP, MIP y técnicas de Aprendizaje por
Refuerzo— aśı como el uso de enfoques de descomposición matemática y otras
estrategias de optimización. Estas ĺıneas potenciales se detallan en la Caṕıtu-
lo 6 (Conclusiones y Trabajo Futuro), donde se presentan posibles extensiones
orientadas a ampliar el alcance funcional del sistema, incluyendo nuevas clases
de agentes, variantes en el esquema de despacho y técnicas basadas en inteligen-
cia artificial para responder a las necesidades operativas del sistema eléctrico
uruguayo.
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Caṕıtulo 3

Marco Teórico

El presente caṕıtulo expone los fundamentos teóricos necesarios para contextua-
lizar el trabajo. Se presentan los conceptos básicos de optimización matemática
y programación lineal entera-mixta (MIP), utilizados para modelar el despacho
hidroeléctrico. Luego, se describen los principales elementos que caracterizan
el problema del despacho económico de generación en sistemas con embalses.
Finalmente, se introducen los conceptos de programación orientada a objetos y
los patrones de diseño aplicados en la implementación del sistema.

3.1. Optimización matemática

La optimización matemática constituye una rama fundamental de la investiga-
ción operativa que se enfoca en la identificación de soluciones óptimas dentro
de un conjunto de alternativas posibles, bajo un conjunto de restricciones pre-
viamente definidas. En términos formales, un problema general de optimización
puede expresarse como:

Minimizar (o maximizar) f(x)

sujeto a x ∈ X
(3.1)

donde f(x) representa la función objetivo que se desea optimizar, y X denota el
conjunto de soluciones factibles, determinado por las restricciones estructurales
del problema.

Los problemas de optimización pueden clasificarse según la naturaleza de la fun-
ción objetivo, las restricciones y el dominio de las variables. Entre las categoŕıas
más relevantes se encuentran:

➢ Programación lineal (LP): tanto la función objetivo como las restric-
ciones son lineales, y las variables son continuas.

➢ Programación entera (IP): todas las variables está restringida a to-
mar valores enteros.
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➢ Programación lineal entera-mixta (MIP): algunas variables son en-
teras y otras continuas, con una formulación lineal de la función objetivo
y las restricciones.

Desde hace varias décadas se conocen algoritmos iterativos finitos para resolver
problemas de Programación Lineal (LP). El Método Śımplex (Dantzig, 1949,
1951, 1963) constituye el enfoque más extendido en aplicaciones reales debido a
su desempeño sobresaliente en la práctica, aun cuando su complejidad en el peor
caso es de orden exponencial. Un avance decisivo se produjo en la década de
1980, cuando Karmarkar introdujo un algoritmo de Punto Interior (Karmarkar,
1984), demostrando que las instancias de LP pueden resolverse en tiempo po-
linomial con respecto al tamaño de la entrada. Este resultado estableció for-
malmente que la programación lineal pertenece a la clase de complejidad P.
Actualmente, los solvers comerciales combinan variantes avanzadas de Śımplex
y de métodos de Punto Interior (Nocedal y Wright, 2006), logrando resolver pro-
blemas con cientos de millones de variables y restricciones con notable eficiencia.

La situación es marcadamente distinta en el caso de la Programación Lineal
Entera-Mixta (MIP). Numerosos problemas pertenecientes a la clase NP admiten
formulaciones equivalentes como modelos MIP, lo cual implica que la existencia
de un algoritmo general eficiente para resolver cualquier MIP supondŕıa resol-
ver la conjetura P vs. NP (S. A. Cook, 1971; Fortnow, 2009), reconocida como
uno de los Problemas del Milenio por el Clay Mathematics Institute (S. Cook,
2000). En términos teóricos, los MIP son problemas NP-Hard; sin embargo, la
práctica moderna muestra un panorama más matizado. Los solvers industriales
implementan técnicas de alto nivel —incluyendo branch-and-bound, generación
dinámica de cortes válidos, presolving avanzado, heuŕısticas de incumbencia
y estrategias de branching sofisticadas— que permiten resolver instancias con
millones de variables y restricciones en tiempos competitivos, siempre que el
problema no contenga subestructuras intŕınsecamente intratables.

En consecuencia, si bien no existe una garant́ıa teórica de eficiencia para los
modelos MIP en términos generales, la evidencia emṕırica acumulada en las
últimas décadas muestra que los solvers del estado del arte, como CPLEX y
Gurobi, son capaces de resolver problemas de gran escala con un desempeño
consistente, incluso cuando se incorporan nuevos agentes, estados o restricciones.
En nuestro caso, este comportamiento se ha verificado experimentalmente, tal
como se detalla en el Caṕıtulo 5 (Experimentación).

3.2. Programación lineal entera-mixta (MIP)

La programación lineal entera-mixta (MIP, por sus siglas en inglés) es una técni-
ca ampliamente utilizada en la modelación de sistemas que involucran decisiones
discretas y continuas. Su formulación general se expresa de la siguiente manera:
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Minimizar cTx

sujeto a Ax ≤ b

xj ∈ Z, ∀j ∈ I
xj ∈ R, ∀j /∈ I

(3.2)

donde I denota el conjunto de ı́ndices correspondientes a las variables que deben
asumir valores enteros.

Este enfoque resulta particularmente útil en la formulación de problemas reales
que requieren decisiones binarias o de conteo, tales como la activación de uni-
dades generadoras, la asignación de recursos, o la planificación operativa de
sistemas complejos. Sin embargo, su resolución plantea importantes desaf́ıos
computacionales, especialmente cuando el número de variables enteras y las
restricciones del modelo aumentan considerablemente.

3.3. Despacho eléctrico como problema de opti-
mización

El despacho económico de generación es un problema clásico de optimización en
el sector energético, cuyo objetivo consiste en determinar, para cada peŕıodo, la
combinación de generación que permita satisfacer la demanda eléctrica al menor
costo posible, respetando las restricciones técnicas y operativas del sistema.

En sistemas con alta participación hidroeléctrica, la presencia de embalses intro-
duce un componente intertemporal que aumenta la complejidad del problema,
dado que las decisiones de operación afectan no solo el peŕıodo actual sino tam-
bién los siguientes. En términos generales, este tipo de modelos se caracteriza
por los siguientes elementos:

➢ Variables de decisión: potencia generada por unidad, caudal turbina-
do, volúmenes almacenados en embalses, entre otras.

➢ Restricciones: balance h́ıdrico, balance de enerǵıa, ĺımites de capacidad
de generación y almacenamiento, restricciones ambientales, entre otras.

➢ Función objetivo: minimización de costos operativos, maximización
del valor del recurso h́ıdrico, o penalizaciones asociadas a déficits o ex-
cedentes de generación, entre otros criterios.

Un ejemplo representativo es el modelo MIP planteado por (Risso, Nesmachnow,
y cols., 2024), en el que se basa este trabajo y cuya formulación se detalla en la
Sección 4.1.
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3.4. Programación orientada a objetos

La programación orientada a objetos (POO) constituye uno de los paradigmas
fundamentales en el desarrollo moderno de software. Su objetivo principal es
modelar los sistemas informáticos a partir de la estructura y el comportamiento
de entidades del mundo real, representadas mediante objetos que encapsulan
tanto datos como operaciones (Booch, 1991). Este enfoque promueve la mo-
dularidad, la reutilización del código y la escalabilidad de los sistemas, factores
decisivos en proyectos de ingenieŕıa de software de gran envergadura (Pressman,
2010).

3.4.1. Oŕıgenes y fundamentos conceptuales

El paradigma orientado a objetos surge como una evolución de la programación
estructurada, buscando superar las limitaciones de ésta en cuanto a la gestión de
la complejidad (Larman, 2004). Su origen se remonta a los años 1960 y 1970 con
lenguajes como Simula y Smalltalk, precursores de conceptos que más tarde
se consolidaŕıan en lenguajes ampliamente utilizados como C++, Java, Python
y C# (Kay, 1993).

Desde el punto de vista teórico, la POO se fundamenta en la idea de que un siste-
ma puede describirse mediante una colección de objetos que interactúan entre śı
mediante el env́ıo de mensajes. Cada objeto se considera una unidad autónoma
que combina estado (atributos o variables internas) y comportamiento (métodos
o funciones) (Meyer, 1997). Este modelo resulta especialmente compatible con
la abstracción jerárquica y el pensamiento modular, pilares del diseño orientado
a software mantenible y extensible (Sommerville, 2011).

3.4.2. Principios esenciales

Los principios esenciales de la POO son cuatro: abstracción, encapsulamiento,
herencia y polimorfismo (Gamma, Helm, Johnson, y Vlissides, 1995).

➢ Abstracción: consiste en identificar las caracteŕısticas y comportamien-
tos esenciales de una entidad, ignorando los detalles irrelevantes. Permite
construir modelos conceptuales que reflejan los aspectos más relevantes
del problema que se busca resolver (Booch, 1991).

➢ Encapsulamiento: implica ocultar los detalles internos de un objeto,
exponiendo únicamente una interfaz pública. Esto promueve la indepen-
dencia entre módulos y mejora la seguridad y mantenibilidad del código
(Meyer, 1997).

➢ Herencia: permite crear nuevas clases a partir de otras existentes, re-
utilizando y extendiendo su comportamiento. Este mecanismo fomenta
la generalización jerárquica y la reutilización de código (Gamma y cols.,
1995).
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➢ Polimorfismo: posibilita que diferentes clases implementen métodos
con el mismo nombre, pero con comportamientos distintos. De este mo-
do, los objetos pueden ser manipulados de manera uniforme, incremen-
tando la flexibilidad y extensibilidad del sistema (Larman, 2004).

3.4.3. Estructura y modelado en POO

En términos prácticos, la programación orientada a objetos se basa en tres
unidades básicas: clases, objetos e interfaces (Sommerville, 2011).

➢ Una clase define la estructura y el comportamiento de un conjunto de
objetos, actuando como una plantilla o molde.

➢ Un objeto es una instancia concreta de una clase, que mantiene su
propio estado y responde a mensajes según las reglas definidas por la
clase.

➢ Una interfaz establece un contrato que las clases pueden implemen-
tar, asegurando la compatibilidad entre componentes sin necesidad de
conocer sus detalles internos.

El modelado orientado a objetos suele representarse mediante diagramas UML
(Unified Modeling Language), herramienta estándar que facilita la comunicación
entre diseñadores, programadores y analistas (Fowler, 2004). En este contexto,
los diagramas de clases, de secuencia y de casos de uso resultan particularmen-
te relevantes para documentar las interacciones entre objetos y los flujos de
ejecución del sistema.

3.4.4. Patrones de diseño

Los patrones de diseño constituyen un conjunto de soluciones probadas y re-
utilizables a problemas recurrentes que aparecen durante el proceso de diseño de
software orientado a objetos (Gamma y cols., 1995). Su propósito no es propor-
cionar código reutilizable de forma directa, sino ofrecer estructuras conceptuales
que orienten al diseñador en la toma de decisiones de arquitectura y en la orga-
nización de las clases y sus interacciones.

Desde un punto de vista histórico, el concepto de patrón fue introducido por
(Alexander, Ishikawa, y Silverstein, 1977) en el ámbito de la arquitectura, y pos-
teriormente adoptado en la ingenieŕıa de software por el grupo conocido como
los Gang of Four (GoF): Erich Gamma, Richard Helm, Ralph Johnson y John
Vlissides (Gamma y cols., 1995). Su obra seminal, Design Patterns: Elements
of Reusable Object-Oriented Software, formalizó un catálogo de 23 patrones cla-
sificados según su propósito y alcance, estableciendo una terminoloǵıa común
que transformó el modo en que se diseña software orientado a objetos.

Clasificación general de los patrones

Los patrones de diseño se dividen en tres categoŕıas principales:
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➢ Patrones creacionales: proporcionan mecanismos para crear objetos
de manera controlada, promoviendo la flexibilidad y la independencia
respecto a las clases concretas. Ejemplos destacados incluyen Factory
Method, Abstract Factory, Builder y Singleton.

➢ Patrones estructurales: describen formas de componer clases y obje-
tos para formar estructuras más complejas, favoreciendo la reutilización
y el acoplamiento débil. Entre ellos se encuentran Adapter, Decorator,
Composite y Facade.

➢ Patrones de comportamiento: se enfocan en la interacción y comu-
nicación entre objetos, estableciendo modelos de colaboración estables y
escalables. Ejemplos t́ıpicos son Observer, Strategy, Command y State.

Esta clasificación permite seleccionar el patrón adecuado según la naturaleza
del problema, fomentando la coherencia arquitectónica y la mantenibilidad del
sistema.

3.4.5. Aplicaciones en el contexto del presente trabajo

En el diseño del sistema desarrollado en este trabajo se identifican tres patrones
de diseño fundamentales: Facade, Singleton y Strategy. Estos se detallarán
a continuación.

Patrón Facade

El patrón Facade tiene como propósito proporcionar una interfaz unificada que
agrupe la funcionalidad de uno o varios subsistemas complejos, de modo que el
usuario pueda interactuar con el sistema a través de un único punto de acceso.
Este patrón busca ocultar la complejidad interna y reducir el acoplamiento entre
los componentes, promoviendo una estructura de software más clara y modu-
lar (Gamma y cols., 1995).

A través de una fachada, se encapsula la interacción con las clases subyacen-
tes y se simplifica el uso de un sistema amplio o jerárquico. De esta forma, el
cliente no necesita conocer la estructura interna de los subsistemas ni sus in-
terdependencias, lo cual facilita la reutilización del código y la sustitución de
componentes internos sin afectar al exterior.
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Cliente

Fachada

Subsistema A Subsistema B Subsistema C

Figura 3.1: Diagrama UML del patrón Facade.

El patrón Facade se aplica t́ıpicamente cuando un sistema contiene múltiples
subsistemas con interfaces complejas, y se requiere un único punto de entrada
que oculte esa complejidad al usuario externo.

Patrón Singleton

El patrón Singleton tiene como finalidad garantizar que una clase posea una úni-
ca instancia durante toda la ejecución del programa, proporcionando además un
punto de acceso global a dicha instancia (Gamma y cols., 1995). Este enfoque
resulta adecuado en situaciones donde es necesario coordinar acciones desde un
único objeto compartido, como en la gestión de recursos globales o configura-
ciones centrales.

La implementación clásica de este patrón consiste en declarar el constructor de
la clase como privado y ofrecer un método estático que controle la creación y el
acceso a la instancia única, evitando aśı su duplicación.

Singleton
- instancia : Singleton
+ getInstance() : Singleton
+ operacion()

Cliente

usa

Figura 3.2: Diagrama UML del patrón Singleton.
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Patrón Strategy

El patrón Strategy define una familia de algoritmos o comportamientos inter-
cambiables, encapsulando cada uno en una clase independiente que implementa
una interfaz común (Gamma y cols., 1995; Larman, 2004). Este patrón permite
variar el comportamiento de un objeto de manera dinámica, sin modificar su
estructura interna, y favorece la extensión del sistema mediante el principio de
apertura/cierre.

Su aplicación se fundamenta en el uso del polimorfismo: el objeto que utiliza
la estrategia mantiene una referencia a una interfaz abstracta, mientras que las
implementaciones concretas representan las diferentes variantes del algoritmo.

Contexto
- estrategia : IEstrategia
+ setEstrategia(e: IEstrategia)
+ ejecutar()

IEstrategia
+ operar()

EstrategiaA
+ operar()

EstrategiaB
+ operar()

usa

Figura 3.3: Diagrama UML del patrón Strategy.

El patrón Strategy promueve la flexibilidad y la reutilización del código, per-
mitiendo sustituir algoritmos sin modificar la estructura de las clases que los
utilizan.
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Caṕıtulo 4

Desarrollo e
implementación del modelo

Este caṕıtulo describe el desarrollo técnico del proyecto de manera unificada. En
primer lugar, se presenta la formulación de Programación Entera Mixta propues-
ta en (Risso, Nesmachnow, y cols., 2024), detallando sus elementos fundamenta-
les y su interpretación operativa. A partir de esta formulación, se implementó un
prototipo inicial en Python que permitió validar el modelo, analizar su compor-
tamiento y asegurar la consistencia de los resultados. Con esta base, se diseñó
una arquitectura modular en C++ que integra la formulación y posibilita su uso
en un entorno mantenible, extensible y adecuado para una futura evolución del
sistema.

4.1. Formulación matemática del modelo

La formulación del modelo MIP presentado en (Risso, Nesmachnow, y cols.,
2024) describe de manera integrada la operación de las tres represas principales
del sistema —Bonete, Baygorria y Palmar— incorporando tanto las variables
hidráulicas y energéticas más relevantes como las restricciones operativas asocia-
das. El modelo combina variables continuas, tales como volúmenes almacenados,
caudales turbinados y vertidos, con funciones de producción originalmente no
lineales, las cuales se aproximan mediante tramos lineales para su tratamiento
computacional. Además, incluye términos que penalizan el incumplimiento de
la demanda eléctrica y representan el costo de oportunidad derivado del uso del
recurso h́ıdrico embalsado.

Formalmente el MIP se define de la siguiente manera:
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

mı́n
xih,yih,vih

ca1h(v1h,0 − v1h,T ) + ca3h(v3h,0 − v3h,T ) + CF

T∑
t=1

(dt − gh,t)

dt ≥ gh,t, (i)
gh,t = g1h,t + g2h,t + g3h,t, (ii)

g1h,t = Pt ˆBon(x1h,t, y1h,t, v1h,t), (iii)

g2h,t = Pt ˆBay(x2h,t, y2h,t, v3h,t), (iv)

g3h,t = Pt ˆPal(x3h,t, y3h,t, v3h,t), (v)
v1h,t = v1h,t−1 + 3600(a1h,t − x1h,t − y1h,t), (vi)
x2h,t + y2h,t = a2h,t + x1h,t−8 + y1h,t−8, (vii)
v3h,t = v3h,t−1 + 3600(a3h,t − x3h,t − y3h,t + x2h,t−16 + y2h,t−16), (viii)
(xih, yih, vih) ∈ (X,Y, V ), (ix)

Para facilitar la interpretación de la notación empleada, se resumen a continua-
ción los principales parámetros y variables del modelo:

Tabla 4.1: Parámetros y variables del modelo de optimización

Parámetros

caih Costo del agua en la central
i [USD/m3].

CF Penalización por demanda
no satisfecha [USD/MWh].

dt Demanda de enerǵıa en la
hora t [MW].

T Horizonte temporal del mo-
delo [horas].

aih,t Aportes h́ıdricos a la central
i en la hora t [m3/s].

PtB̂on(·) Producción aproximada de
Bonete [MW].

PtB̂ay(·) Producción aproximada de
Baygorria [MW].

PtP̂al(·) Producción aproximada de
Palmar [MW].

Variables

xih,t Caudal turbinado en la central i
en la hora t [m3/s].

yih,t Caudal vertido en la central i en
la hora t [m3/s].

vih,t Volumen almacenado en el embal-
se de la central i en la hora t [m3].

gih,t Enerǵıa generada por la central i
en la hora t [MW].

gh,t Enerǵıa total generada por el
complejo en la hora t [MW].

vih,0 Volumen inicial del embalse de la
central i [m3].

vih,T Volumen final del embalse de la
central i [m3].
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Finalmente, se indica a continuación la correspondencia entre los sub́ındices ih
del modelo y las centrales hidroeléctricas del sistema:

Subindice ih Central hidroeléctrica
1h Rincón del Bonete
2h Baygorria
3h Palmar

A partir de la formulación presentada, se procede al análisis detallado de sus
componentes, comenzando por la función objetivo y continuando con las res-
tricciones que describen el comportamiento operativo del sistema.

Función objetivo

La función objetivo busca minimizar el costo total de operación del sistema
hidroeléctrico a lo largo del horizonte temporal considerado. Este costo se des-
compone en tres componentes principales:

ca1h(v1h,0 − v1h,T ) + ca3h(v3h,0 − v3h,T ) + CF

T∑
t=1

(dt − gh,t)

El primer término representa el valor económico del agua utilizada en la central
de Bonete, al considerar la diferencia entre el volumen inicial y final del embalse
ponderada por su costo de oportunidad ca1h (USD/m3). El segundo término es
equivalente, pero aplicado a la central de Palmar. Ambos reflejan la intención
de preservar agua embalsada cuando su uso no sea necesario, dado su valor po-
tencial futuro.

El tercer término penaliza la demanda no satisfecha en cada peŕıodo t, calcu-
lando la diferencia entre la demanda requerida dt (MW) y la generación total
gh,t (MW). Esta penalización se acumula a lo largo del horizonte y se multi-
plica por un parámetro CF (USD/MWh), que representa el costo asociado al
incumplimiento del suministro eléctrico.

Restricciones

El modelo está sujeto a un conjunto de restricciones que reflejan las caracteŕısti-
cas f́ısicas, técnicas y operativas del sistema hidroeléctrico en cascada.

Restricción (i)
Se establece que la generación no debe superar la demanda en cada peŕıodo, es
decir, gh,t ≤ dt;∀t. Esto garantiza un despacho factible desde el punto de vista
del sistema eléctrico.

Restricción (ii)
En este caso, se define que la producción total gh,t (MW) resulta de la suma de
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las enerǵıas generadas por cada una de las tres centrales: Bonete, Baygorria y
Palmar.

Restricciones (iii), (iv) y (v)
En este conjunto de restricciones se modela la producción hidráulica de cada
una de las tres centrales del Complejo del Ŕıo Negro—Bonete, Baygorria y
Palmar—, estableciendo la relación entre la enerǵıa generada gih,t (MW) y las
variables f́ısicas que la determinan: el caudal turbinado xih,t (m

3/s), el vertido
yih,t (m

3/s) y el volumen almacenado vih,t (m
3) en cada instante t.

Dado que la conversión de enerǵıa potencial en potencia eléctrica es intŕınseca-
mente no lineal, especialmente por su dependencia simultánea de la altura del
embalse y del nivel del ŕıo aguas abajo, es que adoptaron una formulación fun-
cional cuadrática calibrada con parámetros técnicos espećıficos de cada central,
la cuál se detalla en (Risso y cols., 2025) y se describe a continuación.

En condiciones hidrológicas normales o secas, la producción de potencia hidráuli-
ca puede aproximarse mediante las expresiones:

P̂Bon
t = (p̂

(1)
1h x1h,t − p̂

(4)
1h x

2
1h,t) + (p̂

(2)
1h v1h,t − p̂

(3)
1h v

2
1h)x1h,t,

P̂Bay
t = (p̂

(1)
2h x2h,t − p̂

(2)
2h x

2
2h,t)− (p̂

(3)
2h v3h,t − p̂

(4)
2h v

2
3h,t)x2h,t,

P̂Pal
t = (p̂

(1)
3h x3h,t − p̂

(4)
3h x

2
3h,t) + (p̂

(2)
3h v3h,t − p̂

(3)
3h v

2
3h,t)x3h,t,

(4.1)

donde los parámetros p̂
(j)
ih > 0 representan rendimientos promedio o coeficientes

técnicos obtenidos a partir de la operación real de las plantas.

Los primeros términos de cada paréntesis en (4.1) constituyen funciones cónca-
vas en el caudal turbinado. Dado que su inclusión directa rompeŕıa la linealidad
del modelo, se las aproxima mediante un conjunto de tangentes precomputadas,
garantizando un error despreciable y preservando la convexidad del sistema. Sea
zjh,t una variable auxiliar que representa la envolvente de estas tangentes; su
definición surge del siguiente conjunto de desigualdades:

zjh,t ≤ r̂
(1)
jh xjh,t,

zjh,t ≤ r̂
(2)
jh xjh,t + ŝ

(2)
jh ,

zjh,t ≤ r̂
(3)
jh xjh,t + ŝ

(3)
jh ,

(4.2)

donde r̂
(k)
jh y ŝ

(k)
jh corresponden a las pendientes e interceptos de las tangentes

que aproximan la relación entre potencia y caudal para cada planta j. Este pro-
cedimiento produce una envolvente poligonal cóncava que sustituye a la relación
cuadrática original, permitiendo su incorporación dentro de un modelo lineal en-
tero mixto. La Figura 4.1 ilustra esta aproximación: la curva roja representa la
función cóncava original de producción, las rectas corresponden a las tangen-
tes calculadas en puntos caracteŕısticos, y la ĺınea azul muestra la envolvente
resultante empleada en el modelo.
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Figura 4.1: Producción hidráulica normalizada: curva real (rojo), tangentes en puntos
caracteŕısticos (cian) y aproximación lineal capturada (azul). Figura obtenida de (Risso y
cols., 2025).

Los segundos términos del lado derecho de (4.1), en cambio, capturan el rendi-
miento incremental por altura del embalse, es decir, la variación adicional en la
generación asociada al aumento del nivel del lago. Este efecto se considera sig-
nificativo en Bonete y Palmar, pero despreciable en Baygorria. Para reflejarlo,
se define la potencia total generada en dichas centrales como:

gjh,t = zjh,t +

3∑
i=1

θ
(i)
jh,t, j ∈ {1, 3}, (4.3)

donde las variables θ
(i)
jh,t ≥ 0 representan incrementos discretos de producción

asociados al aumento de la altura del embalse sobre umbrales de discretización.

En el caso de Bonete, la dinámica de activación de estos incrementos se modela
mediante el siguiente conjunto de restricciones:


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2
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0 ≤ θ
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(2)
1h∆V 1h3− p̂
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1h∆V 1h3

2
)x1h,t,

0 ≤ θ
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1h,t ≤ 680 (p̂

(2)
1h∆V 1h3− p̂

(3)
1h∆V 1h3

2
)φ

(2)
1h,t,

(4.4)

donde la constante 680 [m3/s] representa la máxima turbinación admisible en

Bonete. Las variables φ
(k)
1h,t determinan la activación secuencial de los tramos de

altura, según el volumen actual v1h,t (m
3) del embalse:
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
φ
(1)
1h,t ≤ 1− V 1h2− v1h,t

M1
,

φ
(2)
1h,t ≤ 1− V 1h3− v1h,t

M1
,

(4.5)

siendo M1 un parámetro suficientemente grande que evita activaciones espurias
y garantiza la correcta linealización lógica del sistema. Para establecer el orden
de activación de estas variables, se incluye la siguiente restricción:

φ
(2)
1h,t ≤ φ

(1)
1h,t (4.6)

Por otro lado, en Baygorria, al tratarse de una planta de pasada sin capacidad
de almacenamiento, el segundo término de (4.1) no aplica, simplificándose a:

g2h,t = z2h,t (4.7)

Finalmente, en el caso de Palmar, la formulación es análoga, aunque con un
nivel de discretización más fino debido a la mayor capacidad de regulación del
embalse. Aśı para el segundo término en (4.1) se plantean las siguientes restric-
ciones: 
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(1)
3h,t,

0 ≤ θ
(3)
3h,t ≤ (p̂23,hV 3h3− p̂33,hV 3h32)x3h,t,

0 ≤ θ
(3)
3h,t ≤ 1380 (p̂23,hV 3h3− p̂33,hV 3h32)φ

(2)
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0 ≤ θ
(4)
3h,t ≤ (̂p̂23,hV 3h4− p̂33,hV 3h42), x3h,t,

0 ≤ θ
(4)
3h,t ≤ 1380 (p̂23,hV 3h4− p̂33,hV 3h42)φ

(3)
3h,t,

0 ≤ θ
(5)
3h,t ≤ (p̂23,hV 3h5− p̂33,hV 3h52)x3h,t,

0 ≤ θ
(5)
3h,t ≤ 1380 (p̂23,hV 3h5− p̂33,hV 3h52)φ

(4)
3h,t,

(4.8)

donde la constante 1380 [m3/s] representa la máxima turbinación admisible en
Palmar.

Las variables binarias φ
(i)
3h,t determinan la activación secuencial de los distintos

niveles del embalse, en función del volumen almacenado v3h,t (m
3):

φ
(1)
3h,t ≤ 1− V 3h2−v3h,t

M3 ,

φ
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(4.9)
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siendo M3 un parámetro suficientemente grande que garantiza la correcta linea-
lización de las relaciones lógicas. Para asegurar la activación ordenada de los
niveles discretos, se imponen además las restricciones:

φ
(4)
3h,t ≤ φ

(3)
3h,t ≤ φ

(2)
3h,t ≤ φ

(1)
3h,t. (4.10)

Estas restricciones garantizan que los tramos superiores del embalse solo puedan
activarse cuando los niveles inferiores ya se encuentran operativos.

El conjunto de ecuaciones (4.2)–(4.10) completa la descripción de las restriccio-
nes (iii)–(v).

En śıntesis, la formulación traduce la f́ısica no lineal de la producción hidráulica
del complejo en un sistema lineal equivalente, combinando:

(i) una aproximación por tangentes para la parte cóncava en el caudal turbi-
nado, y

(ii) un esquema de activación por niveles discretos para capturar el efecto de
altura del embalse.

Restricciones (vi), (vii) y (viii)
La dinámica del volumen en cada embalse se modela mediante las restricciones
(vi), (vii) y (viii). En Bonete (vi), el volumen al instante t resulta del volumen
en t − 1, más los aportes h́ıdricos registrados, menos el caudal turbinado y el
vertido. En Baygorria (vii), además de sus propios aportes, se incorpora el agua
proveniente de Bonete con un rezago de 8 horas, reflejando su ubicación aguas
abajo. Finalmente, Palmar (viii) recibe también aportes diferidos desde Baygo-
rria con un rezago de 16 horas, además de su aporte natural y de las salidas por
turbinado y vertido.

Restricciones (ix)
Finalmente, esta restricción impone que las variables de decisión —caudal tur-
binado xih,t (m3/s), vertido yih,t (m3/s) y volumen almacenado vih,t (m3)—
respeten los ĺımites técnicos y f́ısicos de operación de cada central. En términos
prácticos, estos conjuntos (X,Y, V ) representan restricciones simples de cota:

xmı́n
ih,t ≤ xih,t ≤ xmáx

ih,t , ymı́n
ih,t ≤ yih,t ≤ ymáx

ih,t , vmı́n
ih,t ≤ vih,t ≤ vmáx

ih,t , ∀i, t

donde los ĺımites inferior y superior corresponden a las capacidades hidráulicas
máximas de turbinado y vertido para cada planta, aśı como a los volúmenes
mı́nimo y máximo admisibles de cada embalse. Estas restricciones garantizan
que la operación resultante sea técnica y f́ısicamente factible.
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Detalles adicionales

El modelo completo incorpora funciones de producción no lineales para las cen-
trales de Bonete, Baygorria y Palmar, dependientes del volumen almacenado,
del caudal turbinado y del vertido. En cambio, la versión MIP reemplaza dichas
relaciones por aproximaciones lineales por tramos, lo que permite conservar la
estructura lineal del modelo y asegurar su resolubilidad mediante técnicas de
Programación Entera Mixta.

Como resultado de esta simplificación, la solución obtenida no necesariamente
coincide con la que se derivaŕıa del modelo no lineal original. Por esta razón,
una vez resuelto el MIP se lleva a cabo un ajuste posterior de los niveles de
turbinación y vertido, de modo que la generación estimada sea consistente con
las funciones de producción reales de cada central hidroeléctrica. Este proce-
dimiento permite verificar la factibilidad hidráulica del despacho propuesto y
obtener una estimación más precisa del valor de la función objetivo, bajo las
condiciones operativas efectivas del sistema.

Debido a ello, una vez obtenida la solución, esta debe posprocesarse para realizar
el ajuste correspondiente.

4.2. Validación del modelo mediante prototipo
en Python

Con el objetivo de validar la formulación del MIP detallado anteriormente y com-
prender su dinámica operativa, se desarrolló un prototipo funcional en Python,
empleando la biblioteca Pyomo por su flexibilidad, compatibilidad con múltiples
solvers y amplia adopción en el ámbito académico. El desarrollo se apoyó en una
base de código fuente proporcionada por el supervisor Ignacio Ramı́rez, alojada
en un repositorio privado de GitLab, correspondiente al proyecto del Convenio
UTE–IIE–INCO 2023. Esta base, que utilizaba la biblioteca python-mip y el
solver abierto CBC, sirvió como punto de partida para la implementación y
adaptación de las funcionalidades requeridas en el prototipo.

Esta primera etapa permitió verificar la consistencia del modelo y su correc-
ta implementación mediante la comparación con un conjunto de 204 instancias
previamente resueltas por el equipo de investigación original. Cada una de estas
instancias inclúıa tanto la formulación como la solución óptima obtenida, lo que
permitió realizar una validación cruzada precisa. La reproducibilidad fue un as-
pecto central del desarrollo, garantizando que el sistema fuera capaz de cargar
escenarios, ejecutar distintos solvers y generar resultados consistentes con los
casos de referencia.

El prototipo se estructuró de forma modular, con un diseño orientado a fun-
ciones independientes pero interconectadas. El código principal, contenido en el
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archivo main.py, coordina la ejecución general del sistema e integra los distintos
módulos. Este componente actúa como punto de entrada e interfaz de usuario,
permitiendo seleccionar instancias de prueba, configurar parámetros y visualizar
resultados a través de un menú interactivo por terminal.

La lectura y organización de los datos de entrada se implementó en el módu-
lo cargar instancia.py, encargado de procesar archivos de texto o compri-
midos (.gz) y construir una estructura unificada de información denominada
instancia. Este diccionario reúne los aportes h́ıdricos a los embalses, la deman-
da horaria, los volúmenes iniciales y finales, y los costos asociados a la operación
del complejo. A continuación, el módulo pre procesamiento.py transforma di-
cha información en un conjunto de parámetros listos para ser utilizados por el
modelo de optimización, incorporando ĺımites técnicos, coeficientes hidráulicos
y constantes de operación.

La representación matemática del problema fue implementada en el módulo
construir modelo.py, donde se definen los conjuntos, variables, restricciones
y la función objetivo siguiendo la formulación del MIP. Este módulo traduce la
estructura f́ısica y operativa del sistema hidroeléctrico en un modelo algebraico
compatible con Pyomo, que puede resolverse con diferentes solvers. La gestión
de estos solvers se realiza a través del módulo ejecutar solver.py, que per-
mite seleccionar entre opciones abiertas como CBC o comerciales como Gurobi
y CPLEX, controlando el proceso completo de resolución y el manejo de los
resultados.

Una vez obtenida la solución, el módulo verificar solucion.py se encarga de
validar los valores óptimos calculados, comparándolos con los resultados espera-
dos de las instancias originales. Posteriormente, pos procesamiento.py ajusta
y refina los resultados del solver, corrigiendo posibles discrepancias respecto a
las demandas horarias y los ĺımites hidráulicos. En esta etapa se calculan las
potencias efectivas de cada central y se reconstruye la trayectoria de operación
del complejo hidroeléctrico. Finalmente, el módulo guardar resultados.py al-
macena los resultados en formato de texto o CSV, con una estructura tabular
estandarizada que facilita su análisis posterior.

El prototipo desarrollado cumplió su propósito de validar la formulación ma-
temática y sentó las bases conceptuales y estructurales para el posterior desarro-
llo en C++. La experiencia adquirida en esta etapa permitió afinar la comprensión
del modelo, consolidar criterios de diseño modular y definir una metodoloǵıa de
trabajo que guiaŕıa la implementación final del sistema. Además, este entorno
de experimentación temprana ofreció la oportunidad de analizar el desempeño
de distintas estrategias de resolución, permitiendo evaluar comparativamente el
comportamiento de diversos solvers en instancias reales del problema.

Durante esta etapa se evaluaron tres solvers de optimización: CBC, CPLEX
y Gurobi. El análisis se centró exclusivamente en los tiempos de ejecución al
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resolver 204 instancias del modelo, manteniendo fija su estructura y variando
únicamente los datos de entrada. Todas las pruebas se realizaron en el entorno
descrito en la Sección 5.3.

Los resultados evidenciaron diferencias claras en la velocidad de resolución en-
tre los solvers. Gurobi y CPLEX obtuvieron los mejores tiempos, resolviendo
las instancias de manera eficiente. CBC presentó el peor desempeño entre los
tres, aunque se mantiene como una alternativa de código abierto.

A continuación se presenta un resumen de los tiempos mı́nimos, promedio y
máximos observados para cada solver.

Tabla 4.2: Resumen de tiempos de ejecución por solver

Solver Tiempo mı́nimo(s) Tiempo promedio(s) Tiempo máximo(s)

CBC 4,2 184.462625 3167.52
Gurobi 0,58 9,540784 174,97
CPLEX 0,51 6,994411 181,41

Con el objetivo de garantizar un criterio homogéneo de comparación, todos los
solvers fueron configurados con un conjunto común de parámetros: una toleran-
cia relativa de optimalidad (MIP Gap) del 0,1% y el uso de todos los núcleos
disponibles del procesador. El entorno de cómputo empleado se describe en el
Caṕıtulo 5.

Cabe señalar que, se pueden establecer ĺımites de tiempo para las ejecuciones
ya que el solver encontraba soluciones factibles de buena calidad sin alcanzar la
verificación formal de optimalidad. Este comportamiento es habitual en entor-
nos de optimización aplicada, donde, además de las restricciones temporales, la
naturaleza no convexa del problema puede impedir la certificación exacta del
óptimo global. En estos contextos, se prioriza obtener soluciones suficientemente
buenas en tiempos razonables por sobre la certificación matemática exacta de
optimalidad, especialmente en escenarios operativos donde las decisiones deben
tomarse bajo estrictas limitaciones de tiempo.

Una vez construido el modelo matemático, el sistema permite al usuario selec-
cionar el solver deseado, el cual ejecuta el proceso de resolución respetando los
parámetros definidos. Los resultados obtenidos son luego almacenados, procesa-
dos y comparados con soluciones previamente validadas, lo que permite evaluar
tanto la calidad de la solución como la consistencia de la implementación.

Durante la experimentación con las 204 instancias, se observó que el margen
de error entre las soluciones obtenidas por el sistema y las soluciones originales
proporcionadas por el equipo de investigación fue en todos los casos inferior al
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1%.

4.3. Arquitectura computacional e implementa-
ción en C++

Finalizada la fase de validación del modelo, esta etapa del proyecto se orienta al
diseño e implementación de una herramienta computacional flexible y eficiente,
capaz de formular y resolver el MIP definido previamente. El objetivo principal
es disponer de una plataforma que permita obtener soluciones de manera con-
sistente y que, a su vez, facilite la incorporación de nuevas funcionalidades, la
elección del solver y la adaptación de la estructura del modelo según las necesi-
dades del usuario.

Para cumplir con estos objetivos, se optó por una implementación en C++ con
un enfoque orientado a objetos. Si bien la mayor carga computacional recae en
los solvers externos cómo se verá en Caṕıtulo 5 (Experimentación), el uso de
C++ permite una estructura modular y un control preciso de los componen-
tes del sistema (gestión de datos, formulación del modelo, interfaz con el solver
y manejo de resultados), favoreciendo una implementación clara, mantenible y
fácilmente extensible. Además, este entorno de desarrollo resulta familiar para
el equipo, lo cual contribuyó a un avance más eficiente en la construcción de la
herramienta.

El diseño general de este software se estructura en torno a una arquitectura
sencilla pero escalable, organizada en módulos bien definidos, lo que permite
abstraer la lógica del modelo de optimización del resto del sistema, facilitando
tareas como la incorporación de nuevas unidades generadoras, la implementa-
ción de restricciones adicionales o el cambio del solver sin alterar el núcleo del
programa.

A continuación, se detallan las funcionalidades espećıficas de cada clase y sus
responsabilidades dentro del flujo de ejecución. Posteriormente, se expone el
proceso de uso estándar del sistema, desde la carga de datos hasta la visualiza-
ción de resultados, incluyendo los comandos disponibles para el usuario.

En las secciones finales se presentan dos extensiones desarrolladas para mos-
trar la flexibilidad del software. La primera consiste en incorporar una unidad
térmica adicional que no formaba parte de la formulación original del modelo. La
segunda introduce un costo del agua de Bonete con comportamiento no lineal,
junto con un costo de falla proporcional a la demanda. Ambas modificaciones se
presentan como ejemplos de cómo el diseño modular adoptado permite realizar
ajustes estructurales sin reescribir componentes centrales del sistema.
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4.3.1. Diagrama general de clases

La Figura 4.2 ofrece una visión general de la arquitectura del sistema imple-
mentado en C++, desarrollada para abordar el problema de MIP planteado.

Figura 4.2: Esquema conceptual basado en una simplificación del modelo UML

El diseño se basó en la idea de mantener separados distintos componentes lógicos
del sistema: agentes del modelo (generación y demanda), estrategias de despa-
cho, representación del problema de optimización y elementos auxiliares como
variables y funciones objetivo.

En la sección siguiente se describe en detalle el rol de cada clase, sus responsabi-
lidades y la forma en que interactúan dentro del flujo de ejecución del sistema.

4.3.2. Descripción de clases y responsabilidades

SystemController

Constituye el núcleo funcional de la arquitectura implementada. Su diseño como
singleton garantiza una única instancia global que centraliza el control del siste-
ma durante toda la ejecución, coordinando los módulos de agentes, despacho y
resolución. A través de esta clase se canaliza toda la interacción con el sistema,
permitiendo al usuario inicializar el entorno de ejecución, incorporar agentes de
generación y demanda, seleccionar la estrategia de despacho y definir el solver
con el cual se formulará y resolverá el modelo de optimización.

A través de esta clase se organiza el flujo de trabajo completo, desde la configura-
ción del horizonte de planificación hasta la ejecución del modelo o la generación
del archivo correspondiente, manteniendo separadas las responsabilidades de los
distintos componentes internos.
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Agentes

Agrupa a las entidades activas que intervienen en el sistema eléctrico modelado,
abarcando tanto a las unidades generadoras como a las demandas. Esta clase
se define como abstracta y establece una interfaz común que deben implemen-
tar sus subclases, lo que permite una representación homogénea, extensible y
coherente de los distintos actores del sistema. En la implementación actual del
proyecto, se han desarrollado dos especializaciones concretas: Generación, que
modela agentes generadores, y Demanda, que representa agentes de demanda.

Cada agente dispone de una función que recibe como argumento una instancia de
la clase Problema. Mediante esta función, el agente actualiza el objeto, incorpo-
rando sus contribuciones operativas: variables, restricciones, términos binarios
y aportes a la función objetivo. Esta interacción ocurre de manera dinámica
cuando el SystemController lo solicita, especialmente durante las etapas de
grabación —en la que el modelo construido se exporta a un formato estándar
de programación matemática, como .lp o .mps, ampliamente utilizados por sol-
vers comerciales y de código abierto— y resolución —donde el solver procesa el
archivo y ejecuta el algoritmo de optimización—, cuya descripción detallada se
presenta más adelante.

Adicionalmente, cada agente posee un identificador global y un identificador es-
pećıfico según su tipo (generación o demanda), lo cual permite distinguir su rol
funcional dentro del sistema y habilita la construcción agregada de restricciones
comunes. Esta distinción será especialmente relevante al momento de definir el
despacho conjunto de generación y demanda.

El sistema base desarrollado incluye una instancia de RioNegro como agente
de generación hidráulica, y una instancia de DemandaFija que representa la
demanda residual conocida en cada instante temporal.

Despacho

La responsabilidad principal de esta clase es la construcción de las restricciones
que articulan la interacción entre los agentes de generación y demanda. A través
de este componente se definen las condiciones que regulan el equilibrio entre la
oferta y la demanda de enerǵıa, las cuales se integran posteriormente al modelo
de optimización global.

Cuando se indica a SystemController que configure un despacho espećıfico,
este le comunica a la clase Despacho la cantidad de unidades generadoras y los
agentes de demanda activos en el sistema. Esta distinción resulta fundamental
para la formulación del modelo:

➢ Generación: cada agente generador incorpora una variable de decisión
gi(t) asociada a su producción en cada peŕıodo. Por tanto, el número de
unidades generadoras determina directamente la cantidad de variables
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de este tipo en el modelo.

➢ Demanda: cada agente de demanda aporta un vector temporal prede-
finido. Estos valores actúan únicamente como parámetros: el despacho
los consulta y suma en cada peŕıodo, sin introducir nuevas variables en
la formulación.

De esta manera, la estructura del modelo permanece fija: aumentan las variables
únicamente cuando se incorporan nuevos generadores, mientras que el número
de agentes de demanda afecta únicamente los valores paramétricos de entrada.

Formalmente:

g(t) =

n∑
i=1

gi(t), d(t) =

m∑
j=1

dj(t)

donde cada gi(t) es una variable de decisión de generación, mientras que cada
dj(t) corresponde a la entrada del vector de demanda del agente j en el peŕıodo t.

De esta manera, el módulo Despacho permite preservar de forma estructurada
restricciones fundamentales del modelo MIP, como la condición (i), que estable-
ce que la generación total debe ser menor o igual que la demanda total en cada
peŕıodo.

De forma análoga al comportamiento de los agentes, el módulo Despacho contri-
buye al modelo de optimización actualizando la instancia de la clase Problema

con las restricciones que le son propias. El SystemController solicita estas ac-
tualizaciones de manera dinámica durante la construcción del modelo global, en
las etapas de grabación o resolución, y Despacho incorpora las contribuciones
correspondientes al modelo siguiendo la misma dinámica que los agentes.

Actualmente, el sistema cuenta con una implementación inicial denominada
DespachoFijo, pensada para escenarios en los que la penalización por deman-
da no satisfecha se modela a través de un costo fijo por unidad de enerǵıa no
entregada. Esta implementación respeta la lógica del modelo MIP original y es-
tablece un criterio simple pero efectivo para evaluar la asignación de generación.

Cabe destacar que la arquitectura modular adoptada permite extender este
módulo con nuevas estrategias de despacho como se mostrará en la Subsec-
ción 4.3.5.

Problema

Esta clase constituye el núcleo de la formulación computacional del modelo de
optimización. Su función principal es consolidar las aportaciones de los distin-
tos módulos del sistema —agentes y despacho— en una estructura unificada que
representa el problema completo a resolver. Para ello, proporciona una interfaz
que permite añadir variables, restricciones, términos binarios y contribuciones
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a la función objetivo, los cuales, como se describió anteriormente, se incorporan
de manera dinámica durante las etapas de construcción o resolución del modelo.

Esta clase cuenta con dos operaciones centrales: grabar y resolver. El método
grabar permite generar un archivo especificando la ruta de destino y el tipo de
formato deseado, de modo que el modelo pueda ser interpretado por diversos
solvers externos. Por su parte, el método resolver ejecuta el proceso de opti-
mización utilizando el solver seleccionado por el usuario, imprime los resultados
en pantalla y almacena la solución obtenida. De esta manera, Problema no solo
construye el modelo, sino que también conserva los valores óptimos de todas las
variables, los cuales son utilizados posteriormente en el proceso de posprocesa-
miento, donde se genera la solución final del sistema.

Para mantener la independencia respecto del solver utilizado, la clase Problema
se especializa en distintas subclases concretas, cada una asociada a un solver es-
pećıfico: ProblemaLp, ProblemaCbc, ProblemaCplex y ProblemaGurobi. Esta
organización permite conservar una interfaz común y un flujo de trabajo uni-
forme, mientras se delega a cada subclase la traducción e interacción concreta
con el motor de optimización correspondiente.

La clase ProblemaLp cumple un rol exclusivamente descriptivo: permite generar
archivos en formato .lp, sin ofrecer funcionalidades de resolución. Su utilidad
principal radica en facilitar la inspección del modelo formulado o su utilización
en entornos externos.

Las restantes subclases —ProblemaCbc, ProblemaCplex y ProblemaGurobi—
encapsulan la lógica necesaria para interactuar directamente con las interfaces
nativas de cada solver. Para ello, traducen internamente la representación abs-
tracta del modelo a un formato compatible con el solver correspondiente, ya sea
para almacenarlo en disco o para ejecutarlo directamente. La responsabilidad
de generar los archivos espećıficos o resolver el modelo recae en cada una de
estas subclases, de acuerdo con las capacidades del solver subyacente.

Los resultados permiten evaluar el rendimiento relativo de los solvers bajo con-
diciones homogéneas de ejecución. Como se muestra en la Tabla 4.2, los solvers
comerciales Cplex y Gurobi obtienen los mejores tiempos de resolución. En
términos de desempeño promedio, Cplex presenta una ligera ventaja, mientras
que Gurobi alcanza tiempos mı́nimos marginalmente menores, con diferencias
reducidas en los tiempos máximos observados. Estas variaciones sugieren que
ambos solvers son altamente competitivos para este tipo de problemas.

El solver Cbc, de código abierto, exhibe tiempos superiores en relación con las
alternativas comerciales, aunque continúa siendo una opción sólida en contex-
tos donde la accesibilidad y la ausencia de costos de licenciamiento son factores
relevantes.
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Cabe señalar que tanto Cplex como Gurobi ofrecen licencias académicas gratui-
tas, lo que facilita su utilización en entornos universitarios y de investigación, sin
perjuicio de las ventajas que implica disponer también de alternativas abiertas
como Cbc.

Finalmente, las clases auxiliares —Variable, Binario, Restricción y AporteFun-
cionObjetivo— complementan el funcionamiento de Problema, proporcionando
los mecanismos necesarios para almacenar y manipular los elementos básicos del
problema.

4.3.3. Flujo de uso del sistema

El sistema desarrollado sigue un flujo de ejecución interactivo mediante una in-
terfaz de comandos, diseñado para guiar al usuario a lo largo de las distintas
etapas del proceso: inicialización del entorno, configuración de agentes, creación
de despachos, selección de solver y grabación o resolución de problemas. La Fi-
gura 4.3 ilustra gráficamente estas etapas del flujo operativo, mientras que la
Tabla 4.3 presenta un resumen de los comandos disponibles, indicando su sin-
taxis y la función espećıfica que cumplen dentro del ciclo de operación.

Estructura general de la interacción
La interacción con el sistema se realiza exclusivamente a través de una interfaz
de ĺınea de comandos (CLI, por sus siglas en inglés), lo que permite una opera-
ción directa, sin intermediarios gráficos. Cada comando ingresado es gestionado
por la función central procesarComando, que desempeña el rol de coordinador
principal: esta función analiza la entrada textual, verifica su validez sintáctica,
y canaliza la ejecución hacia el método correspondiente del controlador general
del sistema (SystemController).

Este enfoque modular, orientado a comandos, asegura un control estructura-
do del ciclo de vida del sistema, previniendo ejecuciones fuera de contexto y
garantizando una transición segura y lógica entre las distintas fases: desde la
inicialización hasta la resolución del modelo.

Estados operativos
El sistema funciona bajo un esquema de doble estado claramente definido:

➢ Estado no inicializado: fase previa a la activación, en la que única-
mente se permite definir el horizonte temporal del modelo.

➢ Estado inicializado: una vez definido el horizonte, se habilita el acceso
a todas las funcionalidades, incluyendo la incorporación de agentes, la
configuración de parámetros del despacho y la ejecución del solver.

Representación esquemática del flujo
El flujo operativo del sistema está representado gráficamente en la Figura 4.3,
que ilustra las distintas etapas y su relación secuencial. Como se aprecia, el flujo
inicia con la definición del horizonte temporal, seguido de la incorporación de
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agentes. El sistema exige que al menos un agente de generación y al menos un
agente de demanda hayan sido registrado para poder avanzar hacia la creación
de un despacho. Posteriormente, se configura el solver de optimización y, final-
mente, el usuario puede optar por resolver el modelo y/o guardar el modelo
creado en un formato como .lp o .mps antes de finalizar la sesión.

Inicio

inicializar hori-
zonte temporal

agregar agentes

¿Hay al menos un
agente de cada tipo
registrado y se desea
crear el despacho?

crear despacho

configurar solver

resolver modelo guardar configuración

finalizar

Śı

No

Figura 4.3: Flujo lógico normal de uso del sistema.

Comandos disponibles y organización funcional
El sistema expone un conjunto compacto y jerarquizado de comandos, que cons-
tituyen la interfaz de control de alto nivel. Cada instrucción corresponde a una
operación autónoma y espećıfica, diseñada para ser ejecutada en un momento
determinado del flujo operativo. Esta organización funcional contribuye a pre-
servar la coherencia del sistema, evitando la ejecución de acciones fuera de orden
o en contextos inadecuados.

La Tabla 4.3 presenta un resumen detallado de los comandos actualmente dis-
ponibles, junto con una descripción clara de su propósito y uso:
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Tabla 4.3: Resumen de comandos del sistema

Comando Descripción

inicializar --t <n> Define el horizonte temporal y activa el sistema.
agregarAgente --RioNegro Crea el agente hidráulico compuesto por los embalses Bonete, Baygorria y Palmar.
agregarAgente --DemandaFija Crea el agente de demanda interna con una secuencia de demandas fijas.
crearDespacho --fija Define un despacho con un costo de falla asociado.
configurarSolver --Gurobi|--Cbc|--Cplex Configura el tipo de solver de optimización a utilizar.
grabar <ruta> Guarda la configuración actual del modelo en disco.
resolver [--noConstante] <ruta.csv> Ejecuta el modelo y exporta los resultados a un archivo externo.
finalizar Libera recursos internos y permite reconfigurar el sistema desde cero.
salir Termina la ejecución del programa y libera todos los recursos utilizados.

El sistema ha sido diseñado para interpretar y ejecutar comandos de manera
secuencial. A continuación, se describe el comportamiento interno del sistema
ante la ejecución de cada uno de los comandos definidos.

Cuando se ejecuta el comando inicializar --t <n>, el valor del horizonte
temporal especificado es almacenado dentro del objeto central SystemControll-
er, el cual registra este parámetro como condición previa indispensable para
habilitar las siguientes etapas del flujo. Este paso marca el inicio del estado ini-
cializado del sistema.

En los comandos agregarAgente --RioNegro y agregarAgente --DemandaFi-

ja, el sistema interpreta la instrucción como una solicitud para crear una nueva
instancia de agente. En ambos casos, los datos necesarios para su construcción
—como identificadores, parámetros y tipo— se env́ıan al SystemController,
que se encarga de instanciar el agente correspondiente, almacenarlo interna-
mente y asignarle dos identificadores únicos: uno que identifica al agente en
general y otro que lo distingue dentro de su tipo (por ejemplo, entre los distin-
tos generadores o demandas)

La ejecución del comando crearDespachoFijo indica al sistema la necesidad
de crear una instancia del tipo DespachoFijo. Esta operación también es ges-
tionada por el SystemController, que almacena la instancia creada y la asocia
a la colección de elementos activos en la planificación.

Cuando el usuario invoca configurarSolver, el sistema identifica la opción
seleccionada a través del parámetro --Lp, --Gurobi, --Cbc o --Cplex, y proce-
de a instanciar el objeto correspondiente de tipo ProblemaLp, ProblemaGurobi,
ProblemaCbc o ProblemaCplex. La instancia generada es registrada en el Syste-
mController como el solver actualmente activo para el sistema.

Respecto al comando grabar <ruta>, su ejecución activa el proceso de seriali-
zación del modelo. Esta acción es delegada por el SystemController al solver
previamente configurado, el cual implementa los métodos necesarios para guar-
dar la configuración actual del modelo en el archivo de salida indicado.

El comando resolver constituye una de las operaciones más cŕıticas del sis-
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tema. Al ejecutarse, inicia el proceso de resolución del MIP mediante el solver
seleccionado. La solución obtenida no se utiliza de manera inmediata, sino que
se almacena temporalmente dentro de la clase correspondiente al problema y,
adicionalmente, se exporta a un archivo en formato .csv.

A continuación, el SystemController transmite esta solución a los agentes y al
módulo de despacho, quienes aplican un proceso de posprocesamiento espećıfi-
co. Durante esta etapa, se actualizan las variables internas de cada componente
del sistema de acuerdo con los valores óptimos obtenidos. Posteriormente, el
sistema genera un segundo archivo .csv con los valores resultantes del pospro-
cesamiento, asegurando trazabilidad entre la solución obtenida por el solver y
su interpretación operativa.

Finalmente, SystemController calcula el valor de la función objetivo posterior
al posprocesamiento.

En cuanto al comando finalizar, su propósito es liberar los recursos asocia-
dos a la configuración actual del modelo, permitiendo que el usuario pueda
reiniciar el flujo con un nuevo horizonte temporal u otros parámetros, sin ne-
cesidad de cerrar el programa. Esta función restablece internamente el estado
del SystemController, descartando los agentes, despachos y solver previamen-
te definidos, pero manteniendo activa la sesión de trabajo.

Por último, el comando salir ejecuta la terminación completa del entorno de
ejecución. A diferencia de finalizar, esta instrucción no sólo elimina los ob-
jetos definidos durante la sesión, sino que también cierra de forma definitiva el
programa, liberando todos los recursos del sistema operativo y concluyendo la
ejecución del software.

4.3.4. Extensión del sistema: incorporación de una unidad
generadora térmica

En esta sección se describe el proceso de extensión del modelo mediante la incor-
poración de una unidad térmica de arranque rápido, con el objetivo de evaluar
en la práctica el nivel de modularidad y extensibilidad alcanzado por la arqui-
tectura implementada.

Las unidades térmicas rápidas constituyen una categoŕıa de generación de res-
paldo que puede activarse en plazos muy breves, lo que las hace especialmente
útiles para compensar fluctuaciones en la generación renovable o atender picos
de demanda. Estas unidades fueron formalizadas en (Risso y cols., 2025) como
submodelos de Programación Entera Mixta dentro de la formulación general del
despacho energético nacional, y su comportamiento fue adoptado como referen-
cia para la extensión aqúı presentada.
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Se detalla a continuación el modelo y posteriormente las modificaciones en el
código para contemplar la incorporación de una unidad térmica rápida.

Modelo matemático
El comportamiento operativo de una unidad térmica rápida se representa me-
diante el siguiente modelo de Programación Entera Mixta:

mı́n
xt, yt, wt

(
a
∑
t∈T

xt + b
∑
t∈T

wt + α
∑
t∈T

yt

)
mGT · xt ≤ wt, (i)
wt ≤ MGT · xt, (ii)
yt ≥ xt − xt−1, (iii)
2xt − 2xt+1 + xt+2 + xt+3 ≥ 0, (iv)
2xt − 2xt+1 + xt+2 + xt+3 ≤ 2, (v)
xt, yt ∈ {0, 1}, wt ≥ 0 (vi)

donde:

Tabla 4.4: Parámetros y variables del modelo térmico

Parámetros

a Costo fijo de operación por
encendido de la unidad
[US$/encendido].

b Costo variable por unidad de
enerǵıa generada [US$/MWh].

α Costo de arranque por cambio
de estado (apagado → encendi-
do) [US$/arranque].

mGT Potencia mı́nima técnica cuando
la unidad está encendida [MW].

MGT Potencia máxima técnica de la
unidad [MW].

T Conjunto de peŕıodos del hori-
zonte temporal [1hr].

Variables

xt Variable binaria: 1 si la unidad está
encendida en t, 0 en caso contrario
.

wt Enerǵıa generada por la unidad en
el peŕıodo t [MWh].

yt Variable binaria que indica encen-
dido de la unidad en el peŕıodo t
[1hr].

Las restricciones (i) y (ii) aseguran que la potencia generada se mantenga dentro
de los ĺımites técnicos únicamente cuando la unidad está encendida. La restric-
ción (iii) identifica los instantes de arranque, mientras que (iv) garantiza que,
una vez encendida, la unidad térmica permanezca operativa durante al menos
tres horas. Por último, la restricción (v) impone que, si la unidad se apaga, no
pueda volver a encenderse antes de transcurrido ese mismo peŕıodo mı́nimo de
tres horas.

Modificaciones del código
Para incorporar este agente, se extendió la clase Generación mediante la crea-
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ción de una subclase denominada UnidadTermicaRapida. Esta subclase imple-
menta una función de contribución al modelo que recibe como parámetro una
instancia de la clase Problema, sobre la cual se definen las variables xt, yt y wt,
las restricciones (i)–(v), y los términos correspondientes a la función objetivo.

Finalmente, se añadió en la clase SystemController un método espećıfico para
la creación e incorporación de este nuevo agente, de modo que la unidad térmica
pueda añadirse al conjunto de agentes activos y participar en el proceso de des-
pacho conjunto con las unidades hidroeléctricas. Esta extensión fue incorporada
sin necesidad de modificar el núcleo del sistema, lo cual valida emṕıricamente
la flexibilidad y capacidad de expansión de la arquitectura implementada.

4.3.5. Extensión del sistema: nuevo escenario

Se extiende el modelo MIP original con el objetivo de incorporar dos modifica-
ciones propuestas en un paper actualmente en proceso de revisión (Risso y cols.,
2025).

En dicho trabajo se introducen dos extensiones principales:

1. Incorporación de un costo no lineal asociado al agua del embalse de Bonete.

2. Incorporación de un costo de falla lineal proporcional a la demanda total
del sistema.

A continuación, se describe la primera de estas extensiones, correspondiente
al modelado del costo no lineal del agua en Bonete. La segunda extensión —
relativa a la incorporación de un costo de falla proporcional a la demanda total—
se presenta posteriormente en este documento.

Incorporación de un costo no lineal del agua en Bonete

El modelo base desarrollado para el despacho incluye un costo de oportunidad
lineal asociado al volumen de agua almacenado en el embalse de Bonete, ex-
presado como ca1h(v1h,0 − v1h,T ). Tal como se detalla en la Tabla 4.1, se tiene
que:

➢ ca1,h es el costo del agua en la central i medido en USD/m2.

➢ v1h,0 es el volumen inicial del embalse en Bonete medido en m3.

➢ v1h,T es el volumen final del embalse en Bonete medido en m3.

Si bien esta aproximación es aceptable para horizontes de planificación cortos,
su validez se ve limitada cuando el peŕıodo de planificación se extiende y las
fluctuaciones del nivel del embalse se tornan más relevantes. En tales escena-
rios, una representación lineal tiende a subestimar o sobreestimar el verdadero
valor marginal del recurso h́ıdrico, afectando la fidelidad del modelo.
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Dado que el embalse de Bonete constituye la principal reserva energética del
sistema interconectado uruguayo, su tratamiento adecuado dentro del modelo
resulta fundamental. En particular, incorporar una función de costo del agua
no lineal permite capturar de forma más precisa las externalidades relacionadas
con la utilización del recurso, reflejando mejor su impacto en la generación y en
la seguridad del suministro eléctrico.

Se describirá los cambios en el modelo matemático a continuación y posterior-
mente los cambios en el código que realizamos en el código para contemplarlo.

Modelo matemático
En el modelo se sustituye el término lineal ca1h(v1h,0 − v1h,T ) por una varia-
ble δ1h que representa la diferencia entre los valores de Bellman asociados al
volumen inicial y final, es decir, por lo que:

δ1h = Blm1h(v1h,0)−Blm1h(v1h,T )

donde Blm1h(v) representa el valor acumulado del agua hasta el volumen v
según la función no lineal interpolada.

Como Blm1h(v) es una función no lineal y cóncava, su diferencia respecto del
volumen inicial,

∆Blm1h(v) = Blm1h(v1h,0)− Blm1h(v),

es convexa. Para mantener la linealidad global del modelo, dicha función con-
vexa se aproxima mediante el máximo de tres tangentes lineales, construidas
alrededor del volumen inicial y de variaciones del ±15% respecto del mismo.

Esto se implementa mediante las siguientes restricciones:
δ1h ≥ p

(1)
1h − q

(1)
1h

(
v1h,T − 0.85 v1h,0

)
,

δ1h ≥ − q
(2)
1h

(
v1h,T − v1h,0

)
,

δ1h ≥ p
(3)
1h − q

(3)
1h

(
v1h,T − 1.15 v1h,0

)
.

(4.11)

donde los parámetros p
(k)
1h y q

(k)
1h provienen de la interpolación de la función de

Bellman (derivadas y valores en puntos espećıficos). Estas restricciones asegu-
ran que δ1h represente correctamente la envolvente convexa local de ∆Blm1h(v).

Modificaciones del código
Para incorporar el nuevo esquema de valoración no lineal del agua, se exten-
dió la implementación mediante la creación de una nueva clase denominada
RioNegroNoLineal. Esta clase hereda de RioNegro y redefine los dos aspectos
fundamentales del comportamiento del agente: la generación de restricciones y
el aporte a la función objetivo.
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En primer lugar, se modifco la función generarRestriccionesBonete. Además
de llamar a las restricciones definidas en la clase base, esta versión ampliada in-
corpora expĺıcitamente las nuevas restricciones que modelan la no linealidad del
embalse, presentadas en (4.11). Este enfoque permite mantener la estructura
original del modelo y, al mismo tiempo, añadir la lógica adicional necesaria pa-
ra capturar el comportamiento más realista del recurso h́ıdrico.

En segundo lugar, se modificó la función generarAporteFuncionObjetivo, en-
cargada de definir los términos de costo de oportunidad asociados a los embalses
de Bonete y Palmar en la función objetivo del modelo. En esta actualización se
mantuvo sin cambios el tratamiento correspondiente a Palmar, mientras que el
término lineal aplicado a Bonete fue reemplazado por la variable δ1h, tal como
se explicó previamente. De este modo, la función objetivo refleja adecuadamente
la nueva formulación basada en la diferencia entre los valores de Bellman inter-
polados.

Finalmente, se incorporó un nuevo comando en el controlador principal del sis-
tema (SystemController), permitiendo la creación expĺıcita de agentes del tipo
RioNegroNoLineal mediante un comando. Esta incorporación fue diseñada pa-
ra mantener la coherencia con el flujo de comandos existente, sin introducir
cambios estructurales en el resto del sistema.

En resumen, la extensión implementada no implicó cambios profundos en la
estructura del sistema, pero permitió incorporar un esquema de valoración no
lineal del agua que mejora la representación del comportamiento del embalse.
Con ello, el modelo refleja de manera más adecuada las decisiones operativas y
de planificación asociadas a distintos niveles de almacenamiento en Bonete.

Incorporación de un costo de falla lineal proporcional a la demanda
total del sistema.

En el modelo base detallado en la Sección 4.1 se tiene un costo de falla dado
por la siguiente expresión:

CF

T∑
i=1

(dt − gh,t)

donde según se detalla en la Tabla 4.1, se tiene que:

➢ CF es la penalización por demanda no satisfecha.

➢ dt es la demanda de enerǵıa en la hora t medido en MW.

➢ gh,t es la enerǵıa generada por la central i en la hora t medido en MW.

Sin embargo, según una normativa del 2023 se define un costo de falla por
rangos lo que provoca que el costo de falla ya no es una recta, sino una función
piecewise, que “salta” de un valor a otro. Por ejemplo, esto podŕıa describirse a
partir de la siguiente tabla:
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Figura 4.4: Ejemplo de cómo aplicar la regulación de costos de falla en una hora, con una
demanda total de 1000 MWh y una falla de 100 MWh. Esta tabla fue extráıda de (Risso
y cols., 2025).

La incorporación de esta consideración en el modelo se detalla a continuación y
a posterior los cambios en el código.

Modelo matemático
En esta nueva versión el costo de falla es reemplazado por una nueva variable
CFT definida por:

CFT =

T∑
t=1

ft (4.12)

Además se deben incorporar las siguientes restricciones:

ft ≥ máx{0, q̂(1)1f (dt − gh,t)} (i)

ft ≥ p̂
(2)
1f + q̂

(2)
1f (dt − gh,t) (ii)

ft ≥ p̂
(3)
1f + q̂

(3)
1f (dt − gh,t) (iii)

ft ≥ p̂
(4)
1f + q̂

(4)
1f (dt − gh,t) (iv)

(4.13)

Estos parámetros q̂
(i)
1f adoptan los valores definidos en la progresión de pena-

lidades establecida por la normativa. Por ejemplo, si dicha normativa fuera la

mostrada en la Figura 4.4, se tendŕıa q̂
(1)
1f = 370 USD/MWh, q̂

(2)
1f = 600 US-

D/MWh, etc.

Por otro lado, los valores de p̂
(i)
1f se determinan de manera de garantizar la con-

tinuidad entre los distintos tramos de severidad.

Modificaciones del código
Se implementaron dos enfoques para incorporar lo expuesto anteriormente. El
primero consiste en integrar directamente en el código la formulación matemáti-
ca desarrollada. El segundo se apoya en ciertas observaciones que permiten
apartarse parcialmente de dicha formulación y adoptar una implementación al-
ternativa.
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En relación con el primer enfoque, se amplió el modelo mediante la creación
de una nueva clase denominada DespachoProporcional. Esta clase hereda de
Despacho y redefine dos aspectos fundamentales del comportamiento del agen-
te: la generación de restricciones y su aporte a la función objetivo.

En primer lugar, se modificó la función generarRestricciones. Además de in-
vocar las restricciones definidas en la clase base, esta versión incorpora expĺıci-
tamente las nuevas restricciones que modelan el costo de falla por tramos, pre-
sentadas en (4.13). Para cada peŕıodo t del horizonte temporal, se añaden las
cuatro restricciones que definen la envolvente convexa de dicha función de costo.

En segundo lugar, se ajustó la función generarAporteFuncionObjetivo, en-
cargada de determinar los términos de penalización por demanda no satisfecha
en la función objetivo del modelo. En este caso, no se consideran los aportes
definidos en la clase base, sino que se especifica expĺıcitamente el término co-
rrespondiente descrito en la ecuación (4.12).

Finalmente, se incorporó un nuevo comando en el controlador principal del sis-
tema (SystemController), que habilita la creación expĺıcita de agentes del tipo
DespachoProporcional mediante un comando dedicado.

Por otro lado, el segundo enfoque se basa en la observación de que, para el costo
de falla, es posible trabajar únicamente con dos valores y prescindir completa-
mente de la construcción de los tramos. En la práctica, las fallas que superan
el segundo tramo son prácticamente inexistentes, por lo que esta aproximación
resulta plenamente justificable.

La idea consiste en trabajar con la demanda total promedio del escenario. Para
los valores inferiores a dicho promedio, el aporte al costo de falla es lo su-
ficientemente pequeño como para suponer que, de ocurrir, la falla ingresaŕıa
directamente en el segundo tramo; por lo tanto, se utiliza el coeficiente asociado
a ese tramo. Para los valores superiores al promedio, en cambio, se emplea el
coeficiente del primer tramo.

Más formalmente, en la expresión asociada al costo de falla en (4.12), en lugar de
introducir la sumatoria completa de los términos ft, el aporte correspondiente
al peŕıodo t se calcula de la siguiente manera:{

q̂
(1)
1f (dt − gh,t) si dt ≥ d

q̂
(2)
1f (dt − gh,t) si dt < d.

(4.14)

Obsérvese que, si se empleara un único coeficiente CF —es decir, si q̂
(1)
1f = q̂

(2)
1f =

CF—, el modelo colapsaŕıa nuevamente en la estructura del modelo base, en la
cual el costo de falla se representaba mediante un único parámetro.
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La implementación de este enfoque se llevó a cabo mediante la creación de
una nueva clase denominada DespachoProporcionalAlternativo, que extien-
de a Despacho, de forma análoga a DespachoProporcional, pero redefiniendo
únicamente la función generarAporteFuncionObjetivo. Nótese que la función
generarRestricciones no se redefine, dado que en este enfoque no se incor-
poran las restricciones de la formulación por tramos presentadas en (4.13), ya
que —como se explicó previamente— se prescinde de la construcción expĺıcita
de dichos tramos.

Esta clase recibe como parámetro la demanda total en cada peŕıodo dt. De
este modo, en generarAporteFuncionObjetivo se calcula d y se añaden los
términos detallados en (4.14) a la función objetivo.

4.3.6. Śıntesis del diseño e implementación

El sistema desarrollado para el despacho hidroeléctrico se organizó siguiendo
una arquitectura modular, orientada a objetos y programada en C++. Esta
estructura permite abstraer las distintas funcionalidades en componentes inde-
pendientes e interoperables, facilitando su mantenimiento y ampliación futura.

Funcionalmente, el sistema opera como una herramienta basada en comandos
que gúıa al usuario a través de todas las etapas del flujo de ejecución: iniciali-
zación, configuración de agentes, definición de esquemas de despacho, selección
del solver y resolución del modelo. La operación se soporta en una lógica de
estados diferenciada —no inicializado e inicializado— que asegura consistencia
y evita errores de contexto.

En la implementación, la clase SystemController centraliza la gestión de agen-
tes, la configuración del entorno y la coordinación de la ejecución. La función
procesarComando interpreta las órdenes del usuario y delega la acción corres-
pondiente a los métodos del controlador.

Cada agente, ya sea generador o demandante, se modeló como una subclase
especializada de una clase abstracta común, lo que permite encapsular compor-
tamientos espećıficos manteniendo una interfaz unificada. El módulo Despacho

define las restricciones de balance y las condiciones que relacionan generación
con demanda, apoyándose en una formulación algebraica agregada.

La clase Problema constituye el núcleo de la formulación matemática, integran-
do variables, restricciones y función objetivo definidas por agentes y despacho.
Para adaptarse a distintos motores de optimización —CBC, CPLEX y Gurobi—
dispone de subclases espećıficas que preservan una interfaz común.

El sistema se validó resolviendo instancias conocidas, demostrando resultados
consistentes. Además, su diseño modular permitió extenderlo sin modificar el
núcleo: se incorporó una unidad térmica de arranque rápido y un esquema no
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lineal de costo del agua para el embalse de Bonete, mostrando la flexibilidad del
enfoque adoptado.

En conjunto, el sistema proporciona una base sólida y flexible para el modelado
y resolución del problema de Coordinación Hidrotérmica de Corto Plazo, con
capacidad de adaptación a futuras extensiones y ĺıneas de investigación aplicada,
cómo se verá con más detalle en el Caṕıtulo 6 (Conclusiones y trabajo futuro).
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Caṕıtulo 5

Experimentación

Este caṕıtulo presenta el análisis emṕırico del desempeño del sistema en dos
etapas diferenciadas. En primer lugar, se evalúa el comportamiento del modelo
MIP original. A continuación, se estudia el desempeño del sistema extendido,
el cual incorpora un costo no lineal del agua en Bonete y un costo de falla pro-
porcional a la demanda total. En ambos casos se adopta la misma metodoloǵıa
experimental con el fin de permitir una comparación consistente.

5.1. Metodoloǵıa

Para el escenario base se ejecutaron 204 instancias independientes, mientras que
para el modelo extendido se resolvieron únicamente 5 instancias. En ambos ca-
sos se adoptó un criterio de optimalidad basado en un GAP relativo máximo de
0,1%.

La calidad de las soluciones se verificó contrastándolas con resultados de refe-
rencia, observándose un error relativo menor al 1% en todos los casos.

En cada ejecución se registraron cuatro componentes temporales:

1. Tiempo de construcción del modelo interno: creación de variables,
restricciones y función objetivo dentro de la infraestructura propia del
sistema.

2. Tiempo de traducción al modelo del solver: transformación del mo-
delo interno al formato requerido por el solver, incluyendo la generación
de estructuras auxiliares y su transferencia para la resolución.

3. Tiempo de resolución: proceso interno del solver hasta alcanzar el cri-
terio de optimalidad.
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4. Tiempo de posprocesamiento: extracción de resultados, validación de
condiciones, reconstrucción de objetos de salida y almacenamiento de la
información.

El tiempo total se define como la suma de los cuatro tiempos anteriores.

5.2. Análisis estad́ıstico

Se calcularon métricas descriptivas para cada componente temporal y para el
tiempo total:

➢ mı́nimo, máximo, promedio, desviación estándar;

➢ proporción relativa de cada componente sobre el tiempo total;

➢ distribución de tiempos mediante gráficos (boxplots/histogramas).

5.3. Entorno computacional

Las ejecuciones se realizaron en una estación de trabajo equipada con un pro-
cesador Intel Core i7-12700KF (12 núcleos, 20 hilos) a 3.6 GHz, 16 GB de
memoria RAM y disco sólido (SSD). El sistema operativo utilizado fue Windows
11 Pro (64 bits).

5.4. Resultados experimentales

5.4.1. Modelo base

La siguiente tabla presenta las estad́ısticas descriptivas de los tiempos de ejecu-
ción registrados en las 204 instancias correspondientes al modelo base detallado
en la Sección 4.1. Como se menciono anteriormente, cada ejecución se descompu-
so en cuatro etapas principales —construcción del modelo interno, traducción
al formato del solver, resolución y posprocesamiento—, lo que permite aislar
los componentes dominantes del tiempo total y evaluar su comportamiento es-
tad́ıstico.

Tabla 5.1: Estad́ısticas descriptivas de los componentes temporales (modelo base)

Componente Mı́nimo (s) Promedio (s) Máximo (s) Desv. Est. (s) Proporción (%)

Construcción del modelo interno 0.012 0.013 0.016 0.0005 0.19

Traducción al modelo del solver 0.023 0.024 0.030 0.0008 0.34

Resolución (con Cplex) 0.376 20.708 60.108 23.180 81.20

Posprocesamiento 0.035 1.418 16.585 2.800 18.26

Tiempo total 1.634 22.162 61.344 22.536 —

Los resultados numéricos, complementados con la evidencia visual, permiten
identificar diferencias claras entre las distintas etapas del modelo. A partir de
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esta información, se procede a analizar las distribuciones individuales de cada
componente.

En particular, la fase de resolución se identifica como la más exigente y, al mismo
tiempo, la más variable, tanto en términos de magnitud como de dispersión. Su
tiempo promedio se sitúa en torno a los 21 segundos, mientras que los valores
observados oscilan entre 0,4 y 60 segundos, con una desviación estándar cercana
a 23. La Figura 5.1 revela que esta variabilidad responde a un patrón bimodal,
con dos modos claramente definidos: uno concentrado en tiempos de resolución
muy bajos (aproximadamente entre 0 y 3 segundos) y otro asociado a instancias
cuyo tiempo se aproxima al máximo registrado.

Figura 5.1: Histograma del tiempo de resolución. Se observa una distribución claramente
bimodal, con dos modos bien definidos y de frecuencias comparables: uno concentrado en
tiempos muy bajos (aproximadamente entre 0 y 3 segundos) y otro asociado a instancias
con tiempos cercanos al máximo registrado (alrededor de 60 segundos).

Por su parte, la fase de posprocesamiento se posiciona como la segunda más
demandante, tal como se evidencia en la Tabla 5.1. La Figura 5.2 muestra una
distribución unimodal, caracterizada por una fuerte concentración de valores ba-
jos y una cola derecha tenue asociada a algunos pocos casos de mayor duración.
La mayoŕıa de las observaciones se sitúa por debajo de los 2 segundos, lo que su-
giere que el posprocesamiento presenta un comportamiento considerablemente
más homogéneo y predecible en comparación con la fase de resolución.
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Figura 5.2: Histograma del tiempo de posprocesamiento. La distribución es unimodal,
con una fuerte concentración de observaciones en valores bajos y una cola derecha tenue,
asociada a algunos casos aislados de mayor duración.

Las fases iniciales —construcción del modelo interno y traducción al formato
del solver— son las que menos tiempos conllevan como se puede observar en la
Tabla 5.1.

En la Figura 5.3 y en la Figura 5.5 se puede observar que sus distribuciones
son unimodales, con muy baja variabilidad, sin colas pronunciadas ni valores
extremos significativos, lo que evidencia que estas etapas presentan un com-
portamiento prácticamente determińıstico y no constituyen cuellos de botella
relevantes en términos computacionales.

Figura 5.3: Histograma del tiempo de construcción del modelo interno. La distribución
presenta un comportamiento unimodal altamente concentrado en torno a valores muy
bajos, con escasa variabilidad y sin presencia de colas pronunciadas ni valores at́ıpicos
relevantes.
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Figura 5.4: Histograma del tiempo de traducción al formato del solver. La distribución
presenta un patrón unimodal altamente concentrado en valores muy bajos, con una dis-
persión ḿınima y sin presencia de colas pronunciadas ni valores extremos relevantes. Este
comportamiento indica que la etapa de traducción posee un costo temporal prácticamente
constante entre instancias, contribuyendo de forma marginal y estable al tiempo total de
ejecución.

El análisis conjunto de los boxplots presentado en la Figura 5.5 refuerza esta
interpretación: las etapas de construcción del modelo interno y traducción al
solver muestran una dispersión mı́nima, con valores altamente concentrados.
En contraste, la fase de resolución presenta una variabilidad marcadamente
superior, lo que explica gran parte de la heterogeneidad observada en el tiempo
total. El posprocesamiento, por su parte, exhibe un comportamiento intermedio,
con mayor dispersión que las etapas iniciales pero sensiblemente menor que la de
la resolución. La similitud entre la distribución del tiempo total y la del tiempo
de resolución confirma que la variabilidad del desempeño global está dominada
principalmente por el comportamiento del solver.
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Figura 5.5: Dispersión de tiempos por componente mediante boxplots. Las etapas de
construcción del modelo interno y traducción al solver presentan una variabilidad muy
reducida, con valores concentrados en rangos estrechos. En contraste, la fase de resolución
exhibe una dispersión considerablemente mayor, mientras que el posprocesamiento presenta
un comportamiento intermedio.

Finalmente, la distribución del tiempo total refleja esta estructura mixta: un
conjunto mayoritario de ejecuciones rápidas y un grupo no despreciable de ins-
tancias con tiempos cercanos al máximo, lo que resulta en una elevada dispersión
total (desviación estándar de 22,5 s). Esto indica que, si bien el modelo base pre-
senta un desempeño eficiente en promedio, su comportamiento no es homogéneo
y depende fuertemente de la configuración particular de cada instancia.

Figura 5.6: Distribución del tiempo total de ejecución. Se observa una estructura caracte-
rizada por una alta concentración de ejecuciones rápidas y un subconjunto no despreciable
de instancias con tiempos significativamente mayores, lo que se traduce en una dispersión
elevada. Esta configuración refleja la coexistencia de dos reǵımenes diferenciados, induci-
dos principalmente por el comportamiento heterogéneo de la fase de resolución.
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En este contexto, el análisis del modelo base permite concluir que el desempeño
computacional del sistema está fuertemente condicionado por la etapa de resolu-
ción, tanto en términos de magnitud media como de variabilidad. Las restantes
fases presentan un comportamiento estable y predecible, con una contribución
temporal acotada y prácticamente constante entre instancias.

5.4.2. Modelo extendido

El análisis del modelo extendido se basa en la implementación alternativa deta-
llada en la Subsección 4.3.5, considerada por razones de simplicidad. Su objetivo
es validar emṕıricamente dos aspectos centrales del sistema: (i) que la incorpora-
ción de un costo no lineal del agua en Bonete y de un costo de falla proporcional
a la demanda total no introduzca penalizaciones computacionales significativas;
y (ii) que las soluciones obtenidas sean correctas y consistentes con la formula-
ción teórica propuesta.

Dado que estas extensiones forman parte de desarrollos actualmente en pro-
ceso de revisión (Risso y cols., 2025), no se dispone de un conjunto amplio
de instancias espećıficamente diseñado para esta versión del modelo. En con-
secuencia, el análisis se basa en un subconjunto reducido de cinco instancias
representativas. Si bien este tamaño muestral limita el alcance estad́ıstico de los
resultados, resulta adecuado para una evaluación comparativa preliminar del
impacto computacional de la extensión.

Selección de instancias y validación de rendimiento
Las cinco instancias analizadas se seleccionaron en función del comportamien-
to observado en el modelo base y se extendieron para el presente modelo, con
el propósito de abarcar escenarios extremos junto con un caso intermedio re-
presentativo. En particular, se consideraron instancias asociadas a los tiempos
mı́nimos y máximos de posprocesamiento, los tiempos mı́nimos y máximos de
ejecución total, aśı como una instancia seleccionada de manera aleatoria.

En concreto, se incluyeron las instancias 04f (menor tiempo de posprocesamien-
to), 28a (mayor tiempo de posprocesamiento), 34e (menor tiempo total), 44b
(mayor tiempo total) y 12b, seleccionada de forma aleatoria.

Para cada una de estas instancias se resolvió tanto el modelo base como su ver-
sión extendida, registrándose los tiempos correspondientes a las cuatro etapas
del proceso: construcción del modelo interno, traducción al formato del solver,
resolución y posprocesamiento. Este enfoque permite aislar el efecto de la exten-
sión sobre cada componente temporal y detectar posibles fuentes de sobrecarga.

Como ejemplo ilustrativo, la Tabla 5.2 presenta la comparación detallada entre
el modelo base y el modelo extendido para las instancias mencionadas anterior-
mente:
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Tabla 5.2: Comparación de tiempos de ejecución entre el modelo base y el modelo exten-
dido

Instancia Gen. interno (s) Proc. API (s) Resolución (s) Post-proc. (s) Total (s)

04f 0.016 0.031 26.775 0.031 26.854
04f-extended 0.016 0.027 10.029 0.035 10.107

28a 0.016 0.033 0.502 0.088 0.640
28a-extended 0.016 0.029 0.247 8.737 9.028

34e 0.016 0.028 1.334 0.032 1.410
34e-extended 0.102 0.179 21.804 0.342 22.426

44b 0.016 0.028 60.063 0.035 60.142
44b-extended 0.015 0.027 16.825 0.279 17.146

12b 0.016 0.031 60.067 0.029 60.143
12b-extended 0.016 0.028 3.072 26.711 29.827

El análisis comparativo de la Tabla 5.2 muestra que la incorporación de la exten-
sión no introduce una sobrecarga significativa en las etapas bajo control directo
de la implementación. En particular, los tiempos de construcción del modelo
interno, traducción al solver y posprocesamiento permanecen acotados y com-
parables a los observados en el modelo base, incluso en las instancias extremas.

Las diferencias más relevantes se concentran en la fase de resolución, cuyo com-
portamiento depende del solver y de la estructura efectiva de cada instancia. En
este sentido, no se observa una relación directa entre la complejidad computacio-
nal del modelo base y la del modelo extendido: instancias costosas de resolver
bajo el modelo base pueden presentar reducciones sustanciales en el tiempo total
al resolverse con el modelo extendido, y viceversa. Este resultado sugiere que la
extensión modifica la estructura del problema MIP enfrentado por el solver, sin
introducir penalizaciones sistemáticas en las etapas bajo control del modelo.

Validación de correctitud
La validación de la correctitud del modelo extendido se realizó mediante dos
mecanismos complementarios: (i) la contrastación de las soluciones obtenidas
con el tutor del modelo y (ii) la verificación de una propiedad de consistencia
estructural que permite recuperar exactamente el modelo base como caso par-
ticular.

En particular, se analizó la formulación del costo de falla proporcional definida
por la expresión por tramos presentada en (4.14), la cual introduce heteroge-
neidad en la penalización de las fallas en función de la magnitud relativa de la
demanda. Como prueba de consistencia, se verificó que, cuando los coeficientes
asociados a ambos tramos coinciden —esto es, cuando q̂1f (1) = q̂1f (2) = CF—,
el modelo extendido colapsa exactamente en la estructura del modelo base. Bajo
esta condición, se constató que las diferencias relativas en el valor óptimo de la
función objetivo son inferiores al 1%, lo que resulta consistente con la equiva-
lencia teórica entre ambas formulaciones.
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Este resultado confirma que, en ausencia de heterogeneidad en los coeficientes
del costo de falla, el modelo extendido reproduce el comportamiento del modelo
base. En consecuencia, las diferencias observadas en los escenarios generales
pueden atribuirse exclusivamente a la nueva parametrización introducida, sin
evidenciar inconsistencias lógicas ni numéricas en la implementación.
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Caṕıtulo 6

Conclusiones y Trabajo
Futuro

El presente trabajo tuvo como objetivo principal el diseño, validación e imple-
mentación de una herramienta computacional para la resolución del problema
de Coordinación Hidrotérmica de Corto Plazo, basada en un modelo de Progra-
mación Entera Mixta. A partir de una formulación desarrollada previamente en
el entorno académico, se logró no solo replicar sus resultados mediante herra-
mientas estándar, sino también ampliar significativamente su alcance mediante
una arquitectura modular implementada en C++.

El sistema permite representar y resolver modelos del STHTC con distintas con-
figuraciones de agentes, esquemas de despacho y solvers. Su diseño orientado a
objetos facilita la interacción por parte de operadores y analistas, aśı como fu-
turas modificaciones por desarrolladores. En particular, se evaluó su capacidad
de extensión en la Subsección 4.3.4 y la Subsección 4.3.5 mediante dos incor-
poraciones concretas: la adición de una unidad generadora térmica rápida y la
modificación del tratamiento del costo del agua en una unidad hidroeléctrica,
introduciendo una función objetivo no lineal y considerando un costo de falla
proporcional a la demanda total. Ambas modificaciones se implementaron sin
alterar la integridad del sistema, lo que evidencia la consistencia de la arquitec-
tura modular adoptada.

Este enfoque representa un aporte concreto al diseño de herramientas abiertas y
eficientes para la planificación energética, capaces de adaptarse al dinamismo de
la matriz eléctrica nacional y de ser utilizadas tanto en aplicaciones operativas
como en contextos de investigación y desarrollo.

A partir de esta base consolidada, se abren múltiples ĺıneas de trabajo futu-
ro orientadas a ampliar tanto el alcance funcional como la profundidad me-
todológica del sistema. Una extensión natural consiste en la incorporación de
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nuevos agentes de generación y/o demanda, tales como la represa hidroeléctrica
de Salto Grande, aśı como la posibilidad de modelar transferencias de enerǵıa
mediante contratos con páıses vecinos.

Asimismo, resulta pertinente considerar la inclusión de unidades de almace-
namiento, como bateŕıas, que por su naturaleza dual —capaces de inyectar o
absorber enerǵıa— exigen una representación flexible dentro del modelo. Para
ello, se proyecta el desarrollo de una subclase dentro de la clase Agente, posi-
blemente denominada Mixta, que integre atributos de generación y demanda.
Esta ampliación implicará, a su vez, ajustes en el esquema de despacho y en el
tratamiento de las restricciones agregadas, con el fin de preservar la coherencia
y consistencia global del modelo.

Desde una perspectiva metodológica, una dirección particularmente prometedo-
ra es la integración del sistema con técnicas de aprendizaje automático. En este
sentido, una funcionalidad clave es la capacidad de generar automáticamente
grandes volúmenes de instancias del problema, lo que resulta fundamental pa-
ra entrenar modelos basados en redes neuronales. La posibilidad de configurar
distintas composiciones de agentes, perfiles de demanda u horizontes de planifi-
cación permite construir bases de datos representativas, útiles para aproximar
soluciones del STHTC mediante métodos de inteligencia artificial.

Esta ĺınea será profundizada por uno de los integrantes del equipo en el marco
de su maestŕıa, como parte de los avances recientes impulsados por el convenio
entre UTE y la Universidad de la República. En particular, se ha comenzado
a explorar el uso de Redes Neuronales Recurrentes (RNN) como herramienta
para reproducir decisiones óptimas del STHTC. Una vez entrenadas, estas re-
des permiten generar soluciones en tiempo real, lo cual habilita simulaciones de
largo plazo y evaluaciones de poĺıticas energéticas con bajo costo computacional.

No obstante, uno de los principales desaf́ıos de este enfoque radica en el costo de
entrenamiento, ya que cualquier modificación en la estructura del sistema obliga
a reconstruir el conjunto de instancias y reentrenar el modelo desde cero. Como
alternativa, se propone una estrategia de descomposición modular, consistente
en resolver modelos parciales por agente, lo cual es compatible con la arquitec-
tura actual. Esta aproximación permitiŕıa generar soluciones intermedias reuti-
lizables y reducir significativamente el esfuerzo computacional requerido.

En conjunto, estas posibles extensiones delinean una agenda de trabajo que
combina herramientas clásicas de optimización con metodoloǵıas de inteligencia
artificial. El objetivo es avanzar hacia sistemas de apoyo a la decisión más ágiles,
adaptativos y capaces de operar bajo incertidumbre, contribuyendo aśı a una
gestión energética más eficiente, robusta y sostenible.

66



Referencias

Alexander, C., Ishikawa, S., y Silverstein, M. (1977). A pattern language: Towns,
buildings, construction. Oxford University Press.

Bellman, R. (1957a). Dynamic programming. Princeton, USA: Princeton Uni-
versity Press.

Bellman, R. (1957b). A markovian decision process. Journal of Mathematics
and Mechanics, 6 , 679–684.

Booch, G. (1991). Object-oriented design with applications. Benjamin/Cum-
mings.

Casaravilla, G., Chaer, R., y Alfaro, P. (2009). SIMSEE - Memoria final
de ejecución proyecto PDT 47/12 (Inf. Téc.). Montevideo, Uruguay:
Proyecto PDT 47/12. Descargado de https://simsee.org/db-docs/

Docs secciones/nid 10222/pdt 47 12.pdf (Accedido el 8 de noviembre
de 2025)

Chaer, R. (2008). Simulación de sistemas de enerǵıa eléctrica. Montevideo,
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Universidad de la República)

Sommerville, I. (2011). Software engineering (9.a ed.). Addison-Wesley.
UTE. (2024). Modelo de Operación (MOP). Descargado de https://gitlab

.com/utepladmm/MOP (Accessed: 2025-09-18)
van der Wal, J. (1980). Stochastic dynamic programming: Successive approxi-

mations and nearly optimal strategies for markov decision processes and
markov games (Ph.D. thesis). Technische Hogeschool Eindhoven.

69

https://hdl.handle.net/20.500.12008/47830
https://hdl.handle.net/20.500.12008/47830
https://simsee.org
https://simsee.org
https://gitlab.com/utepladmm/MOP
https://gitlab.com/utepladmm/MOP


70



Anexo A

Manual de Usuario

A.1. Introducción

El sistema está diseñado para modelar y resolver problemas de despacho eléctri-
co mediante una interfaz de ĺınea de comandos. A través de esta herramienta,
el usuario puede agregar agentes generadores o de demanda, seleccionar el tipo
de despacho, configurar el solver, ejecutar la resolución del problema de optimi-
zación y guardar el modelo resultante en formato .lp o .mps.

Caracteŕısticas principales

El sistema ofrece las siguientes funcionalidades destacadas:

➢ Modelado de sistemas hidro-térmicos.

➢ Compatibilidad con múltiples solvers, incluyendo Gurobi, Cbc y Cplex.

➢ Generación automática de archivos en formato CSV con los resultados
obtenidos.

➢ Posibilidad de ejecutar pruebas mediante archivos batch.

A.2. Flujo de trabajo

El flujo de trabajo general del sistema se muestra en la Figura 4.3. Sin embargo,
su diseño flexible permite flujos más complejos: por ejemplo, se puede resolver un
modelo y luego guardarlo, o guardar primero y resolver en una etapa posterior.
Asimismo, el usuario puede interrumpir un proceso en curso y comenzar uno
nuevo desde el inicio para trabajar con un conjunto de datos distinto.
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A.3. Comandos disponibles

La Tabla 4.3 presenta una descripción general de los comandos disponibles en el
sistema. A continuación, se ofrece una explicación detallada de cada uno de ellos,
incluyendo su sintaxis, funcionalidad y posibles parámetros de configuración.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

inicializar

ò Descripción
Inicializa el sistema con un horizonte temporal definido por el usuario. Este
comando debe ejecutarse como primer paso antes de cualquier otro.

ù Sintaxis

inicializar --t <horizonteTemporal >

Ô Parámetros

➢ horizonteTemporal: Número entero positivo que representa la cantidad
de peŕıodos a modelar (por ejemplo, 24 para 24 horas).

_ Ejemplo

> inicializar --t 24

[success] El programa se ha iniciado correctamente

. Restricciones

➢ Debe ser el primer comando ejecutado al iniciar el programa.

➢ Solo puede ejecutarse una vez por sesión.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

agregarAgente

ò Descripción
Permite agregar diferentes tipos de agentes generadores al sistema. A con-
tinuación se detallan los tipos disponibles, su sintaxis y los parámetros
asociados.

Para agregar un agente espećıfico, se debe ejecutar el comando anterior segui-
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do de " --<nombre del agente>". A continuación, se describen los distintos
agentes disponibles y sus caracteŕısticas.

Rio Negro

ò Descripción
Agrega el sistema hidroeléctrico del Ŕıo Negro (Bonete, Baygorria, Palmar)
utilizando un modelo lineal.

ù Sintaxis

agregarAgente --RioNegro

<aportes_bonete >

<aportes_baygorria >

<aportes_palmar >

<volumen_inicial_bonete >

<volumen_inicial_palmar >

<costo_agua_bonete >

<costo_agua_palmar >

Ô Parámetros

➢ aportes *: Vectores de longitud horizonteTemporal (caudales en m3/s).

➢ volumen inicial *: Volumen inicial del embalse (hm3).

➢ costo agua *: Costo del agua almacenada ($/m3).

_ Ejemplo resumido

> agregarAgente --RioNegro

> 100 105 98 ... (24 valores)

> 50 52 48 ... (24 valores)

> 200 205 198 ... (24 valores)

> 5000

> 3500

> 0.01

> 0.015

[success] Se ha creado el agente ’Rio Negro ’ exitosamente

. Restricciones

➢ Solo se puede agregar uno de los siguientes: --RioNegro o
--RioNegroNoLineal (mutuamente excluyentes).
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RioNegroNoLineal

ò Descripción
Similar a --RioNegro, pero utiliza un modelo no lineal para la central
Bonete. Los parámetros son idénticos en orden y formato. Es mutuamente
excluyente con --RioNegro.

UnidadTermicaRapida

ò Descripción
Agrega una unidad térmica de arranque rápido.

ù Sintaxis

agregarAgente --UnidadTermicaRapida

<potencia_minima >

<potencia_maxima >

<costo_fijo >

<costo_variable >

<tiempo_arranque >

<costo_encendido >

Ô Parámetros

➢ potencia minima, potencia maxima (MW)

➢ costo fijo ($/h), costo variable ($/MWh)

➢ tiempo arranque (horas), costo encendido ($)

_ Ejemplo

> agregarAgente --UnidadTermicaRapida

> 50

> 250

> 1000

> 45

> 2

> 5000

[success] Se ha creado el agente ’Unidad T\’ermica R\’apida ’

exitosamente

ò Nota
Se pueden agregar múltiples unidades térmicas utilizando este comando
varias veces.
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DemandaFija

ò Descripción
Agrega el perfil de demanda eléctrica del sistema.

ù Sintaxis

agregarAgente --DemandaFija

<vector_demandas >

Ô Parámetros

➢ vector demandas: Vector de tamaño horizonteTemporal con los valores
de demanda por peŕıodo (MW).

_ Ejemplo

> agregarAgente --DemandaFija

> 300 320 310 ... 320

[success] Se ha creado el agente ’Demanda Interna ’

exitosamente

. Restricciones

➢ Solo puede agregarse una única demanda.

➢ Es obligatorio agregar la demanda antes de crear el despacho.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

crearDespacho

ò Descripción
Crea el problema de despacho económico en función de los agentes genera-
dores y la demanda definidos previamente.

Para seleccionar un despacho en concreto, se debe ejecutar el comando ante-
rior seguido de " --<nombre del despacho>". A continuación, se describen
los distintos agentes disponibles y sus caracteŕısticas
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DespachoFijo

ù Sintaxis

crearDespacho --fijo

<costo_falla >

Ô Parámetros

➢ costo falla: Costo de enerǵıa no suministrada ($/MWh).

_ Ejemplo

> crearDespacho --fijo

> 10000

[success] Se ha creado el despacho fijo exitosamente

. Restricciones

➢ Debe ejecutarse después de haber agregado al menos un agente generador
y una demanda.
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DespachoProporcional

ò Descripción
Crea el problema de despacho económico donde la demanda se reparte en
escalones definidos por porcentajes y valores de demanda.

ù Sintaxis

crearDespacho --proporcional

<p2> <p3> <p4 >

<d1> <d2> ... <dN >

<q1> <q2> <q3 > <q4>

Ô Parámetros

➢ p2, p3, p4: representan las variables p̂
(2)
1f , p̂

(3)
1f y p̂

(4)
1f , respectivamente,

definidas en la ecuación (4.13).

➢ d1, d2, ..., dN: di corresponde al valor total de la demanda en la hora
i.

➢ q1, q2, q3, q4: representan las variables q̂
(1)
1f , q̂

(2)
1f , q̂

(3)
1f y q̂

(4)
1f , respec-

tivamente, definidas en la ecuación (4.13).

_ Ejemplo

> crearDespacho --proporcional

> 0.30 0.50 0.80

> 435.342 325.34 224.53 ... 3414.21

> 10 200 4500 6000

[success] Se ha creado el despacho proporcional por escalones

exitosamente

. Restricciones

➢ Debe ejecutarse después de haber agregado al menos un agente generador
y una demanda.

➢ La cantidad de porcentajes debe ser una menos que la cantidad de esca-
lones.

➢ Los porcentajes deben estar en orden creciente y estar entre 0 y 1.
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DespachoProporcionalAlternativo

ò Descripción
Crea el problema de despacho económico donde la demanda se reparte en
escalones definidos por porcentajes y valores de demanda.

ù Sintaxis

crearDespacho --proporcional

<d1> <d2> ... <dN >

<q1> <q2>

Ô Parámetros

➢ d1, d2, ..., dN: di es la demanda total en la hora i.

➢ q1, q2: corresponden a q̂
(1)
1f y q̂

(2)
1f , según (4.13).

_ Ejemplo

> crearDespacho --proporcionalAlternativo

> 435.342 325.34 224.53 ... 3414.21

> 10 200

[success] Se ha creado el despacho proporcional alternativo

exitosamente

. Restricciones

➢ Debe ejecutarse después de agregar al menos un agente generador y
una demanda.

➢ La cantidad de porcentajes debe ser una menos que la cantidad de
escalones.

➢ Los porcentajes deben estar en orden creciente y estar entre 0 y 1.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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configurarSolver

ò Descripción
Configura el solver de optimización que se utilizará para resolver el problema
de despacho eléctrico.

ù Sintaxis

configurarSolver --<TipoSolver >

Ô Opciones disponibles

➢ --DummyLp

➢ --Gurobi

➢ --Cbc

➢ --Cplex

_ Ejemplo

> configurarSolver --Gurobi

[success] Solver ’Gurobi ’ configurado exitosamente

. Restricciones

➢ Este comando debe ejecutarse después de haber creado el despacho.

➢ Solo puede haber un solver activo por sesión.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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grabar

ò Descripción
Guarda el modelo de optimización actual en un archivo con formato LP
compatible con solvers externos.

ù Sintaxis

grabar [--noConstante] <ruta.lp>

Ô Parámetros

➢ ruta.lp: Ruta donde se desea guardar el archivo LP.

➢ --noConstante (opcional): Excluye constantes en la función objetivo.

_ Ejemplos

> grabar modelo_despacho.lp

[success] Se ha guardado el modelo exitosamente

> grabar --noConstante modelo_sin_constantes.lp

[success] Se ha guardado el modelo exitosamente

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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resolver

ò Descripción
Resuelve el problema de optimización utilizando el solver configurado y
genera un archivo en formato CSV con los resultados.

ù Sintaxis

resolver [--noConstante] <ruta.csv >

Ô Parámetros

➢ ruta.csv: Ruta donde se desea guardar el archivo con los resultados.

➢ --noConstante (opcional): Resuelve sin incluir constantes en la función
objetivo.

_ Ejemplo

> resolver resultados_despacho.csv

[success] Problema resuelto exitosamente

F Salida generada
El archivo CSV contiene los siguientes datos:

➢ Valores de todas las variables de decisión.

➢ Valor de la función objetivo (original y post-procesada).

➢ Potencias generadas por cada agente.

➢ Estado (encendido/apagado) de unidades térmicas.

➢ Volúmenes almacenados en los embalses por peŕıodo.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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ejecutarPruebas

ò Descripción
Ejecuta una serie de comandos contenidos en un archivo de texto (modo
batch), permitiendo automatizar secuencias de pruebas. Este mecanismo
aplica el efecto ”capas”, es decir, los comandos del archivo se procesan de
forma acumulativa, respetando el orden.

ù Sintaxis

ejecutarPruebas <ruta_archivo >

_ Ejemplo

> ejecutarPruebas pruebas/caso_base.txt

[info] Procesando comandos desde archivo: pruebas/caso_base.

txt

[success] Procesamiento del archivo completado

F Genera
Un archivo resultados.csv con el resumen de todas las pruebas ejecuta-
das.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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finalizar

ò Descripción
Limpia completamente la memoria del sistema, eliminando todos los agen-
tes, demandas y datos cargados. Permite reinicializar el sistema desde cero
sin necesidad de cerrar el programa.

ù Sintaxis

finalizar

_ Ejemplo

> finalizar

[success] Memoria limpiada exitosamente...

� Efecto

➢ Libera completamente la memoria del sistema, eliminando agentes y de-
manda.

➢ Habilita la posibilidad de ejecutar nuevamente el comando inicializar.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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salir

ò Descripción
Finaliza la ejecución del programa. Antes de cerrar, libera todos los re-
cursos utilizados y guarda correctamente los archivos necesarios, como los
resultados del despacho.

ù Sintaxis

salir

_ Ejemplo

> salir

[success] Archivo de resultados cerrado.

[success] Saliendo del programa...
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A.4. Ejemplos de uso

Caso 1: modelo base

Un ejemplo de ejecución del modelo base descrito en el Sección 4.1 se muestra
a continuación:

Ö Flujo de comandos (hidroeléctrico simple)

> inicializar --t 24

[success] El programa se ha iniciado correctamente

> agregarAgente --RioNegro

> 100 105 98 ... (24 valores)

> 50 52 48 ... (24 valores)

> 200 205 198 ... (24 valores)

> 5000

> 3500

> 0.01

> 0.015

[success] Se ha creado el agente ’R\’io Negro ’ exitosamente

> agregarAgente --DemandaFija

> 300 320 310 ... 320

[success] Se ha creado el agente ’Demanda Interna ’ exitosamente

> crearDespacho --fijo

> 10000

[success] Se ha creado el despacho fijo exitosamente

> configurarSolver --Gurobi

[success] Solver ’Gurobi ’ configurado exitosamente

> resolver resultados_hidro.csv

(solver Gurobi ejecutandose)

[success] Archivo CSV generado correctamente

[success] Post -procesamiento completado. Nuevo valor F.O.: ....

> salir

[success] Archivo de resultados cerrado .\033[0m

[success] Saliendo del programa...
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Caso 2: Sistema Hidro-Térmico y costo de agua no lineal
de Bonete

En este caso, al modelo descrito en la Sección 4.1 se le añade una unidad térmica
de arranque rápido, como se describe en la Subsección 4.3.4, y se incorpora el
costo del agua no lineal en Bonete, según lo detallado en la Subsección 4.3.5:

u Flujo de comandos (modelo hidro-térmico mixto)

> inicializar --t 24

[success] El programa se ha iniciado correctamente

> agregarAgente --RioNegroNoLineal

> (datos de entrada...)

[success] Se ha creado el agente ’R\’io Negro Bonete No Lineal ’

exitosamente

> agregarAgente --UnidadTermicaRapida

> 50

> 250

> 1000

> 45

> 2

> 5000

[success] Se ha creado el agente ’Unidad T\’ermica R\’apida ’

exitosamente

> agregarAgente --UnidadTermicaRapida

> 30

> 150

> 800

> 35

> 1.5

> 3000

[success] Se ha creado el agente ’Unidad T\’ermica R\’apida ’

exitosamente

> agregarAgente --DemandaFija

> 300 320 310 ... 320

[success] Se ha creado el agente ’Demanda Interna ’ exitosamente

> crearDespacho --fija

> 10000

[success] Se ha creado el despacho fijo exitosamente

> configurarSolver --Cplex

[success] Solver ’Cplex ’ configurado exitosamente

> grabar modelo_mixto.lp

[success] Se ha guardado el modelo exitosamente

> resolver resultados_mixto.csv

(solver Cplex ejecutandose)

[success] Archivo CSV generado correctamente

[success] Post -procesamiento completado. Nuevo valor F.O.: ....

> finalizar

[success] Memoria limpiada exitosamente...
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A.5. Formato de archivos de prueba

Los archivos de prueba (.txt) deben contener una secuencia de comandos váli-
dos, uno por ĺınea. Las ĺıneas que comienzan con el carácter # son tratadas como
comentarios y son ignoradas durante la ejecución.

D Ejemplo de archivo válido:

archivo prueba.txt

inicializar 24

agregarAgente --RioNegro

100 105 98 102 ...

50 52 48 51 ...

200 205 198 202 ...

5000

3500

0.01

0.015

agregarAgente --DemandaFija

300 320 310 ...

crearDespacho --fija

10000

configurarSolver --Gurobi

resolver salida_prueba.csv
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A.6. Excepciones y mensajes de Error

Los siguientes mensajes son generados por el sistema ante errores comunes. La
tabla detalla la causa y su solución recomendada.

Mensaje Causa Solución

[error] El programa ya está

inicializado

Se intentó ejecutar
inicializar más de
una vez sin reiniciar
el sistema.

Ejecutar finalizar
antes de volver a
usar inicializar.

[error] Comando no valido Se ejecutó un
comando antes de
inicializar el sistema.

Iniciar el sistema
con inicializar

como primer paso.

[error] Ya existe una

Demanda Fija

Se intentó agregar
una segunda
demanda.

Solo se permite una
demanda por sesión.

[error] Ya existe un Rı́o

Negro

Se intentó agregar
una segunda
instancia del sistema
Ŕıo Negro.

Solo se permi-
te una: --RioNegro o
--RioNegroNoLineal.

[error] Aportes inválidos o

cantidad incorrecta

El vector de aportes
tiene una longitud
distinta a
horizonteTemporal.

Verificar que haya
exactamente
horizonteTemporal

valores.

[error] Tipo de solver no

reconocido

El nombre del solver
especificado no es
válido.

Usar uno de los
siguientes: DummyLp,
Gurobi, Cbc, Cplex.

Tabla A.1: Mensajes de error comunes: causas y soluciones sugeridas.

A.7. Notas adicionales

. Restricciones Importantes

Requisitos obligatorios:
➢ Ejecutar inicializar antes de cualquier otra operación.

➢ Agregar al menos un agente generador y uno de demanda antes de crear
el despacho.

Operaciones prohibidas:
➢ Agregar simultáneamente --RioNegro y --RioNegroNoLineal.

➢ Ejecutar resolver sin haber creado el despacho previamente.
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D Archivos Generados Automáticamente

Archivo Contenido

*.lp Modelo de optimización exportado en formato LP,
compatible con diversos solvers.

*.csv Resultados obtenidos tras resolver el modelo, incluyen-
do variables de decisión y métricas.

resultados.csv Resumen consolidado de todas las pruebas ejecutadas
mediante archivos batch.
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