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Resumen

Este proyecto se enmarca dentro del estudio de confiabilidad de redes. Sean
n y m enteros tales que n > 3 yn—1<m < (g), y sea Cy, m la clase de
grafos conexos y simples con n vértices y m aristas. El co-rango de cada uno
de los grafos dentro de la clase Cy, ,, es m —n + 1. Sea G un grafo en Cy, ,, y
sea p € [0, 1]. La confiabilidad R (p) es la probabilidad de que el subgrafo que
se obtiene de G tras retener a cada una de sus aristas independientemente con
probabilidad p resulte conexo. Decimos que GG es uniformemente méas confiable
si para cada grafo H en C, ,,, y cada p € [0, 1] se cumple que R (p) > Ru(p).

Boesch conjeturé en 1986 que cada una de las clases no vacias Cy, ,, posee
algin grafo uniformemente mé&s confiable. Posteriormente, en un trabajo
colectivo, Boesch probé que cada una de las clases no vacias C, ,, de co-rango
positivo no mayor que 3 posee un unico grafo que es uniformemente més
confiable. Ademas, en dicho trabajo se conjetura que, para cada entero n tal
que n > 6, existe un grafo uniformemente mas confiable de co-rango 4 con n
vértices que se obtiene mediante ciertas subdivisiones elementales del grafo
bipartito completo Ks33. En 1994, Wang anuncié que dicha conjetura es
correcta y publicé su demostracién. No obstante, un reciente articulo de
Landgren y Steif en 2024 sugiere que hay errores en la demostracién de Wang
y que el resultado no es correcto. Dicho trabajo fue publicado en ArXiv y se
encuentra bajo referato cientifico. De manera casi simultanea, Kahl y Luttrell
definen el concepto de grafo Tutte-méaximo que se basa en el polinomio de
Tutte de un grafo, y prueban que cada grafo Tutte-maximo es uniformemente
mas confiable.

En este proyecto se desea validar o refutar computacionalmente la
afirmacién realizada por Wang en 1994 utilizando métodos inspirados en
grafos Tutte-maximos. Este proyecto de grado tiene tres objetivos. El primer
objetivo consiste en familiarizarnos con los conceptos de grafo Tutte-maximo y
de grafo uniformemente méas confiable. El segundo objetivo consiste en
desarrollar algoritmos eficientes para determinar el polinomio de Tutte para
grafos de co-rango reducido. El tercer y tultimo objetivo consiste en refutar o
validar computacionalmente el teorema anunciado en 1994 por Wang. Nuestros
resultados evidencian que la afirmacion de Wang no es correcta y respaldan la
correccion propuesta por Landgren y Steif.



Palabras clave: Grafos Tutte-maximos, Grafos uniformemente més confiables.
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Capitulo 1

Introduccion

En este breve capitulo introductorio se presenta una motivacién histérica del
problema de estudio seguido de la organizaciéon del documento.

1.1. Motivacion

El estudio de confiabilidad de redes tiene registro desde 1956 a partir de un
articulo publicado por Moore y Shannon [12]. La motivacién principal de sus
autores era el desarrollo de computadores mediante el uso de electrénica
basada en relés. Cada relé tenfa una probabilidad de falla, y el objetivo
consistia en mantener comunicados 2 puntos concretos del circuito que
alimentaba el computador.

En 1986, Boesch formaliza una nocién de maximizacién de la confiabilidad
utilizando el lenguaje de la teoria de grafos. Boesch, en la reconocida revista
Journal of Graph Theory [3], no solamente define el concepto de grafo
uniformemente mas confiable, sino que también propone diversas conjeturas.
Hasta la fecha se sabe que la mayoria de las conjeturas propuestas por Boesch
son falsas, y que pese a ello han dado motivo no solamente a diversas
investigaciones, sino también han permitido generar nuevas preguntas y
florecer el area de investigacion de la sintesis en confiabilidad, también
conocido como confiabilidad uniforme.

Una de las conjeturas de Boesch afirma que en cada una de las clases no
vacias de grafos conexos y simples con n vértices y m aristas existe un grafo
uniformemente mas confiable. En un posterior trabajo colectivo desarrollado en
1991, Boesch et al. [2] demostraron que en cada una de las clases de grafos
conexos y simples cuyo co-rango es no mayor que 3 existe precisamente un
grafo que es uniformemente més confiable, y conjeturaron que todos los grafos
uniformemente més confiables de co-rango 4 con al menos 6 vértices provienen
de subdivisiones elementales del grafo bipartito completo K3 3. En 1994, Wang
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anuncié que dicha conjetura es correcta, y publicé su demostracién [20]. En
lo que sigue denotaremos con el simbolo W, al dnico grafo con n vértices y
co-rango 4 obtenido por Wang.

Esto brinda evidencia de que la conjetura de Boesch relativa a la existencia
de grafos uniformemente mas confiables es parcialmente cierta para las clases
de grafos de co-rango 4 o menor. No obstante, hasta la fecha se conocen
infinitos contraejemplos a dicha conjetura [4,10,13,17]. En particular, existe
una cantidad finita de grafos uniformemente mas confiables de co-rango 5,
contrastando fuertemente lo que ocurre en clases cuyo co-rango es menor que

5.

Nuestro tutor ha publicado un Survey en el area de grafos uniformemente
més confiables, donde retne resultados obtenidos hasta el ano 2021 relativos a
la existencia y construccion de grafos uniformemente maés confiables ante
modelos de fallas de caidas de vértices o de aristas [15]. Inmediatamente luego
de la publicacion de dicho Survey surge en la literatura cientifica un nuevo
enfoque algebraico para la determinacién de grafos uniformemente més
confiables que se basa en el polinomio de Tutte. Dicho enfoque se sustenta,
primeramente, en un trabajo publicado por Kahl en la reconocida revista
titulada Journal of Combinatorial Theory, Series B, donde define una relacién
de orden parcial dentro de ciertas clases de equivalencia de grafos conexos y
simples con una cantidad preestablecida de vértices y aristas [8].
Posteriormente, Kahl y Luttrell [9] definen el concepto de grafo Tutte-méximo
basado en el primer trabajo de Kahl. A partir del teorema receta de los
polinomios de Tutte se desprende directamente que cada grafo Tutte-méximo
es uniformemente méas confiable. Kahl y Luttrell probaron que cada uno de los
grafos uniformemente més confiables obtenidos por Boesch et al. en [2] son
Tutte-maximos. Kahl y Luttrell luego conjeturaron que en cada clase de grafos
no vacfa con al menos 6 vértices y co-rango 4 existe un tunico grafo que es
Tutte-méaximo.

Curiosamente, el estudiante de doctorado de la Universidad de Chalmers,
Lorents Landgren, en colaboracién con su orientador Jeffrey Steif, dejaron
disponible en ArXiv [11] una prepublicacién que arremete contra los
fundamentos de la confiabilidad uniforme. Dicho articulo se encuentra bajo
referato !. Concretamente, Lorents Landgren y Jeffrey Steif desarrollan un
nuevo método para obtener grafos uniformemente mas confiables. Luego,
identifican algunas falencias inherentes a la demostracion del teorema de
Wang [20], generando incertidumbre sobre la validez de resultados publicados
méas de 3 décadas atras y con abundante cantidad de citaciones en el area de
confiabilidad uniforme. Por tltimo presentan, para cada entero n tal que
n > 6, un grafo con n vértices y co-rango 4 que aqui denotaremos L,, (por la
inicial del primer autor, Landgren), y prueban que L, es el tnico grafo
uniformemente més confiable dentro de todos los grafos conexos y simples con
la misma cantidad de vértices y aristas que L,,. Cabe aclarar que los grafos L,

1Un borrador se encuentra disponible en ArXiV: https://arxiv.org/pdf/2407.20217
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y W, coinciden excepto para aquellos enteros positivos n que son congruentes
con 2 en moédulo 9.

Este proyecto se propone estudiar, en base a métodos algebraicos y
computacionales, si es valida la correccién propuesta por Landgren y Steif a la
afirmaciéon de Wang. La principal fuente de inspiracién serd el nuevo método
desarrollado por Kahl [8], y por Kahl y Luttrell [9], para obtener grafos
Tutte-méaximos.

Este proyecto de grado tiene tres objetivos especificos. El primer objetivo
consiste en familiarizarnos con los conceptos de grafo Tutte-maximo y de grafo
uniformemente més confiable. El segundo objetivo del proyecto consiste en
desarrollar algoritmos eficientes para determinar el polinomio de Tutte de un
grafo de co-rango reducido. El tercer objetivo consiste en comparar los grafos
W, v L, propuestos en respectivas publicaciones, por un lado por Wang [20] y
por otro lado por Landgren y Steif. Concretamente, nos interesa saber si el
grafo L, es mas confiable que el grafo W,, para aquellos enteros positivos n
que son congruentes con 2 médulo 9.

1.2. Estructura del documento

Este documento se organiza de la siguiente manera. En el Capitulo 2 se
presentan conceptos relativos al drea de confiabilidad uniforme y se definen, para
cada entero n tal que n > 6, los grafos W,, y L,. En el Capitulo 3 se presenta
el polinomio de Tutte y su propiedad de universalidad, también conocido en
la literatura como el teorema receta. Luego se presenta el concepto de grafo
Tutte-maximo y se incluye una demostraciéon de que todo grafo Tutte-méximo
es uniformemente més confiable. Cabe senalar que tanto el Capitulo 2 como el
Capitulo 3 se obtienen a partir de una recopilacién de trabajos previos.

Los aportes de este proyecto de grado se retinen en los Capitulos 4, 5, y 6.
En el Capitulo 4 se describen dos algoritmos novedosos que fueron
desarrollados en el transcurso de este proyecto para la busqueda de grafos
Tutte-maximos. El primer algoritmo emplea propiedades del polinomio de
Tutte para hallar dicho polinomio para cualquier pseudografo en su entrada.
Algunos experimentos computacionales sugieren que su rendimiento es
competitivo con otras técnicas de computo del polinomio de Tutte para clases
de grafos de co-rango reducido. Cabe senalar que el cédlculo del polinomio de
Tutte pertenece a la clase de problemas #P-Completos. Pese a ello, veremos
que el algoritmo propuesto es eficiente para el cdlculo del polinomio de Tutte
en grafos de co-rango fijo reducido, incluso ante grafos con una cantidad
masiva de vértices, lo que asegura escalabilidad. El segundo algoritmo
desarrollado recibe dos enteros positivos n y m tales que n +1 < m < 37" y
entrega un grafo conexo y simple que es Tutte-méximo en caso de existir, o
bien un indicador de que no existe dicho grafo dentro de la clase de grafos
conexos y simples con n vértices y m aristas. En el Capitulo 5 se presentan
ejecuciones de los programas desarrollados que se hallan en armonia con la
correccion propuesta por los autores Landgren y Steif. En el Capitulo 6



senialamos las principales conclusiones de este trabajo y brindamos posibles
lineas de trabajo futuro.



Capitulo 2

Grafos uniformemente mas
confiables

En este capitulo se incluyen nociones sobre confiabilidad uniforme que
seran centrales para el desarrollo del presente proyecto. En la Seccién 2.1 se
repasan conceptos basicos de teoria de grafos que se pueden encontrar en
libros clésicos [2,3]. En la Seccién 2.2 se presenta el concepto de confiabilidad
de un grafo y de grafo uniformemente méas confiable, comentando brevemente
aspectos de complejidad computacional. Asimismo se definen, para cada entero
n tal que n > 6, los dos grafos W,, y L,, que fueron propuestos respectivamente
por Wang, y por Landgren y Steif.

2.1. Conceptos basicos

Esta seccién ofrece una breve revisién de los conceptos fundamentales de
teoria de grafos con el objetivo de facilitar la comprension de los capitulos
posteriores. Si el lector ya estd familiarizado con estos contenidos, puede
avanzar directamente a la Seccién 2.2 sin pérdida de continuidad en la
exposicién principal.

A lo largo de todo el documento trabajaremos tnicamente con grafos finitos
y no dirigidos. Recordemos que un multiconjunto es un conjunto en el que los
elementos pueden repetirse. Un grafo simple G consiste en un conjunto finito de
vértices, denotado por V(G), y un conjunto de aristas, denotado por E(G), que
son pares no ordenados de elementos de V(G). Utilizaremos la notacién uv en
lugar de {u,v} para denotar a la arista cuyos extremos son los vértices u y v.
Diremos que dos vértices de G son adyacentes cuando son extremos de alguna
arista de G, y que dicha arista es incidente a cada uno de sus extremos. El grado
de un vértice v de G es la cantidad de aristas incidentes a v. En un multigrafo
admitimos que las aristas sean miltiples, por lo que F(G) es un multiconjunto.
En un pseudografo admitimos ademds la presencia de lazos, que son aristas de
la forma vv para algtin vértice v de G.



Sea G un grafo. Un subgrafo de G es un grafo que cumple que su conjunto
de vértices estd contenido en V(@) y su conjunto de aristas estd contenido en
E(G). La sustraccion de la arista e en G se denota G — e y consiste en el grafo
cuyo conjunto de vértices es V(G) y cuyo conjunto de aristas es E(G) — e. La
contraccion de la arista e en G, que se denota G * e, es el grafo que se obtiene
de G — e tras identificar a los vértices que son extremos de e. La remocion de
un vértice v en G es el subgrafo de G cuyo conjunto de vértices es V(G) — {v} y
su conjunto de aristas es precisamente el conjunto de aristas del grafo G menos
las aristas que son incidentes al vértice v. Un subgrafo recubridor de G es un
subgrafo H de G tal que V(H) = V(G). Dos grafos G 'y H son isomorfos si existe
una biyeccién ¢ : V(G) — V(H) tal que uv € E(G) si y solo si ¥(u)yp(v) €
E(H). Un camino en G es una secuencia de vértices y aristas de G de la forma
V0, €1, V1,€2,V2, ..., Er, U, donde vg,v1,...,0, € V(G) y e1,ea,...,e, € E(G).
El largo de este camino es 7, sus extremos son los vértices vy y v, y sus vértices
internos son los vértices del camino que no son extremos, si los hay. Denotamos
P, al grafo que consiste en un unico camino de n vértices. Para cada entero
positivo n denotamos C,, al grafo (o multigrafo) cuyo conjunto de vértices es
V1,...,0p tal que v;v;41 € E cuandoi € {1,...,n—1} y v,v1 € E (notar que Cy
tiene un Unico vértice y un lazo, mientras que Cs es un multigrafo). Decimos que
G es conexo si para cada par de vértices v y v del grafo G existe algiin camino
cuyos extremos son precisamente los vértices u y v. Una componente coneza
del grafo G es un subgrafo que es conexo y maximal por inclusién, es decir, es
un subgrafo conexo de G que no estd contenido propiamente en ningun otro
subgrafo conexo de G; equivalentemente, no es posible agregar a dicho subgrafo
ningun vértice ni arista de G sin perder la propiedad de ser conexo. Decimos
que un vértice v de G es un punto de corte si G — v tiene mas componentes
conexas que G. Decimos que e es una arista puente si el grafo G — e tiene més
componentes conexas que G. Decimos que el grafo G es 2-conexo si G es un grafo
conexo con al menos 3 vértices que no tiene puntos de corte. Llamamos drbol a
aquel grafo que es conexo y no posee ciclos. Decimos que un grafo G es ctbico
si todos sus vértices tienen grado 3. Definimos grafo completo de n vértices, y
lo denotamos K, al grafo con n vértices donde cada par de vértices distintos
estd conectado por exactamente una arista. Adicionalmente, decimos que un
grafo es no separable si es conexo y no tiene puntos de corte; de lo contrario,
se considera separable. Los subgrafos no separables maximales por inclusiéon se
denominan bloques del grafo. Cuando un grafo conexo G se compone de N
bloques G4, ...,G N diremos que G pertenece a la clase de grafos G1 -Gy ---Gpy;
dependiendo del contexto simplemente diremos que G = G1 - Gy - - - G. Para
cada par de pseudografos G y H y vértices v € V(G) y w € V(H), denotamos
G, - H,, al pseudografo que se obtiene tras identificar a los vértices v y w en
G U H. A lo largo del documento, utilizaremos la notacién M, , y By, »m para
referirnos, respectivamente, a las clases de todos los multigrafos y multigrafos
2-conexos con n vértices y m aristas.

Ademis, para cada par de enteros positivos ny m tales que n—1 < m < (g),
denotamos mediante C,, ,,, (respectivamente C2 ) a la clase de todos los grafos
simples y conexos (respectivamente, grafos simples y 2-conexos) con n vértices y



m aristas. Para cada pseudografo G con k(G) componentes conexas, definimos
el rango de G, y lo denotamos r(G), como |V(G)| — (G). De manera similar,
definimos el co-rango de G, y lo denotamos ¢(G), como |E(G)| —|V(GQ)|+ &(G).
Observar que cada uno de los grafos pertenecientes a C,, ,,, tiene rango n — 1y
co-rango m — n + 1. Por conveniencia diremos que el rango de la clase de grafos
Cn,m es igual a n—1, mientras que el co-rango de la clase de grafos C,, ,, es igual
am —n+ 1. Un anillo es un conjunto no vacio R provisto de dos operaciones
binarias, suma + y producto -, tales que:

1. (R,+) es un grupo abeliano, es decir, un grupo en el cual la suma es
conmutativa.

2. El producto es asociativo.
3. El producto es distributivo respecto de la suma.

Un invariante bajo isomorfismos, o simplemente, un invariante es una
funcién f cuyo dominio es una clase de grafos cerrada bajo las operaciones de
contraccién y sustraccién, y cuyo codominio es algin anillo, tal que
f(G) = f(H) siempre que G y H sean grafos isomorfos.

2.2. Clases de grafos de estudio

En esta seccién se presentan conceptos fundamentales del &rea de
confiabilidad uniforme que seran utilizados en este proyecto. Asimismo,
presentaremos los grafos definidos por Wang que denotamos W,, como
también los grafos definidos por Landgren y Steif, que denotamos L, los
cuales conforman nuestro caso de estudio. Para dar una definicién precisa sera
necesario introducir el concepto de cadenas y de destilaciones presentado por
Romero y Safe [17].

Definicién 2.2.1. Sean n y m dos enteros positivos tales que n—1 < m < (g)
Sea G un grafo en C,, ,,, y sea p € [0, 1]. La confiabilidad de G evaluada en p, que
denotamos Rg(p), es la probabilidad de que el subgrafo recubridor aleatorio
resultante de retener a cada una de las aristas de G independientemente con
probabilidad p sea conexo.

La busqueda de grafos con méxima confiabilidad es de interés desde mediados
del Siglo X X, pero fue formalizada utilizando el lenguaje de teoria de grafos
recién en 1986 tras un articulo seminal publicado por Frank Boesch [3].

Definicién 2.2.2. Un grafo G en C, ,,, es uniformemente mds confiable (UMRG
por sus siglas en inglés) si para cada grafo H en C,, ,,, y todo p en [0, 1] se cumple
que Rg(p) > Ru(p).

Introduciremos ahora una serie de conceptos necesarios para definir de
forma precisa los grafos comprendidos en nuestro caso de estudio [17]. Sea G
un multigrafo en B, ,, con més aristas que vértices. Una cadena de G, que



denotamos ~, es el conjunto de aristas de un camino P en G cuyos extremos
tienen grado 3 o mds mientras que cada uno de sus vértices internos (si los
hay) tienen grado 2. Los extremos de v son precisamente los extremos del
camino P y los vértices internos de vy son precisamente los vértices internos del
camino P. Sea 7 una cadena de G. El largo de 7 es igual a su cardinal, que
denotamos |y|. Cuando nos referimos a eliminar la cadena v de G nos
referimos a eliminar cada una de las aristas de - y también sus vértices
internos, pero no sus extremos. La remocién de la cadena v en G se denota
G © v. La contraccion de la cadena v en G, que se denota G * 7, es el grafo
que se obtiene de G & v tras identificar los vértices extremos de 7. Definimos
colapsar la cadena v de G al grafo que se obtiene de G © 7 tras agregar una
sola arista cuyos extremos coinciden con los de 7. La destilacion del grafo G,
que denotaremos D(G), es el grafo que se obtiene de G tras colapsar a cada
una de sus cadenas. Notar que G se obtiene a partir de D(G) tras una
secuencia finita de subdivisiones. Denotaremos por M, al conjunto de

destilaciones de los grafos de C, ., siendo ¢ = m — n + 1. Llamaremos
subdividir k veces una arista xy a sustituir dicha arista por k + 1 aristas de la
forma xz1, 2122, ..., 2k_12k, 2kY, donde 21, 22, ..., zx son k nuevos vértices. Por

ultimo, denotamos mediante 6;, ;, ;, al grafo compuesto por dos vértices y tres
cadenas que los unen, de largos Iy, Iy y I3 respectivamente. De forma anéloga,
definimos el grafo 0 generalizado 0y, ,,...;, como el grafo formado por dos
vértices unidos por n cadenas de largos l1,1s,...,L,.

Definicién 2.2.3 (Romero y Safe [17]). Sea G un grafo cibico y 2-conexo y
sea X un subconjunto de E(G). Para cada entero positivo s denotamos G*(X)
al grafo que se obtiene de G tras subdividir s veces cada arista de X y s — 1
veces cada arista de E(G) — X.

En el articulo [2] se conjetura que cada UMRG de co-rango 4 con al menos
6 vértices se obtiene a partir de subdivisiones del grafo bipartito completo K3 3.
En 1994, Wang [20] definié la siguiente clase de grafos de co-rango 4.

Definicién 2.2.4 (Wang [20]). Sea n un entero tal que n > 6, y sean r y s
los tinicos enteros tales que r € {0,1,...,8} y n+ 3 = 9s + r. Consideremos
las aristas ej,ez,...,e9 del grafo K33 enumeradas tal como se indica en la
Figura 2.1. Definimos X, como el conjunto vacio si 7 = 0, mientras que X, es
igual a {e1,e2,..., €.} en caso contrario. Definimos el grafo W, como K3 3(X;)

En 2024, Landgren y Steif definieron la siguiente clase de grafos.

Definicién 2.2.5 (Landgren y Steif). Sea n un entero tal que n > 6, y sean
r y s los Unicos enteros tales que r € {0,1,...,8} yn+3=9s+7r.Sir =20
definimos Y,. como el conjunto vacio. Si » = 5 definimos Y,. como el conjunto de
aristas {e1, e, €3, 4, e7}. En caso contrario, definimos Y, como {ej, es,...,e.}.
Definimos el grafo L, como K3 5(Y;).

Para cada entero positivo s denotamos por L* y W? a los grafos Lgsio
v Wysto respectivamente. A modo de ejemplo, cuando n = 11 se tiene que



n+3=9s+r, donde s =1y r = 5. Esto significa que cada una de las cadenas
de W11 y Lq; tienen largo igual a 1 o a 2. Por un lado, para el grafo W7, las tnicas
cadenas que tienen largo igual a 2 se corresponden con las aristas de X5 dentro
de K33 dadas por el conjunto {es, ez, es,e€4,e5}. Por otro lado, para el grafo
L1; tenemos que las tnicas cadenas que tienen largo igual a 2 se corresponden
con las aristas de Y5 dentro de K3 3 dadas por el conjunto {eq, ez, €3, €4, e7}. La
Figura 2.2 ilustra a los grafos Wy1 y Lq;.

Observemos que los grafos Wi, y Li; no son isomorfos. De hecho, basta
con mostrar que Wiy tiene un ciclo hamiltoniano mientras que Li; no tiene
ninguin ciclo hamiltoniano. Recordemos que un ciclo hamiltoniano de un grafo
es un ciclo que incluye cada vértice del grafo exactamente una vez. Todo ciclo
hamiltoniano en W71 o en L1 debe incluir a cada una de las aristas pintadas en
rojo en la Figura 2.2. Por un lado, W71 tiene un ciclo hamiltoniano que incluye
a todas las aristas que tienen color rojo mas una arista que tiene color negro.
Por otro lado, L1; tiene un conjunto de aristas con color rojo que ya forman un
ciclo que no incluye a todas las aristas, y por lo tanto L1 no tiene ningiin ciclo
hamiltoniano. Como consecuencia, L1; y W11 no son isomorfos, y los siguientes
enunciados propuestos separadamente por Wang [20] y por Landgren y Steif no
pueden ser simultdneamente correctos.

Afirmacién 1 (Wang [20]). Para cada entero n tal que n > 6 se tiene que W,
es el inico UMRG en Cy, n43.

Afirmacién 2 (Landgren y Steif). Para cada entero n tal que n > 6 se tiene
que L, es el inico UMRG en Cp, n43.

Figura 2.1: Grafo K3 3 etiquetado.

En el Capitulo 5 probaremos que la Afirmacién 1 no es correcta. Dicha
prueba no solo contribuye a esclarecer la controversia actual entre ambas
afirmaciones, sino que también establece un precedente para futuras
investigaciones en UMRG.



Grafo W1, Grafo Lq;

Figura 2.2: Grafos W11 y L11

2.3. Usos practicos de la confiabilidad

Para concluir este capitulo, es pertinente analizar los usos practicos del
concepto de confiabilidad aplicado a grafos. Esta seccién tiene como objetivo
destacar su valor en el diseio de estructuras capaces de resistir fallas
aleatorias.

Uno de los principales campos de aplicacién es el diseno de redes de
comunicacién. En particular, los grafos UMRG son grafos que maximizan la
confiabilidad en toda la gama de probabilidades de falla del enlace. Tal
propiedad los vuelve relevantes para la ingenieria de redes donde no se conoce
a priori la tasa de falla de los enlaces. En particular, nuestro tutor Pablo
Romero en un trabajo de 2019 [14], prob6 que los grafos de Wagner y Petersen
son UMRG en sus respectivas clases, lo cual los convierte en topologias
Optimas para redes pequenas, independientemente de la confiabilidad
individual de sus enlaces.

Otro uso destacado de la confiabilidad es su aplicacién como criterio de
comparacién entre distintas topologias de red. Por ejemplo, Yang y Han [21]
establecen una férmula cerrada para el nimero de arboles recubridores de
hipercubos generalizados. Dado que los UMRG deben maximizar esta
cantidad, dicha métrica puede utilizarse para comparar de forma objetiva
distintas arquitecturas de interconexion. Esto resulta ttil al momento de elegir
topologias con mejor comportamiento esperado ante fallas, sin necesidad de
realizar simulaciones costosas para cada caso.

Finalmente, los UMRG también se han utilizado como referencia para
estimar mejoras en la confiabilidad al agregar redundancia estructural a una
topologia dada. Este enfoque es especialmente 1util en escenarios donde el
presupuesto impone un limite estricto en la cantidad de enlaces que pueden
anadirse. En estos casos, comparar la confiabilidad de la red real con la del
UMRG de su clase permite cuantificar cudn cerca se encuentra del maximo
alcanzable, y por ende, evaluar si la incorporacién de una o més aristas
adicionales resulta justificable.



En todos estos contextos, los resultados tedricos en torno a los grafos
UMRG permiten fundamentar decisiones de diseno orientadas a la robustez
estructural, especialmente en situaciones donde se desconoce o varia la
probabilidad de falla de los enlaces. Si bien muchas de estas aplicaciones se
desarrollan a nivel simulado o computacional, su utilidad préctica reside en
ofrecer criterios objetivos para comparar y seleccionar topologias con
comportamiento superior bajo incertidumbre.






Capitulo 3

Grafos Tutte-maximos

La determinacion de grafos Tutte-maximos es central en el area de
confiabilidad uniforme puesto que cada grafo Tutte-médximo es un UMRG.
Este resultado serd una consecuencia inmediata de la propiedad de
universalidad del polinomio de Tutte.

Este capitulo se organiza de la siguiente manera. La Seccién 3.1 presenta el
polinomio de Tutte y sus propiedades, incluyendo su universalidad. La
Seccion 3.2 incluye el concepto de grafo Tutte-méximo y sus propiedades mas
notables. En particular, todo grafo Tutte-maximo es un UMRG, lo que brinda
asi una estrecha conexién con el area de confiabilidad uniforme. En la
Seccién 3.3 se presentan propiedades adicionales del polinomio de Tutte que
seran de utilidad para las pruebas de correctitud de los algoritmos
desarrollados a lo largo de este proyecto.

3.1. Polinomio de Tutte

El polinomio de Tutte es un polinomio en dos variables reales que codifica
informacion relevante de un pseudografo.

Definicién 3.1.1 (W. Tutte [18]). El polinomio de Tutte Tg(z,y) de un
pseudografo G se define recursivamente de la siguiente manera:

To—c(x,y) + Tase(x,y) sieno es un lazo ni un puente,

Te () = z - Tase(x,y) si e es un puente,
’ y-To—e(z,y) si e es un lazo,
1 si G no tiene aristas.

Desde el punto de vista del calculo del polinomio de Tutte adoptaremos el
siguiente concepto de grafos equivalentes.
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Definicién 3.1.2 (Kahl y Luttrell [9]). Dos grafos G y H en Cy, ., son Tutte-
equivalentes si para cada par de nimeros reales x e y se cumple que T (z,y) =

Ty (x,y).

Para afianzar conceptos presentamos el Ejemplo 3.1.1, que ilustra
graficamente el calculo del polinomio de Tutte correspondiente al grafo 6 1 ;.

Ejemplo 3.1.1. Un ejemplo del cdlculo del polinomio de Tutte usando la
Definicion 3.1.1 se muestra en la Figura 3.1. La arista que se elimina o
contrae en cada paso se resalta con un mayor grosor. El polinomio de Tutte de

01,171 es T91,1,1(x7y) = TPQ(«T,Z/) +T01 (CL’,y) + TC1-01 (:r,y) =T+y+ y2.

Figura 3.1: Empleo de la Definicién 3.1.1 para hallar Ty, | , (2, y).

Observacion 1. Como se observa en la Figura 3.1, su célculo presenta un
crecimiento exponencial de operaciones con respecto al ntimero de aristas del
grafo. De hecho, Leslie Valiant demostré en su influyente trabajo The Complexity
of Computing the Permanent que este tipo de problema pertenece a la clase de
problemas #P-completos [19].

Una observacién pertinente al considerar la definicién del polinomio de Tutte
es que, si G es un pseudografo arbitrario y e es una arista de G que no es ni
un puente ni un lazo, entonces el polinomio Ti(xz,y) satisface la denominada
propiedad de arista contraccion-sustraccion, la cual afirma que

TG(:L'7 y) = TG'fe(xvy) + TG*@($7y)~

Resulta sorprendente que una inmensa variedad de invariantes, que también
satisfacen la propiedad de arista contraccién-sustraccion, se puedan obtener
mediante evaluaciones del polinomio de Tutte. Este fenémeno se conoce como
la universalidad del polinomio de Tutte. A continuacién, se define una clase de
invariantes que corresponden, precisamente, a aquellas funciones derivadas de
evaluaciones del polinomio de Tutte sobre un pseudografo.



Definiciéon 3.1.3. Sea G una clase de pseudografos que es cerrada bajo las
operaciones de sustraccidon y contraccién de aristas que incluye a K;. Sea R
un anillo conmutativo con unidad. Decimos que un invariante de grafos f :
G — R es de Tutte—Grothendieck si cumple simultaneamente con las siguientes
condiciones:

. f(K)) =1

= Existen a,b € R tales que para todo grafo G en G y toda arista e de G
que no es puente ni lazo se cumple que f(G) =a- f(G—e)+b- f(G xe).

= Para todo par de grafos Gy H en G tales que GUH € G (resp. G, -H,, € G),
se cumple que f(GUH) = f(G)f(H) (resp. f(G, - Hy) = f(G)f(H)).

Estamos en condiciones de enunciar la propiedad de wuniversalidad del
polinomio de Tutte que serd fundamental para el desarrollo de nuestro
proyecto.

Teorema 2 (Universalidad del polinomio de Tutte [6]). Sea G una clase de
pseudografos cerrada bajo las operaciones de arista contraccion y sustraccion
que incluye tanto a Py como a Cy. Sea R un anillo conmutativo con unidad.
Para cada invariante de Tutte-Grothendieck f : G — R se cumple que f(G) =
a“@pr (&1, (xob_l,yoa_l), donde xy = f(P2), yo = f(C1) y los elementos a
y b del anillo R estdn dados por la Definicion 3.1.3 del invariante f.

En el libro Handbook of the Tutte Polynomial and Related Topics [6], el
Teorema 2 es referido como teorema receta. Este descriptivo alude a su capacidad
para determinar cualquier invariante de Tutte—Grothendieck especifico mediante
una evaluacién del polinomio de Tutte. En concordancia con dicha terminologia,
en este trabajo adoptaremos el mismo nombre y, en adelante, utilizaremos la
expresion teorema receta para referirnos al Teorema 2.

El teorema receta establece que cualquier invariante de Tutte-Grothendieck
puede obtenerse a partir de una evaluacién apropiada del polinomio de Tutte.
Esta afirmacién resulta especialmente significativa para nuestro estudio, ya que
con base en dicho teorema demostraremos que la confiabilidad de un grafo G es
un invariante de Tutte-Grothendieck, por tanto es posible expresarla en funcién
al polinomio de Tutte asociado al grafo.

Lema 3. Para cada grafo G en Cpm y cada p en (0,1) se tiene que

Ra(p) = p 1(1 - )™ 1T (1 1p> (3.1)

Demostracion. La estrategia de la demostracién consiste en mostrar que el
polinomio de confiabilidad es un invariante de Tutte-Grothendieck dentro de la
clase de todos los pseudografos, para posteriormente aplicar el resultado
obtenido en la subclase C,, .

Sea p un ndmero real en [0,1]. Notemos primero que Rp,(p) = p y que
Re, (p) = 1 para todo p en [0,1]. Sea G el conjunto que consiste en todos los



pseudografos. Tomemos un pseudografo cualquiera H en G y una arista e de H
que no sea puente ni lazo. Puesto que la arista e puede fallar con probabilidad
1—p o no fallar con probabilidad p, por la férmula de probabilidad total se sigue
que

Ru(p) =(1—p)-Ru—c(p) + P Ruwe(p)- (3.2)

La Ecuacién (3.2) refleja que la confiabilidad de cualquier pseudografo satisface
la propiedad de arista contraccién-sustraccién. Por lo tanto, el polinomio Rg(p)
es una invariante de Tutte-Grothendieck. Aplicando el teorema receta con a =
1—p,b=p, zg=peyy=1 se tiene que

Rirtp) = (0L~ " (1,11 ) (3.3

Finalmente, sea G un grafo cualquiera en C,, ,,. Sabemos que su rango es n — 1
mientras que su co-rango m — n + 1, por lo que tras reemplazar en la
Ecuacién (3.3) se sigue el resultado de la Ecuacién (3.1), como queriamos
demostrar. O

El Lema 3 establece una estrecha relacién entre el polinomio confiabilidad
de un grafo y su polinomio de Tutte. A continuacién, en la Seccién 3.2 se
introduce una relacién de orden parcial en cada clase C,,, utilizando el
concepto de polinomio de Tutte. Como consecuencia del Lema 3 resultara que,
si dicha relacién de orden parcial tiene méaximo, entonces tendremos un
UMRG.

3.2. Grafos Tutte-maximos

En esta seccién se presenta el concepto de grafo Tutte-mdzimo tal como fue
definido originalmente por Kahl y Luttrell [9]. Asimismo, se presenta un
resultado fundamental para nuestro trabajo, el cual establece una relacién
directa entre los UMRG y los grafos Tutte-maximos de la clase Cy, .

Definicién 3.2.1 (Kahl y Luttrell [9]). Dados dos grafos G y H en Cy m,
denotamos H < G cuando Tg(x,y) — T (x,y) = (x+y—zy)P(x,y) para algin
polinomio P(z,y) con coeficientes reales no negativos. En tal caso, diremos que
G domina a H en la jerarquia de Tutte.

Definicién 3.2.2 (Kahl y Luttrell [9]). Un grafo G en Cp ., es Tutte-mdzimo
si para todo grafo H en C, ,, se cumple que H <X G.

Denotaremos H < G cuando H =X G y ademds H y G no son
Tutte-equivalentes. En este caso diremos que G domina estrictamente a H en
la jerarquia de Tutte.

En la Seccién 3.1 se demostré que la confiabilidad de un grafo Rg(p), es un
invariante de Tutte-Grothendieck, y por lo tanto, puede expresarse en funcién
del polinomio de Tutte. Usando este resultado, enunciaremos el Lema 4 que nos



permitird establecer que, si un grafo G es Tutte-maximo entonces también es
un UMRG dentro de su clase.

Lema 4. Cada grafo Tutte-mdzimo en C, ,, es un UMRG en C, .

Demostracion. Sea G un grafo Tutte-méximo en C, ., y sea H un grafo
cualquiera en Cy, . Es claro que Rg(0) = Ry(0) y que Rg(1) = Ru(1). Sea p
en (0,1). Basta con probar que Rg(p) > Ry(p). Como G es Tutte-méximo,
existe algin polinomio P(z,y) con coeficientes no negativos tal que

Te(x,y) — Tu(z,y) = (x +y —zy)P(z,y). (3.4)

Aplicando el Lema 3 tanto a G como a H obtenemos que

Re(p) — Ru(p) =p" (1 —p)m " H! (TG (1’ 1ip> ~ T <1’ 1>>

1 1 1
— pn—1 1— m—n+1 1 - - \pl1.—
p" (1-p) 1,1, g

1
= pn_l(l _p)m_n+1 : P (17 1) Z Oa

donde se utilizé tanto la Ecuacién (3.4) como el hecho de que P(z,y) tiene
todos sus coeficientes no negativos. O

El Lema 4 es relevante para nuestro trabajo, ya que establece una relaciéon
entre la busqueda de grafos Tutte-maximos y la existencia de UMRGs. En
efecto, si logramos determinar un grafo Tutte-mdximo en una clase entonces
hemos obtenido un UMRG. Cabe aclarar que el reciproco del Lema 4 no es
cierto (los autores Kahl y Luttrell senalan en [9] que en C7 11 existe UMRG
pero no existe ningin grafo Tutte-mdximo). A partir de este momento, el
enfoque del trabajo se centrard en la busqueda de un grafo Tutte-maximo de
una clase, en lugar de abordar directamente la obtencién del UMRG.

Para finalizar la seccion cabe senalar que un grafo Tutte-maximo no
solamente maximiza la confiabilidad sino que también maximiza
simultdneamente otros invariantes de Tutte-Grothendieck que seran de
utilidad.

Proposicién 5 (Kahl y Luttrell [9]). Cada grafo Tutte-mdzimo G mazimiza
stmultaneamente todos los invariantes que se indican a continuacion:

= El ndmero de drboles recubridores, y se evalia Ti(1,1).
= El ndmero de bosques recubridores, y se evalia T (2,1).
= El ndmero de subgrafos conexos recubridores, y se evalia T(1,2).

= El ndmero de orientaciones aciclicas, y se evalia Tg(2,0).



3.3. Resultados Preliminares

El céalculo del polinomio de Tutte serd esencial para el desarrollo de este
proyecto. Dicho célculo se simplifica considerablemente en algunas clases de
grafos que se presentan en esta seccion.

Cada una de las aristas de un arbol es puente y aporta un factor x al
polinomio de Tutte. Como cada arbol con n vértices tiene exactamente n — 1
aristas, la siguiente observacién es correcta.

Observacién 6. Cada arbol G con n vértices cumple que Tg(z,y) = 2"~ L.

Procedemos a hallar el polinomio de Tutte del ciclo C,,. Utilizaremos la
convencién de que las sumatorias (productorias) que no incluyen sumandos
(factores) son iguales a 0 (resp. iguales a 1).

Lema 7. Para cada entero positivo n se cumple que Tc, (z,y) =y + 22;11 z*.
Demostracion. Vamos a emplear el principio de inducciéon completa sobre n.

Por un lado, C consta de un tnico lazo y T¢, (z,y) = y. Por otro lado,
Y+ 22:1 2% =y, por lo que el paso base es cierto.

Asumiendo que el enunciado es cierto para n, basta con probar que el
enunciado es cierto para n + 1. Sea e una arista de C}, 1. Por un lado, C), 41 x e
es isomorfo a C, 'y por hipétesis inductiva tenemos que
Te, . yve(r,y) =To, (x,y) =y + Ez;ll x¥. Por otro lado, C,, 41 — e es un arbol
con n + 1 vértices y por la Observacién 6 tenemos que T¢, ., —c(z,y) = 2™
Como e no es ni lazo ni arista puente, concluimos que

n—1 n
T0i(ay) = Tonawe(@,9) + Teyy—e(2,y) =y + Z wf et =y + Z 2.
k=1 k=1

Como es cierto tanto el paso base como el paso inductivo, el enunciado se sigue
del principio de induccién completa. O

El polinomio de Tutte factoriza por bloques [6].

Lema 8 (Ellis y Merino [6]). Si G1,Ga,...,G, son los blogues de un pseudografo
G entonces Tg(z,y) =1 Ta, (z,y).

En el articulo de Haggard et al. [7] se enuncia la Proposicién 9. Los autores
indican que su demostracién se sigue tras emplear el principio de induccion
completa sobre la cantidad de cadenas dentro de cada grafo 2-conexo y no
incluyen una demostracion. Dada la importancia de este resultado y por
cuestiones de completitud, aqui se demuestra la Proposicién 9.

Proposicién 9 (Teorema 3 en [7]). Sean n y m enteros positivos tales que
m > n. Para cada grafo G en B, ., y cada cadena v de G con k aristas se

cumple que
k—1

TG(xvy) = (Z xL) TG@V(‘Tvy) + TG*’Y(w7y)' (35)

=0



Demostracion. Vamos a emplear el principio de induccién completa sobre n.

Sea G un grafo en las condiciones del enunciado que tiene una cadena - con
tan solo una arista, es decir que v = {e}. Como G es un grafo 2-conexo, G no
tiene puntos de corte y en particular tampoco tiene aristas puente por lo que
e no es un puente. Como G es un multigrafo, G no tiene lazos. Luego e no es
ni un puente ni un lazo. Por la propiedad de arista contraccién-sustraccién del
polinomio de Tutte de G aplicado a la arista e se tiene que:

Tg(x,y) = TG—e('r7 y) + TG*e('rv y) = TG@’Y(J:’ y) + TG*’Y(xvy)’

por lo que el paso base es cierto.

Supongamos ahora que el enunciado se cumple cuando k es igual a h. Sea
ahora un grafo G que cumple con las condiciones del enunciado que tiene alguna
cadena v con exactamente h + 1 aristas, por lo que v = {ej,ea,...,ept1}
Como G es un multigrafo 2-conexo, sabemos que G no tiene ni puentes ni lazos.
Aplicando la propiedad de arista contraccién-sustraccién del polinomio de Tutte
de G aplicado a la arista ep11 se tiene que:

TG(xa y) - TG—Ch,+1 (CC, y) + TG*Ch+1 (SC, y)' (3'6)

Observemos que, para cada i € {1,2,...,h}, la arista e¢; es un puente en el
grafo G — ep41. Por un lado, aplicando reiteradamente la definicién recursiva
del polinomio de Tutte a cada uno de los puentes del grafo G — ep 1,

TG—6h+1 (ZL’, y) = thG@'y (il?, y) (37)

Por otro lado, observemos que el grafo G * ejpy1 pertenece a Byp_1m—1.
Ademds, G x e11 tiene la cadena 4" definida como v — {ep41}, cuyas aristas
son {e1,ea,...,ep}. Observemos que (G * ep1) © 9 = G & v, mientras que
(G x epq1) xy = G xv. Aplicando la hipétesis inductiva al grafo G * e 41 se
tiene que:

h—1

ml) T(G*eh+1)9'y’ (Iv y) + T(G*eh+1)*7’ (JC, y)

<.
(=)

TG*€h+1 (ZE, y) = <

_ (

Sustituyendo las ecuaciones (3.7) y (3.8) en (3.6), obtenemos:

(3.8)

>
=

'IZ) TG@'y (.’,U, ZJ) + TG*’Y (177 y)

(=)

h—1

TG (IL’, y) = thGe’Y (SC, y) + (Z ajl) TG@’Y(za y) + TG*’Y (’JJ, y)
=0

h
=0

por lo que el enunciado es cierto cuando k es igual a h + 1 culminando asi la
prueba por la aplicacién del principio de induccién completa. O






Capitulo 4

Aportes

Este capitulo presenta los aportes algoritmicos de este proyecto de grado.

La Seccién 4.1 presenta un algoritmo disenado para calcular el polinomio
de Tutte de cualquier pseudografo conexo, aprovechando tanto las propiedades
de contraccién y sustraccién de cadenas como la factorizacién por bloques. A
lo largo de esta seccién se incluye el pseudocédigo correspondiente, se ofrece
una demostracién de su correctitud y terminacion, y se realiza un anélisis de su
rendimiento mediante una comparacién experimental con otros algoritmos.

La Seccién 4.2 presenta un algoritmo de bisqueda de grafos Tutte-maximos
dentro de cada una de las clases no vacias Cy, ,,, de grafos conexos y simples. Se
proporcionan resultados que permiten restringir el espacio de busqueda
tinicamente a aquellos grafos en C2, . Se disefia un algoritmo que combina
esta reduccién del espacio de busqueda con el cédlculo del polinomio de Tutte
presentado en la Seccién 4.1, logrando explotar las propiedades de contracciéon
y sustraccion de cadenas y de factorizacion por bloques. A lo largo de esta
seccién se incluye el pseudocédigo junto con una demostraciéon de su
correctitud y terminacion.

Finalmente, la Seccién 4.3 presenta las conclusiones generales del capitulo,
resumiendo los principales aportes asi como los resultados obtenidos.

4.1. Calculo del polinomio de Tutte

A partir de la Observacién 1 del Capitulo 2, sabemos que el cédlculo del
polinomio de Tutte es un problema #P-completo. El objetivo de esta seccién
consiste en desarrollar un algoritmo eficiente para el calculo del polinomio de
Tutte cuando restringimos nuestro universo de instancias de entrada a aquellos
pseudografos conexos que poseen co-rango reducido. Para comenzar,
presentamos un algoritmo béasico que se desprende directamente de la
definicién del polinomio de Tutte. Seguidamente, presentamos un algoritmo
mas elaborado que serd utilizado para cumplir con los objetivos propuestos en
este proyecto.
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4.1.1. Algoritmo Basico

El algoritmo tutte_poly_naif(G) sigue un esquema goloso para implementar
el calculo del polinomio de Tutte basado en su definicién.

Algoritmo tutte_poly_ naif(G):

Entrada: Un pseudografo conexo G
Salida: El polinomio de Tutte Tg(x,y)
if G no tiene aristas then

2 L return 1;

=

w

if e es un puente en G then
L return z - tutte_poly_naif (G * e);

I

5 if e es un lazo en G then
6 L return y - tutte_poly_naif(G — e);
7 else

®

L return tutte_poly_naif(G — e) + tutte_poly naif (G x e);

La Figura 4.1 ilustra un &rbol que representa los primeros tres pasos
recursivos del Algoritmo tutte_poly_naif (02 22). Estos grafos se obtienen de
realizar contracciones y sustracciones de aristas. Es posible apreciar que la
cantidad de llamados recursivos del algoritmo bésico ante un grafo de entrada
G es de orden exponencial con respecto a la cantidad de aristas del grafo del
mismo, lo que torna prohibitiva su aplicacién ante grafos de gran tamano.

G
€1 — @ c,

<L

85_.__66

‘%/—/
G1 =G —es Go =G x*xen

\W—/ %/—/
G1 —es G1 * eg Ga —es5 G2 *es5

Figura 4.1: Aplicacién del algoritmo bésico al grafo 632 .



4.1.2. Algoritmo Propuesto

El algoritmo que se presenta en esta seccion calcula el polinomio de Tutte
Te(x,y) de un pseudografo conexo G. Este algoritmo explota propiedades
estructurales del grafo, lo que permite una reduccién significativa en el orden
de cémputo en comparacién con el algoritmo tutte_poly_naif(G).

Antes de presentar su pseudocdédigo es necesario definir el concepto de
pseudografo etiquetado.

Definicién 4.1.1 (Pseudografo etiquetado). Para cada pseudografo G cuyo
conjunto de aristas es E(G) = {e1,ea,...,e,} y cada tupla de enteros positivos
(z1,22, - ,x,), denotamos G(x1,x2,...,x,) al pseudografo obtenido de G
tras subdividir x; — 1 veces a la arista e; donde ¢ € {1,...,r}. Diremos que
G(z1,xa,...,x,) es el pseudografo etiquetado G con etiquetas (x1,xa, ..., T,).

A modo de ejemplo, el grafo 61 1 1(¢1, €2, £3) es el grafo Oy, ¢, ¢,. En la figura
4.2 se presenta el grafo G definido como 6; 1 1 y el grafo G(2,2,4).

G(z1,22,73)
er
es3
G(2,2,4)

<=

Figura 4.2: Ejemplo de un pseudografo etiquetado.

A continuacién, presentaremos el Algoritmo tutte_poly(G). Este toma como
entrada un pseudografo etiquetado G y retorna su polinomio de Tutte
Te(x,y). En lo que sigue, se detalla el pseudocédigo correspondiente. El
Algoritmo tutte_poly(G) sigue una estructura recursiva que, frente a una nueva
entrada, analiza cuatro posibles condiciones de retorno. El Bloque 1 (lineas
1-2) detecta si G es un &rbol de n vértices y en tal caso retorna z"~!. El
Bloque 2 (lineas 3-6) detecta si G tiene un lazo, que llamamos e. En dicho
caso, retorna el producto entre el polinomio de Tutte del ciclo T¢, (x,y)
(donde a es valor de la etiqueta de e) y la llamada recursiva con entrada G — e.
El Bloque 3 (lineas 7-9) detecta si G tiene mds de un bloque, y en tal caso
retorna el producto de los polinomios de Tutte de cada uno de sus bloques. El
Bloque 4 (lineas 10-12) detecta una cadena de G y retorna el polinomio de
Tutte de G segun la Proposicion 9.



Algoritmo tutte_poly(G):

Entrada: Un pseudografo conexo y etiquetado G
Salida: El polinomio de Tutte T (z,y) parametrizado en las etiquetas
de las aristas
if G es un drbol con n vértices then
L return 2" 1;

N =

if G contiene un lazo e, etiquetado con a then
Th<y+ ZZ: zh;
G+ G —e¢;
return T} - tutte_poly(G');

if G tiene k bloques then

Tomar los k£ bloques Gy, ...,Gi de G;

9 | return Hle tutte_poly(G;);
10 else
// G es un multigrafo conexo, y contiene una cadena

etiquetada con a
11 v < cadena(G);

12 return (Zf;ol a:i) tutte_poly(G © ) + tutte_poly(G * 7);

(<IN BN

o

G
@
Go =G
Gi=Goemn 2 m
.t.j.
. 8
\%/—/
B1 Bo

Figura 4.3: Aplicacién del algoritmo propuesto al grafo 03 2 o

Antes de adentrarnos en el estudio de la terminacién y la correctitud,
conviene analizar el ejemplo de la Figura 4.3 en contraste con el de la Figura
4.1. Ambos muestran el arbol recursivo del cdlculo del polinomio de Tutte para
el grafo 05 2 2. Cabe observar la notable reduccién en el nimero de operaciones
necesarias cuando se emplea el Algoritmo tutte_poly(f222) en lugar del
enfoque bédsico del Algoritmo tutte_poly-naif(0222). En efecto, al aplicar
tutte_poly(f2.2 2), solo se requieren dos operaciones para alcanzar los casos base
asociados al ciclo.



4.1.3. Terminacién y Correctitud

En este apartado demostraremos la terminacién y la correctitud del
Algoritmo tutte_poly(G). El siguiente concepto serd esencial para el andlisis de
terminacién.

Definicién 4.1.2 (Grafo reducido). Dado un multigrafo conexo cualquiera G,
decimos que G, es un grafo reducido de G si cumple alguna de las siguientes
condiciones:

1. G, = G S, donde + es una cadena en G.
2. G, = G *, donde v es una cadena en G.

3. G no es 2-conexo y G, es un bloque de G.

Lema 10. Sea G un multigrafo conexo con alguna arista. Si G, es un grafo
reducido de G entonces se cumple que |E(G,)| < |E(G)].

Demostracion. Sea G un grafo en las condiciones del enunciado y sea G, un
grafo reducido de G. Por un lado, si G, se obtiene mediante la aplicacién de la
regla 1 o 2 de la Definicién 4.1.2 para alguna cadena v de G entonces G, tiene
|v| aristas menos que G. Por otro lado, cada bloque de un grafo 2-conexo tiene
al menos una arista. Luego, si G, se obtiene mediante la aplicacion de la regla 3
de la Definicién 4.1.2 entonces G, es uno de los bloques de G. En cualquiera
de los casos, el reducido G, de G tiene menos aristas que G, como queriamos
demostrar. O

Teorema 11 (Terminacién del Algoritmo). Dado un pseudografo G conexo con
aristas etiquetadas, el Algoritmo tutte_poly(G) termina su ejecucion en tiempo
finito.

Demostracion. El Algoritmo tutte_poly(G) se compone de cuatro bloques. En
particular, los Bloques 2, 3 y 4 son recursivos, siendo estos los que resulta de
interés probar su terminacion.

Observemos que en todos los pasos recursivos, el Algoritmo tutte_poly(G)
retorna reducciones del grafo G. Apoyandonos en el Lema 10 podemos afirmar
que |E(G,)| < |E(G)|. Por lo tanto, en cada paso recursivo se llama
nuevamente al Algoritmo tutte_poly(G) con un grafo con menos aristas. Puesto
que el pseudografo de entrada G es finito, tras llamados recursivos
obtendremos un grafo conexo minimal, que es un arbol, y se alcanzard su
terminacién en el Bloque 1. Por lo tanto, el algoritmo tutte_poly(G) finaliza
tras una cantidad finita de pasos, como queriamos demostrar. O

Estamos en condiciones de probar la correctitud del algoritmo tutte_poly(G).

Teorema 12 (Correctitud del Algoritmo). Dado un pseudografo G con aristas
etiquetadas, el polinomio retornado por tutte_poly(G) corresponde al polinomio
de Tutte de G.



Demostracion. Para demostrar la correctitud del algoritmo estructuraremos la
prueba en bloques, verificando que lo retornado en cada uno de ellos es valido
y se ajusta a la hipdtesis de los lemas utilizados.

= Bloque 1: en este caso el pseudografo G es un arbol con n vértices. Por
la Observacién 6, su polinomio de Tutte es "L, que es efectivamente lo
que retorna este bloque, por lo que es correcto.

= Blogue 2: Sea G el pseudografo etiquetado de entrada, y sea X su
conjunto de etiquetas. En este caso, GG contiene un lazo e etiquetado con
el valor a. Luego, existe un pseudografo G tal que G(X) = Gy - C,. Por
el Lema 8, Tg(x)(z,y) = Ta, (z,y) - Tc, (z,y). Por el Lema 7 se tiene que

Taox)(x,y) = Te(z,y) - (y + ZZ;} xk). Esta expresién coincide con el

resultado retornado por el algoritmo, y es correcto por los Lemas 7y 8.

= Bloque 3: en este caso G contiene k bloques. Bajo estas hipétesis, el
algoritmo hace uso del Lema 8 y retorna el producto del polinomio de
Tutte de cada uno de los bloques del grafo G.

= Bloque /: este bloque toma efecto inicamente cuando los Bloques 1, 2,
o0 3 no tomaron efecto. Es simple probar que el pseudografo de entrada
al Bloque 4 tiene mas aristas que vértices y ademads pertenece a la clase
B.,.m. El polinomio de Tutte que se retorna en la linea 12 de este bloque
es correcto por la Proposicion 9.

La correctitud del algoritmo se sigue su terminacién y de la correctitud de
cada uno de sus bloques. O

4.1.4. Eficiencia computacional

En este apartado analizamos cuan eficiente resulta nuestra implementacion
para calcular el polinomio de Tutte. Para ello, se realizd6 una comparacion
directa con dos algoritmos: por un lado, el algoritmo BHKK [1], considerado
entre los mas eficientes hasta la fecha, y por otro lado, una versién del
Algoritmo bésico (tutte_poly_naif(G)) desarrollada en Python.

Para la implementacién en cédigo del algoritmo descrito en tutte_poly(G),
se optd por utilizar el lenguaje Python, en su versién 3.12. Esta eleccion se
basé principalmente en dos motivos: por un lado, la amplia disponibilidad de
bibliotecas especializadas tanto para el tratamiento de polinomios como para
la manipulacién de grafos; por otro, la simplicidad del lenguaje, que permite
desarrollar prototipos funcionales con pocas lineas de codigo, evitando asi la
complejidad asociada al manejo manual de memoria u otros aspectos de bajo
nivel.

Todas las ejecuciones experimentales se realizaron en un entorno controlado,
utilizando un ordenador con las siguientes especificaciones técnicas:



= Procesador: Intel Core i3-1215U (6 ntcleos).
= Memoria RAM: 8 GB DDR4 a 3200 MHz.
= Sistema operativo: Windows 11 Home.

= Entorno de ejecucién: Windows Subsystem for Linux (WSL)

Para llevar a cabo las pruebas computacionales, se seleccionaron dos
familias distintas de grafos: grafos completos y grafos 6, i, 1,.1,.1,- A modo de
ejemplo, se presentan las Figuras 4.4 y 4.5, que ilustran un grafo
representativo de cada familia utilizada en la comparacion.

Figura 4.4: Grafo completo de 5
vértices.

TN

Figura 4.5: Grafo 04.4.4,4.4

Las Tablas 4.1 y 4.2 resumen los resultados obtenidos por cada uno de los
algoritmos estudiados ante instancias de grafos completos con 2, 3, 4, 5, o0 6
vértices, y grafos de la clase 0, ¢,,0,000, con {1 € {4,5,8,10,15},
respectivamente. Vale destacar que en cada caso se realizé una gran cantidad
de corridas preliminares, en las cuales se observd consistentemente resultados
acordes a los presentados a continuacién. Los resultados mostrados en las
tablas corresponden a una unica corrida representativa, y no a un promedio de
las corridas realizadas.



Cantidad de vértices | BHKK (s) | Algoritmo propuesto (s) | Algoritmo bésico (s)
2 0.007500 0.000482 0.000172
3 0.006845 0.001211 0.003750
4 0.006113 0.019639 0.011367
5 0.006043 0.818198 0.050758
6 0.008538 72.932995 0.480127
7 0.015731 N/A 10.74871

Tabla 4.1: Tiempos de ejecucion para grafos completos de n vértices.

Largo de cadenas | BHKK (s) | Algoritmo propuesto (s) | Algoritmo basico (s)
4 3.755088 0.275767 1.051911
5 257.659786 0.467448 2.979167
8 N/A 0.436766 20.559151
10 N/A 0.496000 61.231551
15 N/A 0.912857 627.110134

Tabla 4.2: Tiempos de ejecucién de los tres algoritmos para 0y, 1, 1,.1,.1,

La Tabla 4.1 presenta los resultados para grafos completos. Aqui, nuestro
algoritmo enfrenta su mayor desafio, ya que no existen puntos de corte ni
cadenas de largo mayor que uno. Aunque nuestro algoritmo inicia con tiempos
competitivos, a partir de Kg los tiempos de ejecucién se incrementan
considerablemente. Para el grafo K7 su ejecucién es finalizada de forma
forzada por el sistema sin retornar un polinomio debido al excesivo uso de
memoria. En cambio, tanto el Algoritmo bésico como el algoritmo BHKK
muestran comportamientos mas estables.

El otro caso analizado (Tabla 4.2), corresponde a los grafos 6, ¢, ¢,.0,.01-
En este escenario, nuestro algoritmo demuestra su maximo potencial. Supera
ampliamente a los otros enfoques, manteniendo tiempos acotados incluso en
instancias con més de 30 vértices, donde BHKK ni siquiera puede operar. En
contraste, el Algoritmo béasico sufre un notable incremento en el tiempo en
funcién del crecimiento en el largo de las cadenas.

En resumen, nuestro algoritmo se desempena con gran eficiencia y
escalabilidad en grafos de bajo co-rango, donde puede explotar plenamente su
estrategia de optimizacién. Sin embargo, su rendimiento se ve comprometido
en grafos de alto co-rango, en los cuales la ausencia de cadenas y bloques
limita su eficacia y conduce a un uso excesivo de recursos.

4.2. Busqueda de grafos Tutte-maximos

El objetivo de esta seccion es presentar un algoritmo que permita determinar
la existencia de grafos Tutte-mdximos dentro de C, ., y, en caso de existir,
retornar uno de ellos.

Esta seccién se desarrolla en dos etapas. En primer lugar, mostramos que



es posible restringir la buisqueda de grafos Tutte-méximos en C, ., a la clase
C%’m. Adicionalmente, determinaremos un conjunto de grafos de menor
cardinal que, a partir de subdivisiones de sus aristas, permite representar a
cada uno C?z,m' En segundo lugar, presentamos el pseudocddigo del algoritmo
de busqueda. Por ultimo, demostraremos la terminacién y la correctitud del
algoritmo desarrollado.

4.2.1. Grafos 2-conexos y destilaciones

En este apartado mostraremos por qué podemos restringir el universo de
busqueda de grafos Tutte-maximos en Cp ., a grafos en C?L’m. Luego, veremos
que para cada grafo en C?L’m existe un grafo destilaciéon D en M, y un conjunto
de etiquetas X tal que G = D(X). Este hecho permitird reducir notoriamente
el esfuerzo computacional del algoritmo de busqueda de grafos Tutte-maximos.

Teorema 13 (Kahl y Luttrell [9]). Sea G un grafo en Cy, ;n—C7 ,, tal quem >n
y sean G1 y Go dos bloques de G. Supongamos ademds que v es un vértice de
corte comin a ambos bloques, y que uwv € E(G1) y vw € E(G2). Sea H un grafo
tal que

H =G — uv+ uw.
Entonces se tiene que G < H. Ademds, si G1 # Ka entonces G < H.

Proposicion 14. Sean n y m dos enteros positivos tales que m > n. Para cada
grafo G en Cypm — C2 ., existe otro grafo H en ngm tal que G < H.

n,m

Demostracion. Sea G un grafo en las condiciones del enunciado. Notemos que
al menos uno de sus bloques no es P», pues si cada bloque fuese P> entonces G
serfa un arbol, contradiciendo que G tiene maés aristas que vértices. Sea G; un
bloque de G que no sea P,, y sea G2 otro bloque de G que tenga un vértice en
comtn con G;. Por el Teorema 13 sabemos que existe G’ tal que G < G’. Si
G’ atin presenta algiin punto de corte podemos aplicar nuevamente el Teorema
13 y repetir el procedimiento hasta llegar a un grafo H sin puntos de corte tal
que G < H. Nétese ademas que H pertenece a C, ,,, no tiene puntos de corte,
y tiene al menos 3 vértices, por lo que H es 2-conexo y pertenece a Cﬁ)m como
queriamos demostrar. O

La Proposicion 14 permite restringir el espacio de bisqueda de grafos Tutte-
méximos de Cy, ,,, a aquellos grafos en C,Ql)m. A continuacién, mostraremos que
es posible obtener a cada uno de los grafos en C7 ,, mediante subdivisiones
elementales de alguno de los grafos en M., reduciendo asi el cardinal del espacio
de busqueda. Para cumplir este objetivo, es necesario introducir el Lema 15.

Lema 15 (Romero [16]). Sean n y m dos enteros positivos tales que n +1 <
m < 3n/2 y sea G en C2,,. Sea ¢ = m —n + 1. Cada una de las siguientes
afirmaciones es cierta.

1. La destilacion de G, que denotamos D(G), tiene a lo sumo 2¢ — 2 vértices
y para todo v € V(D(Q)) el grado de v es mayor que o igual a 3.



2. Si D(G) tiene exactamente 2¢ — 2 vértices entonces D(G) es cibico.

3. El grafo D(G) tiene no mds que 3¢ — 3 aristas. La igualdad ocurre si y
solo si D(G) es cubico.

Observemos que si un grafo 2-conexo simple G tiene més aristas que vértices
entonces existe su destilacion. Puesto que G es 2-conexo y se obtiene mediante
una cantidad finita de subdivisiones elementales de D(G), resulta que D(G) es
también 2-conexo. Por lo tanto, D(G) es un multigrafo y no puede tener lazos.

Observacion 16. La destilacion de cada grafo 2-conexo simple con mas aristas
que vértices es un multigrafo 2-conexo.

Estamos en condiciones de probar el siguiente lema.

Lema 17. Sean n y m dos enteros positivos tales que n +1 < m < 3n/2.
Definamos ¢ = m —n+1. Para cada G en C2, existe un multigrafo G’ en M.

tal que D(G) = D(G'). o

Demostracion. Sean n'y m y G en las condiciones del enunciado. Por la
Observacion 16, existe la destilacién D(G) de G, que es un multigrafo. Por el
Lema 15(1) sabemos que D(G) tiene a lo sumo 2¢ — 2 vértices. Si D(G) tiene
exactamente 2c — 2 vértices entonces por el Lema 15(2) tenemos que D(G) es
ctibica y por lo tanto tiene 3¢ — 3 vértices. En este caso D(G) pertenece al
conjunto M, y basta con elegir G’ = G. Si no, como el co-rango de G y de
D(G) coinciden, tendremos que D(G) es un multigrafo con n’ vértices y
n’ + (¢ — 1) aristas para algin entero n’ tal que n’ < 2¢ — 2. Definamos
k = 2c¢— 2 —n'. Tomemos una arista arbitraria e de D(G). Construyamos G’
que se obtiene de G tras aplicar k subdivisiones elementales de la arista e.
Observemos que G’ es un multigrafo que tiene exactamente k vértices y k
aristas mds que D(G), por lo que tiene exactamente 2¢ — 2 vértices y 3¢ — 3
aristas. Entonces, G’ es un multigrafo en M, y su destilacién es precisamente
D(@G), como querfamos demostrar. O

Observacion 18. Sean n y m enteros positivos tales que n+1 < m < %, v sea

c=m—n+ 1. 5Si D es una destilacién en M, entonces existe G € Bac—2 3.—3
que puede obtenerse mediante subdivisiones elementales de D.

Al combinar la Proposicién 14, el Lema 17 y la Observacion 18, es posible
restringir el espacio de busqueda de grafos Tutte-maximos de C,, ,, inicamente
a aquellas destilaciones provenientes de grafos en Ba._23.—3. Por tltimo,
introducimos la relacién de dominancia entre polinomios de Tutte que serd
utilizada en el algoritmo de busqueda.

Definicién 4.2.1. Para cada par de enteros n y m tales que C, ,, es no vacia,
definimos la coleccién de polinomios Py, ., como {Tg(z,y) : G € Cpm }-

Definicién 4.2.2. Sean Tg(z,y) y Tu(x,y) dos polinomios en Py, ,,. Decimos
que Tg domina a Ty, y lo denotamos Ty = T¢, cuando Tg(z,y) — T (z,y) =
(x +y—2xy)P(z,y) para algin polinomio P(x,y) con coeficientes no negativos.



Observacién 19. La relacién de precedencia =< en el conjunto P,, ,,, es de orden
parcial.

= Reflexividad: Para todo polinomio Tg(z,y) se  cumple
Ta(w,y) —Ta(z,y) = (x +y —xy) - 0 =0, por lo que Ty < Tt

» Antisimetria: Si Tg < Ty y Ty =< T¢, entonces existen dos polinomios
Py (z,y), P2(x,y) con coeficientes no negativos tales que:

T (z,y) — Ta(z,y) = (z +y — zy) Pi(z,y) (4.1)
Ta(z,y) — Tu(r,y) = (x +y — zy) Pa(z,y) (4.2)

Sumando las  expresiones (4.1) 'y (4.2) se obtiene que
0 = (z+y—a2y)(P(r,y) + P(2,y)). Luego, Pi(z,y) + Pa(z,y) = 0.
Como Py(z,y) v Pa(x,y) tienen coeficientes no negativos, la tnica
posibilidad es que Py (z,y) = Ps(x,y) =0, por lo que Tg = Tx.

= Transitividad: SiTy <X Tg y Tgr = T, entonces existen dos polinomios
Py(x,y), Po(x,y) con coeficientes no negativos tales que:

Te(z,y) = Tu(z,y) = (x +y — 2y) Pi(2,y) (4.3)

Te(v,y) — Ter(z,y) = (x +y — 2y) P2 (2, y) (4.4)

Sumando las expresiones (4.3) y (4.4) se obtiene que Tg(x,y) —Th(x,y) =
(x +y—2y)(Pi(z,y) + Pa(x,y)), donde Py(z,y) + Po(z,y) también tiene
coeficientes no negativos. Por tanto, Ty < Tg.

El siguiente concepto de polinomio méximo en P,,, tiene una
correspondencia directa con el de grafo Tutte-méaximos en Cy, p,.

Definicién 4.2.3. Decimos que un polinomio T en P, ,, es mdzimo si para
todo polinomio Ty en Py, se cumple que Ty = T

Observacién 20. A partir de la Observacién 19 sabemos que si existe un
polinomio méximo entonces es tinico.

Observacién 21. Si G es un grafo Tutte-méximo en C,, ,, entonces Ty es
polinomio maximo en P,, .

Estamos en condiciones de presentar el algoritmo de busqueda de grafos
Tutte-méximos en la clase Cy, .



4.2.2. Algoritmo Propuesto

Algoritmo search_tutte(n, m):

Entrada: Dos enteros positivos n y m tales que n+1 < m < 37"
Salida: Grafo Tutte-méximo en C,, , si existe; & si no.
c+—m—n+1;

M. + obtener_destilaciones(c);

T+ @;

for D € M, do

D(X) « etiquetar(D);

Tp(x)(z,y) « tutte_poly(D(X));

7 L+ {(ll,lg, ...,Z|E(D)|) S Zl_i_E(D)l : ZLESD” l; = m};
for l € L do

9 if Tp)(z,y) ¢ T then
10 L T« TU{Tp (=9}

[=2 T S V- I

o

1P+ {TgeT : Ty T, Tu(l
12 P {TgeT : 3T eT, Tu(2,
13 Ps« {TgeT : 3TgeT, Tu(l
14 P4<—{TG€T:§§TH€T, TH(2
15 P/<_P10P2OP30P4;

16 if P/ == @ then

17 Lreturn@;

18 Ty + obtener_un_elemento_cualquiera_de(P');
19 for Tg € P’ do

20 if Ty < T then

21 L Ty < Tg;

22 for Tg € T, Tg # Ty do
23 if not T < Ty then
24 | return &;

25 return H;

El Algoritmo de busqueda search_tutte(n, m) obtiene el conjunto de
destilaciones M, en el Bloque 1 (lineas 1 - 2). En la préctica, este conjunto
se determina a partir de cada uno de los grafos en Ba._3 3.—3, obteniendo sus
destilaciones y luego eliminando aquellas que son isomorfas. En el Bloque 2
(lineas 3 - 10), se obtienen de manera eficiente todos los polinomios de Tutte
de los grafos en C, . Notar que basta con calcular el polinomio de Tutte
solamente para las destilaciones etiquetadas. Luego, evaluando las diferentes
combinaciones validas de etiquetas se obtienen todos los polinomios de Tutte
de los grafos en C2 , . Dichos polinomios son almacenados en el conjunto 7. El
Bloque 3 (lineas 11 - 17) corresponde al proceso de busqueda de polinomios
candidatos a ser maximos, partiendo del conjunto 7. En primer lugar, el
algoritmo evalta los cuatro invariantes de Tutte-Grothendieck presentados en



la Proposicion 5 para cada uno de los polinomios del conjunto 7. A partir de
ello, identifica el conjunto de aquellos polinomios de Tutte cuyos grafos
maximizan cada invariante. Luego, se obtiene la interseccién de esos cuatro
conjuntos. Si dicha interseccién contiene mas de un polinomio, el algoritmo
determina si un candidato domina a los restantes (lineas lineas 18 - 21). Notar
que Ty, al finalizar el algoritmo, almacenara el polinomio maximo en C,, ,,, en
caso de existir. Finalmente, en el Bloque 4 (lineas 22 - 25) se verifica
computacionalmente si Ty domina al resto de los polinomios de Tutte de los
grafos en C2 .y de ser asi, retorna su grafo asociado.

n,m>

4.2.3. Terminacién y Correctitud

En esta secciéon enunciaremos y demostraremos dos teoremas. El primero
estd relacionado con la terminacién del Algoritmo search_tutte(n, m), mientras
que el segundo aborda su correctitud.

Teorema 22 (Terminacién del Algoritmo). El Algoritmo search_tutte(n, m)
siempre termina su ejecucion en tiempo finito.

Demostracion. Observemos que cada bloque del algoritmo opera sobre
conjuntos finitos y realiza un nimero finito de operaciones:

= Blogque 1: Como el conjunto Ba._2 3.—3 es finito, se tiene en particular que
el conjunto M, es finito. Asimismo, la determinacién computacional de
M. se lleva a cabo en un numero finito de operaciones, puesto que se
construye mediante el colapso de los vértices de grado 2 en cada grafo de
Bac—2,3.—3, cuyo conjunto de vértices es, por definicién, finito.

= Blogque 2: Por el Teorema 11, el calculo del polinomio de Tutte a través
del Algoritmo tutte_poly(G) termina en tiempo finito. Ademds, para cada
destilaciéon D € M, y cada entero positivo m se tiene que la cantidad de
combinaciones vélidas de etiquetas positivas cuya suma es exactamente
igual a m es finita.

= Bloques 8 y 4: La evaluacién del polinomio de Tutte para el céalculo de
invariantes, la busqueda del valor méximo dentro de un conjunto finito
y la comparacién de polinomios son todas operaciones computables en
tiempo finito.

La terminacion del algoritmo en una cantidad finita de pasos se sigue de la
terminacién de cada uno de sus bloques en una cantidad finita de pasos. O

Teorema 23 (Correctitud del Algoritmo). Si existe al menos un grafo Tutte-
mdzimo en C, ., entonces el Algoritmo search_tutte(n, m) retorna uno de ellos.

Demostracion. Llamaremos G a algin grafo Tutte-méximo de Cy, .

s Bloque 1: Por la Proposicién 14, G € C? Adicionalmente, por la

n,m:-

Proposicién 17, existe D € M.y Xg = (21,22, -+ ,2|g(D)|) € Zlf(D)l tal



que D(x1,22,---,2pp))) = G. Por la Observacion 18, M. puede
obtenerse a partir de subdivisiones partiendo de un grafo en Bac_2 3.—3.

= Bloque 2: Observemos que X pertenece al conjunto de etiquetas £ que fue
generado en la linea 7 del algoritmo. En consecuencia, una vez finalizada
la ejecucion del Blogque 2, el polinomio Tg formara parte del conjunto 7
construido en la linea 10.

= Bloque 3: Por la Proposicién 5 se sigue que T pertenece a la
interseccién de los conjuntos P’ presentada en la linea 15. Ademés, por
las Observaciones 20 y 21, T sera el inico méximo seleccionado en el
proceso comparativo descrito en las lineas 19 - 21.

= Blogue 4: Como T es maximo, no se alcanzard la linea 24 y el algoritmo
retornara un grafo H cuyo polinomio de Tutte es precisamente T¢. Dado
que G es Tutte-méaximo y H es Tutte—equivalente a G, se puede afirmar
que H también es Tutte—maximo.

Luego el algoritmo retorna un grafo Tutte-méximo, por lo que es correcto. [

4.3. Conclusiones del Capitulo

En este capitulo se han presentado dos contribuciones que fortalecen el
cuerpo central de este trabajo.

En primer lugar, se desarrolld un algoritmo eficiente para el calculo del
polinomio de Tutte en grafos de co-rango bajo que aprovecha las propiedades
de contraccién y sustraccién de cadenas asi como también la factorizacién por
bloques. Este enfoque permite reducir significativamente el tiempo de
ejecucién computacional al tratar el conjunto de las aristas pertenecientes a
una misma cadena como una unidad en lugar de procesarlas individualmente.
Los resultados experimentales demuestran que esta implementacién mantiene
tiempos de ejecucién estables y competitivos en grafos con estructura de
cadenas largas.

En segundo lugar, se desarrolldé un algoritmo para la identificacién de
grafos Tutte-méximos optimizado para operar en clases de grafos de co-rango
bajo. Este aporte metodolégico combina, de manera innovadora, el cédlculo
eficiente del polinomio de Tutte con una reduccién estratégica del espacio de
busqueda. La estrategia se basé en restringir el estudio a grafos en C?Lm?
representarlos mediante clases de menor cardinal y determinar candidatos
mediante la maximizacién de invariantes de Tutte-Grothendieck.

En el Capitulo 5 pondremos en préactica los algoritmos desarrollados,
comenzando por un estudio concreto de la existencia de grafos Tutte-maximos
dentro de la clase Ci1,14. A partir de este andlisis, se generalizan los resultados
y se alcanza un aporte novedoso: la refutacién de la afirmaciéon de Wang para
una cantidad infinita de clases de grafos.



Capitulo 5

Refutacion a la afirmacion
de Wang

Este capitulo tiene como objetivo analizar la veracidad de las Afirmaciones
1y 2. En la Seccién 5.1 se determina que el grafo L' es Tutte-maximo dentro en
Ci1,14- En la Seccién 5.2 se prueba con asistencia computacional que W* < L*
para cada entero positivo s.

5.1. Determinacion de un grafo Tutte-maximo

En esta seccién analizaremos las Afirmaciones 1 y 2 sobre una clase
particular: Ci1,14. Esta clase resulta de especial interés por ser la clase con
menor cantidad de vértices en la que los grafos L,, y W, difieren.

Comenzaremos el andlisis calculando los polinomios de Tutte de L' y W1,
Por cuestiones de completitud se incluyen en el Anexo las expresiones generales
de los polinomios Ty s y Trs para cada entero positivo s, que se obtienen tras
ejecuciones del Algoritmo tutte_poly(W*) y tutte_poly(L*). Una vez obtenidos
dichos polinomios, realizamos una comparacion de los mismos cuando s = 1,
conforme a la Definicién 3.2.1. De esta manera obtenemos lo siguiente:

Tpi(z,y) — Tw(z,y) = (@ +y — ay)(2® + 2* + 2°)

Como se puede observar, el polinomio P(z,y) definido como z° + z* + 2*
presenta tnicamente coeficientes reales no negativos. Por lo tanto,

wl < L%

El resultado anterior basta para refutar la Afirmacién 1. Adicionalmente,
resulta de interés verificar computacionalmente si la Afirmacién 2 es vélida.
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Para realizar esta verificacion se utilizara el Algoritmo search_tutte(n, m). En
caso de que exista un grafo Tutte-maximo en Cy1 14, dicho algoritmo retornara un
grafo Tutte-méaximo en Cy1 14. Luego, podremos compararlo con L' y determinar
si son o no son Tutte-equivalentes. Al ejecutar el Algoritmo search_tutte(n, m)
con n = 11 y m = 14 se obtiene el grafo H que se ilustra en la Figura 5.1.

Figura 5.1: Grafo H en Cqy,14.

Obsérvese que el grafo Tutte-mdximo H obtenido es isomorfo al grafo L?.
En particular, esto implica directamente que L' es Tutte-maximo en Cii,14.

Antes de concluir esta seccién resulta pertinente analizar la eficiencia del
Algoritmo search_tutte(n, m) en el marco de este ejemplo. A partir de una
revision computacional exhaustiva es posible comprobar que hay exactamente
109844 grafos dentro de la clase Ci1,14. Por un lado, en caso de no aplicar
ninguna técnica de restriccion del espacio de busqueda, se requeriria calcular
exactamente 109.844 polinomios de Tutte para luego realizar una comparacion
entre dichos polinomios. Por otro lado, el Algoritmo search_tutte(n, m)
restringe el espacio de busqueda al conjunto M, que consiste en todas las
destilaciones de grafos 2-conexos de co-rango 4 y tiene apenas 17 grafos. En
consecuencia, a partir de la técnica de destilaciones etiquetadas fue suficiente
calcular solamente 17 polinomios de Tutte en este caso. En el Anexo se
presentan los 17 grafos dentro del conjunto My.

Para concluir esta seccién, es conveniente destacar dos aportes centrales. En
primer lugar verificamos computacionalmente que para la clase Ci1,14 €l grafo
propuesto por Landgren y Steif L' domina estrictamente en la jerarquia de
Tutte al grafo W' propuesto por Wang. Este resultado nos permite descartar la
validez de la Afirmacién 1. En segundo lugar verificamos computacionalmente
que L' es Tutte-méximo dentro de la clase Ci1,14, lo que respalda la Afirmacién
2 en esta clase particular.

5.2. Comparacion entre W* y L?*

En esta seccién probaremos que W? < L® para cada entero positivo s. Esto
es equivalente a probar que para cada entero positivo s se cumple que
Trs — Tws = (x +y — a2y)Ps(x,y), donde Ps(x,y) tiene coeficientes reales no
negativos.



Tras ejecutar el Algoritmo tutte_poly(L?®) y tutte_poly(W?#) y expresar sumas
geométricas truncadas mediante funciones racionales, se obtienen expresiones
para Trs(z,y) v Tws(x,y) que se presentan en el Anexo. Tomando la resta
Trs(x,y) — Tws(x,y) se tiene que para cualquier entero positivo s y cualquier
par de nimeros reales x e y tales que = # 1,

Y (—m33+3m33+1—3r33+2+x35+3+x55+1—3z55+2+3153+3—155+4)

Trs (xay) —Twe (x,y) = (@—1)3

x35+173z35+2+3x3s+37z3s+47m55+2+3x53+373I55+4+m55+5
(z—1)*

(5.1)
Lema 24. Para cada entero positivo s y cada nimero real x tal que x # 1,
Tpe(z,y) — Twe(2,y) = (x+y—zy) Yy _ a". (5.2)
1=3s

Demostracién. Tras tomar denominador comtin (z —1)* en el miembro derecho
de la Ecuacién (5.1) se deduce que

3s 3s+1 3 2s+1
(—ya® (@ — 1)+ 2 ) (z - 1)* (x -1)
Tps —Tws = .
L (Ivy) w (Qf,y) (37— 1)4
Cancelando el factor (z—1)3 que figura en el numerador y en el denominador
del miembro derecho de la 1ltima expresién y operando, obtenemos que

$3S+1

TLS (.’E, y) - TWS ((E, y) = (—yx?’s + 1,_1) (1.2s+1 o 1)

.’1328+1 -1

= (—y(w — a2 + x33+1) pog|

2s
= (—y(z—1)+z) 2 Zx’
i=0

2s
= (z+y—xy)a’ Z !
i=0
5s
=(x+y—uzy) le. O
1=3s

Estamos en condiciones de demostrar el siguiente resultado.
Proposicién 25. Para cada entero positivo s se cumple que W* < L*.

Demostracion. Por el Lema 24 sabemos que para cualquier entero positivo s y
para cualquier eleccién de ntimeros reales = e y tales que x # 1 se cumple que



Py(z,y) = Z?i&g 2%, Recordemos que dos funciones continuas que coinciden en
un conjunto denso de R? son idénticas. Como R? — {(z,y) : =,y € R,z # 1}
es denso en R? y los polinomios son continuos concluimos que para cada entero
positivo s la expresién Py (z,y) = Zfigs 2% se cumple para todo (z,y) en R2. [

En esta seccién hemos demostrado que L° domina a W?* dentro de la
jerarquia de Tutte. Este resultado refuta la Afirmacién 1 para una cantidad
infinita de clases de grafos. Si bien esto no garantiza que la Afirmacién 2 sea

vélida, hay evidencia computacional para pensar que si podria serlo.



Capitulo 6

Conclusiones y trabajo
futuro

El analisis de confiabilidad de redes se originé a mediados del siglo pasado
con una motivacion muy estrecha con la practica: diseno de computadores
masivos altamente confiables. En aquel entonces era indispensable conectar
distintos puntos en un circuito eléctrico compuesto con relés y con una
probabilidad de falla extremadamente baja (idealmente nula). Un problema
natural consiste en maximizar la probabilidad de conexién entre distintos
puntos, bajo una cantidad limitada de recursos (relés). No obstante, el estudio
de la confiabilidad uniforme se formaliza mediante el lenguaje de la teoria de
grafos recién en 1986 tras un influyente articulo publicado por Frank Boesch.
A partir de esa fecha resulté de interés tedrico y practico la busqueda de grafos
uniformemente més confiables.

Boesch en un trabajo colectivo [2] prueba que para cada clase no vacia de
grafos conexos C ., cuyo co-rango es positivo y no mayor que 3 existe un
unico grafo uniformemente mas confiable. Curiosamente, hasta la fecha
desconocemos si en cada clase no vacia C, ,, cuyo co-rango es 4 existe un unico
grafo uniformemente mas confiable. Guifang Wang por un lado, y Lorents
Landgren y Jeffrey Steif por otro lado, proponen que la respuesta es
afirmativa, y presentan en cada clase de grafos C,, 43 tal que n > 6 un tnico
grafo que aqui denominamos W,, y L,, respectivamente.

En este proyecto de grado mostramos mediante evidencia computacional
que la afirmacién de Guifang Wang es incorrecta. Ademaés, toda evidencia
computacional se halla en armonia con la afirmacién realizada por Lorents
Landgren y Jeffrey Steif. Toda la implementacién computacional desarrollada
en este proyecto, junto con los experimentos realizados, se encuentra
disponible publicamente en el repositorio de GitLab:
https://gitlab.fing.edu.uy/juan.mangado/tesis.
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El articulo actualmente publicado en Arxiv por sus autores se halla bajo
referato y, en caso de ser correcto, representa un avance en el entendimiento en
la existencia de grafos uniformemente mé&s confiables. Kahl y Luttrell [9]
conjeturaron que cada clase no vacia C, 43 de co-rango 4 tiene al menos un
grafo que es Tutte-maximo. En el transcurso de este proyecto de grado se
desarrollaron dos algoritmos. El primer algoritmo permite hallar el polinomio
de Tutte de pseudografos. El segundo algoritmo permite encontrar, cada vez
que existe, un grafo Tutte-méximo dentro de una clase no vacia C, ,, cuando
n+1 < m < 3n/2. Se observa que su ejecucién es exitosa en la clase Ci1,14 ¥
permite deducir que Li; es Tutte-maximo en dicha clase. Para hallar dicho
grafo Tutte-médximo hemos tomado todas las etiquetas posibles dentro de los
17 grafos destilacién de My. También hemos demostrado que esta realizacién
de todos los grafos C?L’m permite hallar algin grafo Tutte-méximo, siempre que
exista. No obstante, para clases de co-rango 4 con una cantidad masiva de
vértices existen abundantes etiquetados de grafos destilacién dentro de My, lo
que torna inviable su ejecucién. Un posible trabajo futuro consiste en hallar
eficientemente el etiquetado 6ptimo X dentro de cada destilacion posible D en
M. de modo que D(Y) < D(X) para los restantes etiquetados posibles Y.

Existen numerosos problemas abiertos que no se han abordado en este
proyecto de grado. Cheng [5] demostré que todo grafo multipartito completo
regular posee la maxima cantidad de arboles recubridores. Kahl y Luttrell [9]
conjeturaron que todo grafo multipartito completo regular es Tutte-méaximo.
Dicha conjetura permanece abierta. Nuestro tutor [16] ha probado
recientemente que existe una cantidad finita de clases Cy, ,,+4 que poseen grafos
uniformemente mas confiables. Por lo tanto, hay una cantidad finita de grafos
que son Tutte-maximos de co-rango 5, lo que genera un fuerte contraste con lo
que se conoce para clases cuyo co-rango es menor que 5. La determinacién de
dichos grafos Tutte-méximos es un problema abierto, y la asistencia
computacional es un enfoque vélido para encontrar algunos (o todos) los
grafos Tutte-maximos de co-rango 5.

Un célebre problema abierto postulado por Frank Boesch [3] refiere a grafos
fuertes que enunciamos a continuacién. Para cada G en C, ,, y cada entero k
en {0,1,...,m} definimos Nj(G) como la cantidad de subgrafos recubridores
conexos de G con exactamente k aristas. Un grafo G en Cy, ,,, es fuerte si para
cada H en C,, ,, y cada k en {0,1,...,m} se cumple que Ni(G) > Ny(H). Es
simple probar que todo grafo fuerte es uniformemente mds confiable. Frank
Boesch conjeturé que el reciproco es cierto, es decir, que todo grafo
uniformemente mas confiable es fuerte. Es interesante mencionar que todo
grafo Tutte-maximo no es solamente uniformemente mas confiable, sino que
también es fuerte. Por lo tanto, la biusqueda de contraejemplos de la conjetura
de Boesch puede realizarse buscando pares de enteros (n, m) para los cuales no
existe grafo Tutte-médximo en C, ,,. Puesto que nuestro segundo algoritmo
permite realizar bisquedas eficientes de grafos Tutte-maximos dentro de clases
Cnm cuando n +1 < m < 3n/2 y para cantidades de vértices reducida, una



posible linea de trabajo futuro consiste en ejecutar nuestro algoritmo de
biisqueda, listar aquellos pares (n,m) en los que no existe grafo Tutte-médximo
en Cnm, vy determinar en cada caso si existe grafo uniformemente mas
confiable en C, ,, que no sea fuerte. Es atractivo realizar dicha bisqueda para
clases de grafos C, ,, de co-rango 5, puesto que alli sabemos que existe una
cantidad finita de grafos uniformemente méas confiables.
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Anexo A

Anexo 1

Destilaciones correspondientes a My
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Figura A.1: Destilaciones de My



Polinomios Trs y Tyys

TLS (‘T7 y) =

y'+

Yz — 1) (— 4z — 5+ 5%t + 42%)+

y?(z —1)72(62% 4 152 4 9 + 42> T2 + 22°511
+ 62752 4 8T 4 42 — 152577 — 272"+ — 122°) +

y(z —1)7%(— 42® — 1527 — 18z — 5 4 8213 4 z%H!
_ 6$38+3 _ 81'35+2 4 21:354»1 _ 12z25+3 _ 22x25+2
— 162”5 — 42 4+ 152572 + 422572 + 34257 + 82°) +

(x — 1)~ * (2" 4+ 52% 4 92% + 5a + 2?15 — 8gPoH! — gP5H2
4 2$38+4 4 61'35+3 _ 21:354»2 4 6x25+4 4 14$25+3
+122%F2 4 4>t — 5ps Tt — 19753 — 222512 — 8p5t)

Tws(z,y) =
y't

o~ 1) (54 527 1)+
Y2 (@ — 1)72(62% + 15 + 9 + 4a>+2 4 275+
+ 6x25+2 + 8$25+1 + 4ZE2S _ 15m5+2 _ 27ZES+1 _ 121-5)+

y(z —1)7°(—42® — 152> — 18z — 5+ S VA N T
_ 7$3s+3 _ 5!E3S+2 _ .’E38+1 =+ .%'38 _ 12{E2S+3 _ 22!1725+2

— 1627 — 42 4 152577 + 422572 + 342571 + 82°) +
(z—1)"* (334 + 523 4 922 + 5 4 2950 — g55F5 _ 5pdstd _ 3y he w3
+ 3$3s+4 + 3(E3S+3 + .’E38+2 _ .%'3S+1 + 6!1728+4 + 141,23-&-3

+12225F2 4 42+ — 5Tt 1925F3 — 227512 — 8p5T)

Glosario

En esta

seccién se recopilan textualmente las definiciones fundamentales

introducidas a lo largo del documento, las cuales son utilizadas de manera
recurrente en los diferentes capitulos.

Cadena

Sea G

un multigrafo en B, ,,, con maés aristas que vértices. Una cadena de



G es el conjunto de aristas de un camino cuyos extremos tienen grado 3 o
més y cuyos vértices internos (si los hay) tienen grado 2.

Clase Cn,m
Para cada par de enteros positivos n y m tales que n — 1 < m < (g),
denotamos mediante Cn, m a la clase de todos los grafos simples y conexos

con n vértices y m aristas.

Co-rango de un pseudografo
Para cada pseudografo G con k(G) componentes conexas, definimos el
co-rango de G como ¢(G) = |E(G)| — |[V(G)| + k(G).

Confiabilidad de un grafo
Sean n y m enteros positivos tales que n—1 < m < (Z) Sea G € Cp, 1, ¥ s€2
p € [0,1]. La confiabilidad de G evaluada en p, que denotamos Rg(p), es la
probabilidad de que el subgrafo recubridor aleatorio resultante de retener
a cada una de las aristas de G independientemente con probabilidad p sea
conexo.

Contraccién de una arista
La contraccion de la arista e en G, que se denota G * e, es el grafo que se
obtiene de G — e tras identificar a los vértices que son extremos de e.

Destilacion
La destilacion del grafo G, que denotamos D(G), es el grafo que se obtiene
de G tras colapsar a cada una de sus cadenas.

Grafo 2-conexo
Decimos que el grafo G es 2-conezo si es conexo, tiene al menos 3 vértices
y no posee puntos de corte.

Grafo conexo
Decimos que un grafo G es conezo si para cada par de vértices u y v de
G existe algin camino cuyos extremos son precisamente u y v.

Grafo simple
Un grafo simple G consiste en un conjunto finito de vértices, denotado
por V(G), y un conjunto de aristas, denotado por E(G), que son pares no
ordenados de elementos de V(G). No se admiten lazos ni aristas miltiples.

Grafo Tutte-equivalente
Dos grafos G y H en C, ., son Tutte-equivalentes si para todo par de
nimeros reales = e y se cumple que Tg(z,y) = Ty (z,y).

Grafo Tutte-maximo
Un grafo G en Cn,m es Tutte-mdximo si para todo grafo H en Cn,m se
cumple que H < G.



Grafo uniformemente mas confiable (UMRG)
Un grafo G en Cn, m es uniformemente mas confiable si para cada grafo
H en Cn,m y todo p € [0,1] se cumple que Rg(p) > Ru(p).

Polinomio de Tutte
El polinomio de Tutte Tg(x,y) de un pseudografo G se define
recursivamente como:

Ta—e(x,y) + Tase(x,y), sieno esun lazo ni un puente,

Te(z,y) = 2 TGe(T,Y), si e es un puente,
’ yTg-e(z,y), si e es un lazo,
1, si G no tiene aristas.

Rango de un pseudografo
Para cada pseudografo G con k(G) componentes conexas, definimos el

rango de G como r(G) = |V(G)| — &(G).

Relacion de dominancia de Tutte
Dados dos grafos G y H en Cp.,, denotamos H =< G cuando
Te(z,y) — Tu(z,y) = (x +y — xzy)P(x,y) para algin polinomio P(z,y)
con coeficientes reales no negativos.

Subgrafo
Un subgrafo de G es un grafo cuyo conjunto de vértices esta contenido en
V(G) y cuyo conjunto de aristas estd contenido en E(G).

Sustraccién de una arista
La sustraccion de la arista e en G se denota G — e y consiste en el grafo
cuyo conjunto de vértices es V(G) y cuyo conjunto de aristas es E(G) —e.
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