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Resumen

Este proyecto se enmarca dentro del estudio de confiabilidad de redes. Sean
n y m enteros tales que n ≥ 3 y n − 1 ≤ m ≤

(
n
2

)
, y sea Cn,m la clase de

grafos conexos y simples con n vértices y m aristas. El co-rango de cada uno
de los grafos dentro de la clase Cn,m es m − n + 1. Sea G un grafo en Cn,m y
sea p ∈ [0, 1]. La confiabilidad RG(p) es la probabilidad de que el subgrafo que
se obtiene de G tras retener a cada una de sus aristas independientemente con
probabilidad p resulte conexo. Decimos que G es uniformemente más confiable
si para cada grafo H en Cn,m y cada p ∈ [0, 1] se cumple que RG(p) ≥ RH(p).

Boesch conjeturó en 1986 que cada una de las clases no vaćıas Cn,m posee
algún grafo uniformemente más confiable. Posteriormente, en un trabajo
colectivo, Boesch probó que cada una de las clases no vaćıas Cn,m de co-rango
positivo no mayor que 3 posee un único grafo que es uniformemente más
confiable. Además, en dicho trabajo se conjetura que, para cada entero n tal
que n ≥ 6, existe un grafo uniformemente más confiable de co-rango 4 con n
vértices que se obtiene mediante ciertas subdivisiones elementales del grafo
bipartito completo K3,3. En 1994, Wang anunció que dicha conjetura es
correcta y publicó su demostración. No obstante, un reciente art́ıculo de
Landgren y Steif en 2024 sugiere que hay errores en la demostración de Wang
y que el resultado no es correcto. Dicho trabajo fue publicado en ArXiv y se
encuentra bajo referato cient́ıfico. De manera casi simultánea, Kahl y Luttrell
definen el concepto de grafo Tutte-máximo que se basa en el polinomio de
Tutte de un grafo, y prueban que cada grafo Tutte-máximo es uniformemente
más confiable.

En este proyecto se desea validar o refutar computacionalmente la
afirmación realizada por Wang en 1994 utilizando métodos inspirados en
grafos Tutte-máximos. Este proyecto de grado tiene tres objetivos. El primer
objetivo consiste en familiarizarnos con los conceptos de grafo Tutte-máximo y
de grafo uniformemente más confiable. El segundo objetivo consiste en
desarrollar algoritmos eficientes para determinar el polinomio de Tutte para
grafos de co-rango reducido. El tercer y último objetivo consiste en refutar o
validar computacionalmente el teorema anunciado en 1994 por Wang. Nuestros
resultados evidencian que la afirmación de Wang no es correcta y respaldan la
corrección propuesta por Landgren y Steif.
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Caṕıtulo 1

Introducción

En este breve caṕıtulo introductorio se presenta una motivación histórica del
problema de estudio seguido de la organización del documento.

1.1. Motivación

El estudio de confiabilidad de redes tiene registro desde 1956 a partir de un
art́ıculo publicado por Moore y Shannon [12]. La motivación principal de sus
autores era el desarrollo de computadores mediante el uso de electrónica
basada en relés. Cada relé teńıa una probabilidad de falla, y el objetivo
consist́ıa en mantener comunicados 2 puntos concretos del circuito que
alimentaba el computador.

En 1986, Boesch formaliza una noción de maximización de la confiabilidad
utilizando el lenguaje de la teoŕıa de grafos. Boesch, en la reconocida revista
Journal of Graph Theory [3], no solamente define el concepto de grafo
uniformemente más confiable, sino que también propone diversas conjeturas.
Hasta la fecha se sabe que la mayoŕıa de las conjeturas propuestas por Boesch
son falsas, y que pese a ello han dado motivo no solamente a diversas
investigaciones, sino también han permitido generar nuevas preguntas y
florecer el área de investigación de la śıntesis en confiabilidad, también
conocido como confiabilidad uniforme.

Una de las conjeturas de Boesch afirma que en cada una de las clases no
vaćıas de grafos conexos y simples con n vértices y m aristas existe un grafo
uniformemente más confiable. En un posterior trabajo colectivo desarrollado en
1991, Boesch et al. [2] demostraron que en cada una de las clases de grafos
conexos y simples cuyo co-rango es no mayor que 3 existe precisamente un
grafo que es uniformemente más confiable, y conjeturaron que todos los grafos
uniformemente más confiables de co-rango 4 con al menos 6 vértices provienen
de subdivisiones elementales del grafo bipartito completo K3,3. En 1994, Wang

1



anunció que dicha conjetura es correcta, y publicó su demostración [20]. En
lo que sigue denotaremos con el śımbolo Wn al único grafo con n vértices y
co-rango 4 obtenido por Wang.

Esto brinda evidencia de que la conjetura de Boesch relativa a la existencia
de grafos uniformemente más confiables es parcialmente cierta para las clases
de grafos de co-rango 4 o menor. No obstante, hasta la fecha se conocen
infinitos contraejemplos a dicha conjetura [4, 10, 13, 17]. En particular, existe
una cantidad finita de grafos uniformemente más confiables de co-rango 5,
contrastando fuertemente lo que ocurre en clases cuyo co-rango es menor que
5.

Nuestro tutor ha publicado un Survey en el área de grafos uniformemente
más confiables, donde reúne resultados obtenidos hasta el año 2021 relativos a
la existencia y construcción de grafos uniformemente más confiables ante
modelos de fallas de cáıdas de vértices o de aristas [15]. Inmediatamente luego
de la publicación de dicho Survey surge en la literatura cient́ıfica un nuevo
enfoque algebraico para la determinación de grafos uniformemente más
confiables que se basa en el polinomio de Tutte. Dicho enfoque se sustenta,
primeramente, en un trabajo publicado por Kahl en la reconocida revista
titulada Journal of Combinatorial Theory, Series B, donde define una relación
de orden parcial dentro de ciertas clases de equivalencia de grafos conexos y
simples con una cantidad preestablecida de vértices y aristas [8].
Posteriormente, Kahl y Luttrell [9] definen el concepto de grafo Tutte-máximo
basado en el primer trabajo de Kahl. A partir del teorema receta de los
polinomios de Tutte se desprende directamente que cada grafo Tutte-máximo
es uniformemente más confiable. Kahl y Luttrell probaron que cada uno de los
grafos uniformemente más confiables obtenidos por Boesch et al. en [2] son
Tutte-máximos. Kahl y Luttrell luego conjeturaron que en cada clase de grafos
no vaćıa con al menos 6 vértices y co-rango 4 existe un único grafo que es
Tutte-máximo.

Curiosamente, el estudiante de doctorado de la Universidad de Chalmers,
Lorents Landgren, en colaboración con su orientador Jeffrey Steif, dejaron
disponible en ArXiv [11] una prepublicación que arremete contra los
fundamentos de la confiabilidad uniforme. Dicho art́ıculo se encuentra bajo
referato 1. Concretamente, Lorents Landgren y Jeffrey Steif desarrollan un
nuevo método para obtener grafos uniformemente más confiables. Luego,
identifican algunas falencias inherentes a la demostración del teorema de
Wang [20], generando incertidumbre sobre la validez de resultados publicados
más de 3 décadas atrás y con abundante cantidad de citaciones en el área de
confiabilidad uniforme. Por último presentan, para cada entero n tal que
n ≥ 6, un grafo con n vértices y co-rango 4 que aqúı denotaremos Ln (por la
inicial del primer autor, Landgren), y prueban que Ln es el único grafo
uniformemente más confiable dentro de todos los grafos conexos y simples con
la misma cantidad de vértices y aristas que Ln. Cabe aclarar que los grafos Ln

1Un borrador se encuentra disponible en ArXiV: https://arxiv.org/pdf/2407.20217

https://arxiv.org/pdf/2407.20217


y Wn coinciden excepto para aquellos enteros positivos n que son congruentes
con 2 en módulo 9.

Este proyecto se propone estudiar, en base a métodos algebraicos y
computacionales, si es válida la corrección propuesta por Landgren y Steif a la
afirmación de Wang. La principal fuente de inspiración será el nuevo método
desarrollado por Kahl [8], y por Kahl y Luttrell [9], para obtener grafos
Tutte-máximos.

Este proyecto de grado tiene tres objetivos espećıficos. El primer objetivo
consiste en familiarizarnos con los conceptos de grafo Tutte-máximo y de grafo
uniformemente más confiable. El segundo objetivo del proyecto consiste en
desarrollar algoritmos eficientes para determinar el polinomio de Tutte de un
grafo de co-rango reducido. El tercer objetivo consiste en comparar los grafos
Wn y Ln propuestos en respectivas publicaciones, por un lado por Wang [20] y
por otro lado por Landgren y Steif. Concretamente, nos interesa saber si el
grafo Ln es más confiable que el grafo Wn para aquellos enteros positivos n
que son congruentes con 2 módulo 9.

1.2. Estructura del documento

Este documento se organiza de la siguiente manera. En el Caṕıtulo 2 se
presentan conceptos relativos al área de confiabilidad uniforme y se definen, para
cada entero n tal que n ≥ 6, los grafos Wn y Ln. En el Caṕıtulo 3 se presenta
el polinomio de Tutte y su propiedad de universalidad, también conocido en
la literatura como el teorema receta. Luego se presenta el concepto de grafo
Tutte-máximo y se incluye una demostración de que todo grafo Tutte-máximo
es uniformemente más confiable. Cabe señalar que tanto el Caṕıtulo 2 como el
Caṕıtulo 3 se obtienen a partir de una recopilación de trabajos previos.

Los aportes de este proyecto de grado se reúnen en los Caṕıtulos 4, 5, y 6.
En el Caṕıtulo 4 se describen dos algoritmos novedosos que fueron
desarrollados en el transcurso de este proyecto para la búsqueda de grafos
Tutte-máximos. El primer algoritmo emplea propiedades del polinomio de
Tutte para hallar dicho polinomio para cualquier pseudografo en su entrada.
Algunos experimentos computacionales sugieren que su rendimiento es
competitivo con otras técnicas de cómputo del polinomio de Tutte para clases
de grafos de co-rango reducido. Cabe señalar que el cálculo del polinomio de
Tutte pertenece a la clase de problemas #P-Completos. Pese a ello, veremos
que el algoritmo propuesto es eficiente para el cálculo del polinomio de Tutte
en grafos de co-rango fijo reducido, incluso ante grafos con una cantidad
masiva de vértices, lo que asegura escalabilidad. El segundo algoritmo
desarrollado recibe dos enteros positivos n y m tales que n + 1 ≤ m ≤ 3n

2 y
entrega un grafo conexo y simple que es Tutte-máximo en caso de existir, o
bien un indicador de que no existe dicho grafo dentro de la clase de grafos
conexos y simples con n vértices y m aristas. En el Caṕıtulo 5 se presentan
ejecuciones de los programas desarrollados que se hallan en armońıa con la
corrección propuesta por los autores Landgren y Steif. En el Caṕıtulo 6



señalamos las principales conclusiones de este trabajo y brindamos posibles
ĺıneas de trabajo futuro.



Caṕıtulo 2

Grafos uniformemente más
confiables

En este caṕıtulo se incluyen nociones sobre confiabilidad uniforme que
serán centrales para el desarrollo del presente proyecto. En la Sección 2.1 se
repasan conceptos básicos de teoŕıa de grafos que se pueden encontrar en
libros clásicos [2, 3]. En la Sección 2.2 se presenta el concepto de confiabilidad
de un grafo y de grafo uniformemente más confiable, comentando brevemente
aspectos de complejidad computacional. Asimismo se definen, para cada entero
n tal que n ≥ 6, los dos grafos Wn y Ln que fueron propuestos respectivamente
por Wang, y por Landgren y Steif.

2.1. Conceptos básicos

Esta sección ofrece una breve revisión de los conceptos fundamentales de
teoŕıa de grafos con el objetivo de facilitar la comprensión de los caṕıtulos
posteriores. Si el lector ya está familiarizado con estos contenidos, puede
avanzar directamente a la Sección 2.2 sin pérdida de continuidad en la
exposición principal.

A lo largo de todo el documento trabajaremos únicamente con grafos finitos
y no dirigidos. Recordemos que un multiconjunto es un conjunto en el que los
elementos pueden repetirse. Un grafo simple G consiste en un conjunto finito de
vértices, denotado por V (G), y un conjunto de aristas, denotado por E(G), que
son pares no ordenados de elementos de V (G). Utilizaremos la notación uv en
lugar de {u, v} para denotar a la arista cuyos extremos son los vértices u y v.
Diremos que dos vértices de G son adyacentes cuando son extremos de alguna
arista de G, y que dicha arista es incidente a cada uno de sus extremos. El grado
de un vértice v de G es la cantidad de aristas incidentes a v. En un multigrafo
admitimos que las aristas sean múltiples, por lo que E(G) es un multiconjunto.
En un pseudografo admitimos además la presencia de lazos, que son aristas de
la forma vv para algún vértice v de G.
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Sea G un grafo. Un subgrafo de G es un grafo que cumple que su conjunto
de vértices está contenido en V (G) y su conjunto de aristas está contenido en
E(G). La sustracción de la arista e en G se denota G− e y consiste en el grafo
cuyo conjunto de vértices es V (G) y cuyo conjunto de aristas es E(G) − e. La
contracción de la arista e en G, que se denota G ∗ e, es el grafo que se obtiene
de G − e tras identificar a los vértices que son extremos de e. La remoción de
un vértice v en G es el subgrafo de G cuyo conjunto de vértices es V (G)−{v} y
su conjunto de aristas es precisamente el conjunto de aristas del grafo G menos
las aristas que son incidentes al vértice v. Un subgrafo recubridor de G es un
subgrafoH de G tal que V (H) = V (G). Dos grafos G yH son isomorfos si existe
una biyección ψ : V (G) → V (H) tal que uv ∈ E(G) si y solo si ψ(u)ψ(v) ∈
E(H). Un camino en G es una secuencia de vértices y aristas de G de la forma
v0, e1, v1, e2, v2, . . . , er, vr, donde v0, v1, . . . , vr ∈ V (G) y e1, e2, . . . , er ∈ E(G).
El largo de este camino es r, sus extremos son los vértices v0 y vr, y sus vértices
internos son los vértices del camino que no son extremos, si los hay. Denotamos
Pn al grafo que consiste en un único camino de n vértices. Para cada entero
positivo n denotamos Cn al grafo (o multigrafo) cuyo conjunto de vértices es
v1, . . . , vn tal que vivi+1 ∈ E cuando i ∈ {1, . . . , n−1} y vnv1 ∈ E (notar que C1

tiene un único vértice y un lazo, mientras que C2 es un multigrafo). Decimos que
G es conexo si para cada par de vértices u y v del grafo G existe algún camino
cuyos extremos son precisamente los vértices u y v. Una componente conexa
del grafo G es un subgrafo que es conexo y maximal por inclusión, es decir, es
un subgrafo conexo de G que no está contenido propiamente en ningún otro
subgrafo conexo de G; equivalentemente, no es posible agregar a dicho subgrafo
ningún vértice ni arista de G sin perder la propiedad de ser conexo. Decimos
que un vértice v de G es un punto de corte si G − v tiene más componentes
conexas que G. Decimos que e es una arista puente si el grafo G− e tiene más
componentes conexas que G. Decimos que el grafo G es 2-conexo si G es un grafo
conexo con al menos 3 vértices que no tiene puntos de corte. Llamamos árbol a
aquel grafo que es conexo y no posee ciclos. Decimos que un grafo G es cúbico
si todos sus vértices tienen grado 3. Definimos grafo completo de n vértices, y
lo denotamos Kn, al grafo con n vértices donde cada par de vértices distintos
está conectado por exactamente una arista. Adicionalmente, decimos que un
grafo es no separable si es conexo y no tiene puntos de corte; de lo contrario,
se considera separable. Los subgrafos no separables maximales por inclusión se
denominan bloques del grafo. Cuando un grafo conexo G se compone de N
bloques G1, . . . , GN diremos que G pertenece a la clase de grafos G1 ·G2 · · ·GN ;
dependiendo del contexto simplemente diremos que G = G1 · G2 · · · GN . Para
cada par de pseudografos G y H y vértices v ∈ V (G) y w ∈ V (H), denotamos
Gv · Hw al pseudografo que se obtiene tras identificar a los vértices v y w en
G ∪H. A lo largo del documento, utilizaremos la notaciónMn,m y Bn,m para
referirnos, respectivamente, a las clases de todos los multigrafos y multigrafos
2-conexos con n vértices y m aristas.

Además, para cada par de enteros positivos n ym tales que n−1 ≤ m ≤
(
n
2

)
,

denotamos mediante Cn,m (respectivamente C2n,m) a la clase de todos los grafos
simples y conexos (respectivamente, grafos simples y 2-conexos) con n vértices y



m aristas. Para cada pseudografo G con κ(G) componentes conexas, definimos
el rango de G, y lo denotamos r(G), como |V (G)| − κ(G). De manera similar,
definimos el co-rango de G, y lo denotamos c(G), como |E(G)|− |V (G)|+κ(G).
Observar que cada uno de los grafos pertenecientes a Cn,m tiene rango n− 1 y
co-rango m−n+1. Por conveniencia diremos que el rango de la clase de grafos
Cn,m es igual a n−1, mientras que el co-rango de la clase de grafos Cn,m es igual
a m − n + 1. Un anillo es un conjunto no vaćıo R provisto de dos operaciones
binarias, suma + y producto ·, tales que:

1. (R,+) es un grupo abeliano, es decir, un grupo en el cual la suma es
conmutativa.

2. El producto es asociativo.

3. El producto es distributivo respecto de la suma.

Un invariante bajo isomorfismos, o simplemente, un invariante es una
función f cuyo dominio es una clase de grafos cerrada bajo las operaciones de
contracción y sustracción, y cuyo codominio es algún anillo, tal que
f(G) = f(H) siempre que G y H sean grafos isomorfos.

2.2. Clases de grafos de estudio

En esta sección se presentan conceptos fundamentales del área de
confiabilidad uniforme que serán utilizados en este proyecto. Asimismo,
presentaremos los grafos definidos por Wang que denotamos Wn, como
también los grafos definidos por Landgren y Steif, que denotamos Ln, los
cuales conforman nuestro caso de estudio. Para dar una definición precisa será
necesario introducir el concepto de cadenas y de destilaciones presentado por
Romero y Safe [17].

Definición 2.2.1. Sean n y m dos enteros positivos tales que n−1 ≤ m ≤
(
n
2

)
.

Sea G un grafo en Cn,m y sea p ∈ [0, 1]. La confiabilidad de G evaluada en p, que
denotamos RG(p), es la probabilidad de que el subgrafo recubridor aleatorio
resultante de retener a cada una de las aristas de G independientemente con
probabilidad p sea conexo.

La búsqueda de grafos con máxima confiabilidad es de interés desde mediados
del Siglo XX, pero fue formalizada utilizando el lenguaje de teoŕıa de grafos
recién en 1986 tras un art́ıculo seminal publicado por Frank Boesch [3].

Definición 2.2.2. Un grafo G en Cn,m es uniformemente más confiable (UMRG
por sus siglas en inglés) si para cada grafo H en Cn,m y todo p en [0, 1] se cumple
que RG(p) ≥ RH(p).

Introduciremos ahora una serie de conceptos necesarios para definir de
forma precisa los grafos comprendidos en nuestro caso de estudio [17]. Sea G
un multigrafo en Bn,m con más aristas que vértices. Una cadena de G, que



denotamos γ, es el conjunto de aristas de un camino P en G cuyos extremos
tienen grado 3 o más mientras que cada uno de sus vértices internos (si los
hay) tienen grado 2. Los extremos de γ son precisamente los extremos del
camino P y los vértices internos de γ son precisamente los vértices internos del
camino P . Sea γ una cadena de G. El largo de γ es igual a su cardinal, que
denotamos |γ|. Cuando nos referimos a eliminar la cadena γ de G nos
referimos a eliminar cada una de las aristas de γ y también sus vértices
internos, pero no sus extremos. La remoción de la cadena γ en G se denota
G ⊖ γ. La contracción de la cadena γ en G, que se denota G ∗ γ, es el grafo
que se obtiene de G ⊖ γ tras identificar los vértices extremos de γ. Definimos
colapsar la cadena γ de G al grafo que se obtiene de G ⊖ γ tras agregar una
sola arista cuyos extremos coinciden con los de γ. La destilación del grafo G,
que denotaremos D(G), es el grafo que se obtiene de G tras colapsar a cada
una de sus cadenas. Notar que G se obtiene a partir de D(G) tras una
secuencia finita de subdivisiones. Denotaremos por Mc al conjunto de
destilaciones de los grafos de Cn,m, siendo c = m − n + 1. Llamaremos
subdividir k veces una arista xy a sustituir dicha arista por k + 1 aristas de la
forma xz1, z1z2, . . . , zk−1zk, zky, donde z1, z2, . . . , zk son k nuevos vértices. Por
último, denotamos mediante θl1,l2,l3 al grafo compuesto por dos vértices y tres
cadenas que los unen, de largos l1, l2 y l3 respectivamente. De forma análoga,
definimos el grafo θ generalizado θl1,l2,...,ln como el grafo formado por dos
vértices unidos por n cadenas de largos l1, l2, . . . , ln.

Definición 2.2.3 (Romero y Safe [17]). Sea G un grafo cúbico y 2-conexo y
sea X un subconjunto de E(G). Para cada entero positivo s denotamos Gs(X)
al grafo que se obtiene de G tras subdividir s veces cada arista de X y s − 1
veces cada arista de E(G)−X.

En el art́ıculo [2] se conjetura que cada UMRG de co-rango 4 con al menos
6 vértices se obtiene a partir de subdivisiones del grafo bipartito completo K3,3.
En 1994, Wang [20] definió la siguiente clase de grafos de co-rango 4.

Definición 2.2.4 (Wang [20]). Sea n un entero tal que n ≥ 6, y sean r y s
los únicos enteros tales que r ∈ {0, 1, . . . , 8} y n + 3 = 9s + r. Consideremos
las aristas e1, e2, . . . , e9 del grafo K3,3 enumeradas tal como se indica en la
Figura 2.1. Definimos Xr como el conjunto vaćıo si r = 0, mientras que Xr es
igual a {e1, e2, . . . , er} en caso contrario. Definimos el grafo Wn como Ks

3,3(Xr)

En 2024, Landgren y Steif definieron la siguiente clase de grafos.

Definición 2.2.5 (Landgren y Steif). Sea n un entero tal que n ≥ 6, y sean
r y s los únicos enteros tales que r ∈ {0, 1, . . . , 8} y n + 3 = 9s + r. Si r = 0
definimos Yr como el conjunto vaćıo. Si r = 5 definimos Yr como el conjunto de
aristas {e1, e2, e3, e4, e7}. En caso contrario, definimos Yr como {e1, e2, . . . , er}.
Definimos el grafo Ln como Ks

3,3(Yr).

Para cada entero positivo s denotamos por Ls y W s a los grafos L9s+2

y W9s+2 respectivamente. A modo de ejemplo, cuando n = 11 se tiene que



n+3 = 9s+ r, donde s = 1 y r = 5. Esto significa que cada una de las cadenas
deW11 y L11 tienen largo igual a 1 o a 2. Por un lado, para el grafoW11 las únicas
cadenas que tienen largo igual a 2 se corresponden con las aristas de X5 dentro
de K3,3 dadas por el conjunto {e1, e2, e3, e4, e5}. Por otro lado, para el grafo
L11 tenemos que las únicas cadenas que tienen largo igual a 2 se corresponden
con las aristas de Y5 dentro de K3,3 dadas por el conjunto {e1, e2, e3, e4, e7}. La
Figura 2.2 ilustra a los grafos W11 y L11.

Observemos que los grafos W11 y L11 no son isomorfos. De hecho, basta
con mostrar que W11 tiene un ciclo hamiltoniano mientras que L11 no tiene
ningún ciclo hamiltoniano. Recordemos que un ciclo hamiltoniano de un grafo
es un ciclo que incluye cada vértice del grafo exactamente una vez. Todo ciclo
hamiltoniano en W11 o en L11 debe incluir a cada una de las aristas pintadas en
rojo en la Figura 2.2. Por un lado, W11 tiene un ciclo hamiltoniano que incluye
a todas las aristas que tienen color rojo más una arista que tiene color negro.
Por otro lado, L11 tiene un conjunto de aristas con color rojo que ya forman un
ciclo que no incluye a todas las aristas, y por lo tanto L11 no tiene ningún ciclo
hamiltoniano. Como consecuencia, L11 y W11 no son isomorfos, y los siguientes
enunciados propuestos separadamente por Wang [20] y por Landgren y Steif no
pueden ser simultáneamente correctos.

Afirmación 1 (Wang [20]). Para cada entero n tal que n ≥ 6 se tiene que Wn

es el único UMRG en Cn,n+3.

Afirmación 2 (Landgren y Steif). Para cada entero n tal que n ≥ 6 se tiene
que Ln es el único UMRG en Cn,n+3.

e1

e4

e9

e7

e2

e5

e6

e8

e3

Figura 2.1: Grafo K3,3 etiquetado.

En el Caṕıtulo 5 probaremos que la Afirmación 1 no es correcta. Dicha
prueba no solo contribuye a esclarecer la controversia actual entre ambas
afirmaciones, sino que también establece un precedente para futuras
investigaciones en UMRG.



Grafo W11 Grafo L11

Figura 2.2: Grafos W11 y L11

2.3. Usos prácticos de la confiabilidad

Para concluir este caṕıtulo, es pertinente analizar los usos prácticos del
concepto de confiabilidad aplicado a grafos. Esta sección tiene como objetivo
destacar su valor en el diseño de estructuras capaces de resistir fallas
aleatorias.

Uno de los principales campos de aplicación es el diseño de redes de
comunicación. En particular, los grafos UMRG son grafos que maximizan la
confiabilidad en toda la gama de probabilidades de falla del enlace. Tal
propiedad los vuelve relevantes para la ingenieŕıa de redes donde no se conoce
a priori la tasa de falla de los enlaces. En particular, nuestro tutor Pablo
Romero en un trabajo de 2019 [14], probó que los grafos de Wagner y Petersen
son UMRG en sus respectivas clases, lo cual los convierte en topoloǵıas
óptimas para redes pequeñas, independientemente de la confiabilidad
individual de sus enlaces.

Otro uso destacado de la confiabilidad es su aplicación como criterio de
comparación entre distintas topoloǵıas de red. Por ejemplo, Yang y Han [21]
establecen una fórmula cerrada para el número de árboles recubridores de
hipercubos generalizados. Dado que los UMRG deben maximizar esta
cantidad, dicha métrica puede utilizarse para comparar de forma objetiva
distintas arquitecturas de interconexión. Esto resulta útil al momento de elegir
topoloǵıas con mejor comportamiento esperado ante fallas, sin necesidad de
realizar simulaciones costosas para cada caso.

Finalmente, los UMRG también se han utilizado como referencia para
estimar mejoras en la confiabilidad al agregar redundancia estructural a una
topoloǵıa dada. Este enfoque es especialmente útil en escenarios donde el
presupuesto impone un ĺımite estricto en la cantidad de enlaces que pueden
añadirse. En estos casos, comparar la confiabilidad de la red real con la del
UMRG de su clase permite cuantificar cuán cerca se encuentra del máximo
alcanzable, y por ende, evaluar si la incorporación de una o más aristas
adicionales resulta justificable.



En todos estos contextos, los resultados teóricos en torno a los grafos
UMRG permiten fundamentar decisiones de diseño orientadas a la robustez
estructural, especialmente en situaciones donde se desconoce o vaŕıa la
probabilidad de falla de los enlaces. Si bien muchas de estas aplicaciones se
desarrollan a nivel simulado o computacional, su utilidad práctica reside en
ofrecer criterios objetivos para comparar y seleccionar topoloǵıas con
comportamiento superior bajo incertidumbre.





Caṕıtulo 3

Grafos Tutte-máximos

La determinación de grafos Tutte-máximos es central en el área de
confiabilidad uniforme puesto que cada grafo Tutte-máximo es un UMRG.
Este resultado será una consecuencia inmediata de la propiedad de
universalidad del polinomio de Tutte.

Este caṕıtulo se organiza de la siguiente manera. La Sección 3.1 presenta el
polinomio de Tutte y sus propiedades, incluyendo su universalidad. La
Sección 3.2 incluye el concepto de grafo Tutte-máximo y sus propiedades más
notables. En particular, todo grafo Tutte-máximo es un UMRG, lo que brinda
aśı una estrecha conexión con el área de confiabilidad uniforme. En la
Sección 3.3 se presentan propiedades adicionales del polinomio de Tutte que
serán de utilidad para las pruebas de correctitud de los algoritmos
desarrollados a lo largo de este proyecto.

3.1. Polinomio de Tutte

El polinomio de Tutte es un polinomio en dos variables reales que codifica
información relevante de un pseudografo.

Definición 3.1.1 (W. Tutte [18]). El polinomio de Tutte TG(x, y) de un
pseudografo G se define recursivamente de la siguiente manera:

TG(x, y) =


TG−e(x, y) + TG∗e(x, y) si e no es un lazo ni un puente,

x · TG∗e(x, y) si e es un puente,

y · TG−e(x, y) si e es un lazo,

1 si G no tiene aristas.

Desde el punto de vista del cálculo del polinomio de Tutte adoptaremos el
siguiente concepto de grafos equivalentes.
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Definición 3.1.2 (Kahl y Luttrell [9]). Dos grafos G y H en Cn,m son Tutte-
equivalentes si para cada par de números reales x e y se cumple que TG(x, y) =
TH(x, y).

Para afianzar conceptos presentamos el Ejemplo 3.1.1, que ilustra
gráficamente el cálculo del polinomio de Tutte correspondiente al grafo θ1,1,1.

Ejemplo 3.1.1. Un ejemplo del cálculo del polinomio de Tutte usando la
Definición 3.1.1 se muestra en la Figura 3.1. La arista que se elimina o
contrae en cada paso se resalta con un mayor grosor. El polinomio de Tutte de
θ1,1,1 es Tθ1,1,1(x, y) = TP2

(x, y) + TC1
(x, y) + TC1·C1

(x, y) = x+ y + y2.

x y y2

Figura 3.1: Empleo de la Definición 3.1.1 para hallar Tθ1,1,1(x, y).

Observación 1. Como se observa en la Figura 3.1, su cálculo presenta un
crecimiento exponencial de operaciones con respecto al número de aristas del
grafo. De hecho, Leslie Valiant demostró en su influyente trabajo The Complexity
of Computing the Permanent que este tipo de problema pertenece a la clase de
problemas #P-completos [19].

Una observación pertinente al considerar la definición del polinomio de Tutte
es que, si G es un pseudografo arbitrario y e es una arista de G que no es ni
un puente ni un lazo, entonces el polinomio TG(x, y) satisface la denominada
propiedad de arista contracción-sustracción, la cual afirma que

TG(x, y) = TG−e(x, y) + TG∗e(x, y).

Resulta sorprendente que una inmensa variedad de invariantes, que también
satisfacen la propiedad de arista contracción-sustracción, se puedan obtener
mediante evaluaciones del polinomio de Tutte. Este fenómeno se conoce como
la universalidad del polinomio de Tutte. A continuación, se define una clase de
invariantes que corresponden, precisamente, a aquellas funciones derivadas de
evaluaciones del polinomio de Tutte sobre un pseudografo.



Definición 3.1.3. Sea G una clase de pseudografos que es cerrada bajo las
operaciones de sustracción y contracción de aristas que incluye a K1. Sea R
un anillo conmutativo con unidad. Decimos que un invariante de grafos f :
G → R es de Tutte–Grothendieck si cumple simultáneamente con las siguientes
condiciones:

f(K1) = 1.

Existen a, b ∈ R tales que para todo grafo G en G y toda arista e de G
que no es puente ni lazo se cumple que f(G) = a · f(G− e) + b · f(G ∗ e).

Para todo par de grafosG yH en G tales queG∪H ∈ G (resp.Gv ·Hw ∈ G),
se cumple que f(G ∪H) = f(G)f(H) (resp. f(Gv ·Hw) = f(G)f(H)).

Estamos en condiciones de enunciar la propiedad de universalidad del
polinomio de Tutte que será fundamental para el desarrollo de nuestro
proyecto.

Teorema 2 (Universalidad del polinomio de Tutte [6]). Sea G una clase de
pseudografos cerrada bajo las operaciones de arista contracción y sustracción
que incluye tanto a P2 como a C1. Sea R un anillo conmutativo con unidad.
Para cada invariante de Tutte-Grothendieck f : G → R se cumple que f(G) =
ac(G)br(G)TG

(
x0b

−1, y0a
−1
)
, donde x0 = f(P2), y0 = f(C1) y los elementos a

y b del anillo R están dados por la Definición 3.1.3 del invariante f .

En el libro Handbook of the Tutte Polynomial and Related Topics [6], el
Teorema 2 es referido como teorema receta. Este descriptivo alude a su capacidad
para determinar cualquier invariante de Tutte–Grothendieck espećıfico mediante
una evaluación del polinomio de Tutte. En concordancia con dicha terminoloǵıa,
en este trabajo adoptaremos el mismo nombre y, en adelante, utilizaremos la
expresión teorema receta para referirnos al Teorema 2.

El teorema receta establece que cualquier invariante de Tutte-Grothendieck
puede obtenerse a partir de una evaluación apropiada del polinomio de Tutte.
Esta afirmación resulta especialmente significativa para nuestro estudio, ya que
con base en dicho teorema demostraremos que la confiabilidad de un grafo G es
un invariante de Tutte-Grothendieck, por tanto es posible expresarla en función
al polinomio de Tutte asociado al grafo.

Lema 3. Para cada grafo G en Cn,m y cada p en (0, 1) se tiene que

RG(p) = pn−1(1− p)m−n+1TG

(
1,

1

1− p

)
(3.1)

Demostración. La estrategia de la demostración consiste en mostrar que el
polinomio de confiabilidad es un invariante de Tutte-Grothendieck dentro de la
clase de todos los pseudografos, para posteriormente aplicar el resultado
obtenido en la subclase Cn,m.

Sea p un número real en [0, 1]. Notemos primero que RP2
(p) = p y que

RC1
(p) = 1 para todo p en [0, 1]. Sea G el conjunto que consiste en todos los



pseudografos. Tomemos un pseudografo cualquiera H en G y una arista e de H
que no sea puente ni lazo. Puesto que la arista e puede fallar con probabilidad
1−p o no fallar con probabilidad p, por la fórmula de probabilidad total se sigue
que

RH(p) = (1− p) ·RH−e(p) + p ·RH∗e(p). (3.2)

La Ecuación (3.2) refleja que la confiabilidad de cualquier pseudografo satisface
la propiedad de arista contracción-sustracción. Por lo tanto, el polinomio RG(p)
es una invariante de Tutte-Grothendieck. Aplicando el teorema receta con a =
1− p, b = p, x0 = p e y0 = 1 se tiene que

RH(p) = pr(H)(1− p)n(H)TH

(
1,

1

1− p

)
(3.3)

Finalmente, sea G un grafo cualquiera en Cn,m. Sabemos que su rango es n− 1
mientras que su co-rango m − n + 1, por lo que tras reemplazar en la
Ecuación (3.3) se sigue el resultado de la Ecuación (3.1), como queŕıamos
demostrar.

El Lema 3 establece una estrecha relación entre el polinomio confiabilidad
de un grafo y su polinomio de Tutte. A continuación, en la Sección 3.2 se
introduce una relación de orden parcial en cada clase Cn,m utilizando el
concepto de polinomio de Tutte. Como consecuencia del Lema 3 resultará que,
si dicha relación de orden parcial tiene máximo, entonces tendremos un
UMRG.

3.2. Grafos Tutte-máximos

En esta sección se presenta el concepto de grafo Tutte-máximo tal como fue
definido originalmente por Kahl y Luttrell [9]. Asimismo, se presenta un
resultado fundamental para nuestro trabajo, el cual establece una relación
directa entre los UMRG y los grafos Tutte-máximos de la clase Cn,m.

Definición 3.2.1 (Kahl y Luttrell [9]). Dados dos grafos G y H en Cn,m,
denotamos H ⪯ G cuando TG(x, y)−TH(x, y) = (x+ y−xy)P (x, y) para algún
polinomio P (x, y) con coeficientes reales no negativos. En tal caso, diremos que
G domina a H en la jerarqúıa de Tutte.

Definición 3.2.2 (Kahl y Luttrell [9]). Un grafo G en Cn,m es Tutte-máximo
si para todo grafo H en Cn,m se cumple que H ⪯ G.

Denotaremos H ≺ G cuando H ⪯ G y además H y G no son
Tutte-equivalentes. En este caso diremos que G domina estrictamente a H en
la jerarqúıa de Tutte.

En la Sección 3.1 se demostró que la confiabilidad de un grafo RG(p), es un
invariante de Tutte-Grothendieck, y por lo tanto, puede expresarse en función
del polinomio de Tutte. Usando este resultado, enunciaremos el Lema 4 que nos



permitirá establecer que, si un grafo G es Tutte-máximo entonces también es
un UMRG dentro de su clase.

Lema 4. Cada grafo Tutte-máximo en Cn,m es un UMRG en Cn,m.

Demostración. Sea G un grafo Tutte-máximo en Cn,m y sea H un grafo
cualquiera en Cn,m. Es claro que RG(0) = RH(0) y que RG(1) = RH(1). Sea p
en (0, 1). Basta con probar que RG(p) ≥ RH(p). Como G es Tutte-máximo,
existe algún polinomio P (x, y) con coeficientes no negativos tal que

TG(x, y)− TH(x, y) = (x+ y − xy)P (x, y). (3.4)

Aplicando el Lema 3 tanto a G como a H obtenemos que

RG(p)−RH(p) = pn−1(1− p)m−n+1

(
TG

(
1,

1

1− p

)
− TH

(
1,

1

1− p

))
= pn−1(1− p)m−n+1 ·

(
1 +

1

1− p
− 1

1− p

)
P

(
1,

1

1− p

)
= pn−1(1− p)m−n+1 · P

(
1,

1

1− p

)
≥ 0,

donde se utilizó tanto la Ecuación (3.4) como el hecho de que P (x, y) tiene
todos sus coeficientes no negativos.

El Lema 4 es relevante para nuestro trabajo, ya que establece una relación
entre la búsqueda de grafos Tutte-máximos y la existencia de UMRGs. En
efecto, si logramos determinar un grafo Tutte-máximo en una clase entonces
hemos obtenido un UMRG. Cabe aclarar que el rećıproco del Lema 4 no es
cierto (los autores Kahl y Luttrell señalan en [9] que en C7,11 existe UMRG
pero no existe ningún grafo Tutte-máximo). A partir de este momento, el
enfoque del trabajo se centrará en la búsqueda de un grafo Tutte-máximo de
una clase, en lugar de abordar directamente la obtención del UMRG.

Para finalizar la sección cabe señalar que un grafo Tutte-máximo no
solamente maximiza la confiabilidad sino que también maximiza
simultáneamente otros invariantes de Tutte-Grothendieck que serán de
utilidad.

Proposición 5 (Kahl y Luttrell [9]). Cada grafo Tutte-máximo G maximiza
simultáneamente todos los invariantes que se indican a continuación:

El número de árboles recubridores, y se evalúa TG(1, 1).

El número de bosques recubridores, y se evalúa TG(2, 1).

El número de subgrafos conexos recubridores, y se evalúa TG(1, 2).

El número de orientaciones aćıclicas, y se evalúa TG(2, 0).



3.3. Resultados Preliminares

El cálculo del polinomio de Tutte será esencial para el desarrollo de este
proyecto. Dicho cálculo se simplifica considerablemente en algunas clases de
grafos que se presentan en esta sección.

Cada una de las aristas de un árbol es puente y aporta un factor x al
polinomio de Tutte. Como cada árbol con n vértices tiene exactamente n − 1
aristas, la siguiente observación es correcta.

Observación 6. Cada árbol G con n vértices cumple que TG(x, y) = xn−1.

Procedemos a hallar el polinomio de Tutte del ciclo Cn. Utilizaremos la
convención de que las sumatorias (productorias) que no incluyen sumandos
(factores) son iguales a 0 (resp. iguales a 1).

Lema 7. Para cada entero positivo n se cumple que TCn(x, y) = y +
∑n−1

k=1 x
k.

Demostración. Vamos a emplear el principio de inducción completa sobre n.
Por un lado, C1 consta de un único lazo y TC1

(x, y) = y. Por otro lado,

y +
∑0

k=1 x
k = y, por lo que el paso base es cierto.

Asumiendo que el enunciado es cierto para n, basta con probar que el
enunciado es cierto para n+1. Sea e una arista de Cn+1. Por un lado, Cn+1 ∗ e
es isomorfo a Cn y por hipótesis inductiva tenemos que
TCn+1∗e(x, y) = TCn

(x, y) = y +
∑n−1

k=1 x
k. Por otro lado, Cn+1 − e es un árbol

con n + 1 vértices y por la Observación 6 tenemos que TCn+1−e(x, y) = xn.
Como e no es ni lazo ni arista puente, concluimos que

TCn+1(x,y) = TCn+1∗e(x, y) + TCn+1−e(x, y) = y +

n−1∑
k=1

xk + xn = y +

n∑
k=1

xk.

Como es cierto tanto el paso base como el paso inductivo, el enunciado se sigue
del principio de inducción completa.

El polinomio de Tutte factoriza por bloques [6].

Lema 8 (Ellis y Merino [6]). Si G1, G2, . . . , Gr son los bloques de un pseudografo
G entonces TG(x, y) =

∏r
i=1 TGi(x, y).

En el art́ıculo de Haggard et al. [7] se enuncia la Proposición 9. Los autores
indican que su demostración se sigue tras emplear el principio de inducción
completa sobre la cantidad de cadenas dentro de cada grafo 2-conexo y no
incluyen una demostración. Dada la importancia de este resultado y por
cuestiones de completitud, aqúı se demuestra la Proposición 9.

Proposición 9 (Teorema 3 en [7]). Sean n y m enteros positivos tales que
m > n. Para cada grafo G en Bn,m y cada cadena γ de G con k aristas se
cumple que

TG(x, y) =

(
k−1∑
i=0

xi

)
TG⊖γ(x, y) + TG∗γ(x, y). (3.5)



Demostración. Vamos a emplear el principio de inducción completa sobre n.
Sea G un grafo en las condiciones del enunciado que tiene una cadena γ con

tan solo una arista, es decir que γ = {e}. Como G es un grafo 2-conexo, G no
tiene puntos de corte y en particular tampoco tiene aristas puente por lo que
e no es un puente. Como G es un multigrafo, G no tiene lazos. Luego e no es
ni un puente ni un lazo. Por la propiedad de arista contracción-sustracción del
polinomio de Tutte de G aplicado a la arista e se tiene que:

TG(x, y) = TG−e(x, y) + TG∗e(x, y) = TG⊖γ(x, y) + TG∗γ(x, y),

por lo que el paso base es cierto.
Supongamos ahora que el enunciado se cumple cuando k es igual a h. Sea

ahora un grafo G que cumple con las condiciones del enunciado que tiene alguna
cadena γ con exactamente h + 1 aristas, por lo que γ = {e1, e2, . . . , eh+1}.
Como G es un multigrafo 2-conexo, sabemos que G no tiene ni puentes ni lazos.
Aplicando la propiedad de arista contracción-sustracción del polinomio de Tutte
de G aplicado a la arista eh+1 se tiene que:

TG(x, y) = TG−eh+1
(x, y) + TG∗eh+1

(x, y). (3.6)

Observemos que, para cada i ∈ {1, 2, . . . , h}, la arista ei es un puente en el
grafo G − eh+1. Por un lado, aplicando reiteradamente la definición recursiva
del polinomio de Tutte a cada uno de los puentes del grafo G− eh+1,

TG−eh+1
(x, y) = xhTG⊖γ(x, y). (3.7)

Por otro lado, observemos que el grafo G ∗ eh+1 pertenece a Bn−1,m−1.
Además, G ∗ eh+1 tiene la cadena γ′ definida como γ − {eh+1}, cuyas aristas
son {e1, e2, . . . , eh}. Observemos que (G ∗ eh+1) ⊖ γ′ = G ⊖ γ, mientras que
(G ∗ eh+1) ∗ γ′ = G ∗ γ. Aplicando la hipótesis inductiva al grafo G ∗ eh+1 se
tiene que:

TG∗eh+1
(x, y) =

(
h−1∑
i=0

xi

)
T(G∗eh+1)⊖γ′(x, y) + T(G∗eh+1)∗γ′(x, y)

=

(
h−1∑
i=0

xi

)
TG⊖γ(x, y) + TG∗γ(x, y).

(3.8)

Sustituyendo las ecuaciones (3.7) y (3.8) en (3.6), obtenemos:

TG(x, y) = xhTG⊖γ(x, y) +

(
h−1∑
i=0

xi

)
TG⊖γ(x, y) + TG∗γ(x, y)

=

(
h∑

i=0

xi

)
TG⊖γ(x, y) + TG∗γ(x, y).

por lo que el enunciado es cierto cuando k es igual a h + 1 culminando aśı la
prueba por la aplicación del principio de inducción completa.





Caṕıtulo 4

Aportes

Este caṕıtulo presenta los aportes algoŕıtmicos de este proyecto de grado.

La Sección 4.1 presenta un algoritmo diseñado para calcular el polinomio
de Tutte de cualquier pseudografo conexo, aprovechando tanto las propiedades
de contracción y sustracción de cadenas como la factorización por bloques. A
lo largo de esta sección se incluye el pseudocódigo correspondiente, se ofrece
una demostración de su correctitud y terminación, y se realiza un análisis de su
rendimiento mediante una comparación experimental con otros algoritmos.

La Sección 4.2 presenta un algoritmo de búsqueda de grafos Tutte-máximos
dentro de cada una de las clases no vaćıas Cn,m de grafos conexos y simples. Se
proporcionan resultados que permiten restringir el espacio de búsqueda
únicamente a aquellos grafos en C2n,m. Se diseña un algoritmo que combina
esta reducción del espacio de búsqueda con el cálculo del polinomio de Tutte
presentado en la Sección 4.1, logrando explotar las propiedades de contracción
y sustracción de cadenas y de factorización por bloques. A lo largo de esta
sección se incluye el pseudocódigo junto con una demostración de su
correctitud y terminación.

Finalmente, la Sección 4.3 presenta las conclusiones generales del caṕıtulo,
resumiendo los principales aportes aśı como los resultados obtenidos.

4.1. Cálculo del polinomio de Tutte

A partir de la Observación 1 del Caṕıtulo 2, sabemos que el cálculo del
polinomio de Tutte es un problema #P-completo. El objetivo de esta sección
consiste en desarrollar un algoritmo eficiente para el cálculo del polinomio de
Tutte cuando restringimos nuestro universo de instancias de entrada a aquellos
pseudografos conexos que poseen co-rango reducido. Para comenzar,
presentamos un algoritmo básico que se desprende directamente de la
definición del polinomio de Tutte. Seguidamente, presentamos un algoritmo
más elaborado que será utilizado para cumplir con los objetivos propuestos en
este proyecto.
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4.1.1. Algoritmo Básico

El algoritmo tutte poly naif(G) sigue un esquema goloso para implementar
el cálculo del polinomio de Tutte basado en su definición.

Algoritmo tutte poly naif(G):

Entrada: Un pseudografo conexo G
Salida: El polinomio de Tutte TG(x, y)

1 if G no tiene aristas then
2 return 1;

3 if e es un puente en G then
4 return x · tutte poly naif(G ∗ e);
5 if e es un lazo en G then
6 return y · tutte poly naif(G− e);
7 else
8 return tutte poly naif(G− e) + tutte poly naif(G ∗ e);

La Figura 4.1 ilustra un árbol que representa los primeros tres pasos
recursivos del Algoritmo tutte poly naif (θ2,2,2). Estos grafos se obtienen de
realizar contracciones y sustracciones de aristas. Es posible apreciar que la
cantidad de llamados recursivos del algoritmo básico ante un grafo de entrada
G es de orden exponencial con respecto a la cantidad de aristas del grafo del
mismo, lo que torna prohibitiva su aplicación ante grafos de gran tamaño.

G

G1 = G− e2 G2 = G ∗ e2

G1 − e6 G1 ∗ e6 G2 − e5 G2 ∗ e5

e1 e2

e3 e4

e5 e6

Figura 4.1: Aplicación del algoritmo básico al grafo θ2,2,2.



4.1.2. Algoritmo Propuesto

El algoritmo que se presenta en esta sección calcula el polinomio de Tutte
TG(x, y) de un pseudografo conexo G. Este algoritmo explota propiedades
estructurales del grafo, lo que permite una reducción significativa en el orden
de cómputo en comparación con el algoritmo tutte poly naif(G).

Antes de presentar su pseudocódigo es necesario definir el concepto de
pseudografo etiquetado.

Definición 4.1.1 (Pseudografo etiquetado). Para cada pseudografo G cuyo
conjunto de aristas es E(G) = {e1, e2, . . . , er} y cada tupla de enteros positivos
(x1, x2, · · · , xr), denotamos G(x1, x2, . . . , xr) al pseudografo obtenido de G
tras subdividir xi − 1 veces a la arista ei donde i ∈ {1, . . . , r}. Diremos que
G(x1, x2, . . . , xr) es el pseudografo etiquetado G con etiquetas (x1, x2, . . . , xr).

A modo de ejemplo, el grafo θ1,1,1(ℓ1, ℓ2, ℓ3) es el grafo θℓ1,ℓ2,ℓ3 . En la figura
4.2 se presenta el grafo G definido como θ1,1,1 y el grafo G(2, 2, 4).

G(x1, x2, x3)

e1

e2

e3

G(2, 2, 4)

Figura 4.2: Ejemplo de un pseudografo etiquetado.

A continuación, presentaremos el Algoritmo tutte poly(G). Este toma como
entrada un pseudografo etiquetado G y retorna su polinomio de Tutte
TG(x, y). En lo que sigue, se detalla el pseudocódigo correspondiente. El
Algoritmo tutte poly(G) sigue una estructura recursiva que, frente a una nueva
entrada, analiza cuatro posibles condiciones de retorno. El Bloque 1 (ĺıneas
1-2) detecta si G es un árbol de n vértices y en tal caso retorna xn−1. El
Bloque 2 (ĺıneas 3-6) detecta si G tiene un lazo, que llamamos e. En dicho
caso, retorna el producto entre el polinomio de Tutte del ciclo TCa

(x, y)
(donde a es valor de la etiqueta de e) y la llamada recursiva con entrada G− e.
El Bloque 3 (ĺıneas 7-9) detecta si G tiene más de un bloque, y en tal caso
retorna el producto de los polinomios de Tutte de cada uno de sus bloques. El
Bloque 4 (ĺıneas 10-12) detecta una cadena de G y retorna el polinomio de
Tutte de G según la Proposición 9.



Algoritmo tutte poly(G):

Entrada: Un pseudografo conexo y etiquetado G
Salida: El polinomio de Tutte TG(x, y) parametrizado en las etiquetas

de las aristas
1 if G es un árbol con n vértices then
2 return xn−1;

3 if G contiene un lazo e, etiquetado con a then

4 T1 ← y +
∑a−1

k=1 x
k;

5 G′ ← G− e;
6 return T1 · tutte poly(G′);

7 if G tiene k bloques then
8 Tomar los k bloques G1, . . . , Gk de G;

9 return
∏k

i=1 tutte poly(Gi);

10 else
// G es un multigrafo conexo, y contiene una cadena

etiquetada con a
11 γ ← cadena(G);

12 return
(∑a−1

i=0 x
i
)
tutte poly(G⊖ γ) + tutte poly(G ∗ γ);

G

G1 = G⊖ γ1
G2 = G ∗ γ1

B1 B2

γ1

γ2

γ3

Figura 4.3: Aplicación del algoritmo propuesto al grafo θ2,2,2

Antes de adentrarnos en el estudio de la terminación y la correctitud,
conviene analizar el ejemplo de la Figura 4.3 en contraste con el de la Figura
4.1. Ambos muestran el árbol recursivo del cálculo del polinomio de Tutte para
el grafo θ2,2,2. Cabe observar la notable reducción en el número de operaciones
necesarias cuando se emplea el Algoritmo tutte poly(θ2,2,2) en lugar del
enfoque básico del Algoritmo tutte poly naif (θ2,2,2). En efecto, al aplicar
tutte poly(θ2,2,2), solo se requieren dos operaciones para alcanzar los casos base
asociados al ciclo.



4.1.3. Terminación y Correctitud

En este apartado demostraremos la terminación y la correctitud del
Algoritmo tutte poly(G). El siguiente concepto será esencial para el análisis de
terminación.

Definición 4.1.2 (Grafo reducido). Dado un multigrafo conexo cualquiera G,
decimos que Gr es un grafo reducido de G si cumple alguna de las siguientes
condiciones:

1. Gr = G⊖ γ, donde γ es una cadena en G.

2. Gr = G ∗ γ, donde γ es una cadena en G.

3. G no es 2-conexo y Gr es un bloque de G.

Lema 10. Sea G un multigrafo conexo con alguna arista. Si Gr es un grafo
reducido de G entonces se cumple que |E(Gr)| < |E(G)|.

Demostración. Sea G un grafo en las condiciones del enunciado y sea Gr un
grafo reducido de G. Por un lado, si Gr se obtiene mediante la aplicación de la
regla 1 o 2 de la Definición 4.1.2 para alguna cadena γ de G entonces Gr tiene
|γ| aristas menos que G. Por otro lado, cada bloque de un grafo 2-conexo tiene
al menos una arista. Luego, si Gr se obtiene mediante la aplicación de la regla 3
de la Definición 4.1.2 entonces Gr es uno de los bloques de G. En cualquiera
de los casos, el reducido Gr de G tiene menos aristas que G, como queŕıamos
demostrar.

Teorema 11 (Terminación del Algoritmo). Dado un pseudografo G conexo con
aristas etiquetadas, el Algoritmo tutte poly(G) termina su ejecución en tiempo
finito.

Demostración. El Algoritmo tutte poly(G) se compone de cuatro bloques. En
particular, los Bloques 2, 3 y 4 son recursivos, siendo estos los que resulta de
interés probar su terminación.
Observemos que en todos los pasos recursivos, el Algoritmo tutte poly(G)
retorna reducciones del grafo G. Apoyándonos en el Lema 10 podemos afirmar
que |E(Gr)| < |E(G)|. Por lo tanto, en cada paso recursivo se llama
nuevamente al Algoritmo tutte poly(G) con un grafo con menos aristas. Puesto
que el pseudografo de entrada G es finito, tras llamados recursivos
obtendremos un grafo conexo minimal, que es un árbol, y se alcanzará su
terminación en el Bloque 1. Por lo tanto, el algoritmo tutte poly(G) finaliza
tras una cantidad finita de pasos, como queŕıamos demostrar.

Estamos en condiciones de probar la correctitud del algoritmo tutte poly(G).

Teorema 12 (Correctitud del Algoritmo). Dado un pseudografo G con aristas
etiquetadas, el polinomio retornado por tutte poly(G) corresponde al polinomio
de Tutte de G.



Demostración. Para demostrar la correctitud del algoritmo estructuraremos la
prueba en bloques, verificando que lo retornado en cada uno de ellos es válido
y se ajusta a la hipótesis de los lemas utilizados.

Bloque 1: en este caso el pseudografo G es un árbol con n vértices. Por
la Observación 6, su polinomio de Tutte es xn−1, que es efectivamente lo
que retorna este bloque, por lo que es correcto.

Bloque 2: Sea G el pseudografo etiquetado de entrada, y sea X su
conjunto de etiquetas. En este caso, G contiene un lazo e etiquetado con
el valor a. Luego, existe un pseudografo G1 tal que G(X) = G1 · Ca. Por
el Lema 8, TG(X)(x, y) = TG1

(x, y) · TCa
(x, y). Por el Lema 7 se tiene que

TG(X)(x, y) = TG′(x, y) ·
(
y +

∑a−1
k=1 x

k
)
. Esta expresión coincide con el

resultado retornado por el algoritmo, y es correcto por los Lemas 7 y 8.

Bloque 3: en este caso G contiene k bloques. Bajo estas hipótesis, el
algoritmo hace uso del Lema 8 y retorna el producto del polinomio de
Tutte de cada uno de los bloques del grafo G.

Bloque 4: este bloque toma efecto únicamente cuando los Bloques 1, 2,
o 3 no tomaron efecto. Es simple probar que el pseudografo de entrada
al Bloque 4 tiene más aristas que vértices y además pertenece a la clase
Bn,m. El polinomio de Tutte que se retorna en la ĺınea 12 de este bloque
es correcto por la Proposición 9.

La correctitud del algoritmo se sigue su terminación y de la correctitud de
cada uno de sus bloques.

4.1.4. Eficiencia computacional

En este apartado analizamos cuán eficiente resulta nuestra implementación
para calcular el polinomio de Tutte. Para ello, se realizó una comparación
directa con dos algoritmos: por un lado, el algoritmo BHKK [1], considerado
entre los más eficientes hasta la fecha, y por otro lado, una versión del
Algoritmo básico (tutte poly naif(G)) desarrollada en Python.

Para la implementación en código del algoritmo descrito en tutte poly(G),
se optó por utilizar el lenguaje Python, en su versión 3.12. Esta elección se
basó principalmente en dos motivos: por un lado, la amplia disponibilidad de
bibliotecas especializadas tanto para el tratamiento de polinomios como para
la manipulación de grafos; por otro, la simplicidad del lenguaje, que permite
desarrollar prototipos funcionales con pocas ĺıneas de código, evitando aśı la
complejidad asociada al manejo manual de memoria u otros aspectos de bajo
nivel.

Todas las ejecuciones experimentales se realizaron en un entorno controlado,
utilizando un ordenador con las siguientes especificaciones técnicas:



Procesador: Intel Core i3-1215U (6 núcleos).

Memoria RAM: 8 GB DDR4 a 3200 MHz.

Sistema operativo: Windows 11 Home.

Entorno de ejecución: Windows Subsystem for Linux (WSL)

Para llevar a cabo las pruebas computacionales, se seleccionaron dos
familias distintas de grafos: grafos completos y grafos θl1,l1,l1,l1,l1 . A modo de
ejemplo, se presentan las Figuras 4.4 y 4.5, que ilustran un grafo
representativo de cada familia utilizada en la comparación.

Figura 4.4: Grafo completo de 5
vértices.

Figura 4.5: Grafo θ4,4,4,4,4

Las Tablas 4.1 y 4.2 resumen los resultados obtenidos por cada uno de los
algoritmos estudiados ante instancias de grafos completos con 2, 3, 4, 5, o 6
vértices, y grafos de la clase θℓ1,ℓ1,ℓ1,ℓ1,ℓ1 con ℓ1 ∈ {4, 5, 8, 10, 15},
respectivamente. Vale destacar que en cada caso se realizó una gran cantidad
de corridas preliminares, en las cuales se observó consistentemente resultados
acordes a los presentados a continuación. Los resultados mostrados en las
tablas corresponden a una única corrida representativa, y no a un promedio de
las corridas realizadas.



Cantidad de vértices BHKK (s) Algoritmo propuesto (s) Algoritmo básico (s)
2 0.007500 0.000482 0.000172
3 0.006845 0.001211 0.003750
4 0.006113 0.019639 0.011367
5 0.006043 0.818198 0.050758
6 0.008538 72.932995 0.480127
7 0.015731 N/A 10.74871

Tabla 4.1: Tiempos de ejecución para grafos completos de n vértices.

Largo de cadenas BHKK (s) Algoritmo propuesto (s) Algoritmo básico (s)
4 3.755088 0.275767 1.051911
5 257.659786 0.467448 2.979167
8 N/A 0.436766 20.559151
10 N/A 0.496000 61.231551
15 N/A 0.912857 627.110134

Tabla 4.2: Tiempos de ejecución de los tres algoritmos para θl1,l1,l1,l1,l1

La Tabla 4.1 presenta los resultados para grafos completos. Aqúı, nuestro
algoritmo enfrenta su mayor desaf́ıo, ya que no existen puntos de corte ni
cadenas de largo mayor que uno. Aunque nuestro algoritmo inicia con tiempos
competitivos, a partir de K6 los tiempos de ejecución se incrementan
considerablemente. Para el grafo K7 su ejecución es finalizada de forma
forzada por el sistema sin retornar un polinomio debido al excesivo uso de
memoria. En cambio, tanto el Algoritmo básico como el algoritmo BHKK
muestran comportamientos más estables.

El otro caso analizado (Tabla 4.2), corresponde a los grafos θℓ1,ℓ1,ℓ1,ℓ1,ℓ1 .
En este escenario, nuestro algoritmo demuestra su máximo potencial. Supera
ampliamente a los otros enfoques, manteniendo tiempos acotados incluso en
instancias con más de 30 vértices, donde BHKK ni siquiera puede operar. En
contraste, el Algoritmo básico sufre un notable incremento en el tiempo en
función del crecimiento en el largo de las cadenas.

En resumen, nuestro algoritmo se desempeña con gran eficiencia y
escalabilidad en grafos de bajo co-rango, donde puede explotar plenamente su
estrategia de optimización. Sin embargo, su rendimiento se ve comprometido
en grafos de alto co-rango, en los cuales la ausencia de cadenas y bloques
limita su eficacia y conduce a un uso excesivo de recursos.

4.2. Búsqueda de grafos Tutte-máximos

El objetivo de esta sección es presentar un algoritmo que permita determinar
la existencia de grafos Tutte-máximos dentro de Cn,m y, en caso de existir,
retornar uno de ellos.

Esta sección se desarrolla en dos etapas. En primer lugar, mostramos que



es posible restringir la búsqueda de grafos Tutte-máximos en Cn,m a la clase
C2n,m. Adicionalmente, determinaremos un conjunto de grafos de menor
cardinal que, a partir de subdivisiones de sus aristas, permite representar a
cada uno C2n,m. En segundo lugar, presentamos el pseudocódigo del algoritmo
de búsqueda. Por último, demostraremos la terminación y la correctitud del
algoritmo desarrollado.

4.2.1. Grafos 2-conexos y destilaciones

En este apartado mostraremos por qué podemos restringir el universo de
búsqueda de grafos Tutte-máximos en Cn,m a grafos en C2n,m. Luego, veremos
que para cada grafo en C2n,m existe un grafo destilación D enMc y un conjunto
de etiquetas X tal que G = D(X). Este hecho permitirá reducir notoriamente
el esfuerzo computacional del algoritmo de búsqueda de grafos Tutte-máximos.

Teorema 13 (Kahl y Luttrell [9]). Sea G un grafo en Cn,m−C2n,m tal que m > n
y sean G1 y G2 dos bloques de G. Supongamos además que v es un vértice de
corte común a ambos bloques, y que uv ∈ E(G1) y vw ∈ E(G2). Sea H un grafo
tal que

H = G− uv + uw.

Entonces se tiene que G ⪯ H. Además, si G1 ̸= K2 entonces G ≺ H.

Proposición 14. Sean n y m dos enteros positivos tales que m > n. Para cada
grafo G en Cn,m − C2n,m existe otro grafo H en C2n,m tal que G ≺ H.

Demostración. Sea G un grafo en las condiciones del enunciado. Notemos que
al menos uno de sus bloques no es P2, pues si cada bloque fuese P2 entonces G
seŕıa un árbol, contradiciendo que G tiene más aristas que vértices. Sea G1 un
bloque de G que no sea P2, y sea G2 otro bloque de G que tenga un vértice en
común con G1. Por el Teorema 13 sabemos que existe G′ tal que G ≺ G′. Si
G′ aún presenta algún punto de corte podemos aplicar nuevamente el Teorema
13 y repetir el procedimiento hasta llegar a un grafo H sin puntos de corte tal
que G ≺ H. Nótese además que H pertenece a Cn,m, no tiene puntos de corte,
y tiene al menos 3 vértices, por lo que H es 2-conexo y pertenece a C2n,m como
queŕıamos demostrar.

La Proposición 14 permite restringir el espacio de búsqueda de grafos Tutte-
máximos de Cn,m a aquellos grafos en C2n,m. A continuación, mostraremos que
es posible obtener a cada uno de los grafos en C2n,m mediante subdivisiones
elementales de alguno de los grafos enMc, reduciendo aśı el cardinal del espacio
de búsqueda. Para cumplir este objetivo, es necesario introducir el Lema 15.

Lema 15 (Romero [16]). Sean n y m dos enteros positivos tales que n + 1 ≤
m ≤ 3n/2 y sea G en C2n,m. Sea c = m − n + 1. Cada una de las siguientes
afirmaciones es cierta.

1. La destilación de G, que denotamos D(G), tiene a lo sumo 2c− 2 vértices
y para todo v ∈ V (D(G)) el grado de v es mayor que o igual a 3.



2. Si D(G) tiene exactamente 2c− 2 vértices entonces D(G) es cúbico.

3. El grafo D(G) tiene no más que 3c − 3 aristas. La igualdad ocurre si y
solo si D(G) es cúbico.

Observemos que si un grafo 2-conexo simple G tiene más aristas que vértices
entonces existe su destilación. Puesto que G es 2-conexo y se obtiene mediante
una cantidad finita de subdivisiones elementales de D(G), resulta que D(G) es
también 2-conexo. Por lo tanto, D(G) es un multigrafo y no puede tener lazos.

Observación 16. La destilación de cada grafo 2-conexo simple con más aristas
que vértices es un multigrafo 2-conexo.

Estamos en condiciones de probar el siguiente lema.

Lema 17. Sean n y m dos enteros positivos tales que n + 1 ≤ m ≤ 3n/2.
Definamos c = m− n+1. Para cada G en C2n,m existe un multigrafo G′ enMc

tal que D(G) = D(G′).

Demostración. Sean n y m y G en las condiciones del enunciado. Por la
Observación 16, existe la destilación D(G) de G, que es un multigrafo. Por el
Lema 15(1) sabemos que D(G) tiene a lo sumo 2c − 2 vértices. Si D(G) tiene
exactamente 2c − 2 vértices entonces por el Lema 15(2) tenemos que D(G) es
cúbica y por lo tanto tiene 3c − 3 vértices. En este caso D(G) pertenece al
conjunto Mc y basta con elegir G′ = G. Si no, como el co-rango de G y de
D(G) coinciden, tendremos que D(G) es un multigrafo con n′ vértices y
n′ + (c − 1) aristas para algún entero n′ tal que n′ < 2c − 2. Definamos
k = 2c − 2 − n′. Tomemos una arista arbitraria e de D(G). Construyamos G′

que se obtiene de G tras aplicar k subdivisiones elementales de la arista e.
Observemos que G′ es un multigrafo que tiene exactamente k vértices y k
aristas más que D(G), por lo que tiene exactamente 2c − 2 vértices y 3c − 3
aristas. Entonces, G′ es un multigrafo en Mc y su destilación es precisamente
D(G), como queŕıamos demostrar.

Observación 18. Sean n y m enteros positivos tales que n+1 ≤ m ≤ 3n
2 , y sea

c = m − n + 1. Si D es una destilación enMc entonces existe G ∈ B2c−2, 3c−3

que puede obtenerse mediante subdivisiones elementales de D.

Al combinar la Proposición 14, el Lema 17 y la Observación 18, es posible
restringir el espacio de búsqueda de grafos Tutte-máximos de Cn,m únicamente
a aquellas destilaciones provenientes de grafos en B2c−2,3c−3. Por último,
introducimos la relación de dominancia entre polinomios de Tutte que será
utilizada en el algoritmo de búsqueda.

Definición 4.2.1. Para cada par de enteros n y m tales que Cn,m es no vaćıa,
definimos la colección de polinomios Pn,m como {TG(x, y) : G ∈ Cn,m}.

Definición 4.2.2. Sean TG(x, y) y TH(x, y) dos polinomios en Pn,m. Decimos
que TG domina a TH , y lo denotamos TH ⪯ TG, cuando TG(x, y)− TH(x, y) =
(x+ y−xy)P (x, y) para algún polinomio P (x, y) con coeficientes no negativos.



Observación 19. La relación de precedencia ⪯ en el conjunto Pn,m es de orden
parcial.

Reflexividad: Para todo polinomio TG(x, y) se cumple
TG(x, y)− TG(x, y) = (x+ y − xy) · 0 = 0, por lo que TG ⪯ TG.

Antisimetŕıa: Si TG ⪯ TH y TH ⪯ TG, entonces existen dos polinomios
P1(x, y), P2(x, y) con coeficientes no negativos tales que:

TH(x, y)− TG(x, y) = (x+ y − xy)P1(x, y) (4.1)

TG(x, y)− TH(x, y) = (x+ y − xy)P2(x, y) (4.2)

Sumando las expresiones (4.1) y (4.2) se obtiene que
0 = (x + y − xy)(P1(x, y) + P2(x, y)). Luego, P1(x, y) + P2(x, y) = 0.
Como P1(x, y) y P2(x, y) tienen coeficientes no negativos, la única
posibilidad es que P1(x, y) = P2(x, y) = 0, por lo que TG = TH .

Transitividad: Si TH ⪯ TG′ y TG′ ⪯ TG, entonces existen dos polinomios
P1(x, y), P2(x, y) con coeficientes no negativos tales que:

TG′(x, y)− TH(x, y) = (x+ y − xy)P1(x, y) (4.3)

TG(x, y)− TG′(x, y) = (x+ y − xy)P2(x, y) (4.4)

Sumando las expresiones (4.3) y (4.4) se obtiene que TG(x, y)−TH(x, y) =
(x+ y − xy)(P1(x, y) + P2(x, y)), donde P1(x, y) + P2(x, y) también tiene
coeficientes no negativos. Por tanto, TH ⪯ TG.

El siguiente concepto de polinomio máximo en Pn,m tiene una
correspondencia directa con el de grafo Tutte-máximos en Cn,m.

Definición 4.2.3. Decimos que un polinomio TG en Pn,m es máximo si para
todo polinomio TH en Pn,m se cumple que TH ⪯ TG.

Observación 20. A partir de la Observación 19 sabemos que si existe un
polinomio máximo entonces es único.

Observación 21. Si G es un grafo Tutte-máximo en Cn,m entonces TG es
polinomio máximo en Pn,m.

Estamos en condiciones de presentar el algoritmo de búsqueda de grafos
Tutte-máximos en la clase Cn,m.



4.2.2. Algoritmo Propuesto

Algoritmo search tutte(n, m):

Entrada: Dos enteros positivos n y m tales que n+ 1 ≤ m ≤ 3n
2

Salida: Grafo Tutte-máximo en Cn,m si existe; ∅ si no.
1 c← m− n+ 1;
2 Mc ← obtener destilaciones(c);
3 T ← ∅;
4 for D ∈Mc do
5 D(X)← etiquetar(D);
6 TD(X)(x, y)← tutte poly(D(X));

7 L ←
{
(l1, l2, ..., l|E(D)|) ∈ Z|E(D)|

+ :
∑|E(D)|

i=1 li = m
}
;

8 for l ∈ L do
9 if TD(l)(x, y) /∈ T then

10 T ← T ∪ {TD(l)(x, y)};

11 P1 ← {TG ∈ T : ∄TH ∈ T , TH(1, 1) > TG(1, 1)};
12 P2 ← {TG ∈ T : ∄TH ∈ T , TH(2, 1) > TG(2, 1)};
13 P3 ← {TG ∈ T : ∄TH ∈ T , TH(1, 2) > TG(1, 2)};
14 P4 ← {TG ∈ T : ∄TH ∈ T , TH(2, 0) > TG(2, 0)};
15 P ′ ← P1 ∩ P2 ∩ P3 ∩ P4;
16 if P ′ == ∅ then
17 return ∅;

18 TH ← obtener un elemento cualquiera de(P ′);
19 for TG ∈ P ′ do
20 if TH ≺ TG then
21 TH ← TG;

22 for TG ∈ T , TG ̸= TH do
23 if not TG ⪯ TH then
24 return ∅;

25 return H;

El Algoritmo de búsqueda search tutte(n, m) obtiene el conjunto de
destilaciones Mc en el Bloque 1 (ĺıneas 1 - 2). En la práctica, este conjunto
se determina a partir de cada uno de los grafos en B2c−2,3c−3, obteniendo sus
destilaciones y luego eliminando aquellas que son isomorfas. En el Bloque 2
(ĺıneas 3 - 10), se obtienen de manera eficiente todos los polinomios de Tutte
de los grafos en C2n,m. Notar que basta con calcular el polinomio de Tutte
solamente para las destilaciones etiquetadas. Luego, evaluando las diferentes
combinaciones válidas de etiquetas se obtienen todos los polinomios de Tutte
de los grafos en C2n,m. Dichos polinomios son almacenados en el conjunto T . El
Bloque 3 (ĺıneas 11 - 17) corresponde al proceso de búsqueda de polinomios
candidatos a ser máximos, partiendo del conjunto T . En primer lugar, el
algoritmo evalúa los cuatro invariantes de Tutte-Grothendieck presentados en



la Proposición 5 para cada uno de los polinomios del conjunto T . A partir de
ello, identifica el conjunto de aquellos polinomios de Tutte cuyos grafos
maximizan cada invariante. Luego, se obtiene la intersección de esos cuatro
conjuntos. Si dicha intersección contiene más de un polinomio, el algoritmo
determina si un candidato domina a los restantes (ĺıneas ĺıneas 18 - 21). Notar
que TH , al finalizar el algoritmo, almacenará el polinomio máximo en Cn,m en
caso de existir. Finalmente, en el Bloque 4 (ĺıneas 22 - 25) se verifica
computacionalmente si TH domina al resto de los polinomios de Tutte de los
grafos en C2n,m, y de ser aśı, retorna su grafo asociado.

4.2.3. Terminación y Correctitud

En esta sección enunciaremos y demostraremos dos teoremas. El primero
está relacionado con la terminación del Algoritmo search tutte(n, m), mientras
que el segundo aborda su correctitud.

Teorema 22 (Terminación del Algoritmo). El Algoritmo search tutte(n, m)
siempre termina su ejecución en tiempo finito.

Demostración. Observemos que cada bloque del algoritmo opera sobre
conjuntos finitos y realiza un número finito de operaciones:

Bloque 1: Como el conjunto B2c−2,3c−3 es finito, se tiene en particular que
el conjunto Mc es finito. Asimismo, la determinación computacional de
Mc se lleva a cabo en un número finito de operaciones, puesto que se
construye mediante el colapso de los vértices de grado 2 en cada grafo de
B2c−2,3c−3, cuyo conjunto de vértices es, por definición, finito.

Bloque 2: Por el Teorema 11, el cálculo del polinomio de Tutte a través
del Algoritmo tutte poly(G) termina en tiempo finito. Además, para cada
destilación D ∈ Mc y cada entero positivo m se tiene que la cantidad de
combinaciones válidas de etiquetas positivas cuya suma es exactamente
igual a m es finita.

Bloques 3 y 4: La evaluación del polinomio de Tutte para el cálculo de
invariantes, la búsqueda del valor máximo dentro de un conjunto finito
y la comparación de polinomios son todas operaciones computables en
tiempo finito.

La terminación del algoritmo en una cantidad finita de pasos se sigue de la
terminación de cada uno de sus bloques en una cantidad finita de pasos.

Teorema 23 (Correctitud del Algoritmo). Si existe al menos un grafo Tutte-
máximo en Cn,m entonces el Algoritmo search tutte(n, m) retorna uno de ellos.

Demostración. Llamaremos G a algún grafo Tutte-máximo de Cn,m.

Bloque 1: Por la Proposición 14, G ∈ C2n,m. Adicionalmente, por la

Proposición 17, existe D ∈Mc y XG = (x1, x2, · · · , x|E(D)|) ∈ Z|E(D)|
+ tal



que D(x1, x2, · · · , x|E(D)|) = G. Por la Observación 18, Mc puede
obtenerse a partir de subdivisiones partiendo de un grafo en B2c−2,3c−3.

Bloque 2: Observemos queXG pertenece al conjunto de etiquetas L que fue
generado en la ĺınea 7 del algoritmo. En consecuencia, una vez finalizada
la ejecución del Bloque 2, el polinomio TG formará parte del conjunto T
construido en la ĺınea 10.

Bloque 3: Por la Proposición 5 se sigue que TG pertenece a la
intersección de los conjuntos P ′ presentada en la ĺınea 15. Además, por
las Observaciones 20 y 21, TG será el único máximo seleccionado en el
proceso comparativo descrito en las ĺıneas 19 - 21.

Bloque 4: Como TG es máximo, no se alcanzará la ĺınea 24 y el algoritmo
retornará un grafo H cuyo polinomio de Tutte es precisamente TG. Dado
que G es Tutte–máximo y H es Tutte–equivalente a G, se puede afirmar
que H también es Tutte–máximo.

Luego el algoritmo retorna un grafo Tutte-máximo, por lo que es correcto.

4.3. Conclusiones del Caṕıtulo

En este caṕıtulo se han presentado dos contribuciones que fortalecen el
cuerpo central de este trabajo.

En primer lugar, se desarrolló un algoritmo eficiente para el cálculo del
polinomio de Tutte en grafos de co-rango bajo que aprovecha las propiedades
de contracción y sustracción de cadenas aśı como también la factorización por
bloques. Este enfoque permite reducir significativamente el tiempo de
ejecución computacional al tratar el conjunto de las aristas pertenecientes a
una misma cadena como una unidad en lugar de procesarlas individualmente.
Los resultados experimentales demuestran que esta implementación mantiene
tiempos de ejecución estables y competitivos en grafos con estructura de
cadenas largas.

En segundo lugar, se desarrolló un algoritmo para la identificación de
grafos Tutte-máximos optimizado para operar en clases de grafos de co-rango
bajo. Este aporte metodológico combina, de manera innovadora, el cálculo
eficiente del polinomio de Tutte con una reducción estratégica del espacio de
búsqueda. La estrategia se basó en restringir el estudio a grafos en C2n,m,
representarlos mediante clases de menor cardinal y determinar candidatos
mediante la maximización de invariantes de Tutte-Grothendieck.

En el Caṕıtulo 5 pondremos en práctica los algoritmos desarrollados,
comenzando por un estudio concreto de la existencia de grafos Tutte-máximos
dentro de la clase C11,14. A partir de este análisis, se generalizan los resultados
y se alcanza un aporte novedoso: la refutación de la afirmación de Wang para
una cantidad infinita de clases de grafos.



Caṕıtulo 5

Refutación a la afirmación
de Wang

Este caṕıtulo tiene como objetivo analizar la veracidad de las Afirmaciones
1 y 2. En la Sección 5.1 se determina que el grafo L1 es Tutte-máximo dentro en
C11,14. En la Sección 5.2 se prueba con asistencia computacional que W s ⪯ Ls

para cada entero positivo s.

5.1. Determinación de un grafo Tutte-máximo

En esta sección analizaremos las Afirmaciones 1 y 2 sobre una clase
particular: C11,14. Esta clase resulta de especial interés por ser la clase con
menor cantidad de vértices en la que los grafos Ln y Wn difieren.

Comenzaremos el análisis calculando los polinomios de Tutte de L1 y W 1.
Por cuestiones de completitud se incluyen en el Anexo las expresiones generales
de los polinomios TW s y TLs para cada entero positivo s, que se obtienen tras
ejecuciones del Algoritmo tutte poly(W s) y tutte poly(Ls). Una vez obtenidos
dichos polinomios, realizamos una comparación de los mismos cuando s = 1,
conforme a la Definición 3.2.1. De esta manera obtenemos lo siguiente:

TL1(x, y)− TW 1(x, y) = (x+ y − xy)(x5 + x4 + x3)

Como se puede observar, el polinomio P (x, y) definido como x5 + x4 + x3

presenta únicamente coeficientes reales no negativos. Por lo tanto,

W 1 ≺ L1.

El resultado anterior basta para refutar la Afirmación 1. Adicionalmente,
resulta de interés verificar computacionalmente si la Afirmación 2 es válida.
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Para realizar esta verificación se utilizará el Algoritmo search tutte(n, m). En
caso de que exista un grafo Tutte-máximo en C11,14, dicho algoritmo retornará un
grafo Tutte-máximo en C11,14. Luego, podremos compararlo con L1 y determinar
si son o no son Tutte-equivalentes. Al ejecutar el Algoritmo search tutte(n, m)
con n = 11 y m = 14 se obtiene el grafo H que se ilustra en la Figura 5.1.

Figura 5.1: Grafo H en C11,14.

Obsérvese que el grafo Tutte-máximo H obtenido es isomorfo al grafo L1.
En particular, esto implica directamente que L1 es Tutte-máximo en C11,14.

Antes de concluir esta sección resulta pertinente analizar la eficiencia del
Algoritmo search tutte(n, m) en el marco de este ejemplo. A partir de una
revisión computacional exhaustiva es posible comprobar que hay exactamente
109844 grafos dentro de la clase C11,14. Por un lado, en caso de no aplicar
ninguna técnica de restricción del espacio de búsqueda, se requeriŕıa calcular
exactamente 109.844 polinomios de Tutte para luego realizar una comparación
entre dichos polinomios. Por otro lado, el Algoritmo search tutte(n, m)
restringe el espacio de búsqueda al conjunto M4 que consiste en todas las
destilaciones de grafos 2-conexos de co-rango 4 y tiene apenas 17 grafos. En
consecuencia, a partir de la técnica de destilaciones etiquetadas fue suficiente
calcular solamente 17 polinomios de Tutte en este caso. En el Anexo se
presentan los 17 grafos dentro del conjuntoM4.

Para concluir esta sección, es conveniente destacar dos aportes centrales. En
primer lugar verificamos computacionalmente que para la clase C11,14 el grafo
propuesto por Landgren y Steif L1 domina estrictamente en la jerarqúıa de
Tutte al grafo W 1 propuesto por Wang. Este resultado nos permite descartar la
validez de la Afirmación 1. En segundo lugar verificamos computacionalmente
que L1 es Tutte-máximo dentro de la clase C11,14, lo que respalda la Afirmación
2 en esta clase particular.

5.2. Comparación entre W s y Ls

En esta sección probaremos que W s ≺ Ls para cada entero positivo s. Esto
es equivalente a probar que para cada entero positivo s se cumple que
TLs − TW s = (x + y − xy)Ps(x, y), donde Ps(x, y) tiene coeficientes reales no
negativos.



Tras ejecutar el Algoritmo tutte poly(Ls) y tutte poly(W s) y expresar sumas
geométricas truncadas mediante funciones racionales, se obtienen expresiones
para TLs(x, y) y TW s(x, y) que se presentan en el Anexo. Tomando la resta
TLs(x, y) − TW s(x, y) se tiene que para cualquier entero positivo s y cualquier
par de números reales x e y tales que x ̸= 1,

TLs(x, y)− TW s(x, y) =
y
(
−x3s+3x3s+1−3x3s+2+x3s+3+x5s+1−3x5s+2+3x5s+3−x5s+4

)
(x−1)3

+x3s+1−3x3s+2+3x3s+3−x3s+4−x5s+2+3x5s+3−3x5s+4+x5s+5

(x−1)4

(5.1)

Lema 24. Para cada entero positivo s y cada número real x tal que x ̸= 1,

TLs(x, y)− TW s(x, y) = (x+ y − xy)
5s∑

i=3s

xi. (5.2)

Demostración. Tras tomar denominador común (x−1)4 en el miembro derecho
de la Ecuación (5.1) se deduce que

TLs(x, y)− TW s(x, y) =

(
− yx3s(x− 1) + x3s+1

)
(x− 1)3 (x2s+1 − 1)

(x− 1)4
.

Cancelando el factor (x−1)3 que figura en el numerador y en el denominador
del miembro derecho de la última expresión y operando, obtenemos que

TLs(x, y)− TW s(x, y) =

(
−yx3s + x3s+1

x− 1

)
(x2s+1 − 1)

=
(
−y(x− 1)x3s + x3s+1

) x2s+1 − 1

x− 1

=
(
−y(x− 1) + x

)
x3s

2s∑
i=0

xi

= (x+ y − xy)x3s
2s∑
i=0

xi

= (x+ y − xy)
5s∑

i=3s

xi.

Estamos en condiciones de demostrar el siguiente resultado.

Proposición 25. Para cada entero positivo s se cumple que W s ⪯ Ls.

Demostración. Por el Lema 24 sabemos que para cualquier entero positivo s y
para cualquier elección de números reales x e y tales que x ̸= 1 se cumple que



Ps(x, y) =
∑5s

i=3s x
i. Recordemos que dos funciones continuas que coinciden en

un conjunto denso de R2 son idénticas. Como R2 − {(x, y) : x, y ∈ R, x ̸= 1}
es denso en R2 y los polinomios son continuos concluimos que para cada entero
positivo s la expresión Ps(x, y) =

∑5s
i=3s x

i se cumple para todo (x, y) en R2.

En esta sección hemos demostrado que Ls domina a W s dentro de la
jerarqúıa de Tutte. Este resultado refuta la Afirmación 1 para una cantidad
infinita de clases de grafos. Si bien esto no garantiza que la Afirmación 2 sea
válida, hay evidencia computacional para pensar que si podŕıa serlo.



Caṕıtulo 6

Conclusiones y trabajo
futuro

El análisis de confiabilidad de redes se originó a mediados del siglo pasado
con una motivación muy estrecha con la práctica: diseño de computadores
masivos altamente confiables. En aquel entonces era indispensable conectar
distintos puntos en un circuito eléctrico compuesto con relés y con una
probabilidad de falla extremadamente baja (idealmente nula). Un problema
natural consiste en maximizar la probabilidad de conexión entre distintos
puntos, bajo una cantidad limitada de recursos (relés). No obstante, el estudio
de la confiabilidad uniforme se formaliza mediante el lenguaje de la teoŕıa de
grafos recién en 1986 tras un influyente art́ıculo publicado por Frank Boesch.
A partir de esa fecha resultó de interés teórico y práctico la búsqueda de grafos
uniformemente más confiables.

Boesch en un trabajo colectivo [2] prueba que para cada clase no vaćıa de
grafos conexos Cn,m cuyo co-rango es positivo y no mayor que 3 existe un
único grafo uniformemente más confiable. Curiosamente, hasta la fecha
desconocemos si en cada clase no vaćıa Cn,m cuyo co-rango es 4 existe un único
grafo uniformemente más confiable. Guifang Wang por un lado, y Lorents
Landgren y Jeffrey Steif por otro lado, proponen que la respuesta es
afirmativa, y presentan en cada clase de grafos Cn,n+3 tal que n ≥ 6 un único
grafo que aqúı denominamos Wn y Ln respectivamente.

En este proyecto de grado mostramos mediante evidencia computacional
que la afirmación de Guifang Wang es incorrecta. Además, toda evidencia
computacional se halla en armońıa con la afirmación realizada por Lorents
Landgren y Jeffrey Steif. Toda la implementación computacional desarrollada
en este proyecto, junto con los experimentos realizados, se encuentra
disponible públicamente en el repositorio de GitLab:
https://gitlab.fing.edu.uy/juan.mangado/tesis.
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El art́ıculo actualmente publicado en Arxiv por sus autores se halla bajo
referato y, en caso de ser correcto, representa un avance en el entendimiento en
la existencia de grafos uniformemente más confiables. Kahl y Luttrell [9]
conjeturaron que cada clase no vaćıa Cn,n+3 de co-rango 4 tiene al menos un
grafo que es Tutte-máximo. En el transcurso de este proyecto de grado se
desarrollaron dos algoritmos. El primer algoritmo permite hallar el polinomio
de Tutte de pseudografos. El segundo algoritmo permite encontrar, cada vez
que existe, un grafo Tutte-máximo dentro de una clase no vaćıa Cn,m cuando
n + 1 ≤ m ≤ 3n/2. Se observa que su ejecución es exitosa en la clase C11,14 y
permite deducir que L11 es Tutte-máximo en dicha clase. Para hallar dicho
grafo Tutte-máximo hemos tomado todas las etiquetas posibles dentro de los
17 grafos destilación de M4. También hemos demostrado que esta realización
de todos los grafos C2n,m permite hallar algún grafo Tutte-máximo, siempre que
exista. No obstante, para clases de co-rango 4 con una cantidad masiva de
vértices existen abundantes etiquetados de grafos destilación dentro deM4, lo
que torna inviable su ejecución. Un posible trabajo futuro consiste en hallar
eficientemente el etiquetado óptimo X dentro de cada destilación posible D en
Mc de modo que D(Y ) ⪯ D(X) para los restantes etiquetados posibles Y .

Existen numerosos problemas abiertos que no se han abordado en este
proyecto de grado. Cheng [5] demostró que todo grafo multipartito completo
regular posee la máxima cantidad de árboles recubridores. Kahl y Luttrell [9]
conjeturaron que todo grafo multipartito completo regular es Tutte-máximo.
Dicha conjetura permanece abierta. Nuestro tutor [16] ha probado
recientemente que existe una cantidad finita de clases Cn,n+4 que poseen grafos
uniformemente más confiables. Por lo tanto, hay una cantidad finita de grafos
que son Tutte-máximos de co-rango 5, lo que genera un fuerte contraste con lo
que se conoce para clases cuyo co-rango es menor que 5. La determinación de
dichos grafos Tutte-máximos es un problema abierto, y la asistencia
computacional es un enfoque válido para encontrar algunos (o todos) los
grafos Tutte-máximos de co-rango 5.

Un célebre problema abierto postulado por Frank Boesch [3] refiere a grafos
fuertes que enunciamos a continuación. Para cada G en Cn,m y cada entero k
en {0, 1, . . . ,m} definimos Nk(G) como la cantidad de subgrafos recubridores
conexos de G con exactamente k aristas. Un grafo G en Cn,m es fuerte si para
cada H en Cn,m y cada k en {0, 1, . . . ,m} se cumple que Nk(G) ≥ Nk(H). Es
simple probar que todo grafo fuerte es uniformemente más confiable. Frank
Boesch conjeturó que el rećıproco es cierto, es decir, que todo grafo
uniformemente más confiable es fuerte. Es interesante mencionar que todo
grafo Tutte-máximo no es solamente uniformemente más confiable, sino que
también es fuerte. Por lo tanto, la búsqueda de contraejemplos de la conjetura
de Boesch puede realizarse buscando pares de enteros (n,m) para los cuales no
existe grafo Tutte-máximo en Cn,m. Puesto que nuestro segundo algoritmo
permite realizar búsquedas eficientes de grafos Tutte-máximos dentro de clases
Cn,m cuando n + 1 ≤ m ≤ 3n/2 y para cantidades de vértices reducida, una



posible ĺınea de trabajo futuro consiste en ejecutar nuestro algoritmo de
búsqueda, listar aquellos pares (n,m) en los que no existe grafo Tutte-máximo
en Cn,m, y determinar en cada caso si existe grafo uniformemente más
confiable en Cn,m que no sea fuerte. Es atractivo realizar dicha búsqueda para
clases de grafos Cn,m de co-rango 5, puesto que alĺı sabemos que existe una
cantidad finita de grafos uniformemente más confiables.
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Anexo A

Anexo 1

Destilaciones correspondientes aM4

Figura A.1: Destilaciones deM4
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Polinomios TLs y TW s

TLs(x, y) =

y4+

y3(x− 1)−1
(
− 4x− 5 + 5xs+1 + 4xs

)
+

y2(x− 1)−2
(
6x2 + 15x+ 9 + 4x3s+2 + 2x3s+1

+ 6x2s+2 + 8x2s+1 + 4x2s − 15xs+2 − 27xs+1 − 12xs
)
+

y(x− 1)−3
(
− 4x3 − 15x2 − 18x− 5 + 8x5s+3 + x5s+1

− 6x3s+3 − 8x3s+2 + 2x3s+1 − 12x2s+3 − 22x2s+2

− 16x2s+1 − 4x2s + 15xs+3 + 42xs+2 + 34xs+1 + 8xs
)
+

(x− 1)−4
(
x4 + 5x3 + 9x2 + 5x+ x9s+5 − 8x5s+4 − x5s+2

+ 2x3s+4 + 6x3s+3 − 2x3s+2 + 6x2s+4 + 14x2s+3

+ 12x2s+2 + 4x2s+1 − 5xs+4 − 19xs+3 − 22xs+2 − 8xs+1
)

TW s(x, y) =

y4+

y3(x− 1)−1
(
− 4x− 5 + 5xs+1 + 4xs

)
+

y2(x− 1)−2
(
6x2 + 15x+ 9 + 4x3s+2 + 2x3s+1

+ 6x2s+2 + 8x2s+1 + 4x2s − 15xs+2 − 27xs+1 − 12xs
)
+

y(x− 1)−3
(
− 4x3 − 15x2 − 18x− 5 + x5s+4 + 5x5s+3 + 3x5s+2

− 7x3s+3 − 5x3s+2 − x3s+1 + x3s − 12x2s+3 − 22x2s+2

− 16x2s+1 − 4x2s + 15xs+3 + 42xs+2 + 34xs+1 + 8xs
)
+

(x− 1)−4
(
x4 + 5x3 + 9x2 + 5x+ x9s+5 − x5s+5 − 5x5s+4 − 3x5s+3

+ 3x3s+4 + 3x3s+3 + x3s+2 − x3s+1 + 6x2s+4 + 14x2s+3

+ 12x2s+2 + 4x2s+1 − 5xs+4 − 19xs+3 − 22xs+2 − 8xs+1
)

Glosario

En esta sección se recopilan textualmente las definiciones fundamentales
introducidas a lo largo del documento, las cuales son utilizadas de manera
recurrente en los diferentes caṕıtulos.

Cadena
Sea G un multigrafo en Bn,m con más aristas que vértices. Una cadena de



G es el conjunto de aristas de un camino cuyos extremos tienen grado 3 o
más y cuyos vértices internos (si los hay) tienen grado 2.

Clase Cn,m
Para cada par de enteros positivos n y m tales que n − 1 ≤ m ≤

(
n
2

)
,

denotamos mediante Cn,m a la clase de todos los grafos simples y conexos
con n vértices y m aristas.

Co-rango de un pseudografo
Para cada pseudografo G con κ(G) componentes conexas, definimos el
co-rango de G como c(G) = |E(G)| − |V (G)|+ κ(G).

Confiabilidad de un grafo
Sean n ym enteros positivos tales que n−1 ≤ m ≤

(
n
2

)
. Sea G ∈ Cn,m y sea

p ∈ [0, 1]. La confiabilidad de G evaluada en p, que denotamos RG(p), es la
probabilidad de que el subgrafo recubridor aleatorio resultante de retener
a cada una de las aristas de G independientemente con probabilidad p sea
conexo.

Contracción de una arista
La contracción de la arista e en G, que se denota G ∗ e, es el grafo que se
obtiene de G− e tras identificar a los vértices que son extremos de e.

Destilación
La destilación del grafo G, que denotamos D(G), es el grafo que se obtiene
de G tras colapsar a cada una de sus cadenas.

Grafo 2-conexo
Decimos que el grafo G es 2-conexo si es conexo, tiene al menos 3 vértices
y no posee puntos de corte.

Grafo conexo
Decimos que un grafo G es conexo si para cada par de vértices u y v de
G existe algún camino cuyos extremos son precisamente u y v.

Grafo simple
Un grafo simple G consiste en un conjunto finito de vértices, denotado
por V (G), y un conjunto de aristas, denotado por E(G), que son pares no
ordenados de elementos de V (G). No se admiten lazos ni aristas múltiples.

Grafo Tutte-equivalente
Dos grafos G y H en Cn,m son Tutte-equivalentes si para todo par de
números reales x e y se cumple que TG(x, y) = TH(x, y).

Grafo Tutte-máximo
Un grafo G en Cn,m es Tutte-máximo si para todo grafo H en Cn,m se
cumple que H ⪯ G.



Grafo uniformemente más confiable (UMRG)
Un grafo G en Cn,m es uniformemente más confiable si para cada grafo
H en Cn,m y todo p ∈ [0, 1] se cumple que RG(p) ≥ RH(p).

Polinomio de Tutte
El polinomio de Tutte TG(x, y) de un pseudografo G se define
recursivamente como:

TG(x, y) =


TG−e(x, y) + TG∗e(x, y), si e no es un lazo ni un puente,

x TG∗e(x, y), si e es un puente,

y TG−e(x, y), si e es un lazo,

1, si G no tiene aristas.

Rango de un pseudografo
Para cada pseudografo G con κ(G) componentes conexas, definimos el
rango de G como r(G) = |V (G)| − κ(G).

Relación de dominancia de Tutte
Dados dos grafos G y H en Cn,m, denotamos H ⪯ G cuando
TG(x, y) − TH(x, y) = (x + y − xy)P (x, y) para algún polinomio P (x, y)
con coeficientes reales no negativos.

Subgrafo
Un subgrafo de G es un grafo cuyo conjunto de vértices está contenido en
V (G) y cuyo conjunto de aristas está contenido en E(G).

Sustracción de una arista
La sustracción de la arista e en G se denota G − e y consiste en el grafo
cuyo conjunto de vértices es V (G) y cuyo conjunto de aristas es E(G)− e.
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