UNIVERSIDAD Q
DE LA REPUBLICA ‘ FACULTAD DE

INGENIERIA
URUGUAY Y

Rosificando un robot para
uso Agropecuario: Ikus

Informe de Proyecto de Grado presentado por
Christopher Alexis Friss de Kereki Manicera

en cumplimiento parcial de los requerimientos para la graduacién de la carrera
de Ingenieria en Computacion de Facultad de Ingenierfa de la Universidad de
la Repiiblica

Supervisores

Gonzalo Tejera
Martin Llofriu

Montevideo, 28 de noviembre de 2025

Rosificando un robot para uso Agropecuario: Ikus por
@ Christopher Alexis Friss de Kereki Manicera tiene licencia CC
Atribucién - No Comercial 4.0.

11

https://creativecommons.org/licenses/by-nc/4.0

Agradecimientos

Quiero agradecer a Gonzalo Tejera y Martin Llofriu por acompanarme y
guiarme en este proyecto. A Mercedes Munoz, por dejarme entrar al laboratorio
una y otra vez y brindarme siempre su escucha. A mis padres, hermanos y a
toda mi familia, por estar presentes en cada paso. A mis amigos y companeros,
por acompanarme en el camino. Y a Luna, Olivia y, sobre todo, a Agus.

IIT

v

Resumen

Este proyecto de grado presenta Ikus, un robot disenado para el transpor-
te de objetos en entornos agropecuarios. El objetivo principal fue desarrollar
una plataforma robdtica con una interfaz clara y documentada en ROS 2 (Ro-
bot Operating System), garantizando compatibilidad con versiones recientes y
fomentando su reutilizacién en proyectos futuros.

El trabajo se estructuréd en tres etapas: (1) implementacién de un sistema de
control diferencial en ROS 2 para la comunicacién directa con los motores y la
obtencién de odometria basada en el movimiento de las ruedas, (2) integracién
de un sensor LiDAR, un médulo de odometria visual, mapeo y planificacién de
caminos, y (3) construccién de un entorno de simulacién para su experimenta-
cién.

La validacion se realizé tanto en un mundo simulado en Gazebo como en un
entorno controlado de la Facultad de Ingenierfa (Universidad de la Republica).
Los resultados mostraron que la odometria basada en ruedas presenté limitacio-
nes de precision frente a la odometria visual apoyada en el LiDAR. La integra-
cion de planificacién de caminos a Ikus fue realizada, y como parte del trabajo
futuro se propone la experimentacién exhaustiva de la herramienta, junto con
mejoras en el hardware.

Palabras clave: Robética, ROS 2, Mapeo, Simulacién, Ikus, ros2_control

VI

Indice general

1. Introduccion 1
1.1. Motivacién y Objetivos 1
1.2. Estructura del documento 1

2. Estado del arte 3
2.1. Development of an Autonomous Mobile Manipulator for Indus-

trial and Agricultural Environments 3
2.1.1. Resumen 3
2.1.2. Conclusiones 5
2.2. Advances in Agriculture Robotics: A State-of-the-Art Review and
Challenges Ahead 6
2.2.1. Resumen 6
2.2.2. Conclusiones 0 6
2.3. An introduction to the ros2_control framework using a low cost
differential drive robot oL 8
2.3.1. Resumen 8
2.3.2. Conclusiones 9

3. Marco Teérico 11
3.1. Introduccion 11
3.2. Robética 11

3.2.1. Vehiculos auténomos 11
3.2.2. Robot diferencial 12
3.3. Hardware 13
3.3.1. LiDAR 13
3.3.2. Encoder 14
3.3.3. Motores BLDC L. 15
3.34. ESC . . . 16
3.4. Software 16
341. ROSyROS 2. 16
3.4.2. URDF e 30
3.4.3. Simulaciéon y Gazebo oo 31
3.4.4. Odometria 32
3.4.5. SLAM y Navegacién 33

4. Solucién Propuesta
4.1. Requerimientos L oo
4.2. Especificaciones de Ikus y otras herramientas
4.2.1. Dimensiones generales
4.2.2. Actuadores y Sensores
4.2.3. Elementos de cémputoo
4.2.4. Fuentesdepoder
4.2.5. Otros Elementos
4.3. Solucion de software
4.3.1. Arquitectura de la Solucién
4.3.2. SLAM y Navegacion
4.3.3. ros2_control Lo
4.3.4. Comunicacién con Controladora VESC
4.3.5. Odometria ICP con rtabmap_odom
4.3.6. Simulacién oo
4.4. Integracion del sistema completo

5. Experimentacion
5.1. Entorno Simulado
5.1.1. Odometria basada en Ruedas
5.1.2. Odometria basada en LIDAR
5.1.3. Andlisis
5.2. Entorno Real
5.2.1. Odometria basada en Ruedas
5.2.2. Odometria basada en LIDAR
5.2.3. Analisis y Experimentos en Laboratorio

6. Conclusiones y Trabajo Futuro
6.1. Conclusioneso
6.2. Trabajo Futuro

Referencias

A. Directorios de la solucién
Al vescdkus
A.2. Otros directorios y archivos

VIII

35
35
36
36
38
40
41
41
42
42
44
49
54
56
o7
61

65
65
66
66
67
68
69
70
71

73
73
74

75

Capitulo 1

Introduccion

1.1. Motivaciéon y Objetivos

La utilizacién de robots en el sector agropecuario permite aumentar la efi-
ciencia y reducir riesgos y costos en diversas tareas. Sin embargo, los robots
comerciales suelen ser costosos y presentan tecnologias desactualizadas y, en al-
gunos casos, cerradas. Con el propésito de desarrollar un robot auténomo propio
adaptado a entornos rurales, el Grupo de Investigacién en Network Management
/ Artificial Intelligence (MINA) construyé Ikus utilizando componentes accesi-
bles, intercambiables y tecnologias actualizadas y de cédigo abierto.

Este proyecto tiene como objetivo adaptar Tkus para su integracién con li-
brerias de ROS 2, dado que ROS es el estandar en el desarrollo de software
para robdtica. En este contexto, surge el concepto de ‘rosificacién’ de Ikus, lo
que permitird facilitar la integracion con distintos sensores y actuadores en el
futuro, reduciendo costos y complejidad.

Otro de los objetivos del proyecto es incorporar un entorno de simulacién
en Gazebo, con el fin de disponer de una plataforma virtual que permita pro-
bar y validar los distintos experimentos. La simulacién proporciona un espacio
seguro y flexible para experimentar con diferentes configuraciones de sensores,
actuadores y escenarios propios del entorno agropecuario, reduciendo el riesgo
de danos al robot y al entorno, y acelerando el proceso de desarrollo. De esta
manera, se garantiza una validacién temprana de las funcionalidades de Tkus, lo
que facilita futuras extensiones y aplicaciones en campo.

1.2. Estructura del documento

El documento se organiza de la siguiente manera: en el Capitulo 2 se realiza
una revision del estado del arte, abordando proyectos relacionados y marcos de
referencia relevantes. En el Capitulo 3 se presentan los fundamentos tedricos que
sustentan el desarrollo del sistema, incluyendo descripciones de ROS, control de
motores y simulacién, entre otros.

En el Capitulo 4 se presenta la solucién propuesta, detallando los requeri-
mientos, la arquitectura de la solucién, presentando las caracteristicas de Ikus
y los moédulos de software construidos. El Capitulo 5 aborda las pruebas ex-
perimentales realizadas y los resultados obtenidos, mientras que el Capitulo 6
expone las conclusiones y las perspectivas de trabajo futuro.

Capitulo 2

Estado del arte

En este capitulo se presentan tres trabajos de investigaciéon y desarrollo
enfocados en la robética mévil aplicada a entornos industriales y agricolas. Cada
uno se estructura en una secciéon que incluye un resumen del trabajo y las
conclusiones obtenidas por los autores, destacando su relacién con el desarrollo
de Tkus. El primer trabajo aborda el diseno e integracion de un manipulador
movil auténomo, el segundo ofrece una revisién del estado actual de la robdtica
agricola a nivel global, y el tercero presenta la implementacién del framework
ros2_control en una plataforma de bajo costo.

2.1. Development of an Autonomous Mobile Ma-
nipulator for Industrial and Agricultural En-
vironments

La tesis de maestria desarrollada por Giampa (2023) presenta el desarrollo
de un robot moévil manipulador auténomo orientado a automatizar tareas en
entornos industriales y agricolas.

2.1.1. Resumen

El sistema combina una plataforma movil con un brazo robdtico, utilizando
ROS 2 como marco de desarrollo, junto a Nav2 para navegaciéon auténoma
y Movelt2 para planificacion de movimientos. Un componente central es un
actuador neumatico blando, construido con piezas impresas en 3D, que permite
manipular objetos delicados, enfrentando el reto de operar de forma auténoma
en ambientes dindmicos y no estructurados mediante la fusién de sensores y
algoritmos robustos.

Este robot, presentado en la figura 2.1, utiliza un robot AgileX Scout 2.0
como base mévil. Este robot mévil tiene una computadora Intel NUC 12 conec-
tada mediante bus CAN, utilizada para recibir datos de los encoders del robot

y enviar datos de control de velocidad y direcciéon. El brazo robdtico es un Igus
Rebel 6-DoF cobot, refiriéndose por cobot a un robot colaborativo, disenado
para trabajar junto con humanos en un espacio compartido. Con el objetivo de
realizar deteccién y reconocimiento de objetos, se utilizé6 una camara estéreo
Intel Realsense D435 RGB-D, colocada en una de las articulaciones del brazo
robdtico. Para crear mapas de sus entornos y localizar al robot, se utilizé un
LiDAR 3D Ouster OS1-64, con un campo de visién de 360° y un rango de 120
metros. También estd equipado con un router TP-Link Archer MR200 para es-
tablecer conexién remota desde una notebook via un punto de acceso Wi-Fi,
permitiendo control y monitoreo remoto.

|PCAL ITELLIGENCE AHD ROBOTICS L

ART

Figura 2.1: Vista lateral del robot, imagen tomada de ‘Development of an Auto-
nomous Mobile Manipulator for Industrial and Agricultural Environments’ por
Giampa

El proyecto logra integrar distintos componentes de hardware y software bajo
una arquitectura modular que facilita futuras expansiones. Utiliza ros2_control

para un manejo controlado del brazo robdtico, mientras que la base moévil utiliza-

4

da ya presenta una interfaz integrable con las librerias de Nav2 para planificacién
de caminos.

Los resultados evidencian el potencial de este sistema para aumentar la pro-
ductividad, eficiencia y seguridad en la industria y la agricultura, automatizando
tareas repetitivas o peligrosas. Gracias a su diseno modular y al uso de tecno-
logias accesibles, el proyecto sienta las bases para futuras investigaciones y la
creacién de robots méviles atin mas versatiles e inteligentes.

2.1.2. Conclusiones

El objetivo principal es demostrar la viabilidad de la navegacién auténoma
y la manipulacién de objetos con diferentes objetivos finales, no para superar
las capacidades humanas, sino para sentar una base sélida para futuras investi-
gaciones y sistemas robdticos més complejos. Se plantea la necesidad de robots
adaptativos e inteligentes que puedan ejecutar una variedad de tareas en esce-
narios reales, como la agricultura y la industria, utilizando hardware y software
accesibles y de bajo costo.

El desarrollo de este sistema permitié comprobar la importancia clave de la
percepcion robusta y la localizacién precisa en entornos cambiantes, destacan-
do el desafio de fusionar y procesar datos de sensores y de calibrar distintos
componentes de hardware. Se remarca la necesidad de ambientes de simulacién
completos para probar y validar el sistema antes de desplegarlo en el mundo
real. La principal lecciéon obtenida es la eficacia de un enfoque iterativo en el
desarrollo robético, comenzando por tareas simples en simulacién y aumentando
progresivamente su complejidad para garantizar adaptabilidad y escalabilidad.

Aunque la integraciéon con ros2_control estd enfocada al control del brazo
robético, sirve como ejemplo de una correcta implementacion de un sistema
robético controlado. Los experimentos realizados logran explicar como mejo-
rar el mapeo, localizaciéon y planificacién de caminos en entornos industriales
y agricolas. Para los experimentos realizados por Giampa, la localizacién reali-
zada por ‘SLAM Toolbox’ tuvo mejor respuesta a aquella realizada por Nav2
mediante el algoritmo de ‘Localizacién Adaptativa de Monte Carlo’ (del inglés
Adaptive Monte Carlo Localization).

Por ejemplo, el algoritmo de ‘SLAM Toolbox’ tiene buena respuesta frente
a problemas de localizacién en entornos con obstaculos dindmicos, y el algorit-
mo ‘AMCIL’ tiene peor rendimiento en experimentos basados en rotaciones sin
desplazamiento.

Este proyecto presenta un gran ejemplo a seguir, no solo por el alcance
técnico similar al contexto de Ikus, el cual se integra ros2_control y librerias
de mapeo, localizacién y planificacién de caminos, sino también por el proceso
iterativo incremental que sigue, trabajando en una parte del problema a la vez,
para luego integrar con el panorama completo.

2.2. Advances in Agriculture Robotics: A State-
of-the-Art Review and Challenges Ahead

El articulo elaborado por Oliveira, Moreira, y Silva (2021) realiza una inves-
tigacién del estado del arte de los robots enfocados en el sector agropecuario.

2.2.1. Resumen

Los avances constantes en la robdtica agricola buscan responder a desafios
como el crecimiento poblacional, la urbanizacién acelerada, la alta competitivi-
dad en la produccién de bienes de calidad, la preservacién del medio ambiente
v la escasez de mano de obra calificada. En este contexto, el presente articulo
de revisién analiza las principales aplicaciones de los sistemas robdticos en la
agricultura, abarcando tareas como la preparacion del terreno, la siembra, el
tratamiento de cultivos, la cosecha, la estimacién de rendimiento y la fenotipi-
ficacién.

Para cada robot analizado, se consideraron aspectos como su sistema de loco-
mocion, aplicacion final, presencia de sensores, brazo robético, uso de algoritmos
de visién por computadora, etapa de desarrollo y pais de origen. A partir de es-
tas caracteristicas, se identificaron tendencias de investigacién, errores comunes
y factores que dificultan su comercializacién. Ademas, se destaca la necesidad
de profundizar en cuatro areas clave para el avance de la agricultura inteligen-
te: sistemas de locomocién, sensores, algoritmos de visién por computadora y
tecnologias de comunicacién. Los resultados indican que la inversién en siste-
mas robéticos agricolas permite alcanzar objetivos tanto a corto plazo, como el
monitoreo de cosechas, como a largo plazo, como la estimacién del rendimiento.

2.2.2. Conclusiones

Para promover avances técnicos y cientificos en el ambito de la agricultura
inteligente, es fundamental conocer los trabajos existentes, evaluando sus for-
talezas, limitaciones y errores comunes, con el fin de identificar las verdaderas
necesidades de mejora. Tras una revisién sistemética de 62 sistemas robdticos
aplicados a tareas agricolas como la preparacion del suelo, la siembra, el trata-
miento de cultivos, la cosecha, la estimacién de rendimiento y la fenotipificacion,
se obtuvieron diversos hallazgos, de los cuales resaltamos aquellos que se rela-
cionan con Ikus: el 6% de los robots agricolas emplean traccién en solo dos
ruedas, el 64,52 % no cuenta con brazo robético, el 22,06 % se utiliza en labores
de deshierbe y el 8,82 % en tareas generales de agricultura, el 16,53 % incorpora
LiDAR, el 35,48 % no menciona o no utiliza algoritmos de visién por compu-
tadora, el 80,65 % atin se encuentra en fase de investigacién, el 16,13 % proviene
de América, donde el 13,64 % ha sido desarrollado en los Estados Unidos.

Entre las caracteristicas mas destacadas se encuentran la escasa adopcién
de soluciones comerciales estandarizadas, el uso limitado de enfoques de robéti-
ca en enjambre o paralelismo, la baja utilizaciéon de algoritmos de visién por

computadora, asi como de plataformas versétiles adaptables a distintos culti-
VOs.

Para mejorar estos sistemas, se proponen cuatro areas clave para futuras
investigaciones: sistemas de locomocion, sensores, algoritmos de visién artificial
y agricultura inteligente basada en IoT. Este estudio analiz6 62 sistemas robéti-
cos agricolas y revel6 un incremento del 22,98 % en la tasa promedio de éxito
en la cosecha y una reduccién del 42,78 % en el tiempo promedio del ciclo de
recoleccion entre 2014 y 2021. Con avances en las areas mencionadas, se espera
que la eficiencia y robustez de estos sistemas continiie mejorando, consolidando
su papel como herramientas clave en la transformacién del entorno natural a
través de la robdtica mévil.

El relevamiento presentado sobre los 62 sistemas robdticos no hace referencia
a las tecnologias utilizadas ni a si son de cédigo abierto o cerrado.

2.3. An introduction to the ros2 _control frame-
work using a low cost differential drive ro-
bot

El articulo elaborado por Amadi, Mbanisi, y Smit (2024) presenta la cons-
truccién de un robot diferencial econémico utilizando ros2_control.

2.3.1. Resumen

Con el creciente uso de la robética en diversas aplicaciones a nivel mundial,
se vuelve crucial el acceso a hardware para facilitar su desarrollo, especialmente
en contextos educativos y de investigacién. Esto es aiin més relevante en regiones
donde los robots comerciales son costosos y dificiles de adquirir, lo que puede
limitar el aprendizaje y la innovacién en robética.

ROS2 Dev machine € ---._ .
Raspberry Pi 4 18650 battery holder

Power bank * WiFi

1zc h -
Serial - Waves! ar:xrohr Driver
RPLIDAR A1 USB
2c —
MPUE050 module ! GPIO } — DC motors with encoders

12C via FFC cable

(a) Lidarbot hardware architecture (Adapted from SMARTmBOT [5])

L

(b) Side view (c) Top view

Figura 2.2: Diagrama de Hardware de Lidarbot (a), fotografias de Lidarbot (b y
¢), imagenes tomadas de ‘An introduction to the ros2_control framework using
a low cost differential drive robot’ por Amadi y cols.

En respuesta a esta necesidad, se presenta Lidarbot (observado en la figu-
ra 2.2), un robot diferencial de bajo costo y c6digo abierto disefiado como una

8

plataforma de inicio para el aprendizaje de temas clave como ROS (Robot Ope-
rating System), SLAM, navegacién auténoma y fusién de sensores. Con un costo
aproximado de 250 délares, el Lidarbot cuenta con los sensores y componentes
necesarios para experimentar con estas tecnologias.

Este robot también se utiliza como ejemplo para implementar el framework
de control agndstico al hardware ros2_control, junto con la pila de navegacion
Nav2 para planificacion de caminos. Su disenio y cédigo fuente estan disponibles
publicamente en GitHub, lo que facilita su adopcién y adaptacion por parte de
estudiantes, docentes e investigadores interesados en robdtica.

2.3.2. Conclusiones

Lidarbot fue el robot presentado en el articulo como una alternativa econémi-
ca ante plataformas robdticas comerciales para adentrarse en robdtica con ROS
2, sensores y actuadores, teoria de control, SLAM y planificacién de cami-
nos. El robot sirvié como ejemplo préactico para ilustrar el uso del framework
ros2_control, destacando cémo puede aplicarse junto con la pila de navegacién
Nav2 para lograr una navegacion auténoma eficiente.

El uso de ros2_control permite centrar los esfuerzos en la configuracion y
ajuste de los pardmetros del controlador para adaptarse al disefio especifico del
robot y en el desarrollo de aplicaciones. Esto es posible gracias a que el frame-
work gestiona aspectos complejos como el sistema de control, el ciclo de vida
del hardware, la comunicacién y el acceso al mismo. La experiencia adquirida
con esta plataforma puede trasladarse a sistemas mas avanzados.

Se puede decir que Lidarbot es fruto de una ‘rosificacién’, dado que el sistema
basa la comunicacion entre actuadores y sensores en paquetes y nodos de ROS
2. Estos nodos se ejecutan en la unidad de computo, una Raspberry Pi 4 con
Ubuntu server 22.04, con ROS 2 Humble, permitiendo el control remoto via Wi-
Fi. Se decide incorporar una unidad de medicién inercial (IMU) MPU6050 con
el objetivo de complementar la odometria obtenida por ros2_control mediante
el procesamiento de los encoders de las ruedas del Lidarbot.

En términos de mejoras a futuro, se plantean algunas actualizaciones tec-
nolégicas. Reemplazar el LiDAR ‘RPLIDAR A1’ por ‘RPLIDAR C1’, el cual
utiliza el ‘tiempo de vuelo’ (TOF) para la medicién. Para facilitar el control de
las ruedas con motores de corriente continua: substituir el ‘Waveshare Motor
Driver HAT’ por una Raspberry Pi Pico y un médulo de controladora de motor
‘TB6612FNG’, con intenciones de implementar micro-ROS en la Raspberry Pi
Pico y facilitar la integraciéon con la controladora.

10

Capitulo 3

Marco Teorico

3.1. Introduccion

En esta seccion se busca definir y repasar conceptos que seran nombrados a lo
largo del informe. El capitulo comienza con una breve introducciéon a la robética,
ahondando en los vehiculos auténomos y robots diferenciales. Luego se presentan
conceptos relacionados al hardware disponible para sistemas robdticos, como
sensores LiDAR y motores BLDC. Por ultimo, se presentan distintos conceptos
y tecnologias relacionados al software utilizado en el area, introduciendo ROS,
ros2_control, distintas herramientas que estos utilizan y conceptos mas generales
como simulacién, mapeo y localizacion, y planificacién de caminos, entre otros.

3.2. Robdtica

Los robots son piezas de maquinaria programables para cumplir distintas
tareas. Son utilizados en cientos de tipos de industrias, desde entretenimiento,
como animatrdnicos, hasta bélicos, como drones de guerra.

Los sensores son dispositivos que permiten obtener informacién del entorno
mediante la medicion de diferentes magnitudes fisicas. Los actuadores, en cam-
bio, son aquellos que posibilitan actuar sobre el entorno, pudiendo en algunos
casos modificar las condiciones que luego seran percibidas por los sensores.

Un sistema robético puede ser programado para utilizar la informacién sen-
sada del medio, procesarla y generar directivas en base a las restricciones o
modificaciones propuestas por el sistema de control, que son luego interpreta-
das por los actuadores. En la figura 3.1 se presenta un esquema de un sistema
robético simple.

3.2.1. Vehiculos autonomos

“An intelligent robot is a machine able to extract information from
its environment and use knowledge about its world to move safely

11

{ medio]

Figura 3.1: Interaccion de sistema simple, imagen tomada de Fundamentos de
Robética Auténoma - Unidad 1.2

in a meaningful and purposive manner.”
- Arkin (1998), p.3

Un vehiculo robédtico auténomo cumple con las caracteristicas de robot in-
teligente de Arkin: ‘una méaquina capaz de extraer informacién del ambiente y
utilizar conocimiento sobre el entorno para moverse con sentido y propédsito’.

Los vehiculos auténomos normalmente se componen de cdmaras o sensores
de distancia y ruedas o algin tipo de pierna mecéanica con varias articulaciones.
Son capaces de sensar el entorno y estimar sus posiciones en el espacio y dis-
tancias respecto a obstaculos que los rodean. A su vez, su unidad de cémputo y
su programacion indican una serie de velocidades, potencias o angulos deseados
a los motores en ruedas o pies, modificando la posiciéon con sentido, intentan-
do cumplir ese objetivo que Arkin nombra ‘propésito’. Existen robots que son
denominados de ‘propésito general’; son aquellos a los que no se les asigna un
propdsito especifico y tienen versatilidad para adaptarse (o ser adaptados) segin
sean necesarios.

El robot Jackal (Figura 3.2), un Vehiculo Terrestre No Tripulado (UGV)
fabricado por Clearpath Robotics, cumple con las caracteristicas de ‘prop0si-
to general’, ya que es posible comprar o desarrollar distintos subsistemas de
integracién para diferentes escenarios.

3.2.2. Robot diferencial

Un robot es considerado un robot ‘diferencial’ si tiene dos ruedas motorizadas
una opuesta de la otra, junto con alguna rueda giratoria de apoyo, como el que
se observa en la figura 3.3. Para lograr mover el robot hacia adelante, ambas
ruedas deben moverse a la misma velocidad en direcciones opuestas. Para girar
a la derecha, la rueda izquierda debe moverse mas rapido que la derecha, y
viceversa para girar a la izquierda. También es posible realizar un giro en el
lugar moviendo las ruedas a la misma velocidad en la misma direccién. Las
ruedas giratorias de apoyo agregan estabilidad al sistema.

12

Figura 3.2: Robot Jackal de Clearpath Robotics, imagen tomada de Clearpath
Robotics

3.3. Hardware

3.3.1. LiDAR

LiDAR (Light Detection and Ranging, o Deteccién y Medicién por Luz) es
un método de sensado que utiliza luz en forma de laser para medir distancias.
Las utilidades de un sensor de este tipo en robdtica varian desde el mapeo en
dos o tres dimensiones de un area, hasta el reconocimiento y seguimiento de
objetos.

Como ejemplo, el siguiente sistema de sensor LiDAR emite FMCW lése-
res (Frequency Modulated Continuous Wave laser, o ldser de onda continua y
frecuencia modulada) en distintas direcciones. Estos pulsos emitidos son proyec-
tados sobre obstéculos en el entorno, y su luz es detectada por otro médulo del
sensor. Basdndose en el ToF (Time of Flight o tiempo de vuelo) asociado a cada
frecuencia emitida, la unidad de procesamiento del sensor genera un grupo de
datos conocido como nube de puntos, donde cada uno de esos puntos contiene
la distancia sensada hacia el obstdculo mas cercano en la direccién en la que fue
emitido cada ldser. Como se observa en la figura 3.4, utilizando herramientas
de visualizacién, es posible observar una representaciéon de esa nube de puntos
sensada de la realidad.

En la figura 3.5 se observa la solucién méas popular actualmente para LiDAR
en automoviles: el sistema de giro mecanico, el cual dirige los laseres mediante
un espejo o prisma, controlado por un motor para realizar el giro, para generar
un amplio campo de vision.

13

Figura 3.3: Robot diferencial, imagen tomada de "Kinematics, localization and
control of differential drive mobile robot’ por Malu y cols. (2014)

LiDAR system: An example

5o~ Rotated rangefinder
wn P on
o
=
@ .00
D «—>
L 0,0
3
%)
—= = 3 0=
® @
=h 38
. 28
point cloud 3 Svg
[x,y,z] 9 St " 38
Po; b0, Qof o=
" ?r @ & Photo- | |
o a2 detector
3 r

Single rangefinde

Figura 3.4: Ejemplo de sistema de LiDAR, tomada de ’Lidar for autonomous
driving: The principles, challenges, and trends for automotive lidar and percep-
tion systems’ por Li y Ibanez-Guzman (2020)

3.3.2. Encoder

Un encoder es un dispositivo electrénico que se encarga de medir posiciones,
desplazamientos o velocidades de componentes giratorios. Existen distintos tipos
de encoders que realizan sus mediciones en base a diferentes fenémenos fisicos.

Los encoders pueden clasificarse segin su principio de funcionamiento en:

= Encoders 6pticos: Utilizan un disco perforado y un sistema de LED y
fotodetector para detectar el movimiento mediante interrupciones de luz.

= Encoders magnéticos: Emplean sensores de efecto Hall o magnetorresis-
tivos para detectar cambios en campos magnéticos generados por imanes
en movimiento.

= Encoders capacitivos: Detectan variaciones de capacitancia causadas

14

Q Laser return

Tilting
Mirror ~~"--

\A
Azimuth

Rotation

--- Laser

-
amm="

-
s

Receiver

Figura 3.5: Ejemplo de sistema de LiDAR con giro mecénico, tomada de Li y
Ibanez-Guzman (2020)

por el movimiento de un rotor.

Encoders Magnéticos - Efecto Hall

El efecto Hall ocurre cuando un semiconductor, al ser expuesto a un campo
magnético, genera una diferencia de potencial en sus extremos. Este fenémeno
se debe al desplazamiento interno de cargas eléctricas provocado por las lineas
de fuerza del campo magnético, resultando en una diferencia de tensién propor-
cional a la intensidad del flujo magnético.

En los encoders magnéticos basados en efecto Hall, un sensor detecta el paso
de los polos magnéticos de un iman montado en el eje del motor. Cada cambio de
polaridad genera un pulso eléctrico que permite determinar la posicion angular
y la velocidad de rotacién del eje.

3.3.3. Motores BLDC

Los motores de corriente continua sin escobillas o BLDCs (del inglés BrushLess
DC) son motores que utilizan imanes y bobinados que generan campos magnéti-
cos para generar movimiento en base a un eje.

Usualmente, los BLDC suelen tener imanes fijos en el rotor y bobinados en

15

el estator. Uno de los principios fundamentales de estos motores es que el campo
magnético generado por las bobinas del estator se sincroniza con el producido
por los imanes del rotor, permitiendo un movimiento eficiente y controlado.
En los motores BLDC, los sensores de efecto Hall se utilizan para detectar la
posicién del rotor en tiempo real, permitiendo un control preciso de la conmuta-
cién de las bobinas del estator. Los motores requieren controladoras que logren
manejar correctamente la intensidad de corriente que pasa por esas bobinas en
cada momento, y que puedan interpretar la informacién medida por el sensor.

3.3.4. ESC

Una controladora electrénica de velocidad o ESC (del inglés Electronic Speed
Controller) es un dispositivo electrénico utilizado para controlar la velocidad
y direccién de motores eléctricos, especialmente en aplicaciones de vehiculos
eléctricos, drones y robots. Los ESCs se encargan de regular el flujo de energia
entre la fuente de alimentacion y el motor, manteniendo un manejo preciso de
aceleracion y desaceleracién. Para los BLDC, los ESCs son capaces de gestionar
la conmutacién de las fases del motor, y algunos permiten la lectura de encoders
presentes en el motor, como por ejemplo de encoders basados en sensores del
efecto Hall.

Dentro del universo de los ESCs, VESC (por Vedder ESC) representa una
solucién avanzada y de cddigo abierto creada por Benjamin Vedder. Vedder
publicé todos sus diagramas de circuitos y software de forma gratuita, junto con
varios posteos en su blog, con el objetivo de que hobbyistas puedan construir
sus propios vehiculos y puedan controlarlos facilmente hasta con sus celulares.

El proyecto de Vedder incluye una ESC de motores BLDC junto a su firm-
ware, y un programa de computadora que permite comunicarse con la ESC y el
motor al que esta conectada: VESC Tool. Mediante la interfaz grafica de VESC
Tool es posible controlar la velocidad, torque, potencia e intensidades maximas
y minimas del motor. También es posible acceder a la informacién obtenida del
encoder, interpretada como cantidad de revoluciones realizadas

En su Foro, Vedder presenta los diagramas para la construccion del circuito
de VESC, junto con puntos de venta donde es posible comprarla armada.

Utilizando la interfaz de la controladora proporcionada por Vedder, obten-
dremos control de los motores y lectura sobre la cantidad de revoluciones que
realizan.

3.4. Software
3.4.1. ROS y ROS 2

ROS, o Robotic Operating System, es un conjunto de librerias y herramientas
open source, utilizadas para construir software para robots. Utilizar librerias
estandar ayuda a abstraer el contexto de bajo nivel de los actuadores y sensores
utilizados, permitiendo ejecutar programas en C y Python sobre los robots. ROS

16

usB CAN-Bus

Optional hall-sensors ‘ * j
or pulse encoder. R 5

Program/Debug 12C/UART/ADC

Figura 3.6: Circuito de Controladora VESC, indicando conexiones de: el sensor
Hall arriba a la izquierda, USB para unidad de computo junto al del sensor
hall, las 3 fases del motor a la derecha. A la izquierda rojo indica positivo y
negro negativo, los cuales se conectan a la fuente de poder. Imagen tomada
originalmente de Benjamin Vedder

maneja distintas distribuciones, las cuales buscan facilitar la compatibilidad con
las distintas versiones de Ubuntu.

ROS también existe en su segunda versién, ROS 2, la cual tiene sus propias
distribuciones orientadas a versiones mas recientes de Ubuntu y otros sistemas
operativos. ROS 2 aprende de los aciertos y errores cometidos en la construccién
de ROS, y define un camino mas estable para el desarrollo de la robédtica en los
préximos anos.

Funcionamiento de ROS

A continuacién se listardn algunos conceptos bédsicos de ROS junto a una
especificaciéon para su uso en ROS 1 y ROS 2.

Nodos

ROS ejecuta procesos denominados ‘nodos’ a los cuales se les adjudican
tareas especificas. Los nodos son parte de un ‘paquete’, los cuales pueden ser
propios o creados por la comunidad de ROS.

17

ROS - Noetic
Ejecutar nodo
$ rosrun [nombre_paquete] [nombre_nodol]

Listar nodos en ejecucion
$ rosnode 1list

HHARAAH
ROS 2 - Humble
Ejecutar nodo

$ ros2 run [nombre_paquete] [nombre_nodo]

Listar nodos en ejecucion
$ ros2 node 1list

Launch

Para ejecutar distintos nodos en simultdneo o con relacién entre si, se uti-
lizan archivos de tipo ‘launch’, que especifican los distintos nodos y algunos
parametros base.

ROS - Noetic
Ejecutar archivo de lanzamiento
$ roslaunch [nombre_paquete] [archivo.launch]

HARUHH
ROS 2 - Humble

Ejecutar archivo de lanzamiento
$ ros2 launch [nombre_paquete] [archivo.launch.py]

Topicos

Los nodos pueden publicar datos a través de canales de comunicacién llama-
dos ‘tépicos’, o suscribirse a ‘topicos’ expuestos por otros nodos para procesar
dichos datos. En la figura 3.7 se observa una representaciéon de la interaccion
entre nodos a través de tépicos.

ROS - Noetic
Listar topicos
$ rostopic list

Publicar en un tdépico
$ rostopic pub /[nombre_topico] [tipo_mensaje] "{data: ’mensaje’}"

Suscribirse a un topico
$ rostopic echo /[nombre_topicol

HHAHRBHRH
ROS 2 - Humble

Listar tdopicos
$ ros2 topic 1list

18

17

Publicar en un topico

$ ros2 topic pub /[nombre_topico] [tipo_mensaje] "{data: ’mensaje
)}Il
Suscribirse a un tdopico
$ ros2 topic /[nombre_topico]
. .‘. ' mensaje ‘l .'.
publicaen .\ AW s .=*~. ‘-se suscribe N d
— s Topico - - i odao
NOdO tdpico - P ¢ menssie 0 .-~ al tépico

Figura 3.7: Representacion de interaccion entre nodos a través de topicos

Los mensajes en ROS estdan organizados en paquetes y se definen en archivos
.msg. Los paquetes mas comunes con tipos de mensajes incluyen:

std_msgs: Contiene mensajes basicos como String, Int32, Float64, etc.

geometry_msgs: Contiene estructuras de datos geométricas como ‘Twist’, que
expresa velocidades de un objeto separandolas entre partes lineales y angulares,
o Pose, que representa la posicién de un objeto en el espacio en base a su posi-
cién y orientacién, entre otros.

sensor_msgs: Contiene mensajes relacionados con sensores como Image, ob-
tenida de camaras, donde el mensaje contiene la imagen sin procesar junto a
informacién complementaria (tamafio de imagen i.e.), o LaserScan, obtenida de
LiDARs por ejemplo, reprentando en metros la distancia del sensor a los objetos
y paredes a su alrededor, entre otros.

nav_msgs: Contiene mensajes para navegacion como Odometry, que repre-
senta la pose y velocidad estimada en el espacio, utilizando mensajes similares
a Pose y Twist, u OccupancyGrid, que representa un mapa en una grilla 2D,
donde cada celda contiene la probabilidad de que el espacio que representan esas
coordenadas esté ocupado, entre otros.

Una estructura interesante es la de geometry_msgs/Twist, la cual es normal-
mente utilizada para enviar comandos de velocidad a robots a través del tépico
‘emd_vel‘. Su agrupacién en velocidad lineal indica velocidad en m/s en cada
eje x,y,z, v para velocidad angular, con velocidad en rad/s en cada eje x,y,z. En
el caso de los €jes x,y,z en velocidad angular, se hace referencia a los angulos de
navegacion ‘roll, pitch, yaw’ o ‘alabeo, cabeceo, direccién’.

19

A continuacién se ejemplifica cémo se enviaria un comando para un movi-
miento hacia adelante con un giro antihorario en simultaneo:

geometry_msgs/Twist
Vector3 linear
float64 x
float64 y
float64 z
Vector3 angular
float64 x
float64 y
float64 =z

ROS - Noetic
Publicar mensaje de tipo Twist en el topico cmd_wvel
$ rostopic pub /cmd_vel geometry_msgs/Twist "

{
linear: {x: 0.5, y: 0.0, z: 0.0},
angular: {x: 0.0, y: 0.0, z: 1.0}
}
n
HHEABHH

ROS 2 - Humble
Publicar mensaje de tipo Twist en el tépico cmd_wvel
ros2 topic pub /cmd_vel geometry_msgs/Twist "

{
linear: {x: 0.5, y: 0.0, z: 0.0},
angular: {x: 0.0, y: 0.0, z: 1.0}

}

REP

Las propuestas de mejoras de ROS o REP (del inglés ROS Enhancement
Proposals) son documentos de disefio que proveen informacién a la comunidad
de ROS, describiendo normalmente nuevas funcionalidades, procesos, entornos
y convenciones.

TF2

TF2 es la libreria de ROS 2 encargada de gestionar transformaciones entre
diferentes sistemas de coordenadas, permitiendo transformar puntos, vectores y
posiciones entre distintos marcos de referencia, incluso en diferentes momentos
del tiempo.

Este sistema organiza los marcos de referencia en una estructura de arbol,
en la que cada nodo representa un marco, y las relaciones entre ellos (transfor-
maciones) son almacenadas en un bufer temporal. En las figuras 3.8 y 3.9 se
observan distintas representaciones de transformaciones entre marcos, la prime-
ra se enfoca en los tiempos en los que se publicaron, mientras que la segunda
en las posiciones entre los marcos.

20

El REP 105 especifica convenciones de nomenclatura y seméantica para mar-
cos de plataformas moéviles de ROS: base_link, odom y map.

base_link
El marco base_link estd asociado a la base del robot mévil. Se utiliza como
el punto de referencia para el robot

odom

El marco odom es un marco fijo globalmente, funciona como una fuente
de ‘verdad’ absoluta frente al movimiento realizado. La pose de un robot en el
marco odom es continua, es decir que la pose de la plataforma movil se actualiza
de manera uniforme sin realizar saltos discretos. Este marco se computa en base
a una fuente de odometria, como basada en ruedas, en visién, o utilizando una
Unidad de medicién inercial (IMU). Odom suele acumular un error denominado
‘deriva’ o ‘drift’ en la pose de la plataforma mévil, por lo que suele ser preciso
como referencia a corto plazo, pero a medida que avanza el tiempo su precision
se disminuye.

map

El marco map también es un marco fijo, con su eje Z apuntando hacia arriba.
Este marco no es continuo, por lo que la pose de la plataforma mévil puede
realizar saltos discretos en cualquier momento. En configuraciones tipicas, un
componente de localizacién estd constantemente computando la pose del robot
en base a los sensores visuales, realizando ‘saltos’ al actualizarla, eliminando asi
errores de drift.

view frames Result

Recorded at time: 1622031689.1036122

Broadcaster: default_authority
Average rate: 62.682
Buffer length: 5.073

Most recent transform: 1622031689.094395

Oldest transform: 1622031684.02114

Broadcaster: default authority
Average rate: 62.881
Buffer length: 5.073
Most recent transform: 1622031689.094407
Oldest transform: 1622031684.021307

Figura 3.8: Ejemplo de arbol de transformaciones en ROS 2 con TF2, tomada
de la documentacion de TF2.

21

left_wnheel

left_caster J’l'_wheel_link

-4

I o
|

\
right_castftf_wneel_link |'|
‘ \

chaSSIé_llnk
right_' nheel

Figura 3.9: Representacién visual en Rviz2 de transformaciones entre marcos.

Publicacion de transformaciones

Para publicar transformaciones, se utiliza el tipo de mensaje
‘geometry_msgs/msg/TransformStamped’. Cada mensaje define una transfor-
macién desde un marco padre a un marco hijo.

Por ejemplo:

N

geometry_msgs::msg::TransformStamped transform;

transform.header.stamp = rclcpp::Time::now() ;
3| transform.header.frame_id = "base_link";
transform.child_frame_id = "laser";

transform.transform.translation.x =
transform.transform.translation.y =
transform.transform.translation.z =
// Se puede utilizar tf2::Quaternion p
pitch, yaw) a cuaternién
transform.transform.rotation = tf2::toMsg(quaternion);

)

H

o O ©
M = O N

ra convertir de RPY (roll,

Este fragmento indica que el marco ‘laser’ estd ubicado a 20 cm hacia ade-
lante y 10 cm hacia arriba del marco ‘base_link’.

tf2_tools

Utilizando la herramienta ‘tf2_tools’ es posible obtener una visualizacién
de las transformadas y sus relaciones como se observa en la figura 3.8. Este
diagrama se genera y exporta en un archivo en formato .pdf una vez ejecutado
este comando:

22

1|{ros2 run tf2_tools view_frames

Teleop Twist Keyboard

El paquete teleop_twist_keyboard se utiliza para enviar mensajes de tipo
‘geometry_msgs/Twist’ en un tépico, normalmente ‘cmd_vel’, a partir de las
teclas presionadas.

El paquete puede utilizarse en una terminal de la siguiente manera:

$ ros2 run teleop_twist_keyboard teleop_twist_keyboard --ros-args
--remap
cmd_vel:=/ikus_base_controller/cmd_vel_unstamped

--remap también puede utilizarse como -7

Twist MUX

El paquete twist_mux se utiliza para multiplexar distintos comandos de ve-
locidad (en tépicos que aceptan mensajes Twist) permitiendo priorizarlos o des-
habilitarlos.

Este paquete se ejecuta de la siguiente manera:

ros2 run twist_mux twist_mux.launch --params-file twist_mux.yaml

El archivo de configuracion ‘twist_mux.yaml’ puede contener los siguientes
parametros:

name: Nombre de la configuracién, utilizado para depuracion.

topic: Nombre del tépico de ROS, el nodo twist_mux se suscribira al tépico.
Debe ser de tipo ‘geometry_msgs/Twist’

timeout: Tiempo de vida del mensaje. En caso de que no llegue otro mensaje
antes de que pase este tiempo, se selecciona otro tépico.

priority: Prioridad del tépico desde 0 a 255. Cuanto mas alto, més prioridad
frente a otros tépicos.

Ejemplo de archivo de configuracién:

twist_mux:
ros__parameters:
publish_rate: 10.0

topics:
navigation:
topic : cmd_vel
timeout : 0.5
priority: 10
keyboard:
topic : cmd_vel_key
timeout : 0.5
priority: 100
joystick:
topic : cmd_vel_joy
timeout : 0.5

23

priority: 110

En el ejemplo, el tépico asociado al nombre ‘joystick’ (‘cmd_vel_joy’) tiene mds
prioridad que el asociado al nombre ‘keyboard’ (‘cmd_vel key’), y ambos tienen
mucha mds prioridad que el asociado al nombre navigation (‘cmd_vel”)

Rviz2

Rviz2 es una herramienta de visualizaciéon 3D para ROS.

RViz* - @ x
File panels Help

(ryinteract “*Move Camera Jselect 4-FocusCamera =mMeasure 7 2DPoseEstimate 7 2DGoalPose @ PublishPoint % =

& pisplays ol

@ Global Options <
Background Color W 48;48;48
Frame Rate 30

v Global status: Ok
v FixedFrame OK

@ Grid v

#, RobotModel v

» v Status: Ok

Visual Enabled v
Collision Enabled
» Mass Properties
Update interval 0
Alpha 1
Description Source Topic
» Description Topic /robot_description
TF Prefix . |
» Links
#\ Odometry v
» ¥ status: ok
» Topic Jikus_base_controller/o...
Position Tolerance 0.1
Angle Tolerance 0.1
Keep 100
» shape Axes
» Covariance v
. Laserscan v
» v Status: Ok
» Topic Iscan -
Fixed Frame
Frame into which all data is transformed before being
displayed.
Add
© Time (o]
ROSTime: |1746311409.72 | ROS Elapsed: |134.51 Wall Time: |1746311409.75 Wall Elapsed: |134.51 Experimental
Reset | Left-Click: Rotate. Middle-Click: Move X/Y. Right-Click/Mouse Wheel: Zoom. Shift: More options. 31fps

Figura 3.10: Representacién en la interfaz gréfica de Rviz

Esta herramienta permite visualizar informacion obtenida a través de topi-
cos de distintas formas. Es posible observar transformaciones realizadas por un
robot, actualizando la posiciéon y forma en tiempo real a través del tépic ‘tf2’,
como muestra la figura 3.10. También es posible visualizar representaciones de
informacién obtenida de sensores. Con un LiDAR por ejemplo, que puede ex-
ponerse en tépicos de tipo ‘sensor_msgs/LaserScan’, puede verse representada
con un punto por cada distancia sensada respecto al origen, como muestra la
figura 3.10 con puntos rojos.

Rviz2 también cuenta con distintos atajos para simplificar el uso de herra-
mientas de paquetes de Ros 2, evitando utilizar la linea de comandos. Existe un
atajo para guardar mapas obtenidos a partir de tépicos, para luego ser cargados
y utilizados en localizacién. Otro, como se observa en la figura 3.11 permite
indicar una posicién objetivo en el espacio 2D, para ser aplicados por el paquete
de planificacién de caminos.

Es posible guardar configuraciones de Rviz2 para simplificar el uso las proxi-
mas veces. Para ejecutar Rviz2, simplemente:

24

RViz* 5@ &

rrrrrr # 0posestimate | 20GoalPose | @ publishPoint & =

Wall Time: |1746326276.49 | all Elapsed: [15.23 Experimental
31fps

Figura 3.11: Atajo para indicar posicién objetivo en Rviz2

1|$ rviz2

ros2_control

ros2_control es un framework para control en tiempo real de robots usando
ROS 2. El objetivo es simplificar la integracién de piezas de hardware y utilizar
el trabajo ya construido sobre el control de robots. Se basé en reconstruir los
paquetes de ros_control, la versién utilizada para el mismo propdsito en ROS 1.

El paquete de ros2_control actia como intermediario entre el sistema de
software y las controladoras fisicas de los dispositivos. Esta herramienta cuenta
con distintos médulos que interactiian entre si, abstrayendo la vinculacién entre
el software y el hardware.

Arquitectura

ros2_control presenta distintos médulos y conceptos: Controller Manager (ad-
ministrador de controladoras), Resource Manager (administrador de recursos),
Controllers (controladoras), Hardware Components (represetancién abstracta
del componente de hardware), State Interface (Interfaz de estado), Command
Interface (Interfaz de Comandos) y Hardware Description (Descripcién de hard-
ware).

En la figura 3.12 se muestran los componentes que seran descritos en esta
seccion.

25

Controllers

Controller A Controller B
loads

grant interfaces to grantinterfacesto grant interfaces to

request interfaces from

Controller Manager

claim interfaces from

Resource Manager

manages manages

Command Interface

<readhwrite>

State Interface
<read only>

exports exparts

loads ‘ Transmissions

Sensor ‘ ‘ System ‘ ‘ Actuator ‘

- T

access access

Hardware Resources

Figura 3.12: Arquitectura de ros2_control, tomada de la documentaciéon de
ros2_control

Controller Manager

El Controller Manager (CM) se encarga de conectar las controladoras (con-
trollers) y las abstracciones de hardware de ros2_control (Hardware Compo-
nents). El CM es capaz de cargar, activar, desactivar y descargar controladoras
y las interfaces que necesiten. A su vez, tiene acceso a los componentes de hard-
ware a través del Resource Manager. De esta manera es capaz de actuar como
intermediario leyendo y escribiendo entre las interfaces de los componentes de
hardware y las controladoras. También se encarga de reportar errores en caso
de que la carga de una controladora falle.

En la ejecucién del ciclo de control, la lectura de la informacién de los com-
ponentes de hardware, la actualizacion de los controladores activos y la escritura
de los resultados en los controladores son otras de las responsabilidades del CM
a través del método ‘update()’.

26

Resource Manager

El Resource Manager (RM) abstrae la interaccién entre el hardware fisico
(una ESC por ejemplo) y el software que lo controla, llamado Hardware Compo-
nents (componente de hardware). Carga los componentes y administra su ciclo
de vida junto con las interfaces de estado y comandos que éstos exponen.

Esta abstraccién permite la reutilizacién de componentes de hardware ya
implementados y flexibilidad a la hora de utilizar las interfaces de estado y
comandos, por ejemplo, aislando la implementaciéon a bajo nivel del resto del
sistema.

En el ciclo de control, el RM se encarga de los métodos de lectura (‘read()’)
y escritura (‘write()’) que se encargan de la comunicacién con los componentes
de hardware.

Controllers

Las controladoras (controllers) de ros2_control son programas basados ba-
se de la teoria de control. Comparan los valores de referencia con los valores
medidos y, basados en la diferencia, calculan una nueva entrada al sistema.
Las controladoras se implementan extendiendo la clase ‘ControllerInterface’, la
cual forma parte del paquete ros2_control. También existe una libreria de con-
troladoras tipicas creadas por la comunidad, por ejemplo ‘DiffDriveController’,
utilizada para control en robots diferenciales. El ciclo de vida de estas controla-
doras esté inspirado en el ciclo de vida definido para los nodos de ROS 2. En la
figura 3.13 se ilustra la maquina de estados que describe este proceso, mostrando
las distintas fases y transiciones que experimentan durante su operacion.

El método ‘update()’ del ciclo de control permite que las controladoras ac-
cedan a las interfaces de estado mas recientes y escriban sobre las interfaces de
comando.

Hardware Components

Los componentes de hardware, implementados como plugins, se encargan de
la comunicacién entre el dispositivo fisico y la abstraccion que realiza ros2_control.
El RM carga dindmicamente los componentes de hardware y administra sus ci-
clos de vida, también basados en el ciclo de vida de nodos de ROS 2 de la
figura 3.13.

Existen tres tipos bésicos de componentes:

Sistema (System):
Hardware complejo, de multiples grados de libertad. Este tipo de componente
tiene capacidades de lectura y escritura. La principal diferencia entre este y el
actuador es la posibilidad de utilizar transmisiones complejas, por ejemplo, en
el caso de manos robot humanoides.

Sensor:
Hardware utilizado para sensar el entorno. Este tipo de componente solamente
puede usarse como lectura.

Actuador (Actuator):
Hardware robético simple, de un grado de libertad (1 DOF, del inglés Degree of

27

StmROS2 node ifecycle)

shutdown()

Unconfigured

onConfigure:

creted [FAILURE]

onrror:
[SUCCES;

ErrorProcessing

do / onError()

onCleanup
[SUCCESS]

configure()

[ceaningup) [configurng__)
o / onCleanup() J ldc/chcur\ﬂgure()

Error Raised Error Raised Error Raised

onError-
[FAILURE]]
onConfigure:

cleanup() [SUCCESS]

ShuttingDown
shutdown() do / onShutdown()

Inactive
C_—J

onActivate:
[FAILURE] Error Raised

onDeactivate

[SUCCESS] activate()

Deactvating | [Acivaing)

Finalzed [
do / onDeactivate() J L do / onActivate()

Error Raised Error Raised

‘onActivate:
deactivate() [SUCCESS]

destroy()

®

do / calloacks

shutdown()
etc,

Error Raised

onshutdown
[SUCCESS)

Figura 3.13: Ciclo de vida de nodos en ROS2, tomada de design.ros2.org

Freedom), como motores, véalvulas, etc. La implementacién de un actuador se
relaciona a una tunica articulacién. Este tipo de componentes tiene capacidades
de lectura y escritura, aunque las de lectura son opcionales.

La definicién de los componentes de hardware se realiza a través del ‘Hard-
ware Interface’; en el que se implementa un conjunto de métodos definidos por
la clase que hereda: ‘SystemlInterface’, ‘SensorInterface’ o ‘ActuatorInterface’

Interfaces

Las interfaces de estado y comandos son utilizadas por las controladoras
(controllers) para comunicarse con el resto del sistema que utiliza ROS. La
interfaz de estado es solamente de lectura y permite al sistema acceder a la
informacién obtenida a partir del procesamiento de las controladoras, y el estado
en el que el componente de hardware se encuentra.

La interfaz de comandos se utiliza para que los mensajes recibidos por la
controladora de parte del resto del sistema sean escritos como comandos para

28

ser interpretados por los componentes de hardware.

Existen distintos tipos de interfaces disponibles en ros2_control, los cuales
son utilizados para distintos tipos de piezas de hardware y sus controladoras
(controllers). Estos pueden ser: velocidad, posicién, potencia, esfuerzo, tempe-
ratura, entre otros.

Hardware Description

Dentro de los archivos en formato URDF (Unified Robot Description Format,
un formato que se explicard en detalle en la Seccién 3.4.2) utilizados en la
descripcién fisica del robot, ros2_control utiliza el tag ‘< ros2_control >’ para
describir los componentes de hardware con los que interactia. Por ejemplo, el
siguiente fragmento ilustra la configuracién para dos articulaciones de un brazo
robdético, donde se incluyen los limites en radianes permitidos (en este caso entre
-1y 1) para la posicién angular de los actuadores asociados a esas articulaciones:

2| <!-- Nombre y tipo del componente de hardware -->
3| <ros2_control name="RRBotSystemPositionOnly" type="system">

1| <hardware>

5 <!-- Directorio del plugin del componente hardware -->
6 <plugin>ros2_control_demo_hardware/

RRBotSystemPositionOnlyHardware</plugin>

7| </hardware>
8| <!'-- Primera Articulacién -->
ol <joint name="jointl">

10 <!-- Interfaz de comandos de posicién, definiendo valores ma

ximos y minimos -->
1 <command_interface name="position">

12 <param name="min">-1</param>

3 <param name="max">1</param>

4 </command_interface>

5 <!-- Interfaz de estado de posicién-->

16 <state_interface name="position"/>
17| </joint>

18 <!-- Segunda Articulacién -->

19| <joint name="joint2">

20 <command_interface name="position">

1 <param name="min">-1</param>

2 <param name="max">1</param>

3 </command_interface>

4 <state_interface name="position"/>
5/ </joint>

26| </ros2_control>

Interfaz de usuario

A su vez, el CM expone una interfaz de usuario, la cual se integra con la in-
terfaz de linea de comandos de ROS 2, permitiendo asi administrar y supervisar
las controladoras y componentes de hardware.

1| # Ejemplos de comandos de ros2_control disponibles en la interfaz
de linea de comandos de ROS 2:

N

29

Lista comntroladoras, tndicando su estado

$ ros2 control list_controllers

diffbot_base_controller[diff_drive_controller/DiffDriveController]
active

joint_state_broadcaster[joint_state_broadcaster/
JointStateBroadcaster] active

Listar interfaces de hardware

$ ros2 control list_hardware_interfaces

command interfaces
left_wheel_joint/velocity [available] [claimed]
right_wheel_joint/velocity [available] [claimed]

state interfaces
left_wheel_joint/position
left_wheel_joint/velocity
right_wheel_joint/position
right_wheel_joint/velocity

3.4.2. URDF

URDF (Unified Robot Description Format) es un formato de archivo basado
en XML utilizado para definir modelos de robots. Su estructura sigue un es-
quema de drbol, donde los elementos principales son los links (enlaces) y joints
(articulaciones). Dentro de estos, se pueden especificar propiedades clave como
la representacién visual, las colisiones y los parametros de inercia, asi como la
incorporacién de sensores, lo que permite simular datos del entorno. A partir de
estos elementos y sus respectivos valores, es posible construir modelos robéticos
detallados. Estos modelos pueden visualizarse en herramientas como Gazebo o
Ryviz, facilitando su simulacién y andlisis en entornos de ROS. En la figura 3.14
se observa el robot TurtleBot 4 junto a su modelado 3D a partir de un archivo
URDF.

A continuacién se presenta un fragmento de un archivo URDF de la defini-
cién de hardware de una rueda:

<!-- Asignacién de variables globales -->

<xacro:property name="wheel_radius" value="0.16"/>
<xacro:property name="wheel_thickness" value="0.06"/>
<xacro:property name="wheel_mass" value="0.5"/>

<xacro:property name="wheel_offset_y" value="0.55"/>

<!-- Definicién de la articulacién de la rueda izquierda -->
<joint name="left_wheel_joint" type="continuous">

<parent link="base_link"/>

<child link="left_wheel"/>

<origin xyz="0 ${wheel_offset_y} ${wheel_radiusl}" rpy="-${
pi/2} 0 o" />

<axis xyz="0 0 1"/>
</joint>

30

Figura 3.14: Izquierda: TurtleBot 4, tomada de Clearpath Robotics. Derecha:
Modelado 3D de un TurtleBot a partir de archivo URDF tomado de la docu-
mentacion de turtlebot_description.

<!-- Definicién del enlace de la rueda izquierda, especificando
geometria, material, &rea de colisiones e inercia -->
<link name="left_wheel">
<visual>
<geometry>
<cylinder radius="${wheel_radiusl}" length="${
wheel_thickness}"/>
</geometry>
<material name="blue"/>
</visual>
<collision>
<geometry>
<sphere radius="${wheel_radiusl}t"/>
</geometry>
</collision>
<xacro:inertial_cylinder mass="${wheel_mass}" length="${
wheel_thickness}" radius="${wheel_radius}">
<origin xyz="0 0 0" rpy="0 0 0"/>
</xacro:inertial_cylinder>
</link>

3.4.3. Simulacion y Gazebo

Al trabajar en proyectos de robdtica, la simulacién suele ser una muy bue-

na inversién de tiempo y recursos. Esta es capaz de reducir costos y posibles
accidentes, y aumentar el tiempo de vida de los componentes.

31

N

s w

Gazebo es la herramienta mas popular en simulacién de robots de que utili-
zan ROS y ROS 2. Se encarga de simular en un mundo virtual al robot con sus
piezas de hardware, y permitir que la ejecucién del resto del sistema funcione
lo més cercano a la realidad posible.

Al igual que ROS, Gazebo también cuenta con varias versiones, y algunas
son mas compatibles que otras frente a distintas versiones de ROS.

Utilizando distintos archivos, es posible simular detalladamente robots y
entornos en los que estos robots se encuentran en el mundo real. En la figura 3.15,
a la izquierda, se puede observar un ejemplo de un robot simulado, y a la derecha,
se puede observar un robot y su entorno simulado, representando el caso de uso
real del mismo.

Figura 3.15: Robot modelado en Gazebo, y Robot y entorno modelados en
Gazebo

Para manejar la interaccién entre ROS 2 y Gazebo, se utiliza un paquete
llamado ros_gz_bridge. Utilizando este paquete, los tépicos de ROS 2 especifica-
dos son escuchados y comunicados a Gazebo, e igualmente, la informacién sobre
sensores en Gazebo es publicada en tépicos. Un archivo de configuracién para
este paquete sigue el siguiente formato:

- ros_topic_name: "cmd_vel_unstamped"
gz_topic_name: "cmd_vel"
ros_type_name: "geometry_msgs/msg/Twist"
gz_type_name: "gz.msgs.Twist"

direction: ROS_TO_GZ

En este caso, Gazebo seria capaz de interpretar los mensajes de tipo Twist
enviados al tépico ‘cmd_vel_unstamped’ de ROS 2. La direccién de los mensajes
puede ser: ‘BIDIRECTIONAL’, ‘GZ_-TO_ROS’ 0 ‘ROS_TO_GZ’ como indica el
ejemplo.

3.4.4. Odometria

La odometria es un método utilizado en robdtica para estimar la posicién
y orientaciéon de un robot en el espacio a partir de datos de movimiento. Se
basa en la integracion de informacién proveniente de sensores como encoders
o sistemas de visién. A través del célculo de desplazamientos y rotaciones, la

32

odometria permite obtener una estimacioén continua de la pose del robot en base
a una referencia. Sin embargo, debido a la acumulacién de errores (drift), suele
complementarse con otras técnicas, como la localizacién basada en mapas y sen-
sores externos. En ROS, la odometria se representa mediante mensajes estandar
como nav_msgs/Odometry, que contienen informacién de posicién, velocidad y
covarianza del sistema.

rtabmap_odom

RTAB-Map o Real-Time Appearance-Based Mapping (Mapeo en tiempo real
basado en apariencia) es un proyecto de ROS que presenta un conjunto de
paquetes cuyo objetivo es mapear entornos. Uno de los paquetes que RTAB-
MAP ofrece es rtabmap_odom, el cual permite estimar odometria a partir de
informacién visual, como pueden ser imagenes de camaras estéreo o un LiDAR.

Este paquete publica en el tépico ‘odom’, mensajes de tipo ‘nav_msgs/Odometry’,
junto con otros topicos de informacién complementaria, y segun el tipo de sen-
sores disponibles, espera diferentes topicos de entrada. En el caso de un sistema
con LiDAR el nodo ‘icp_odometry’, por Punto Iterativo més cercano (del inglés
Iterative Closest Point), se esperan mensajes de tipo ‘sensor_msgs/LaserScan’
en el tépico ‘scan’, o ‘sensor_msgs/PointCloud2’ en ‘scan_cloud’, y en el tépico
‘/tf” espera una transformada entre el marco ‘base_link’ al marco de referencia
del sensor utilizado. En caso de un LiDAR por ejemplo, esta transformada va
de ‘base_link’ a ‘laser_frame’. Se ejecuta de la siguiente manera:

1

ros2 rtabmap_odom icp_odometry

3.4.5. SLAM y Navegacién

SLAM que significa Localizacién y Mapeo Simultdneos (del inglés Simultaneous
Localization And Mapping) es un drea fundamental que abarca multiples dis-
ciplinas, como la robdtica.

El concepto de localizacion se refiere a determinar la pose del objeto en el
espacio, mientras que el de mapeo consiste en representar o visualizar el entorno
que rodea al objeto.

Las técnicas de SLAM pueden clasificarse generalmente en dos categorias:
basadas en visién (normalmente utilizando cdmaras estéreo) y basadas en Li-
DAR.

Estas técnicas se utilizan para alimentar algoritmos de planificaciéon de ca-
minos, buscando alcanzar los objetivos evitando obstéculos en el camino.

En la figura 3.17 se muestra un ejemplo de mapeo y localizacién en Rviz2,
utilizando un sensor LiDAR. El robot se representa mediante una base de color
naranja, con ruedas en azul y un sensor LIiDAR en rojo. Los puntos rojos corres-
ponden a las mediciones obtenidas por el sensor, mientras que los obstaculos se
identifican por la acumulacién de puntos negros. Las dreas libres de obstaculos
se visualizan en blanco, mientras que las regiones en color turquesa correspon-
den a zonas sin informacién sensada. En la imagen se aprecian areas en color

33

gris alrededor de los obstaculos. Estas corresponden a las zonas de inflacién del
mapa de costos, las cuales representan un aumento en el “costo” de desplaza-
miento al transitar cerca de un obstéculo. Dichas zonas permiten al planificador
de trayectorias evitar no solo colisiones directas, sino también trayectorias de-
masiado cercanas a los objetos, incrementando la seguridad del movimiento del
robot.

Figura 3.16: Representacion en Rviz2 de mapas obtenidos con herramientas
SLAM y Nav2

Figura 3.17: Mapeo y localizacién (izquierda), y costos segin zonas asignados
por planificacién de caminos (derecha)

34

Capitulo 4

Solucién Propuesta

4.1. Requerimientos

Llamaremos rosificacion al proceso que tiene como objetivo ampliar las ca-
pacidades y mejorar el potencial de un robot mediante la integraciéon con ROS.
Este proceso implica: instalar ROS en el sistema del robot, configurar los con-
troladores para que sean ejecutados y mantenidos por nodos y paquetes ROS
(como ros2_control), utilizar los sistemas de comunicacién entre nodos de ROS
(t6picos y servicios), y habilitar el uso de herramientas de simulacién y visuali-
zacién (Gazebo y Rviz, utilizando URDF). Ademds, permite la integracién con
paquetes ROS de codigo abierto que facilitan el desarrollo y la interoperabilidad
con distintas herramientas.

En nuestro caso particular, la rosificaciéon se aplica a un robot diferencial
orientado a tareas auténomas en el ambito agropecuario. Por lo tanto, los es-
fuerzos se centran en resolver aspectos clave como el control de la velocidad de
las ruedas, la determinacién de la posicién del robot, la navegacién en el espacio
y el reconocimiento del entorno.

Bajo el titulo ‘Rosificando un robot para uso agropecuario’ se identifican los
siguientes requerimientos especificos para alcanzar una integracién completa y
funcional:

= Investigacién sobre controladoras VESC y sus interfaces para indicar ve-
locidades y obtener informacién sensada de las ruedas.

= Implementacion de un sistema diferencial controlado utilizando ros2_control.
= Integracién con sensor LiDAR.
= Integracion con herramienta de odometria visual.

= Integracién con herramientas SLAM (slam_toolbox) para mapeo y locali-
zacién basado en referencias.

= Integracién con herramientas de planificacién de caminos (Nav2).

35

= Modelado 3D de Ikus basado en medidas reales.

= Soporte para simular ambientes en Gazebo, compatible con ROS 2 y
ros2_control, incluyendo la creacion de escenarios que simulen el caso de
uso real de Ikus.

= Archivos de ejecucién aptos para distintos casos de uso, parametrizados
adecuadamente.

= Documentacion clara sobre la ejecucién y uso de las herramientas desa-
rrolladas.

4.2. Especificaciones de Ikus y otras herramien-
tas

Tkus es un robot auténomo de propdsito general disenado especificamen-
te para entornos agropecuarios. La construccién del hardware fue previamente
realizada por el grupo MINA. Este prototipo fue construido con componentes
accesibles y tecnologias de cédigo abierto, lo que facilita su mantenimiento y
reproducibilidad. A continuacién, se describirdn los componentes de hardware
que forman parte de ITkus y algunos componentes que resultaron utiles en el
desarrollo de la solucién.

4.2.1. Dimensiones generales

Las dimensiones de Tkus, presentado en la figura 4.1, en su totalidad son: 80
cm de largo, 101 cm de ancho y 47.5 cm de alto.

36

Figura 4.1: Ikus, con referencias

Chasis

El chasis se compone de un soporte de metal de 101 cm de largo y 49 cm de
ancho, junto a dos tablas conjuntas de madera, que alargan a Tkus. Estas tablas
unidas miden 80 cm de largo y 60 cm de ancho. El chasis en su completitud no
supera los 10 cm de altura. La distancia del chasis al piso es de aproximadamente
16 cm, la mitad del didmetro de las ruedas actuantes, situadas en los laterales.
Ikus también tiene dos ruedas giratorias de 12,7 cm de didmetro y 3 cm de
grosor, situadas en la parte trasera.

37

Nuimero Referencia

1 Fuente regulada y regulable

2 Ruedas con motor, de kit de bicicleta eléctrica Golden
Motor

Controladoras VESC

Boton de parada de emergencia

HUB USB

LiDAR LMS101-10000

Odroid N2+

Bateria genérica de bicicleta eléctrica, de 36v

QO I | O | W

Tabla 4.1: Referencias para la figura 4.1

4.2.2. Actuadores y sensores

Motores y controladoras

Las ruedas utilizadas para el movimiento controlado de Ikus eran original-
mente parte de un kit de conversién de bicicleta eléctrica llamado Magic Pie
(SMP(E)-12F THUMB 36V KIT), de la empresa Golden Motor. Cada rueda,
de 16 pulgadas de rodado, tiene un motor BLDC en su eje para realizar el giro,
el cual también cuenta con encoders de efecto Hall para realizar mediciones de
la posicién de rueda en cada momento.

16" /—a

Figura 4.2: Rueda de 16 pulgadas de rodado del kit ‘Magic Pie’ de Golden Motor
Cada rueda estd conectada a una controladora VESC, conectando un cable

38

para cada una de las fases necesarias para saltar los pasos del motor, y un cable
para la informacion sensada por el efecto Hall.

La controladora se conecta a la unidad de cémputo mediante un cable USB.
A través de los métodos del proyecto sbgisen/vesc, la unidad de cémputo esta-
blece y gestiona los canales de comunicacién con la controladora.

Cada rueda tiene 32 cm de didmetro y 6 cm de grosor.

LiDAR LMS101-10000

El LiDAR del modelo LIDAR LMS101-10000 tiene un rango angular de
270° y un alcance de 0.5 m hasta 20 m, y puede ser utilizado con luz solar
directa. Gracias a que este sensor estd pensado para uso exterior, cumple con
las necesidades de Ikus por estar orientado al uso en el agro. De esta forma, el
sistema podré obtener informacion sobre la distancia a los diferentes obstaculos.

Figura 4.3: LIDAR LMS101-10000

Se comunica con la unidad de cémputo central a través de un cable Ethernet
categoria 5. Existe un paquete de ROS 2 llamado sick_scan_xd utilizado como
controladora de software de LIDAR SICK. A través de este paquete se publica en
un tépico, normalmente llamado ‘/scan’, las distancias percibidas por el LIDAR.

39

4.2.3. Elementos de cémputo

Odroid N2

La placa Odroid N2 fue elegida inicialmente como unidad de cémputo de
Ikus, pero fue descartada al haber experimentado interrupciones en la ejecucién,
las cuales aparentemente se originaron por falta de memoria.

ThinkPad T470s

Por comodidad, gran parte del desarrollo, configuracién y simulacién se
realiz6 sobre una ThinkPad T470s con Ubuntu 22.04.

Sirio 2021

Los experimentos finales fueron realizados con una computadora de Ceibal
Sirio 2021 , ilustrada en la figura 4.4, la cual se mont6 sobre el chasis de Tkus.
Esta computadora cuenta con un CPU: Intel® Celeron@®) N4000 @ 1.10 GHz
Dual Core, y 4GB de RAM.

Figura 4.4: Computadora Sirio 2021 montada sobre Ikus

40

4.2.4. Fuentes de poder
Baterias

Se utilizd una bateria genérica de bicicleta eléctrica, de 36v y aproximada-
mente 10Ah para alimentar el hardware del sistema: los motores de las ruedas
de Ikus a través de sus controladoras VESC, el LIDAR LMS101-10000 y el HUB
USB. Las unidades de computo utilizadas fueron alimentadas por sus propias
baterias o fuentes de alimentacion externas.

Fuente Regulada y Regulable

Se utiliz6é una fuente regulada y regulable genérica como fuente de poder en
pruebas con Ikus en el laboratorio.

4.2.5. Otros Elementos
Botén de parada de emergencia

El boton de parada de emergencia se utiliza en caso de emergencia, estd
conectado entre la fuente de poder y la alimentacién de las controladoras. Si se
presiona, el sistema motriz del robot deja de ser alimentado inmediatamente.

HUB USB

Se utiliza para ampliar la cantidad de puertos USB disponibles en la unidad
de computo y centralizar las conexiones USB.

41

4.3. Solucién de software

Esta seccién comienza explicando la arquitectura de la solucion, para lue-
go ahondar en los distintos médulos utilizados. En el anexo A se presenta la
estructura de los directorios de la solucién.

4.3.1. Arquitectura de la Solucion

En la figura 4.5 se presenta un diagrama de la arquitectura de software de
Ikus. Se muestran con diferentes figuras los distintos tipos de componentes dis-
ponibles: Hardware, Software configurado (es decir, librerias o paquetes de los
que solamente se modificaron pardmetros) y Software propio (haciendo referen-
cia a la implementacién llevada a cabo en el proyecto). A su vez, se pueden
observar distintas formas de comunicacién, las cuales pueden ser tépicos, nom-
bres de métodos o protocolos como USB o Ethernet.

ros2_control

- Instancia de clase de Vescinterface
- métodos: connect(), setSpeed(), —* vesc_driver
requestState(), setPacketHandler()

= Intarfaces de Estado y Comando - Interfaces de Estado y Comando Jodom
- método: update() - métodos: read() y write() If: adom -> base_link

(basada en ruedas)

Manager | Manager

- Interfaces de Estads y Comando Ethernat

- método: update()
fikus_base_controller/emd_vel_unstamped
DiffDrive Controller

TWist_mux
Jodom

ti: odom -= base_link

- (basada en LiDAR)
(] software propio jemd_vel_key femd_vel Tav —l

[] sonware configurado

Imay
O Hardware teleop_twist_keyboard navz d
tf: map -> odom Mapeo

fscan
if: base_link > laser_frame

riabmap_odometry

sick_scan_xd 5
icp_odometry

slam_toolbox

Localizacién

Figura 4.5: Diagrama de la arquitectura de Ikus

En las figuras 4.6, 4.7 y 4.8 se presenta un diagrama de secuencia de inicio
y ejecucion del sistema dividido en 3 partes.

42

Usuario

ros2 launch vesc_ikus ikus.launch.py

Proceso de Iniciali

Sistema de Launch

zacion del Sistema

Iniciar Controller Manager

Controller Manager

Inicializar Framejwork ROS2 Control

Iniciar Robot Stafe Publisher

Robot State Publisher

>

Cargar descripcion

Publicar transfq

Iniciar J

D)

oint State Broadcaster (t30s)

el robot URDF/XACRO

rmadas del robot

Joint State Broadcaster

Registrarse con

fontroller Manager

Activar Joint Stjate Broadcaster

Iniciar Twist Mux (t+0s)

Usuario

Figura 4.6: Diagrama de secuencia de inicio del sistema de Ikus: Inicio de

Sistema de Launch

Esperar activacién de Joint State Broadcaster

ros2_control

Controller Manager

Robot State Publisher

43

Joint State Broadcaster

Cargar configuracion de

Twist Mux

prioridades de comandos

)

Twist Mux

Sistema de Launch Controller Manager Diff Drive Controller Ikus Hardware VESC Izquierdo VESC Derecho Sick Scan (LiDAR)

Iniciar Diff Driye Controller (después JSB)

Registrarse con Controller Manager

Inicializar Hardware Interface

Conectar a VESC izquierdo (/dev/left_wheel)

Inicializar cpnexidn serial

Conexidn establecida

Conectar a VESC derecho (/dev/tfight_wheel)

Inicializar cpnexidn serial

Conexién establecidh

Configurar callbacks de paguetes para ambos VESCs

o

Hardware interfacg listo

Activar Diff Drive Controller

Iniciar Sick Scan LiDAR (t+3s)

Inicializar cpnexidn LiDAR

Comenzar publicadjion del tépico /scan

Robot listo para movimiento basico con LiDAR activo
Componentes adicionales inician con timers:

| | | | | | PR

Sistema de Launch Controller Manager Diff Drive Controller Ikus Hardware VESC Izquierdo VESC Derecho Sick Scan (LiDAR)

Figura 4.7: Diagrama de secuencia de inicio del sistema de Ikus: Comienzo de
comunicacién con controladoras VESC y LiDAR

A continuacién se explicara la necesidad de los distintos médulos de la solu-
cién junto a su implementacion, configuracion y formas de ejecucién.

4.3.2. SLAM y Navegacion

Para lograr navegacion auténoma, el sistema requiere capacidades de SLAM
(Localizacién y Mapeo Simulténeos) y planificacién de trayectorias. Estas fun-
cionalidades de alto nivel dependen fundamentalmente de dos tipos de informa-
cién: datos del sensor LiDAR publicados en el tépico ‘scan’ y transformaciones
espaciales en el topico ‘tf’ que indican la relacién entre el marco de referencia
‘odom’ y ‘base_link’.

44

Sistema de Launch

Diff Drive Controller Usuario Twist Mux Joint State Broadcaster Robot State Publisher Ikus Hardware

RTAB-Map ICP Odometry (t+15s, si hahilitado)

1
SLAM Toolbox (t+20s)
il
Nav2 Navigation Stack (t+45s)

Sistema de Launch

Publicar comandos cmd_vel

Reenviar cmd_vel priorizado

Enviar comandos de velocidad al hajdware

setSpeed(velocidad_rueda_izquierda)

VESC Izquierdo VESC Derecho

setSpeed(velocidad_rueda_defecha)

Retornar feedback del encoder (rueda_izquierda]

Retornar feedback del encoder (rugda_derecha)

Actualizar estados de posicién/velocidad

Publicar estados de joints

Reenviar estados de joints

Publicar transfornjadas actualizadas

Diff Drive Controller Usuario Twist Mux Joint State Broadcaster Robot State Publisher Ikus Hardware

Figura 4.8: Diagrama de secuencia de inicio del sistema de Ikus: Inicio de
icp_odometry, slam_toolbox y nav2, envio de comandos de velocidad a contro-
ladoras VESC

LiDAR y sick_scan_xd

Para obtener los datos del tépico ‘scan’ requeridos por SLAM, se utiliza el
sensor LIiDAR LMS101-10000 junto con el paquete sick_scan_xd. En el ambiente
simulado, el LIDAR y su comunicacién con ROS 2 forman parte de la simulacién
de Tkus en Gazebo. Para sensar las distancias desde Ikus fisico, se utiliza el
siguiente comando:

$ ros2 launch sick_scan_xd sick_lms_1xx.launch.py hostname
:=192.168.0.1 frame_id:=laser_frame tf_base_frame_id:=
base_link

VESC Izquierdo VESC Derecho

Se ejecuta el archivo especifico para LIDARs de la linea LMS 1XX: ‘sick_Ims_lxx.launch.py’

con los siguientes pardmetros:

hostname: indicando la direccién IP del LiDAR.

frame_id: indicando el identificador del marco de referencia del léser.
tf_base_frame_id: indicando el identificador del marco de referencia de la pieza
padre del ldser, especificado en la descripcién de hardware.

Este paquete publica en el tépico ‘scan’ mensajes de tipo ‘sensor_msgs/msg/LaserScan’,

los cuales contienen arreglos de numeros, donde cada nimero hace referencia a
la distancia en metros al obstaculo més cercano segin su angulo.

45

Para resolver el mapeo, localizacion y la planificacién de caminos de Ikus, se
utilizaron las soluciones de ‘slam_toolbox’ y ‘nav2’.

SLAM

La herramienta slam_toolbox se suscribe a dos tépicos: ‘tf” y ‘scan’, para
publicar otros dos tépicos: ‘map’ y ‘pose’.

tf

‘slam_toolbox’ requiere que exista una transformada entre los marcos asigna-
dos a ‘odom_frame’ y ‘base_frame’. También se encarga de proveer una transfor-
mada desde ‘map_frame’ a ‘odom_frame’, indicando que existe un marco mapa
que contiene una odometria en base a ese mapa. Los nombres de los marcos son
configurados en el archivo de pardmetros de tipo ‘.yaml’.

map

En el tépico ‘map’, slam_toolbox envia mensajes de tipo ‘nav_msgs/OccupancyGrid’,

calculada en base a lo obtenido en los tépicos ‘scan’ y ‘tf’.

pose

El tipo de mensaje ‘geometry_msgs/PoseWithCovarianceStamped’ utilizado
en el tépico ‘pose’ contiene la posicién estimada en coordenadas con covarianza,
y registro temporal, en base al ‘map’ calculado.

Representacion

En la figura 4.9 se observa la representacién en rviz2 de un mapa obtenido
a partir del ambiente simulado en Gazebo; los obstéculos visibles son aquellos
presentados en la seccion 4.3.6, presentados en la figura 4.13.

Ejecucién con Ikus

Se construyé un archivo de tipo ‘launch’ especifico para la ejecucién de
slam_toolbox en el contexto de Ikus para aumentar su versatilidad mediante
el uso de parametros personalizados. Se utiliza ‘slam_params_file’ para indicar
el archivo de parametros del paquete ‘slam_toolbox’, y ‘use_sim_true’ para indi-
car si se trata de la ejecucién en ambiente simulado o fisico.

Para la ejecucion de este paquete se utiliza el siguiente comando:

([
~

$ ros2 launch vesc_ikus online_async_launch.py slam_params_file:
src/vesc_ikus/config/mapper_params_online_async.yaml

H*

En caso de trabajar con ambiente simulado:

$ ros2 launch vesc_ikus online_async_launch.py slam_params_file:
src/vesc_ikus/config/mapper_params_online_async.yaml
use_sim_time:=true

]
~

Para localizacidon: se cambia el archivo de configuracidn
$ ros2 launch vesc_ikus online_async_launch.py slam_params_file:
src/vesc_ikus/config/localization_params_online_async.yaml

[
~

Parametros
A partir de los archivos por defecto presentados en la documentacion de

‘slam_toolbox’, se crearon dos archivos de configuracion: ‘mapper_params_online_async.yaml’

46

Figura 4.9: Representacion en rviz2 de un mapa obtenido a partir del ambiente
simulado

y ‘localization_params_online_async.yaml’, diferencidndose en el tipo de ejecu-
cién. En el caso de ‘mapper’, este se configura con el modo ‘mapping’, ha-
ciendo referencia al mapeo, mientras que el segundo con el modo ‘localiza-
tion’ por localizacién. El segundo archivo también utiliza un pardametro llamado
‘map_file_name’, que debe contener la ruta al archivo de mapa guardado ante-
riormente.

En estos archivos también se especifican los nombres de los marcos para el
caso de Ikus.

Seccion de archivo ’mapper_params_online_async.yaml
C...)

odom_frame: odom

map_frame: map

base_frame: base_link

scan_topic: /scan

mode: mapping

C...)

47

Navegacion

Se utilizo el entorno de trabajo conocido como nav2, el cual provee un gran
nivel de abstraccién a la hora de trabajar en la planificacién de caminos en base
a obstéculos.

map y tf Este paquete se suscribe a los tépicos ‘map’ (de tipo ‘nav_msgs/OccupancyGrid’)
y ‘tf” (més precisamente a la transformada entre los marcos asignados a ‘map_frame’

y ‘odom_frame’)
goal_pose

El paquete se suscribe al tépico ‘goal _pose’ de tipo de mensaje ‘geometry _msgs/PoseStamped’,

en el que lee posiciones en el espacio que son interpretadas como ‘objetivo’ o
‘destino’ para el sistema robético. Una vez interpretado, el entorno de nav2 se
encargara de publicar comandos de tipo ‘geometry_msgs/Twist’ necesarios para
intentar cumplir el objetivo.

Es posible publicar un mensaje en el tépico ¢/goal pose’ utilizando la in-
terfaz de rviz2 como se comenté en la seccién 3.4.1, o mediante la terminal de
comandos:

Ejemplo de mensaje publicado en goal_pose indicando posicion
objettvo o destino
$ ros2 topic pub /goal_pose geometry_msgs/PoseStamped "

{ header:
{ stamp: { sec: 0 },
frame_id: ’map’
¥o
pose:

{ position: { x: 0.2, y: 0.0, z: 0.0 1},
orientation: { w: 1.0
¥
}u

cmd_vel y cmd_vel nav

Se publican mensajes de tipo ‘geometry_msgs/Twist’ en el tépico cmd_vel,
el cual renombramos por cmd_vel nav para facilitar su identificaciéon a la hora
de realizar experimentos.

‘costmap’ y su representaciéon

Se denomina ‘costmap’ a un mapa que asigna distintos costos a distintas
coordenadas, basdndose en la cercania a obstaculos. Subscribiendo rviz2 al t6pi-
co ‘/global_costmap/costmap’ publicado por nav2, se puede ver una represen-
tacién del mapa con sus costos, como se observa en la figura 4.10.

Ejecucién con Ikus

Aligual que en el caso anterior, con el objetivo de personalizar la experiencia,
se construyo un archivo de tipo ‘launch’ especifico para la ejecucién de la pila
de paquetes de nav2 en el contexto de Ikus. Se utiliza ‘params_file’ para indicar
el archivo de parametros del paquete ‘nav2’, y ‘use_sim_true’ para indicar si se
trata de la ejecucién en ambiente simulado o fisico.

Para la ejecucién de este paquete se utiliza el siguiente comando:

48

Figura 4.10: Representacién en rviz2 de un mapa con costos obtenido a partir
del ambiente simulado

2|$ ros2 launch vesc_ikus navigation_launch.py params_file:=src/
vesc_ikus/config/nav2_params.yaml

4| # En caso de trabajar con ambiente simulado:
5/$ ros2 launch vesc_ikus navigation_launch.py use_sim_time:=true
params_file:=src/vesc_ikus/config/nav2_params.yaml

4.3.3. ros2_control

Cuando se trabaja con varios actores y se desea que estos trabajen en conjun-
to, es posible establecer un sistema de control que logre interpretar los comandos
recibidos y asegurarse de enviar los comandos correspondientes a cada una de
las controladoras. A su vez, es posible utilizar la informacién obtenida a través
de sensores para ajustar adecuadamente el movimiento.

Utilizando la herramienta ros2_control junto con su implementacién del Diff-
DriveController, o Controladora de Robot Diferencial, es posible solucionar am-

49

bos problemas mencionados anteriormente. DiffDriveController se suscribe a un
tépico ¢/emd_vel’ de tipo ‘geometry_msgs/msg/Twist’, a través del cual se indica
una velocidad lineal o angular deseada del robot. A su vez, utiliza la informa-
cién obtenida a través de la retroalimentaciéon de la controladora de hardware
para estimar la odometria del robot, publicandola en el tépico ‘/odom’, de tipo
‘nav_msgs::msg::Odometry’, junto con las transformaciones de ‘odom’ a ‘ba-
se_link’; en el tépico ‘tf’, de tipo ‘tf2_msgs::msg:: TFMessage’.

DiffDriveController

El DiffDriveController es la pieza central que permite el control coordinado
de un robot diferencial. Este controlador:

= Se suscribe al tépico ‘ikus_base_controller /cmd_vel’ de tipo ‘geometry_msgs/msg/Twist’
para recibir comandos de velocidad

= Convierte comandos de velocidad lineal y angular en velocidades especifi-
cas para cada rueda

= Utiliza la retroalimentacién de los encoders para calcular la odometria
= Publica la odometria en ‘ikus_base_controller/odom’ (tipo ‘nav_msgs::msg::Odometry’)

= Publica la transformada odom—base_link en ¢ /tf” (tipo ‘tf2_msgs::msg:: TFMessage’)

Esta transformada odom—base_link es fundamental para que SLAM y los
algoritmos de planificaciéon de caminos funcionen correctamente, ya que propor-
ciona la estimacion de la posicién del robot basada en los movimientos realizados
por las ruedas.

La integracién del sistema con ros2_control se realiza mediante: la implemen-
tacién de una interfaz de hardware, la descripcién del hardware utilizado y la
configuracion de los pardmetros utilizados por DiffDriveController.

Interfaz del componente de Hardware

La interfaz del componente de hardware requerida por ros2_control define
un conjunto de funciones que son luego invocadas por el controller manager y
el resource manager en sus ciclos de vida. En el directorio: ‘vesc_ikus/hardware’
se encuentra ‘ikus_system.cpp’, junto a ‘include/ikus_system.hpp’, donde se im-
plementa y presenta la interfaz: ‘TkusSystemHardware’.

IkusSystemHardware es el nombre de la clase del sistema de control del
componente de hardware. Este nombre, aparte de describir que se trata de la
interfaz del componente de hardware de un sistema con actuadores y sensores,
sirve para identificar y diferenciar a este sistema de otros sistemas de ros2_control
que podrian estar funcionando en simultdneo. Al no ser este el caso, el nombre
tendra solo la funcién de identificacion y referencia.

50

En la figura 4.11 se presenta el diagrama de secuencia correspondiente al pro-
ceso de inicio del componente de hardware. Por otro lado, la figura 4.12 ilustra
el diagrama de secuencia que describe la interaccién entre ROS 2, ros2_control
y la interfaz VESC.

A continuacién se presentan los distintos métodos implementados en la in-
terfaz, necesarios para la ejecucién correcta del sistema en ros2_control.

Resource Manager

on_init) |
IkusSystemHardwar

on_configure()

on_activate()

connect('/dev/ttyACM1')

Vesc Interface (Left)

setPacketHandler(callbackLeft: ikusVescPacketCallback)

connect('/dev/ttyACMO")

Interface (Right‘)

setPacketHandler(callbackRight: ikusVescPhcketCallback)

—

Resource Manager IkusSystemHardwar% Vesc Interface (Left) Vesc Interface (Right‘)

Figura 4.11: Diagrama de Secuencia del proceso de inicio del componente de
hardware

DiffDrive Controller Command Interface State Interface Resource Manager| IkusSystemHardware Vesc Interface (Lof) Vesc Interface (Right)
Tépicos

toop

7St en tépico /ikus_base_controller/cmd_vel_unstampe|

scribe comando de velocidad para cada ruedal

writeQ

Lee comfndo de velocidad para cida rueda

setsgeed()

setspeed()
read()
requeststate()
callbackLeft(packet)

requesfstate)

callbackRight(packet)

cribe estado de velociddd y posicién de cada rueda

Lee estado de velocidad y posicién jfe cada rueda

Odometry en topico /odom

pifforive Controlles Command Interface State Interface Resource Manager| fkusSystemHardwar¢ Vesc Interface (Left) Vesc Interface (Right)
Topicos

Figura 4.12: Diagrama de secuencia de interaccién entre ROS 2, ros2_control y
la interfaz VESC

on_init Esta funcion es invocada por el controller manager en su inicializacion.
Se encarga de asignar memoria a variables globales de la interfaz y verificar que

51

la cantidad de interfaces de control y de estado establecidas sea la correcta para
cada tipo.

export_state_interfaces Retorna un arreglo cuyos elementos son las direc-
ciones en memoria de cada interfaz de estado. Existen dos por rueda, una de
posicién y otra de velocidad, cuatro en total. De esta forma, el controller mana-
ger puede acceder directamente a los valores en memoria sin tener que invocar
llamadas.

export_command _interfaces Al igual que export_state_interfaces, se retor-
na un arreglo cuyos elementos son las direcciones en memoria de cada una de
las interfaces de control. En este caso, solamente existen interfaces de control de
velocidad, una por cada rueda, dos en total. Los beneficios de rendimiento por
acceso directo a memoria son iguales a aquellos que en export_state_interfaces.

on_activate Para cada instancia de vesc_interface, utilizadas para comunica-

cién con las controladoras VESC, se establece conexién con una controladora
VESC. A cada una de estas interfaces se le asigna una funcién, ikus_vesc_packet_callback,
para ejecutar cada vez que la controladora envia un paquete de tipo vesc_packet.

Este paquete proporciona informacién de la controladora VESC, incluyendo da-

tos devueltos por sus sensores. Entre estos, se encuentra la diferencia de posi-

cién respecto al punto de inicio, determinada a través de los sensores de efecto

Hall integrados en el motor a través del método ‘getDisplacement()’. La fun-

cion ikus_vesc_packet_callback, procesa la posicién y guarda los resultados en un
arreglo global llamado ‘temp_hw_positions’.

on_deactivate Se encarga de desconectar las instancias de vesc_interface de
las controladoras VESC.

write Invoca el método setSpeed(velocidaderpm) para cada instancia de vesc_interface
con los valores encontrados en el arreglo de velocidades de la interfaz de coman-
dos, los cuales fueron escritos previamente por el controller manager.

read La funcién read es invocada por el controller manager tantas veces por
segundo como indique el update_rate en el archivo de configuracién del contro-
lador. Llama al método requestState() para cada instancia de vesc_interface, lo
que implica la invocacién de ikus_vesc_packet_callback, resultando en la actua-
lizacion de los valores de posicion y velocidad. Estos valores actualizados son
asignados al arreglo de estado de velocidad y posicién para que el controller
manager acceda posteriormente.

Descripciéon de hardware - URDF

52

Para describir la forma en la que el robot utiliza ros2_control, se utilizan tags
de <ros2_control> en la descripciéon de hardware del robot.

<ros2_control name="IkusSystemHardware" type="system">
<hardware>
<plugin>vesc_ikus/IkusSystemHardware</plugin>
</hardware>
<joint name="right_wheel_joint">
<command_interface name="velocity"/>
<state_interface name="position"/>
<state_interface name="velocity"/>
</joint>
<joint name="left_wheel_joint">
<command_interface name="velocity"/>
<state_interface name="position"/>
<state_interface name="velocity"/>
</joint>
</ros2_control>

El tag <ros2_control> utiliza los parametros de ‘name’ y ‘type’ para des-
cribir el nombre y el tipo del sistema. Bajo el tag <hardware> y <plugin> (al
tratarse de una extensioén de lo ya proporcionado por ros2_control), indicamos la
interfaz de hardware definida en nuestro cédigo C++. Luego, los tags <joint>
definen las articulaciones del sistema, junto a las interfaces de comando y de
estado que posee cada una.

Configuracion y Parametrizacion de control

Para que ros2_control comience a ejecutarse correctamente, debe tener acceso
a un archivo que contenga distintos parametros y configuraciones del sistema.
Realizando modificaciones en el ejemplo de archivo de configuracién de robots
diferenciales proporcionado por ros2_control en su documentacién, obtenemos
‘ikus_controllers.yaml’ e ‘ikus_controllers_without_tf.yaml’. Las modificaciones
mas relevantes fueron las siguientes:

Caracteristicas de las ruedas

Parametros que indican tamano y distancia entre las ruedas fueron modifi-
cados con los valores correspondientes a Ikus:
‘wheel_separation: 0.84’
‘wheel_radius: 0.16’

Limites de velocidad

Los parametros que indican los limites de velocidad fueron alterados de +1,0
a +1,5 en velocidad lineal, y de 41,0 a £+0,8:
‘linear.x.max_velocity = 1.5’
‘linear.x.min_velocity = -1.5’
‘angular.z.max_velocity = 0.8’
‘angular.z.min_velocity = -0.8’

Otros parametros

‘open_loop: false’ Deshabilitando ‘open_loop’, nos aseguramos de que la odo-
metria del robot sea calculada en base a la retroalimentacién y no segun los
comandos Twist de entrada.

53

‘enable_odom_tf’ La tnica diferencia entre ‘ikus_controllers.yaml’ e ‘ikus_controllers_without_tf.yaml’
es que el segundo tiene el pardmetro ‘enable_odom_tf’ en false, deshabilitando
la publicacién de la transformada de ‘odom’ a ‘base_link’ de parte de DiffDrive-
Controller. El objetivo de este cambio es evitar redundancia de transformadas
entre ros2_control y rtabmap_odom.

4.3.4. Comunicacién con Controladora VESC

Una vez que ros2_control calcula los comandos de velocidad necesarios para
cada rueda, estos deben ser transmitidos a las controladoras fisicas VESC a
través de la interfaz de hardware. Para establecer esta comunicacién, se utilizé
una interfaz de un paquete de ROS 2 llamado ‘fltenth/vesc’, originalmente
creado por el equipo F1Tenth (ahora RoboRacer.AT).

Este paquete sirve como interfaz entre ROS 2 y la controladora VESC, per-
mitiendo comunicacién bidireccional: envio de comandos de velocidad y lectura
del estado de los motores, incluyendo cantidad de revoluciones realizadas por
cada rueda (informacién necesaria para el calculo de odometria).

VescInterface y comunicacion de bajo nivel

Para su integracién con ros2_control, el paquete ‘vesc_driver’ presenta una
interfaz llamada ‘VescInterface’ que implementa los métodos utilizados en la co-
municacién a bajo nivel con la controladora VESC. Esta interfaz proporciona co-
municacién directa con menor latencia comparada con la comunicacién a través
de tépicos. El equipo de SoftBank Corp. partié de la base de ‘fltenth/vesc’
y agregaron actualizaciones sbgisen/vesc, las cuales forman parte de nuestra
solucién de software. Este directorio se encuentra en el mismo directorio que
‘vesc_ikus‘, el cual implementa la integracion con ros2_control.

A continuacién se describen los métodos principales de ‘VescInterface’:

connect(’/dev/ttyACM?’): Se encarga de inicializar la conexién entre la
controladora VESC, los motores BLDC y la interfaz VescInterface. Recibe como
parametro la direccién al puerto USB en el que estd conectado la controladora
VESC. También existe su contraparte, disconnect().

setSpeed(velocidade,pm): Se invoca con un pardmetro ‘velocidade,pm’ de ti-
po ‘double’, que indica la velocidad en revoluciones ‘eléctricas’ por minuto
(eRPM) a la que la rueda debe llegar. Para que este método funcione correcta-
mente, se transforma la velocidad lineal que ros2_control calcula para esa rueda
en una magnitud comprensible para la controladora VESC:

velocidadineal

5 - 60 - pares_de_polos_del_motor - 0,7 (4.1)
T

velocidaderpm =
Este cédlculo se realiz6 en base a un comentario en el cédigo fuente de

‘vesc_driver’. A su vez, se aplica un factor de calibracién experimental (0.7)
debido a que la relacién indicada no coincidia con la respuesta real del robot,

54

produciendo una velocidad mayor a la esperada. De esta manera, se asegura que
el valor enviado a la controladora VESC represente la velocidad esperada.

requestState(): VescInterface cuenta con una funcién llamada ‘packet_handler’,
la cual se ejecuta de forma asincrona cada vez que se invoca requestState().

setPacketHandler(callback): Asigna una funcién de retorno ‘callback’ al
‘packet_handler’ de VescInterface. Este ‘packet_handler’ recibe como parametro
un objeto de tipo VescPacket, que contiene datos sobre el estado de la con-
troladora. Una vez invocado requestState(), se invoca el ‘packet_handler’ con
una captura del estado actual de la informaciéon que contiene la controladora
VESC. A través del objeto ‘VescPacket’, accedemos al método ‘getDisplace-
ment()’, el cual proporciona un valor relacionado a la cantidad de revoluciones
‘eléctricas’ que ha realizado el motor desde su encendido. A diferencia del ca-
so de setSpeed, no se encontré documentaciéon sobre la unidad del valor que
retorna la funcién ‘getDisplacement()’, por lo que se le aplicé un factor experi-
mental que se denominé ‘gear ratio’. El valor obtenido de ‘getDisplacement/()’,
desplazamiento_absoluto,es. se transforma de la siguiente manera:

2 - desplazamiento_absoluto,esc

posicion_absoluta,yeq, = (4.2)

gear_ratio - m

El valor de gear_ratio es configurable en el archivo ‘ros2_control.xacro’, y su
valor por defecto es: ‘789432,

Aproximadamente cada 0,1 segundos, se calcula la diferencia entre dos va-

lores de posicion_absoluta,yeqq consecutivos, logrando asi calcular la velocidad
lineal, utilizando:

ad
At

17:

(4.3)

Tipos de datos VESC

El paquete ‘vesc_driver’ también depende de un paquete llamado ‘vesc_msgs’,
el cual define el tipo de datos de ROS 2 ‘VescState’:

// Definicién de ’VescState’ en vesc_msgs
Vedder VESC open source motor controller state (telemetry)

fault codes

int32 FAULT_CODE_NONE=0

int32 FAULT_CODE_OVER_VOLTAGE=1
int32 FAULT_CODE_UNDER_VOLTAGE=2
int32 FAULT_CODE_DRV8302=3

int32 FAULT_CODE_ABS_OVER_CURRENT=4
int32 FAULT_CODE_OVER_TEMP_FET=5
int32 FAULT_CODE_OVER_TEMP_MOTOR=6

float64 voltage_input # input wvoltage (wvolt)

95

53

float64 temperature_pchb # temperature of printed circuit board
(degrees Celsius)

float64 current_motor # motor current (ampere)

float64 current_input # input current (ampere)

float64 speed # motor welocity (rad/s)

float64 duty_cycle # duty cycle (0 to 1)

float64 charge_drawn # electric charge drawn from input (
ampere —hour)

float64 charge_regen # electric charge regenerated to input

(ampere-hour)

float64 energy_drawn # energy drawn from tinput (watt-hour)

float64 energy_regen # energy regenerated to input (watt-
hour)

float64 displacement # net tachometer (counts)

float64 distance_traveled # total tachmometer (counts)

int32 fault_code

4.3.5. Odometria ICP con rtabmap_odom

Como se mencioné anteriormente, tanto SLAM como navegacién requieren
de la transformada entre ‘odom’ y ‘base_link’ publicada en el tépico ‘tf’ para
funcionar correctamente. Esta transformada representa la odometria del robot,
es decir, su estimacién de posicién y orientacién basada en el movimiento relativo
desde un punto de referencia.

En Ikus, esta odometria puede obtenerse a partir de los encoders de las
ruedas (gracias a ros2_control) o, de forma alternativa, a través del algoritmo
ICP (Tterative Closest Point) implementado en ‘rtabmap_odom’. Este enfoque
utiliza los datos del LiDAR para estimar el movimiento del robot comparando
escaneos consecutivos y encuentra la transformada que mejor alinea las nubes
de puntos.

Configuracién de ICP Odometry

FEl nodo ‘icp_odometry’ de rtabmap_odom se configura a través del archivo

‘rtabmap_icp_odometry.yaml’ y se ejecuta mediante el launch file ‘rtabmap_icp_odometry.launch.py’.

La configuraciéon principal incluye:

icp_odometry:
ros__parameters:
frame_id: "base_link"
odom_frame_id: "odom"
publish_tf: true

Este nodo:
= Se suscribe al tdpico ‘/scan’ para recibir datos del LIDAR

= Se suscribe al tdpico ‘/tf’ para encontrar la transformada asociada al los
datos visuales, en nuestro caso: base_link—laser_frame

= Calcula la odometria comparando escaneos consecutivos usando ICP

56

= Publica la transformada odom—base_link en */tf’

= Publica mensajes de odometria en ‘/odom’

Integracién con el sistema

Para que la odometria ICP funcione correctamente, se debe desactivar la
publicacién de tf por parte de ros2_control, ya que el nodo ‘icp_odometry’ se
encarga de publicar la transformacién odom—base_link. Esto se logra agregando
la linea ‘enable_odom _tf: false’ en el archivo de configuracién de ros2_control.

4.3.6. Simulacion

La simulacién de Tkus fue realizada a través de Gazebo. En la figura 4.13 se
observa el modelado 3D de Ikus en un bosque con cajas simulado. Esta seccién
se puede dividir en tres partes: Descripcién del hardware, Simulacién del mundo
e Integracion de Gazebo con ROS 2.

Descripcion del Hardware

La descripcién del hardware de Tkus fue modularizada segin responsabilida-
des. La descripcién fisica de Ikus es responsabilidad del archivo
‘vesc_ikus/description/ikus_core.xacro’.

Por otro lado, se utilizé el plugin ‘gz ros2_control/GazeboSimSystem’ pa-
ra simular la interacciéon bajo nivel que ros2_control suele tener con las con-
troladoras de hardware y, en nuestro caso, los motores BLDC. Una curiosi-
dad de este plugin es que toma la responsabilidad de ejecutar algunos no-
dos necesarios en el ciclo de vida de ros2_control, como es el caso de ‘con-
troller_manager’. Este plugin es importado y ejecutado por Gazebo una vez de-
finido en el archivo ‘vesc_ikus/description/ros2_control.xacro’, el cual también
utiliza los archivos de configuracién ‘vesc_ikus/config/ikus_controllers.yaml’ y
‘vesc_ikus/config/gazebo_controllers.yaml’:

<ros2_control name="GazeboSimSystem" type="system">

<hardware>
<param name="calculate_dynamics">true</param>
<plugin>gz_ros2_control/GazeboSimSystem</plugin>

</hardware>

<joint name="right_wheel_joint">
<command_interface name="velocity"/>
<state_interface name="position"/>
<state_interface name="velocity"/>

</joint>

<joint name="left_wheel_joint">
<command_interface name="velocity"/>
<state_interface name="position"/>
<state_interface name="velocity"/>

</joint>

</ros2_control>

<gazebo>

57

20

21

22
23

= Gazebo

Figura 4.13: Simulacién de Ikus en bosque con cajas en Gazebo

<plugin name="gz_ros2_control::GazeboSimR0OS2ControlPlugin"
filename="1libgz_ros2_control-system">
<parameters>$(find vesc_ikus)/config/ikus_controllers.
yaml</parameters>
<parameters>$(find vesc_ikus)/config/gazebo_controller.
yaml</parameters>
</plugin>
</gazebo>

Simulacién del mundo

La construccién del mundo simulado se fundamenté en dos premisas princi-
pales. En primer lugar, se consideré que el robot seria empleado en un entorno
agropecuario, siendo la asistencia en el proceso de recoleccién de manzanas un

58

ejemplo representativo de los posibles casos de uso. En segundo lugar, se buscé
crear un entorno estatico que permitiera realizar diferentes experimentos de
manera controlada, facilitando la modificacién aislada de parametros o confi-
guraciones para comparar resultados de forma clara y sin ambigiiedades. Como
resultado, se desarrollé una simulacién que representa un mundo con arboles de
manzanas y cajones.

La descripcion de este mundo se realiza mediante archivos de tipo ‘world’,
dentro de los cuales se definen las distintas entidades presentes en el mundo,
especificando la forma o las direcciones a archivos que definen esas formas y la
posicion. Para los arboles, como el de la figura 4.14, se utilizé6 un modelo de
arbol de manzanas de 'Reconocimiento y conteo de manzanas‘, un proyecto de
grado de la Facultad de Ingenieria de la Universidad de la Reptblica realizado
por Garderes (2023). El modelo de cajon de madera presente en la figura 4.15
fue construido a partir de dos modelos de la biblioteca de modelos de Open
Robotics, la cual tiene entidades de uso publico. Se utilizé la textura de un
modelo de un ‘pallet’, y la geometria de un modelo de una caja de cartén.

Figura 4.14: Modelo 3D de un arbol de manzanas

Ademais, gracias a la funcionalidad de exportacion de mapas de la herramien-
ta slam_toolbox, se incluyen en la solucién los archivos ubicados en el directorio
maps. Estos mapas pueden ser utilizados directamente en el proceso de locali-
zacién, evitando asi la necesidad de mapear el entorno desde cero.

Integracién de Gazebo con ROS 2

Para realizar la integracién entre Gazebo y ROS 2, se utilizan archivos tipo
yaml llamados ‘bridge’, los cuales indican mapeos entre mensajes de tipo Gazebo
y tépicos ROS 2.

99

Figura 4.15: Modelo 3D de un cajon de madera

Los mapeos necesarios, especificados en los archivos ‘vesc_ikus/config/gz_bridge.yaml’
y ‘vesc_ikus/config/gz bridge_rtabmap.yaml’ fueron los siguientes:
clock: Utilizado internamente por ROS 2 para mantenerse sincronizado con
Gazebo

- ros_topic_name: "clock"
gz_topic_name: "clock"
ros_type_name: "rosgraph_msgs/msg/Clock"
gz_type_name: "gz.msgs.Clock"
direction: GZ_TO_ROS

S N

o

scan: Mapeo del canal de comunicacién de datos del sensor LiDAR simulado,
desde Gazebo hacia ROS 2.

gz topic published by Sensors plugin

1

2| - ros_topic_name: "scan"

3 gz_topic_name: "scan"

4 ros_type_name: "sensor_msgs/msg/LaserScan"
5 gz_type_name: "gz.msgs.LaserScan"

6 direction: GZ_TO_ROS

odom: Mapeo del canal de comunicacién de los datos de Odometria, desde
Gazebo hacia ROS 2. Este mapeo es omitido en ‘gz _bridge_rtabmap.yaml’, ya
que en lugar de ser el plugin de ROS2 de Gazebo que realiza el cédlculo de
odometria, con esta configuraciéon pasa a ser el nodo de rtabmap_odom.

1| - ros_topic_name: "odom"

2 gz_topic_name: "odom"

3 ros_type_name: "nav_msgs/msg/Odometry"
4 gz_type_name: "gz.msgs.Odometry"

direction: GZ_TO_ROS

o

tf: Mapeo del canal de comunicacién de los datos de tf (Tree Frame), desde
Gazebo hacia ROS 2.

1’- ros_topic_name: "tf" ‘

60

gz_topic_name: "tf"

ros_type_name: "tf2_msgs/msg/TFMessage"
gz_type_name: "gz.msgs.Pose_V"
direction: GZ_TO_ROS

ikus_base_controller /cmd_vel unstamped a cmd_vel: Mapeo del canal

de comunicacion mensajes de tipo ‘Twist’ para indicar movimiento al plugin de
ros2_control dentro de Gazebo, desde ROS 2 hacia Gazebo.

ros_topic_name: "ikus_base_controller/cmd_vel_unstamped"
gz_topic_name: "cmd_vel"

ros_type_name: "geometry_msgs/msg/Twist"

gz_type_name: "gz.msgs.Twist"

direction: ROS_TO_GZ

joint_states Mapeo del canal de comunicacién mensajes de tipo ‘JointState’

para indicar el estado de las articulaciones de Ikus, desde Gazebo hacia ROS 2.

ros_topic_name: "joint_states"
gz_topic_name: "joint_states"
ros_type_name: "sensor_msgs/msg/JointState"

gz_type_name: "gz.msgs.Model"
direction: GZ_TO_ROS

4.4. Integraciéon del sistema completo

La solucién de software implementada permite diferentes modos de ejecucion

segun las necesidades del usuario. A continuacién, se presentan los distintos
launch files disponibles con sus comandos de ejecucién:

Robot Fisico (Ikus):

= Movimiento bésico sin SLAM /Navegacion:

1| # Con odometria de diff_drive_controller (por defecto)
2| $ ros2 launch vesc_ikus ikus_mapless.launch.py

4| # Con odometria de rtabmap_odom (ICP)

5/$ ros2 launch vesc_ikus ikus_mapless.launch.py
use_rtabmap_odometry:=true

8| # Este archivo launch ejecuta:

10| # - controller_manager ros2_control_mnode

11| # > 4ndicando st% utiliza tkus_controller.yaml o
tkus_controller_without_tf.yaml

12| #

13| # - robot_state_publisher robot_state_publisher

14| # > con ’ikus.urdf.xzacro’ como pardmetro

15| #

16| # - controller_manager spawner

17| # > con ’joint_state_broadcaster’ como argumento

18| #

61

19| # - controller_manager spawner

20| # > con ’ikus_base_controller’ como argumento

21| #

22 # - twist_muz twist_muz

23| # > multiplexra comandos Twist, utiliza twist_muz.yaml como
archivo de configuracion

24| # > mapea el tépico ’/cmd_vel_out’ a °’/ikus_base_controller/
cmd_vel_unstamped ’

25| #

26| # - sick_scan_zd sick_generic_caller

27| # > con ’sick_scan_xzd.launch’ como pardmetro

28| # > uttliza la informacion en su archivo .launch para
configurar el LiDAR

20| #

30| # - rtabmap_odom icp_odometry

31| # > ejecuta solamente si use_rtabmap_odometry:=true

32| # > con ’rtabmap_icp_odometry.yaml’ como pardmetro

33| #

= Solo SLAM y navegacion:

1|$ ros2 launch vesc_ikus slam_and_nav.launch.py use_sim_time:=
false

2

3| # Este archivo launch ejecuta:

4

5| # - online_async_launch.py

6| # > ejecuta el nodo slam_toolbox async_slam_toolboxz_node

7| # > por defecto, wutiliza el archivo de configuraciodon ’
mapper_params_online_async.yaml’

8| #

ol # - mavigation_launch.py

10| # > ejecuta los nodos de nav2

11| # > por defecto, wutiliza el archivo de configuraciodon ’
nav2_params.yaml’

= Lanzamiento completo:

1| # Con odometria por defecto

2| $ ros2 launch vesc_ikus ikus.launch.py

3

4| # Con odometria de rtabmap_odom

5/ $ ros2 launch vesc_ikus ikus.launch.py use_rtabmap_odometry:=
true

6

7| # Este archivo une las ejecuciones de ikus_mapless. launch.py y
slam_and_mnav. launch.py

Simulacién:

» Simulacién bésica sin SLAM /Navegacién:

1| # Con odometria de diff_drive_controller (por defecto)

2

3

$

ros2 launch vesc_ikus simulator_mapless.launch.py

62

10

12
13
14

16
17
18
19
20
21
22
23

24

Con odometria de rtabmap_odom (ICP)
ros2 launch vesc_ikus simulator_mapless.launch.py
use_rtabmap_odometry:=true

@ H

Especificando un mundo diferente

®

:=/ruta/a/tu/mundo.world

Este archivo launch ejecuta:

ros2 launch vesc_ikus simulator_mapless.launch.py world_path

/

- robot_state_publisher robot_state_publisher

> con ’ikus.urdf.xzacro’ como pardametro

#

- controller_manager spawner

> con ’joint_state_broadcaster’ como argumento

#

- controller_manager spawner

> con ’ikus_base_controller’ como argumento

#

- twist_muxz twist_muzx

> multiplexa comandos Twist, utiliza twist_muzxz.yaml como
archivo de configuracion

> mapea el tdpico ’/cmd_vel_out’ a ’/ikus_base_controller/
cmd_vel_unstamped ’

#

- rtabmap_odom icp_odometry

> ejecuta solamente si use_rtabmap_odometry:=true

> con ’rtabmap_icp_odometry.yaml’ como pardmetro

#

- ros_gz_sim gz_sim. launch.py

> ejecuta Gazebo

> utiliza ruta al directorio del mapa como pardmetro
opcional

#

- ros_gz_sim create

> crea objeto ’ikus’ en la simulacidén, basado en tdpico
robot_description’

#

- ros_gz_bridge parameter_bridge

> realiza mapeo entre Gazebo y ROS 2

> recibe un archivo como pardmetro: gz_bridge.yaml o

gz_bridge_rtabmap.yaml

Simulacién completa:

Con odometria por defecto
$ ros2 launch vesc_ikus simulator.launch.py

Con odometria de rtabmap_odom
$ ros2 launch vesc_ikus simulator.launch.py
use_rtabmap_odometry:=true

Este archivo une las ejecuciones de simulator_mapless. launch

.py y slam_and_nav. launch.py

63

Herramientas adicionales:

= Teleoperacion:

$ ros2 run teleop_twist_keyboard teleop_twist_keyboard --ros-
args -r cmd_vel:=cmd_vel_key

Configuracién previa para simulacion:
Para que Gazebo encuentre los modelos 3D, se debe exportar la variable de
entorno:

1|$ export SDF_PATH="ruta/a/su/workspace/src/vesc_ikus/worlds"

64

Capitulo 5

Experimentacion

En este capitulo se evalua el rendimiento del sistema robético desarrollado,
con el objetivo principal de determinar si es capaz de estimar su posicién y
generar mapas de sus entornos de manera adecuada. Para ello, las pruebas se
dividieron en dos contextos: entorno simulado y entorno real. Esta separacion
permite experimentar sobre el sistema implementado sin depender inicialmente
del hardware, para luego validar el funcionamiento del sistema completo en
condiciones reales.

Ademis, se decidié comparar los resultados de los experimentos utilizando
distintas fuentes de odometria. Por un lado, se emple6 la odometria basada en
ruedas, provista por la soluciéon ros2_control, y por otro, la odometria visual
generada mediante icp_odometry de rtabmap_odom. Esta comparacién se con-
sider6 relevante ya que la odometria es un pardmetro fundamental en el proceso
de mapeo.

En cuanto a la experimentacién relacionada con el paquete de planificacién
de caminos nav2, el alcance se centré en la construccion del mapa de costos a par-
tir de los mapas obtenidos mediante la integracién con el paquete slam_toolbox.

En todos los experimentos se utilizé teleop_twist_keyboard para enviar co-
mandos Twist indicando la velocidad deseada del robot en cada momento.

$ ros2 run teleop_twist_keyboard teleop_twist_keyboard --ros-args
--remap
cmd_vel:=/ikus_base_controller/cmd_vel_unstamped

5.1. Entorno Simulado

Con el objetivo de evaluar la integracion del sistema roboético de manera inde-
pendiente del hardware fisico, se llevaron a cabo pruebas en un entorno simulado,
replicando tanto la informacion proveniente de los sensores como parte de la inte-
gracién con ros2_control (utilizando el plugin ‘gz _ros2_control /GazeboSimSystem’).
Para estas pruebas, se empled el entorno descrito en la seccién 4.3.6, que con-
siste en un mundo simulado de aproximadamente 9x9 metros, conformado por

65

7 arboles y 4 cajones. La posicién y orientacién inicial es idéntica para ambos
casos.

5.1.1. Odometria basada en Ruedas

Para realizar este experimento se ejecuté el siguiente comando:

1|$ ros2 launch vesc_ikus simulator.launch.py

Haciendo uso de teleop_twist_keyboard, se gestiond el desplazamiento del
robot simulado en el entorno virtual, lo que permitié efectuar con éxito el mapeo
del mundo simulado. Este proceso se observa en la figura 5.1, donde también se
muestra el mapa de costos generado a partir del mismo. Cabe destacar que para
esta tarea se utilizd la informacién de odometria proporcionada por el sistema
"gz r0s2_control/GazeboSimSystem’, la cual simula el proceso de transformar
la posicion y la velocidad angular de cada rueda en datos de odometria, como
parte de la solucién diffdrive_controller de ros2_control.

Figura 5.1: Visualizacién del mapeo del mundo simulado y su mapa de costos,
utilizando odometria basada en ruedas

5.1.2. Odometria basada en LiIDAR

Para experimentar el proceso de mapeo en base a la odometria visual se
ejecuto el siguiente comando:

66

$ ros2 launch vesc_ikus simulator.launch.py use_rtabmap_odometry:=
true

Al igual que en el caso anterior, se construyé el mapa y el mapa de costos,
los cuales se muestran en la figura 5.2, a partir del desplazamiento del robot
simulado en Gazebo. En esta ocasién, la localizacién se realizé utilizando la
odometria visual proporcionada por icp_odometry.

Figura 5.2: Visualizacién del mapeo del mundo simulado y su mapa de costos,
utilizando odometria basada en LiDAR

5.1.3. Analisis

No se aprecian diferencias significativas entre los experimentos. En ambos
casos, los resultados permiten distinguir claramente siete obstaculos cilindricos
pequenos y cuatro obsticulos rectangulares de casi un metro de lado. Cabe
destacar que estos ultimos son mas notorios en los mapas de costos. En las
figuras 5.1 y 5.2, los mapas de costos numeran en verde los arboles y en naranja
los cajones de madera.

67

5.2. Entorno Real

Los experimentos principales con el robot fisico fueron realizados en pasillos
del primer piso de la Facultad de Ingenieria de la Universidad de la Republica.
Como referencia, la figura 5.3 contiene una representacion del recorrido realizado
en el primer piso. Para ambos experimentos realizados, el recorrido fue el mismo,
representado con una linea verde en la figura. Ambos experimentos comenzaron
y terminaron en la misma posicién, marcada con una cruz roja. La cruz azul
indica la meta parcial. Para habilitar el acceso remoto a Ikus, se implementé un
canal SSH entre una computadora externa y la computadora Ceibal Sirio insta-
lada en el robot. Este canal permitié gestionar el desplazamiento del robot de
manera remota utilizando la herramienta teleop_twist_keyboard durante ambos
experimentos.

X

Piso verde

Saldn de Actos
Oficinas y/o salones
Escaleras / Ascensores

¥ Comienzo
=== Recorrido
X Retorno

Figura 5.3: Representacién del recorrido utilizado en la experimentacién en el
primer piso de la Facultad de Ingenieria de la Universidad de la Repiblica

Con el objetivo de optimizar la calidad del mapeo en los experimentos pre-
sentados a continuacién, se optd por ejecutar el sistema de manera parcial,
registrando un archivo bag con toda la informacién sensada para cada caso. Es-
ta decision se tomo para evitar la saturaciéon del sistema durante la adquisicion
de datos. Posteriormente, dichos archivos fueron reproducidos y, para realizar
el proceso de mapeo de manera precisa, se utilizé el siguiente comando:

1|$ ros2 launch vesc_ikus slam_and_nav.launch.py use_sim_time:=true

Para entender mejor los resultados obtenidos, se presenta un experimento
adicional realizado en el laboratorio de robdtica de la Facultad de Ingenieria de
la Universidad de la Republica.

68

5.2.1. Odometria basada en Ruedas

Para ejecutar el sistema utilizando odometria basada en ruedas sin mapeo
se utilizé el comando:

1/$ ros2 launch vesc_ikus ikus_mapless.launch.py

En la figura 5.2.1 se muestra el resultado de los mapas generados a partir de
la odometria basada en ruedas, obtenida mediante ros2_control, tras realizar el
recorrido ilustrado en la figura 5.3. Las diferencias entre el recorrido realizado
y el mapa obtenido son notables: la posicién final difiere significativamente de
la inicial (ubicada cerca de la grilla de Rviz2), no se aprecia la caracteristica
forma de ‘S’ del pasillo recorrido y se observan multiples superposiciones de
obstédculos, que parecen corresponder a paredes.

Visualizaciéon de mapa y mapa de costos con odometria basada en ruedas, del
primer piso

69

5.2.2. Odometria basada en LiDAR

Para ejecutar el sistema utilizando odometria visual sin mapeo, se utilizé el
comando:

$ ros2 launch vesc_ikus ikus_mapless.launch.py use_rtabmap_odometry
:=true

En la figura 5.2.2 se muestra el resultado de los mapas generados a partir de
la odometria visual, obtenida mediante icp_odometry, tras realizar el recorrido
ilustrado en la figura 5.3. En este caso, la posicién final es muy préxima a la
inicial, la forma en ‘S’ del recorrido se aprecia claramente en el mapa y no se
observa superposicién de obstaculos.

Visualizacién de Mapa y mapa de costos con odometria basada en LiDAR, del
primer piso

70

5.2.3. Analisis y Experimentos en Laboratorio

Las diferencias entre ambos experimentos fueron notables, siendo el experi-
mento de la odometria visual considerablemente maés preciso. El primer expe-
rimento parece presentar algin tipo de error que genera mapas inconsistentes,
los cuales resultarian inseguros y cadticos si se utilizaran para desplazamiento
auténomo. Si bien anteriormente se mencioné la deriva o drift como un posible
error acumulativo durante el uso prolongado de la odometria, en caso de tratarse
tnicamente de deriva, el error deberia ser menor y el proceso de mapeo deberia
ser capaz de mitigarlo o corregirlo, lo cual no ocurre en este caso.

Dado que este fenémeno se presenté en la odometria basada en ruedas, se
propone registrar los valores utilizados para calcular dicha odometria, los cuales
se obtienen a través del VESC y de los encoders de efecto Hall de las ruedas.

Utilizando el método ‘getDisplacement()’ de ‘vesc_driver’ obtenemos valores
de desplazamiento_absoluto,es. provenientes de dichos encoders. Repitiendo el
experimento de diferentes fuentes de odometria, esta vez en el laboratorio de
robética de la Facultad de Ingenieria de la Universidad de la Republica, obte-
nemos los mapas de la figura 5.4

Figura 5.4: Mapas obtenidos en el laboratorio utilizando odometria basada en
ruedas (izquierda) y odometria visual (derecha)

En la figura 5.5 se muestra la grafica del desplazamiento absoluto de cada
rueda en funcién del tiempo. En la rueda izquierda (arriba), el recorrido presen-
ta un comportamiento mayormente continuo, mientras que en la rueda derecha
(abajo) se observan varios saltos abruptos a lo largo del trayecto. Estos ‘saltos’

71

Encoder Position

Encoder Position

le8

Jump Analysis - Encoder Position Changes
Left Encoder with Jump Detection

161

=
IS

=
N}

g
o

o
@

=4
o

4
IS

e
N}

e
o

— Left Encoder
® Jumps (932)

le8

50 100 150 200
Time (s)

Right Encoder with Jump Detection

N

o

|
~

—44

—— Right Encoder
® Jumps (963)

i
|
:

50 100 150 200
Time (s)

Figura 5.5: Grafica de posiciones obtenidas para cada rueda por las codificadoras
y las controladoras VESC, para rueda izquierda (arriba) y derecha (abajo)

parecen originarse por lecturas erréneas o ruidosas provenientes del controlador
VESC, o bien por algun fallo en el sensor Hall instalado en la rueda. Dichas
anomalias introducen ruido en el calculo de la odometria realizado por el Diff-
DriveController de ros2_control, lo que a su vez afecta negativamente el mapeo
generado por slam_toolbox, como se aprecia en las figuras 5.2.1 y 5.4.

72

Capitulo 6

Conclusiones y Trabajo
Futuro

6.1. Conclusiones

Se realizé una integracién de distintas herramientas en el contexto de ROS
2 para un robot diferencial orientado al sector agropecuario. Tkus es capaz de
interpretar comandos de tipo Twist en tiempo real, sensar el entorno a su alre-
dedor y realizar un mapa y mapa de costos de ese mismo entorno. La calidad de
estos mapas obtenidos varia segun la fuente sensorial utilizada para el cdlculo
de odometria.

Aunque se tratase de una plataforma de software y hardware abierto, la in-
tegracion con la controladora VESC no fue trivial. La informacién encontrada
sobre las ruedas y la comunicacién y transformacion de datos con la controladora
VESC fue escasa y llevé a la necesidad de ajustar parametros experimentalmen-
te.

Las herramientas de ros2_control fueron integradas correctamente. Una vez
comprendidos los conceptos, la integracion del framework fue facil y muy valiosa
para transformar las diferencias de posicién de las ruedas en la posicién en el
espacio del robot.

La odometria obtenida de la utilizacién del paquete rtabmap-odom fue una
alternativa de gran valor frente a los problemas encontrados con la odometria
basada en ruedas.

La integracion con las herramientas de slam-toolbox y nav2 supo llevar las
capacidades de Ikus al siguiente nivel con poca configuracion.

Debido al tamano y peso del robot, la experimentacién con el robot real fue
ocasional. Gracias a la integracién con Gazebo es posible realizar experimentos
sin necesidad de utilizar el robot real.

Durante el proceso de experimentacién, no se obtuvieron conclusiones res-
pecto a los saltos producidos por la rueda derecha, que impactaban ampliamente
en la odometria y luego en el proceso de mapeo. Antes de que suceda el primer

73

‘salto’ que contamina la odometria basada en ruedas, el mapeo parece coherente
con la realidad y similar a su contraparte basada en odometria visual.

El proceso de experimentacién también se vio afectado por un alto nivel
de cémputo detectado una vez se ejecutaban los paquetes de ‘slam_toolbox’” y
‘nav2’, los cuales requieren buena sincronizacién con el resto del sistema para
funcionar correctamente. Estos fenémenos ocasionalmente generaban latencia,
pérdida de informacién, detencién de médulos y reinicios del sistema de la uni-
dad de cémputo.

El objetivo del proyecto fue cumplido parcialmente. Los experimentos reali-
zados se enfocaron en obtener mapas claros antes de permitir que Ikus recorriera
caminos planificados de forma auténoma.

6.2. Trabajo Futuro

Frente a los resultados de odometria en base a ruedas, se propone realizar
un cambio en la derecha y/o en la controladora VESC del lado derecho frente a
la sospecha de que los saltos sean provocados por problemas en el hardware.

La integracién de una IMU o Unidad de Movimiento Inercial podria agregarle
valor a la solucién presente, ya que seria otra fuente de informacién sobre la
posicién en el espacio.

Las frecuencias en las que se envian las transformadas pueden ser optimi-
zadas, mejorando el procesamiento de los paquetes de mapeo, localizacion y
planificacién de caminos.

Los experimentos fueron realizados en un entorno controlado, en pasillos
rectos con paredes claras. Al tratarse de un robot agropecuario, se deben realizar
experimentos de mapeo en entornos mas adecuados.

El mundo simulado utilizado también puede mejorarse para adecuarse mas
a la realidad, y a su vez agregar mundos para pruebas controladas, como puede
ser un pasillo o una habitacion cerrada con algunos obstaculos.

Una actualizaciéon de unidad de cémputo también podria impactar positi-
vamente en el rendimiento a la hora de realizar el mapeo y, méas adelante, la
planificacién de caminos.

La actualizacién del sistema en su completitud de ROS 2 Humble (la cual
dejard de ser soportada en mayo de 2027) a ROS 2 Jazzy (soportada hasta mayo
de 2029) mantendria a Tkus en la vanguardia tecnoldgica.

74

Referencias

Amadi, C. A., Mbanisi, K., y Smit, W. J. (2024). An introduction to the
ros2_control framework using a low cost differential drive robot.

Arkin, R. C. (1998). Behavior-based robotics (3.2 ed.). MIT Press Academic,
ISBN: 9780262529204.

Benjamin’s robotics - vesc — open source esc. (s.f.). https://vedder.se/2015/
01/vesc-open-source-esc/. (Accessed: 2025-02-27)

Cliclo de vida de nodos en ros. (s.f.). https://design.ros2.org/articles/
node_lifecycle.html. (Accessed: 2025-09-30)

Clearpath robotics. (s.f.). https://clearpathrobotics.com/. (Accessed: 2025-
09-27)

Computadora sirio de ceibal. (s.f.). https://ceibal.edu.uy/institucional/
articulos/hardware-sirio-2021/. (Accessed: 2025-09-05)

Conjunto de herramientas de ros de mapeo en tiempo real basados en senso-
res visuales. (s.f.). https://introlab.github.io/rtabmap/. (Accessed:
2025-08-23)

Cddigo fuente de vesc tool. (2017). https://github.com/vedderb/vesc_tool.
(Accessed: 2024-09-03)

Documentacion de ros2_control. (s.f.). https://control.ros.org/humble/
index.html. (Accessed: 2025-09-04)

Documentacion de ros_control. (s.f.). http://wiki.ros.org/ros_control.
(Accessed: 2024-09-03)

Documentacion nav2. (s.f.). https://docs.nav2.org/. (Accessed: 2025-04-20)

Fundamentos de robdtica autdnoma - unidad 1.2. (s.f.). https://eva.fing
.edu.uy/course/view.php?id=869. Facultad de Ingenieria, Universidad
de la Reptblica. (Accessed: 2025-04-20)

Garderes, F., R. y Gutiérrez. (2023). Reconocimiento y conteo de manzanas [en
linea] tesis de grado.

Gazebo. (s.f.). https://gazebosim.org/home. (Accessed: 2024-09-03)

Giampa, S. (2023). Development of an autonomous mobile manipulator for
industrial and agricultural environments.

Golden motor. (s.f.). https://goldenmotor.bike/. (Accessed: 2025-02-23)

Ikus codigo fuente. (s.f.). https://gitlab.fing.edu.uy/christopher.friss/
rosemary. (Accessed: 2025-05-04)

Li, Y., y Ibanez-Guzman, J. (2020). Lidar for autonomous driving: The princi-

(0]

https://vedder.se/2015/01/vesc-open-source-esc/
https://vedder.se/2015/01/vesc-open-source-esc/
https://design.ros2.org/articles/node_lifecycle.html
https://design.ros2.org/articles/node_lifecycle.html
https://clearpathrobotics.com/
https://ceibal.edu.uy/institucional/articulos/hardware-sirio-2021/
https://ceibal.edu.uy/institucional/articulos/hardware-sirio-2021/
https://introlab.github.io/rtabmap/
https://github.com/vedderb/vesc_tool
https://control.ros.org/humble/index.html
https://control.ros.org/humble/index.html
http://wiki.ros.org/ros_control
https://docs.nav2.org/
https://eva.fing.edu.uy/course/view.php?id=869
https://eva.fing.edu.uy/course/view.php?id=869
https://gazebosim.org/home
https://goldenmotor.bike/
https://gitlab.fing.edu.uy/christopher.friss/rosemary
https://gitlab.fing.edu.uy/christopher.friss/rosemary

ples, challenges, and trends for automotive lidar and perception systems.
IEEE Signal Processing Magazine, 37(4), 50-61.

Lidar Ims101-10000. (s.f). https://www.sick.com/br/es/catalog/
productos/sensores-lidar-y-de-radar/sensores-lidar/lmslxx/
1ms101-10000/p/p346868. (Accessed: 2025-02-23)

Magic pie 3 e-bike conversion kit. (s.f.). https://www.goldenmotor.com/
magicpie/magicpie.html. (Accessed: 2025-02-23)

Malu, S. K., Majumdar, J., y cols. (2014). Kinematics, localization and control of
differential drive mobile robot. Global Journal of Research In Engineering,
14(1), 1-9.

Odroid n2. (s.f.). https://wiki.odroid.com/odroid-n2/odroid-n2. (Acces-
sed: 2024-09-03)

Oliveira, L. F., Moreira, A. P., y Silva, M. F. (2021). Advances in agriculture
robotics: A state-of-the-art review and challenges ahead. Robotics, 10(2),
52.

Paquete de rtabmap enfocado en odometria visual. (s.f.). http://wiki.ros
.org/rtabmap_odom. (Accessed: 2025-08-23)

Paquete turtlebot description. (s.f.). https://wiki.ros.org/turtlebot
_description. (Accessed: 2025-03-31)

Rep 1. (s.f.). https://ros.org/reps/rep-0001.html. (Accessed: 2025-09-27)

Rep 105. (s.f.). https://ros.org/reps/rep-0105.html. (Accessed: 2025-09-
27)

Roboracer. (s.f.). https://roboracer.ai/. (Accessed: 2025-04-16)

Robotics, O. (s.f.). Fuel latest models. https://app.gazebosim.org/fuel/
models. (Accessed: 2025-03-31)

Ros. (s.f.). https://www.ros.org/. (Accessed: 2024-09-03)

Ros gz bridge. (s.f.). https://index.ros.org/p/ros_gz bridge/. (Accessed:
2025-03-31)

Ros humble. (s.f.). https://docs.ros.org/en/humble/index.html. (Acces-
sed: 2025-09-04)

Rviz2. (s.f.). https://docs.ros.org/en/humble/Tutorials/Intermediate/
RViz/RViz-Main.html. (Accessed: 2025-09-04)

Slam toolbox, steve macenski. (s.f.). https://github.com/SteveMacenski/
slam_toolbox. (Accessed: 2025-04-20)

Softbank robotics group corp. (s.f.). https://www.softbankrobotics.com. (Ac-
cessed: 2025-04-16)

Teleop twist keyboard. (s.f.). https://index.ros.org/r/teleop_twist
_keyboard/. (Accessed: 2025-04-06)

Tf2. (s.f.). https://docs.ros.org/en/humble/Concepts/Intermediate/
About-T£2.html. (Accessed: 2025-07-06)

Twist muz. (s.f.). https://wiki.ros.org/twist mux. (Accessed: 2025-04-13)

Urdf. (s.f.). http://wiki.ros.org/urdf. (Accessed: 2024-09-03)

Vesc project. (s.f.). https://vesc-project.com/. (Accessed: 2024-09-03)

vesc, repositorio de fltenth (ahora roboracer). (s.f.). https://github.com/
fitenth/vesc/tree/humble. (Accessed: 2025-04-16)

76

https://www.sick.com/br/es/catalog/productos/sensores-lidar-y-de-radar/sensores-lidar/lms1xx/lms101-10000/p/p346868
https://www.sick.com/br/es/catalog/productos/sensores-lidar-y-de-radar/sensores-lidar/lms1xx/lms101-10000/p/p346868
https://www.sick.com/br/es/catalog/productos/sensores-lidar-y-de-radar/sensores-lidar/lms1xx/lms101-10000/p/p346868
https://www.goldenmotor.com/magicpie/magicpie.html
https://www.goldenmotor.com/magicpie/magicpie.html
https://wiki.odroid.com/odroid-n2/odroid-n2
http://wiki.ros.org/rtabmap_odom
http://wiki.ros.org/rtabmap_odom
https://wiki.ros.org/turtlebot_description
https://wiki.ros.org/turtlebot_description
https://ros.org/reps/rep-0001.html
https://ros.org/reps/rep-0105.html
https://roboracer.ai/
https://app.gazebosim.org/fuel/models
https://app.gazebosim.org/fuel/models
https://www.ros.org/
https://index.ros.org/p/ros_gz_bridge/
https://docs.ros.org/en/humble/index.html
https://docs.ros.org/en/humble/Tutorials/Intermediate/RViz/RViz-Main.html
https://docs.ros.org/en/humble/Tutorials/Intermediate/RViz/RViz-Main.html
https://github.com/SteveMacenski/slam_toolbox
https://github.com/SteveMacenski/slam_toolbox
https://www.softbankrobotics.com
https://index.ros.org/r/teleop_twist_keyboard/
https://index.ros.org/r/teleop_twist_keyboard/
https://docs.ros.org/en/humble/Concepts/Intermediate/About-Tf2.html
https://docs.ros.org/en/humble/Concepts/Intermediate/About-Tf2.html
https://wiki.ros.org/twist_mux
http://wiki.ros.org/urdf
https://vesc-project.com/
https://github.com/f1tenth/vesc/tree/humble
https://github.com/f1tenth/vesc/tree/humble

vesc, repositorio de softbank corp. (s.f.). https://github.com/sbgisen/vesc/
tree/humble-devel. (Accessed: 2025-04-16)

7

https://github.com/sbgisen/vesc/tree/humble-devel
https://github.com/sbgisen/vesc/tree/humble-devel

78

Anexo A

Directorios de la solucion

La solucion de software, presente en el codigo fuente de ITkus, se divide en
los siguientes directorios y archivos.

=/

|-- vesc_driver/

|-- vesc_msgs/

|-- vesc_ikus/

| |-- config/

| |-- description/

| | -- hardware/

| |-- launch/

| |-- maps/

| |-- worlds/

| |-- CMakelLists.txt
| |-- ikus_control.zxml
| | -- package.xml

| |-- setup.cfg

|

[4

¢

-- setup.py
-- README.md

A.1. vesc_ikus

La mayor parte del desarrollo y configuraciones fue volcada sobre este direc-
torio.

config

Dentro del directorio ‘config’, se encuentran archivos ‘.yaml’ que contienen in-
formacion de configuracién para los distintos nodos y paquetes utilizados. Entre
ellos:

Configuracion de ambiente de gazebo
gazebo_controller.yaml

3| gz_bridge.yaml

gz_bridge_rtabmap.yaml
Configuracion de controladora para ros2_control

79

ikus_controllers.yaml
ikus_controllers_without_tf.yaml

Configuracion de rtabmap

rtabmap_icp_odometry.yaml

Configuracion para SLAM y planificactdon de caminos
mapper_params_online_async.yaml
localization_params_online_async.yaml
nav2_params.yaml

Configuracidon de prioridad de comandos tipo Twist
twist_mux.yaml

description
En ‘description’ se incluyen los archivos de descripciéon de hardware del sistema.

Descripcton de hardware general

ikus.urdf.xacro

Descripcitén de hardware, incluyendo distancias, posiciones,
articulaciones

ikus_core.xacro

Apartado de definicion inercial, utilizada en tkus_code.zacro

inertial_macros.xacro

Definicidon del hardware actuador bajo ros2_control, definicion de
plugin de interfaz de hardware, interfaces de estado y comando
y limites

ros2_control.xacro

Definicidon del hardware del sensor, indicando distancias y 17
mites para simulacion en Gazebo

lidar.xacro

hardware
El directorio ‘hardware’ contiene el archivo ‘ikus_hardware.cpp’ en el que se
implementa el componente de hardware utilizado ‘TkusSystemHardware’, que a
su vez utiliza el archivo ‘hardware/include/vesc_ikus/ikus_system.hpp’ para su
definicién.

launch
Los archivos de inicio de distintas partes del sistema se ubican en el directorio
‘launch’

Comienza la ejecuciodon del paquete de odometria wvisual
rtabmap_icp_odometry.launch.py

Archivo de configuracion de sick_scan_zd
sick_scan_xd.launch

Comienza la ejecucion del sistema Ikus, ejecuta paquetes de
ros2_control, twist_mux, entre otros
ikus_mapless.launch.py

Comienza la ejecucion de Ikus simulado, ejecuta Gazebo y paquetes

de ros2_control, twist_muzxz, entre otros
simulator_mapless.launch.py

80

N

Comienza la ejecuciodon del paquete de Mapeo o Localizaciodn
online_async_launch.py

Comienza la ejecucion del paquete de planificacidén de caminos
navigation_launch.py

Comienza online_async_launch.py y navigation_launch.py
slam_and_navigation.launch.py

Comienza lo mismo a tkus_mapless.launch.py sumado a
slam_and_mnavigation. launch.py
ikus.launch.py

Comienza lo mismo a simulator_mapless. launch.py sumado a
slam_and_mnavigation. launch.p
simulator.launch.py

maps
En ‘maps’ se almacenan registros de mapeo realizados en el ambiente simulado.

forest_slam_map.pgm
forest_slam_map.yaml
forest_slam_map_serialized.data
forest_slam_map_serialized.posegraph

worlds

El directorio ‘worlds’ contiene el archivo ‘forest.world’ que es utilizado por la
simulacién en Gazebo para representar un bosque en el ambiente virtual. En
el directorio también se encuentran subdirectorios ‘cardboard_box’ y ‘apple_10’
que contienen recursos que simulan un cajén de madera y un arbol de manzanas.

CMakeLists.txt

Utilizado por ROS 2 para compilar en C++, este describe cémo se construye el
cédigo dentro del paquete. Gracias a la presencia de la herramienta de compi-
lacién ‘ament_cmake_python’, es posible compilar en C++ y Python de forma
conjunta.

ikus_control.xml
En este archivo se realiza una descripcién bésica del componente de hardware,
utilizado por ros2_control.

package.xml
En ‘package.xml’ se listan los paquetes de ROS 2 a utilizar, junto con la des-
cripcién bésica del propio paquete.

81

A.2. Otros directorios y archivos

README.md

El archivo ‘README.md’ contiene informacién ttil sobre la instalacién y
ejecucion de distintos modulos y del sistema en general.
vesc_driver

En este directorio se encuentra una copia del paquete vesc_driver, el cual
contiene definiciones de nodos e interfaces para realizar la comunicacién a bajo
nivel con la controladora Vesc.

vesc_1msgs

Una dependencia del paquete vesc_driver es vesc_msgs. Esta dependencia
surge de la definicién de un tipo de mensaje: ‘VescState.msg’, utilizado para la
comunicacién a bajo nivel con la controladora. En este directorio se encuentra
una copia de vesc_msgs.

82

	Introducción
	Motivación y Objetivos
	Estructura del documento

	Estado del arte
	Development of an Autonomous Mobile Manipulator for Industrial and Agricultural Environments
	Resumen
	Conclusiones

	Advances in Agriculture Robotics: A State-of-the-Art Review and Challenges Ahead
	Resumen
	Conclusiones

	An introduction to the ros2_control framework using a low cost differential drive robot
	Resumen
	Conclusiones

	Marco Teórico
	Introducción
	Robótica
	Vehículos autónomos
	Robot diferencial

	Hardware
	LiDAR
	Encoder
	Motores BLDC
	ESC

	Software
	ROS y ROS 2
	URDF
	Simulación y Gazebo
	Odometría
	SLAM y Navegación

	Solución Propuesta
	Requerimientos
	Especificaciones de Ikus y otras herramientas
	Dimensiones generales
	Actuadores y sensores
	Elementos de cómputo
	Fuentes de poder
	Otros Elementos

	Solución de software
	Arquitectura de la Solución
	SLAM y Navegación
	ros2_control
	Comunicación con Controladora VESC
	Odometría ICP con rtabmap_odom
	Simulación

	Integración del sistema completo

	Experimentación
	Entorno Simulado
	Odometría basada en Ruedas
	Odometría basada en LiDAR
	Análisis

	Entorno Real
	Odometría basada en Ruedas
	Odometría basada en LiDAR
	Análisis y Experimentos en Laboratorio

	Conclusiones y Trabajo Futuro
	Conclusiones
	Trabajo Futuro

	Referencias
	Directorios de la solución
	vesc_ikus
	Otros directorios y archivos

