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Resumen

Este proyecto de grado presenta Ikus, un robot diseñado para el transpor-
te de objetos en entornos agropecuarios. El objetivo principal fue desarrollar
una plataforma robótica con una interfaz clara y documentada en ROS 2 (Ro-
bot Operating System), garantizando compatibilidad con versiones recientes y
fomentando su reutilización en proyectos futuros.

El trabajo se estructuró en tres etapas: (1) implementación de un sistema de
control diferencial en ROS 2 para la comunicación directa con los motores y la
obtención de odometŕıa basada en el movimiento de las ruedas, (2) integración
de un sensor LiDAR, un módulo de odometŕıa visual, mapeo y planificación de
caminos, y (3) construcción de un entorno de simulación para su experimenta-
ción.

La validación se realizó tanto en un mundo simulado en Gazebo como en un
entorno controlado de la Facultad de Ingenieŕıa (Universidad de la República).
Los resultados mostraron que la odometŕıa basada en ruedas presentó limitacio-
nes de precisión frente a la odometŕıa visual apoyada en el LiDAR. La integra-
ción de planificación de caminos a Ikus fue realizada, y como parte del trabajo
futuro se propone la experimentación exhaustiva de la herramienta, junto con
mejoras en el hardware.

Palabras clave: Robótica, ROS 2, Mapeo, Simulación, Ikus, ros2 control

v



vi
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3.4.4. Odometŕıa . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.4.5. SLAM y Navegación . . . . . . . . . . . . . . . . . . . . . 33

vii



4. Solución Propuesta 35
4.1. Requerimientos . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.2. Especificaciones de Ikus y otras herramientas . . . . . . . . . . . 36

4.2.1. Dimensiones generales . . . . . . . . . . . . . . . . . . . . 36
4.2.2. Actuadores y sensores . . . . . . . . . . . . . . . . . . . . 38
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5.2.2. Odometŕıa basada en LiDAR . . . . . . . . . . . . . . . . 70
5.2.3. Análisis y Experimentos en Laboratorio . . . . . . . . . . 71

6. Conclusiones y Trabajo Futuro 73
6.1. Conclusiones . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
6.2. Trabajo Futuro . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

Referencias 75

A. Directorios de la solución 79
A.1. vesc ikus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
A.2. Otros directorios y archivos . . . . . . . . . . . . . . . . . . . . . 82

viii



Caṕıtulo 1

Introducción

1.1. Motivación y Objetivos

La utilización de robots en el sector agropecuario permite aumentar la efi-
ciencia y reducir riesgos y costos en diversas tareas. Sin embargo, los robots
comerciales suelen ser costosos y presentan tecnoloǵıas desactualizadas y, en al-
gunos casos, cerradas. Con el propósito de desarrollar un robot autónomo propio
adaptado a entornos rurales, el Grupo de Investigación en Network Management
/ Artificial Intelligence (MINA) construyó Ikus utilizando componentes accesi-
bles, intercambiables y tecnoloǵıas actualizadas y de código abierto.

Este proyecto tiene como objetivo adaptar Ikus para su integración con li-
breŕıas de ROS 2, dado que ROS es el estándar en el desarrollo de software
para robótica. En este contexto, surge el concepto de ‘rosificación’ de Ikus, lo
que permitirá facilitar la integración con distintos sensores y actuadores en el
futuro, reduciendo costos y complejidad.

Otro de los objetivos del proyecto es incorporar un entorno de simulación
en Gazebo, con el fin de disponer de una plataforma virtual que permita pro-
bar y validar los distintos experimentos. La simulación proporciona un espacio
seguro y flexible para experimentar con diferentes configuraciones de sensores,
actuadores y escenarios propios del entorno agropecuario, reduciendo el riesgo
de daños al robot y al entorno, y acelerando el proceso de desarrollo. De esta
manera, se garantiza una validación temprana de las funcionalidades de Ikus, lo
que facilita futuras extensiones y aplicaciones en campo.

1.2. Estructura del documento

El documento se organiza de la siguiente manera: en el Caṕıtulo 2 se realiza
una revisión del estado del arte, abordando proyectos relacionados y marcos de
referencia relevantes. En el Caṕıtulo 3 se presentan los fundamentos teóricos que
sustentan el desarrollo del sistema, incluyendo descripciones de ROS, control de
motores y simulación, entre otros.
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En el Caṕıtulo 4 se presenta la solución propuesta, detallando los requeri-
mientos, la arquitectura de la solución, presentando las caracteŕısticas de Ikus
y los módulos de software construidos. El Caṕıtulo 5 aborda las pruebas ex-
perimentales realizadas y los resultados obtenidos, mientras que el Caṕıtulo 6
expone las conclusiones y las perspectivas de trabajo futuro.
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Caṕıtulo 2

Estado del arte

En este caṕıtulo se presentan tres trabajos de investigación y desarrollo
enfocados en la robótica móvil aplicada a entornos industriales y agŕıcolas. Cada
uno se estructura en una sección que incluye un resumen del trabajo y las
conclusiones obtenidas por los autores, destacando su relación con el desarrollo
de Ikus. El primer trabajo aborda el diseño e integración de un manipulador
móvil autónomo, el segundo ofrece una revisión del estado actual de la robótica
agŕıcola a nivel global, y el tercero presenta la implementación del framework
ros2 control en una plataforma de bajo costo.

2.1. Development of an Autonomous Mobile Ma-
nipulator for Industrial and Agricultural En-
vironments

La tesis de maestŕıa desarrollada por Giampà (2023) presenta el desarrollo
de un robot móvil manipulador autónomo orientado a automatizar tareas en
entornos industriales y agŕıcolas.

2.1.1. Resumen

El sistema combina una plataforma móvil con un brazo robótico, utilizando
ROS 2 como marco de desarrollo, junto a Nav2 para navegación autónoma
y MoveIt2 para planificación de movimientos. Un componente central es un
actuador neumático blando, construido con piezas impresas en 3D, que permite
manipular objetos delicados, enfrentando el reto de operar de forma autónoma
en ambientes dinámicos y no estructurados mediante la fusión de sensores y
algoritmos robustos.

Este robot, presentado en la figura 2.1, utiliza un robot AgileX Scout 2.0
como base móvil. Este robot móvil tiene una computadora Intel NUC 12 conec-
tada mediante bus CAN, utilizada para recibir datos de los encoders del robot
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y enviar datos de control de velocidad y dirección. El brazo robótico es un Igus
Rebel 6-DoF cobot, refiriéndose por cobot a un robot colaborativo, diseñado
para trabajar junto con humanos en un espacio compartido. Con el objetivo de
realizar detección y reconocimiento de objetos, se utilizó una cámara estéreo
Intel Realsense D435 RGB-D, colocada en una de las articulaciones del brazo
robótico. Para crear mapas de sus entornos y localizar al robot, se utilizó un
LiDAR 3D Ouster OS1-64, con un campo de visión de 360° y un rango de 120
metros. También está equipado con un router TP-Link Archer MR200 para es-
tablecer conexión remota desde una notebook via un punto de acceso Wi-Fi,
permitiendo control y monitoreo remoto.

Figura 2.1: Vista lateral del robot, imagen tomada de ‘Development of an Auto-
nomous Mobile Manipulator for Industrial and Agricultural Environments’ por
Giampà

El proyecto logra integrar distintos componentes de hardware y software bajo
una arquitectura modular que facilita futuras expansiones. Utiliza ros2 control
para un manejo controlado del brazo robótico, mientras que la base móvil utiliza-
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da ya presenta una interfaz integrable con las libreŕıas de Nav2 para planificación
de caminos.

Los resultados evidencian el potencial de este sistema para aumentar la pro-
ductividad, eficiencia y seguridad en la industria y la agricultura, automatizando
tareas repetitivas o peligrosas. Gracias a su diseño modular y al uso de tecno-
loǵıas accesibles, el proyecto sienta las bases para futuras investigaciones y la
creación de robots móviles aún más versátiles e inteligentes.

2.1.2. Conclusiones

El objetivo principal es demostrar la viabilidad de la navegación autónoma
y la manipulación de objetos con diferentes objetivos finales, no para superar
las capacidades humanas, sino para sentar una base sólida para futuras investi-
gaciones y sistemas robóticos más complejos. Se plantea la necesidad de robots
adaptativos e inteligentes que puedan ejecutar una variedad de tareas en esce-
narios reales, como la agricultura y la industria, utilizando hardware y software
accesibles y de bajo costo.

El desarrollo de este sistema permitió comprobar la importancia clave de la
percepción robusta y la localización precisa en entornos cambiantes, destacan-
do el desaf́ıo de fusionar y procesar datos de sensores y de calibrar distintos
componentes de hardware. Se remarca la necesidad de ambientes de simulación
completos para probar y validar el sistema antes de desplegarlo en el mundo
real. La principal lección obtenida es la eficacia de un enfoque iterativo en el
desarrollo robótico, comenzando por tareas simples en simulación y aumentando
progresivamente su complejidad para garantizar adaptabilidad y escalabilidad.

Aunque la integración con ros2 control está enfocada al control del brazo
robótico, sirve como ejemplo de una correcta implementación de un sistema
robótico controlado. Los experimentos realizados logran explicar cómo mejo-
rar el mapeo, localización y planificación de caminos en entornos industriales
y agŕıcolas. Para los experimentos realizados por Giampa, la localización reali-
zada por ‘SLAM Toolbox’ tuvo mejor respuesta a aquella realizada por Nav2
mediante el algoritmo de ‘Localización Adaptativa de Monte Carlo’ (del inglés
Adaptive Monte Carlo Localization).

Por ejemplo, el algoritmo de ‘SLAM Toolbox’ tiene buena respuesta frente
a problemas de localización en entornos con obstáculos dinámicos, y el algorit-
mo ‘AMCL’ tiene peor rendimiento en experimentos basados en rotaciones sin
desplazamiento.

Este proyecto presenta un gran ejemplo a seguir, no solo por el alcance
técnico similar al contexto de Ikus, el cual se integra ros2 control y libreŕıas
de mapeo, localización y planificación de caminos, sino también por el proceso
iterativo incremental que sigue, trabajando en una parte del problema a la vez,
para luego integrar con el panorama completo.
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2.2. Advances in Agriculture Robotics: A State-
of-the-Art Review and Challenges Ahead

El art́ıculo elaborado por Oliveira, Moreira, y Silva (2021) realiza una inves-
tigación del estado del arte de los robots enfocados en el sector agropecuario.

2.2.1. Resumen

Los avances constantes en la robótica agŕıcola buscan responder a desaf́ıos
como el crecimiento poblacional, la urbanización acelerada, la alta competitivi-
dad en la producción de bienes de calidad, la preservación del medio ambiente
y la escasez de mano de obra calificada. En este contexto, el presente art́ıculo
de revisión analiza las principales aplicaciones de los sistemas robóticos en la
agricultura, abarcando tareas como la preparación del terreno, la siembra, el
tratamiento de cultivos, la cosecha, la estimación de rendimiento y la fenotipi-
ficación.

Para cada robot analizado, se consideraron aspectos como su sistema de loco-
moción, aplicación final, presencia de sensores, brazo robótico, uso de algoritmos
de visión por computadora, etapa de desarrollo y páıs de origen. A partir de es-
tas caracteŕısticas, se identificaron tendencias de investigación, errores comunes
y factores que dificultan su comercialización. Además, se destaca la necesidad
de profundizar en cuatro áreas clave para el avance de la agricultura inteligen-
te: sistemas de locomoción, sensores, algoritmos de visión por computadora y
tecnoloǵıas de comunicación. Los resultados indican que la inversión en siste-
mas robóticos agŕıcolas permite alcanzar objetivos tanto a corto plazo, como el
monitoreo de cosechas, como a largo plazo, como la estimación del rendimiento.

2.2.2. Conclusiones

Para promover avances técnicos y cient́ıficos en el ámbito de la agricultura
inteligente, es fundamental conocer los trabajos existentes, evaluando sus for-
talezas, limitaciones y errores comunes, con el fin de identificar las verdaderas
necesidades de mejora. Tras una revisión sistemática de 62 sistemas robóticos
aplicados a tareas agŕıcolas como la preparación del suelo, la siembra, el trata-
miento de cultivos, la cosecha, la estimación de rendimiento y la fenotipificación,
se obtuvieron diversos hallazgos, de los cuales resaltamos aquellos que se rela-
cionan con Ikus: el 6% de los robots agŕıcolas emplean tracción en solo dos
ruedas, el 64,52% no cuenta con brazo robótico, el 22,06% se utiliza en labores
de deshierbe y el 8,82% en tareas generales de agricultura, el 16,53% incorpora
LiDAR, el 35,48% no menciona o no utiliza algoritmos de visión por compu-
tadora, el 80,65% aún se encuentra en fase de investigación, el 16,13% proviene
de América, donde el 13,64% ha sido desarrollado en los Estados Unidos.

Entre las caracteŕısticas más destacadas se encuentran la escasa adopción
de soluciones comerciales estandarizadas, el uso limitado de enfoques de robóti-
ca en enjambre o paralelismo, la baja utilización de algoritmos de visión por
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computadora, aśı como de plataformas versátiles adaptables a distintos culti-
vos.

Para mejorar estos sistemas, se proponen cuatro áreas clave para futuras
investigaciones: sistemas de locomoción, sensores, algoritmos de visión artificial
y agricultura inteligente basada en IoT. Este estudio analizó 62 sistemas robóti-
cos agŕıcolas y reveló un incremento del 22,98% en la tasa promedio de éxito
en la cosecha y una reducción del 42,78% en el tiempo promedio del ciclo de
recolección entre 2014 y 2021. Con avances en las áreas mencionadas, se espera
que la eficiencia y robustez de estos sistemas continúe mejorando, consolidando
su papel como herramientas clave en la transformación del entorno natural a
través de la robótica móvil.

El relevamiento presentado sobre los 62 sistemas robóticos no hace referencia
a las tecnoloǵıas utilizadas ni a si son de código abierto o cerrado.
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2.3. An introduction to the ros2 control frame-
work using a low cost differential drive ro-
bot

El art́ıculo elaborado por Amadi, Mbanisi, y Smit (2024) presenta la cons-
trucción de un robot diferencial económico utilizando ros2 control.

2.3.1. Resumen

Con el creciente uso de la robótica en diversas aplicaciones a nivel mundial,
se vuelve crucial el acceso a hardware para facilitar su desarrollo, especialmente
en contextos educativos y de investigación. Esto es aún más relevante en regiones
donde los robots comerciales son costosos y dif́ıciles de adquirir, lo que puede
limitar el aprendizaje y la innovación en robótica.

Figura 2.2: Diagrama de Hardware de Lidarbot (a), fotograf́ıas de Lidarbot (b y
c), imagenes tomadas de ‘An introduction to the ros2 control framework using
a low cost differential drive robot’ por Amadi y cols.

En respuesta a esta necesidad, se presenta Lidarbot (observado en la figu-
ra 2.2), un robot diferencial de bajo costo y código abierto diseñado como una
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plataforma de inicio para el aprendizaje de temas clave como ROS (Robot Ope-
rating System), SLAM, navegación autónoma y fusión de sensores. Con un costo
aproximado de 250 dólares, el Lidarbot cuenta con los sensores y componentes
necesarios para experimentar con estas tecnoloǵıas.

Este robot también se utiliza como ejemplo para implementar el framework
de control agnóstico al hardware ros2 control, junto con la pila de navegación
Nav2 para planificación de caminos. Su diseño y código fuente están disponibles
públicamente en GitHub, lo que facilita su adopción y adaptación por parte de
estudiantes, docentes e investigadores interesados en robótica.

2.3.2. Conclusiones

Lidarbot fue el robot presentado en el art́ıculo como una alternativa económi-
ca ante plataformas robóticas comerciales para adentrarse en robótica con ROS
2, sensores y actuadores, teoŕıa de control, SLAM y planificación de cami-
nos. El robot sirvió como ejemplo práctico para ilustrar el uso del framework
ros2 control, destacando cómo puede aplicarse junto con la pila de navegación
Nav2 para lograr una navegación autónoma eficiente.

El uso de ros2 control permite centrar los esfuerzos en la configuración y
ajuste de los parámetros del controlador para adaptarse al diseño espećıfico del
robot y en el desarrollo de aplicaciones. Esto es posible gracias a que el frame-
work gestiona aspectos complejos como el sistema de control, el ciclo de vida
del hardware, la comunicación y el acceso al mismo. La experiencia adquirida
con esta plataforma puede trasladarse a sistemas más avanzados.

Se puede decir que Lidarbot es fruto de una ‘rosificación’, dado que el sistema
basa la comunicación entre actuadores y sensores en paquetes y nodos de ROS
2. Estos nodos se ejecutan en la unidad de cómputo, una Raspberry Pi 4 con
Ubuntu server 22.04, con ROS 2 Humble, permitiendo el control remoto v́ıa Wi-
Fi. Se decide incorporar una unidad de medición inercial (IMU) MPU6050 con
el objetivo de complementar la odometŕıa obtenida por ros2 control mediante
el procesamiento de los encoders de las ruedas del Lidarbot.

En términos de mejoras a futuro, se plantean algunas actualizaciones tec-
nológicas. Reemplazar el LiDAR ‘RPLIDAR A1’ por ‘RPLIDAR C1’, el cual
utiliza el ‘tiempo de vuelo’ (TOF) para la medición. Para facilitar el control de
las ruedas con motores de corriente continua: substituir el ‘Waveshare Motor
Driver HAT’ por una Raspberry Pi Pico y un módulo de controladora de motor
‘TB6612FNG’, con intenciones de implementar micro-ROS en la Raspberry Pi
Pico y facilitar la integración con la controladora.
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Caṕıtulo 3

Marco Teórico

3.1. Introducción

En esta sección se busca definir y repasar conceptos que serán nombrados a lo
largo del informe. El caṕıtulo comienza con una breve introducción a la robótica,
ahondando en los veh́ıculos autónomos y robots diferenciales. Luego se presentan
conceptos relacionados al hardware disponible para sistemas robóticos, como
sensores LiDAR y motores BLDC. Por último, se presentan distintos conceptos
y tecnoloǵıas relacionados al software utilizado en el área, introduciendo ROS,
ros2 control, distintas herramientas que estos utilizan y conceptos más generales
como simulación, mapeo y localización, y planificación de caminos, entre otros.

3.2. Robótica

Los robots son piezas de maquinaria programables para cumplir distintas
tareas. Son utilizados en cientos de tipos de industrias, desde entretenimiento,
como animatrónicos, hasta bélicos, como drones de guerra.

Los sensores son dispositivos que permiten obtener información del entorno
mediante la medición de diferentes magnitudes f́ısicas. Los actuadores, en cam-
bio, son aquellos que posibilitan actuar sobre el entorno, pudiendo en algunos
casos modificar las condiciones que luego serán percibidas por los sensores.

Un sistema robótico puede ser programado para utilizar la información sen-
sada del medio, procesarla y generar directivas en base a las restricciones o
modificaciones propuestas por el sistema de control, que son luego interpreta-
das por los actuadores. En la figura 3.1 se presenta un esquema de un sistema
robótico simple.

3.2.1. Veh́ıculos autónomos

“An intelligent robot is a machine able to extract information from
its environment and use knowledge about its world to move safely
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Figura 3.1: Interacción de sistema simple, imagen tomada de Fundamentos de
Robótica Autónoma - Unidad 1.2

in a meaningful and purposive manner.”
- Arkin (1998), p.3

Un veh́ıculo robótico autónomo cumple con las caracteŕısticas de robot in-
teligente de Arkin: ‘una máquina capaz de extraer información del ambiente y
utilizar conocimiento sobre el entorno para moverse con sentido y propósito’.

Los veh́ıculos autónomos normalmente se componen de cámaras o sensores
de distancia y ruedas o algún tipo de pierna mecánica con varias articulaciones.
Son capaces de sensar el entorno y estimar sus posiciones en el espacio y dis-
tancias respecto a obstáculos que los rodean. A su vez, su unidad de cómputo y
su programación indican una serie de velocidades, potencias o ángulos deseados
a los motores en ruedas o pies, modificando la posición con sentido, intentan-
do cumplir ese objetivo que Arkin nombra ‘propósito’. Existen robots que son
denominados de ‘propósito general’; son aquellos a los que no se les asigna un
propósito espećıfico y tienen versatilidad para adaptarse (o ser adaptados) según
sean necesarios.

El robot Jackal (Figura 3.2), un Veh́ıculo Terrestre No Tripulado (UGV)
fabricado por Clearpath Robotics, cumple con las caracteŕısticas de ‘propósi-
to general’, ya que es posible comprar o desarrollar distintos subsistemas de
integración para diferentes escenarios.

3.2.2. Robot diferencial

Un robot es considerado un robot ‘diferencial’ si tiene dos ruedas motorizadas
una opuesta de la otra, junto con alguna rueda giratoria de apoyo, como el que
se observa en la figura 3.3. Para lograr mover el robot hacia adelante, ambas
ruedas deben moverse a la misma velocidad en direcciones opuestas. Para girar
a la derecha, la rueda izquierda debe moverse más rápido que la derecha, y
viceversa para girar a la izquierda. También es posible realizar un giro en el
lugar moviendo las ruedas a la misma velocidad en la misma dirección. Las
ruedas giratorias de apoyo agregan estabilidad al sistema.
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Figura 3.2: Robot Jackal de Clearpath Robotics, imagen tomada de Clearpath
Robotics

3.3. Hardware

3.3.1. LiDAR

LiDAR (Light Detection and Ranging, o Detección y Medición por Luz) es
un método de sensado que utiliza luz en forma de láser para medir distancias.
Las utilidades de un sensor de este tipo en robótica vaŕıan desde el mapeo en
dos o tres dimensiones de un área, hasta el reconocimiento y seguimiento de
objetos.

Como ejemplo, el siguiente sistema de sensor LiDAR emite FMCW láse-
res (Frequency Modulated Continuous Wave laser, o láser de onda continua y
frecuencia modulada) en distintas direcciones. Estos pulsos emitidos son proyec-
tados sobre obstáculos en el entorno, y su luz es detectada por otro módulo del
sensor. Basándose en el ToF (Time of Flight o tiempo de vuelo) asociado a cada
frecuencia emitida, la unidad de procesamiento del sensor genera un grupo de
datos conocido como nube de puntos, donde cada uno de esos puntos contiene
la distancia sensada hacia el obstáculo más cercano en la dirección en la que fue
emitido cada láser. Como se observa en la figura 3.4, utilizando herramientas
de visualización, es posible observar una representación de esa nube de puntos
sensada de la realidad.

En la figura 3.5 se observa la solución más popular actualmente para LiDAR
en automóviles: el sistema de giro mecánico, el cual dirige los láseres mediante
un espejo o prisma, controlado por un motor para realizar el giro, para generar
un amplio campo de visión.
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Figura 3.3: Robot diferencial, imagen tomada de ’Kinematics, localization and
control of differential drive mobile robot’ por Malu y cols. (2014)

Figura 3.4: Ejemplo de sistema de LiDAR, tomada de ’Lidar for autonomous
driving: The principles, challenges, and trends for automotive lidar and percep-
tion systems’ por Li y Ibanez-Guzman (2020)

3.3.2. Encoder

Un encoder es un dispositivo electrónico que se encarga de medir posiciones,
desplazamientos o velocidades de componentes giratorios. Existen distintos tipos
de encoders que realizan sus mediciones en base a diferentes fenómenos f́ısicos.

Los encoders pueden clasificarse según su principio de funcionamiento en:

Encoders ópticos: Utilizan un disco perforado y un sistema de LED y
fotodetector para detectar el movimiento mediante interrupciones de luz.

Encoders magnéticos: Emplean sensores de efecto Hall o magnetorresis-
tivos para detectar cambios en campos magnéticos generados por imanes
en movimiento.

Encoders capacitivos: Detectan variaciones de capacitancia causadas
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Figura 3.5: Ejemplo de sistema de LiDAR con giro mecánico, tomada de Li y
Ibanez-Guzman (2020)

por el movimiento de un rotor.

Encoders Magnéticos - Efecto Hall

El efecto Hall ocurre cuando un semiconductor, al ser expuesto a un campo
magnético, genera una diferencia de potencial en sus extremos. Este fenómeno
se debe al desplazamiento interno de cargas eléctricas provocado por las ĺıneas
de fuerza del campo magnético, resultando en una diferencia de tensión propor-
cional a la intensidad del flujo magnético.

En los encoders magnéticos basados en efecto Hall, un sensor detecta el paso
de los polos magnéticos de un imán montado en el eje del motor. Cada cambio de
polaridad genera un pulso eléctrico que permite determinar la posición angular
y la velocidad de rotación del eje.

3.3.3. Motores BLDC

Los motores de corriente continua sin escobillas o BLDCs (del inglésBrushLess
DC) son motores que utilizan imanes y bobinados que generan campos magnéti-
cos para generar movimiento en base a un eje.

Usualmente, los BLDC suelen tener imanes fijos en el rotor y bobinados en
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el estator. Uno de los principios fundamentales de estos motores es que el campo
magnético generado por las bobinas del estator se sincroniza con el producido
por los imanes del rotor, permitiendo un movimiento eficiente y controlado.

En los motores BLDC, los sensores de efecto Hall se utilizan para detectar la
posición del rotor en tiempo real, permitiendo un control preciso de la conmuta-
ción de las bobinas del estator. Los motores requieren controladoras que logren
manejar correctamente la intensidad de corriente que pasa por esas bobinas en
cada momento, y que puedan interpretar la información medida por el sensor.

3.3.4. ESC

Una controladora electrónica de velocidad o ESC (del inglésElectronic Speed
Controller) es un dispositivo electrónico utilizado para controlar la velocidad
y dirección de motores eléctricos, especialmente en aplicaciones de veh́ıculos
eléctricos, drones y robots. Los ESCs se encargan de regular el flujo de enerǵıa
entre la fuente de alimentación y el motor, manteniendo un manejo preciso de
aceleración y desaceleración. Para los BLDC, los ESCs son capaces de gestionar
la conmutación de las fases del motor, y algunos permiten la lectura de encoders
presentes en el motor, como por ejemplo de encoders basados en sensores del
efecto Hall.

Dentro del universo de los ESCs, VESC (por Vedder ESC) representa una
solución avanzada y de código abierto creada por Benjamin Vedder. Vedder
publicó todos sus diagramas de circuitos y software de forma gratuita, junto con
varios posteos en su blog, con el objetivo de que hobbyistas puedan construir
sus propios veh́ıculos y puedan controlarlos fácilmente hasta con sus celulares.

El proyecto de Vedder incluye una ESC de motores BLDC junto a su firm-
ware, y un programa de computadora que permite comunicarse con la ESC y el
motor al que está conectada: VESC Tool. Mediante la interfaz gráfica de VESC
Tool es posible controlar la velocidad, torque, potencia e intensidades máximas
y mı́nimas del motor. También es posible acceder a la información obtenida del
encoder, interpretada como cantidad de revoluciones realizadas

En su Foro, Vedder presenta los diagramas para la construcción del circuito
de VESC, junto con puntos de venta donde es posible comprarla armada.

Utilizando la interfaz de la controladora proporcionada por Vedder, obten-
dremos control de los motores y lectura sobre la cantidad de revoluciones que
realizan.

3.4. Software

3.4.1. ROS y ROS 2

ROS, o Robotic Operating System, es un conjunto de libreŕıas y herramientas
open source, utilizadas para construir software para robots. Utilizar libreŕıas
estándar ayuda a abstraer el contexto de bajo nivel de los actuadores y sensores
utilizados, permitiendo ejecutar programas en C y Python sobre los robots. ROS
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Figura 3.6: Circuito de Controladora VESC, indicando conexiones de: el sensor
Hall arriba a la izquierda, USB para unidad de cómputo junto al del sensor
hall, las 3 fases del motor a la derecha. A la izquierda rojo indica positivo y
negro negativo, los cuales se conectan a la fuente de poder. Imagen tomada
originalmente de Benjamin Vedder

maneja distintas distribuciones, las cuales buscan facilitar la compatibilidad con
las distintas versiones de Ubuntu.

ROS también existe en su segunda versión, ROS 2, la cual tiene sus propias
distribuciones orientadas a versiones más recientes de Ubuntu y otros sistemas
operativos. ROS 2 aprende de los aciertos y errores cometidos en la construcción
de ROS, y define un camino más estable para el desarrollo de la robótica en los
próximos años.

Funcionamiento de ROS

A continuación se listarán algunos conceptos básicos de ROS junto a una
especificación para su uso en ROS 1 y ROS 2.

Nodos
ROS ejecuta procesos denominados ‘nodos’ a los cuales se les adjudican

tareas espećıficas. Los nodos son parte de un ‘paquete’, los cuales pueden ser
propios o creados por la comunidad de ROS.

1

2
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3 ### ROS - Noetic

4 ### Ejecutar nodo

5 $ rosrun [nombre_paquete] [nombre_nodo]

6

7 # Listar nodos en ejecuci ón

8 $ rosnode list

9

10 ######

11

12 ### ROS 2 - Humble

13 ### Ejecutar nodo

14 $ ros2 run [nombre_paquete] [nombre_nodo]

15

16 ### Listar nodos en ejecuci ón

17 $ ros2 node list

Launch
Para ejecutar distintos nodos en simultáneo o con relación entre śı, se uti-

lizan archivos de tipo ‘launch’, que especifican los distintos nodos y algunos
parámetros base.

1 ### ROS - Noetic

2 ### Ejecutar archivo de lanzamiento

3 $ roslaunch [nombre_paquete] [archivo.launch]

4

5 ######

6

7 ### ROS 2 - Humble

8 ### Ejecutar archivo de lanzamiento

9 $ ros2 launch [nombre_paquete] [archivo.launch.py]

Tópicos
Los nodos pueden publicar datos a través de canales de comunicación llama-

dos ‘tópicos’, o suscribirse a ‘tópicos’ expuestos por otros nodos para procesar
dichos datos. En la figura 3.7 se observa una representación de la interacción
entre nodos a través de tópicos.

1 ### ROS - Noetic

2 ### Listar tó picos

3 $ rostopic list

4

5 ### Publicar en un tó pico

6 $ rostopic pub /[ nombre_topico] [tipo_mensaje] "{data: ’mensaje ’}"

7

8 ### Suscribirse a un tó pico

9 $ rostopic echo /[ nombre_topico]

10

11 ######

12

13 ### ROS 2 - Humble

14 ### Listar tó picos

15 $ ros2 topic list

16
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17 ### Publicar en un tó pico

18 $ ros2 topic pub /[ nombre_topico] [tipo_mensaje] "{data: ’mensaje

’}"

19

20 ### Suscribirse a un tó pico

21 $ ros2 topic echo /[ nombre_topico]

Figura 3.7: Representación de interacción entre nodos a través de tópicos

Los mensajes en ROS están organizados en paquetes y se definen en archivos
.msg. Los paquetes más comunes con tipos de mensajes incluyen:

std msgs: Contiene mensajes básicos como String, Int32, Float64, etc.

geometry msgs: Contiene estructuras de datos geométricas como ‘Twist’, que
expresa velocidades de un objeto separandolas entre partes lineales y angulares,
o Pose, que representa la posición de un objeto en el espacio en base a su posi-
ción y orientación, entre otros.

sensor msgs: Contiene mensajes relacionados con sensores como Image, ob-
tenida de cámaras, donde el mensaje contiene la imagen sin procesar junto a
información complementaria (tamaño de imagen i.e.), o LaserScan, obtenida de
LiDARs por ejemplo, reprentando en metros la distancia del sensor a los objetos
y paredes a su alrededor, entre otros.

nav msgs: Contiene mensajes para navegación como Odometry, que repre-
senta la pose y velocidad estimada en el espacio, utilizando mensajes similares
a Pose y Twist, u OccupancyGrid, que representa un mapa en una grilla 2D,
donde cada celda contiene la probabilidad de que el espacio que representan esas
coordenadas esté ocupado, entre otros.

Una estructura interesante es la de geometry msgs/Twist, la cual es normal-
mente utilizada para enviar comandos de velocidad a robots a través del tópico
‘cmd vel‘. Su agrupación en velocidad lineal indica velocidad en m/s en cada
eje x,y,z, y para velocidad angular, con velocidad en rad/s en cada eje x,y,z. En
el caso de los ejes x,y,z en velocidad angular, se hace referencia a los ángulos de
navegación ‘roll, pitch, yaw’ o ‘alabeo, cabeceo, dirección’.
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A continuación se ejemplifica cómo se enviaŕıa un comando para un movi-
miento hacia adelante con un giro antihorario en simultáneo:

1 geometry_msgs/Twist

2 -------------------

3 Vector3 linear

4 float64 x

5 float64 y

6 float64 z

7 Vector3 angular

8 float64 x

9 float64 y

10 float64 z

11

12 ### ROS - Noetic

13 ### Publicar mensaje de tipo Twist en el tó pico cmd_vel

14 $ rostopic pub /cmd_vel geometry_msgs/Twist "

15 {

16 linear: {x: 0.5, y: 0.0, z: 0.0},

17 angular: {x: 0.0, y: 0.0, z: 1.0}

18 }

19 "

20

21 ######

22

23 ### ROS 2 - Humble

24 ### Publicar mensaje de tipo Twist en el tó pico cmd_vel

25 ros2 topic pub /cmd_vel geometry_msgs/Twist "

26 {

27 linear: {x: 0.5, y: 0.0, z: 0.0},

28 angular: {x: 0.0, y: 0.0, z: 1.0}

29 }

30 "

REP
Las propuestas de mejoras de ROS o REP (del inglés ROS Enhancement

Proposals) son documentos de diseño que proveen información a la comunidad
de ROS, describiendo normalmente nuevas funcionalidades, procesos, entornos
y convenciones.

TF2

TF2 es la libreŕıa de ROS 2 encargada de gestionar transformaciones entre
diferentes sistemas de coordenadas, permitiendo transformar puntos, vectores y
posiciones entre distintos marcos de referencia, incluso en diferentes momentos
del tiempo.

Este sistema organiza los marcos de referencia en una estructura de árbol,
en la que cada nodo representa un marco, y las relaciones entre ellos (transfor-
maciones) son almacenadas en un búfer temporal. En las figuras 3.8 y 3.9 se
observan distintas representaciones de transformaciones entre marcos, la prime-
ra se enfoca en los tiempos en los que se publicaron, mientras que la segunda
en las posiciones entre los marcos.
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El REP 105 especifica convenciones de nomenclatura y semántica para mar-
cos de plataformas móviles de ROS: base link, odom y map.

base link

El marco base link está asociado a la base del robot móvil. Se utiliza como
el punto de referencia para el robot

odom

El marco odom es un marco fijo globalmente, funciona como una fuente
de ‘verdad’ absoluta frente al movimiento realizado. La pose de un robot en el
marco odom es continua, es decir que la pose de la plataforma móvil se actualiza
de manera uniforme sin realizar saltos discretos. Este marco se computa en base
a una fuente de odometŕıa, como basada en ruedas, en visión, o utilizando una
Unidad de medición inercial (IMU). Odom suele acumular un error denominado
‘deriva’ o ‘drift’ en la pose de la plataforma móvil, por lo que suele ser preciso
como referencia a corto plazo, pero a medida que avanza el tiempo su precisión
se disminuye.

map

El marco map también es un marco fijo, con su eje Z apuntando hacia arriba.
Este marco no es continuo, por lo que la pose de la plataforma móvil puede
realizar saltos discretos en cualquier momento. En configuraciones t́ıpicas, un
componente de localización está constantemente computando la pose del robot
en base a los sensores visuales, realizando ‘saltos’ al actualizarla, eliminando aśı
errores de drift.

Figura 3.8: Ejemplo de árbol de transformaciones en ROS 2 con TF2, tomada
de la documentación de TF2.
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Figura 3.9: Representación visual en Rviz2 de transformaciones entre marcos.

Publicación de transformaciones
Para publicar transformaciones, se utiliza el tipo de mensaje

‘geometry msgs/msg/TransformStamped’. Cada mensaje define una transfor-
mación desde un marco padre a un marco hijo.

Por ejemplo:

1 geometry_msgs ::msg:: TransformStamped transform;

2 transform.header.stamp = rclcpp ::Time::now();

3 transform.header.frame_id = "base_link ";

4 transform.child_frame_id = "laser";

5 transform.transform.translation.x = 0.2;

6 transform.transform.translation.y = 0.0;

7 transform.transform.translation.z = 0.1;

8 // Se puede utilizar tf2:: Quaternion para convertir de RPY (roll ,

pitch , yaw) a cuaterni ón

9 transform.transform.rotation = tf2::toMsg(quaternion);

Este fragmento indica que el marco ‘laser’ está ubicado a 20 cm hacia ade-
lante y 10 cm hacia arriba del marco ‘base link’.

tf2 tools
Utilizando la herramienta ‘tf2 tools’ es posible obtener una visualización

de las transformadas y sus relaciones como se observa en la figura 3.8. Este
diagrama se genera y exporta en un archivo en formato .pdf una vez ejecutado
este comando:

22



1 ros2 run tf2_tools view_frames

Teleop Twist Keyboard

El paquete teleop twist keyboard se utiliza para enviar mensajes de tipo
‘geometry msgs/Twist’ en un tópico, normalmente ‘cmd vel’, a partir de las
teclas presionadas.

El paquete puede utilizarse en una terminal de la siguiente manera:

1

2 $ ros2 run teleop_twist_keyboard teleop_twist_keyboard --ros -args

--remap

3 cmd_vel :=/ ikus_base_controller/cmd_vel_unstamped

4

5 ### --remap tambi én puede utilizarse como -r

Twist MUX

El paquete twist mux se utiliza para multiplexar distintos comandos de ve-
locidad (en tópicos que aceptan mensajes Twist) permitiendo priorizarlos o des-
habilitarlos.

Este paquete se ejecuta de la siguiente manera:

1 ros2 run twist_mux twist_mux.launch --params -file twist_mux.yaml

El archivo de configuración ‘twist mux.yaml’ puede contener los siguientes
parámetros:

name: Nombre de la configuración, utilizado para depuración.
topic: Nombre del tópico de ROS, el nodo twist mux se suscribirá al tópico.

Debe ser de tipo ‘geometry msgs/Twist’
timeout: Tiempo de vida del mensaje. En caso de que no llegue otro mensaje

antes de que pase este tiempo, se selecciona otro tópico.
priority: Prioridad del tópico desde 0 a 255. Cuanto más alto, más prioridad

frente a otros tópicos.
Ejemplo de archivo de configuración:

1 twist_mux:

2 ros__parameters:

3 publish_rate: 10.0

4 topics:

5 navigation:

6 topic : cmd_vel

7 timeout : 0.5

8 priority: 10

9 keyboard:

10 topic : cmd_vel_key

11 timeout : 0.5

12 priority: 100

13 joystick:

14 topic : cmd_vel_joy

15 timeout : 0.5
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16 priority: 110

En el ejemplo, el tópico asociado al nombre ‘joystick’ (‘cmd vel joy’) tiene más
prioridad que el asociado al nombre ‘keyboard’ (‘cmd vel key’), y ambos tienen
mucha más prioridad que el asociado al nombre navigation (‘cmd vel’)

Rviz2

Rviz2 es una herramienta de visualización 3D para ROS.

Figura 3.10: Representación en la interfaz gráfica de Rviz

Esta herramienta permite visualizar información obtenida a través de tópi-
cos de distintas formas. Es posible observar transformaciones realizadas por un
robot, actualizando la posición y forma en tiempo real a través del tópic ‘tf2’,
como muestra la figura 3.10. También es posible visualizar representaciones de
información obtenida de sensores. Con un LiDAR por ejemplo, que puede ex-
ponerse en tópicos de tipo ‘sensor msgs/LaserScan’, puede verse representada
con un punto por cada distancia sensada respecto al origen, como muestra la
figura 3.10 con puntos rojos.

Rviz2 también cuenta con distintos atajos para simplificar el uso de herra-
mientas de paquetes de Ros 2, evitando utilizar la ĺınea de comandos. Existe un
atajo para guardar mapas obtenidos a partir de tópicos, para luego ser cargados
y utilizados en localización. Otro, como se observa en la figura 3.11 permite
indicar una posición objetivo en el espacio 2D, para ser aplicados por el paquete
de planificación de caminos.

Es posible guardar configuraciones de Rviz2 para simplificar el uso las próxi-
mas veces. Para ejecutar Rviz2, simplemente:
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Figura 3.11: Atajo para indicar posición objetivo en Rviz2

1 $ rviz2

ros2 control

ros2 control es un framework para control en tiempo real de robots usando
ROS 2. El objetivo es simplificar la integración de piezas de hardware y utilizar
el trabajo ya construido sobre el control de robots. Se basó en reconstruir los
paquetes de ros control, la versión utilizada para el mismo propósito en ROS 1.

El paquete de ros2 control actúa como intermediario entre el sistema de
software y las controladoras f́ısicas de los dispositivos. Esta herramienta cuenta
con distintos módulos que interactúan entre śı, abstrayendo la vinculación entre
el software y el hardware.

Arquitectura
ros2 control presenta distintos módulos y conceptos: Controller Manager (ad-

ministrador de controladoras), Resource Manager (administrador de recursos),
Controllers (controladoras), Hardware Components (represetanción abstracta
del componente de hardware), State Interface (Interfaz de estado), Command
Interface (Interfaz de Comandos) y Hardware Description (Descripción de hard-
ware).

En la figura 3.12 se muestran los componentes que serán descritos en esta
sección.
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Figura 3.12: Arquitectura de ros2 control, tomada de la documentación de
ros2 control

Controller Manager

El Controller Manager (CM) se encarga de conectar las controladoras (con-
trollers) y las abstracciones de hardware de ros2 control (Hardware Compo-
nents). El CM es capaz de cargar, activar, desactivar y descargar controladoras
y las interfaces que necesiten. A su vez, tiene acceso a los componentes de hard-
ware a través del Resource Manager. De esta manera es capaz de actuar como
intermediario leyendo y escribiendo entre las interfaces de los componentes de
hardware y las controladoras. También se encarga de reportar errores en caso
de que la carga de una controladora falle.

En la ejecución del ciclo de control, la lectura de la información de los com-
ponentes de hardware, la actualización de los controladores activos y la escritura
de los resultados en los controladores son otras de las responsabilidades del CM
a través del método ‘update()’.
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Resource Manager
El Resource Manager (RM) abstrae la interacción entre el hardware f́ısico

(una ESC por ejemplo) y el software que lo controla, llamado Hardware Compo-
nents (componente de hardware). Carga los componentes y administra su ciclo
de vida junto con las interfaces de estado y comandos que éstos exponen.

Esta abstracción permite la reutilización de componentes de hardware ya
implementados y flexibilidad a la hora de utilizar las interfaces de estado y
comandos, por ejemplo, aislando la implementación a bajo nivel del resto del
sistema.

En el ciclo de control, el RM se encarga de los métodos de lectura (‘read()’)
y escritura (‘write()’) que se encargan de la comunicación con los componentes
de hardware.

Controllers
Las controladoras (controllers) de ros2 control son programas basados ba-

se de la teoŕıa de control. Comparan los valores de referencia con los valores
medidos y, basados en la diferencia, calculan una nueva entrada al sistema.
Las controladoras se implementan extendiendo la clase ‘ControllerInterface’, la
cual forma parte del paquete ros2 control. También existe una libreŕıa de con-
troladoras t́ıpicas creadas por la comunidad, por ejemplo ‘DiffDriveController’,
utilizada para control en robots diferenciales. El ciclo de vida de estas controla-
doras está inspirado en el ciclo de vida definido para los nodos de ROS 2. En la
figura 3.13 se ilustra la máquina de estados que describe este proceso, mostrando
las distintas fases y transiciones que experimentan durante su operación.

El método ‘update()’ del ciclo de control permite que las controladoras ac-
cedan a las interfaces de estado más recientes y escriban sobre las interfaces de
comando.

Hardware Components
Los componentes de hardware, implementados como plugins, se encargan de

la comunicación entre el dispositivo f́ısico y la abstracción que realiza ros2 control.
El RM carga dinámicamente los componentes de hardware y administra sus ci-
clos de vida, también basados en el ciclo de vida de nodos de ROS 2 de la
figura 3.13.

Existen tres tipos básicos de componentes:
Sistema (System):

Hardware complejo, de múltiples grados de libertad. Este tipo de componente
tiene capacidades de lectura y escritura. La principal diferencia entre este y el
actuador es la posibilidad de utilizar transmisiones complejas, por ejemplo, en
el caso de manos robot humanoides.

Sensor:
Hardware utilizado para sensar el entorno. Este tipo de componente solamente
puede usarse como lectura.

Actuador (Actuator):
Hardware robótico simple, de un grado de libertad (1 DOF, del inglés Degree of
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Figura 3.13: Ciclo de vida de nodos en ROS2, tomada de design.ros2.org

Freedom), como motores, válvulas, etc. La implementación de un actuador se
relaciona a una única articulación. Este tipo de componentes tiene capacidades
de lectura y escritura, aunque las de lectura son opcionales.

La definición de los componentes de hardware se realiza a través del ‘Hard-
ware Interface’, en el que se implementa un conjunto de métodos definidos por
la clase que hereda: ‘SystemInterface’, ‘SensorInterface’ o ‘ActuatorInterface’

Interfaces
Las interfaces de estado y comandos son utilizadas por las controladoras

(controllers) para comunicarse con el resto del sistema que utiliza ROS. La
interfaz de estado es solamente de lectura y permite al sistema acceder a la
información obtenida a partir del procesamiento de las controladoras, y el estado
en el que el componente de hardware se encuentra.

La interfaz de comandos se utiliza para que los mensajes recibidos por la
controladora de parte del resto del sistema sean escritos como comandos para
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ser interpretados por los componentes de hardware.
Existen distintos tipos de interfaces disponibles en ros2 control, los cuales

son utilizados para distintos tipos de piezas de hardware y sus controladoras
(controllers). Estos pueden ser: velocidad, posición, potencia, esfuerzo, tempe-
ratura, entre otros.

Hardware Description
Dentro de los archivos en formato URDF (Unified Robot Description Format,

un formato que se explicará en detalle en la Sección 3.4.2) utilizados en la
descripción f́ısica del robot, ros2 control utiliza el tag ‘< ros2 control >’ para
describir los componentes de hardware con los que interactúa. Por ejemplo, el
siguiente fragmento ilustra la configuración para dos articulaciones de un brazo
robótico, donde se incluyen los ĺımites en radianes permitidos (en este caso entre
-1 y 1) para la posición angular de los actuadores asociados a esas articulaciones:

1

2 <!-- Nombre y tipo del componente de hardware -->

3 <ros2_control name="RRBotSystemPositionOnly" type="system">

4 <hardware >

5 <!-- Directorio del plugin del componente hardware -->

6 <plugin >ros2_control_demo_hardware/

RRBotSystemPositionOnlyHardware </plugin >

7 </hardware >

8 <!-- Primera Articulaci ón -->

9 <joint name="joint1">

10 <!-- Interfaz de comandos de posici ón, definiendo valores má

ximos y mı́ nimos -->

11 <command_interface name="position">

12 <param name="min">-1</param>

13 <param name="max">1</param>

14 </command_interface >

15 <!-- Interfaz de estado de posici ón-->

16 <state_interface name="position"/>

17 </joint>

18 <!-- Segunda Articulaci ón -->

19 <joint name="joint2">

20 <command_interface name="position">

21 <param name="min">-1</param>

22 <param name="max">1</param>

23 </command_interface >

24 <state_interface name="position"/>

25 </joint>

26 </ros2_control >

Interfaz de usuario
A su vez, el CM expone una interfaz de usuario, la cual se integra con la in-

terfaz de ĺınea de comandos de ROS 2, permitiendo aśı administrar y supervisar
las controladoras y componentes de hardware.

1 # Ejemplos de comandos de ros2_control disponibles en la interfaz

de linea de comandos de ROS 2:

2
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3 # Lista controladoras , indicando su estado

4 $ ros2 control list_controllers

5 diffbot_base_controller[diff_drive_controller/DiffDriveController]

active

6 joint_state_broadcaster[joint_state_broadcaster/

JointStateBroadcaster] active

7

8

9 # Listar interfaces de hardware

10 $ ros2 control list_hardware_interfaces

11 command interfaces

12 left_wheel_joint/velocity [available] [claimed]

13 right_wheel_joint/velocity [available] [claimed]

14 state interfaces

15 left_wheel_joint/position

16 left_wheel_joint/velocity

17 right_wheel_joint/position

18 right_wheel_joint/velocity

3.4.2. URDF

URDF (Unified Robot Description Format) es un formato de archivo basado
en XML utilizado para definir modelos de robots. Su estructura sigue un es-
quema de árbol, donde los elementos principales son los links (enlaces) y joints
(articulaciones). Dentro de estos, se pueden especificar propiedades clave como
la representación visual, las colisiones y los parámetros de inercia, aśı como la
incorporación de sensores, lo que permite simular datos del entorno. A partir de
estos elementos y sus respectivos valores, es posible construir modelos robóticos
detallados. Estos modelos pueden visualizarse en herramientas como Gazebo o
Rviz, facilitando su simulación y análisis en entornos de ROS. En la figura 3.14
se observa el robot TurtleBot 4 junto a su modelado 3D a partir de un archivo
URDF.

A continuación se presenta un fragmento de un archivo URDF de la defini-
ción de hardware de una rueda:

1 <!-- Asignaci ón de variables globales -->

2

3 <xacro:property name="wheel_radius" value="0.16"/>

4 <xacro:property name="wheel_thickness" value="0.06"/>

5 <xacro:property name="wheel_mass" value="0.5"/>

6 <xacro:property name="wheel_offset_y" value="0.55"/>

7

8 (...)

9

10 <!-- Definici ón de la articulaci ón de la rueda izquierda -->

11 <joint name="left_wheel_joint" type="continuous">

12 <parent link="base_link"/>

13 <child link="left_wheel"/>

14 <origin xyz="0 ${wheel_offset_y} ${wheel_radius}" rpy="-${
pi/2} 0 0" />

15 <axis xyz="0 0 1"/>

16 </joint >

17
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Figura 3.14: Izquierda: TurtleBot 4, tomada de Clearpath Robotics. Derecha:
Modelado 3D de un TurtleBot a partir de archivo URDF tomado de la docu-
mentación de turtlebot description.

18 <!-- Definici ón del enlace de la rueda izquierda , especificando

geometr ı́a, material , área de colisiones e inercia -->

19 <link name="left_wheel">

20 <visual >

21 <geometry >

22 <cylinder radius="${wheel_radius}" length="${
wheel_thickness}"/>

23 </geometry >

24 <material name="blue"/>

25 </visual >

26 <collision >

27 <geometry >

28 <sphere radius="${wheel_radius}"/>
29 </geometry >

30 </collision >

31 <xacro:inertial_cylinder mass="${wheel_mass}" length="${
wheel_thickness}" radius="${wheel_radius}">

32 <origin xyz="0 0 0" rpy="0 0 0"/>

33 </xacro:inertial_cylinder >

34 </link>

3.4.3. Simulación y Gazebo

Al trabajar en proyectos de robótica, la simulación suele ser una muy bue-
na inversión de tiempo y recursos. Esta es capaz de reducir costos y posibles
accidentes, y aumentar el tiempo de vida de los componentes.
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Gazebo es la herramienta más popular en simulación de robots de que utili-
zan ROS y ROS 2. Se encarga de simular en un mundo virtual al robot con sus
piezas de hardware, y permitir que la ejecución del resto del sistema funcione
lo más cercano a la realidad posible.

Al igual que ROS, Gazebo también cuenta con varias versiones, y algunas
son más compatibles que otras frente a distintas versiones de ROS.

Utilizando distintos archivos, es posible simular detalladamente robots y
entornos en los que estos robots se encuentran en el mundo real. En la figura 3.15,
a la izquierda, se puede observar un ejemplo de un robot simulado, y a la derecha,
se puede observar un robot y su entorno simulado, representando el caso de uso
real del mismo.

Figura 3.15: Robot modelado en Gazebo, y Robot y entorno modelados en
Gazebo

Para manejar la interacción entre ROS 2 y Gazebo, se utiliza un paquete
llamado ros gz bridge. Utilizando este paquete, los tópicos de ROS 2 especifica-
dos son escuchados y comunicados a Gazebo, e igualmente, la información sobre
sensores en Gazebo es publicada en tópicos. Un archivo de configuración para
este paquete sigue el siguiente formato:

1 - ros_topic_name: "cmd_vel_unstamped"

2 gz_topic_name: "cmd_vel"

3 ros_type_name: "geometry_msgs/msg/Twist"

4 gz_type_name: "gz.msgs.Twist"

5 direction: ROS_TO_GZ

En este caso, Gazebo seŕıa capaz de interpretar los mensajes de tipo Twist
enviados al tópico ‘cmd vel unstamped’ de ROS 2. La dirección de los mensajes
puede ser: ‘BIDIRECTIONAL’, ‘GZ TO ROS’ o ‘ROS TO GZ’ como indica el
ejemplo.

3.4.4. Odometŕıa

La odometŕıa es un método utilizado en robótica para estimar la posición
y orientación de un robot en el espacio a partir de datos de movimiento. Se
basa en la integración de información proveniente de sensores como encoders
o sistemas de visión. A través del cálculo de desplazamientos y rotaciones, la
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odometŕıa permite obtener una estimación continua de la pose del robot en base
a una referencia. Sin embargo, debido a la acumulación de errores (drift), suele
complementarse con otras técnicas, como la localización basada en mapas y sen-
sores externos. En ROS, la odometŕıa se representa mediante mensajes estándar
como nav msgs/Odometry, que contienen información de posición, velocidad y
covarianza del sistema.

rtabmap odom

RTAB-Map o Real-Time Appearance-Based Mapping (Mapeo en tiempo real
basado en apariencia) es un proyecto de ROS que presenta un conjunto de
paquetes cuyo objetivo es mapear entornos. Uno de los paquetes que RTAB-
MAP ofrece es rtabmap odom, el cual permite estimar odometŕıa a partir de
información visual, como pueden ser imágenes de cámaras estéreo o un LiDAR.

Este paquete publica en el tópico ‘odom’, mensajes de tipo ‘nav msgs/Odometry’,
junto con otros tópicos de información complementaria, y según el tipo de sen-
sores disponibles, espera diferentes tópicos de entrada. En el caso de un sistema
con LiDAR el nodo ‘icp odometry’, por Punto Iterativo más cercano (del inglés
Iterative Closest Point), se esperan mensajes de tipo ‘sensor msgs/LaserScan’
en el tópico ‘scan’, o ‘sensor msgs/PointCloud2’ en ‘scan cloud’, y en el tópico
‘/tf’ espera una transformada entre el marco ‘base link’ al marco de referencia
del sensor utilizado. En caso de un LiDAR por ejemplo, esta transformada va
de ‘base link’ a ‘laser frame’. Se ejecuta de la siguiente manera:

1 ros2 rtabmap_odom icp_odometry

3.4.5. SLAM y Navegación

SLAM que significa Localización y Mapeo Simultáneos (del inglés Simultaneous
Localization And Mapping) es un área fundamental que abarca múltiples dis-
ciplinas, como la robótica.

El concepto de localización se refiere a determinar la pose del objeto en el
espacio, mientras que el de mapeo consiste en representar o visualizar el entorno
que rodea al objeto.

Las técnicas de SLAM pueden clasificarse generalmente en dos categoŕıas:
basadas en visión (normalmente utilizando cámaras estéreo) y basadas en Li-
DAR.

Estas técnicas se utilizan para alimentar algoritmos de planificación de ca-
minos, buscando alcanzar los objetivos evitando obstáculos en el camino.

En la figura 3.17 se muestra un ejemplo de mapeo y localización en Rviz2,
utilizando un sensor LiDAR. El robot se representa mediante una base de color
naranja, con ruedas en azul y un sensor LiDAR en rojo. Los puntos rojos corres-
ponden a las mediciones obtenidas por el sensor, mientras que los obstáculos se
identifican por la acumulación de puntos negros. Las áreas libres de obstáculos
se visualizan en blanco, mientras que las regiones en color turquesa correspon-
den a zonas sin información sensada. En la imagen se aprecian áreas en color
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gris alrededor de los obstáculos. Estas corresponden a las zonas de inflación del
mapa de costos, las cuales representan un aumento en el “costo” de desplaza-
miento al transitar cerca de un obstáculo. Dichas zonas permiten al planificador
de trayectorias evitar no solo colisiones directas, sino también trayectorias de-
masiado cercanas a los objetos, incrementando la seguridad del movimiento del
robot.

Figura 3.16: Representación en Rviz2 de mapas obtenidos con herramientas
SLAM y Nav2

Figura 3.17: Mapeo y localización (izquierda), y costos según zonas asignados
por planificación de caminos (derecha)
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Caṕıtulo 4

Solución Propuesta

4.1. Requerimientos

Llamaremos rosificación al proceso que tiene como objetivo ampliar las ca-
pacidades y mejorar el potencial de un robot mediante la integración con ROS.
Este proceso implica: instalar ROS en el sistema del robot, configurar los con-
troladores para que sean ejecutados y mantenidos por nodos y paquetes ROS
(como ros2 control), utilizar los sistemas de comunicación entre nodos de ROS
(tópicos y servicios), y habilitar el uso de herramientas de simulación y visuali-
zación (Gazebo y Rviz, utilizando URDF). Además, permite la integración con
paquetes ROS de código abierto que facilitan el desarrollo y la interoperabilidad
con distintas herramientas.

En nuestro caso particular, la rosificación se aplica a un robot diferencial
orientado a tareas autónomas en el ámbito agropecuario. Por lo tanto, los es-
fuerzos se centran en resolver aspectos clave como el control de la velocidad de
las ruedas, la determinación de la posición del robot, la navegación en el espacio
y el reconocimiento del entorno.

Bajo el t́ıtulo ‘Rosificando un robot para uso agropecuario’ se identifican los
siguientes requerimientos espećıficos para alcanzar una integración completa y
funcional:

Investigación sobre controladoras VESC y sus interfaces para indicar ve-
locidades y obtener información sensada de las ruedas.

Implementación de un sistema diferencial controlado utilizando ros2 control.

Integración con sensor LiDAR.

Integración con herramienta de odometŕıa visual.

Integración con herramientas SLAM (slam toolbox) para mapeo y locali-
zación basado en referencias.

Integración con herramientas de planificación de caminos (Nav2).
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Modelado 3D de Ikus basado en medidas reales.

Soporte para simular ambientes en Gazebo, compatible con ROS 2 y
ros2 control, incluyendo la creación de escenarios que simulen el caso de
uso real de Ikus.

Archivos de ejecución aptos para distintos casos de uso, parametrizados
adecuadamente.

Documentación clara sobre la ejecución y uso de las herramientas desa-
rrolladas.

4.2. Especificaciones de Ikus y otras herramien-
tas

Ikus es un robot autónomo de propósito general diseñado espećıficamen-
te para entornos agropecuarios. La construcción del hardware fue previamente
realizada por el grupo MINA. Este prototipo fue construido con componentes
accesibles y tecnoloǵıas de código abierto, lo que facilita su mantenimiento y
reproducibilidad. A continuación, se describirán los componentes de hardware
que forman parte de Ikus y algunos componentes que resultaron útiles en el
desarrollo de la solución.

4.2.1. Dimensiones generales

Las dimensiones de Ikus, presentado en la figura 4.1, en su totalidad son: 80
cm de largo, 101 cm de ancho y 47.5 cm de alto.
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Figura 4.1: Ikus, con referencias

Chasis

El chasis se compone de un soporte de metal de 101 cm de largo y 49 cm de
ancho, junto a dos tablas conjuntas de madera, que alargan a Ikus. Estas tablas
unidas miden 80 cm de largo y 60 cm de ancho. El chasis en su completitud no
supera los 10 cm de altura. La distancia del chasis al piso es de aproximadamente
16 cm, la mitad del diámetro de las ruedas actuantes, situadas en los laterales.
Ikus también tiene dos ruedas giratorias de 12,7 cm de diámetro y 3 cm de
grosor, situadas en la parte trasera.
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Número Referencia
1 Fuente regulada y regulable
2 Ruedas con motor, de kit de bicicleta eléctrica Golden

Motor
3 Controladoras VESC
4 Botón de parada de emergencia
5 HUB USB
6 LiDAR LMS101-10000
7 Odroid N2+
8 Bateŕıa genérica de bicicleta eléctrica, de 36v

Tabla 4.1: Referencias para la figura 4.1

4.2.2. Actuadores y sensores

Motores y controladoras

Las ruedas utilizadas para el movimiento controlado de Ikus eran original-
mente parte de un kit de conversión de bicicleta eléctrica llamado Magic Pie
(SMP(E)-12F THUMB 36V KIT), de la empresa Golden Motor. Cada rueda,
de 16 pulgadas de rodado, tiene un motor BLDC en su eje para realizar el giro,
el cual también cuenta con encoders de efecto Hall para realizar mediciones de
la posición de rueda en cada momento.

Figura 4.2: Rueda de 16 pulgadas de rodado del kit ‘Magic Pie’ de Golden Motor

Cada rueda está conectada a una controladora VESC, conectando un cable
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para cada una de las fases necesarias para saltar los pasos del motor, y un cable
para la información sensada por el efecto Hall.

La controladora se conecta a la unidad de cómputo mediante un cable USB.
A través de los métodos del proyecto sbgisen/vesc, la unidad de cómputo esta-
blece y gestiona los canales de comunicación con la controladora.

Cada rueda tiene 32 cm de diámetro y 6 cm de grosor.

LiDAR LMS101-10000

El LiDAR del modelo LIDAR LMS101-10000 tiene un rango angular de
270° y un alcance de 0.5 m hasta 20 m, y puede ser utilizado con luz solar
directa. Gracias a que este sensor está pensado para uso exterior, cumple con
las necesidades de Ikus por estar orientado al uso en el agro. De esta forma, el
sistema podrá obtener información sobre la distancia a los diferentes obstáculos.

Figura 4.3: LiDAR LMS101-10000

Se comunica con la unidad de cómputo central a través de un cable Ethernet
categoŕıa 5. Existe un paquete de ROS 2 llamado sick scan xd utilizado como
controladora de software de LiDAR SICK. A través de este paquete se publica en
un tópico, normalmente llamado ‘/scan’, las distancias percibidas por el LiDAR.
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4.2.3. Elementos de cómputo

Odroid N2

La placa Odroid N2 fue elegida inicialmente como unidad de cómputo de
Ikus, pero fue descartada al haber experimentado interrupciones en la ejecución,
las cuales aparentemente se originaron por falta de memoria.

ThinkPad T470s

Por comodidad, gran parte del desarrollo, configuración y simulación se
realizó sobre una ThinkPad T470s con Ubuntu 22.04.

Sirio 2021

Los experimentos finales fueron realizados con una computadora de Ceibal
Sirio 2021 , ilustrada en la figura 4.4, la cual se montó sobre el chasis de Ikus.
Esta computadora cuenta con un CPU: Intel® Celeron® N4000 @ 1.10 GHz
Dual Core, y 4GB de RAM.

Figura 4.4: Computadora Sirio 2021 montada sobre Ikus
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4.2.4. Fuentes de poder

Bateŕıas

Se utilizó una bateŕıa genérica de bicicleta eléctrica, de 36v y aproximada-
mente 10Ah para alimentar el hardware del sistema: los motores de las ruedas
de Ikus a través de sus controladoras VESC, el LiDAR LMS101-10000 y el HUB
USB. Las unidades de cómputo utilizadas fueron alimentadas por sus propias
bateŕıas o fuentes de alimentación externas.

Fuente Regulada y Regulable

Se utilizó una fuente regulada y regulable genérica como fuente de poder en
pruebas con Ikus en el laboratorio.

4.2.5. Otros Elementos

Botón de parada de emergencia

El boton de parada de emergencia se utiliza en caso de emergencia, está
conectado entre la fuente de poder y la alimentación de las controladoras. Si se
presiona, el sistema motriz del robot deja de ser alimentado inmediatamente.

HUB USB

Se utiliza para ampliar la cantidad de puertos USB disponibles en la unidad
de cómputo y centralizar las conexiones USB.
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4.3. Solución de software

Esta sección comienza explicando la arquitectura de la solución, para lue-
go ahondar en los distintos módulos utilizados. En el anexo A se presenta la
estructura de los directorios de la solución.

4.3.1. Arquitectura de la Solución

En la figura 4.5 se presenta un diagrama de la arquitectura de software de
Ikus. Se muestran con diferentes figuras los distintos tipos de componentes dis-
ponibles: Hardware, Software configurado (es decir, libreŕıas o paquetes de los
que solamente se modificaron parámetros) y Software propio (haciendo referen-
cia a la implementación llevada a cabo en el proyecto). A su vez, se pueden
observar distintas formas de comunicación, las cuales pueden ser tópicos, nom-
bres de métodos o protocolos como USB o Ethernet.

Figura 4.5: Diagrama de la arquitectura de Ikus

En las figuras 4.6, 4.7 y 4.8 se presenta un diagrama de secuencia de inicio
y ejecución del sistema dividido en 3 partes.
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Figura 4.6: Diagrama de secuencia de inicio del sistema de Ikus: Inicio de
ros2 control
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Figura 4.7: Diagrama de secuencia de inicio del sistema de Ikus: Comienzo de
comunicación con controladoras VESC y LiDAR

A continuación se explicará la necesidad de los distintos módulos de la solu-
ción junto a su implementación, configuración y formas de ejecución.

4.3.2. SLAM y Navegación

Para lograr navegación autónoma, el sistema requiere capacidades de SLAM
(Localización y Mapeo Simultáneos) y planificación de trayectorias. Estas fun-
cionalidades de alto nivel dependen fundamentalmente de dos tipos de informa-
ción: datos del sensor LiDAR publicados en el tópico ‘scan’ y transformaciones
espaciales en el tópico ‘tf’ que indican la relación entre el marco de referencia
‘odom’ y ‘base link’.
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Figura 4.8: Diagrama de secuencia de inicio del sistema de Ikus: Inicio de
icp odometry, slam toolbox y nav2, env́ıo de comandos de velocidad a contro-
ladoras VESC

LiDAR y sick scan xd

Para obtener los datos del tópico ‘scan’ requeridos por SLAM, se utiliza el
sensor LiDAR LMS101-10000 junto con el paquete sick scan xd. En el ambiente
simulado, el LiDAR y su comunicación con ROS 2 forman parte de la simulación
de Ikus en Gazebo. Para sensar las distancias desde Ikus f́ısico, se utiliza el
siguiente comando:

1

2 $ ros2 launch sick_scan_xd sick_lms_1xx.launch.py hostname

:=192.168.0.1 frame_id := laser_frame tf_base_frame_id :=

base_link

Se ejecuta el archivo espećıfico para LiDARs de la ĺınea LMS 1XX: ‘sick lms 1xx.launch.py’
con los siguientes parámetros:
hostname: indicando la dirección IP del LiDAR.
frame id: indicando el identificador del marco de referencia del láser.
tf base frame id: indicando el identificador del marco de referencia de la pieza
padre del láser, especificado en la descripción de hardware.

Este paquete publica en el tópico ‘scan’ mensajes de tipo ‘sensor msgs/msg/LaserScan’,
los cuales contienen arreglos de números, donde cada número hace referencia a
la distancia en metros al obstáculo más cercano según su ángulo.
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Para resolver el mapeo, localización y la planificación de caminos de Ikus, se
utilizaron las soluciones de ‘slam toolbox’ y ‘nav2’.

SLAM

La herramienta slam toolbox se suscribe a dos tópicos: ‘tf’ y ‘scan’, para
publicar otros dos tópicos: ‘map’ y ‘pose’.

tf

‘slam toolbox’ requiere que exista una transformada entre los marcos asigna-
dos a ‘odom frame’ y ‘base frame’. También se encarga de proveer una transfor-
mada desde ‘map frame’ a ‘odom frame’, indicando que existe un marco mapa
que contiene una odometŕıa en base a ese mapa. Los nombres de los marcos son
configurados en el archivo de parámetros de tipo ‘.yaml’.

map

En el tópico ‘map’, slam toolbox env́ıa mensajes de tipo ‘nav msgs/OccupancyGrid’,
calculada en base a lo obtenido en los tópicos ‘scan’ y ‘tf’.

pose

El tipo de mensaje ‘geometry msgs/PoseWithCovarianceStamped’ utilizado
en el tópico ‘pose’ contiene la posición estimada en coordenadas con covarianza
y registro temporal, en base al ‘map’ calculado.

Representación

En la figura 4.9 se observa la representación en rviz2 de un mapa obtenido
a partir del ambiente simulado en Gazebo; los obstáculos visibles son aquellos
presentados en la sección 4.3.6, presentados en la figura 4.13.

Ejecución con Ikus

Se construyó un archivo de tipo ‘launch’ espećıfico para la ejecución de
slam toolbox en el contexto de Ikus para aumentar su versatilidad mediante
el uso de parámetros personalizados. Se utiliza ‘slam params file’ para indicar
el archivo de parámetros del paquete ‘slam toolbox’, y ‘use sim true’ para indi-
car si se trata de la ejecución en ambiente simulado o f́ısico.

Para la ejecución de este paquete se utiliza el siguiente comando:

1

2 $ ros2 launch vesc_ikus online_async_launch.py slam_params_file :=./

src/vesc_ikus/config/mapper_params_online_async.yaml

3

4 # En caso de trabajar con ambiente simulado:

5 $ ros2 launch vesc_ikus online_async_launch.py slam_params_file :=./

src/vesc_ikus/config/mapper_params_online_async.yaml

use_sim_time :=true

6

7 # Para localizaci ón: se cambia el archivo de configuraci ón

8 $ ros2 launch vesc_ikus online_async_launch.py slam_params_file :=./

src/vesc_ikus/config/localization_params_online_async.yaml

Parámetros

A partir de los archivos por defecto presentados en la documentación de
‘slam toolbox’, se crearon dos archivos de configuración: ‘mapper params online async.yaml’
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Figura 4.9: Representación en rviz2 de un mapa obtenido a partir del ambiente
simulado

y ‘localization params online async.yaml’, diferenciándose en el tipo de ejecu-
ción. En el caso de ‘mapper’, este se configura con el modo ‘mapping’, ha-
ciendo referencia al mapeo, mientras que el segundo con el modo ‘localiza-
tion’ por localización. El segundo archivo también utiliza un parámetro llamado
‘map file name’, que debe contener la ruta al archivo de mapa guardado ante-
riormente.

En estos archivos también se especifican los nombres de los marcos para el
caso de Ikus.

1 # Secci ón de archivo ’mapper_params_online_async .yaml

2 (...)

3 odom_frame: odom

4 map_frame: map

5 base_frame: base_link

6 scan_topic: /scan

7 mode: mapping

8 (...)
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Navegación

Se utilizó el entorno de trabajo conocido como nav2, el cual provee un gran
nivel de abstracción a la hora de trabajar en la planificación de caminos en base
a obstáculos.

map y tf Este paquete se suscribe a los tópicos ‘map’ (de tipo ‘nav msgs/OccupancyGrid’)
y ‘tf’ (más precisamente a la transformada entre los marcos asignados a ‘map frame’
y ‘odom frame’)

goal pose

El paquete se suscribe al tópico ‘goal pose’ de tipo de mensaje ‘geometry msgs/PoseStamped’,
en el que lee posiciones en el espacio que son interpretadas como ‘objetivo’ o
‘destino’ para el sistema robótico. Una vez interpretado, el entorno de nav2 se
encargará de publicar comandos de tipo ‘geometry msgs/Twist’ necesarios para
intentar cumplir el objetivo.

Es posible publicar un mensaje en el tópico ‘/goal pose’ utilizando la in-
terfaz de rviz2 como se comentó en la sección 3.4.1, o mediante la terminal de
comandos:

1 # Ejemplo de mensaje publicado en goal_pose indicando posici ón

objetivo o destino

2 $ ros2 topic pub /goal_pose geometry_msgs/PoseStamped "

3 { header:

4 { stamp: { sec: 0 },

5 frame_id: ’map ’

6 },

7 pose:

8 { position: { x: 0.2, y: 0.0, z: 0.0 },

9 orientation: { w: 1.0 }

10 }

11 }"

cmd vel y cmd vel nav

Se publican mensajes de tipo ‘geometry msgs/Twist’ en el tópico cmd vel,
el cual renombramos por cmd vel nav para facilitar su identificación a la hora
de realizar experimentos.

‘costmap’ y su representación

Se denomina ‘costmap’ a un mapa que asigna distintos costos a distintas
coordenadas, basándose en la cercańıa a obstáculos. Subscribiendo rviz2 al tópi-
co ‘/global costmap/costmap’ publicado por nav2, se puede ver una represen-
tación del mapa con sus costos, como se observa en la figura 4.10.

Ejecución con Ikus

Al igual que en el caso anterior, con el objetivo de personalizar la experiencia,
se construyó un archivo de tipo ‘launch’ espećıfico para la ejecución de la pila
de paquetes de nav2 en el contexto de Ikus. Se utiliza ‘params file’ para indicar
el archivo de parámetros del paquete ‘nav2’, y ‘use sim true’ para indicar si se
trata de la ejecución en ambiente simulado o f́ısico.

Para la ejecución de este paquete se utiliza el siguiente comando:

1
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Figura 4.10: Representación en rviz2 de un mapa con costos obtenido a partir
del ambiente simulado

2 $ ros2 launch vesc_ikus navigation_launch.py params_file :=src/

vesc_ikus/config/nav2_params.yaml

3

4 # En caso de trabajar con ambiente simulado:

5 $ ros2 launch vesc_ikus navigation_launch.py use_sim_time :=true

params_file :=src/vesc_ikus/config/nav2_params.yaml

4.3.3. ros2 control

Cuando se trabaja con varios actores y se desea que estos trabajen en conjun-
to, es posible establecer un sistema de control que logre interpretar los comandos
recibidos y asegurarse de enviar los comandos correspondientes a cada una de
las controladoras. A su vez, es posible utilizar la información obtenida a través
de sensores para ajustar adecuadamente el movimiento.

Utilizando la herramienta ros2 control junto con su implementación del Diff-
DriveController, o Controladora de Robot Diferencial, es posible solucionar am-
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bos problemas mencionados anteriormente. DiffDriveController se suscribe a un
tópico ‘/cmd vel’ de tipo ‘geometry msgs/msg/Twist’, a través del cual se indica
una velocidad lineal o angular deseada del robot. A su vez, utiliza la informa-
ción obtenida a través de la retroalimentación de la controladora de hardware
para estimar la odometŕıa del robot, publicándola en el tópico ‘/odom’, de tipo
‘nav msgs::msg::Odometry’, junto con las transformaciones de ‘odom’ a ‘ba-
se link’, en el tópico ‘tf’, de tipo ‘tf2 msgs::msg::TFMessage’.

DiffDriveController

El DiffDriveController es la pieza central que permite el control coordinado
de un robot diferencial. Este controlador:

Se suscribe al tópico ‘ikus base controller/cmd vel’ de tipo ‘geometry msgs/msg/Twist’
para recibir comandos de velocidad

Convierte comandos de velocidad lineal y angular en velocidades espećıfi-
cas para cada rueda

Utiliza la retroalimentación de los encoders para calcular la odometŕıa

Publica la odometŕıa en ‘ikus base controller/odom’ (tipo ‘nav msgs::msg::Odometry’)

Publica la transformada odom→base link en ‘/tf’ (tipo ‘tf2 msgs::msg::TFMessage’)

Esta transformada odom→base link es fundamental para que SLAM y los
algoritmos de planificación de caminos funcionen correctamente, ya que propor-
ciona la estimación de la posición del robot basada en los movimientos realizados
por las ruedas.

La integración del sistema con ros2 control se realiza mediante: la implemen-
tación de una interfaz de hardware, la descripción del hardware utilizado y la
configuración de los parámetros utilizados por DiffDriveController.

Interfaz del componente de Hardware

La interfaz del componente de hardware requerida por ros2 control define
un conjunto de funciones que son luego invocadas por el controller manager y
el resource manager en sus ciclos de vida. En el directorio: ‘vesc ikus/hardware’
se encuentra ‘ikus system.cpp’, junto a ‘include/ikus system.hpp’, donde se im-
plementa y presenta la interfaz: ‘IkusSystemHardware’.

IkusSystemHardware es el nombre de la clase del sistema de control del
componente de hardware. Este nombre, aparte de describir que se trata de la
interfaz del componente de hardware de un sistema con actuadores y sensores,
sirve para identificar y diferenciar a este sistema de otros sistemas de ros2 control
que podŕıan estar funcionando en simultáneo. Al no ser este el caso, el nombre
tendrá solo la función de identificación y referencia.
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En la figura 4.11 se presenta el diagrama de secuencia correspondiente al pro-
ceso de inicio del componente de hardware. Por otro lado, la figura 4.12 ilustra
el diagrama de secuencia que describe la interacción entre ROS 2, ros2 control
y la interfaz VESC.

A continuación se presentan los distintos métodos implementados en la in-
terfaz, necesarios para la ejecución correcta del sistema en ros2 control.

Figura 4.11: Diagrama de Secuencia del proceso de inicio del componente de
hardware

Figura 4.12: Diagrama de secuencia de interacción entre ROS 2, ros2 control y
la interfaz VESC

on init Esta función es invocada por el controller manager en su inicialización.
Se encarga de asignar memoria a variables globales de la interfaz y verificar que
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la cantidad de interfaces de control y de estado establecidas sea la correcta para
cada tipo.

export state interfaces Retorna un arreglo cuyos elementos son las direc-
ciones en memoria de cada interfaz de estado. Existen dos por rueda, una de
posición y otra de velocidad, cuatro en total. De esta forma, el controller mana-
ger puede acceder directamente a los valores en memoria sin tener que invocar
llamadas.

export command interfaces Al igual que export state interfaces, se retor-
na un arreglo cuyos elementos son las direcciones en memoria de cada una de
las interfaces de control. En este caso, solamente existen interfaces de control de
velocidad, una por cada rueda, dos en total. Los beneficios de rendimiento por
acceso directo a memoria son iguales a aquellos que en export state interfaces.

on activate Para cada instancia de vesc interface, utilizadas para comunica-
ción con las controladoras VESC, se establece conexión con una controladora
VESC. A cada una de estas interfaces se le asigna una función, ikus vesc packet callback,
para ejecutar cada vez que la controladora env́ıa un paquete de tipo vesc packet.
Este paquete proporciona información de la controladora VESC, incluyendo da-
tos devueltos por sus sensores. Entre estos, se encuentra la diferencia de posi-
ción respecto al punto de inicio, determinada a través de los sensores de efecto
Hall integrados en el motor a través del método ‘getDisplacement()’. La fun-
ción ikus vesc packet callback, procesa la posición y guarda los resultados en un
arreglo global llamado ‘temp hw positions’.

on deactivate Se encarga de desconectar las instancias de vesc interface de
las controladoras VESC.

write Invoca el método setSpeed(velocidaderpm) para cada instancia de vesc interface
con los valores encontrados en el arreglo de velocidades de la interfaz de coman-
dos, los cuales fueron escritos previamente por el controller manager.

read La función read es invocada por el controller manager tantas veces por
segundo como indique el update rate en el archivo de configuración del contro-
lador. Llama al método requestState() para cada instancia de vesc interface, lo
que implica la invocación de ikus vesc packet callback, resultando en la actua-
lización de los valores de posición y velocidad. Estos valores actualizados son
asignados al arreglo de estado de velocidad y posición para que el controller
manager acceda posteriormente.

Descripción de hardware - URDF
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Para describir la forma en la que el robot utiliza ros2 control, se utilizan tags
de <ros2\_control> en la descripción de hardware del robot.

1 <ros2_control name="IkusSystemHardware" type="system">

2 <hardware >

3 <plugin >vesc_ikus/IkusSystemHardware </plugin >

4 </hardware >

5 <joint name="right_wheel_joint">

6 <command_interface name="velocity"/>

7 <state_interface name="position"/>

8 <state_interface name="velocity"/>

9 </joint >

10 <joint name="left_wheel_joint">

11 <command_interface name="velocity"/>

12 <state_interface name="position"/>

13 <state_interface name="velocity"/>

14 </joint >

15 </ros2_control >

El tag <ros2\_control> utiliza los parámetros de ‘name’ y ‘type’ para des-
cribir el nombre y el tipo del sistema. Bajo el tag <hardware> y <plugin> (al
tratarse de una extensión de lo ya proporcionado por ros2 control), indicamos la
interfaz de hardware definida en nuestro código C++. Luego, los tags <joint>
definen las articulaciones del sistema, junto a las interfaces de comando y de
estado que posee cada una.

Configuración y Parametrización de control
Para que ros2 control comience a ejecutarse correctamente, debe tener acceso

a un archivo que contenga distintos parámetros y configuraciones del sistema.
Realizando modificaciones en el ejemplo de archivo de configuración de robots
diferenciales proporcionado por ros2 control en su documentación, obtenemos
‘ikus controllers.yaml’ e ‘ikus controllers without tf.yaml’. Las modificaciones
más relevantes fueron las siguientes:

Caracteŕısticas de las ruedas
Parámetros que indican tamaño y distancia entre las ruedas fueron modifi-

cados con los valores correspondientes a Ikus:
‘wheel separation: 0.84’
‘wheel radius: 0.16’

Ĺımites de velocidad
Los parámetros que indican los ĺımites de velocidad fueron alterados de ±1,0

a ±1,5 en velocidad lineal, y de ±1,0 a ±0,8:
‘linear.x.max velocity = 1.5’
‘linear.x.min velocity = -1.5’
‘angular.z.max velocity = 0.8’
‘angular.z.min velocity = -0.8’

Otros parámetros
‘open loop: false’ Deshabilitando ‘open loop’, nos aseguramos de que la odo-

metŕıa del robot sea calculada en base a la retroalimentación y no según los
comandos Twist de entrada.
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‘enable odom tf’ La única diferencia entre ‘ikus controllers.yaml’ e ‘ikus controllers without tf.yaml’
es que el segundo tiene el parámetro ‘enable odom tf’ en false, deshabilitando
la publicación de la transformada de ‘odom’ a ‘base link’ de parte de DiffDrive-
Controller. El objetivo de este cambio es evitar redundancia de transformadas
entre ros2 control y rtabmap odom.

4.3.4. Comunicación con Controladora VESC

Una vez que ros2 control calcula los comandos de velocidad necesarios para
cada rueda, estos deben ser transmitidos a las controladoras f́ısicas VESC a
través de la interfaz de hardware. Para establecer esta comunicación, se utilizó
una interfaz de un paquete de ROS 2 llamado ‘f1tenth/vesc’, originalmente
creado por el equipo F1Tenth (ahora RoboRacer.AI).

Este paquete sirve como interfaz entre ROS 2 y la controladora VESC, per-
mitiendo comunicación bidireccional: env́ıo de comandos de velocidad y lectura
del estado de los motores, incluyendo cantidad de revoluciones realizadas por
cada rueda (información necesaria para el cálculo de odometŕıa).

VescInterface y comunicación de bajo nivel

Para su integración con ros2 control, el paquete ‘vesc driver’ presenta una
interfaz llamada ‘VescInterface’ que implementa los métodos utilizados en la co-
municación a bajo nivel con la controladora VESC. Esta interfaz proporciona co-
municación directa con menor latencia comparada con la comunicación a través
de tópicos. El equipo de SoftBank Corp. partió de la base de ‘f1tenth/vesc’
y agregaron actualizaciones sbgisen/vesc, las cuales forman parte de nuestra
solución de software. Este directorio se encuentra en el mismo directorio que
‘vesc ikus‘, el cual implementa la integración con ros2 control.

A continuación se describen los métodos principales de ‘VescInterface’:

connect(’/dev/ttyACM’): Se encarga de inicializar la conexión entre la
controladora VESC, los motores BLDC y la interfaz VescInterface. Recibe como
parámetro la dirección al puerto USB en el que está conectado la controladora
VESC. También existe su contraparte, disconnect().

setSpeed(velocidaderpm): Se invoca con un parámetro ‘velocidaderpm’ de ti-
po ‘double’, que indica la velocidad en revoluciones ‘eléctricas’ por minuto
(eRPM) a la que la rueda debe llegar. Para que este método funcione correcta-
mente, se transforma la velocidad lineal que ros2 control calcula para esa rueda
en una magnitud comprensible para la controladora VESC:

velocidaderpm =
velocidadlineal

2 · π
· 60 · pares de polos del motor · 0,7 (4.1)

Este cálculo se realizó en base a un comentario en el código fuente de
‘vesc driver’. A su vez, se aplica un factor de calibración experimental (0.7)
debido a que la relación indicada no coincid́ıa con la respuesta real del robot,
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produciendo una velocidad mayor a la esperada. De esta manera, se asegura que
el valor enviado a la controladora VESC represente la velocidad esperada.

requestState(): VescInterface cuenta con una función llamada ‘packet handler’,
la cual se ejecuta de forma aśıncrona cada vez que se invoca requestState().

setPacketHandler(callback): Asigna una función de retorno ‘callback’ al
‘packet handler’ de VescInterface. Este ‘packet handler’ recibe como parámetro
un objeto de tipo VescPacket, que contiene datos sobre el estado de la con-
troladora. Una vez invocado requestState(), se invoca el ‘packet handler’ con
una captura del estado actual de la información que contiene la controladora
VESC. A través del objeto ‘VescPacket’, accedemos al método ‘getDisplace-
ment()’, el cual proporciona un valor relacionado a la cantidad de revoluciones
‘eléctricas’ que ha realizado el motor desde su encendido. A diferencia del ca-
so de setSpeed, no se encontró documentación sobre la unidad del valor que
retorna la función ‘getDisplacement()’, por lo que se le aplicó un factor experi-
mental que se denominó ‘gear ratio’. El valor obtenido de ‘getDisplacement()’,
desplazamiento absolutovesc se transforma de la siguiente manera:

posicion absolutarueda =
2 · desplazamiento absolutovesc

gear ratio · π
(4.2)

El valor de gear ratio es configurable en el archivo ‘ros2 control.xacro’, y su
valor por defecto es: ‘789432’.

Aproximadamente cada 0,1 segundos, se calcula la diferencia entre dos va-
lores de posicion absolutarueda consecutivos, logrando aśı calcular la velocidad
lineal, utilizando:

v⃗ =
∆d⃗

∆t
(4.3)

Tipos de datos VESC

El paquete ‘vesc driver’ también depende de un paquete llamado ‘vesc msgs’,
el cual define el tipo de datos de ROS 2 ‘VescState’:

1 // Definici ón de ’VescState ’ en vesc_msgs

2

3 # Vedder VESC open source motor controller state ( telemetry)

4

5 # fault codes

6 int32 FAULT_CODE_NONE =0

7 int32 FAULT_CODE_OVER_VOLTAGE =1

8 int32 FAULT_CODE_UNDER_VOLTAGE =2

9 int32 FAULT_CODE_DRV8302 =3

10 int32 FAULT_CODE_ABS_OVER_CURRENT =4

11 int32 FAULT_CODE_OVER_TEMP_FET =5

12 int32 FAULT_CODE_OVER_TEMP_MOTOR =6

13

14 float64 voltage_input # input voltage (volt)
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15 float64 temperature_pcb # temperature of printed circuit board

(degrees Celsius)

16 float64 current_motor # motor current (ampere)

17 float64 current_input # input current (ampere)

18 float64 speed # motor velocity (rad/s)

19 float64 duty_cycle # duty cycle (0 to 1)

20 float64 charge_drawn # electric charge drawn from input (

ampere -hour)

21 float64 charge_regen # electric charge regenerated to input

(ampere -hour)

22 float64 energy_drawn # energy drawn from input (watt -hour)

23 float64 energy_regen # energy regenerated to input (watt -

hour)

24 float64 displacement # net tachometer (counts)

25 float64 distance_traveled # total tachnometer (counts)

26 int32 fault_code

4.3.5. Odometŕıa ICP con rtabmap odom

Como se mencionó anteriormente, tanto SLAM como navegación requieren
de la transformada entre ‘odom’ y ‘base link’ publicada en el tópico ‘tf’ para
funcionar correctamente. Esta transformada representa la odometŕıa del robot,
es decir, su estimación de posición y orientación basada en el movimiento relativo
desde un punto de referencia.

En Ikus, esta odometŕıa puede obtenerse a partir de los encoders de las
ruedas (gracias a ros2 control) o, de forma alternativa, a través del algoritmo
ICP (Iterative Closest Point) implementado en ‘rtabmap odom’. Este enfoque
utiliza los datos del LiDAR para estimar el movimiento del robot comparando
escaneos consecutivos y encuentra la transformada que mejor alinea las nubes
de puntos.

Configuración de ICP Odometry

El nodo ‘icp odometry’ de rtabmap odom se configura a través del archivo
‘rtabmap icp odometry.yaml’ y se ejecuta mediante el launch file ‘rtabmap icp odometry.launch.py’.
La configuración principal incluye:

1 icp_odometry:

2 ros__parameters:

3 frame_id: "base_link"

4 odom_frame_id: "odom"

5 publish_tf: true

Este nodo:

Se suscribe al tópico ‘/scan’ para recibir datos del LiDAR

Se suscribe al tópico ‘/tf’ para encontrar la transformada asociada al los
datos visuales, en nuestro caso: base link→laser frame

Calcula la odometŕıa comparando escaneos consecutivos usando ICP
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Publica la transformada odom→base link en ‘/tf’

Publica mensajes de odometŕıa en ‘/odom’

Integración con el sistema

Para que la odometŕıa ICP funcione correctamente, se debe desactivar la
publicación de tf por parte de ros2 control, ya que el nodo ‘icp odometry’ se
encarga de publicar la transformación odom→base link. Esto se logra agregando
la ĺınea ‘enable odom tf: false’ en el archivo de configuración de ros2 control.

4.3.6. Simulación

La simulación de Ikus fue realizada a través de Gazebo. En la figura 4.13 se
observa el modelado 3D de Ikus en un bosque con cajas simulado. Esta sección
se puede dividir en tres partes: Descripción del hardware, Simulación del mundo
e Integración de Gazebo con ROS 2.

Descripción del Hardware
La descripción del hardware de Ikus fue modularizada según responsabilida-

des. La descripción f́ısica de Ikus es responsabilidad del archivo
‘vesc ikus/description/ikus core.xacro’.

Por otro lado, se utilizó el plugin ‘gz ros2 control/GazeboSimSystem’ pa-
ra simular la interacción bajo nivel que ros2 control suele tener con las con-
troladoras de hardware y, en nuestro caso, los motores BLDC. Una curiosi-
dad de este plugin es que toma la responsabilidad de ejecutar algunos no-
dos necesarios en el ciclo de vida de ros2 control, como es el caso de ‘con-
troller manager’. Este plugin es importado y ejecutado por Gazebo una vez de-
finido en el archivo ‘vesc ikus/description/ros2 control.xacro’, el cual también
utiliza los archivos de configuración ‘vesc ikus/config/ikus controllers.yaml’ y
‘vesc ikus/config/gazebo controllers.yaml’:

1 <ros2_control name="GazeboSimSystem" type="system">

2 <hardware >

3 <param name="calculate_dynamics">true</param >

4 <plugin >gz_ros2_control/GazeboSimSystem </plugin >

5 </hardware >

6 <joint name="right_wheel_joint">

7 <command_interface name="velocity"/>

8 <state_interface name="position"/>

9 <state_interface name="velocity"/>

10 </joint >

11 <joint name="left_wheel_joint">

12 <command_interface name="velocity"/>

13 <state_interface name="position"/>

14 <state_interface name="velocity"/>

15 </joint >

16 </ros2_control >

17

18 <gazebo >
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Figura 4.13: Simulación de Ikus en bosque con cajas en Gazebo

19 <plugin name="gz_ros2_control :: GazeboSimROS2ControlPlugin"

filename="libgz_ros2_control -system">

20 <parameters >$(find vesc_ikus)/config/ikus_controllers.

yaml</parameters >

21 <parameters >$(find vesc_ikus)/config/gazebo_controller.

yaml</parameters >

22 </plugin >

23 </gazebo >

Simulación del mundo
La construcción del mundo simulado se fundamentó en dos premisas princi-

pales. En primer lugar, se consideró que el robot seŕıa empleado en un entorno
agropecuario, siendo la asistencia en el proceso de recolección de manzanas un
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ejemplo representativo de los posibles casos de uso. En segundo lugar, se buscó
crear un entorno estático que permitiera realizar diferentes experimentos de
manera controlada, facilitando la modificación aislada de parámetros o confi-
guraciones para comparar resultados de forma clara y sin ambigüedades. Como
resultado, se desarrolló una simulación que representa un mundo con árboles de
manzanas y cajones.

La descripción de este mundo se realiza mediante archivos de tipo ‘world’,
dentro de los cuales se definen las distintas entidades presentes en el mundo,
especificando la forma o las direcciones a archivos que definen esas formas y la
posición. Para los árboles, como el de la figura 4.14, se utilizó un modelo de
árbol de manzanas de ’Reconocimiento y conteo de manzanas‘, un proyecto de
grado de la Facultad de Ingenieŕıa de la Universidad de la República realizado
por Garderes (2023). El modelo de cajón de madera presente en la figura 4.15
fue construido a partir de dos modelos de la biblioteca de modelos de Open
Robotics, la cual tiene entidades de uso público. Se utilizó la textura de un
modelo de un ‘pallet’, y la geometŕıa de un modelo de una caja de cartón.

Figura 4.14: Modelo 3D de un árbol de manzanas

Además, gracias a la funcionalidad de exportación de mapas de la herramien-
ta slam toolbox, se incluyen en la solución los archivos ubicados en el directorio
maps. Estos mapas pueden ser utilizados directamente en el proceso de locali-
zación, evitando aśı la necesidad de mapear el entorno desde cero.

Integración de Gazebo con ROS 2
Para realizar la integración entre Gazebo y ROS 2, se utilizan archivos tipo

yaml llamados ‘bridge’, los cuales indican mapeos entre mensajes de tipo Gazebo
y tópicos ROS 2.
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Figura 4.15: Modelo 3D de un cajón de madera

Los mapeos necesarios, especificados en los archivos ‘vesc ikus/config/gz bridge.yaml’
y ‘vesc ikus/config/gz bridge rtabmap.yaml’ fueron los siguientes:
clock: Utilizado internamente por ROS 2 para mantenerse sincronizado con
Gazebo

1 - ros_topic_name: "clock"

2 gz_topic_name: "clock"

3 ros_type_name: "rosgraph_msgs/msg/Clock"

4 gz_type_name: "gz.msgs.Clock"

5 direction: GZ_TO_ROS

scan:Mapeo del canal de comunicación de datos del sensor LiDAR simulado,
desde Gazebo hacia ROS 2.

1 # gz topic published by Sensors plugin

2 - ros_topic_name: "scan"

3 gz_topic_name: "scan"

4 ros_type_name: "sensor_msgs/msg/LaserScan"

5 gz_type_name: "gz.msgs.LaserScan"

6 direction: GZ_TO_ROS

odom: Mapeo del canal de comunicación de los datos de Odometŕıa, desde
Gazebo hacia ROS 2. Este mapeo es omitido en ‘gz bridge rtabmap.yaml’, ya
que en lugar de ser el plugin de ROS2 de Gazebo que realiza el cálculo de
odometŕıa, con esta configuración pasa a ser el nodo de rtabmap odom.

1 - ros_topic_name: "odom"

2 gz_topic_name: "odom"

3 ros_type_name: "nav_msgs/msg/Odometry"

4 gz_type_name: "gz.msgs.Odometry"

5 direction: GZ_TO_ROS

tf: Mapeo del canal de comunicación de los datos de tf (Tree Frame), desde
Gazebo hacia ROS 2.

1 - ros_topic_name: "tf"
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2 gz_topic_name: "tf"

3 ros_type_name: "tf2_msgs/msg/TFMessage"

4 gz_type_name: "gz.msgs.Pose_V"

5 direction: GZ_TO_ROS

ikus base controller/cmd vel unstamped a cmd vel: Mapeo del canal
de comunicación mensajes de tipo ‘Twist’ para indicar movimiento al plugin de
ros2 control dentro de Gazebo, desde ROS 2 hacia Gazebo.

1 - ros_topic_name: "ikus_base_controller/cmd_vel_unstamped"

2 gz_topic_name: "cmd_vel"

3 ros_type_name: "geometry_msgs/msg/Twist"

4 gz_type_name: "gz.msgs.Twist"

5 direction: ROS_TO_GZ

joint states Mapeo del canal de comunicación mensajes de tipo ‘JointState’
para indicar el estado de las articulaciones de Ikus, desde Gazebo hacia ROS 2.

1 - ros_topic_name: "joint_states"

2 gz_topic_name: "joint_states"

3 ros_type_name: "sensor_msgs/msg/JointState"

4 gz_type_name: "gz.msgs.Model"

5 direction: GZ_TO_ROS

4.4. Integración del sistema completo

La solución de software implementada permite diferentes modos de ejecución
según las necesidades del usuario. A continuación, se presentan los distintos
launch files disponibles con sus comandos de ejecución:

Robot F́ısico (Ikus):

Movimiento básico sin SLAM/Navegación:

1 # Con odometr ı́a de diff_drive_controller (por defecto)

2 $ ros2 launch vesc_ikus ikus_mapless.launch.py

3

4 # Con odometr ı́a de rtabmap\_odom (ICP)

5 $ ros2 launch vesc_ikus ikus_mapless.launch.py

use_rtabmap_odometry :=true

6

7

8 # Este archivo launch ejecuta:

9

10 # - controller_manager ros2_control_node

11 # > indicando si utiliza ikus_controller .yaml o

ikus_controller_without_tf .yaml

12 #

13 # - robot_state_publisher robot_state_publisher

14 # > con ’ikus.urdf.xacro ’ como par á metro

15 #

16 # - controller_manager spawner

17 # > con ’joint_state_broadcaster ’ como argumento

18 #
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19 # - controller_manager spawner

20 # > con ’ikus_base_controller ’ como argumento

21 #

22 # - twist_mux twist_mux

23 # > multiplexa comandos Twist , utiliza twist_mux .yaml como

archivo de configuraci ón

24 # > mapea el tó pico ’/cmd_vel_out ’ a ’/ ikus_base_controller /

cmd_vel_unstamped ’

25 #

26 # - sick_scan_xd sick_generic_caller

27 # > con ’sick_scan_xd .launch ’ como par á metro

28 # > utiliza la informaci ón en su archivo .launch para

configurar el LiDAR

29 #

30 # - rtabmap_odom icp_odometry

31 # > ejecuta solamente si use_rtabmap_odometry := true

32 # > con ’rtabmap_icp_odometry .yaml ’ como par á metro

33 #

Solo SLAM y navegación:

1 $ ros2 launch vesc_ikus slam_and_nav.launch.py use_sim_time :=

false

2

3 # Este archivo launch ejecuta:

4

5 # - online_async_launch .py

6 # > ejecuta el nodo slam_toolbox async_slam_toolbox_node

7 # > por defecto , utiliza el archivo de configuraci ón ’

mapper_params_online_async .yaml ’

8 #

9 # - navigation_launch .py

10 # > ejecuta los nodos de nav2

11 # > por defecto , utiliza el archivo de configuraci ón ’

nav2_params .yaml ’

Lanzamiento completo:

1 # Con odometr ı́a por defecto

2 $ ros2 launch vesc_ikus ikus.launch.py

3

4 # Con odometr ı́a de rtabmap\_odom

5 $ ros2 launch vesc_ikus ikus.launch.py use_rtabmap_odometry :=

true

6

7 # Este archivo une las ejecuciones de ikus_mapless .launch.py y

slam_and_nav .launch.py

Simulación:

Simulación básica sin SLAM/Navegación:

1 # Con odometr ı́a de diff_drive_controller (por defecto)

2 $ ros2 launch vesc_ikus simulator_mapless.launch.py

3
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4 # Con odometr ı́a de rtabmap_odom (ICP)

5 $ ros2 launch vesc_ikus simulator_mapless.launch.py

use_rtabmap_odometry :=true

6

7 # Especificando un mundo diferente

8 $ ros2 launch vesc_ikus simulator_mapless.launch.py world_path

:=/ ruta/a/tu/mundo.world

9

10 # Este archivo launch ejecuta:

11

12

13 # - robot_state_publisher robot_state_publisher

14 # > con ’ikus.urdf.xacro ’ como par á metro

15 #

16 # - controller_manager spawner

17 # > con ’joint_state_broadcaster ’ como argumento

18 #

19 # - controller_manager spawner

20 # > con ’ikus_base_controller ’ como argumento

21 #

22 # - twist_mux twist_mux

23 # > multiplexa comandos Twist , utiliza twist_mux .yaml como

archivo de configuraci ón

24 # > mapea el tó pico ’/cmd_vel_out ’ a ’/ ikus_base_controller /

cmd_vel_unstamped ’

25 #

26 # - rtabmap_odom icp_odometry

27 # > ejecuta solamente si use_rtabmap_odometry := true

28 # > con ’rtabmap_icp_odometry .yaml ’ como par á metro

29 #

30 # - ros_gz_sim gz_sim.launch.py

31 # > ejecuta Gazebo

32 # > utiliza ruta al directorio del mapa como par á metro

opcional

33 #

34 # - ros_gz_sim create

35 # > crea objeto ’ikus ’ en la simulaci ón, basado en tó pico ’/

robot_description ’

36 #

37 # - ros_gz_bridge parameter_bridge

38 # > realiza mapeo entre Gazebo y ROS 2

39 # > recibe un archivo como par á metro: gz_bridge.yaml o

gz_bridge_rtabmap .yaml

Simulación completa:

1 # Con odometr ı́a por defecto

2 $ ros2 launch vesc_ikus simulator.launch.py

3

4 # Con odometr ı́a de rtabmap_odom

5 $ ros2 launch vesc_ikus simulator.launch.py

use_rtabmap_odometry :=true

6

7 # Este archivo une las ejecuciones de simulator_mapless .launch

.py y slam_and_nav .launch.py
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Herramientas adicionales:

Teleoperación:

1 $ ros2 run teleop_twist_keyboard teleop_twist_keyboard --ros -

args -r cmd_vel := cmd_vel_key

Configuración previa para simulación:
Para que Gazebo encuentre los modelos 3D, se debe exportar la variable de

entorno:

1 $ export SDF_PATH ="ruta/a/su/workspace/src/vesc_ikus/worlds"
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Caṕıtulo 5

Experimentación

En este caṕıtulo se evalúa el rendimiento del sistema robótico desarrollado,
con el objetivo principal de determinar si es capaz de estimar su posición y
generar mapas de sus entornos de manera adecuada. Para ello, las pruebas se
dividieron en dos contextos: entorno simulado y entorno real. Esta separación
permite experimentar sobre el sistema implementado sin depender inicialmente
del hardware, para luego validar el funcionamiento del sistema completo en
condiciones reales.

Además, se decidió comparar los resultados de los experimentos utilizando
distintas fuentes de odometŕıa. Por un lado, se empleó la odometŕıa basada en
ruedas, provista por la solución ros2 control, y por otro, la odometŕıa visual
generada mediante icp odometry de rtabmap odom. Esta comparación se con-
sideró relevante ya que la odometŕıa es un parámetro fundamental en el proceso
de mapeo.

En cuanto a la experimentación relacionada con el paquete de planificación
de caminos nav2, el alcance se centró en la construcción del mapa de costos a par-
tir de los mapas obtenidos mediante la integración con el paquete slam toolbox.

En todos los experimentos se utilizó teleop twist keyboard para enviar co-
mandos Twist indicando la velocidad deseada del robot en cada momento.

1 $ ros2 run teleop_twist_keyboard teleop_twist_keyboard --ros -args

--remap

2 cmd_vel :=/ ikus_base_controller/cmd_vel_unstamped

5.1. Entorno Simulado

Con el objetivo de evaluar la integración del sistema robótico de manera inde-
pendiente del hardware f́ısico, se llevaron a cabo pruebas en un entorno simulado,
replicando tanto la información proveniente de los sensores como parte de la inte-
gración con ros2 control (utilizando el plugin ‘gz ros2 control/GazeboSimSystem’).
Para estas pruebas, se empleó el entorno descrito en la sección 4.3.6, que con-
siste en un mundo simulado de aproximadamente 9x9 metros, conformado por
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7 árboles y 4 cajones. La posición y orientación inicial es idéntica para ambos
casos.

5.1.1. Odometŕıa basada en Ruedas

Para realizar este experimento se ejecutó el siguiente comando:

1 $ ros2 launch vesc_ikus simulator.launch.py

Haciendo uso de teleop twist keyboard, se gestionó el desplazamiento del
robot simulado en el entorno virtual, lo que permitió efectuar con éxito el mapeo
del mundo simulado. Este proceso se observa en la figura 5.1, donde también se
muestra el mapa de costos generado a partir del mismo. Cabe destacar que para
esta tarea se utilizó la información de odometŕıa proporcionada por el sistema
’gz ros2 control/GazeboSimSystem’, la cual simula el proceso de transformar
la posición y la velocidad angular de cada rueda en datos de odometŕıa, como
parte de la solución diffdrive controller de ros2 control.

Figura 5.1: Visualización del mapeo del mundo simulado y su mapa de costos,
utilizando odometŕıa basada en ruedas

5.1.2. Odometŕıa basada en LiDAR

Para experimentar el proceso de mapeo en base a la odometŕıa visual se
ejecutó el siguiente comando:
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1 $ ros2 launch vesc_ikus simulator.launch.py use_rtabmap_odometry :=

true

Al igual que en el caso anterior, se construyó el mapa y el mapa de costos,
los cuales se muestran en la figura 5.2, a partir del desplazamiento del robot
simulado en Gazebo. En esta ocasión, la localización se realizó utilizando la
odometŕıa visual proporcionada por icp odometry.

Figura 5.2: Visualización del mapeo del mundo simulado y su mapa de costos,
utilizando odometŕıa basada en LiDAR

5.1.3. Análisis

No se aprecian diferencias significativas entre los experimentos. En ambos
casos, los resultados permiten distinguir claramente siete obstáculos ciĺındricos
pequeños y cuatro obstáculos rectangulares de casi un metro de lado. Cabe
destacar que estos últimos son más notorios en los mapas de costos. En las
figuras 5.1 y 5.2, los mapas de costos numeran en verde los árboles y en naranja
los cajones de madera.
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5.2. Entorno Real

Los experimentos principales con el robot f́ısico fueron realizados en pasillos
del primer piso de la Facultad de Ingenieŕıa de la Universidad de la República.
Como referencia, la figura 5.3 contiene una representación del recorrido realizado
en el primer piso. Para ambos experimentos realizados, el recorrido fue el mismo,
representado con una ĺınea verde en la figura. Ambos experimentos comenzaron
y terminaron en la misma posición, marcada con una cruz roja. La cruz azul
indica la meta parcial. Para habilitar el acceso remoto a Ikus, se implementó un
canal SSH entre una computadora externa y la computadora Ceibal Sirio insta-
lada en el robot. Este canal permitió gestionar el desplazamiento del robot de
manera remota utilizando la herramienta teleop twist keyboard durante ambos
experimentos.

Figura 5.3: Representación del recorrido utilizado en la experimentación en el
primer piso de la Facultad de Ingenieŕıa de la Universidad de la República

Con el objetivo de optimizar la calidad del mapeo en los experimentos pre-
sentados a continuación, se optó por ejecutar el sistema de manera parcial,
registrando un archivo bag con toda la información sensada para cada caso. Es-
ta decisión se tomó para evitar la saturación del sistema durante la adquisición
de datos. Posteriormente, dichos archivos fueron reproducidos y, para realizar
el proceso de mapeo de manera precisa, se utilizó el siguiente comando:

1 $ ros2 launch vesc_ikus slam_and_nav.launch.py use_sim_time :=true

Para entender mejor los resultados obtenidos, se presenta un experimento
adicional realizado en el laboratorio de robótica de la Facultad de Ingenieŕıa de
la Universidad de la República.
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5.2.1. Odometŕıa basada en Ruedas

Para ejecutar el sistema utilizando odometŕıa basada en ruedas sin mapeo
se utilizó el comando:

1 $ ros2 launch vesc_ikus ikus_mapless.launch.py

En la figura 5.2.1 se muestra el resultado de los mapas generados a partir de
la odometŕıa basada en ruedas, obtenida mediante ros2 control, tras realizar el
recorrido ilustrado en la figura 5.3. Las diferencias entre el recorrido realizado
y el mapa obtenido son notables: la posición final difiere significativamente de
la inicial (ubicada cerca de la grilla de Rviz2), no se aprecia la caracteŕıstica
forma de ‘S’ del pasillo recorrido y se observan múltiples superposiciones de
obstáculos, que parecen corresponder a paredes.

Visualización de mapa y mapa de costos con odometŕıa basada en ruedas, del
primer piso
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5.2.2. Odometŕıa basada en LiDAR

Para ejecutar el sistema utilizando odometŕıa visual sin mapeo, se utilizó el
comando:

1 $ ros2 launch vesc_ikus ikus_mapless.launch.py use_rtabmap_odometry

:=true

En la figura 5.2.2 se muestra el resultado de los mapas generados a partir de
la odometŕıa visual, obtenida mediante icp odometry, tras realizar el recorrido
ilustrado en la figura 5.3. En este caso, la posición final es muy próxima a la
inicial, la forma en ‘S’ del recorrido se aprecia claramente en el mapa y no se
observa superposición de obstáculos.

Visualización de Mapa y mapa de costos con odometŕıa basada en LiDAR, del
primer piso
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5.2.3. Análisis y Experimentos en Laboratorio

Las diferencias entre ambos experimentos fueron notables, siendo el experi-
mento de la odometŕıa visual considerablemente más preciso. El primer expe-
rimento parece presentar algún tipo de error que genera mapas inconsistentes,
los cuales resultaŕıan inseguros y caóticos si se utilizaran para desplazamiento
autónomo. Si bien anteriormente se mencionó la deriva o drift como un posible
error acumulativo durante el uso prolongado de la odometŕıa, en caso de tratarse
únicamente de deriva, el error debeŕıa ser menor y el proceso de mapeo debeŕıa
ser capaz de mitigarlo o corregirlo, lo cual no ocurre en este caso.

Dado que este fenómeno se presentó en la odometŕıa basada en ruedas, se
propone registrar los valores utilizados para calcular dicha odometŕıa, los cuales
se obtienen a través del VESC y de los encoders de efecto Hall de las ruedas.

Utilizando el método ‘getDisplacement()’ de ‘vesc driver’ obtenemos valores
de desplazamiento absolutovesc provenientes de dichos encoders. Repitiendo el
experimento de diferentes fuentes de odometŕıa, esta vez en el laboratorio de
robótica de la Facultad de Ingenieŕıa de la Universidad de la República, obte-
nemos los mapas de la figura 5.4

Figura 5.4: Mapas obtenidos en el laboratorio utilizando odometŕıa basada en
ruedas (izquierda) y odometŕıa visual (derecha)

En la figura 5.5 se muestra la gráfica del desplazamiento absoluto de cada
rueda en función del tiempo. En la rueda izquierda (arriba), el recorrido presen-
ta un comportamiento mayormente continuo, mientras que en la rueda derecha
(abajo) se observan varios saltos abruptos a lo largo del trayecto. Estos ‘saltos’
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Figura 5.5: Gráfica de posiciones obtenidas para cada rueda por las codificadoras
y las controladoras VESC, para rueda izquierda (arriba) y derecha (abajo)

parecen originarse por lecturas erróneas o ruidosas provenientes del controlador
VESC, o bien por algún fallo en el sensor Hall instalado en la rueda. Dichas
anomaĺıas introducen ruido en el cálculo de la odometŕıa realizado por el Diff-
DriveController de ros2 control, lo que a su vez afecta negativamente el mapeo
generado por slam toolbox, como se aprecia en las figuras 5.2.1 y 5.4.
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Caṕıtulo 6

Conclusiones y Trabajo
Futuro

6.1. Conclusiones

Se realizó una integración de distintas herramientas en el contexto de ROS
2 para un robot diferencial orientado al sector agropecuario. Ikus es capaz de
interpretar comandos de tipo Twist en tiempo real, sensar el entorno a su alre-
dedor y realizar un mapa y mapa de costos de ese mismo entorno. La calidad de
estos mapas obtenidos vaŕıa según la fuente sensorial utilizada para el cálculo
de odometŕıa.

Aunque se tratase de una plataforma de software y hardware abierto, la in-
tegración con la controladora VESC no fue trivial. La información encontrada
sobre las ruedas y la comunicación y transformación de datos con la controladora
VESC fue escasa y llevó a la necesidad de ajustar parámetros experimentalmen-
te.

Las herramientas de ros2 control fueron integradas correctamente. Una vez
comprendidos los conceptos, la integración del framework fue fácil y muy valiosa
para transformar las diferencias de posición de las ruedas en la posición en el
espacio del robot.

La odometŕıa obtenida de la utilización del paquete rtabmap-odom fue una
alternativa de gran valor frente a los problemas encontrados con la odometŕıa
basada en ruedas.

La integración con las herramientas de slam-toolbox y nav2 supo llevar las
capacidades de Ikus al siguiente nivel con poca configuración.

Debido al tamaño y peso del robot, la experimentación con el robot real fue
ocasional. Gracias a la integración con Gazebo es posible realizar experimentos
sin necesidad de utilizar el robot real.

Durante el proceso de experimentación, no se obtuvieron conclusiones res-
pecto a los saltos producidos por la rueda derecha, que impactaban ampliamente
en la odometŕıa y luego en el proceso de mapeo. Antes de que suceda el primer
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‘salto’ que contamina la odometŕıa basada en ruedas, el mapeo parece coherente
con la realidad y similar a su contraparte basada en odometŕıa visual.

El proceso de experimentación también se vio afectado por un alto nivel
de cómputo detectado una vez se ejecutaban los paquetes de ‘slam toolbox’ y
‘nav2’, los cuales requieren buena sincronización con el resto del sistema para
funcionar correctamente. Estos fenómenos ocasionalmente generaban latencia,
pérdida de información, detención de módulos y reinicios del sistema de la uni-
dad de cómputo.

El objetivo del proyecto fue cumplido parcialmente. Los experimentos reali-
zados se enfocaron en obtener mapas claros antes de permitir que Ikus recorriera
caminos planificados de forma autónoma.

6.2. Trabajo Futuro

Frente a los resultados de odometŕıa en base a ruedas, se propone realizar
un cambio en la derecha y/o en la controladora VESC del lado derecho frente a
la sospecha de que los saltos sean provocados por problemas en el hardware.

La integración de una IMU o Unidad de Movimiento Inercial podŕıa agregarle
valor a la solución presente, ya que seŕıa otra fuente de información sobre la
posición en el espacio.

Las frecuencias en las que se env́ıan las transformadas pueden ser optimi-
zadas, mejorando el procesamiento de los paquetes de mapeo, localización y
planificación de caminos.

Los experimentos fueron realizados en un entorno controlado, en pasillos
rectos con paredes claras. Al tratarse de un robot agropecuario, se deben realizar
experimentos de mapeo en entornos más adecuados.

El mundo simulado utilizado también puede mejorarse para adecuarse más
a la realidad, y a su vez agregar mundos para pruebas controladas, como puede
ser un pasillo o una habitación cerrada con algunos obstáculos.

Una actualización de unidad de cómputo también podŕıa impactar positi-
vamente en el rendimiento a la hora de realizar el mapeo y, más adelante, la
planificación de caminos.

La actualización del sistema en su completitud de ROS 2 Humble (la cual
dejará de ser soportada en mayo de 2027) a ROS 2 Jazzy (soportada hasta mayo
de 2029) mantendŕıa a Ikus en la vanguardia tecnológica.
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Anexo A

Directorios de la solución

La solución de software, presente en el código fuente de Ikus, se divide en
los siguientes directorios y archivos.

1 ~/

2 |-- vesc_driver/

3 |-- vesc_msgs/

4 |-- vesc_ikus/

5 | |-- config/

6 | |-- description/

7 | |-- hardware/

8 | |-- launch/

9 | |-- maps/

10 | |-- worlds/

11 | |-- CMakeLists.txt

12 | |-- ikus_control.xml

13 | |-- package.xml

14 | |-- setup.cfg

15 | ‘-- setup.py

16 ‘-- README.md

A.1. vesc ikus

La mayor parte del desarrollo y configuraciones fue volcada sobre este direc-
torio.

config
Dentro del directorio ‘config’, se encuentran archivos ‘.yaml’ que contienen in-
formación de configuración para los distintos nodos y paquetes utilizados. Entre
ellos:

1 # Configuraci ón de ambiente de gazebo

2 gazebo_controller.yaml

3 gz_bridge.yaml

4 gz_bridge_rtabmap.yaml

5 # Configuraci ón de controladora para ros2_control
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6 ikus_controllers.yaml

7 ikus_controllers_without_tf.yaml

8 # Configuracion de rtabmap

9 rtabmap_icp_odometry.yaml

10 # Configuraci ón para SLAM y planificaci ón de caminos

11 mapper_params_online_async.yaml

12 localization_params_online_async.yaml

13 nav2_params.yaml

14 # Configuraci ón de prioridad de comandos tipo Twist

15 twist_mux.yaml

description
En ‘description’ se incluyen los archivos de descripción de hardware del sistema.

1 # Descripci ón de hardware general

2 ikus.urdf.xacro

3 # Descripci ón de hardware , incluyendo distancias , posiciones ,

articulaciones

4 ikus_core.xacro

5 # Apartado de definici ón inercial , utilizada en ikus_code.xacro

6 inertial_macros.xacro

7 # Definici ón del hardware actuador bajo ros2_control , definici ón de

plugin de interfaz de hardware , interfaces de estado y comando

y lı́ mites

8 ros2_control.xacro

9 # Definici ón del hardware del sensor , indicando distancias y lı́

mites para simulaci ón en Gazebo

10 lidar.xacro

hardware
El directorio ‘hardware’ contiene el archivo ‘ikus hardware.cpp’ en el que se
implementa el componente de hardware utilizado ‘IkusSystemHardware’, que a
su vez utiliza el archivo ‘hardware/include/vesc ikus/ikus system.hpp’ para su
definición.

launch
Los archivos de inicio de distintas partes del sistema se ubican en el directorio
‘launch’

1 # Comienza la ejecuci ón del paquete de odometr ı́a visual

2 rtabmap_icp_odometry.launch.py

3

4 # Archivo de configuraci ón de sick_scan_xd

5 sick_scan_xd.launch

6

7 # Comienza la ejecuci ón del sistema Ikus , ejecuta paquetes de

ros2_control , twist_mux , entre otros

8 ikus_mapless.launch.py

9

10 # Comienza la ejecuci ón de Ikus simulado , ejecuta Gazebo y paquetes

de ros2_control , twist_mux , entre otros

11 simulator_mapless.launch.py
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12

13 # Comienza la ejecuci ón del paquete de Mapeo o Localizaci ón

14 online_async_launch.py

15

16 # Comienza la ejecuci ón del paquete de planificaci ón de caminos

17 navigation_launch.py

18

19 # Comienza online_async_launch .py y navigation_launch .py

20 slam_and_navigation.launch.py

21

22 # Comienza lo mismo a ikus_mapless .launch.py sumado a

slam_and_navigation .launch.py

23 ikus.launch.py

24

25 # Comienza lo mismo a simulator_mapless .launch.py sumado a

slam_and_navigation .launch.p

26 simulator.launch.py

maps
En ‘maps’ se almacenan registros de mapeo realizados en el ambiente simulado.

1 forest_slam_map.pgm

2 forest_slam_map.yaml

3 forest_slam_map_serialized.data

4 forest_slam_map_serialized.posegraph

worlds
El directorio ‘worlds’ contiene el archivo ‘forest.world’ que es utilizado por la
simulación en Gazebo para representar un bosque en el ambiente virtual. En
el directorio también se encuentran subdirectorios ‘cardboard box’ y ‘apple 10’
que contienen recursos que simulan un cajón de madera y un árbol de manzanas.

CMakeLists.txt
Utilizado por ROS 2 para compilar en C++, este describe cómo se construye el
código dentro del paquete. Gracias a la presencia de la herramienta de compi-
lación ‘ament cmake python’, es posible compilar en C++ y Python de forma
conjunta.

ikus control.xml
En este archivo se realiza una descripción básica del componente de hardware,
utilizado por ros2 control.

package.xml
En ‘package.xml’ se listan los paquetes de ROS 2 a utilizar, junto con la des-
cripción básica del propio paquete.
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A.2. Otros directorios y archivos

README.md

El archivo ‘README.md’ contiene información útil sobre la instalación y
ejecución de distintos módulos y del sistema en general.

vesc driver

En este directorio se encuentra una copia del paquete vesc driver, el cual
contiene definiciones de nodos e interfaces para realizar la comunicación a bajo
nivel con la controladora Vesc.

vesc msgs

Una dependencia del paquete vesc driver es vesc msgs. Esta dependencia
surge de la definición de un tipo de mensaje: ‘VescState.msg’, utilizado para la
comunicación a bajo nivel con la controladora. En este directorio se encuentra
una copia de vesc msgs.

82


	Introducción
	Motivación y Objetivos
	Estructura del documento

	Estado del arte
	Development of an Autonomous Mobile Manipulator for Industrial and Agricultural Environments
	Resumen
	Conclusiones

	Advances in Agriculture Robotics: A State-of-the-Art Review and Challenges Ahead
	Resumen
	Conclusiones

	An introduction to the ros2_control framework using a low cost differential drive robot
	Resumen
	Conclusiones


	Marco Teórico
	Introducción
	Robótica
	Vehículos autónomos
	Robot diferencial

	Hardware
	LiDAR
	Encoder
	Motores BLDC
	ESC

	Software
	ROS y ROS 2
	URDF
	Simulación y Gazebo
	Odometría
	SLAM y Navegación


	Solución Propuesta
	Requerimientos
	Especificaciones de Ikus y otras herramientas
	Dimensiones generales
	Actuadores y sensores
	Elementos de cómputo
	Fuentes de poder
	Otros Elementos

	Solución de software
	Arquitectura de la Solución
	SLAM y Navegación
	ros2_control
	Comunicación con Controladora VESC
	Odometría ICP con rtabmap_odom
	Simulación

	Integración del sistema completo

	Experimentación
	Entorno Simulado
	Odometría basada en Ruedas
	Odometría basada en LiDAR
	Análisis

	Entorno Real
	Odometría basada en Ruedas
	Odometría basada en LiDAR
	Análisis y Experimentos en Laboratorio


	Conclusiones y Trabajo Futuro
	Conclusiones
	Trabajo Futuro

	Referencias
	Directorios de la solución
	vesc_ikus
	Otros directorios y archivos


