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Abstract. Data augmentation has become a critical strategy for en-
hancing the generalization ability of deep learning models, particularly
in domains characterized by limited or irregular data. In the context of
sparse and intermittent demand time series, the lack of extensive datasets
makes synthetic data generation especially valuable. Building on our pre-
vious work introducing the ASTELCO dataset—an augmented version of
real-world e-commerce demand data—this study proposes a set of classi-
cal quantitative metrics for assessing the quality of synthetic time series
generated by deep generative models.We assess three data augmenta-
tion methods using these metrics and make both the code and datasets
publicly available to support reproducibility and further research. We
also highlight the relevance and interpretability of these metrics in the
evaluation of generative performance, particularly in sparsity-aware ap-
plications.

Keywords: Sparse Time Series - Generative Models - Data Augmenta-
tion - Performance metrics.

1 Introduction

Augmenting time series data has proven valuable for improving the generaliza-
tion of deep learning models, especially in tasks such as classification, anomaly
detection, and forecasting [11, 18]. This is particularly important when working
with sparse or irregular data, where limited observations make it difficult to
capture temporal dependencies and distributional patterns. In multi-series con-
texts, having access to datasets with sufficient granularity and history is essential
for modeling relationships between individual series and their overall dynamics
[11]. Diverse datasets have also played a key role in training foundation models
capable of generalizing across domains and performing zero-shot predictions [9].
Despite the recent increase in research on time series analysis, public access
to databases derived from monitoring the operation of real systems remains
limited, particularly in the case of sparse or intermittent demand series.
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Sparse time series are characterized by non-zero values that appear sporadi-
cally in time, with the remaining of the values being 0. This inherent property,
coupled with the variability in the occurrence patterns across different series,
poses significant challenges for forecasting[12]. In anomaly detection, such se-
ries present an additional difficulty for detection algorithms, which often exhibit
reduced performance compared to more active series[14].

The lack of more research focusing on this type of data is likely due to the
limited availability of such data for training and evaluating models.

Previous studies have demonstrated the effectiveness of Generative Adver-
sarial Networks (GANs) and Variational Auto-Encoders (VAEs) in generating
synthetic data from real data. For instance, [19] proposed a GAN-based ar-
chitecture and a comprehensive performance evaluation method, which we will
consider as a primary reference for our work. The study evaluated performance
using four metrics. Similarly, [3] introduced a VAE-based architecture, which is
compared to previous metrics and other architectures[5]|, showing comparable
quantitative performance.

In [15] we addressed the challenge of generating a synthetic sparse dataset
through data augmentation techniques, with the aim of providing a novel dataset
to the academic community. We contributed with the publication of a database
with sparse intermittent demand series, ASTELCO, generated from real data,
STELCO. It also included the performance comparison of different generative
models with metrics proposed in [19].

This research benefited from the collaboration with the e-commerce division
of a mobile Internet Service Provider (ISP), which supplied a real diverse dataset,
STELCO, employed in the synthetic generation process.

This work extends the analysis, presented in the 14th International Confer-
ence on Pattern Recognition Applications and Methods (ICPRAM 2025)[15],
with new evaluation metrics that seek to provide greater consistency between
visual results and quantitative results.

The following sections describe the performance metrics proposed. Then, the
characteristics of the models used to generate the data augmentation based on
TimeGAN and DC-VAE are briefly described. Finally, the experiments, results,
and conclusions of the generated databases are presented.

2 Performance evaluation metrics for Sparse Data
Augmentation

In this section, we present the evaluation metrics used to assess the performance
of the different generative methods used.
2.1 Sparsity

The first is a comparison of the sparsity between the original dataset and the
generated ones.
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The measure presented in Equation (1) was employed to assess the sparsity
of the series, where NZ(A) denotes the number of nonzero values in the series
A, and T(A) is the total number of values in A, which equals the length of the
series.

In Table 1, a comparison is shown between the sparsity of a set of publicly
available databases[6] and our STELCO database released to the community
in [15]. This dataset comprises records of invoices generated through the ISP’s
online commerce platform, encompassing various payment methods. Notably,
certain payment methods show high levels of activity, whereas others show very
little, thereby introducing a diverse range of behaviors to the whole.

Table 1: Comparative table of databases with sparse series. Table from [15].

Database . Number|Total number . -
Time Interval . Sparsity|Description
name of series| of samples

Transactions for an

1 17,914 70.30% |online retail business
in the UK.

Demand for vehicle
spare parts.

Demand for heavy
Entropy 1 |1 day - 15 days| 1,200 132,579 35.65 % |machinery spare parts
in China.

Demand for parts
Entropy 2 1 month 57 1,938 41.90 % |from a manufacturing
company in China.
Invoicing amount

18 287,734  |67.42 %|in e-commerce
platform.

1 min - 11 days

Online Retail Mean — 30 min

Car Parts 1 month 2,674 136,374 75.90%

STELCO |10 ns to 3 days
(ours) Mean = 2 min

In Table 1, it can be noted that the STELCO dataset has the shortest time
interval and the largest number of samples.

2.2 Diversity, Fidelity, Usefulness

The following metrics used were inspired by RCGAN[5] and TimeGANJ19].
These articles present methodologies to evaluate the quality of the generated
data based on three criteria: diversity: samples should be distributed in such a
way that they cover the actual data; fidelity: the samples should be indistin-
guishable from the real data; and usefulness: the samples should be as useful as
the actual data when used for the same predictive purposes.
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Visual analysis: PCA y t-SNE Two visual analysis methods are used: Prin-
cipal Component Analysis (PCA) and t-distributed Stochastic Neighbor Em-
bedding (t-SNE). These techniques allow for the visualization of the extent to
which the distribution of the generated samples resembles that of the original
data within a two-dimensional space. This approach facilitates a qualitative as-
sessment of the diversity of the generated samples.

Discriminative Score is proposed as a metric to estimate fidelity.

It consists in the evaluation of a classifier trained to differentiate between
real and generated data sequences. This training is conducted in a supervised
manner, with the original and generated data labeled beforehand. Then, the
classification error is used as a quantitative evaluation of fidelity. The metric
defined as Discriminative Score is presented in Equation (2).

Discriminative Score = |0.5 — accuracy|. (2)

The ideal scenario, which would minimize the discriminative score, occurs when
the classification accuracy is 0.5. In this case, the classifier would perceive all
incoming real data as genuine and all synthetic data also as real. Therefore, half
of the data would be accurately classified (the real instances) and the other half
would be misclassified (the synthetic instances). This outcome suggests that the
synthetic data is indistinguishable from the real data.

Predictive Score is proposed as a metric to estimate usefulness.

A sequence prediction model is trained to forecast the time vectors of the
next step in each input sequence. Specifically, for a sequence of data ranging
from 0 to T, the objective is to predict the value of the series at time T+1. The
model is trained on the generated data and evaluated on the original data. Its
performance is quantified using the mean absolute error (MAE) as defined in
Equation (3), thereby providing a quantitative assessment of usefulness.

D
Predictive Score = MAE = Z |z; — il (3)
i=1
where x and y are series of dimension D, corresponding to the predictions and
the real data.

2.3 KL, JS, Wasserstein, KS and MMD

However, in [15] we found that discriminative and predictive score metrics de-
pend on how an LSTM network behaves to get a score. Additionally, the predic-
tive score, which involves predicting the next value of a sequence using an LSTM,
would give fairly good results just predicting 0, given that our data is sparse. This
is why we decided to evaluate our datasets with more well-known metrics: Kull-
back—Leibler (KL) divergence[2], Jensen—Shannon (JS) divergence[4]|, Wasser-
stein distance[16], Kolmogorov-Smirnov (KS) test[13], and Maximum Mean Dis-
crepancy (MMD)[10]. These metrics provide complementary perspectives on the
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similarity between the generated and original distributions, offering a more ro-
bust evaluation of generative quality.

The Kullback—Leibler divergence measures how much a model distribution @
differs from a true probability distribution P. It is particularly sensitive to dis-
crepancies in the tails of the distribution, making it useful for detecting whether
a generative model captures rare events in sparse time series. Mathematically:

P(x)
Qz)

Dg(P||Q) =) P(z)log

zeX

(4)

The Jensen—Shannon divergence is based on KL divergence but is symmetric
and always finite. Its stability makes it suitable for sparse regions and extreme
zeros, providing a more balanced comparison:

JSD(P|Q) = $ Dicr(PIIM) + 5 Drer (QIIM), 5)

where M = (P + Q).

In the experiments, both P and () were estimated from the normalized his-
tograms of the real and generated data. This procedure was applied consistently
for the computation of both the KL and the JS divergences.

The Wasserstein distance, also known as the Earth Mover’s Distance, mea-
sures the minimal cost of transporting probability mass from the real distribution
P, to the generated distribution Py. It is defined as the infimum, over all pos-
sible couplings v with marginals P. and P, of the expected distance between
paired samples. It is robust to small localized deviations, such as sporadic peaks
in sparse time series:

WPLP)= o By (o=l (

The Kolmogorov—Smirnov test measures the maximum discrepancy between
the empirical cumulative distribution of a sample and the reference distribution.
Its interpretable, nonparametric criterion makes it suitable for quick checks of
distributional similarity.

Finally, the Maximum Mean Discrepancy (MMD) uses kernel methods to de-
tect global differences between high-dimensional or complex distributions, which
is particularly valuable for multivariate sparse time series without requiring den-
sity estimation.

3 Data Augmentation Models Evaluated

To generate synthetic data from the utilized dataset, a comprehensive analysis
of various existing methods was conducted, with the objective of implementing
these techniques in the context of sparse time series[11,17]. Among the methods
employed in this study were TimeGAN and DC-VAE.
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3.1 GAN-based generation

TimeGAN][19] is a method rooted in Generative Adversarial Networks (GANs),
specifically designed for the generation of time series data. This model comprises
a generator tasked with producing new synthetic data, which attempts to deceive
a discriminator that functions to distinguish between real and fictitious data.
GANSs have demonstrated strong performance not only in time series generation
[1] but also in other domains, such as image generation.

A distinctive feature of TimeGAN is its incorporation of an additional embed-
ding network that facilitates a reversible mapping between features and latent
representations, thereby addressing the challenges posed by the high dimen-
sionality of the GAN’s latent space. The model employs three loss functions:
one unsupervised loss associated with the GAN, another associated with the
embedding network, and a supervised step-wise loss. The supervised step-wise
loss utilizes real data as a reference, promoting the model’s ability to capture
the temporal sequential dynamics inherent in the data. This loss is minimized
through the joint training of the generation and embedding networks.

3.2 VAE-based generation

TimeVAE|3| is a method used for synthetic generation of time-series based on
Variational Auto-Encoders (VAEs). They propose an interpretable VAE archi-
tecture where they present two blocks: Trend and Seasonality, that get added to
the decoder in order to add specific temporal structures to the decoding process.
Thus, the output from the decoder results in the element-wise summation of
the trend block output, seasonality block outputs and the residual base decoder
output.

DC-VAE][7] is a method used for anomaly detection in time series, which
takes advantage of convolutional neural networks (CNN) and variational auto-
encoders (VAE). DC-VAE detects anomalies in time series data by exploiting
temporal information without sacrificing computational and memory resources.
In particular, instead of using recursive neural networks, large causal filters or
many layers, DC-VAE relies on dilated convolutions (DC') to capture long- and
short-term phenomena in the data, avoiding complex and less efficient deep
architectures, simplifying learning. This method is based on the reconstruction
of time series and is not used as a generative method like TimeGAN. However,
we wanted to test its performance in generative tasks such as this one.

4 Complete time series synthesis

A common factor with the models evaluated is that the generation of data is done
on a window-by-window basis. This inhibits the models ability to reconstruct the
dynamics of the original series sample by sample. The lack of temporal coher-
ence between windows undermines their concatenation, making it challenging to
establish continuity. The correlation between consecutive windows depends on
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independently sampled latent vectors, which do not guarantee temporal proxim-
ity.

In this case, given the sparsity of the time series analyzed in this study, it
would be worthwhile to investigate whether retaining only the last value from
each window and concatenating them could yield an entire synthetic time series,
that not only matches the input data in length, but also in its temporal dynamics.

This approach would not work for continuous time-series since each window
presents a specific dynamic that would not be so easily concatenated. An ex-
ample of windows from a continuous time series from the TELCO|8] dataset is
illustrated in Figure 3a. However, in sparse series such as STELCO, given the low
probability of occurrence of peaks, it could be argued that their concatenation
could yield an entirely new time series that preserves the original distribution of
the data.

5 Experiments and Results

5.1 Dataset Description

The experiments that follow are reported using the STELCO dataset. This
dataset comprises transactions recorded on an online commerce platform. Con-
sequently, in cases where no transactions occur, no corresponding records are
generated. Due to the transactional nature of the dataset, no null values were
present in the actual data.

To address this issue, a resampling procedure, using the mean time difference
between samples, was implemented prior to computation of sparsity for datasets
exhibiting this characteristic. This approach effectively introduced null values
into the dataset, allowing for a more meaningful calculation of sparsity.

To facilitate the subsequent analysis of our data, three groups of series were
formed, defining them from the lowest to the highest volume of transactions.
The first group (low) contains the series with the lowest number of transactions,
the second group (mid) series with an average volume of transactions and the
third group (high) series with the highest volume of transactions. To match the
number of values in each group with an appropriate sampling frequency, we
chose to resample the groups at intervals of 1 hour, 5 minutes, and 1 minute,
respectively. Thus, the number of values varied for each group accordingly: 625
values for the low dataset, 7,600 values for the mid dataset and 38,000 values
for the high dataset.

All the series in our set were standardized in order to preserve the confiden-
tiality of the data. With these three sub-groups of series, the analyses presented
below were carried out. An example of a series from each group is shown in
Figure 1.

5.2 Generative Models Configuration and visual results

TimeGAN The initial results using TimeGAN were obtained for the subset
designated as low employing model parameters of 10,000 epochs and a sequence
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Fig. 1: Examples of five-day segments from distinct time series in our dataset,
sampled at different temporal resolutions: 1 hour (Low), 5 minutes (Mid), and
1 minute (High), respectively.

length of 24. Figures 2a and 2d illustrate windows of the time series over a
specified period of time, along with histograms depicting the distributions of both
the original and synthetic data. The synthetic data demonstrate a distribution
that closely resembles that of the real data; however, comprehensive performance
evaluations will be conducted below.

The second experiment employing TimeGAN was conducted on the subset
designated as mid, maintaining a sequence length of 24 while increasing the
number of epochs to 30,000, due to the larger volume of input data. Figures
2b and 2e show the plots and histograms of the original and synthetic data,
respectively. In this case, it is seen that some of the peaks of higher values are
lost and are not generated in the synthetic data.

The third experiment using TimeGAN was conducted on the high subset,
employing the same sequence length of 24 but 50,000 epochs, given the larger
volume of input data compared to the other subsets. The window plots and
histograms of both the original and synthetic data are illustrated in Figures 2c
and 2f, respectively. Although the generated windows appear to align closely
with the original data, the histograms reveal a higher density of non-zero values
in the synthetic data than in the original. Furthermore, the largest values are
completely absent in the generated dataset. Future investigations could benefit
from a hyperparameter search to explore the effects of varying window lengths
and the number of iterations on the generation process.

TimeVAE To perform our tests, we used the interpretable TimeVAE architec-
ture with one Trend block, one seasonality block and the base residual decoder.
The trend block was selected with 4 trend polynomials (p = 4). The seasonality
block varied for each dataset: with m = 7 and d equal to the duration of a day
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Fig.2: TimeGAN: Visual comparison of original and generated data across dif-
ferent subsets (low, mid, and high). Figure from [15].

(24 in the case of the low subset, 288 for the mid subset, and 1440 for the high
subset); where m is the number of seasons, and d is the duration of each season.

The results obtained with this configuration are illustrated in Figure 3b, and
show a difficulty in capturing the temporal dynamics of our data. This is not
in accordance with the good results obtained with continuous data, with daily
seasonality like TELCO, as seen in Figure 3a.

Windows of real and synthetic data Windows of real and synthetic data
Ts1 Ts1

N D e
hmw WmLML

Synthetic

(a) TELCO windows (b) STELCO windows

Synthetic

Fig.3: TimeVAE: Real and synthetic windows for TELCO (left) and STELCO
(right). Figure from [15].
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DC-VAE In the initial approach, the model was used to reconstruct the input
series to evaluate its performance. The reconstruction of the three series of the
low subgroup are depicted in Figure 4. A window length of 24 points was selected,
corresponding to one day of activity. The model and its training process were
slightly modified to shift from a multivariate approach to a global one. In this
global mode, each input series was processed independently, without utilizing
information from the other series for reconstruction. As illustrated in the plots,
the model demonstrates a certain difficulty in reconstructing the highest activity
peaks, instead primarily reflecting the mean value of each window.

Reconstruccion con DC-VAE y Datos Originales

61 —— Original TS1
—— DC-VAE Reconstruction TS1

“1 Ll " Ll b o,

T T T T T T T
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Original TS2
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T T T T T T T
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—— Original TS3
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Fig.4: Reconstruction of the low subgroup series with DC-VAE. Figure from
[15].

The next step was to try to generate synthetic data from the original data.
For this purpose, the already trained model was used, in this case with the low
subgroup. Vectors with a uniform distribution (0,1), of dimension equal to the
dimension of the latency space of the model, were generated and passed through
the decoder. Thus, a window of T' = 24 samples is obtained at the output of the
decoder. For each uniform sample of the latency space, a window is generated,
which are comparable with the windows of the original series. This procedure
was repeated for each subset, and Figure 5 shows the comparison of real and
synthetic windows for the subset low.

It was observed that the DC-VAE inadequately captured the dynamics of the
original data, resulting in generated data that lacked resemblance to the originals
and exhibited a certain degree of noise. This issue may arise from several factors.
Firstly, the dimensionality reduction inherent in auto-encoders tends to prioritize
lower frequency data, which can lead to the loss of higher frequency components.
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Fig.5: Comparison of windows between original data (blue color) and synthetic
data (orange color), generated from the DC-VAE decoder trained with the low
subgroup series. Figure from [15].
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Consequently, this results in the omission of significant peaks in our sparse data,
which are crucial for our analysis.

Finally, a review of both reconstruction (4) and generation (5) results sug-
gests that the DC-VAE is more suited for time series that exhibit higher activity
levels and periodic dynamics. This is likely due to the Gaussian distribution of
the DC-VAE output, which smooths the reconstruction process. In contrast, the
original data does not exhibit such a distribution; rather, its values are predomi-
nantly zero, resulting in a distribution that aligns more closely with a Laplacian
model. We have discussed the potential for future adaptations of the network to
produce an output distribution that better fits the data, although this endeavor
will require significant time and resources, and thus will be left for subsequent
research.

5.3 Performance evaluation results

In this section, we present the results obtained from the evaluation metrics used
to assess the performance of the different generative methods. First, a comparison
of the sparsity between the original dataset and the generated ones is presented.
This comparison, observed in Table 2, shows that for both the low and mid
datasets, TimeGAN generated the closest dataset in terms of sparsity to the
original. For the high dataset, it is the DC-VAE that achieves the closest to
the original one, but it is a similar value throughout all datasets, so additional
metrics are needed to give an accurate evaluation.

Proceeding to the next category of metrics: the visual indicators. Figure 6
shows the PCA and t-SNE plots for the experiments performed with TimeGAN
on the low, mid, and high subsets. The plots illustrate that the generated data
(blue) closely resembles the real data (red), as evidenced by the similar spatial
distributions in both PCA and t-SNE representations. This similarity is particu-
larly notable for the low and mid subsets. However, many red points located at
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Table 2: Sparsity comparison between original and generated datasets.

Dataset|Original TimeGAN TimeVAE DC-VAE
low | 83.8%  82.8% 52.7%  48.6%
mid | 77.8%  85.6% 35.0%  50.4%
high | 54.8%  65.4% 42%  53.1%

the edges of the distributions are not covered by the blue points, which appear
to correspond to the uncovered tails in the histograms shown in Figure 2.

PCA plot PCA plot PCA plot
6

xxxxxxxxxxxxxxxxx

Fig. 6: TimeGAN: PCA (top) and t-SNE (bottom) plots. Figure from [15].

To estimate the Discriminative Score, a time series classification model was
developed, based on a 2-layer Long Short-Term Memory (LSTM) recurrent neu-
ral network (RNN). This model was trained to distinguish between real and
synthetically generated data sequences, allowing us to measure how effectively
the generative model produces data that resembles the real sequences.

For the estimation of the Predictive Score, a separate sequence prediction
model was employed, also utilizing a two-layer LSTM architecture. This model
was designed to assess how well the generated sequences follow a logical time
progression and whether they can be used to accurately predict future values.

In order to ensure robustness and statistical reliability, the entire procedure,
encompassing both fidelity and usefulness evaluations, was repeated across 10
independent trials. The final results, reported in Table 3, represent the average
performance over these iterations for each corresponding data subset.
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Table 3: Comparison of model performance across the three data subsets, eval-

uated using the first set of metrics. Table from [15].

. Data subset
Metric Method Tow id high
Discriminative|| DC-VAE [0.250 + 0.026|0.264 4+ 0.019]0.230 + 0.024
Score TimeGAN|0.268 + 0.083]0.249 £+ 0.131]0.269 + 0.045
Predictive DC-VAE |0.525 £ 0.006/0.687 + 0.104|0.554 + 0.004
Score TimeGAN|0.519 + 0.001{0.520 £ 0.002|0.738 + 0.004
Time to train || DC-VAE 79 s 678 s 1,634 s
and generate ||TimeGAN 5,624 s 30,494 s 65,220 s

As can be seen, the metric results do not reveal a substantial difference
between the two generative models, suggesting that both exhibit comparable fi-
delity and usefulness. Nevertheless, this observation does not fully align with the
qualitative inspection of the generated samples shown in Figures 2 and 5, cor-
responding to TimeGAN and DC-VAE, respectively. This discrepancy becomes
more evident when considering the PCA and t-SNE plots in Figures 7 and 6,
which highlight that the representations of original and generated data do not
fully overlap for DC-VAE, while TimeGAN achieves a closer alignment.

PCA plot PCA plot PCA plot
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4 < y R g g
>D*w’ o
e ¢ § o

-
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tSNE plot tSNE plot.
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Fig. 7: DC-VAE: PCA (top) and t-SNE (bottom) plots. Figure from [15].

Another factor that should be taken into account when comparing methods
is the time they take to train and generate the synthetic data. This is where DC-
VAE excels, given its VAE architecture is quite small and presents fast computing
times. TimeGAN, on the other hand, is quite slow, performing at its worst with
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large amounts of data and large window sizes. In Table 3, the elapsed training
time is shown for each method using an NVIDIA GeForce RTX 3090 with 24.5GB
of GPU memory.

5.4 Complete time series synthesis visual results

In order to assess this aspect, the same performance evaluation procedure was
applied to the concatenated windows generated using TimeGAN, with the re-
sults presented in Table 4 and Figure 8. These results suggest that it is possible
to generate an entire time series when the data are sufficiently sparse, as they
are comparable to those in Figure 6 and Table 3. This approach was therefore
applied to the low subgroup, yielding the series shown in Figure 9. Neverthe-
less, an issue remains with the less frequent high-value peaks, which are not
adequately represented in the generated series. Future work will focus on adapt-
ing the concatenation method to better capture these dynamics and enable the
effective generation of complete time series.

Table 4: Comparison of window concatenation performance for the 3 subsets of
data evaluated. Table from [15].

Metric Method Tow Datal,nsigbset Tigh
Discriminative TimeGAN 0.2678 + 0.0828(0.2486 + 0.1307|0.2694 + 0.0447
Score TimeGAN-concat|0.219 4+ 0.101 |0.2466 4 0.0654|0.3341 &+ 0.1234
Predictive TimeGAN 0.5186 =+ 0.001 [0.5204 =+ 0.0017(0.7377 £ 0.0043
Score TimeGAN-concat|0.5239 + 0.0004|0.5197 £ 0.0005(0.7373 £ 0.0006

As we observed, both for individual windows and for their concatenation,
TimeGAN visually demonstrates better performance, with the generated series
resembling the original ones more closely than those produced by DC-VAE and
TimeVAE. However, the Discriminative and Predictive Score metrics, originally
proposed by the authors of TimeGAN and also employed in our previous study
[15], indicate that TimeGAN and DC-VAE achieve similar performance. This
discrepancy may be due to the fact that these metrics rely on classification and
prediction models based on neural networks, which could suffer from underfitting
or overfitting, thereby failing to accurately capture the intended differences.
It may also reflect the limitations of these metrics when applied to sparse or
intermittent series, as shown in Table 2, where the large proportion of zeros
introduces imbalance that affects the evaluation of the models. For this reason,
and in order to obtain metrics more consistent with the visual comparisons, we
conducted an analysis using classical quantitative measures, as presented in the
following section.
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Fig.8: TimeGAN concatenated windows: PCA (top) and t-SNE (bottom) plots.
Figure from [15].

Original Data and Generated Data Plots

TS1
—— Original Data 1
g 10 4
2
0
—— Generated Data 1
2 10
’ Mwmum_uw_u_
0 T T T T T T T
o] 100 200 300 400 500 600
TS2
—— Original Data 2
g 10 4
2
0
—— Generated Data 2
@ 10 4
=
S T ERTEN N R W T DT
N L lL W
T T T T T T T
o] 100 200 300 400 500 600
TS3
—— Original Data 3
3 10 4
s
04 _MJLML_A_WLMU‘_AJM_J Lo [ ha
—— Generated Data 3
3 10 4
’ MMWMMWWMWW
07_1— T T T T T T
o] 100 200 300 400 500 600

Fig.9: TimeGAN: concatenated windows for the low subgroup. Figure from [15].



16 M. Sanchez-Laguardia et al.

5.5 Results of the KL, JS, Wasserstein, KS and MMD metrics

The classical metrics presented in Section 2.3 are well-established and widely
used in the literature to compare differences between distributions. In addition,
they exhibit characteristics that are particularly useful for our problem. For
example, the KL divergence is sensitive to discrepancies in the tails of the distri-
bution—an aspect observable in Figure 2, where generative models struggle to
reproduce such patterns. Similarly, the JS divergence provides stability in sparse
regions, while MMD has the advantage of not requiring density estimation.

The results of applying these metrics to the data generated by TimeGAN and
DC-VAE, compared against the original data, are shown in Table 5. Across all
evaluation criteria, TimeGAN consistently demonstrates superior performance,
highlighting its ability to better capture both the global structure and the sparse
patterns present in the original datasets. These metrics form part of the novel
evaluation framework proposed in this work. It is worth noting that the generated
windowed sequences were concatenated for evaluation; however, this approach
does not introduce any limitations, since the metrics assess the underlying data
distributions and are inherently independent of sequence length.

Table 5: Comparison of model performance across the three data subsets, evalu-
ated using the second set of metrics. Bold values indicate the best performance
for each metric.

Data subset
low | mid | high
Kullback—Leibler DC-VAE | 0.667 |0.607|3.329

Metric Method

divergence TimeGAN| 0.389 | 0.953 |0.339
Jensen-Shannon DC-VAE | 0.148 |0.115|0.566
divergence TimeGAN| 0.019 [0.063(0.147
Wasserstein DC-VAE | 0.569 |0.396 | 3.407
distance TimeGAN| 0.077 |0.247/0.505
Kolmogorov-Smirnov|| DC-VAE | 0.408 |0.242|0.646
test TimeGAN| 0.030 [0.183|0.290

Maximum-Mean DC-VAE | 0.122 |0.054 |0.545
Discrepancy (MMD) | TimeGAN|0.0001|0.015|0.058

6 Conclusions and future work

This work repositions the focus from the generation of synthetic data to the
critical assessment of how performance metrics can inform our understanding
of data augmentation quality. We introduced a set of quantitative metrics de-
signed to better capture the structural and statistical properties of such data
and applied them to three generative approaches.
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Our results show that the classical metrics provide a stronger alignment be-
tween quantitative evaluation and the visual assessment of the generated time
series. Unlike the metrics previously used in [15], which often failed to capture
noticeable qualitative differences, the metrics introduced in this work consis-
tently reflect the patterns evident through visual inspection. This represents an
important step toward more reliable and interpretable evaluation practices in
the generation of sparse time series.

The comparative analysis of different generative models further illustrated
the utility of these metrics in revealing specific strengths and weaknesses of
each approach. For instance, while some models produced visually convincing
patterns, only the proposed metrics were able to robustly quantify these im-
provements.

Looking forward, future work will aim to refine these evaluation tools further,
incorporating domain-specific considerations or downstream task relevance.

Finally, it is important to emphasize that we made the STELCO dataset
and the generation procedure for ASTELCO publicly available, along with the
accompanying to facilitate the reproducibility of the results.

6.1 Code and datasets

We provide access to all materials utilized for conducting the experiments, in-
cluding both the real and generated datasets: the code used to run the experi-
ments with TimeGAN! and DC-VAE?, the metrics used to evaluate the perfor-
mance of the models®, and both STELCO and ASTELCO datasets?.
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