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Résumé

Titre : La hiérarchie analytique ramifiée en logique du second ordre

Mots-clés : arithmétique du second ordre, hiérarchie analytique ramifiée, axiome du choix,
réalisabilité, arithmétique des types finis, extensionnalité, paramétricité

Cette thèse s’intéresse dans un premier temps à l’étude de la hiérarchie analytique ramifiée
(RAH) en arithmétique du second ordre (PA2). La hiérarchie analytique ramifiée a été définie
par Kleene en 1960. C’est une adaptation de la notion de constructibilité (introduite par Gödel
pour la théorie des ensembles) au cadre de l’arithmétique du second ordre. Les propriétés de cette
hiérarchie, en relation avec la théorie de la récursion et l’étude des modèles ensemblistes de PA2,
ont été étudiées en profondeur. Il semble naturel de formaliser RAH dans PA2 pour essayer de
démontrer qu’ajouter l’axiome du choix ou (une variante de) l’axiome de constructibilité à PA2
n’apporte pas de contradiction. Cependant, la seule trace écrite d’une telle formalisation semble
incorrecte. Dans cette thèse, nous souhaitons travailler sur cette formalisation. Pour cela, nous
allons travailler dans une version de l’arithmétique obtenue en enlevant l’axiome d’induction
des axiomes de PA2. Dans ce système, une nouvelle variante de l’axiome du choix apparâıt :
nous l’appelons l’axiome de collection, en référence à l’axiome de théorie des ensembles portant
le même nom. Cet axiome semble n’avoir jamais été considéré dans le cadre de la logique du
second ordre. Nous montrons qu’il a de bonnes propriétés calculatoires : sa contraposée est
réalisée par l’identité en réalisabilité classique alors qu’il est lui-même réalisé par l’identité en
réalisabilité intuitionniste. De plus, nous en énonçons une forme équivalente qui est interprétée
par une traduction négative de la logique classique vers la logique intuitionniste. Enfin, nous
montrons qu’une variante de cet axiome est plus faible qu’une variante de l’axiome du choix en
logique intuitionniste. Nous travaillons donc dans une théorie sans induction mais contenant
l’axiome de collection pour étudier la hiérarchie analytique ramifiée. Nous montrons que c’est un
modèle de PA2 satisfaisant une version forte d’axiome du choix : le principe de l’univers bien
ordonné. Il nous semble que l’axiome de collection est nécessaire pour démontrer ce résultat et
nous donnons des arguments pour expliquer cette intuition.

Dans une deuxième partie de la thèse, plus courte que la première, nous étudions l’égalité
extensionnelle en arithmétique des types finis (HAω). L’arithmétique des types finis est une
extension conservative de l’arithmétique de Heyting obtenue en étendant la syntaxe des termes
à tout le Système T. Elle parle donc des fonctionnelles de types finis. Alors que l’égalité entre
entiers naturels est spécifiée par les axiomes de Peano, comment peut être définie l’égalité entre
fonctionnelles ? Différentes réponses à cette question poussent à l’étude de différentes variantes
de HAω, telles qu’une variante extensionnelle (E-HAω) où deux fonctionnelles sont égales si
elles ont le même graphe. Dans cette partie, nous allons montrer comment l’étude d’une famille
de relations d’équivalence partielle nous amène à définir une interprétation par paramétricité de
l’égalité extensionnelle dans HAω.
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Abstract

Title : The ramified analytic hierarchy in second-order logic

Key words: second-order arithmetic, ramified analytic hierarchy, axiom of choice, realizability,
finite type arithmetic, extensionality, parametricity

In its first part, this thesis focuses on the study of the ramified analytic hierarchy (RAH)
in second-order arithmetic (PA2). The ramified analytic hierarchy was defined by Kleene in
1960. It is an adaptation of the notion of constructibility (introduced by Gödel for set theory)
to the framework of second-order arithmetic. The properties of this hierarchy, in relation to
computability and to the study of set-theoretic models of PA2, have been studied in depth. It
seems natural to formalize RAH in PA2 in an attempt to demonstrate that adding the axiom of
choice or (a variant of) the axiom of constructibility to second-order arithmetic does not bring
contradiction. However, the only written trace of such a formalization seems to be incorrect.
In this thesis, we want to work on this formalization. To do this, we will work in a version of
arithmetic obtained by removing the axiom of induction from the axioms of PA2. In this system,
a new variant of the axiom of choice appears: we call it the axiom of collection, in reference to
the homonymous axiom of set theory. It seems that this axiom has never been considered in
the context of second-order logic. We show that it has good computational properties: its
contrapositive is realized by the identity in classical realizability, while it is itself realized by
the identity in intuitionistic realizability. In addition, we show that it is equivalent to an axiom
which is well-behaved with respect to a negative translation from classical logic into intuitionistic
logic. Finally, we show that this variant of the axiom of collection is weaker than a variant of
the axiom of choice in intuitionistic logic. We therefore work in a theory without induction but
containing the axiom of collection. We aim at studying the ramified analytic hierarchy. We show
that it is a model of PA2 satisfying a strong version of the axiom of choice: the principle of the
well-ordered universe. It seems that the axiom of collection is necessary to prove this result and
we will thoroughly explain this intuition.

In the second part of the thesis, shorter than the first, we study extensional equality in fi-
nite type arithmetic. Higher Type Arithmetic (HAω) is a first-order many-sorted theory. It
is a conservative extension of Heyting Arithmetic obtained by extending the syntax of terms
to all of System T: the objects of interest here are the functionals of higher types. While
equality between natural numbers is specified by the axioms of Peano, how can equality be-
tween functionals be defined? From this question, different versions of HAω arise, such as an
extensional version (E-HAω) and an intentional version (I-HAω). In this work, we will see
how the study of partial equivalence relations leads us to design a translation by parametricity
from E-HAω to HAω.
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Resumen

T́ıtulo : La jerarqúıa anaĺıtica ramificada en lógica de segundo orden

Palabras claves : aritmética de segundo orden, jerarqúıa anaĺıtica ramificada, axioma de
elección, realizabilidad, aritmética de tipo finito, extensionalidad, parametricidad

En su primera parte, esta tesis se centra en el estudio de la jerarqúıa anaĺıtica ramificada
(RAH) en aritmética de segundo orden (PA2). La jerarqúıa anaĺıtica ramificada fue definida por
Kleene en 1960. Se trata de una adaptación de la noción de constructibilidad (introducida por
Gödel para la teoŕıa de conjuntos) al marco de la aritmética de segundo orden. Las propiedades
de esta jerarqúıa, en relación con la computabilidad y con el estudio de los modelos de PA2,
han sido estudiadas en profundidad. Parece natural formalizar RAH en PA2 en un intento de
demostrar que añadir el axioma de elección o (una variante de) el axioma de constructibilidad
a la aritmética de segundo orden no conlleva contradicción. Sin embargo, el único rastro escrito
de tal formalización parece ser incorrecto. En esta tesis, queremos trabajar sobre esta formal-
ización. Para ello, trabajaremos en una versión de la aritmética obtenida eliminando el axioma
de inducción de los axiomas de PA2. En este sistema, aparece una nueva variante del axioma
de elección: lo llamamos axioma de colección, en referencia al axioma homónimo de la teoŕıa
de conjuntos. Parece que este axioma nunca se ha considerado en el contexto de la lógica de
segundo orden. Demostramos que tiene buenas propiedades computacionales: su contraposición
se realiza por la identidad en la realizabilidad clásica, mientras que él mismo se realiza por la
identidad en la realizabilidad intuicionista. Además, mostramos que es equivalente a un axioma
que se comporta bien con respecto a una traducción negativa de la lógica clásica a la lógica
intuicionista. Finalmente, mostramos que una variante del axioma de colección es más débil que
una variante del axioma de elección en lógica intuicionista. Por tanto, trabajamos en una teoŕıa
sin inducción pero que contiene el axioma de colección para estudiar la jerarqúıa anaĺıtica rami-
ficada. Demostramos que es un modelo de PA2 que satisface una versión fuerte del axioma de
elección: el principio del universo bien ordenado. Parece que el axioma de colección es necesario
para demostrar este resultado y explicaremos a fondo esta intuición.

En la segunda parte de la tesis, más breve que la primera, estudiamos la igualdad extensional
en aritmética de tipo finito (HAω). La aritmética de tipo finito es una teoŕıa de primer orden.
Es una extensión conservativa de la Aritmética de Heyting que se obtiene extendiendo la sintaxis
de los términos a todo el Sistema T: los objetos de interés aqúı son los funcionales de tipos
superiores. Mientras que la igualdad entre números naturales está especificada por los axiomas
de Peano, cómo puede definirse la igualdad entre funcionales? A partir de esta pregunta, surgen
diferentes versiones de HAω, como una versión extensional (E-HAω) y una versión intencional
(I-HAω). En este trabajo veremos cómo el estudio de unas relaciones de equivalencia parciales
nos lleva a diseñar una traducción por parametricidad de E-HAω a HAω.
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Résumé substantiel

L’axiome du choix, depuis sa formulation par Zermelo en 1904 [53, 6], a joué un rôle impor-
tant dans de nombreux domaines des mathématiques. Ses conséquences sont vastes et par-
fois surprenantes, ce qui a donné lieu à des discussions sur son utilisation dans les preuves
mathématiques. D’une part, il est largement accepté en mathématiques constructives [4], en
particulier car il a un contenu calculatoire clair en logique intuitionniste [49, 33]. D’autre part,
bien que son utilisation (en théorie des ensembles) ne conduit pas à des incohérences, son con-
tenu calculatoire (en logique classique) reste inconnu. Dans ce manuscrit, nous aborderons le
problème de la consistance relative de l’axiome du choix dans le cadre de la logique du second or-
dre et nous esquisserons une traduction syntaxique conçue en analysant la hiérarchie analytique
ramifiée [26]. Cette traduction pourrait servir à l’étude du contenu calculatoire de l’axiome du
choix en logique classique.

En 1938, Gödel a montré la cohérence relative de l’axiome du choix et de l’hypothèse
généralisée du continu par rapport aux axiomes de la théorie des ensembles (ZF) en utilisant
le concept clé d’ensembles constructibles [21]. Sa construction repose sur un opérateur X 7→
Def(X) qui fait correspondre chaque ensemble X à l’ensemble Def(X) des sous-ensembles de X
qui sont définissables à l’aide d’une formule du premier ordre avec des paramètres dans X et des
quantifications restreintes à X. En itérant (de façon transfinie) cet opérateur, Gödel définit la
suite (Lα)α∈On satisfaisant l’équation

Lα :=
⋃
β<αDef(Lβ)

et dont l’union transfinie est appelée l’univers constructible (noté L). Gödel montre ensuite que
la classe L est un modèle intérieur de ZF qui satisfait non seulement l’axiome du choix mais
aussi l’hypothèse généralisée du continu. En fait, ce modèle satisfait l’axiome de constructibilité
(noté V = L) qui implique les deux axiomes précédents. Toutes ces constructions (et ces
preuves) peuvent être internalisées dans ZF, montrant un résultat de cohérence relative en-
tre les systèmes ZF + V = L et ZF : l’ajout de l’axiome de constructibilité à la théorie des
ensembles n’entrâıne pas d’incohérences.

Les idées qui sous-tendent la construction de Gödel sont très générales et peuvent être ap-
pliquées à d’autres formalismes tels que l’étude des sous-ensembles de ω. Dans ce cadre, Kleene
a introduit [26] la hiérarchie analytique ramifiée (RAHα)α∈On définie par l’équation

RAHα :=
⋃
β<αDef2(RAHβ)

où, pour chaque sous-ensemble X de P(ω), Def2(X) est le sous-ensemble de P(ω) formé par
tous les ensembles définissables au second ordre à partir de X, c’est-à-dire les ensembles d’entiers
qui peuvent être définis à l’aide d’une formule du second ordre avec des paramètres du sec-
ond ordre pris dans X et des quantifications du second ordre relativisées à X. Cette suite
(transfinie) a été étudiée en profondeur dans le cadre de la théorie des ensembles, en particulier
pour ses liens avec la théorie de la récursion [10], et pour ses conséquences dans l’étude des
modèles de l’arithmétique du second ordre [2]. En particulier, son union transfinie (notée RAH)
est un modèle de l’arithmétique du second ordre [10] qui satisfait l’axiome du choix et, plus
généralement, une forme d’axiome de constructibilité.

Il est alors tout à fait naturel de se demander si tout ce travail peut être internalisé dans PA2.
Cela permettrait de démontrer un résultat de cohérence relative : l’axiome de constructibilité
n’est pas contradictoire en arithmétique du second ordre. Il semble que ce résultat n’ait pas été
publié avant les travaux de Colson et Grigorieff [15] en 2001. Un résultat similaire a toutefois
été publié pour l’analyse d’ordre supérieur (autrement dit, l’arithmétique d’ordre supérieur avec
axiome de choix). L’histoire aurait dû s’arrêter là mais, au cours de ma thèse de master, j’ai
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trouvé une erreur dans le travail de Colson et de Grigorieff (voir Section 5.5.1), montrant ainsi
que la question de la cohérence relative de l’axiome de constructibilité dans PA2 semble toujours
ouverte (voir Open problem 2 page 113). Une autre question qui semble non résolue est de savoir
s’il est possible de montrer de façon interne à PA2 que RAH est un modèle de PA2 (voir Open
problem 3 page 113).

Dans les pages qui suivent, j’essaierai de répondre à ces questions. Bien que je ne vais
pas donner une réponse définitive à ces problèmes, je présenterai une manière originale de les
aborder. Mon but était de montrer au sein de PA2 que RAH est un modèle de l’arithmétique du
second ordre satisfaisant une variante de l’axiome de constructibilité. Une preuve de ce résultat
est écrite dans les travaux de Colson et Griogorief mais elle utilise une propriété sur les bons
ordres qui ne semble pas pouvoir être prouvée dans PA2 (voir Section 5.5.1). Pour surmonter
ce problème, on peut prouver un résultat plus faible : la classe RAH est un modèle de PA2
satisfaisant l’axiome de choix. Mais, il semble que l’axiome du choix dénombrable soit nécessaire
pour montrer que RAH satisfait le schéma d’axiomes de compréhension (de la logique du second
ordre). Comme alternative, j’introduirai un nouveau schéma d’axiomes en logique du second
ordre, inspiré de l’axiome de collection de la théorie des ensembles.

Ce nouveau principe est équivalent à l’axiome du choix dénombrable en présence de l’axiome
d’induction. Néanmoins, sans l’axiome d’induction, il semble qu’il ne l’implique pas (mais je n’ai
pas pu prouver ce résultat, voir Open problem 1 page 40). L’avantage de cet axiome est qu’il a
un contenu calculatoire clair dans les modèles de réalisabilité de Krivine [30] : sa contraposée est
réalisée par l’identité ! Dans les pages qui suivent, je vais travailler dans le cadre de la logique du
second ordre enrichie de ce nouveau schéma d’axiomes et je vais montrer que RAH est un modèle
de PA2 qui satisfait l’axiome de choix. Je vais également montrer comment exprimer ce résultat
sous la forme d’une traduction syntaxique. Le système source de cette traduction capturera
la prouvabilité dans RAH et, en particulier, validera la logique classique et l’axiome du choix.
Le système cible sera un système de type classique pour la logique du second ordre enrichi
du schéma d’axiomes de collection. Comme le système cible peut être équipé d’une sémantique
venant de la réalisabilité classique de Krivine, l’étude de cette traduction pourrait conduire à une
interprétation calculatoire de l’axiome du choix dans le cadre de la logique classique du second
ordre. Cependant, il s’agit là d’un développement ambitieux qui n’a pas encore été réalisé.

Un autre aspect de ce travail est la conception d’une théorie des bons préordres1 en logique
du second ordre enrichie de l’axiome de collection. En fait, la théorie des bons ordres dans PA2
présente un inconvénient majeur : la classe des bons ordres n’est que bien préordonnée. C’est
la principale différence avec les ordinaux en théorie des ensembles : ils ont une représentation
canonique et sont donc bien ordonnés. Dans le cas de RAH, cet inconvénient impose l’utilisation
de l’axiome du choix dénombrable dans la preuve du principe de réflexion. Un tel problème
n’apparâıt pas en théorie des ensembles ! Par conséquent, le fait que la classe des bons or-
dres n’est que bien préordonnée nous donne un indice pour surmonter cette difficulté : il suffit
de considérer des bons préordres au lieu des bons ordres. Effectivement, le fait de travailler
avec des bons préordres et le schéma d’axiomes de collection nous permettra de contourner
l’utilisation de l’axiome du choix. Enfin, les bons préordres n’ont jamais été étudiés dans le
cadre de l’arithmétique du second ordre : en présence de l’axiome d’induction, on peut constru-
ire un bon ordre à partir de n’importe quel bon préordre. Or, en arithmétique du second ordre
sans induction, ce n’est pas le cas ; ce qui justifie cette approche et l’originalité de cette méthode.
C’est dans un tel cadre (logique du second ordre enrichie de l’axiome de collection) que nous
nous placerons dans la suite de ce manuscrit.

Les principales contributions de cette thèse sont listées ci-dessous.

1Dans la littérature, ils sont appelés prewellorderings [41].
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1. On définit une nouvelle arithmétique basée sur les arbres binaires pures plutôt que les
entiers et on l’utilise durant toute la première partie.

2. On formule un nouveau schéma d’axiomes en arithmétique du second ordre que j’appelle
le schéma d’axiomes de collection, en référence à l’axiome portant le même nom en théorie
des ensembles. On étudie son comportement par rapport à la réalisabilité de Krivine, à
la réalisabilité de Kleene et à une traduction négative. On démontre qu’une variante de
cet axiome est plus faible qu’une variante de l’axiome du choix en logique intuitionniste en
exhibant un modèle de réalisabilité à la Kleene qui satisfait le premier et réfute le second.

3. On développe une théorie des bons préordres en arithmétique du second ordre sans induc-
tion et avec le schéma d’axiomes de collection.

4. On construit et on étudie la hiérarchie analytique ramifiée dans PA2− +Coll. En par-
ticulier, on montre que c’est un modèle de PA2 qui satisfait le principe de l’univers bien
ordonné.

5. On explique pourquoi l’axiome du choix (ou l’axiome de collection) semble être nécessaire
pour démontrer que RAH satisfait le schéma d’axiomes de compréhension.

Enfin, cette thèse est séparée en six chapitres dont les contenus sont décrits ci-dessous.
Le chapitre 1 est consacré à une présentation d’une arithmétique du second ordre originale,

dans laquelle les termes du premier ordre représentent les arbres binaires purs. Ce choix atypique
permettra de définir directement dans les individus de PA2 tous les codages nécessaires (codes
de Gödel d’une formule etc...) au développement de la hiérarchie analytique ramifiée, sans passer
par les complications arithmétiques habituelles.

Le chapitre 2 introduit le schéma d’axiomes de collection en arithmétique du second ordre.
Dans ce chapitre, je présenterai également une traduction par relativisation de PA2 dans PA2−,
montrant ainsi comment interpréter l’induction dans un système de type à la Curry où les
quantifications ne sont pas relativisées. Enfin, à la fin de ce chapitre, je présenterai un modèle
de réalisabilité classique pour PA2− et je montrerai que ce modèle valide le schéma d’axiomes
de collection.

Le chapitre 3 présente une étude de l’arithmétique du seconde ordre en logique intuitionniste.
En particulier, dans ce chapitre, je présenterai une traduction négative de PA2 vers HA2 et je
démontrerai que des variantes de l’axiome de collection et de l’axiome du choix sont validées par
cette traduction. À la fin de ce chapitre, je présenterai un modèle de réalisabilité intuitionniste
pour la théorie HA2− et je démontrerai que ce modèle valide l’axiome de collection mais réfute
une variante de l’axiome du choix.

Dans le chapitre 4, je présente les outils nécessaires à l’étude de la hiérarchie analytique
ramifiée en logique du second ordre. En particulier, je développe la théorie des bons préordres
dans PA2− +Coll et je montre comment définir des suites par récurrences transfinies dans ce
système.

Le chapitre 5 est consacré à l’étude de la hiérarchie analytique ramifiée en logique du
second ordre. Il commence par une internalisation de la notion de satisfaction qui servira
immédiatement après à la définition de la suite transfinie (RAHα)α∈WPO. On démontre dans la
théorie PA2− +Coll que RAH est un modèle de PA2 satisfaisant le principe de l’univers bien
ordonné. En suite, on proposera une étude de la littérature sur l’internalisation de la hiérarchie
analytique ramifiée dans PA2 et, en particulier, on commentera avec détails les travaux de
Colson et Grigorieff à ce sujet. Enfin, on s’aventurera à esquisser une traduction entre un λ-
calcul source à la Church et un λ-calcul cible à la Curry correspondant à la relativisation à la
classe RAH. Le point essentiel de cette traduction repose sur une analyse calculatoire de la
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preuve du schéma de réflexion. Cependant, je n’ai pas eu le temps de terminer cette analyse
pendant ma thèse. Néanmoins, ce croquis de traduction logique permet déjà de donner une
future application à l’étude de RAH : la conception d’un calcul intégrant de façon primitive la
notion de constructibilité.

Le chapitre 6 est consacré à l’étude de l’égalité extensionnelle en arithmétique des types
finis (HAω). L’arithmétique des types finis est une extension conservative de l’arithmétique
de Heyting obtenue en étendant la syntaxe des termes à tout le Système T. Elle parle donc des
fonctionnelles de types finis. Alors que l’égalité entre entiers naturels est spécifiée par les axiomes
de Peano, comment peut être définie l’égalité entre fonctionnelles ? Différentes réponses à cette
question poussent à l’étude de différentes variantes de HAω, telles qu’une variante extensionnelle
(E-HAω) où deux fonctionnelles sont égales si elles ont le même graphe. Dans cette partie, nous
allons montrer comment l’étude d’une famille de relations d’équivalence partielle nous amène à
définir une interprétation par paramétricité de l’égalité extensionnelle dans HAω.
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rends compte de la chance que j’ai eu de travailler avec vous. D’abord, sur le plan scientifique,
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Introduction

This thesis is made of two very different parts, and of different sizes, each of them equipped with
its own introduction. The first part represents most of the work included in this report. It is
concerned with second-order logic and with the ramified analytic hierarchy [26] in this framework.
The second part deals with extension of equality in higher type arithmetic [49]. While these two
subjects do not look connected, our manner of tackling them advocates for a way of studying
proof systems. Many of the results spread in this thesis are described as a translation between
two proof systems:

1. An interpretation of the axiom of induction in a proof system for second-order arith-
metic without induction is presented as a translation between two typed λ-calculus in
Section 2.2.3.

2. An interpretation of classical logic and of the axiom of induction in an intuitionistic proof
system for second-order arithmetic without induction is presented as a translation between
two typed λ-calculus in Section 3.2.1.

3. A translation interpreting the principle of the well-ordered universe in a proof system for
second-order arithmetic without induction is sketched in Section 5.5.3 and remains as a
future work.

4. Finally, the whole Chapter 6 is devoted to the design of a translation interpreting ex-
tensional equality in a proof system for higher type arithmetic with only equality on the
type N.

While these results are not new, the method to obtain them is at least original. Specifically,
the first three interpretations translate a λ-calculus à la Church, where the proof terms are
equipped with type information, into a λ-calculus à la Curry, where proof terms are raw λ-terms.
The type annotations in the source system are consequently translated into programs that convey
a computational meaning. These translations, replacing logical information by programs, seem
to frequently appear through a process of relativization and our work shows examples of such
phenomena.

Apart from these translations, the contributions of this manuscript are listed below.

1. We formulate a new arithmetic based on pure binary trees rather than integers (Chapter 1)
and we use it throughout the whole first part.

2. We formulate a new axiom scheme in second-order arithmetic without induction that we
call the axiom scheme of collection, inspired by its homonymous axiom from set theory. We
study its behavior with respect to Krivine realizability, negative translations and Kleene
realizability (Chapter 2 and 3). We strongly suspect that this new axiom scheme is weaker
than the axiom scheme of choice (over the individuals) but we were not able to prove it.
Thus, we formulate the following open problem.

Open problem 1. Is the axiom scheme of collection weaker than the axiom scheme of
choice (over the individuals) in PA2−?

3. We develop a theory of well-preorders in second-order arithmetic without induction and
with the axiom scheme of collection (Chapter 4).

4. We construct and study the ramified analytic hierarchy inside PA2− +Coll (Chapter 5).
Notably, we show that it is a model of PA2 that satisfies the principle of the well-ordered
universe.
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5. We found a flaw in a paper of Colson and Grigorieff [15] and we explain why it led to the
two following open problems (Section 5.5.1).

Open problem 2. Is the theory PA2 + V = S(RAH) relatively consistent to the
theory PA2?

Open problem 3. Can it be shown in PA2 that S(RAH) models the axiom scheme of
comprehension? Is the principle of reflection provable in PA2?

We will explain how a solution of Open Problem 2 could be found by combining the works
of Vetulani [51] and Simpson [47]. As for Open Problem 3, this thesis contains a proof of
the principle of reflection in the theory PA2− +Coll. However, we do not know how to
tackle this problem in bare second-order arithmetic.

Last but not least, during my thesis, I participated to researches that I did not include in
this manuscript [13, 5].
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Part I

The ramified analytic hierarchy in
second-order logic
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Introduction

The axiom of choice, since it was introduced by Zermelo in 1904 [53, 6], has been important
in many different areas of mathematics. Its consequences are wide and, sometimes, surprising,
leading to discussions whether it should be accepted and used in mathematical proofs. On one
hand, it is widely accepted in constructive mathematics [4] due to the fact that it has a clear
computational content in intuitionistic logic [49, 33]. On the other hand, while it has been proven
that its use (in classical set theory) does not lead to inconsistencies, the computational content
of the full axiom of choice (in classical logic) remains unknown. In this manuscript, we will tackle
the problem of its relative consistency in the framework of second-order logic, and we will give a
path to the study of its computational content through a syntactic translation designed by the
analysis of the ramified analytic hierarchy [26].

In 1938, Gödel showed the relative consistency of the axiom of choice and of the generalized
continuum hypothesis with respect to the axioms of set theory (ZF) using the key concept of
constructible sets [21]. His construction relies on an operator X 7→ Def(X) that maps each
sets X to the set Def(X) of the subsets of X that are definable using a first-order formula with
parameters in X and quantifications restricted to X. By transfinitely iterating this operator,
Gödel defines the sequence (Lα)α∈On by the equation

Lα :=
⋃
β<αDef(Lβ)

from which the constructible universe (denoted L) is obtained as its transfinite union. Gödel then
shows that the class L is an inner model of ZF that satisfies not only the axiom of choice but also
the generalized continuum hypothesis. In fact, this model satisfies the axiom of constructibility
(denoted V = L) that implies the former two statements. Notably, all these constructions (and
proofs) can be done inside ZF, showing a result of relative consistency between the systems ZF+
V = L and ZF: adding the axiom of constructibility to set theory does not entail inconsistencies.

The ideas behind the construction of Gödel are very general and can be applied to other
formalisms such as the study of subsets of ω. In this framework, Kleene introduced [26] the
ramified analytic hierarchy (RAHα)α∈On defined by the equation

RAHα :=
⋃
β<αDef2(RAHβ)

where, for each subset X of P(ω), Def2(X) is the subset of P(ω) formed by all second-order
definable sets from X, that is sets of integers that can be defined using a second-order formula
with second-order parameters in X and second-order quantifications relativized to X. This
sequence has been deeply studied in set theory, specifically its links with recursion theory [10],
and its consequences in the realm of models of second-order arithmetic [2]. In particular, its
transfinite union (denoted RAH) is a model of second-order arithmetic (PA2) that satisfies the
axiom of choice and, more generally, a second-order form of the axiom of constructibility.

It is then very natural to ask if all this work can be internalized within PA2 to obtain a result
about the consistency of the axiom of constructibility in second-order arithmetic. However, it
seems that this result was not published before the work of Colson and Grigorieff [15] in 2001.
Notably, a similar result was published for higher-order analysis2 in the PhD thesis of Vetulani
in 1977 [51]. The story should have ended here but, during my master thesis, I found a flaw
in the work of Colson and Grigorieff (see Section 5.5.1), thus showing that the question of the
relative consistency of the axiom of constructibility in PA2 seems to be still open3 (see Open
problem 2 page 113). An other question that looks to be unresolved is whether it is possible to

2In other words, higher-order arithmetic with the axiom of choice.
3At least, it seems that it is not written in the literature.
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show that RAH models PA2 in the framework of second-order arithmetic (see Open problems 3
page 113).

In the following pages, I will try to finally fill this gap between scientific folklore and scientific
knowledge. To be frank, I could not achieve this goal as far as I wanted, but I will present an
original way to tackle this problem. My goal was to show within PA2 that RAH is a model of
second-order arithmetic satisfying a second-order variant of the axiom of constructibility. The
previously written proof of this fact used a result about well-orders that does not seem to be
provable (see Section 5.5.1). To overcome this issue, one can prove the following weaker result:
the class RAH satisfies second-order arithmetic enriched with a form of axiom of choice. But, it
seems that the axiom of countable choice is necessary to show that RAH models the axiom scheme
of comprehension. As an alternative, I will introduce a new axiom scheme for second-order logic,
inspired by the axiom of collection of set theory.

This new scheme is equivalent to the axiom of countable choice in presence of the axiom of
induction. Nevertheless, without the axiom of induction, it seems that it does not imply it but
we were not able to prove it (Open problem 1). The advantage of this axiom is that it has a very
clear computational content in Krivine realizability models [30]: its contrapositive is realized by
the identity! In the following pages, I will work within second-order logic enriched with this
new axiom scheme of collection and I will show that RAH is a model of PA2 that satisfies the
axiom of choice. As a future work, I want to extract a syntactic translation from this result of
relative consistency. The source system will capture the provability in RAH and, in particular,
will validate classical logic and the full axiom of choice. The target system will be a classical type
system for second-order logic enriched with the axiom scheme of collection. Because the latter
type system can be designed using Krivine’s technique of classical realizability, the study of this
translation could lead to a computational interpretation of the axiom of choice in the framework
of classical second-order logic. However, it is an ambitious development that still remains as a
future work.

Another aspect of this work is the design of a theory of well-preorders4 [41] inside second-order
logic enriched with the axiom scheme of collection. In fact, the theory of well-orders inside PA2 is
not so well-rounded and has one major drawback: the class of well-orders is only well-preordered.
This is the main difference with ordinals in set theory, that have a canonical representation, and
are thus well-ordered. In the case of RAH, this drawback enforces the use of the axiom of
countable choice in the proof of the principle of reflection. Such a problem does not appear in set
theory! Therefore, the fact that the class of well-orders is only well-preordered gives us the clue
to overcome this difficulty: just consider well-preorders instead of well-orders. Notably, working
with well-preorders and the axiom scheme of collection will allow us to circumvent the use of
the axiom of choice. Finally, well-preorders were never studied in the framework of second-order
arithmetic: in presence of the axiom of induction, one can construct a well-order from any well-
preorders. However, in bare second-order logic, it is not the case, thus justifying this approach
and the originality of this method5. It is in such a framework (second-order logic enriched with
the axiom of collection) that we will place ourselves in the remainder of this manuscript.

4In the literature, they are called prewellorderings [41] but I will stick with the nomenclature “well-preorders”
that I find adequate.

5As far as I know, it was never done.
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Chapter 1

Second-order logic over the type
of pure binary trees

In this chapter, we present a variation of second-order logic based on pure binary trees as in-
dividuals (Section 1.1). The set of pure binary trees is generated from the constant symbol 0
and the binary operator ⟨ , ⟩. Because the pairing operator is primitive, it is enough to consider
unary operations and unary predicates over the individuals. The syntax of SOL is equipped
with a set of codes of unary functions that generate the primitive recursive operations over
the type of binary trees. The meaning of these codes is specified by the axioms of computa-
tion (Definition 1.2.1.1) and, as examples, we show how they are used to generate operations
over the (encodings of the) data types of natural numbers and of finite lists (Subsection 1.2.2).
This is the framework in which we describe second-order arithmetic and various related systems
(Section 1.2) as many-sorted first-order theories. In particular, we introduce the theory PA2
(Subsection 1.2.1) of second-order arithmetic. Various subsystems arise from this theory by re-
stricting the axiom scheme of comprehension to classes of formulas (Subsection 1.2.3). These
subsystems, that have their own interest in the world of recursive mathematics [47], will be used
in this thesis to take into account which instances of the axiom of comprehension are used in a
proof.

1.1 Second-order logic

Second-order logic (SOL) is a first-order theory that distinguishes two kinds of objects:

1. The individuals, or first-order objects. In arithmetic, the integers traditionally serve as
individuals. Other structures (formulas, recursive functions...) can then be defined by
encoding (à la Gödel). In this thesis, we will rather use as individuals the type of pure
binary trees, generated from the constructors 0 (zero) and ⟨ , ⟩ (pairing binary operator).
As a consequence, we will consider a version of second-order logic that comes equipped with
function symbols to represent all primitive recursive functions over the type of pure binary
trees. We will see that this choice makes possible the design of elegant encodings1 and the
representation of different structures (such as binary relations) inside the “second-order
objects”. In a system without induction, the primitive aspects of the pairing function and

1All the encodings done with pure binary trees can be done with integers by using Cantor’s bijection from
N×N to N.
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its projections will appear necessary to show that these operations behave as needed on
non standard individuals.

2. The sets of individuals, or second-order objects. Because the set of individuals are in
bijection with R, the second-order objects are sometimes called “reals”.

As a consequence, the language of SOL distinguishes two kinds of variables: one for individ-
uals2 (denoted x, y, z...) and an other for sets3 (denoted X,Y, Z...).

1.1.1 Syntax of second-order logic

Codes of primitive recursive functions, terms and formulas

We will work with four syntactic categories:

1. the codes of primitive recursive functions

2. the first-order terms

3. the second-order terms

4. the formulas.

Definition 1.1.1.1. Function symbols, first-order terms, second-order terms and formulas of
SOL are generated by the following grammars:

1. The function symbols of the language of SOL contain all the codes of primitive recursive
functions over the type of pure binary trees, which are generated by the grammar:

Codes of primitive f, g ::= 0 | id | fst | snd
recursive functions | (f ◦ g) | ⟨f, g⟩ | [f |g]

The meaning of these codes will be specified by the axioms of computation inside the
system PA2 (Definition 1.2.1.1).

2. The first-order terms of SOL are defined by the grammar:

Terms t, u ::= x | 0 | ⟨t, u⟩ | f(t)

where x denotes a first-order variable and f is a code of primitive recursive function.

3. The second-order terms of SOL are generated from a set of (unary) second-order variables
(denoted X,Y, Z...).

4. Formulas of SOL are defined by the grammar:

Formulas ϕ, ψ ::= ⊥ | t = u | t ∈ X | ϕ⇒ ψ | ∀xϕ | ∀Xϕ

where t, u denote first-order terms while X is a second-order variable.

2They are the first-order variables.
3They are the second-order variables.
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Remark 1.1.1.1. We will consider extensions of the language of second-order logic obtained by
adding new constant symbols and new (unary) predicate symbols to the one already in SOL.
These new symbols will be useful when we will study semantics of second-order logic (such as
Tarski semantic, Krivine classical realizability and Kleene intuitionistic realizability).

Notation 1.1.1.1. The following notations will be used in the sequel:

1. We consider that the binary operation ⟨ , ⟩ is right associative, and we lighten its use as
follows:

⟨t, u, v⟩ ≜ ⟨t, ⟨u, v⟩⟩
⟨t, u, v, w⟩ ≜ ⟨t, ⟨u, ⟨v, w⟩⟩⟩ (Etc.)

2. A code of function f can be used as an operator of any positive arities thanks to the
following convention:

f(t, u) ≜ f(⟨t, u⟩)
f(t, u, v) ≜ f(⟨t, u, v⟩) (Etc.)

3. In a similar fashion, a second-order variable X can be seen of any positive arities:

(t1, ...tn) ∈ X ≜ ⟨t1, ..., tn⟩ ∈ X.

This is why the syntax of SOL constructed over pure binary trees only contains unary
second-order variable.

4. Finally, the connective ⇒ is right associative:

ϕ⇒ ψ ⇒ χ ≜ ϕ⇒ (ψ ⇒ χ)

ϕ⇒ ψ ⇒ χ⇒ υ ≜ ϕ⇒ (ψ ⇒ (χ⇒ υ)) (Etc.)

Definition 1.1.1.2. The other logical connectives and quantifiers are defined by the following
shortcuts:

¬ϕ ≜ ϕ⇒ ⊥ ϕ⇔ ψ ≜ (ϕ⇒ ψ) ∧ (ψ ⇒ ϕ)

ϕ ∧ ψ ≜ ¬(ϕ⇒ ψ ⇒ ⊥) ∃xϕ ≜ ¬∀x¬ϕ
ϕ ∨ ψ ≜ ¬ϕ⇒ ¬ψ ⇒ ⊥ ∃Xϕ ≜ ¬∀X¬ϕ
t ̸= u :≜ ¬(t = u) t /∈ X ≜ ¬(t ∈ X)

Remark 1.1.1.2. The aforementioned encodings are different from the usual impredicative en-
codings used in second-order logic. Actually, we use the primitive symbol ⊥ (and the law of De
Morgan verified by classical logic) to encode the other connectives in a first-order fashion. As a
result, we can construct arithmetical formulas (i.e formulas without second-order quantifications)
using all the logical connectives, the equality symbol and the first-order quantifications.

Definition 1.1.1.3. Given a term t, we write FV (t) the set of its free variables and t[x := u]
the term obtained by substituting in t all the occurrences of x by u. Given a formula ϕ, we
write FV 1(ϕ) the set of its free first-order variables, FV 2(ϕ) the set of its free second-order
variables and FV (ϕ) the set of its free variables. Formulas are manipulated up to α-equivalence
and we write ϕ[x := u] the capture free substitution of x by u. A closed formula will be called a
sentence.
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Set of individuals

In the syntax of SOL, the only second-order terms are the second-order variables. However,
every formula ϕ with a distinguish variable x represents a set of individuals as suggested by the
notation:

E ≜ {x | ϕ}.

This notation is treated as a binder that binds the variable x. The notions of free variables and
first-order substitutions are extended to this new syntactical category:

FV ({x | ϕ}) ≜ FV (ϕ) \ {x}
{x | ϕ}[y := u] ≜ {x | ϕ[y := u]} if x ̸= y and x /∈ FV (u).

A set E ≜ {x | ϕ} can be used in a formula as follow:

t ∈ E ≜ ϕ[x := t] t /∈ E ≜ ¬ϕ[x := t].

They are treated as second-order constants. We will call formula with parameters a formula in
which second-order constants appear. Second-order variables can also be identified with sets:
the variable X is associated to the set {x | x ∈ X}.

A first example of set is the set of pure binary trees

B ≜ {z | ∀X(0 ∈ X ⇒ ∀x∀y(x ∈ X ⇒ y ∈ X ⇒ ⟨x, y⟩ ∈ X) ⇒ z ∈ X)}.

In presence of the axiom scheme of induction, one can prove that all individuals are in this set.
However, it is not always the case in SOL: models may contain more individuals, as for instance
models arising from classical realizability.

In the sequel, we will use the following notations:

(∀x ∈ E)ϕ ≜ ∀x(x ∈ E ⇒ ϕ) (∃x ∈ E)ϕ ≜ ∃x(x ∈ E ∧ ϕ)
E = F ≜ ∀x(x ∈ E ⇔ x ∈ F ) E ̸= F ≜ ¬(E = F )

E ⊆ F ≜ ∀x(x ∈ E ⇒ x ∈ F ) E ⊈ F ≜ ¬(E ⊆ F )

∅ ≜ {x | ⊥} E \ F ≜ {x | x ∈ E ∧ x /∈ F}
E ∩ F ≜ {x | x ∈ E ∧ x ∈ F} E ∪ F ≜ {x | x ∈ E ∨ x ∈ F} (Etc.)

Finally, if t is a first-order term with free variables among x1, ..., xn, we use the shortcut :

{t |ϕ} :≜ {x | ∃x1...∃xn(x = t ∧ x ∈ ϕ)}.

For instance, the cartesian product of two sets E and F can be written as

E × F :≜ {⟨x, y⟩ | x ∈ E ∧ y ∈ F}.

A set E can also be seen as encoding a family of sets, using the concept of slices of a set.

Definition 1.1.1.4. The slice of a set E at the individual x is defined as the set

E[x] ≜ {y | ⟨x, y⟩ ∈ E}.

Therefore, a set E can also be seen as a function x 7→ E[x] from the set of individuals to the
reals. This encoding will be extensively used in the Chapter 5 of this thesis, where higher-order
structures will be represented as sets.

We now use the notion of sets to define second-order substitution.

Definition 1.1.1.5. Given a formula ϕ, a variable X and a set E, ϕ[X := E] is the formula
obtained from ϕ by substituting all free occurrences of X by E. This operation extends to set
definition:

{x | ψ}[X := E] ≜ {x | ψ[X := E]}.
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1.1.2 Deduction in classical second-order logic

We define the logical system that we will use in this chapter. Our presentation includes symbols
for the equality = and for the false proposition ⊥, even though they could be defined from the
other connectives (using a second-order encoding). Furthermore, we include the rule of double
negation elimination to capture classical logic. These choices yield arithmetical encodings of
other connectives and quantifiers.

Natural deduction for classical second-order logic

Definition 1.1.2.1. A context is a set of formulas (denoted Γ,Θ...). Given two contexts Γ
and Θ, the context Γ,Θ denotes the union of Γ and Θ. All the operations and notions defined
at the level of formulas extend to contexts. For instance:

FV (Γ) ≜
⋃
ϕ∈Γ FV (ϕ).

Definition 1.1.2.2. We define the relation Γ ⊢ ϕ (“Γ proves ϕ”) as the smallest relation between
contexts and formulas generated by the inference rules described in Figure. 1.1 p. 23. In other
words, the sequent Γ ⊢ ϕ is provable in SOL if it can be derived using the rules of second-order
classical natural deduction.

Axiom:
ϕ∈Γ

Γ ⊢ ϕ

Implication:

Γ, ϕ ⊢ ψ
Γ ⊢ ϕ⇒ ψ

Γ ⊢ ϕ⇒ ψ Γ ⊢ ϕ
Γ ⊢ ψ

Fst order univ. quant.:

Γ ⊢ ϕ
x/∈FV (Γ)

Γ ⊢ ∀xϕ
Γ ⊢ ∀xϕ

Γ ⊢ ϕ[x := t]

Snd order univ. quant.:

Γ ⊢ ϕ
X/∈FV (Γ)

Γ ⊢ ∀Xϕ
Γ ⊢ ∀Xϕ

Γ ⊢ ϕ[X := Y ]

Equality: Γ ⊢ ∀x x = x

Γ ⊢ t = u Γ ⊢ ϕ[x := t]

Γ ⊢ ϕ[x := u]

Ex falso quodlibet, double negation elim.:

Γ ⊢ ⊥
Γ ⊢ ϕ

Γ ⊢ ¬¬ϕ
Γ ⊢ ϕ

Figure 1.1: Rules of second-order classical natural deduction

Remark 1.1.2.1. The rule of elimination of the second-order quantifiers is restricted to second-
order variables because variables are the only primitive second-order terms in the syntax of SOL.
Nevertheless, more general rules of elimination can be retrieved in axiomatic theories containing
the axioms scheme of comprehension (definition 1.2.1.1 and proposition 1.2.1.2). Actually, as we
will see later, these rules depend on the sets that can be shown to exist and therefore, it depends
of the ambient theory.

Definition 1.1.2.3. The intuitionistic fragment of SOL is obtained by removing the rule of
double negation elimination from the rules of second-order classical natural deduction.
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Remark 1.1.2.2. To show that a sequent Γ ⊢ ϕ is provable in SOL, one should exhibit a proof
tree. However, most of the time, we will write a proof in English to convince the reader that
Γ ⊢ ϕ (as in the proof of proposition 1.1.2.1).

Admissible and derivable rules

Definition 1.1.2.4. An inference rule is admissible if its conclusion is provable whenever its
premises are provable.

Definition 1.1.2.5. An inference rule is derivable if its conclusion is in the smallest relation
between contexts and formulas generated from the deduction rules of classical second-order nat-
ural deduction extended with its premises as axioms. It means that its conclusion can be derived
using the rules of SOL and its hypotheses.

Proposition 1.1.2.1. The rules presented in Figure 1.2 p.24 are admissible. Moreover, they
are all derivable except the rule of weakening.

Proof. The proof that the weakening rule is admissible uses an induction over the proof tree of
its premise. It is not derivable: a counter-example can be found by choosing Γ to be empty, Γ′

to contain only a tautology and ϕ to be an undecidable formula of SOL.
All the other rules are derivable. As an example, we prove the introduction rule of the

conjunction. Assume Γ ⊢ ϕ and Γ ⊢ ψ. We need to show Γ ⊢ ϕ ∧ ψ, i.e. Γ ⊢ ¬(ϕ ⇒ ψ ⇒ ⊥).
But, with ϕ⇒ ψ ⇒ ⊥ in the context, the hypothesis allows us to derive ⊥ (using two times the
rule of elimination of implication and the rule of weakening).

Weakening:

Γ ⊢ ϕ
Γ⊆Γ′

Γ′ ⊢ ϕ

Conjunction:

Γ ⊢ ϕ Γ ⊢ ψ
Γ ⊢ ϕ ∧ ψ

Γ ⊢ ϕ ∧ ψ
Γ ⊢ ϕ

Γ ⊢ ϕ ∧ ψ
Γ ⊢ ψ

Disjunction:

Γ ⊢ ϕ
Γ ⊢ ϕ ∨ ψ

Γ ⊢ ψ
Γ ⊢ ϕ ∨ ψ

Γ ⊢ ϕ ∨ ψ Γ, ϕ ⊢ χ Γ, ψ ⊢ χ
Γ ⊢ χ

Fst order exist.:

Γ ⊢ ϕ[x := t]

Γ ⊢ ∃xϕ
Γ ⊢ ∃xϕ Γ, ϕ ⊢ ψ

x/∈FV (Γ,ψ)
Γ ⊢ ψ

Snd order exist.:

Γ ⊢ ϕ[X := Y ]

Γ ⊢ ∃Xϕ
Γ ⊢ ∃Xϕ Γ, ϕ ⊢ ψ

X/∈FV (Γ,ψ)
Γ ⊢ ψ

Figure 1.2: Rules of conjunction, disjunction and existential quantifiers.

Remark 1.1.2.3. Note that the rule of introduction of the second-order existential quantifier is
restricted to variables. As for the elimination of the second-order universal quantifier, this rule is
parameterized by the ambient theory and will grow more expressive as axioms are added to the
theory. However, this version already proves the existence of a set as ⊢ ∃XX = X is derivable.
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Second-order equality

First-order equality and second-order equality are treated differently. Indeed, the former is prim-
itive while the latter is not. In SOL, two sets E1 and E2 will be equal if they are extensionnally
equal:

E1 = E2 ≜ ∀z(z ∈ E1 ⇔ z ∈ E2).

This binary relation is reflexive and it verifies Leibniz principle saying that equal objects
should satisfy the same properties, as shown in the next theorem.

Theorem 1.1.2.1. For every formula ϕ(x⃗, X,
−→
Y ) with free variables included in x⃗, X,

−→
Y ,

if E and V are two extensionally equal sets, then ϕ[X := E] is equivalent to ϕ[X := V ]. Formally,

this proposition is a scheme of propositions, for all formulas ϕ(x⃗, X,
−→
Y ) and sets E1, E2:

⊢ ∀x⃗∀
−→
Y (E1 = E2 ⇒ ϕ[X := E1] ⇒ ϕ[X := E2]).

Proof. The proof uses an external induction over the syntax of the formulas. We only treat the
cases where X appears freely in ϕ.

1. If ϕ is atomic, it is of the form t ∈ X and t ∈ E1 ⇒ t ∈ E2 immediately follows
from E1 = E2.

2. If ϕ ≜ ψ ⇒ χ or ϕ ≜ ∀xψ, the result follows from the induction hypothesis.

3. If ϕ ≜ ∀X ′ψ with X and X ′ being two distinct variables, the induction hypothesis is:

∀x⃗∀X ′∀
−→
Y (E1 = E2 ⇒ (ψ[X := E1] ⇒ ψ[X := E2]).

Now assume ϕ[X := E1] (for fresh variables x⃗,
−→
Y ). Eliminating the quantifier over X ′ with

the variable X ′, we first obtain ψ[X := E1] and then, by the induction hypothesis, we get
ψ[X := E2]. Finally, because X

′ only appears bound in the context, it can be generalized
(using the introduction rule of second-order quantification) to deduce ∀X ′ψ[X := E2] ≜
ϕ[X := E2].

As a consequence, the rules of introduction and of elimination of the second-order equality
are derivable in SOL:

Γ ⊢ ∀XX = X

Γ ⊢ E1 = E2 Γ ⊢ ϕ[X := E1]

Γ ⊢ ϕ[X := E2]

1.1.3 Theories and models

Rather than working in plain SOL only, we will be interested in the study of first-order theories
in the language of second-order logic (with equality). In the following, we will briefly introduce
the notions of theory and model (à la Tarski) before starting to study various different examples
of theories.
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Theories

Definition 1.1.3.1. A theory T over an extension of the language of SOL is a set of sentences
constructed from the syntax of SOL potentially extended with predicate symbols and function
symbols. We say that a theory proves ϕ in the context Γ and write T +Γ ⊢ ϕ if there is a finite
set T0 ⊆ T such that the sequent T0,Γ ⊢ ϕ is derivable from the rules of second-order classical
natural deduction. If T ⊢ ϕ, we say that ϕ is a consequence of T .

Intuitively, when working with a theory T , one assumes that the formulas ϕ ∈ T are “true”:
they are the axioms of the theory T . We are interested in the consequences of the theory T .

Definition 1.1.3.2. A theory T1 is an extension of a theory T2 if T2 ⊆ T1. Therefore, all
consequences of T2 are also consequences of T1.

Definition 1.1.3.3. A theory T is consistent if it does not prove the formula ⊥, equivalently it
is consistent if it does not prove all the formulas of its language.

Inconsistent theories are degenerated and therefore it is an important property of a theory T
to be consistent. However, from Gödel’s incompleteness theorem, it is known that the consistency
of a theory cannot be proved inside it.

Theorem 1.1.3.1 (Gödel’s incompleteness theorem). If T is a consistent and recursively axiom-
atizable theory that contains Peano arithmetic, then the formula Cons(T ) (stating the consistency
of T in the language of T ) is not a consequence of T .

Therefore, if we prove the consistency of a theory T , we know that we are working in a
“stronger” theory than the initial theory. In this case, we proved a result of relative consistency
between two theories.

Definition 1.1.3.4. A theory T1 is relatively consistent to a theory T2 if the consistency of T2
implies the consistency of T1.

Results of relative consistency can be proved using syntactical translations4 and a weak meta-
theory such as primitive recursive arithmetic (PRA). Moreover, when designing such transla-
tions, one can also focus on how the translation acts on proofs. Such concerns, coupled with the
Curry-Howard correspondence, led to link consistency proofs to translations of programs [36].

Tarski semantic of first-order logic

Definition 1.1.3.5. A structureS of second-order logic over a language L (potentially extending
the language of SOL) is given by the data of:

1. a non-empty set S1 to interpret individuals

2. a non-empty set S2 to interpret second-order objects

3. functions and predicates to interpret all symbols of the language (in particular, including
interpretations for = and ∈ ):

• For each other constant symbol c, an element JcK ∈ S1.

• A function J⟨ , ⟩K : S1
2 → S1 to interpret ⟨ , ⟩.

4In particular, a semantical approach characterized by the construction of a model can (in general) be refor-
mulated as a syntactic translation. For instance, it is the case for all inner models of set theory [23].
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• For each unary function symbol f , a function JfK : S1 → S1.

• A subset J=K ⊆ S1 ×S1 to interpret =.

• A subset J∈K ⊆ S1 ×S2 to interpret ∈.
• For each unary predicate symbol P , an element JP K ∈ S2.

Remark 1.1.3.1. Because the logic of SOL only quantifies over unary second-order variables, it
is enough to consider only two sorts to define the notion of structures for this language.

A structure S over a language L contains all the necessary information to interpret closed
terms constructed from the symbols of L, it is done recursively as follow:

JcK ≜ JcK
J⟨t, u⟩K ≜ J⟨ , ⟩K(JtK, JuK)
Jf(t)K ≜ JfK(JtK).

Remark 1.1.3.2. In the interpretation of the symbols of the language, the function ⟨ , ⟩ and
the predicates = and ∈ are treated differently from the other symbols of functions and
predicates. Indeed, they are the only symbols interpreted as binary relations!

Given a structure S over L, we extend L to a language LS that contains constant sym-
bols ċ and Ċ for all elements c ∈ S1 and C ∈ S2. These new constants will be interpreted
in S by the elements they denote. A formula with parameters in S is then a formula of the
language LS. From these concepts, we define the notion of satisfiability.

Definition 1.1.3.6. We define by external induction over formulas the notion of satisfiability
between structures S and closed formulas ϕ of the language LS (S ⊨ ϕ):

S ⊭ ⊥ (⊥ is not satisfied)
S ⊨ t = u if (JtK, JuK) ∈ J=K
S ⊨ t ∈ P if (JtK, JP K) ∈ J∈K
S ⊨ ϕ⇒ ψ if S ⊨ ϕ implies S ⊨ ψ
S ⊨ ∀xϕ if for all elements c ∈ S1,S ⊨ ϕ[x := ċ]

S ⊨ ∀Xϕ if for all elements C ∈ S2,S ⊨ ϕ[x := Ċ]

In this definition, the meaning of a symbol (function symbols, predicate symbols but also
connectives and quantifiers) is lifted from the syntax to the meta-theory. The interpretation of
a symbol in the meta-theory is called its semantic.

Definition 1.1.3.7. A structure S is a model of a theory T if it satisfies all sentences ϕ of the
theory T .

The following theorems relate syntax and semantic.

Theorem 1.1.3.2 (Soundness). If a theory T proves a closed formula ϕ, then ϕ is satisfied by
all models of T .

Theorem 1.1.3.3 (Gödel’s completeness theorem). If a theory is consistent, then it has a model.

In particular, the former gives a way to show that a formula ϕ is not provable in a theory T :
it is enough to find a model of T ∪ {¬ϕ}!
Remark 1.1.3.3. Although we are studying “second-order” logic in this thesis, we formalized it
as a many-sorted first-order language. In particular, techniques and theorems from first-order
logic also apply in this framework.
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1.2 Variations of arithmetic in second-order logic

After introducing the syntax and the rules of second-order logic, we continue with the study of
second-order theories. The arguably most famous theory of second-order logic is second-order
arithmetic (PA2). However, many variations of PA2 are of interest. For instance, subsystems
of PA2 are deeply studied in the context of reverse mathematics [47]. Other variations occur
in the realm of classical realizability [30] where a second-order arithmetic without the axiom of
induction is considered (PA2−). At last, extensions of PA2 are also objects of interest. Various
axioms of choice can be formulated in SOL and were intensively studied in analysis and in
realizability. In this thesis, we will introduce the axiom scheme of collection for SOL. While it
collapses to the axiom of countable choice in the presence of induction, it is of great interest in
PA2− thanks to its very simple realizability interpretation and to its importance in the use of
well-preorders.

1.2.1 Second-order arithmetic (PA2)

The axioms of PA2

Definition 1.2.1.1. The axioms of PA2 are the universal closures of the following formulas:

Axioms of injectivity and of non confusion:

• ⟨x, y⟩ = ⟨x′, y′⟩ ⇒ (x = x′ ∧ y = y′)
• ⟨x, y⟩ ≠ 0

Axioms of computation:

• 0(x) = 0 • (f ◦ g)(x) = f(g(x))
• id(x) = x • ⟨f, g⟩(x) = ⟨f(x), g(x)⟩
• fst(0) = 0 • [f |g](0) = 0
• snd(0) = 0 • [f |g](x, 0) = f(x)
• fst(x, y) = x • [f |g](x, y, z) = g(x, y, z, [f |g](x, y), [f |g](x, z))
• snd(x, y) = y

where f and g are codes of primitive recursive functions.

Axiom of induction:

• 0 ∈ X ⇒ ∀x∀y(x ∈ X ⇒ y ∈ X ⇒ ⟨x, y⟩ ∈ X) ⇒ ∀x x ∈ X

Axiom scheme of comprehension:

• ∃X∀x(x ∈ X ⇔ ϕ) which may be written ∃XX = {x |ϕ}

where ϕ is a formula that does not contain the variable X.

Remark 1.2.1.1. The restriction in the axiom scheme of comprehension is actually necessary: the
system would be inconsistent otherwise! Actually, taking ϕ to be ¬(x ∈ X), the axiom would
entail ⊥ as it is a consequence of 0 ∈ X ⇔ 0 /∈ X. In fact, it is a more general fact of intuitionistic
logic that a formula ϕ cannot be equivalent to its own negation in a consistent system.

The case of the full second-order universal quantifier elimination

Definition 1.2.1.2. The “full” elimination for the second-order universal quantifier and the
“full” introduction for the second-order existential quantifier are described by the following in-
ference rules:
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Γ ⊢ ∀Xϕ
Γ ⊢ ϕ[X := E]

Γ ⊢ ϕ[X := E]

Γ ⊢ ∃Xϕ

Proposition 1.2.1.1. In SOL, the rule of full elimination for the second-order universal quan-
tifier implies the rule of full introduction for the second-order existential quantifier.

Proof. It follows from the encoding of ∃Xϕ as ¬(∀X¬ϕ).

Proposition 1.2.1.2. The scheme of comprehension implies the rule of full elimination of the
second-order universal quantifier. Conversely, all the instances of the scheme of comprehension
can be derived from this rule (and the other rules of second-order natural deduction).

Proof. Let E ≜ {x | ψ} and assume ∀Xϕ. We want to prove ϕ[X := E]. But, the scheme of
comprehension entails the existence of a variable Y that is extensionally equal to the set E and
therefore Theorem 1.1.2.1 gives ϕ[X := E] ⇔ ϕ[x := Y ]. However, ϕ[X := Y ] follows from the
restricted second-order universal quantifier elimination and we can conclude ϕ[X := E].

In the other direction, the scheme of comprehension is a consequence of the rule of full
introduction for the second-order existential quantifier. Indeed, since ϕ ⇔ ϕ is a tautology,
(∀x(x ∈ X ⇔ ϕ))[X := {x|ϕ}] is provable and therefore ∃X∀x(x ∈ X ⇔ ϕ) follows.

The standard model of PA2

Let B be the set of pure binary trees (in the meta-theory5).
The standard model M of PA2, or full model of PA2, is defined as follow:

• The individuals are interpreted in B, i.e M1 ≜ B.

• The codes of primitive recursive functions are interpreted by the functions they denote.

• The second-order variables are interpreted in the power set of B, i.e M2 ≜ P(B).

• The symbols of equality = and of membership ∈ are interpreted as the equality relation
over B and the membership relation between individuals b ∈ B and sets A ∈ P(B).

The structure M is a model of PA2 where all the constructs are given their intended meaning.
In M, the reals range over the full power set of B, this is why it is sometimes called the full
model of second-order arithmetic.

1.2.2 Expressiveness of the axioms of computations, examples of the
finite lists and of the natural numbers

In arithmetic, all the usual finitely generated data structures can be encoded. We now study the
example of finite lists and natural numbers.

1. Finite lists are encoded by setting

[t1; ...; tn] ≜ ⟨t1, ..., tn, 0⟩

(i.e by using the constructor 0 as a symbol of end of list). In PA2, thanks to the axiom of
induction, all individuals can be seen as lists. However, in a more general framework, only
the individuals in the set B can be seen as lists.

5It can be defined as an inductive type with constructors 0 : B and ⟨ , ⟩ : B → B → B.
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2. Every natural number n is represented as the following degenerate pure binary tree of
height n:

n ≜ ⟨ 0, ...⟨0, 0︸ ︷︷ ︸
n+1

⟩...⟩ = ⟨ 0, ...0, 0︸ ︷︷ ︸
n+1

⟩ = [0, ..., 0︸ ︷︷ ︸
n

].

This definition can be made formal by an external recursion over the (meta) natural num-
bers:

0 ≜ 0

n+ 1 ≜ ⟨0, n⟩.

In the rest of the manuscript, we will simply write n to denote the encoding of a natural
number in the syntax.

We now focus on giving examples of primitive recursive functions.

Remark 1.2.2.1. After this chapter, we choose to stop writing in the syntax of SOL the codes
of primitive recursive functions that we use. We will rather give the equations that they satisfy,
it will then be clear that they can be expressed in our syntax.

Operations over the type of integers

We define some operations over the natural numbers that we can express in PA2:

1. The successor function is defined by s ≜ ⟨0, id⟩. It satisfies :

PA2 ⊢ ∀n s(n) = ⟨0, n⟩

2. The function check nat that tests if an individual is an integer is defined by:

check nat ≜ [⟨0,0⟩|[id|0] ◦ ⟨snd ◦ snd ◦ snd ◦ snd, fst ◦ snd⟩] ◦ ⟨0, id⟩

It satisfies:

PA2 ⊢ check nat(0) = 1
PA2 ⊢ check nat(0, x) = check nat(x)
PA2 ⊢ check nat(⟨y, z⟩, x) = 0

We define the set of natural numbers as N ≜ {x | check nat(x) = 1}∩B. It is obtained as
all the pure binary trees x such that check nat(x) = 1. However, because we will not work
with the axiom of induction, we need to ensure that the variable x denotes a pure binary
tree and that is why the unrelativzed set {x | check nat(x) = 1} needs to be intersected
with B.

Remark 1.2.2.2. The set of “internal” integers and the set of “meta”-integers are both
denoted N. The (meta) context should be enough to clarify if we speak of the former or
the latter.

Proposition 1.2.2.1. A principle of induction over natural numbers is provable in PA2:

PA2 ⊢ ∀X(0 ∈ X ⇒ (∀n ∈ N)(n ∈ X ⇒ s(n) ∈ X) ⇒ (∀n ∈ N)n ∈ X)

Proof. The proof uses induction on the set B and the properties of the function check nat.
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3. Addition over natural numbers is defined by:

add ≜ [id|⟨fst ◦ snd, snd ◦ snd ◦ snd ◦ snd⟩] ◦ ⟨snd, fst⟩

We use the notation x+ y for add(x, y). The function add satisfies :

PA2 ⊢ ∀n 0 + n = n
PA2 ⊢ ∀n∀m s(n) +m = s(n+m)
PA2 ⊢ (∀n ∈ N)(∀m ∈ N) n+m = m+ n
PA2 ⊢ ∀n∀m∀p n+ (m+ p) = (n+m) + p

Using the function add, we define an order on the set of integers and its associated strict
order:

n ≤ω m ≜ ∃x(x+ n = m) and n <ω m ≜ n ≤ω m ∧ n ̸= m.

We will see in Chapter 4 that it is a well-order on the set N.

Remark 1.2.2.3. Formally, ≤ω is defined (by comprehension) to be the set

≤ω≜ {⟨n,m⟩ | n ∈ N ∧m ∈ N ∧ ∃x(x+ n = m)}.

4. Multiplication over integers is defined by:

mult ≜ [0|add ◦ ⟨snd ◦ snd ◦ snd ◦ snd, fst⟩] ◦ ⟨snd, fst⟩

We use the notation x× y for mult(x, y). The function mult satisfies:

PA2 ⊢ ∀n 0× n = 0
PA2 ⊢ (∀n ∈ N)(∀m ∈ N) s(n)×m = (n×m) +m

5. The sum of the integers between 0 up to n is defined by the function:

Σ(n) ≜ [⟨0,0⟩|add ◦ ⟨⟨fst, ⟨fst ◦ snd, fst ◦ snd ◦ snd⟩⟩, snd ◦ snd ◦ snd ◦ snd⟩]

It satisfies:

PA2 ⊢ Σ(0) = 0
PA2 ⊢ (∀n ∈ N) Σ(s(n)) = s(n) + Σ(n)

6. Cantor’s bijection from N×N to N is defined by:

α2 ≜ add ◦ ⟨Σ ◦ add ◦ ⟨fst, snd⟩, snd⟩

It satisfies:

PA2 ⊢ (∀n ∈ N)(∀m ∈ N) α2(n,m) = Σ(n+m) +m
PA2 ⊢ (∀n ∈ N)(∀m ∈ N)(∀n′ ∈ N)(∀m′ ∈ N)

α2(n,m) = α2(n
′,m′) ⇒ (n = n′ ∧m = m′)

PA2 ⊢ (∀n ∈ N)(∃m ∈ N)(∃p ∈ N) α2(m, p) = n

7. We define a bijection h from the pure binary trees to the integers by:

h ≜ [0|add ◦ ⟨⟨0,0⟩, α2 ◦ ⟨fst ◦ snd ◦ snd ◦ snd, snd ◦ snd ◦ snd ◦ snd⟩⟩] ◦ ⟨0, id⟩
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It satisfies:

PA2 ⊢ h(0) = 0
PA2 ⊢ ∀x∀y h(x, y) = 1 + α2(h(x),h(y))
PA2 ⊢ ∀x∀y(h(x) = h(y) ⇒ x = y)
PA2 ⊢ (∀n ∈ N)∃x h(x) = n

Without the axiom of induction, the function h encodes a bijection from the datatype B to
the datatype N.

Operations over finite lists

In the sequel, the following codes of functions are used:

1. The function :: (used later with an infix notation) is just the identity function:

:: ≜ id.

It satisfies:

PA2 ⊢ ∀x∀l x::l = ⟨x, l⟩

2. The function add is also an operation of concatenation over the type of finite lists. In
this context, we will call it “concat”. The function concat is not commutative but it is
associative. In particular, we define the first-order formula subseq(l1, l2) saying that the
list l1 is an initial subsequence of the list l2:

subseq(l1, l2) ≜ ∃l3 concat(l1, l3) = l2

3. The length of a list is obtained by the function:

length ≜ [⟨0,0⟩|add ◦ ⟨⟨0,0⟩, snd ◦ snd ◦ snd ◦ snd⟩]

It satisfies:

PA2 ⊢ length(0) = 0
PA2 ⊢ ∀x∀l length(x, l) = 1 + length(l)

4. To access the nth element of a list, we define the following functions:

cutn ≜ [id|snd ◦ snd ◦ snd ◦ snd ◦ snd]
nth ≜ fst ◦ cutn.

They satisfy:

PA2 ⊢ ∀l cutn(l, 0) = l
PA2 ⊢ ∀l(∀n ∈ N) cutn(l, s(n)) = snd(cutn(l, n))
PA2 ⊢ ∀l(∀n ∈ N) nth(l, n) = fst(cutn(l, n))

In particular, if the index n is larger than the length of the list, the function nth returns 0.
Given a set E, the set of finite sequences of elements of E is defined as follow:

l ∈ Seq(E) ≜ (∀n ∈ N)(n <ω length(l) ⇒ nth(l, n) ∈ E)
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1.2.3 Subsystems of PA2 obtained by restrictions of the axiom scheme
of comprehension

In all the previous proofs, the scheme of comprehension was only used to ensure the existence of
sets with an arithmetical definition. It will be interesting for the remainder of the thesis to take
into account which instances of the axioms of comprehension are used in a proof. This is why
we introduce subsystems of PA2 obtained by restricting this axiom scheme.

Analytical hierarchy of formulas

Definition 1.2.3.1. We define the classes of formulas (Π1
n)n∈N and (Σ1

n)n∈N according to their
logical complexity:

1. A formula ϕ is Π1
0 or Σ1

0 (or arithmetical) if it is does not contain second-order quantifica-
tion.

2. A formula ϕ is Π1
n+1 if it has the shape ∀X1...∀Xkϕ

′ where ϕ′ is a Σ1
n-formula.

3. A formula ϕ is Σ1
n+1 if it has the shape ∃X1...∃Xkϕ

′ where ϕ′ is a Π1
n-formula.

This categorization is independent from any ambient theory. We reformulate this hierarchy
using the notion of logically equivalent formula inside a theory T . As a result, we obtain a
hierarchy that is parameterized by a set of closed formulas.

Definition 1.2.3.2. Let ϕ(x⃗,
−→
X ) and ψ(x⃗,

−→
X ) be two formulas and T a theory.

1. ϕ is logically equivalent to Ψ in T if T ⊢ ∀x⃗∀
−→
X (ϕ⇔ ψ).

2. ϕ is Π1
n in T if it is logically equivalent to a Π1

n-formula in T .

3. ϕ is Σ1
n in T if it is logically equivalent to a Σ1

n-formula in T .

4. ϕ is ∆1
n in T if it is Π1

n and Σ1
n in T .

We now introduce subsystems of PA2 [47].

1. ACA0 is obtained by restricting the axiom scheme of comprehension to the sets defined
with an arithmetical formula (with parameters), i.e ACA0 is the theory containing the
axioms of injectivity, of computation, of induction and the scheme of arithmetical compre-
hension:

∃X∀x(x ∈ X ⇔ ϕ)

where ϕ is an arithmetical formula that does not contain the variable X.

2. Π1
n -CA0 is obtained by restricting the axiom scheme of comprehension to the sets defined

with a Π1
n-formula (with parameters), i.e. Π1

n -CA0 is the theory containing the axioms of
injectivity, of computation, of induction and the scheme of Π1

n comprehension:

∃X∀x(x ∈ X ⇔ ϕ)

where ϕ is a Π1
n-formula that does not contain the variable X.
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The acronym ACA0 stands for arithmetical comprehension axiom while Π1
n -CA0 stands for

Π1
n comprehension axiom. The 0 is used to indicate that we work with the axiom of induction (and

not the axiom scheme of induction6). Therefore, the axiom of induction will be less “powerful”
in ACA0 and in Π1

n -CA0 than it is in PA2.

Remark 1.2.3.1. Π1
n -CA0 implies all the instances of the comprehension scheme for Π1

n-formula
in Π1

n -CA0 (see Definition 1.2.3.2). Concretely, if ϕ is equivalent to a Π1
n-formula in Π1

n -CA0,
one will be able to show (in the theory Π1

n -CA0) that the set defined from ϕ by comprehension
exists.

Remark 1.2.3.2. The collection of sets that provably exist in ACA0 is closed under all boolean
operations and more generally under all operations definable by a first-order formula. The same
is true for the collection of sets that provably exist in Π1

n -CA0. This is a consequence of the
fact that parameters are allowed in the formulas indexing the axiom scheme of comprehension.

Proposition 1.2.3.1. Π1
n -CA0 proves the closure7 of the formulas

∃X(x ∈ X ⇔ ϕ)

where ϕ does not contain the variable X and is either:

1. an arithmetical formula

2. a Π1
k-formula for k ≤ n

3. a Σ1
k-formula for k ≤ n.

Proof. If ϕ if an arithmetical formula or if it is Π1
k for k ≤ n, it is logically equivalent to the Π1

n-
formula obtained from ϕ by adding the necessary quantifiers over variables not appearing in it.
Note that the added quantifiers do not change the meaning of ϕ as they bind variables that do
not appear free in ϕ. All in all, we add quantifiers only to increase the logical complexity of the
formula ϕ.

If ϕ is a Σ1
k formula for k ≤ n, its negation is logically equivalent to a Π1

k-formula. There-
fore, Π1

n -CA0 proves the existence of a set Z = {x | ¬ϕ}. The result follows from the closure
properties of the definable sets in Π1

n -CA0.

In the following, we will specify when we work in the subsystemsACA0 andΠ1
1 -CA0. All the

proof we did about the functions we previously defined are valid in ACA0. This extra attention
will let us prove results of relativizations to classes of sets that only satisfy some instances of the
comprehension axiom. For instance, a class that satisfies the arithmetical comprehension axiom
will be closed under all boolean operations.

Remark 1.2.3.3. To be frank, only the closure by boolean operations of some classes will be of in-
terest in the remaining of this manuscript. Paying close attention to the variant of comprehension
used in a proof is a choice of design that is not essential for our research.

6The axiom scheme of induction contains the closure of the following formulas:

ϕ[z := 0] ⇒ ∀x∀y(ϕ[z := x] ⇒ ϕ[z := y] ⇒ ϕ[z := ⟨x, y⟩]) ⇒ ∀x ϕ[z := x]

where ϕ is a formula of SOL. It implies the axiom of induction and they are equivalent in the presence of the
full axiom of comprehension.

7The closure of a formula is obtained by quantifying over all its free variables.
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1.2.4 Classes of sets and inner models

Classes of sets and relativization

We saw in subsection 1.1.1 that a formula can represent a set of individuals, but it can also
represent a class of sets with the notation:

Θ ≜ {X | ϕ}.

Θ is then the class of all sets X that satisfy the formula ϕ. In the syntax, we will use classes as
we use sets, which means that we will allow the shortcuts:

E ∈ {X | ϕ} ≜ ϕ[X := E] E /∈ {X | ϕ} ≜ ¬ϕ[X := E]

(∀X ∈ Θ)ϕ ≜ ∀X(X ∈ Θ ⇒ ϕ) (∃X ∈ Θ)ϕ ≜ ∃X(X ∈ Θ ∧ ϕ) .

Definition 1.2.4.1. The relativization of a formula to the class of sets Θ is defined by external
induction over the syntax of formulas:

⊥Θ ≜ ⊥ (t = u)Θ ≜ t = u

(t ∈ X)Θ ≜ t ∈ X (∀xϕ)Θ ≜ ∀xϕΘ
(ϕ⇒ ψ)Θ ≜ ϕΘ ⇒ ψΘ (∀Xϕ)Θ ≜ (∀X ∈ Θ)ϕΘ

Remark 1.2.4.1. One could have defined (t ∈ X)Θ ≜ t ∈ X ∧ X ∈ Θ. However, because
second-order quantifiers are relativized, it is not necessary. Intuitively, free second-order variables
in the image of a relativization to a class Θ denote sets of this class. This is formalized in
Proposition 1.2.4.1 page 35.

This notion of relativization extends to sets and context:

{x | ϕ}Θ ≜ {x | ϕΘ} ΓΘ ≜ {ϕΘ | ϕ ∈ Γ}.

In particular, we can show by external induction over the syntax of formulas that the operation
of relativization commutes with set substitution:

(ϕ[X := E])Θ := ϕΘ[X := EΘ]

Lemma 1.2.4.1. For all collections of sets Θ and for all formulas ϕ(x⃗,
−→
X ) :

⊢ ∀
−→
X∀x⃗ (ϕ(x⃗,

−→
X ) ⇒ ϕΘ(x⃗,

−→
X )) (if ϕ is Π1

1)

⊢ ∀
−→
X∀x⃗ (ϕΘ(x⃗,

−→
X ) ⇒ ϕ(x⃗,

−→
X )) (if ϕ is Σ1

1)

⊢ ∀
−→
X∀x⃗ (ϕ(x⃗,

−→
X ) ⇔ ϕΘ(x⃗,

−→
X )) (if ϕ is ∆1).

Proposition 1.2.4.1. Second-order logic satisfies the following property:

Γ ⊢ ϕ implies ΓΘ +
−→
X ∈ Θ ⊢ ϕΘ

where ϕ is a formula with free second-order variables among
−→
X .

Proof. It is shown by external induction over the proof of second-order classical natural deduc-
tion.
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Inner models

We define the notion of an inner model of a theory T , which will be defined to be a non-empty
class that satisfies all the axioms of T . We will be especially interested in cases where T is a
variant of PA2. The axioms of injectivity, non confusion and confusion are arithmetical and
the axiom of induction is Π1

1. Consequently, Lemma 1.2.4.1 implies that they are satisfied by
every class (in a theory that satisfies the axiom of induction). Therefore, while showing that
a class models a variant of second-order arithmetic, it is enough to verify that it satisfies the
different instances of the axiom scheme of comprehension and the potentially other extra axioms
(for instance, choice axioms).

Definition 1.2.4.2. If T is a theory, ϕ is a closed formula and Θ is a class of sets, we say that
the class Θ satisfies the formula ϕ in the theory T (or ϕ relativizes to Θ in T ) if:

T ⊢ ϕΘ.

We may omit the ambient theory T if it is clear from the context.

Definition 1.2.4.3. Let T1 and T2 be two theories over the language of SOL. We say that a
class Θ (given by a closed class definition) models T1 in T2 if

1. Θ is provably non-empty in T2:

T2 ⊢ ∃X(X ∈ Θ)

2. T2 proves that Θ satisfies all the axioms of T1.

In the case where T1 and T2 are the same theory T , we will simply say that Θ models T , or
that Θ is an inner model for T .

Example 1.2.4.1. A class Θ models PA2 if

1. PA2 ⊢ ∃X(X ∈ Θ)

2. PA2 ⊢ ∀z⃗(∀
−→
Z ∈ Θ)(∃X ∈ Θ)∀x(x ∈ X ⇔ ϕΘ) for every formula ϕ with free variables

among x, z⃗,
−→
Z .

This notion will be used to show results of relative consistency:

Proposition 1.2.4.2. If a class Θ models T1 in T2:

T1 + Γ ⊢ ϕ implies T2 + ΓΘ +
−→
X ∈ Θ ⊢ ϕΘ

where ϕ is a formula with free second-order variables among
−→
X . It implies a result of relative

consistency between T1 and T2:

T1 ⊢ ⊥ implies T2 ⊢ ⊥.

Proof. It is shown by external induction over the proofs of second-order classical natural deduc-
tion. The fact that Θ models T1 inside T2 is used in the case of the axiom rule.

Remark 1.2.4.2. It is not the same as saying that the theory T2 proves the consistency of T1. To
show this result, it would be necessary to internalize in T2 that there exists a definable class of
sets that models T1.
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Proposition 1.2.4.3. If Θ models a theory T :

1. T ⊢ ∀x⃗(∀
−→
X ∈ Θ)(ϕ⇒ ϕΘ) (if ϕ is Π1

1 in T )

2. T ⊢ ∀x⃗(∀
−→
X ∈ Θ)(ϕΘ ⇒ ϕ) (if ϕ is Σ1

1 in T )

3. T ⊢ ∀x⃗(∀
−→
X ∈ Θ)(ϕΘ ⇔ ϕ) (if ϕ is ∆1

1 in T )

We say that

1. Π1
1-formulas are downward absolute

2. Σ1
1-formulas are upward absolute

3. ∆1
1-formulas are absolute.

Proof. We show 1. as an example. Let ψ be a Π1
1 formula logically equivalent to ϕ in T :

T ⊢ ∀x⃗∀
−→
X (ϕ⇔ ψ)

From ϕ, we can deduce ψ and then ψΘ because ψ is a Π1
1-formula. On the other other hand, we

deduce T ⊢ (ϕ⇔ ψ)Θ as Θ models T . Therefore, we conclude ϕΘ.
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Chapter 2

The axiom scheme of collection

The axiom of induction included in the theory PA2 does not have a computational interpretation
inside classical realizability. Therefore, we introduce the system PA2− (Subsection 2.1) obtained
from PA2 by removing this axiom. Without induction, a new variant of choice principle appears,
the axiom scheme of collection which is strongly inspired from the homonymous axiom of set
theory. This axiom scheme will be of crucial importance in Chapter 5 when dealing with well-
preorders. However, while we suspect that it is weaker than the axiom of choice, we were not
yet able to prove it (see Open problem 1).

After a logical study of second-order arithmetic, we will continue with a computational study.
In the context of the Curry-Howard correspondence between proofs and programs, we design
two type systems λPA2 and λPA2− that respectively capture the theory PA2 and PA2−

(Section 2.2). Taking advantage of these two systems, we implement an interpretation of λPA2
into λPA2− by translating the former in the latter (Subsection 2.2.3). This interpretation is
done by relativization of the first-order quantifiers to the set of Dedekind trees1. Finally, we will
describe a realizability model for the system PA2−. In particular, we will show that the axiom
scheme of collection is realized and has a very simple computational content (Section 2.3).

2.1 The system PA2−, axiom scheme of collection, axiom
scheme of choice

2.1.1 The system PA2−

The axiom of induction of second-order arithmetic ensures that all individuals are standard in
the sense that they belong to the set B. Indeed

Π1
1 -CA0 ⊢ ∀x(x ∈ B)

is proved by an induction over the variable x. However, the axiom of induction does not have
good computational property: it cannot be realized! This was our first motivation to work in
a system without induction. In a second step, we will see how relativization can be used to
retrieve the axiom of induction (in Subsection 2.2.3) ; showing that working in a system without
induction is in fact not a restriction.

Definition 2.1.1.1. The system PA2− is obtained from PA2 by removing from its axioms the
axiom of induction.

1The analogous of Dedekind numerals for the data type of pure binary trees.
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Remark 2.1.1.1. Similarly, we consider the systems ACA−
0 and Π1

n -CA−
0 obtained by removing

the axiom of induction of the corresponding theory.

In Section 2.2, we show a proof of relative consistency between PA2 and PA2−.

2.1.2 Axiom scheme of collection

Without the axiom of induction, the range of first-order quantifications increases to a wider
domain of discourse. As a consequence, equivalent formulas in presence of induction can have
different meanings without it. For instance, a new variant of choice principles appears in PA2−,
the axiom scheme of collection (Coll), obtained as a reformulation of the homonymous axiom
scheme of set theory in the framework of second-order logic.

Definition 2.1.2.1. The axiom scheme of collection (Coll) is defined as the closure of the
formulas

∀x∃Y ϕ(x, Y ) ⇒ ∃Z∀x∃yϕ(x, Z[y])

where ϕ(x, Y ) is a formula of SOL (that may contain other free variables).

Recall that the notation E[x] for a set E and an individual x denotes the slice of E at x
(Definition 1.1.1.4):

E[x] ≜ {y | ⟨x, y⟩ ∈ E}.

A set seen with this angle encodes a family of sets indexed by the individuals. Therefore, the
axiom scheme of collection says that from every total relation between individuals and reals
(encoded by a formula ϕ(x, Y )), one can find a definable family of sets encoded by Z that meets,
for every x, the collection {Y | ϕ(x, Y )}. Intuitively, the family Z is a “bound” for the image of
the previous relation2.

This scheme, that has a very simple computational interpretation, will be used to work with
well-preorders in the theory PA2− +Coll. It will be specifically used to prove the Principle of
Reflection (Theorem 5.4.1.1). This is the alternative we chose rather than working in a system
with an axiom of choice.

Remark 2.1.2.1. Recall that the axiom scheme of collection in set theory is stated as

∀A((∀x ∈ A)∃yϕ(x, y) ⇒ ∃z(∀x ∈ A)(∃y ∈ z)ϕ(x, y))

where ϕ(x, y) is a formula with parameters of the language of ZF. In set theory, the intuition
behind the axiom scheme of collection is that the image of a relation over a set can be bound.
Consequently, the two principles of collection have very similar meanings.

However, the denotation of the collection principle of second-order logic in a set-theoretic
model of PA2− is very different. Namely, for a fixed set A used to interpret the individuals, the
interpretation of the collection principle in the model (A,P(A)) is

(∀B : A→ P(P(A)))((∀a ∈ A)B(a) ̸= ∅ ⇒
(∃B′ : A→P(P(A)))(∀a ∈ A)(B′(a) ⊆ B(a) ∧B′(a) ̸= ∅ ∧ |B′(a)| < |A|)).

where, in that specific case, by |B′(a)| < |A|, we mean that there is a surjection fromA ontoB′(a).
All in all, it means that, from a family of non-empty subsets of P(A) indexed by A, we can extract
a family of size bound by A. Consequently, the interpretation of the collection principle of SOL
in set theory is not an instance of the collection principle of ZF.

2I said “intuitively” because it would be the case only if the relation ϕ(x, Y ) is functional or if Z also satis-
fies ∀x∀Y (ϕ(x, Y ) ⇒ ∃y Y = Z[y]).

39



2.1.3 Axiom scheme of choice

In the presence of induction, the axiom scheme of collection collapses to the axiom scheme of
choice over the individuals (ACι).

Definition 2.1.3.1. The axiom scheme of choice over the individuals (ACι) is defined as the
closure of the formulas

∀x∃Y ϕ(x, Y ) ⇒ ∃Z∀xϕ(x, Z[x])

where ϕ(x, Y ) is a formula of SOL (that may contain other free variables).

This scheme says that a function x 7→ Z[x] can be extracted from any total relation (encoded
by a formula with parameters ϕ(x, Y )).

Proposition 2.1.3.1. The axiom scheme of collection and the axiom scheme of choice over the
individuals are equivalent in PA2. It means that, in the system PA2+Coll, one can derive all
the instances of ACι and, reciprocally, all the instances of Coll are consequences of PA2+ACι.

The proof relies on the fact that the set of individuals can be well-ordered3 in PA2.

Remark 2.1.3.1. The interpretation of this axiom of choice in a set-theoretic model of PA2− is
a variant of the axiom of choice. For a set I used to interpret the individuals, it says that the
product of a non-empty family of subsets of P(I) indexed by I is non-empty. If the individuals
are interpreted by a countable set, it is an instance of the axiom of countable choice.

2.1.4 Links between the axiom scheme of collection and the axiom
scheme of choice in PA2−

We saw that the axiom scheme of collection and the axiom scheme of choice (over the individuals)
are equivalent in PA2. However, is it still the case in PA2−? It is easily seen that ACι

implies Coll. But what about the reverse direction? We believe that the axiom of collection is
weaker. However, we were not able to prove it. As a consolation prize, we will give in this thesis
various arguments in favor of this hypothesis.

1. The axiom scheme of collection is realized in almost all models of classical realizability4

(see Section 2.3). However, the axiom scheme of choice over the individuals needs an extra
instruction5 in the programming language to be realized [30].

2. In Chapter 3, we formulate the axiom schemes CollDom and ACDom, which are clas-
sically equivalent to the two previous ones. However, they are both well-behaved with
respect to negative translations [17], as we show in Section 3.2.2. But it appears that in
second-order intuitionistic arithmetic, the axiom schemeCollDom is weaker than the axiom
scheme ACDom! We show in Section 3.3 that Kleene realizability for HA2− interprets
the former and refutes the latter.

Open problem 1. Is the axiom scheme of collection weaker than the axiom scheme of choice
over the individuals in PA2−?

3We will prove in the next chapter that the set of individuals is indeed well-ordered in PA2.
4Precisely, it is realized in all models constructed from a realizability algebra with at most countable instruc-

tions.
5Specifically, an instruction quote used to internalize in the programming language an injection from the

instructions to the natural numbers.
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Remark 2.1.4.1. We tried to find a set-theoretic model that refutes the axiom of choice and
validates the axiom of collection. However, we encountered difficulties as it seems that the set-
theoretic interpretation of the axiom scheme of collection is a new principle. It remains as a
future work to study in depth this new set-theoretic principle.

2.2 Type systems for PA2 and PA2−

We presented various theories in the language of SOL, and notably the theories PA2 and PA2−.
We now design two type systems that capture these theories, in the spirit of the Curry-Howard
correspondence between proofs and programs. Concretely, we will work with two different typed
λ-calculus:

1. A Church style λ-calculus λPA2 capturing the axioms of PA2 and the deduction rules
of SOL. As in every Church style λ-calculus, the proof terms of λPA2 contain all the
necessary information to retrieve the derivations, and notably all the introduction and
eliminations of first and second-order quantifiers.

2. A Curry style λ-calculus λPA2− in the spirit of AF2 [27] and of classical realizability,
which captures the theory PA2−. The principal advantage of this calculus is that it is
equipped with a well understood semantic coming from classical realizability models. The
architecture of these models will be presented in the end of this chapter (Section 2.3).

The main difference between these two calculi is that the axiom of induction is derivable
in the former but not in the latter. In λPA2−, this difference can be resolved by relativizing
all first-order quantifiers to the set B of pure binary trees. We will formulate this process as
a syntactical translation from λPA2 into λPA2−. It will give a proof of relative consistency
between the theories PA2 and PA2−.

2.2.1 The system λPA2

The system λPA2 is a typed λ-calculus à la Church: it is the Curry-Howard counter part of the
theory PA2 (equipped with the rules of SOL).

Definition 2.2.1.1. The syntax and the rules of the system λPA2 are presented in the Figure 2.1
page 42.

In the system λPA2:

1. First-order equality t = u is primitive. It is introduced with the proof term refl(t) and
eliminated with the proof term peel(M,E,M ′). The same is true for the formula ⊥, it has
no rule of introduction and it is eliminated with the proof term efq(M,ϕ).

2. The rewriting rules on top of the codes of (primitive recursive) functions incorporate com-
putations inside the deductions. In particular, they are used to derive the formula:

∀x∀y∀x′∀y(⟨x, y⟩ = ⟨x′, y′⟩ ⇒ x = x′ ∧ y = y′).

3. The predicate null(t) equipped with its rewriting rules is used to derive the formula:

∀x∀y⟨x, y⟩ ≠ 0.
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Syntax

Codes of functions f, g ::= 0 | id | fst | snd | (f ◦ g) | ⟨f, g⟩ | [f |g]

Terms t, u ::= x | 0 | ⟨t, u⟩ | f(t)

Formulas ϕ, ψ ::= ⊥ | t = u | null(t) | t ∈ X | ϕ⇒ ψ
| ∀xϕ | ∀Xϕ

Sets E ::= {x | ϕ}

Proof terms M,N ::= ξ | efq(M,ϕ)
| cc(ϕ, ψ) | ind(E,M,M ′, t)
| refl(t) | peel(M,E,M ′)
| λξ : ϕ.M | MN
| λx.M | Mt
| λX.M | ME

Contexts Γ ::= ∅ | Γ, ξ : ϕ

Congruence on terms and formulas

Rules generating the congruence t ≃ u (on the terms) and ϕ ≃ ψ (on the formulas):

0(t) ≻ 0 [f |g](0) ≻ 0
id(t) ≻ t [f |g](t, 0) ≻ f(t)

(f ◦ g)(t) ≻ f(g(t)) [f |g](t, u, v) ≻ g(t, u, v, [f |g](t, u), [f |g](t, v))
⟨f, g⟩(t) ≻ ⟨f(t), g(t)⟩ null(0) ≻ ⊥ ⇒ ⊥

null(t, y) ≻ ⊥

Typing rules

(ξ:ϕ)∈Γ
Γ ⊢ ξ : ϕ

Γ ⊢M : ϕ
(ϕ≃ϕ′)

Γ ⊢M : ϕ′

Γ ⊢M : ⊥
Γ ⊢ efq(M,ϕ) : ϕ Γ ⊢ cc(ϕ, ψ) : ((ϕ⇒ ψ) ⇒ ϕ) ⇒ ϕ

Γ ⊢M : 0 ∈ E Γ ⊢M ′ : ∀x∀y(x ∈ E ⇒ y ∈ E ⇒ ⟨x, y⟩ ∈ E)

Γ ⊢ ind(E,M,M ′, t) : t ∈ E

Γ ⊢ refl(t) : t = t

Γ ⊢M : t = u Γ ⊢M ′ : t ∈ E

Γ ⊢ peel(M,E,M ′) : u ∈ E

Γ, ξ : ϕ ⊢M : ψ

Γ ⊢ λξ : ϕ.M : ϕ⇒ ψ

Γ ⊢M : ϕ⇒ ψ Γ ⊢ N : ϕ

Γ ⊢MN : ψ

Γ ⊢M : ϕ
x/∈FV (Γ)

Γ ⊢ λx.M : ∀xϕ
Γ ⊢M : ∀xϕ

Γ ⊢Mt : ϕ[x := t]

Γ ⊢M : ϕ
X/∈FV (Γ)

Γ ⊢ ΛX.M : ∀Xϕ
Γ ⊢M : ∀Xϕ

Γ ⊢ME : ϕ[X := E]

Figure 2.1: The proof system λPA2
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4. The first-order universal quantifier ∀xϕ is implicitly relativized: it represents a quantifica-
tion over the set of pure binary trees. As a consequence, the system is equipped with a
proof term ind(E,M,M ′, t), enabling the use of induction inside λPA2.

5. The missing logical connectives are encoded as in SOL. For instance:

If Γ ⊢M : ϕ and Γ ⊢M ′ : ψ then Γ ⊢ λξ : ϕ⇒ ¬ψ.ξMM ′ : ϕ ∧ ψ
If Γ ⊢M : ϕ ∧ ψ then Γ ⊢ cc(ϕ,⊥)λξ : ¬ϕ.efq(Mλη : ϕ.λµ : ψ.ξη, ϕ) : ϕ

If Γ ⊢M : ϕ ∧ ψ then Γ ⊢ cc(ψ,⊥)λξ : ¬ψ.efq(Mλη : ϕ.λµ : ψ.ξµ, ψ) : ψ (etc...)

Theorem 2.2.1.1. Every axiom of PA2 is provable in λPA2.

Proof. We exhibit the proof terms proving the axioms of PA2.

• The axiom of injectivity is proved by:

λxλyλx′λy′.λξ : ⟨x, y⟩ = ⟨x′, y′⟩.λη : x = x′ ⇒ ¬y = y′.

η peel(ξ, {z| x = fst(z)}, refl(x)) peel(ξ, {z | y = snd(z)}, refl(y))

Recall that the axiom of injectivity is ∀x∀y∀x′∀y′(⟨x, y⟩ = ⟨x′, y′⟩ ⇒ (x = x′ ∧ y = y′)).
By unfolding the definition of the conjunction, we see that the previous λ-term needs to
denote a proof of the formula ∀x∀y∀x′∀y′(⟨x, y⟩ = ⟨x′, y′⟩ ⇒ (x = x′ ⇒ ¬y = y′) ⇒ ⊥).

It is obtained by combining the proof variable ξ : ⟨x, y⟩ = ⟨x′, y′⟩, the instruction peel and
the proof variable η : x = x′ ⇒ ¬y = y′.

• The axiom of non confusion is proved by:

λxλy.λξ : ⟨x, y⟩ = 0.peel(sym⟨x, y⟩0ξ, {z | null(z)}, λη : ⊥.η)

where

sym ≜ λxλy.λξ : x = y.peel(ξ, {z | z = x}, refl(x)) : ∀x∀y.(x = y ⇒ y = x)

• All the axioms of computation are proved by the term λx.refl(x).

• The axiom of induction is proved by:

λX.λξ : 0 ∈ X.λη : ∀x∀y(x ∈ X ⇒ y ∈ X ⇒ ⟨x, y⟩ ∈ X).λx.ind(X, ξ, η, x)

• Finally, because the “full” elimination rule of the second-order universal quantifier is in-
cluded in this system, all the instances of the axiom scheme of comprehension are derivable
(as in Proposition 1.2.1.2). In particular, there is a proof term attesting the provability of
each instance of the axiom scheme of comprehension.

The converse is also true, every formula in the syntax of SOL provable in λPA2 is provable
in PA2.

Theorem 2.2.1.2. If ⊢M : ϕ and ϕ does not contain the predicate null(t) then PA2 ⊢ ϕ.

In fact, this result can be made more precise. If Γ ⊢ M : ϕ then PA2 proves the formula
obtained from ϕ by replacing all occurrences of the predicate null(t) by the formula t = 0.
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2.2.2 The proof system λPA2−

The system λPA2− is a typed λ-calculus à la Curry: it is the Curry-Howard counterpart of the
theory PA2− (with the rules of SOL).

Definition 2.2.2.1. The syntax and the rules of the system λPA2− are presented in the
Figure 2.2 page 45.

In the system λPA2−:

1. The formulas ⊥ and t = u are not primitive anymore. They are defined using second-order
encodings:

⊥ ≜ ∀X(0 ∈ X) t = u ≜ ∀X(t ∈ X ⇒ u ∈ X)

However, the predicate null(t) remains primitive.

2. The other logical connectives are obtained by replacing ⊥ with ∀X(0 ∈ X) in the encodings
done for SOL. These encodings are still different from the usual impredicative encodings.
For instance, for all proof terms M of type ϕ and N of type ψ, we write [M,N ] the proof
term of type ϕ ∧ ψ :

[M,N ] ≜ λξ.ξMN for ξ /∈ (FV (M) ∪ FV (N)).

If Γ ⊢M : ϕ and Γ ⊢ N : ψ, then:

Γ ⊢ [M,N ] : ϕ ∧ ψ

The associated eliminators π1, π2 are:

π1 ≜ λξ.ccλη.ξλµλχ.ηµ

π2 ≜ λξ.ccλη.ξλχλµ.ηµ

They satisfy the following typing judgements:

⊢ π1 : ∀X∀Y (X ∧ Y ⇒ X)
⊢ π2 : ∀X∀Y (X ∧ Y ⇒ Y )

3. The meaning of the formula ∀xϕ changes: it is now an unrelativized quantification. To in-
terpret the system λPA2 in the system λPA2−, we will relativize all first-order quantifiers
to the predicate B.

4. The language of proof terms of λPA2− is obtained from the pure λ-calculus by adding the
constant cc (call/cc).

Notation 2.2.2.1. In a term λξ.M , if the variable ξ does not appear in M , we may replace it by
the symbol and write λξ.M as λ .M . For instance, with this notation, π1 ≜ λξ.ccλη.ξλµλ .ηµ.

Notation 2.2.2.2. We may write λξ1, ..., ξn.M to denote the λ-term λξ1...λξn.M .

Theorem 2.2.2.1. Every axiom of PA2− is provable in λPA2− (when interpreted using the
encodings specific to λPA2−).

As for λPA2 and PA2, the converse is also true.

Theorem 2.2.2.2. If ⊢ M : ϕ in the system λPA2− then PA2− proves the formula obtained
from ϕ by replacing all occurrences of the predicate null(t) by the formula t = 0.
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Syntax

Codes of functions f, g ::= 0 | id | fst | snd | (f ◦ g) |⟨f, g⟩ | [f |g]

Terms t, u ::= x | 0 | ⟨t, u⟩ | f(t)

Formulas ϕ, ψ ::= null(t) | t ∈ X | ϕ⇒ ψ| ∀xϕ | ∀Xϕ

Sets E ::= {x | ϕ}

Proof terms M,N ::= ξ | cc | λξ.M | MN

Contexts Γ ::= ∅ | Γ, ξ : ϕ

Congruence on terms and formulas

Same as the rules in λPA2, with ⊥ ≜ ∀Z(0 ∈ Z)

Typing rules

(ξ:ϕ)∈Γ
Γ ⊢ ξ : ϕ

Γ ⊢M : ϕ
(ϕ≃ϕ′)

Γ ⊢M : ϕ′

Γ, ξ : ϕ ⊢M : ψ

Γ ⊢ λξ.M : ϕ⇒ ψ

Γ ⊢M : ϕ⇒ ψ Γ ⊢ N : ϕ

Γ ⊢MN : ψ

Γ ⊢M : ϕ
x/∈FV (Γ)

Γ ⊢M : ∀xϕ
Γ ⊢M : ∀xϕ

Γ ⊢M : ϕ[x := t]

Γ ⊢M : ϕ
X/∈FV (Γ)

Γ ⊢M : ∀Xϕ
Γ ⊢M : ∀Xϕ

Γ ⊢M : ϕ[X := E]

Γ ⊢ cc : ((ϕ⇒ ψ) ⇒ ϕ) ⇒ ϕ

Figure 2.2: The proof system λPA2−

2.2.3 A translation by relativization

We will now describe a translation from λPA2 into λPA2− done by relativizing first-order
quantifiers to the set B. To design this translation, we will:

1. Translate formulas ϕ and contexts Γ of λPA2 into formulas ϕB and contexts ΓB of λPA2−.

2. Translate first-order terms t into proof terms t∗ of λPA2− (of type t ∈ B).

3. Translate proof terms M of λPA2 into proof terms M∗ of λPA2−.

Translation of formulas, contexts and sets

We associate to every formula ϕ in the language of λPA2 a formula ϕB in the language of λPA2−:
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(t ∈ X)B ≜ t ∈ X

(null(t))B ≜ null(t)

(⊥)B ≜ ∀Z(0 ∈ Z)

(t = u)B ≜ ∀Z(t ∈ Z ⇒ u ∈ Z)

(ϕ⇒ ψ)B ≜ ϕB ⇒ ψB

(∀xϕ)B ≜ (∀x ∈ B)ϕB
(∀Xϕ)B ≜ ∀XϕB

This translation replaces the primitive formula ⊥ and t = u by their second-order corresponding
encodings (in λPA2−) and relativizes the first-order quantifiers. It commutes with all the
remaining connectives. As a consequence, it also commutes with the defined connectives. For
instance, the translation of ϕ ∧ ψ is ϕB ∧ ψB.

Lemma 2.2.3.1. If ϕ ≃ ϕ′ in λPA2 then ϕB ≃ ϕ′B in λPA2−.

The translation ϕ 7→ ϕB extends to sets and contexts:

{x | ϕ}B ≜ {x |ϕB} and (ξ1 : ϕ1, ..., ξn : ϕn)
B ≜ ξ1 : ϕB1 , ..., ξn : ϕBn

Translation of first-order terms

Because the syntax of proof terms of λPA2 includes first-order terms and that the syntax
of λPA2− does not, we need to translate first-order terms into proof terms of λPA2−. A first-
order term t will be interpreted as a proof t∗ of the formula t ∈ B. This will be done by external
induction over the syntax of first-order terms. The set B of pure binary trees will be of crucial
importance in this translation. We recall its definition:

x ∈ B ≜ ∀X(0 ∈ X ⇒ ∀y∀z(y ∈ X ⇒ z ∈ X ⇒ ⟨y, z⟩ ∈ X) ⇒ x ∈ X).

• We will start by translating each code of primitive recursive functions into a λ-term. We
introduce the following notation that will be used in this definition. For each proof termsM
and N in λPA2−:

⟨M,N⟩ ≜ λξλη.η(Mξη)(Nξη) for ξ, η /∈ (FV (M) ∪ FV (N))

0 ≜ λξλη.ξ

This is in fact the standard Church encoding of binary trees in λ-calculus, applied to the
proof terms M and N . In particular, if M : t ∈ B and N : u ∈ B, then ⟨M,N⟩ : ⟨t, u⟩ ∈ B.
Note also that 0 : 0 ∈ B. This is why we overload the notations used for first-order
terms. This overloading is possible because no first-order terms appear in the proof terms
of λPA2− and, therefore, no confusion is possible. In particular ⟨ , ⟩ is right associative,
it means:

⟨M,N,P ⟩ ≜ ⟨M, ⟨N,P ⟩⟩
⟨M,N,P,Q⟩ ≜ ⟨M, ⟨N, ⟨P,Q⟩⟩⟩ (etc...)

We associate a closed proof term f∗ (in the language of λPA2−) of type

∀x(x ∈ B⇒ f(x) ∈ B)

to each code of primitive recursive functions f :
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0∗ ≜ λ .0

id∗ ≜ λξ.ξ

fst∗ ≜ λξ.π1(ξ[0, 0]λξ1λξ2.[π2ξ1, ⟨π2ξ1, π2ξ2⟩])
snd∗ ≜ λξ.π1(ξ[0, 0]λξ1λξ2.[π2ξ2, ⟨π2ξ1, π2ξ2⟩])

(f ◦ g)∗ ≜ λξ.f∗(g∗ξ)

⟨f, g⟩∗ ≜ λξ.π1(ξ[⟨f∗0, g∗0⟩, 0]λξ1λξ2.[⟨f∗⟨π2ξ1, π2ξ2⟩, g∗⟨π2ξ1, π2ξ2⟩⟩, ⟨π2ξ1, π2ξ2⟩])
[f|g]∗ ≜ λξ.π1(ξ[0, 0]
λνλµ.[π1((π2µ)[f

∗(π2ν), 0]λµ1λµ2.[g
∗⟨π2ν, π2µ1, π2µ2, π1µ1, π1µ2⟩, ⟨π2µ1, π2µ2⟩]), ⟨π2ν, π2µ⟩])

This interpretation uses the following trick that we explain for the interpretation of the
function fst. Let x be a variable and assume x ∈ B. We want to prove that fst(x) ∈ B and
we can be tempted to eliminate the second-order variable X with the set {x | fst(x) ∈ B}.
However, it won’t be enough as the induction hypothesis given by this choice is not strong
enough. We should rather use the set {x | fst(x) ∈ B ∧ x ∈ B}. This is why proof
terms for introducing and eliminating conjunction appears in the translation of the codes
of functions.

Lemma 2.2.3.2. For each symbol of primitive recursive functions f :

⊢ f∗ : ∀x(x ∈ B⇒ f(x) ∈ B) (in λPA2−).

• Using the previous interpretation of codes of functions, we can now translate first-order
terms into proof terms of λPA2−. We associate a new variable ξx to each first-order
variable x. We extend this translation to finite list of first-order variables: each list of
variables x⃗ ≜ (x1, ..., xp) is associated with the context Ξx⃗ defined by

Ξx⃗ ≜ ξx1
: x1 ∈ B, ..., ξxp : xp ∈ B.

For each term t with free variables among (x1, ..., xp), we construct a proof term t∗ (in the
system λPA2−) with free variables among ξx1

..., ξxp :

x∗ ≜ ξx
0∗ ≜ 0

⟨t, u⟩∗ ≜ ⟨t∗, u∗⟩
f(t) ≜ f∗t∗

Proposition 2.2.3.1. For every first-order term t with free variables in x⃗:

Ξx⃗ ⊢ t∗ : t ∈ B (in λPA2−)

Translation of proof terms

Finally, we can translate proof terms of the system λPA2 into proof terms of the system λPA2−.
In this translation, we use the following term:

ind∗ ≜ λξ1λξ2, η.π1(η[ξ1, 0]λη1λη2.[ξ2(π2η1)(π2η2)(π1η1)(π1η2), ⟨η1, η2⟩])

that performs an induction to show the formula ϕ[z := t] when
• ξ1 : ϕ[x := 0]
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• ξ2 : ∀x∀y(ϕ[z := x] ⇒ ϕ[z := y] ⇒ ϕ[z := ⟨x, y⟩])

• η : t ∈ B.
To each proof term M (of the system λPA2) with free variables among ξ⃗, x⃗,

−→
X , we associate

a proof term M∗ (of the system λPA2−) with free variables among ξ⃗,Ξx⃗:

ξ∗ ≜ ξ

efq(M,ϕ)∗ ≜ M∗
cc(ϕ, ψ)∗ ≜ cc

ind(E,M,N, t)∗ ≜ ind∗M∗N∗t∗

refl(t)∗ ≜ λξ.ξ

peel(M,E,N)∗ ≜ M∗N∗

(λξ : ϕ.M)∗ ≜ λξ.M∗

(MN)∗ ≜ M∗N∗

(λx.M)∗ ≜ λξx.M
∗

(Mt)∗ ≜ M∗t∗

(ΛX.M)∗ ≜ M∗

(ME)∗ ≜ M∗

Note that λ-abstractions over first-order variables are replaced by λ-abstractions over proof
variables and that λ-abstractions over second-order variables are erased. During the translation,
all the “logical part” of the proof term M is erased or replaced by a program (when a first-order
term t is interpreted as a λ-term t∗).

Proposition 2.2.3.2 (Soundness). If Γ ⊢M : ϕ (in λPA2), then:

ΓB,Ξx⃗ ⊢M∗ : ϕB (in λPA2−)

where x⃗ are the first-order variables that appear freely in M .

Corollary 2.2.3.1. The theory PA2 is relatively consistent to the theory PA2−.

Remark 2.2.3.1. This proof of relative consistency can be adapted to a proof of relative consis-
tency between the systems Π1

n -CA0 and Π1
n -CA−

0 for n ∈ N.

2.2.4 Related works and future work

Related works

The ideas behind the proof systems λPA2 and λPA2− are folklore.

1. Representing the axiom scheme of induction as an inference rule can be seen in many other
proof systems as for instance in Martin-Löf Type Theory [33].

2. The idea to use the predicate null(t) to derive the forth axiom of Peano already appears in
the work of Miquel [35].

3. The terminology peel that we use to denote the eliminator of equality is similar to the one
used in some presentations of type theory [42], however our own motivation to use it is to
emphasize that Leibniz principle can be recovered by doing an external induction on the
formulas or, more graphically, by peeling out the syntax. A showcase for this statement is
given in the Chapter 6 of this thesis.
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4. The constant cc denotes the control construct call/cc from the programming language
Scheme. It was discovered by Griffin [20] that it can be used to give a computational
content to Peirce law ; thus allowing to extend the Curry-Howard isomorphism between
proofs and programs to classical logic.

5. The congruence on terms and formulas, incorporated on top of the proof systems and
used through the conversion rule, allow to prove all the axioms of computation. Adding
rewriting rules on top of a type system is very common [33]. For instance, it is intensively
used in classical realizability to ease the computations [36].

Finally, interpreting induction though relativization is a trick frequently used in classical
realizability [30]. However, this translation allows us to highlight the importance of relativization:
with this process, the first-order parts of a term in λPA2 are given a computational meaning
in λPA2−. For instance, a code of recursive functions is interpreted as a λ-term of type B→ B

computing the function denoted by the code.

Future work

The proof systems presented here lack of computational rules. I made the choice to let all the
computational studies of the translations presented in this thesis as future works. Nevertheless,
it would be interesting to add an operational semantic on top of the proof systems and to study
if the translation respects it. The encoding of B in λPA2− defines what would be called a
data type in System F. Results about normal forms in data types of System F are obtained
through (intuitionistic) realizability [27]. However, the systems λPA2 and λPA2− are classical
type systems, that can be equipped with a call-by-name reduction and studied through classical
realizability. Data types in this framework have also been investigated [28] and we could certainly
apply similar techniques to the study of the computational content of the previous translation.

2.3 Realizability models for λPA2−

The system λPA2− can be equipped with various semantics. We present here a classical real-
izability model for this system, as described in the work of Krivine [30]. We claim no originality
in this section as all these definitions are folklore6.

2.3.1 The λc-calculus

Syntax

The λc-calculus is composed of three distinct types of objects:

1. The terms (M ,N ...) that extend the proof terms of λPA2− with continuations (kπ) to
capture the operational semantic of cc and classical logic. In classical realizability, proof
terms can be seen as defending the validity of a formula against opponents: the stacks.

2. The stacks (π, π1...) are finite list of closed terms that terminate with a stack constant
(taken from a set Π0). They act as environments in which terms are evaluated (in a call-
by-name fashion). They can be seen as attacking the validity of a formula and this is why
they are sometimes called counter-proof. The interactions between terms and stacks form
processes.

6Moreover, this section follows a presentation of realizability models done by Alexandre Miquel in an unpub-
lished manuscript.
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3. The processes (p, q...) are pairs of closed terms and stacks (denotedM⋆π). They constitute
the abstract machine in which a program t is evaluated in an environment π following a
call-by-name operational semantic.

Definition 2.3.1.1. Let Π0 be a countable set of stack constants. Terms, stacks and processes
are generated from the following grammar:

Terms M,N ::= ξ | λξ.t | MN | cc | kπ
Stacks π ::= α | M · π (α ∈ Π0, M closed)
Processes p, q ::= M ⋆ π (M closed)

Stacks and processes do not contain free variables. The set of closed terms is denoted Λ, the
set of stacks is denoted Π and the set of processes is denoted Λ ⋆Π.

The subset of terms coming from λPA2− has a special role in classical realizability, they are
called the proof-like terms.

Definition 2.3.1.2. A proof-like term is a term that does not contain a continuation symbol kπ.

They will be used when defining the notion of validity in a realizability model.

Operational semantic

Processes are evaluated following a weak head reduction strategy. We consider the following
reduction rules on processes:

(Push) MN ⋆ π ≻1 M ⋆N · π
(Grab) (λx.M) ⋆ N · π ≻1 M [x := u] ⋆ π
(Save) cc ⋆ M · π ≻1 M ⋆ kπ · π
(Restore) kπ ⋆ M · π′ ≻1 M ⋆ π

These rules are deterministic and encode the weak head reduction of λ-calculus extended with
the instruction cc and continuations. The relation of evaluation p ≻ p′ is defined as the reflexive-
transitive closure of ≻1.

2.3.2 Realizability models

In a realizability model, the interpretation of a formula is done in two steps via orthogonality:

1. a set of stacks (closed by anti-reduction) and dubbed “falsity value” is associated to each
closed formula (with parameters)

2. a set of closed terms dubbed “truth value” is associated to each closed formula and is
computed as the orthogonal of its falsity value.

This interpretation is based on a distinguished set of processes ‚ closed by anti-reduction
and called the pole of the realizability model.

Definition 2.3.2.1. A pole ‚ is a set of processes closed by anti-evaluation:

if p ≻ p′ and p′ ∈ ‚ then p ∈ ‚.

A choice of pole induces a relation of orthogonality between closed terms and stacks. A
(closed) term M is orthogonal to a stack π (denoted M‚π) if M ⋆π ∈ ‚. This relation induces
an operator ‚ : P(Π) → P(Λ) that maps a set of stacks S to a set of closed terms
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S‚ ≜ {M | ∀π ∈ S (M‚π)}.

Note that such a set S‚ is always closed by anti-evaluation. This operation is crucial for the
interpretation of formulas.

Proposition 2.3.2.1. The operation S 7→ S‚ is contravariant, meaning that

if S1 ⊆ S2, then S
‚
2 ⊆ S‚

1 .

Remark 2.3.2.1. A realizability model M is parameterized by a choice of pole. In fact, the
framework of classical realizability is extremely modular. The λc-calculus and its operational
semantic can also be seen as parameters of the realizability model. However, in this thesis, we
only consider the version of the λc-calculus introduced before.

Interpretation of formulas

In the context of realizability, we consider formulas with parameters, that we define as generated
from the language of (the types of) λPA2− extended with constant symbols ḃ for every pure
binary tree b ∈ B and predicate symbols Ṗ for every function P : B → P(Π). In a realizability
model, the interpretation t 7→ JtK of first-order terms is done as in the standard model of PA2
(Subsection 1.2.1).

Remark 2.3.2.2. Because the individuals range over the set B, the constants ḃ are in fact already
definable in the syntax in the sense that for every b ∈ B, there exist a term b such that JbK = b.
We still make the distinction between syntactic and semantic trees because it helps to clarify the
presentation.

Definition 2.3.2.2. Given a choice of pole ‚, the falsity value ∥ϕ∥‚ and the truth value |ϕ|‚
of a closed formula with parameters ϕ are defined by simultaneous induction. The falsity value
is defined as follow:

∥null(t)∥ ≜

{
{M · π | (M ⋆ π) ∈ ‚} if JtK = 0
Π otherwise

∥t ∈ Ṗ∥ ≜ P (JtK)
∥ϕ⇒ ψ∥ ≜ {M · π | M ∈ |ϕ|, π ∈ ∥ψ∥}

∥∀xϕ∥ ≜
⋃
b∈B

∥ϕ[x := ḃ]∥

∥∀Xϕ∥ ≜
⋃

P :B→P(Π)

∥ϕ[X := Ṗ ]∥

and the truth value |ϕ| is obtained by orthogonality:

|ϕ| ≜ ∥ϕ∥‚.

Note that this definition is parameterized by a choice of pole‚. We will leave the pole implicit
in the notations if it does not add confusion. As in Tarski semantic, it suffices to consider unary
predicate to interpret second-order variables. Because the operation S 7→ S‚ is contravariant,
the interpretation of the implication ⇒ is contravariant on its left argument and covariant on its
right argument.

The notion of validity

A term M is said to

• realize a formula ϕ for the pole ‚ (denoted M ⊩‚ ϕ and abbreviated M ⊩ ϕ) if M ∈ |ϕ|
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• universally realize ϕ if M ⊩‚ ϕ for every choice of pole.

If the pole ‚ is not empty, every formula is realized.

Proposition 2.3.2.2. Assume M ⋆ π is a process in the pole ‚. The term kπM realizes all
formulas ϕ.

Proof. Let π′ ∈ ∥ϕ∥. The process kπM⋆π′ reduces to kπ⋆M ·π′ and then toM⋆π. ButM⋆π ∈ ‚
and because it is closed by anti-reduction, kπM ⋆ π′ ∈ ‚.

Therefore, being realized is not a consistent manner to define the validity of a formula. This
is where the notion of proof-like terms intervene.

Definition 2.3.2.3. A formula ϕ is valid in M if it is realized by a proof-like term.

We will see that a realizability model induces a theory and that the consistency of this induced
theory can be ensured by a property of the pole.

2.3.3 Soundness and induced theory

Soundness

Classical realizability succeeds in interpreting the rules of second-order classical logic and the
axioms of PA2−. This claim is formalized in the soundness theorem (or adequacy theorem) that
we will now state. As a tool to state this theorem, we introduce the notion of valuations.

Definition 2.3.3.1. A valuation ρ is a function mapping

• every first-order variable x to a binary tree ρ(x) ∈ B

• every second-order variable X to a function ρ(X) : B → P(B).

Given a formula ϕ and a valuation ρ, we write ϕ[ρ] for the closed formula with parameters
obtained by replacing in the formula ϕ:

• all occurrences of a first-order variable x by the constant symbol associated to the binary
tree ρ(x)

• all occurrences of a second-order variable X by the predicate symbol associated to the
function ρ(X).

Theorem 2.3.3.1 (Soundness). If a typing judgement ξ1 : ϕ1, ..., ξk : ϕk ⊢M : ϕ is deriv-
able in the system λPA2−, then for all valuations ρ and for all terms N1, ..., Nk such
that N1 ⊩ ϕ1[ρ], ..., Nk ⊩ ϕk[ρ], we have: M [ξ1 := N1, ..., ξk := Nk] ⊩ ϕ[ρ].

Theory induced by a realizability model and consistency

A realizability modelM induces a theory containing all the formulas realized by a proof-like term.
Moreover, the soundness theorem implies that this theory is closed by the rules of deduction of
second-order natural deduction. Therefore, a solution to ensure that it is a consistent theory is
to check that the formula

⊥ ≜
⋃

P :B→P(Π)

P (0)

= Π

52



is not realized by a proof-like term.

Proposition 2.3.3.1. The realizability model M is coherent if and only if for every proof-like
term M , there exists a stack π such that the process M ⋆ π is not in the pole ‚.

Example 2.3.3.1. Taking ‚ ≜ ∅ gives the standard model of PA2: in this case, a formula
is valid if and only if it is satisfied by the standard model. Non trivial examples of consistent
realizability models are presented in the work of Krivine [31].

2.4 Realizing the axiom scheme of collection

We saw that classical realizability interprets the system PA2−. Even more, we will show that it
also interprets the axiom scheme of collection, and gives it a very simple computational content:
the identity λξ.ξ realizes it’s contraposition! As a tool to show this result, we construct a family
of falsity function Pϕ : B → P(Π) that implements an operator allowing to reduce second-order
quantification to first-order (unrelativized) quantification. The construction of this operator uses
the axiom of choice in the meta-theory.

The falsity functions Pϕ

Let x 7→ πx be a surjection from the set of binary trees B to the set of stacks Π. Such a function
exists because B and Π are both countable. For every formula ϕ(x,X), using the axiom of choice
in the meta-theory, we consider a family {Fb}(b∈B) defined as follow:

• if b = ⟨b1, b2⟩, and if the set of falsity functions F such that πb2 ∈ ∥ϕ(ḃ1, Ḟ )∥ is non-empty,
then Fb is chosen in this set

• Fb is the function x 7→ ∅ otherwise.

We now define the falsity function Pϕ.

Pϕ(b
′′) ≜

{
Fb(b

′) if b′′ = ⟨b, b′⟩
∅ otherwise

The function Pϕ is better understood when used with the notion of slices introduced in Defini-
tion 1.1.1.4:

∥ḃ′ ∈ Ṗϕ[ḃ]∥ = ∥⟨ḃ, ḃ′⟩ ∈ Ṗϕ∥ = Pϕ(⟨b, b′⟩) = Fb(b
′) = ∥ḃ′ ∈ Ḟb∥.

Therefore, the slice of Ṗϕ at the individual ḃ is interpreted as Ḟb. It will be of interest

when b ≜ ⟨b1, b2⟩ and when b2 is considered as the stack πb2 . In the light of this encoding,
the falsity function Pϕ(x) will be used to replace a quantification over second-order variables by
a quantification over first-order variables. As a first step, we prove the following lemma.

Lemma 2.4.0.1. For all binary tree b1 ∈ B:

∥∀Y ϕ(ḃ1, Y )∥ ⊆ ∥∀yϕ(ḃ1, Ṗϕ[y])∥.

Proof. Let π = πb2 for some tree b2. If π ∈ ∥∀Y ϕ(ḃ1, Y )∥ =
⋃

F :B→P(Π)

∥ϕ(ḃ1, Ḟ )∥, there is a falsity

function F0 such that πb2 ∈ ∥ϕ(ḃ1, Ḟ0)∥.
But the slice Pϕ[⟨b1, b2⟩] of Pϕ is interpreted as F⟨b1,b2⟩. Therefore, by definition, it is inter-

preted as some falsity function F1 such that
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πb2 ∈ ∥ϕ(ḃ1, Ḟ1)∥ ⊆ ∥∀yϕ(ḃ1, Ṗϕ[y])∥.

Proposition 2.4.0.1. The formula ∀x(∀yϕ(x, Pϕ[y]) ⇒ ∀Y ϕ(x, Y )) is universally realized.

Proof. For all individuals b, ∥∀Y ϕ(ḃ, Y )∥ ⊆ ∥∀yϕ(ḃ, Ṗϕ[y])∥. Therefore λξ.ξ realizes the for-
mula ∀x(∀yϕ(x, Pϕ[y]) ⇒ ∀Y ϕ(x, Y )).

The contraposition of this formula is maybe more meaningful:

∀x(∃Y ϕ(x, Y ) ⇒ ∃yϕ(x, ˙Pϕ[y]))

and is also realizable (as a consequence of the Adequacy theorem 2.3.3.1). It means that the
family {Pϕ[b]}b∈B represents a sequence of potential witnesses for the (higher-order) predi-

cate {X | ϕ(ḃ, X)}.
Remark 2.4.0.1. We did this construction for a formula with one distinguished first-order variable
but it would have been (a little) easier to do it for a formula of the shape ϕ(X). However, this
is the former that we will use to realize the axiom scheme of collection.

Realizing the axiom scheme of collection

Fixing a formula ϕ(x, Y ), we will rather realize the equivalent formula

∀Z∃x∀yϕ(x, Z[y]) ⇒ ∃x∀Y ϕ(x, Y ).

It is in fact realized by λξ.ξ. We show that

∥∃x∀Y ϕ(x, Y )∥ ⊆ ∥∀Z∃x∀yϕ(x, Z[y])∥.

Unfolding the encoding of the existential quantifiers, the problem reduces7 to

∥¬∀x¬∀Y ϕ(x, Y )∥ ⊆ ∥∀Z¬∀x¬∀yϕ(x, Z[y])∥.

It is enough to show

∥¬∀x¬∀Y ϕ(x, Y )∥ ⊆ ∥¬∀x¬∀yϕ(x, Ṗϕ[y])∥.

Because the interpretation of the implication is contravariant in its first argument8, the problem
again reduces to

∥∀x¬∀yϕ(x, Ṗϕ[y])∥ ⊆ ∥∀x¬∀Y ϕ(x, Y )∥.

Finally, for all individuals b, the assertion

∥¬∀yϕ(ḃ, Ṗϕ[y])∥ ⊆ ∥¬∀Y ϕ(ḃ, Y )∥

follows from the contravariance of the interpretation of the negation coupled with Lemma 2.4.0.1.

Theorem 2.4.0.1. For every formula with parameters ϕ(x,X), the formula

∀Z∃x∀yϕ(x, Z[y]) ⇒ ∃x∀Y ϕ(x, Y )

is universally realized by λξ.ξ.

Corollary 2.4.0.1. Every instance of the axiom scheme of collection is universally realized.
7Or expands!
8And because the negation is encoded as an implication.
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2.4.1 Related work

Classical realizability models of second-order logic were introduced by Krivine [30] where he
showed that both the axioms of countable choice and of dependent choice are realized. Concretely,
he showed that these principles are realized using an instruction quote internalizing in the
calculus the injection from the stacks into the integers. In a second step, Krivine extended
classical realizability to non-extensional set theory ZFε [31] and showed that, again, the axioms
of countable choice and dependent choice can be realized. In this framework, different versions
of axioms of choice were studied. For instance, Fontanella and Geoffroy showed that weak forms
of Zorn’s lemma can be realized [16]. The full axiom of choice was even showed to be realized
by Krivine [32]. However, it seems that its computational content is still unclear and remains to
be studied.

Finally, we were strongly inspired by the proof that the axiom of non-extensional choice is
realized [31]. The functions Pϕ, employed as a variant of Hilbert’s epsilon for second-order logic,
are also used when proving that this principle is realized.
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Chapter 3

A glimpse at the intuitionistic
world

Intuitionistic logic is obtained from classical logic by removing the law of excluded-middle from its
set of rules. In this chapter, we will study variants of second-order arithmetic in this setting. We
will start by presenting a minimal syntax that will be used to describe second-order arithmetic
in the intuitionistic framework (Section 3.1), relying on second-order encodings to define the
missing connectives.

We will then describe a negative translation from the proof system λPA2 (for second-order
classical arithmetic with induction) into the proof system λHA2− (for second-order intuitionistic
arithmetic without induction) in Section 3.2.1. This translation extends the one presented in
Section 2.2.3 by relativizing the second-order quantifiers to the class of “stable” predicates and,
thus, interpreting second-order variables in the source calculus by proofs that they denote a
stable predicate in the target calculus. Hoping that the axiom scheme of collection and the
axiom scheme of choice will behave differently with respect to negative translations, we will study
their interpretations in Section 3.2.2. However, both behaved similarly: they admit classically
equivalent formulations that are validated by the negative translation. This part was deeply
inspired by the work of Friedman about negative translations of set theory [17].

All in all, the study of negative translations failed to separate the axiom scheme of collection
and the axiom scheme of choice. However, a glimmer of hope appears in the study of intuitionistic
realizability models of second-order arithmetic (Section 3.3). We will exhibit a model separating
variants of these schemes: it will validate the former and refute the latter! Nevertheless, we will
not be able to lift this result to second-order classical arithmetic: it would have been possible
only if we managed to separate their negative translations.

3.1 Arithmetic in second-order intuitionistic logic

3.1.1 Intuitionistic second-order logic and second-order encodings

In this part, we present a version of second-order logic with only membership as atomic formula
and with only implication and universal quantifiers as connectives. Therefore, the syntax of the
formulas is the following

ϕ, ψ ::= t ∈ X | ϕ⇒ ψ | ∀xϕ | ∀Xϕ

The other connectives are defined using a second-order encoding.
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Definition 3.1.1.1. We define the following encodings in second-order logic where Z is a fresh
variable not contained in ϕ and ψ:

⊥ ≜ ∀Z (0 ∈ Z) t = u ≜ ∀Z (t ∈ Z ⇒ u ∈ Z)

ϕ ∧ ψ ≜ ∀Z((ϕ⇒ ψ ⇒ 0 ∈ Z) ⇒ 0 ∈ Z) ϕ ∨ ψ ≜ ∀Z((ϕ⇒ 0 ∈ Z) ⇒ (ψ ⇒ 0 ∈ Z) ⇒ 0 ∈ Z)

∃xϕ(x) ≜ ∀Z(∀x(ϕ(x) ⇒ 0 ∈ Z) ⇒ 0 ∈ Z) ∃Xϕ(X) ≜ ∀Z(∀x(ϕ(x) ⇒ 0 ∈ Z) ⇒ 0 ∈ Z)

It is folklore1 [19] that these encodings satisfy the rules of the encoded connectives (described
for instance in Figure 1.2 page 24).

Remark 3.1.1.1. Note however that they use the full strength of the axiom scheme of compre-
hension (or, in other words, the full strength of second-order quantification). This is why an
other encoding is used in the classical setting. Concretely, having a boolean encoding of the
other connectives allows us to prove closure results about the subsystems of PA2 defined by
restriction of the axiom scheme of comprehension.

Definition 3.1.1.2. The rules of natural deduction for second-order intuitionistic logic are the
one presented in Figure 1.1 page 23 where the rules for the equality, the ex-falso quodlibet and
the elimination of the double negation are removed. We will write Γ ⊢I ϕ when this sequent is
provable with the rules of intuitionistic logic.

Definition 3.1.1.3. The different variations of arithmetic in the framework of intuitionistic logic
are defined exactly as in the classical framework, but all the connectives used in the axioms are
now considered as defined with second-order encodings. We will denote HA2 (resp. HA2−) for
the analogous of PA2 (resp. PA2−) in intuitionistic logic.

A type system for HA2− : the system λHA2−

We will now describe a type system for the theory HA2− formulated in the previous syntax.
The system λHA2− is a typed λ-calculus à la Curry: it is the Curry-Howard counter part of the
theory HA2−,it is obtained from λPA2− by removing the term cc. This system is an extension
of System F [19] obtained by adding first-order terms in the language of types.

Definition 3.1.1.4. The syntax and the rules of the system λHA2− are presented in the
Figure 3.1 page 58.

Because this system is equipped with an unrestricted elimination rule for second-order quan-
tification, the second-order encodings described in Definition 3.1.1.1 take their intended meaning.

Proposition 3.1.1.1. The rules presented in Figure 3.2 p.59 are derivable.

Notation 3.1.1.1. In particular, we introduce notations2 to use the second-order encodings of the
conjunctions and disjunctions.

• The proof term capturing the introduction rule of the conjunction is unchanged:

[M,N ] ≜ λξ.ξMN for ξ /∈ (FV (M) ∪ FV (N)).

• The proof terms capturing the elimination rules of the conjunction are now defined to be:

π1 ≜ λξ.ξλη1λη2.η1 π2 ≜ λξ.ξλη1λη2.η2.
1Modulo the fact that ϕ ≜ 0 ∈ {z | ϕ} for z /∈ FV (ϕ).
2In fact, we will overload them in the case of the conjunction.
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Syntax

Codes of functions f, g ::= 0 | id | fst | snd | (f ◦ g) |⟨f, g⟩ | [f |g]

Terms t, u ::= x | 0 | ⟨t, u⟩ | f(t)

Formulas ϕ, ψ ::= null(t) | t ∈ X | ϕ⇒ ψ | ∀xϕ | ∀Xϕ

Sets E ::= {x | ϕ}

Proof terms M,N ::= ξ | λξ.t | MN

Contexts Γ ::= ∅ | Γ, ξ : ϕ

Congruence on terms and formulas

Same as the rules in λPA2−, see Figure 2.2 page 45

Typing rules

(ξ:ϕ)∈Γ
Γ ⊢I ξ : ϕ

Γ ⊢I M : ϕ
(ϕ≃ϕ′)

Γ ⊢I M : ϕ′

Γ, ξ : ϕ ⊢I M : ψ

Γ ⊢I λξ.M : ϕ⇒ ψ

Γ ⊢I M : ϕ⇒ ψ Γ ⊢I N : ϕ

Γ ⊢I MN : ψ

Γ ⊢I M : ϕ
x/∈FV (Γ)

Γ ⊢I M : ∀xϕ
Γ ⊢I M : ∀xϕ

Γ ⊢I M : ϕ[x := t]

Γ ⊢I M : ϕ
X/∈FV (Γ)

Γ ⊢I M : ∀Xϕ
Γ ⊢I M : ∀Xϕ

Γ ⊢I M : ϕ[X := E]

Figure 3.1: The proof system λHA2−

• The proofs term capturing the introduction rules of the disjunction are defined as follow:

inl ≜ λξλξ1λξ2.ξ1ξ inr ≜ λξλξ1λξ2.ξ2ξ.

• The proof term capturing the elimination rule of the disjunction is defined as follow:

destruct∨ξM inN1(ξ) | N2(ξ) ≜ M(λξ.N1(ξ))(λξ.N2(ξ)) .

As for λPA2− and PA2− (see Theorem 2.2.2.1), the type system λHA2− interpretsHA2−.

Theorem 3.1.1.1. Every axiom of HA2− is provable in λHA2−.

Theorem 3.1.1.2. If ⊢I M : ϕ then HA2− proves the formula obtained from ϕ by replacing all
occurrences of the predicate null(t) by the formula t = 0.

3.2 Negative translations

In this section, we will study two negative translations.
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Γ ⊢I M : ⊥
Γ ⊢I M : ϕ

Γ ⊢I λξ.ξ : ∀xx = x

Γ ⊢I M : t = u Γ ⊢I N : ϕ[x := t]

Γ ⊢I MN : ϕ[x := u]

Γ ⊢I M : ϕ Γ ⊢I N : ψ

Γ ⊢I λξ.ξMN : ϕ ∧ ψ
Γ ⊢I M : ϕ ∧ ψ

Γ ⊢I Mλξ1λξ2.ξ1 : ϕ

Γ ⊢I M : ϕ ∧ ψ
Γ ⊢I Mλξ1λξ2.ξ2 : ψ

Γ ⊢I M : ϕ

Γ ⊢I λξ1.λξ2.ξ1M : ϕ ∨ ψ
Γ ⊢I M : ψ

Γ ⊢I λξ1.λξ2.ξ2M : ϕ ∨ ψ
Γ ⊢I M : ϕ ∨ ψ Γ, ξ1 : ϕ ⊢I N1 : χ Γ, ξ2 : ψ ⊢I N2 : χ

Γ ⊢I M(λξ1.N1)(λξ2.N2) : χ

Γ ⊢I M : ϕ[x := t]

Γ ⊢I λξ.ξM : ∃xϕ
Γ ⊢I M : ∃xϕ Γ, ξ : ϕ ⊢I N : ψ

x/∈FV (Γ,ψ)
Γ ⊢I Mλξ.N : ψ

Γ ⊢I M : ϕ[X := Y ]

Γ ⊢I λξ.ξM : ∃Xϕ
Γ ⊢I M : ∃Xϕ Γ, ξ : ϕ ⊢I N : ψ

X/∈FV (Γ,ψ)
Γ ⊢I Mλξ.N : ψ

Figure 3.2: Rules of defined connectives.

1. The first one will be fully described as a translation between type systems and will show a
result of relative consistency between PA2 and HA2−.

2. The second one will be described only at the level of formulas. It will be an interpretation
of PA2− inside HA2−. The most important difference with the first one is that it does
not interpret induction. We will then show that both the axiom of choice and the axiom
of collection behave similarly with respect to this translation. Notably, we will show how
it interprets classically equivalent reformulations of these schemes.

3.2.1 Negative translation of λPA2 into λHA2−

In this section, we design a negative translation from λPA2 into λHA2−. This translation will
extend the translation defined in Section 2.2.3 by relativizing the second-order quantifiers to the
class of stable predicates defined as

Sbl ≜ {X | (∀x ∈ B)(¬¬x ∈ X ⇒ x ∈ X)}

. The steps to design this translation are described below.

1. Formulas ϕ and contexts Γ of λPA2 are translated into formulas GB(ϕ) and contexts
GB(Γ) of λHA2−. This translation extends the translation ϕ 7→ ϕB by relativizing the
second-orders quantifiers to the class of stable predicates.

2. First-order terms t are again translated into proof terms t∗ of λHA2− (of type t ∈ B).
This part of the translation does not change.

3. Formulas ϕ are translated into proof terms ϕ∗ (of type ¬¬GB(ϕ) ⇒ GB(ϕ)).
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4. Proof terms M of λPA2 are translated into proof terms GB(M) of λHA2−. This trans-
lation extends the translation M 7→ M∗ (defined in Section 2.2.3) by interpreting the
second-order logical annotations contained in M by computational machinery in GB(M).
Notably, it interprets the proof term cc(ϕ, ψ) by a term whose free variables are generated
from the free first-order and second-order variables of ϕ.

Translation of formulas, contexts and sets

We associate to every formula ϕ in the language of λPA2 a formula GB(ϕ) in the language
of λHA2−. This translation differs from the translation ϕ 7→ ϕB in only one case:

GB(∀Xϕ) ≜ ∀X(Sbl(X) ⇒ GB(ϕ)).

All in all, this translation replaces the primitive formula ⊥ and t = u by their second-order
encodings (in λHA2−), relativizes the first-order quantifiers to the set B and relativizes the
second-order quantifiers to the class of stable predicates. In particular, the atomic formula t ∈ X
is translated into itself, without the use of double negation in front of it!

Lemma 3.2.1.1. If ϕ ≃ ϕ′ in λPA2 then GB(ϕ) ≃ GB(ϕ
′) in λHA2−.

The translation ϕ 7→ GB(ϕ) extends to sets and contexts:

GB({x | ϕ}) ≜ {x | GB(ϕ)} and (ξ1 : ϕ1, ..., ξn : ϕn)
B ≜ ξ1 : GB(ϕ1), ..., ξn : GB(ϕn)

Translation of first-order terms

This part does not change: it is done as in Section 2.2.3.

Translation of formulas into proof terms

Lemma 3.2.1.2. We define the following terms that will be used in the translation.

Func¬¬ ≜ λξληλχ.η(λµ.χ(ξµ))

eq⟨ , ⟩ ≜ λξλη.ξ(ηλχ.χ)

eqfst ≜ λξ.ξ(λχ.χ)

eqsnd ≜ λξ.ξ(λχ.χ)

They have the following properties

⊢I Func¬¬ : ∀X∀Y ((0 ∈ X ⇒ 0 ∈ Y ) ⇒ ¬¬0 ∈ X ⇒ ¬¬0 ∈ Y )
⊢I eq⟨ , ⟩ : ∀x1∀x2∀y1∀y2(x1 = y1 ⇒ x2 = y2 ⇒ ⟨x1, x2⟩ = ⟨y1, y2⟩)
⊢I eqfst : ∀x1∀x2∀y1∀y2(⟨x1, x2⟩ = ⟨y1, y2⟩ ⇒ x1 = y1)
⊢I eqsnd : ∀x1∀x2∀y1∀y2(⟨x1, x2⟩ = ⟨y1, y2⟩ ⇒ x2 = y2)

We associate a new proof variable ξX to each second-order variable X. From each finite list
of second-order variables X⃗ ≜ (X1, ..., Xp), we associate a context ΞX⃗ defined by

ΞX⃗ ≜ ξX1
: Sbl(X1), ..., ξXp : Sbl(Xp).

For each formula ϕ with free variables among (x1, ..., xk, X1, ..., Xp), we construct a proof
term ϕ∗ (in the system λHA2−) with free variables among ξx1 ..., ξxk , ξX1 ..., ξXp :
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⊥∗ ≜ λξ.ξ(λη.η)

(t = u)∗ ≜ t∗(u∗(λξλ . )(λ λ λξ.ξ(λη.ηλ . )))
(λξx1λξx2 .u

∗(λξ.ξ(λη.η(λ . )(λ . )))(λ λ .λξ.eq⟨ , ⟩(ξx1(Func¬¬eqfstξ))(ξx2(Func¬¬eqsndξ))))

null(t)∗ ≜ t∗(λξλη.η)(λ λ λξ.ξ(λη.η))

(t ∈ X)∗ ≜ ξXt
∗

(ϕ⇒ ψ)∗ ≜ λξ.λη.ψ∗(λχ.ξ(λµ.χ(µη)))

(∀xϕ)∗ ≜ λξλξx.ϕ
∗(λη.ξ(λχ.η(χξx)))

(∀Xϕ)∗ ≜ λξλξX .ϕ
∗(λη.ξ(λχ.η(χξX)))

Proposition 3.2.1.1. For every formula ϕ with free first-order variables among x⃗ and with free
second-order variables among X⃗:

Ξx⃗,ΞX⃗ ⊢ ϕ∗ : ¬¬GB(ϕ) ⇒ GB(ϕ) (in λHA2−)

Proof. This proof is done by induction on the syntax of formulas of λPA2.

Translation of proof terms

Finally, we can translate proof terms of the system λPA2 into proof terms of the system λHA2−.

To each proof term M (of the system λPA2) with free variables among ξ⃗, x⃗,
−→
X , we associate

a proof term GB(M) (of the system λHA2−) with free variables among ξ⃗,Ξx⃗,ΞX⃗ . It differs
from the previous translation in the following cases:

GB(cc(ϕ, ψ)) ≜ λξ.ϕ∗(λη.η(ξλχ.ηχ))

GB(ΛX.M) ≜ λξX .GB(M)

GB(M{x | ϕ}) ≜ GB(M)λξx.ϕ
∗

During the translation, all the “logical part” of the proof term M is erased or replaced
by a program: λ-abstractions over first-order and second-order variables are replaced by λ-
abstractions over proof variables.

Proposition 3.2.1.2 (Soundness). If Γ ⊢M : ϕ (in λPA2), then:

GB(Γ),Ξx⃗,ΞX⃗ ⊢I GB(M) : GB(ϕ) (in λHA2−)

where x⃗, X⃗ are the (first-order and second-order) variables that appear freely in M .

Corollary 3.2.1.1. The theory PA2 is relatively consistent to the theory HA2−.

On the originality of this translation

The previous result is not new [49]. Nor is the idea that classical logic can be interpreted in a
model of intuitionistic impredicative logic by restricting the set of “truth values” to stable one.
For instance, it is used in topos theory to show that every topos induces a boolean topos [24].

However, up to the author knowledge, describing a syntactic translation that implements, by
relativization, classical logic within an impredicative intuitionistic system is, at least, uncommon.

3.2.2 Interpreting collection and choice through negative translation

We are now interested in interpreting the axiom scheme of collection and the axiom scheme of
choice through a negative translation. We formulate an other negative translation, more suited
to the study of these schemes.
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An interpretation of PA2− inside HA2−

In this section, we design a negative translation interpreting PA2− inside HA2−. We recall
that the formulas of PA2− are constructed using the syntax presented in Definition 1.1.1.1 and
that the axioms of PA2− are the axioms of injectivity, of non confusion, of computation and the
axiom scheme of comprehension presented in Definition 1.2.1.1. Finally recall that in PA2− the
other connectives (∧,∨,∃) are defined using a classical encoding presented in Definition 1.1.1.2.

Definition 3.2.2.1. We design a translation ϕ 7→ G(ϕ) from formulas of PA2− into formulas
of HA2− as follow:

G(⊥) ≜ ∀Z(0 ∈ Z) (= ⊥)

G(t = u) ≜ ¬¬∀Z(t ∈ Z ⇒ u ∈ Z)

G(t ∈ X) ≜ ¬¬ t ∈ X

G(ϕ⇒ ψ) ≜ G(ϕ) ⇒ G(ψ)

G(∀xϕ) ≜ ∀xG(ϕ)

G(∀Xϕ) ≜ ∀XG(ϕ)

This translation differs from the translation GB( ) in three manners:

1. The first-order quantifiers are not relativized. In particular, induction is not provable in
the image of the translation (and neither in the source).

2. As a consequence, the equality is not decidable and double negations needs to be placed in
front of its second-order encoding.

3. The second-order quantifiers are not relativized. It implies that double negations needs to
be put in front of the atomic formulas of the shape t ∈ X.

We fix the convention that if the symbol of a connective not in the syntax of HA2− appears
outside of a G( ), it denotes the second-order encoding of this connective. For instance, ⊥ ≜
∀Z(0 ∈ Z). On the other hand, the translation of classically encoded connectives in PA2−

induces extra connectives in HA2−.

Definition 3.2.2.2. We introduce theses new connectives in HA2−:

ϕ ∨c ψ ≜ (ϕ⇒ ⊥) ⇒ (ψ ⇒ ⊥) ⇒ ⊥
ψ ∧c ψ ≜ (ϕ⇒ ψ ⇒ ⊥) ⇒ ⊥
∃cxϕ ≜ ¬∀x¬ϕ
∃cXϕ ≜ ¬∀X¬ϕ.

These new connectives, coming from the negative translations of encoded connectives
in PA2−, are “weaker” than their intuitionistic counterpart in HA2−. It is shown by the
following proposition.

Proposition 3.2.2.1. HA2− proves that

∀X∀Y ((0 ∈ X ∨ 0 ∈ Y ) ⇒ (0 ∈ X ∨c 0 ∈ Y ))
∀X∀Y ((0 ∈ X ∧ 0 ∈ Y ) ⇒ (0 ∈ X ∧c 0 ∈ Y ))
∀X(∃x(x ∈ X) ⇒ ∃cx(x ∈ X))
(∃Xϕ) ⇒ (∃cXϕ) (for all formulas ϕ).

The last technical details needed in this section are described in the following lemma.
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Lemma 3.2.2.1. These formulas are provable in HA2−:

∀X(0 ∈ X ⇒ ¬¬0 ∈ X)
∀X∀Y ((0 ∈ X ⇒ 0 ∈ Y ) ⇒ ¬¬0 ∈ X ⇒ ¬¬0 ∈ Y
¬¬G(ϕ) ⇒ G(ϕ) (for all formulas ϕ).

Proposition 3.2.2.2. If PA2− proves a formula ϕ then HA2− proves G(ϕ).

Proof. This result is very similar to the one obtained in the last section about the transla-
tion GB( ). We show that G( ) succeeds in interpreting all the axioms of PA2− in HA2−. In
other words, we show that HA2− proves the translation of all the axioms of PA2−.

1. All the axioms of computation and the axiom of non confusion are validated because ϕ⇒
¬¬ϕ is provable for every formula ϕ.

2. The axiom of injectivity is validated because of the functorality of ϕ 7→ ¬¬ϕ and the closure
by double negation of formulas of the shape G(ϕ).

3. For the axiom scheme of comprehension, it is enough to prove ∃X∀x(¬¬x ∈ X ⇔ G(ϕ)).
It is a consequence of the axiom scheme of comprehension used with the formula G(ϕ).

Interpretation of the axiom scheme of collection

It appears that our formulation of the axiom of collection is not suited to be interpreted via
the translation ϕ 7→ G(ϕ). Concretely, we did not succeed to prove that the axiom of collection
implies its negative translation3. Taking inspiration from the work of Friedman about his inter-
pretation of classical set theory within intuitionistic set theory [17], we formulate a classically
equivalent form of this axiom scheme.

Definition 3.2.2.3. The axiom scheme of collection with domain (CollDom) is defined as the
closure of the formulas

∀D((∀x ∈ D)∃Y ϕ(x, Y ) ⇒ ∃Z(∀x ∈ D)∃yϕ(x, Z[y])).

Proposition 3.2.2.3. 1. The axiom scheme of collection and the axiom scheme of collection
with domain are equivalent in PA2−.

2. The axiom scheme of collection with domain implies the axiom scheme of collection
in HA2−.

As a tool to show that CollDom is interpreted by the negative translation, we introduce yet
an other form of axiom scheme of collection.

Definition 3.2.2.4. A variant of the axiom scheme of collection with domain (Coll
′

Dom) is
defined as the closure of the formulas

∀D∃Z(∀x ∈ D)∀Y (x ∈ D ⇒ ϕ(x, Y ) ⇒ ∃yϕ(x, Z[y]))

Lemma 3.2.2.2. The axiom scheme CollDom and the axiom scheme Coll
′

Dom are equivalent
in HA2−.

3My intuition here is that this formulation of the axiom of collection lacks a “tiny bit” of classical logic. I
think that this absence prevents it from implying its negative translation.
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Proof. We prove Coll
′

Dom for a formula ϕ(x, Y ) using CollDom. Let D be a domain (given

by Coll
′

Dom). We apply CollDom with the formula ϕ(x, Y ) and the domain D′(x) ≜ D(x) ∧
∃Y ϕ(x, Y ). Then, (∀x ∈ D′)∃Y ϕ(x, Y ) is provable and therefore CollDom implies ∃Z(∀x ∈
D′)∃yϕ(x, Z[y])). The set Z0 obtained by eliminating this existential is the witness allowing us
to prove Coll

′

Dom for the formula ϕ and the domain D.

Notation 3.2.2.1. If A is a set of formulas, G(A) denotes the set of formulas obtained by apply-
ing 7→ G( ) to all the formulas in A.

Lemma 3.2.2.3. HA2− proves that the axiom scheme Coll
′

Dom implies its negative transla-

tion G(Coll
′

Dom).

Proof. The scheme G(Coll
′

Dom) contains the formulas of the shape

∀D∃cZ∀x(¬¬x ∈ D ⇒ ∀Y (¬¬x ∈ D ⇒ G(ϕ)(x, Y,
−→
X ) ⇒ ∃cyG(ϕ(x, Z[y],

−→
X ))))

But because the second-order encoded existential ∃ implies the “classical” existential ∃c, these
formulas are consequences of the scheme Coll

′

Dom.

Theorem 3.2.2.1. The axiom scheme CollDom implies its negative translation G(CollDom)
in HA2−.

Proof. The proof is a chain of implication in HA2− :

CollDom ⇒ Coll
′

Dom ⇒ G(Coll
′

Dom) ⇒ G(CollDom).

Interpretation of the axiom scheme of choice

In the previous work, we see that we never used the difference4 between the axiom scheme of
collection and the axiom scheme of choice. Consequently, this result scales to the axiom scheme
of choice.

Definition 3.2.2.5. The axiom scheme of choice with domain (ACDom) is defined as the closure
of the formulas

∀D((∀x ∈ D)∃Y ϕ(x, Y ) ⇒ ∃Z(∀x ∈ D)ϕ(x, Z[x])).

Theorem 3.2.2.2. The axiom scheme ACDom implies its negative translation G(ACDom)
in HA2−.

Related works and comments about this interpretation

The previous interpretations are deeply inspired by the negative translation of classical set theory
into intuitionistic set theory done by Friedman [17]. The idea to reformulate the axiom scheme
of collection as a principle using a domain came from the study of his work. All the remaining
proofs are a direct adaptation of his proofs in the set-theoretic framework within second-order
logic.

In higher type arithmetic (HAω), the negative translation of the axiom of choice is stronger
than the axiom of choice [7]. In fact, in higher type arithmetic, G(ACι) implies the axiom
scheme of comprehension, enabling the use of full impredicativity in the theory HAω+G(ACι).

4Namely, the extra first-order existential quantifier that appears in the axiom scheme of collection.
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On the other hand, HAω + ACι is conservative over HAω. As a consequence, ACι does not
imply G(ACι) in HAω.

Nevertheless, the proof of Friedman that the axiom of collection is interpreted by negative
translations scales also to the axiom of choice in second-order logic ; showing that both of these
principles are self-interpreted by negative translations. The study of choice principles in HA2−

is therefore very different than their study inside HAω.

3.3 Intuitionistic realizability

In this part, we will present a computational interpretation of HA2− using the tools of intu-
itionistic realizability, originally developed by Kleene to interpret Heyting arithmetic [25]. An
intuitionistic realizability model of HA2 is already presented in the work of McCarty [34] where
first-order quantifiers are interpreted as relativized quantifiers (over the domain N of natural
numbers) and second-order quantifiers are interpreted uniformly5. The model presented here
will interpret both first-order quantifiers and second-order quantifiers in an uniform fashion.
Because of this choice, we will not be able to interpret the axiom of induction, but it is not a
restriction as this previous principle can be validated in HA2− by the use of relativization. This
realizability model will allow us to distinguish between the principles CollDom and ACDom: it
will satisfy the former and not the latter. Therefore, we will obtain the result that in HA2− the
principle CollDom is strictly weaker than the principle ACDom. Finally, as we did for Krivine
realizability, we will present here an external version of intuitionistic realizability. This choice is
motivated because the main goal of this model is to distinguish between the two aforementioned
principles, and working internally6 is not needed to achieve this goal.

3.3.1 Preliminaries

Digression: the choice of a partial combinatory algebra

Kleene realizability is based on a chosen model of computations, called a partial combinatory
algebra [50], and used to interpret the formulas as sets of programs (taken from this specific choice
of model of computations). Originally, Kleene formulated his computational interpretation of
arithmetic using codes of partial recursive functions (called Kleene first algebra). However, the
study of their properties is cumbersome, although it was extensively studied in the literature [43].
In this thesis, we will choose as model of computations7 the set Λ of closed terms of pure λ-
calculus.

5In realizability, there is two ways of interpreting quantifiers.

1. Universal quantifiers can be interpreted as dependent products. This was done by Kleene in his interpre-
tation of Heyting arithmetic and it is crucial to interpret the axiom scheme of induction.

2. Universal quantifiers can be interpreted uniformly, as intersection types. This is done in Krivine realizability
and that is what we will do in our intuitionistic realizability model.

These differences are pointed out in the work of Miquel about implicative algebras [37]. This explanation is
strongly inspired by one of his presentation about intuitionistic realizability done in a seminar at Montevideo in
2021.

6Achieving an internal interpretation is necessary to obtained more refined result about the theory at stake
[49, 48].

7In fact, we will not formally use a partial combinatory algebra as we will not considered the term up to β-
equivalence. Formulas will be interpreted as sets of (closed) λ-terms that are closed by anti-evaluation.

65



Pure λ-calculus

We will use untyped λ-calculus to interpret the formulas of HA2−. We recall very briefly its
syntax and reduction rules, and refer to the literature for more details [3]. It is generated from
the following grammar:

M,N ::= ξ | λξ.t | MN

This calculus will be enough to interpret all the connectives of second-order logic, notably because
we will treat all the quantifiers uniformly (as intersection types, or subtyping). As usual, this
calculus is considered up to α-equivalence. We consider the following reduction rule on terms

(λξ.M)N ≻ M [ξ ::= N ] .

from which we generate reduction and congruence (or β-equivalence)

M ⇝ N and M ∼= N

as respectively the least reflexive, transitive and closed by congruence relation containing ≻ and
the least closed by congruence equivalence relation containing ≻.

Notation 3.3.1.1. In this section, we will write Λ for the set of all closed terms of pure λ-calculus.

The set of truth values

In intuitionistic realizability, a closed formula ϕ will be interpreted as a set |ϕ| of closed λ-terms.
The set |ϕ| is seen as the evidences that the formula ϕ is true. This is the reason why the
set P(Λ) is sometimes called the set of truth values (while the set |ϕ| is called the truth value
of ϕ). If λ-terms are considered up to β-equivalence, this set can be equipped with a structure
of implicative algebra [37]. The fundamental operation to turn it into an implicative structure
is Kleene implication defined as

A→ B ≜ {M | ∀N ∈ A,MN ∈ B}.

3.3.2 Interpreting λHA2−

Interpretation of formulas

As in the context of classical realizability (in the Section 2.3.2), we will interpret formulas with
parameters, that we define as generated from the language of λHA2− extended with constant
symbols ḃ for every pure binary tree b ∈ B and predicate symbols Ṗ for every function P : B →
P(Λ). The interpretation t 7→ JtK of first-order terms is done as in the standard model of PA2
(and as in classical realizability).

Definition 3.3.2.1. The interpretation |ϕ| of a closed formula with parameters is defined as a
set of closed λ-terms. This definition is done by induction over the syntax as follow:

|t ∈ Ṗ | ≜ {M | ∃N ∈ P (JtK),M ⇝ N}

|null(t)| ≜
{

Λ if JtK = 0
∅ otherwise

|ϕ⇒ ψ| ≜ |ϕ| → |ψ| (= {M | ∀N ∈ |ϕ|,MN ∈ |ψ|})
|∀xϕ| ≜

⋂
b∈B

|ϕ[x := ḃ]|

|∀Xϕ| ≜
⋂

P :B→P(Λ)

|ϕ[X := Ṗ ]|

A formula ϕ is realized by a λ-term M if M ∈ |ϕ|, in this case we will write M ⊩ ϕ.
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Notation 3.3.2.1. If P : B → P(Λ), we write P̂ = {b ∈ B | P (b) ̸= ∅}.

Lemma 3.3.2.1 (Closure by anti-evaluation). Let ϕ be a closed formula with parameter. IfM ⇝
N and N ∈ |ϕ|, then M ∈ |ϕ|.

This crucial lemma will allow us to prove the soundness theorem, in a very similar fashion as
in classical realizability (see Theorem 2.3.3.1).

Soundness

Intuitionistic realizability succeeds in interpreting the rules of second-order classical logic and
the axioms of PA2−. This claim is formalized in the soundness theorem that we will now state.
We adapt the notion of valuations to the context of intuitionistic realizability.

Definition 3.3.2.2. A valuation ρ is a function mapping

• every first-order variable x to a binary tree ρ(x) ∈ B

• every second-order variable X to a function ρ(X) : B → P(Λ).

Given a formula ϕ and a valuation ρ, we write ϕ[ρ] for the closed formula with parameters
obtained by replacing in the formula ϕ:

• all occurrences of a first-order variable x by the constant symbol associated to the binary
tree ρ(x)

• all occurrences of a second-order variable X by the predicate symbol associated to the
function ρ(X).

Theorem 3.3.2.1 (Soundness). If a typing judgement ξ1 : ϕ1, ..., ξk : ϕk ⊢I M : ϕ is deriv-
able in the system λHA2−, then for all valuations ρ and for all terms N1, ..., Nk such
that N1 ⊩ ϕ1[ρ], ..., Nk ⊩ ϕk[ρ], we have: M [ξ1 := N1, ..., ξk := Nk] ⊩ ϕ[ρ].

As a consequence, intuitionistic realizability provides a model for HA2−. Moreover, this
model is consistent because the formula ⊥ is not realized. We will use this model to show that
the scheme CollDom is weaker than the scheme ACDom.

Extending the syntax: simplify the interpretation of the existential quantifiers

The goal of this section is to motivate an extension of the syntax by two quantifiers interpreted
in the model by joins (or union types) and used to replace the second-order encodings of the
existential quantifiers. This trick will be useful while studying the computational contents of
formulas using existential quantifiers, such as the axiom of collection with domain and the axiom
of choice with domain.

Example 3.3.2.1. Let ϕ(x) be a formula with one free variable x. We will study the truth value
of ∃xϕ. It is computed as follow

|∃xϕ(x)| ≜ |∀Z(∀x(ϕ(x) ⇒ 0 ∈ Z) ⇒ 0 ∈ Z)|
=

⋂
P :P(Λ)

(
⋂
b:B

(|ϕ[x := ḃ]| → P ) → P )

=
⋂

P :P(Λ)

{M | ∀N ∈
⋂
b:B

(|ϕ[x := ḃ]| → P ),MN ∈ P}.

It is equivalent to the truth value
⋃
b∈B

|ϕ[x := ḃ]|. The meaning of this is twofold:
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1. |∃xϕ(x)| →
⋃
b∈B

|ϕ[x := ḃ]| is realized by λξ.ξλη.η.

2.
⋃
b∈B

|ϕ[x := ḃ]| → |∃xϕ(x)| is realized by λξ.λη.ηξ.

It advocates that, in the model of intuitionistic realizability, the existential connectives can be
successfully replaced by joins.

Definition 3.3.2.3. We extend the syntax of λHA2− with two new quantifiers
⊔
x
ϕ(x)

and
⊔
X

ϕ(X) that are interpreted as follow:

|
⊔
x
ϕ(x)| ≜

⋃
b∈B

|ϕ[x := ḃ]|

|
⊔
X

ϕ(X)| ≜
⋃

P :B→P(Λ)

|ϕ[X := Ṗ ]|.

Proposition 3.3.2.1. For all formulas ϕ(x) with one free variable x and ψ(X) with one free
variable X, the following formulas are realized:

∃xϕ(x) ⇒
⊔
x
ϕ(x)

⊔
x
ϕ(x) ⇒ ∃xϕ(x)

∃Xψ(X) ⇒
⊔
X

ψ(X)
⊔
X

ψ(X) ⇒ ∃Xψ(X).

3.3.3 The axiom scheme of collection with domain is realized

We show that the axiom scheme CollDom is realized. Recall that it is defined as the closure of
the formulas

∀D((∀x ∈ D)∃Y ϕ(x, Y ) ⇒ ∃Z(∀x ∈ D)∃yϕ(x, Z[y])).

As discussed before, we will rather be interested in a formula of the following shape

∀D((∀x ∈ D)
⊔
Y

ϕ(x, Y ) ⇒
⊔
Z

(∀x ∈ D)
⊔
y
ϕ(x, Z[y])).

The trick to realize this formula is very similar to the one used in classical realizability to realize
the axiom scheme of collection. Fixing a function PD : B → P(Λ), we show that

|(∀x ∈ ṖD)
⊔
Y

ϕ(x, Y )| ⊆ |
⊔
Z

(∀x ∈ ṖD)
⊔
y
ϕ(x, Z[y])|.

It relies on a surjection b 7→Mb from the set B of binary trees into the set Λ of closed λ-terms.
Note that such a surjection exists because both of these sets are countable. We will also need
an inverse M 7→ _M ^ of this surjection. Using the axiom of choice in the meta-theory, we define
a family of functions (FM,b){M∈Λ,b∈B} ∈ (P(Λ)B)Λ×B indexed by a closed λ-term and a binary
tree as follow:

1. If M ⊩
⊔
Y

ϕ(ḃ, Y ), FM,b is chosen to be a function P : B → P(Λ) such that M ⊩ ϕ(ḃ, Ṗ ).

2. Otherwise, FM,b is the function b 7→ ∅.

We can now define the function PZ : B → P(Λ) that will be used to interpret the variable Z as

PZ(b) ≜

{
FMb1

,b2(b3) if b = ⟨⟨b1, b2⟩, b3⟩
∅ otherwise
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Lemma 3.3.3.1. For all functions PD : B → P(Λ):

|(∀x ∈ ṖD)
⊔
Y

ϕ(x, Y )| ⊆ |(∀x ∈ ṖD)
⊔
y
ϕ(x, ṖZ [y])|.

Proof. Assume M ⊩ (∀x ∈ ṖD)
⊔
Y

ϕ(x, Y ) and let b ∈ B. If N ⊩ ḃ ∈ ṖD, then MN ⊩
⊔
Y

ϕ(ḃ, Y )

and by definition of PZ , we have MN ⊩ ϕ(ḃ, ṖZ [⟨_MN ^, ḃ⟩]).

Theorem 3.3.3.1. All the instances of the axiom scheme CollDom are realized.

Proof. They are all realized by λξ.ξ.

3.3.4 The axiom scheme of choice with domain is not realized

The goal of this section is to show that the scheme ACDom is not realized. Recall that it is
defined as the closure of the formulas

∀D((∀x ∈ D)∃Y ϕ(x, Y ) ⇒ ∃Z(∀x ∈ D)ϕ(x, Z[x])).

As discussed before, we will rather be interested in a formula of the following shape

∀D((∀x ∈ D)
⊔
Y

ϕ(x, Y ) ⇒
⊔
Z

(∀x ∈ D)ϕ(x, Z[x])).

To ease the process, we will first work in an extension of HA2− with a third-order relation
symbol. Then we will discuss how to adapt this work to the language of HA2−.

ACDom is not realized in an extension of HA2−

We fix two functions f, g : B → Λ satisfying

f(0) = λξλη.ξ g(0) = λξλη.η
f(1) = λξλη.ξ g(1) = λξλη.ξ
f(2) = λξλη.η g(2) = λξλη.η
f(b) = g(b) = λξλη.ξ (in all the other cases)

The point of these functions is that:

f(0) ≇ g(0)
f(1) ∼= g(1) ∼= f(0)
f(2) ∼= g(2) ∼= g(0).

We will show that a realizer of ACDom will imply the existence of a λ-term that reduces to f(0)
and to g(0), thus breaking Church-Rosser theorem [3] and leading to a contradiction.

Now, we define PD : B→ P(Λ) as PD(b) ≜ {f(b), g(b)}.
Consider a third-order relation R(x,X) with the following interpretation

|R(ḃ, Ṗ )| ≜

 {M | M ⇝ f(b)} if P̂ = {_f(b)^}
{M | M ⇝ g(b)} if P̂ = {_g(b)^}
∅ otherwise

where P̂ = {b ∈ B | P (b) ̸= ∅}.
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Lemma 3.3.4.1. The formula (∀x ∈ ṖD)
⊔
Y

R(x, Y ) is realized by λξ.ξ.

Lemma 3.3.4.2. The formula
⊔
Z

(∀x ∈ ṖD)R(x, Z[x]) is not realized.

Proof. Assume M ⊩ (∀x ∈ ṖD)R(x, ṖZ [x]) for some function PZ : B → P(Λ).

1. For x = 0, Mλξλη.ξ ∼=Mλξλη.η because both of these terms are in |R(0̇, ṖZ [0])|.

2. For x = 1, Mλξλη.ξ ∼= λξλη.ξ because Mλξλη.ξ ∈ R(1, ṖZ [1]).

3. Similarly, for x = 2, Mλξλη.η ∼= λξλη.η.

It follows that λξλη.ξ ∼= λξλη.η which is a contradiction.

Theorem 3.3.4.1. The formula ∀D((∀x ∈ D)
⊔
Y

R(x, Y ) ⇒
⊔
Z

(∀x ∈ D)R(x, Z[x])) is not real-

ized.

ACDom is not realized in HA2−

We need to adapt this result to the syntax of HA2−. In other words, we need to replace the
third-order predicate R by a third-order predicate definable in second-order logic. We define the
formula

ϕ(x, Y ) ≜ (x ∈ Ḟc ∧ Y = Ḟl[x]) ∨ (x ∈ Ġc ∧ Y = Ġl[x])

where
Fc(b) ≜ {f(b)}
Gc(b) ≜ {g(b)}

Fl(b) ≜

{
Λ if b = ⟨b1, _f(b1)^⟩
∅ otherwise

Gl(b) ≜

{
Λ if b = ⟨b1, _g(b1)^⟩
∅ otherwise

The intuition is that Fc will convey a computational meaning, forcing a realizer of Fc(b) to
reduce to f(b) and Fl convey a logical meaning, forcing that Ṗ = Ḟl[b] is realized if and only
if P̂ = {_f(b)^}.

Lemma 3.3.4.3. The formula
⊔
Z

(∀x ∈ ṖD)ϕ(x, Z[x]) ⇒
⊔
Z

(∀x ∈ ṖD)R(x, Z[x]) is realized.

Proof. It is realized by λξ.λη.destruct∨χ(ξη) inπ1χ | π1χ.

Corollary 3.3.4.1. The formula
⊔
Z

(∀x ∈ ṖD)ϕ(x, Z[x]) is not realized.

Lemma 3.3.4.4. The formula (∀x ∈ ṖD)
⊔
Y

ϕ(x, Y ) is realized.

Proof. It is realized by λξ.ξ(inl[ξ, [λη.η, λη.η]])(inr[ξ, [λη.η, λη.η]]).

Theorem 3.3.4.2. The axiom scheme ACDom is not realized.

Proof. If all the instances of ACDom were realized, the formula
⊔
Z

(∀x ∈ ṖD)ϕ(x, Z[x]) would be

realized.
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The final result

Finally, we are able to conclude that in HA2− the axiom scheme ACDom is strictly stronger
than the axiom scheme CollDom.

Theorem 3.3.4.3. The theory HA2− +CollDom does not imply ACDom.

However, we cannot lift this result to PA2−. Our original idea was to show that G(CollDom)
is weaker than G(ACDom) in HA2−. Using the soundness of the negative translation, it would
imply that Coll is weaker than ACι in PA2−. We were not able to show this result.
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Chapter 4

Well-preorders in second-order
logic

This chapter acts as a preliminary to the study of the ramified analytic hierarchy (in Chapter 5).
It is of crucial importance to encode various structures in the language of second-order logic. It
can be cumbersome but it is done in Section 4.1. Notably, the notion of slices, introduced in
Definition 1.1.1.4 and recalled in this chapter, will be fundamental for the rest of this work.

However, adapting constructibility from set theory into arithmetical frameworks requires
important adjustments. The most important difference is that it is not possible to work with
ordinals in second-order arithmetic. The lack of this tool leads to various complications. In this
work, to overcome some of these problems, we replace ordinals by well-preorders and we develop
a theory of well-preorders inside PA2− +Coll (Section 4.2). In particular, it means that we
will work without the axiom of induction. As far as I know, all this chapter is totally new:
well-preorders were never studied in the framework of second-order logic. The reason why they
were not studied is straightforward! In presence of the axiom of induction (and in a classical
logic), this notion is of no interest: because the individuals can be shown to be well-ordered, a
well-order can be extracted from every well-preorder.

While this research seems new, it is merely a very direct adaptation of all the results already
known about well-orders. However, well-preorders are better behaved than well-orders in PA2−.
The best example of this statement is the following: the supremum of a family of well-preorders
(represented as slices of a set) can always be constructed (Theorem 4.2.2.1). Up to my knowledge,
there is no machinery available in PA2− to define the supremum of a family of well-orders. The
existence of supremum for well-preorders, coupled with the axiom scheme of collection, will lead
to the construction of well-preorders defined as the result of iterating a compatible functional
relation along ω (Theorem 4.2.4.1). This tool will be decisive in the study of the ramified analytic
hierarchy and, precisely, to show the principle of reflection (Theorem 5.4.1.1).

In set theory, well-preorders were studied and generally, in the literature, they are called
prewellorderings [41, 46, 40].
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4.1 Encoding in second-order logic

4.1.1 Relations, functions, families of sets and functional relations

We define the notion of relations in SOL. This fundamental concept will be used to represent
different kind of objects in the syntax of SOL, as for instance functions and families of sets.
However, a function from reals to reals cannot be represented by a relation. This kind of function,
called functional relations will be represented by formulas with two distinguished second-order
variables.

Relations

A binary relation R is a set consisting of pairs of elements. The syntax of SOL naturally allows
us to represent these objects, a set R will be a binary relation if it only contains elements in the
image of ⟨ , ⟩. Therefore, a set R is a relation if it satisfies the formula:

Rel(R) ≜ (∀x ∈ R)x = ⟨fst(x), snd(x)⟩.

We write xRy if the individual ⟨x, y⟩ is in the set R, i.e.:

xRy ≜ ⟨x, y⟩ ∈ R.

The definition of a relation makes it possible to prove a principle of extensionality for binary
relations. If R1 and R2 are two equal binary relations, then they are also equal as set:

ACA−
0 +Rel(R1) + Rel(R2) ⊢ ∀x∀y(xR1y ⇔ xR2y) ⇔ R1 = R2

We write:

1. ER the field of the relation R, i.e. the set

ER ≜ {x | ∃y(xRy ∨ yRx)}.

2. DomR the domain of the relation R, i.e. the set

DomR ≜ {x | ∃y xRy}.

3. ImR the image of the relation R, i.e. the set

ImR ≜ {y | ∃x xRy}.

4. R|X the restriction of the relation R to the set X:

R|X ≜ {⟨x, y⟩ | x ∈ X ∧ y ∈ X ∧ xRy}.

5. R|X the relation obtained by restricting the domain of the relation R, i.e.:

R|X ≜ {⟨x, y⟩ | x ∈ X ∧ xRy}.

6. R2 ◦ R1 the composition of the relation R1 followed by R2, i.e.

(R2 ◦ R1) ≜ {⟨x, y⟩ | ∃z (xR1z ∧ zR2y)}.

7. R−1 the inverse of the relation R, i.e.

R−1 ≜ {⟨x, y⟩ | ⟨y, x⟩ ∈ R}.
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Functions

A natural example of binary relations is a function, it is a relation such that every element of its
domain is paired with exactly one individual. We say that the set F is a function if it satisfies
the formula:

Func(F ) ≜ Rel(F ) ∧ ∀x∀y∀y′(xFy ⇒ xFy′ ⇒ y = y′).

For every x ∈ DomF , we write F (x) the unique individual y such that xFy. Formally, if ϕ(x) is
a formula with parameters:

ϕ(F (x)) ≜ ∃y(xFy ∧ ϕ[x := y]).

where the variable y is not free in ϕ. The shortcut ϕ(F (x)) denotes then a formula of SOL. We
use capital letters (F,G,H...) to denote functions. The composition of two functions is again a
function:

ACA−
0 + Func(F ) + Func(G) ⊢ Func(G ◦ F )

Families of sets

A relation U naturally encodes a family of sets indexed by the individuals. In other words,
it naturally encodes a function from the individuals to the reals using the concept of slices
introduced in Definition 1.1.1.4. The individual x is associated to the set

U [x] ≜ {y | xUy}

of individuals related to x in the relation U . We write S(U) for the (definable) class of sets
containing all the slices of U :

S(U) ≜ {X | ∃x X = U [x]}.

Note that in the presence of the axiom of induction, this class is intuitively countable. Two
different sets can encode the same class. For instance, the sets {⟨0, 1⟩} and {⟨1, 1⟩} both encode
the class {{1}}.

Because we will abundantly use this encoding, we introduce a specific nomenclature for the use
of relations in this context: we will speak of families of sets, and we will use the notation Fam(U)
(defined to be a macro for Rel(U)) to denote a set that encodes a family. Calligraphic capital
letters (U ,V...) will range over families of sets.

Given a set X, we will consider the union
⋃
x∈X U [x] of all the sets in the class S(U|X),

defined as ⋃
x∈X U [x] ≜ {y | (∃x ∈ X)(y ∈ U [x])}.

Functional relations

Functions from sets into sets form an other kind of relations. However, such a function is an
object oh third-order that cannot be encoded in a set. This is why we use formulas to represent
functional relations. We say that the formula H(X1, ..., Xk, Y ) with k + 1 free second-order
variables is a functional relation of arity k if:

FuncH ≜ ∀X1...∀Xk [∃Y H(X1, ...Xk, Y ) ⇒ ∃!YH(X1, ..., Xk, Y )].

In the following, we will only study total functional relations. Concretely, a functional relation
is total if it satisfies
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FuncTotH ≜ ∀X1...∀Xk∃!Y H(X1, ..., Xk, Y )

However, it is not a restriction! It is always possible to extend a functional relation into a total

functional relation. Actually, if H(
−→
X,Y ) is a functional relation, it is enough to consider:

H′(
−→
X,Y ) ≜ H(

−→
X,Y ) ∨ (∀Z ¬H(

−→
X,Z) ∧ Y = ∅).

4.1.2 Preorders

We study the concept of preorders in the framework of second-order logic.

Definitions and examples

We define the following propertied that can be satisfied by a binary relation R.

• R is reflexive if Refl(R) ≜ (∀x ∈ ER)xRx.

• R is transitive if Trans(R) ≜ (∀x ∈ ER)(∀y ∈ ER)(∀z ∈ ER)(xRy ⇒ yRz ⇒ xRz).

• R is antisymmetric if ASym(R) ≜ (∀x ∈ ER)(∀y ∈ ER)(xRy ⇒ yRx⇒ x = y).

• R is total if Tot(R) ≜ (∀x ∈ ER)(∀y ∈ ER)(xRy ∨ yRx).

• R is a preorder if PreOrd(R) ≜ Rel(R) ∧ Refl(R) ∧ Trans(R).

• R is a partial order if POrd(R) ≜ PreOrd(R) ∧ASym(R).

• R is a total order if TotOrd(R) ≜ PreOrd(R) ∧ Tot(R).

Therefore, a preorder is a reflexive and transitive relation. We use greek letters (α, β, γ...)
to denote preorders and we write xαy but also x ≤α y to say that x is in relation with y in the
preorder α.

From a preorder α, we can generate an equivalence relation ∼=α on its domain Eα defined by

x ∼=α y ≜ x ≤α y ∧ y ≤α x.

If α is a partial order, then ∼=α collapses to the relation of equality on its domain. But, in general,
it is not the case. We will also consider the strict preorder associated to a preorder α and we use
the notation

x <α y ≜ x ≤α y ∧ x ≇α y.

Example 4.1.2.1. As a first example, we construct (using the tools developed in 1.2.2) a total
order on N and we use it to define a total order on B.

1. We equip the set N with the relation:

ω ≜ {⟨x, y⟩ | x ∈ N ∧ y ∈ N ∧ (∃z ∈ N) z + x = y}.

The property of the addition ensures that ω is a total order on N:

ACA−
0 ⊢ ω ∈ TotOrd ∧ Eω = N

2. Thanks to the bijection h between B and N, we define a total order on B by:
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ωb ≜ {⟨x, y⟩ | h(x) ≤ω h(y)}.

It satisfies (∀x ∈ B)(∀y ∈ B)(x ≤ωb ⟨x, y⟩ ∧ y ≤ωb ⟨x, y⟩).

The definitions of ω and ωb are arithmetical (with the set N as a parameter).

A preorder α is either empty, or has a maximal element, or is not empty and does not
have a maximal element. These three cases are mutually exclusive. Formally, we consider the
formulas Succ(α) and Lim(α):

Succ(α) ≜ (∃x ∈ Eα)(∀y ∈ Eα) x ≮α y

Lim(α) ≜ Eα ̸= ∅ ∧ α /∈ Succ.

These formulas respectively express that α is successor (meaning that α has a maximal element)
and that α is limit. As said before, a preorder is either successor, or empty or limit and these
three cases are mutually exclusive:

ACA−
0 + α ∈ PreOrd ⊢ (α = ∅ ∨ α ∈ Lim ∨ α ∈ Succ)

ACA−
0 + α ∈ PreOrd ⊢ ¬(α = ∅ ∧ α ∈ Lim) ∧ ¬(α = ∅ ∧ α ∈ Succ) ∧ ¬(α ∈ Lim ∧ α ∈ Succ)

For instance, the relation {⟨0, 0⟩} is successor while ω is limit. However, these notions will be
used only in the case of total preorders.

Definition 4.1.2.1. If α is a preorder, we write Mα ≜ {x | x ∈ Eα ∧ (∀y ∈ Eα) x ≮α y} the set
of its maximal elements.

If α is total, then all its maximal elements are equivalent up to ∼=α.

Initial segments, chains of preorders

The operation of restriction is well-behaved on the class of preorders: the restriction of a preorder
is again a preorder. For instance, from a preorder α and an individual i in its field, we define
the preorders:

α<i ≜ α|{x | x <α i} and α≤i ≜ α|{x | x ≤α i}.

These relations are downward closed, it means that if x ∈ α<i (resp. x ∈ α≤i) and y ≤ x
then x ∈ α<i (resp. y ∈ α≤i). We call initial segment of α a relation satisfying this property.
Formally, a preorder β is an initial segment of α if the following formula is satisfied:

InitSeg(β, α) ≜ β ⊆ α ∧ (∀x ∈ Eβ)∀y(y ≤α x⇒ y ∈ Eβ).

If besides β ̸= α, we say that β is a proper initial segment of α (notation: β ⊆s.i. α).
A limit order α is the union of its proper initial segments of the shape α<i (for i ∈ Eα). As

a tool to formalize this property, we introduce the notion of α-chain of relations.

Definition 4.1.2.2. We say that a set U is an α-chain of preorders if it is an increasing family
of preorders indexed by Eα:

Chainα(U) ≜ Fam(U) ∧ (∀x ∈ Eα)(∀y ∈ Eα)(PreOrd(U [x]) ∧ x ≤α y ⇒ InitSeg(U [x],U [y])).

If α is a total order, the union of the preorders in an α-chain is again a preorder:

ACA−
0 +TotOrd(α) + Chainα(U) ⊢ PreOrd(

⋃
i∈Eα U [i])
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While this concept can be ill-behaved when α is not a total order (in general, the union of
an α-chain is not an order), it is however enough to show the following proposition.

Proposition 4.1.2.1. A limit preorder α is equal to the union of its proper initial segments of
the shape α<i. Formally, for a preorder α we define the α-chain Sα ≜ {⟨x, y⟩ | x ∈ Eα∧y ∈ α<x}
and we show:

ACA−
0 + PreOrd(α) + Lim(α) ⊢ α =

⋃
i∈Eα Sα[i]

As a consequence, we have for instance

ω =
⋃
n∈Eω Sω[n]

This example will allow us to show that ω is in fact a well-order.

Operations on preorders

We introduce the operations over preorders that are used in the rest of this thesis.

Proposition 4.1.2.2. Let α and β be two preorders.

1. The Cartesian product α⊗ β is defined by:

α⊗ β ≜ {⟨⟨x1, x2⟩, ⟨y1, y2⟩⟩ |
x1 ∈ Eα ∧ y1 ∈ Eα ∧ x2 ∈ Eβ ∧ y2 ∈ Eβ ∧ (x1 <α y1 ∨ (x1 ∼=α y1 ∧ x2 ≤β y2))}.

ACA−
0 shows that α⊗ β is a preorder on Eα × Eβ.

2. The disjoint union α+ β is defined by:

α+ β ≜ {⟨⟨0, x⟩, ⟨0, y⟩⟩ | x ≤α y} ∪ {⟨⟨1, x⟩, ⟨1, y⟩⟩ | x ≤β y}
∪ {⟨⟨0, x⟩, ⟨1, y⟩⟩ | x ∈ Eα ∧ y ∈ Eβ}.

In α+β, the preorder β is put “above” α: the elements of β are greater than all the elements
of α. ACA−

0 shows that α+ β is a preorder on {0} × Eα ∪ {1} × Eβ.

3. The sum α ⊎ β is defined by:

α ⊎ β ≜ α ∪ β ∪ {⟨x, y⟩ | x ∈ Eα ∧ y ∈ Eβ}.

This operation concatenates two relations without changing their fields, it will only be ap-
plied to disjoint relations. ACA−

0 shows that α ⊎ β is a preorder on Eα ∪ Eβ.

4. Given a preorder α, we define the relation αω on the set of finite sequences of elements
in Eα (see Subsection 1.2.2):

αω ≜ {⟨x, y⟩ | x ∈ Seq(Eα) ∧ y ∈ Seq(Eα) ∧
[length(x) <ωlength(y) ∨ (∃n ∈ N)(length(x) = length(y) ∧ n <ω length(x) ∧

nth(x, n) <α nth(y, n) ∧ (∀m ∈ Eω<n) nth(x,m) ∼=α nth(y,m)) ∨
(length(x) = length(y) ∧ (∀m ∈ Eω<length(x)

)nth(x,m) ∼=α nth(y,m))]}.

Two sequences x and y are compared as follow:

• If the length of x is strictly smaller than the length of y, then x ≤αω y.
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• If x and y have the same length and if there exists an index n0 such that nth(x, n0) ≇α
nth(y, n0), we consider the first such index n and, in that case, nth(x, n) <α nth(y, n)
implies x ≤αω y.

• The last possibility is the case where x and y are two lists which elements are pairwise
isomorphic in α. In that case, the lists x and y are isomorphic in αω.

ACA−
0 shows that αω is a preorder on Seq(Eα).

Morphisms of preorders

A relation F of domain included in Eα and of image included in Eβ is a morphism of preorders
if it is an increasing function from Eα to Eβ up to ∼=α and ∼=β :

Morph(F, α, β) ≜ DomF ⊆ Eα ∧ (∀x ∈ Eα)∃x′ (x ∼=α x′ ∧ x′ ∈ DomF )∧
∀x1∀x2∀y1∀y2(x1 ≤α x2 ⇒ x1Fy1 ⇒ x2Fy2 ⇒ y1 ≤β y2)

If α and β are partial orders, then F is an increasing function between α and β. Surjections,
embeddings and isomorphisms between two preorders α and β are defined as expected (up to ∼=α
and ∼=β):

Surj(F, α, β) ≜ Morph(F, α, β) ∧ (∀y ∈ Eβ)∃x∃y′(y ∼=β y′ ∧ xFy′)
Emb(F, α, β) ≜ Morph(F, α, β) ∧ ∀x1∀x2∀y1∀y2 (y1 ≤β y2 ⇒ x1Fy1 ⇒ x2Fy2 ⇒ x1 ≤α x2)
Isom(F, α, β) ≜ Emb(F, α, β) ∧ Surj(F, α, β)

We use the notion of embedding and not of injection in the definition of an isomorphism because
the preorders need not to be total on their domain.

Example 4.1.2.2. The set {⟨x,h(x)⟩ | x ∈ B} defines an isomorphism between ω and ωb.

The composition of two morphisms F : α→ β and G : β → γ is obtained as the composition
of F and G up to ∼=β :

(G ◦β F ) ≜ {⟨x, y⟩ | ∃z∃z′(xFz ∧ z ∼=β z′ ∧ z′Gy)}.

The notions of morphisms, embeddings and isomorphisms are stable by composition. The
inverse of an isomorphism is an isomorphism. All these facts are provable in ACA−

0 .

4.2 Well-preorders

We focus our interest on a special case of preorders: the well-preorders. The study of these

relations will mostly be done inside Π1
1 -CA−

0 .

4.2.1 Definitions, examples and first properties

Definition

A well-preorder α is a preorder satisfying an extra Π1
1-condition:

WPO(α) ≜ PreOrd(α) ∧ (∀X ⊆ Eα)(X ̸= ∅ ⇒ (∃m ∈ X)(∀x ∈ X)m ≤α x)

It means that all subsets of Eα have an α-smallest element. In particular, this formula is
downward absolute but not upward absolute (see Proposition 1.2.4.3). A well-preorder is always
total. If a well-preorder α is antisymmetric, it is called a well-order (denoted WO(α)).
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Example 4.2.1.1. For all n ∈ N, the relation ω<n is a well-order:

Π1
1 -CA−

0 ⊢ (∀n ∈ N)(WO(ω<n))

This result is shown by an induction on N (see Subsection 1.2.2).

Generalization of the results about preorders

We generalize the results about preorders that we obtain in the previous section.

Proposition 4.2.1.1. Given two well-preorders α and β, the following properties are provable
in ACA−

0 .

1. Every proper initial segment of α is of the shape α<i (for some i ∈ Eα).

2. The restriction of a well-preorder is a well-preorder.

3. α⊗ β is a well-preorder.

4. α+ β is a well-preorder.

5. α ⊎ β is a well-preorder.

6. αω is well-preorder.

7. If γ if a total order and U is a γ-chain1 of well-preorders, then
⋃
i∈Eγ U [i] is a well-preorder.

These propositions remain true if well-preorders are replaced by well-orders.

The characterization of ω as the union of its proper initial segments (which are all well-orders)
and the last point of the previous proposition imply in Π1

1 -CA−
0 that ω is a well-order. We then

immediately deduce that ωb also is a well-order.
We finish this subsection by noting that it is valid in ACA−

0 to reason by induction on a
well-preorder:

ACA−
0 +WPO(α) ⊢ ∀X((∀x ∈ Eα)((∀y ∈ Eα<x)y ∈ X ⇒ x ∈ X) ⇒ (∀x ∈ Eα) x ∈ X)

4.2.2 Comparing well-preorders: almost a well-preorder on the class
of well-preorders

The goal of this subsection is to define a total preorder on the class of well-preorders. It is
achieved by constructing a formula with two free second-order variables that implements this
relation. We will see that this preorder will almost be a well-preorder but not exactly, it won’t be
able to distinguish two isomorphic well-preorders! Therefore, the minimality property won’t be
satisfied for all classes, but only for the classes that do not discriminate isomorphic well-preorders.

1The definition of an α-chain is given in Definition 4.1.2.2.
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Constructing the preorder

We define the following formulas:

α ∼=WPO β ≜ ∃F Isom(F, α, β)

α ≼WPO β ≜ ∃F∃γ(InitSeg(γ, β) ∧ Isom(F, α, γ))

α ≺WPO β ≜ ∃F (∃i ∈ Eβ)Isom(F, α, β<i).

We note that ≼WPO is reflexive (because the identity is an isomorphism) and transitive (because
composing two isomorphisms gives an isomorphism). We now show that≺WPO is indeed the strict
order associated to the total (on the class of well-preorders) and antisymmetric (up to ∼=WPO)
order ≼WPO.

(a) ACA−
0 +WPO(α) +WPO(β) ⊢ α ≺WPO β ⇔ (α ≼WPO β ∧ ¬(α ∼=WPO β))

(b) Π1
1 -CA−

0 +WPO(α) +WPO(β) ⊢ α ≺WPO β ∨ β ≺WPO α ∨ α ∼=WPO β

(c) Π1
1 -CA−

0 +WPO(α) +WPO(β) ⊢ α ≼WPO β ⇒ β ≼WPO α⇒ α ∼=WPO β

For the statement (a), the reverse implication is a consequence of the characterization of the
initial segments of a well-preorder. The converse implication uses the following lemma.

Lemma 4.2.2.1. Let α be a well-preorder and F be an embedding between initial segments of α.
For every x ∈ DomF , x ≤α F (x):

ACA−
0 +WPO(α) + InitSeg(β, α) + InitSeg(γ, α) + Emb(F, β, γ) ⊢ (∀x ∈ Eβ) x ≤α F (x)

Especially, there is no isomorphism F between α and a proper initial segment of α. Indeed,
a proper initial segment of α has the shape α<i for some i ∈ Eα. But, the existence of an
isomorphism between α and α<i contradicts the former lemma (because such an isomorphism
satisfies F (i) <α i). Therefore, if α ≺WPO β then ¬(α ∼=WPO β). Finally, the totality and the
anti-symmetry (up to ∼=WPO) of ≼WPO follow from the next lemma.

Lemma 4.2.2.2. Let α and β be two well-preorders.

1. ACA−
0 implies that if α<i ∼=WPO α<j for i, j in the field of α, then i ∼=α j.

2. Π1
1 -CA−

0 implies that α is isomorphic to a proper initial segment of β or β is isomorphic
to a proper initial segment of α or α and β are isomorphic (and these three cases are
mutually exclusive).

Almost a well-preorder on the class of well-preorders

The relation ≼WPO defines a well-preorder up to the equivalence relation ∼=WPO on the class
of well-preorders. This property is captured as follow. We say that a formula Ξ(X1, ..., Xn) is
compatible for well-preorders if it does not discriminate isomorphic well-preorders:

CompatΞ ≜ ∀α1...∀αn∀β1...∀βn((α1
∼=WPO β1∧...∧αn ∼=WPO βn) ⇒ Ξ(α1, ..., αn) ⇒ Ξ(β1, ..., βn)).

A compatible formula Ξ(X) with one free variableX represents a class of well-preorders {γ | Ξ(γ)}
stable by isomorphisms. If such a class is non-empty, it contains a minimal element β for the
preorder ≼WPO.

Proposition 4.2.2.1. If Ξ(X) is a compatible class containing at least one well-preorder, then
there exists a well-preorder which is minimal for ≼WPO in the class Ξ(X).
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PA2−+CompatΞ+WPO(α)+Ξ(α) ⊢ ∃β(WPO(β)∧Ξ(β)∧∀γ(WPO(γ) ⇒ Ξ(γ) ⇒ β ≼WPO γ))

Proof. Let i ∈ Eα be a minimal element of α satisfying the property Ξ(α<i). We claim that
α<i is minimal in {γ | Ξ(γ)}. Let γ be a well-preorder in this class. If γ ≺WPO α<i, there
exists j <α i such that γ ∼=WPO α<j . But then Ξ(αj) by compatibility of Ξ(X), which contradicts
the minimality of i.

Remark 4.2.2.1. Here, the instance of the comprehension scheme used depends on the for-
mula Ξ(X). Indeed, it is used to show the existence of the set {x | x ∈ Eα ∧ Ξ(α<x)}. This is
hidden in the sentence “Let i ∈ Eα be a minimal element...”.

An application: supremum of a family of well-preorders

Let U be a family of sets containing only well-preorders. We define the supremum of this family
as follow:

sup(U) ≜ {⟨⟨x′, x⟩, ⟨y′, y⟩⟩ | x ∈ EU [x′] ∧ y ∈ EU [y′] ∧ U [x′]<x ≼WPO U [y′]<y}

Let’s explain this construction. The field of sup(U) is exactly the field of the family U : all
elements are tagged with the index of the well-preorders they come from. Therefore, even if the
fields of the well-preorders in U are not disjoint, elements are not overwritten in Esup(U). The
properties of the preorder ≼WPO is then intensively used to design the well-preorder on this field.

Theorem 4.2.2.1. If U is a family of sets containing only well-preorders, then Π1
1 -CA−

0 proves
the following properties.

1. The set sup(U) exists and is a well-preorder.

2. All well-preorders U [x′] in S(U) are smaller than sup(U).

3. All initial segments of sup(U) are smaller than some well-preorders U [x′] in S(U).

Proof. 1. First, Π1
1 -CA−

0 proves the existence of sup(U) and it is a preorder because ≼WPO is
one. Now let X be a set intersecting the field of sup(U). Consider the Π1

1-formula Θ(Y ) ≜
∃x∃x′(⟨x′, x⟩ ∈ X ∩ Esup(U) ∧ Y ∼=WPO U [x′]<x). Then, Θ(Y ) is a compatible and non-
empty collection of well-preorders. Let β be a minimal well-preorder in this collection. In
particular, β ∼=WPO U [x′]<x for some ≤sup(U)-minimal element ⟨x′, x⟩ ∈ X ∩ Esup(U).

2. For x′ ∈ Dom(U), the function Ix′
(x) = ⟨x′, x⟩ defines an isomorphism from U [x′] into an

initial segment of sup(U).

3. If ⟨x′, x⟩ ∈ Dom(sup(U)), the function I(⟨x′, y⟩) = y defines an isomorphism
from sup(U)≤⟨x′,x⟩ into an initial segment of U [x′].

Remark 4.2.2.2. This construction wouldn’t work for well-orders. In fact, up to the author
knowledge, there is no machinery in PA2− to define the supremum of an arbitrary family of
well-orders (and to show that it is still a well-order). However, it is possible in the presence of
the axiom scheme of countable choice (or if the family is indexed by a well-order).
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4.2.3 Definitions by transfinite recursion

We will now show how definitions by transfinite recursion are done inside PA2− (see Theo-
rem 4.2.3.1). This section is a direct adaptation of the work of Colson and Grigorieff [15]. The
only (minor) change is that definitions by transfinite recursion are made over well-preorders
(rather than well-orders). But before tackling this challenge, let’s give an intuition by going
rapidly through this process in set theory.

An intuition: transfinite recursion in set theory

This part is inspired by the book of Krivine about set theory [30]. In set theory, it is possible to
define functions by transfinite recursion over ordinals [29, 23]. Given a total functional relationH,
for every ordinal α, there exists a unique function f “H-inductive” of domain α, i.e. satisfying

(∀β ∈ α)f(β) = H(f |β).

This construction strongly relies on ordinals, that are used as canonical representatives for classes
of equivalent well-orders. Moreover, elements of an ordinal are again ordinals, and therefore the
typing of the function f is not an issue. However, ordinals are not available in the framework of
second-order arithmetic. A solution to bypass this problem is to parameterize the definition of
being H-inductive by a well-preorder α.

In second-order arithmetic, rather than constructing a function, we will construct a family of
sets2. This is why we introduce the concept of a (α,H)-inductive family, defined as a family U
satisfying

(∀i ∈ Eα)U [i] = H(α<i,U|Eα<i ).

In this context, the symbol H denotes a functional relation with two arguments:

1. An initial segment α<i of α.

2. A family of sets U gathering all the sets constructed on the previous steps of the transfinite
recursion.

Theorem 4.2.3.1 will show the existence of a unique (α,H)-inductive family. In particular, the
transfinite recursion is done on an arbitrary well-preorder and not only for a canonical choice
of well-preorders. In general, transfinite recursions done on two isomorphic well-preorders give
different results.

Definition and lemmas

We define the notion of (α,H)-inductive families.

Definition 4.2.3.1. Let H be a total binary functional relation and α a preorder. A family U
is (α,H)-inductive if its domain is included in Eα and if for all i ∈ Eα, the set U [i] is the image
of (α<i,U|Eα<i

) by H:

Ind(α,H)(U) ≜ U ∈ Fam ∧DomU ⊆ Eα ∧ (∀i ∈ Eα)H(α<i,U|Eα<i ,U [i])

The proof of the main result of this section (i.e. of the transfinite recursion theorem) is done
in two steps:

1. We first show that there is at most one (α,H)-inductive family in Proposition 4.2.3.1.

2Remember that it is in fact a function from the individuals to the reals.
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2. We construct a (α,H)-inductive family (Theorem 4.2.3.1).

Proposition 4.2.3.1. With the same notations as in the previous definition, if α is a well-
preorder, then there exists at most one (α,H)-inductive family:

ACA−
0 +WPO(α) + FuncTotH + Ind(α,H)(U) + Ind(α,H)(V) ⊢ U = V

Proof. Because DomU ⊆ Eα and DomV ⊆ Eα, it is enough to show (∀i ∈ Eα)U [i] = V[i]. It
is done by induction over α. Assume (∀j ∈ Eα<i)U [j] = V[j] for some i ∈ Eα. In particu-
lar, U|Eα<i = V|Eα<i . But, by Theorem 1.1.2.1 of extensionality in SOL, H(α<i,U|Eα<i ,U [i])
implies H(α<i,V|Eα<i ,U [i]). Finally, because H is functional, U [i] = V[i].

The proof of Theorem 4.2.3.1 uses the two following lemmas.

Lemma 4.2.3.1. The restriction of a (α,H)-inductive family to the field of an initial segment β
of α is a (β,H)-inductive family.

ACA−
0 + FuncTotH + PreOrd(α) + Ind(α,H)(U) + InitSeg(β, α) ⊢ Ind(β,H)(U|Eβ )

Lemma 4.2.3.2. If there exists a unique (α<i,H)-inductive family for every initial segment α<i
of α, then there exists a (α,H)-inductive family.

PA2− + FuncTotH + PreOrd(α) ⊢ (∀i ∈ Eα)∃!V Ind(α<i,H)(V) ⇒ ∃U Ind(α,H)(U)

Proof. We reason by case on whether the preorder α is empty, successor or limit. The hypothesis
of uniqueness is only used for the limit case, as is the comprehension axiom.

Recursion on well-preorders in PA2−

Theorem 4.2.3.1. Let H be a binary functional relation. For every well-preorder α, there is
exactly one (α,H)-inductive family. Moreover, H induces a unary functional relation over the
class of well-preorders.

1. PA2− + FuncTotH +WPO(α) ⊢ ∃!U Ind(α,H)(U)

2. PA2− + FuncTotH +WPO(α) ⊢ ∃!U∃!R(Ind(α,H)(U) ∧H(α,U , R))

Proof. 1. The uniqueness is a consequence of Proposition 4.2.3.1. It remains to show the exis-
tence. It will follow from Lemma 4.2.3.2. Therefore, we need to construct a (α<i,H)-inductive
family for every i ∈ Eα. We will show that the set X ≜ {i | i ∈ Eα ∧ ∃U Ind(α<i,H)(U)} is equal
to Eα.

• We first note that X is an initial segment of α: this is a consequence of Lemma 4.2.3.1.

• Now, we reason classically. If X ̸= Eα, let i ∈ Eα be a minimal element of Eα \X. But,
X = Eα<i and then, by Lemma 4.2.3.2, i ∈ X. This is a contradiction and we conclude
that X = Eα.

2. The uniqueness of U is a consequence of the first part of this theorem and the uniqueness
of R is because H is functional.

The previous results are valid in PA2− because we used instances of the axiom scheme of
comprehension where H appears and this formula can have arbitrary complexity. If H is an
arithmetical formula, Π1

1 -CA−
0 is enough to show the last theorem.

Transfinite recursion is a tool that we will abundantly use in the following. We introduce
notations to use recursively defined objects.

83



Notation 4.2.3.1. Given a well-preorder α, an individual i ∈ Eα and a binary functional rela-
tion H, we write:

1. Hα for the unique family satisfying the formula Ind(α,H)(X). In particular:

Hα|Eα<i = Hα<i

and, therefore, i ∼=α j implies Hα[i] = Hα[j].

2. Hα for the unique set satisfying the formula ∃U(Ind(α,H)(U) ∧H(α,U , X)).

Reasoning about recursively defined objects

We give two tools to reason about recursively defined objects.

Proposition 4.2.3.2. We can use induction to reason about recursively defined objects and to
prove a property of the shape ϕ(α,Hα,Hα) for a formula ϕ and a binary functional relation H.
Formally, the following formula Inductive(ϕ,H) says that the formula ϕ is “inductive”:

Inductive(ϕ,H) ≜ (∀α ∈ WPO)∀U∀R(H(α,U , R) ⇒ (∀i ∈ Eα)ϕ(α<i,U|Eα<i ,U [i]) ⇒ ϕ(α,U , R)).

Then, for every inductive property ϕ(X,Y, Z) and every well-preorder α, ϕ(α,Hα,Hα) is prov-
able:

PA2− + FuncTotH + Inductive(ϕ,H) +WPO(α) ⊢ ϕ(α,Hα,Hα)

We give a variant of the previous proposition to relate objects recursively defined on isomor-
phic well-preorders.

Proposition 4.2.3.3. We can use induction to reason simultaneously on two objects recursively
defined on isomorphic well-preorders. Let’s note:

IndIsom(Φ,H) ≜ (∀α ∈ WPO)(∀β ∈ WPO)∀F∀U∀R∀U ′∀R′

(Isom(F , α, β) ⇒ H(α,U , R) ⇒ H(β,U ′, R′) ⇒ (∀i ∈ Eα)(∀j ∈ Eβ)(iFj ⇒ ϕ(α,U [i],U ′[j]) ⇒ ϕ(α,R,R′)))

Then, for every well-preorder α and β and for every property ϕ(X,Y, Z):

PA2+ FuncTotH + IndIsom(Φ,H) +WPO(α) +WPO(β) + α ∼=WPO β ⊢ ϕ(α,Hα,Hβ)

When proving properties about recursively defined objects, we will sometimes start a proof
with “We reason by induction on...”. It means that we are using one of these two propositions.

Finally, Propositions 4.2.3.2 and 4.2.3.3 can be adapted to do a simultaneous induction on
two recursively defined objects. When such a technique is used in a proof, we will start it by
”We reason by simultaneous induction on...”.

4.2.4 A variation: iterating relations over ω

In the following, we will need to prove the existence of a well-preorder constructed by recursion
over a relation that is functional only up to ∼=WPO. However, the machinery presented before
cannot be used in such a case. We explain here the case where the recursion is made on the
well-order ω. It will use the axiom scheme of collection in an essential manner.

Let F(X,Y ) be a formula that describes a total compatible functional (up to ∼=WPO) relation
on the class of well-preorders. Intuitively, for a well-preorder α, we want to show the existence
of a well-preorder isomorphic to supn∈NFn(α). It is formalized in Theorem 4.2.4.1. But before
stating this theorem, we need to introduce a new notation to represent finite iterations of a
relation (over well-preorders).
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Definition 4.2.4.1. Given a binary relation F over well-preorders, the formula IterF (n, α, β)
says that the result of iterating n times F from α gives the result β:

IterF (n, α, β) ≜ n ∈ N ∧ ∃U(U [0] ∼=WPO α ∧ U [n] ∼=WPO β ∧ (∀i < n)U [i]FU [i+ 1]).

For a fixed integer n, IternF (α, β) will denote the relation IterF (n, α, β).

A binary relation F over well-preorders is said to be a (total) functional up to ∼=WPO if

Func
∼=WPO

F ≜ (∀α ∈ WPO)(∃β ∈ WPO)(αFβ ∧ (∀β′ ∈ WPO)αFβ′ ⇒ β ∼=WPO β′).

Lemma 4.2.4.1. If F is compatible and functional up to ∼=WPO, then, for all integer n, the
formula IternF is also functional up to ∼=WPO.

PA2− +CompatF + Func
∼=WPO

F ⊢ (∀n ∈ N)(CompatItern ∧ Func
∼=WPO

Itern )

Proof. By induction on ω.

Remark 4.2.4.1. A total functional relation F0 which is compatible can always be made functional
up to ∼=WPO by defining F as

F(α, β) ≜ F0(α, β) ∧ (∀γ ≺ β)¬F0(α, γ).

Then, the work done in Subsection 4.2.2 about the relation ≼WPO implies that F is a total
compatible functional relation up to ∼=WPO. Indeed, because F0 is compatible, for each α, we
can chose the minimal well-preorders β such that F0(α, β).

Theorem 4.2.4.1. Assume F(X,Y ) is a formula that describes a compatible and functional
relation up to ∼=WPO, then, for all well-preorder α, the axiom scheme of collection implies the
existence of a family of well-preorders V such that

1. (∀n ∈ N)∃i IternF (α,V[i])

2. (∀i ∈ DomV)(∃n ∈ N)IternF (α,V[i])
Formally:

PA2− +Coll+ α ∈ WPO ⊢ (∃V ∈ Fam)((∀n ∈ N)∃i IternF (α,V[i]) ∧ (∀i ∈ DomV)(∃n ∈ N)IternF (α,V[i]))

In particular, V is a family of well-preorders and sup(V) exists: it is the result of iterating the
functional F along ω. We will also say that the family V is obtained by iteration along ω.

Proof. Let α ∈ WPO and define

Iterα(n, β) ≜ (n ∈ N ∧ IterF (n, α, β)) ∨ (n /∈ N ∧ β = ∅)

Using induction on N, we can show ∀n∃βIterα(n, β).
It follows that the axiom scheme of collection implies ∃U∀n∃yIterα(n,U [y]). Finally, the

family V defined by

V ≜ {⟨x, y⟩ | (∃n ∈ N)Iterα(n,U [x]) ∧ ⟨x, y⟩ ∈ U}

satisfies the two desired properties.

This proof uses the axiom scheme of collection. It is one of the only place where it is
used3. However, Theorem 4.2.4.1 is a key ingredient for the proof of the reflection principle (see
Subsection 5.4.1).

Remark 4.2.4.2. This theorem can be adapted to a relation F(n, α, β) that also depends on an
integer n ∈ N.

3Its other use being in the proof of the reflection principle (Theorem 5.4.1.1).
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4.2.5 Well-preorders on classes of sets

We studied well-preorders on individuals. We continue with the study of well-preorders on classes
of sets. Recall that a class of sets is just a formula Θ(X) with one distinguished variable. An
order on such a class will be represented by a formula ≤Θ (X,Y ) with two distinguished free
second-order variables.

Definition 4.2.5.1. With the notation introduced above, ≤Θ is a well-preorder on Θ if:

1. It is a preorder, i.e.

PreOrd(Θ,≤Θ) ≜(∀X ∈ Θ)(∀Y ∈ Θ)(∀Z ∈ Θ)(X ≤Θ X ∧ (X ≤Θ Y ⇒ Y ≤Θ Z ⇒ X ≤Θ Z)).

2. For every class {X | ϕ(X)} that intersects Θ, there is a ≤Θ-minimal set in their intersection.
Formally, for every formula ϕ(X) with parameters:

WO(Θ,≤Θ,ϕ) ≜ (∃M ∈ Θ)ϕ[X :=M ] ⇒
(∃M ∈ Θ)(ϕ[X :=M ] ∧ (∀Y ∈ Θ)(ϕ[X := Y ] ⇒M ≤Θ Y )).

If all these formulas are satisfied, then ≤Θ is a well-preorder on Θ. The (meta-theoretic) set of
all theses formulas is written WPO(Θ,≤Θ). If on top of that it is antisymmetric, i.e.

(∀X ∈ Θ)(∀Y ∈ Θ)(X ≤Θ Y ⇒ Y ≤Θ X ⇒ X = Y )

then we say that it is a well-order and we write WO(Θ,≤Θ) for the set of formulas obtained by
adding the latter to the set WPO(Θ,≤Θ).

Well-orders on a family of sets

Let U be a family, a well-order on S(U) can be extracted from a well-preorder α if:

1. The field of α contains an index for every set in S(U).

2. Two isomorphic elements x ∼=α y are indexes of the same set in S(U), i.e. U [x] = U [y].

The key is to compare the sets through their α-minimal indexes.

Proposition 4.2.5.1. With the hypothesis described above, α induces a well order ≤U
α on S(U)

defined as follow

X≤U
αY ≜ (∃p ∈ Eα)(∃q ∈ Eα)

(X = U [p] ∧ Y = U [q] ∧ p ≤α q ∧ ∀x((X = U [x] ⇒ p ≤α x) ∧ (Y = U [x] ⇒ q ≤α x))).

Concretely, for all such U and α, PA2− proves WO(S(U),≤U
α)
.

Proof. The assumptions are necessary to prove that it is a total order. The existence of minimal
sets is deduced from the fact that α is a well-preorder.
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Chapter 5

The ramified analytic hierarchy

The goal of this chapter is to introduce and study the ramified analytic hierarchy (RAH) [26, 15]
which, in PA2, has the same role as the constructible universe (L) in ZF [21, 29]. We recall
that in ZF the hierarchy of the constructible sets is the transfinite sequence (Lα)α∈On indexed
by the ordinals and satisfying the equation

Lα =
⋃
β<α

Def(Lβ)

where Def is the set-theoretic operator that maps each set X to the set Def(X) of its con-
structible subsets.

In a similar fashion, in PA2, we want to define RAH as the transfinite sequence RAHα
satisfying the equation

RAHα =
⋃
β<α

Def2(RAHβ).

The formalization and the study of the operator Def2 is done in Section 5.1. We will start by
encoding the syntax of PA2− in the individuals and, with these encodings, we will internalize
the notion of satisfiability. Concretely, for each family of sets U (represented by a set), we will
construct a set GU containing the codes of the closed formulas with second-order parameters
in S(U) satisfied by U (when U is seen as a structure).

Finally, we will be able to construct the hierarchy RAH by iterating the operator Def2 over
the class of the well-preorders and to show that it is a model of PA2 satisfying the principle of the
well-ordered universe (Section 5.2). However, we won’t be able to show that RAH satisfies the
axiom of constructibility. In the Section 5.5, we discuss in depth this problem and we compare
our work to what have been done in the literature about the internalization of RAH in second-
order arithmetic. Notably, we explain how we find a flaw in a paper [15] and how we think that
the problem of proving in PA2 that RAH satisfies the axiom of constructibility is still open.

As a final remark, we mention that this part was strongly inspired by the work of Colson and
Grigorieff [15] (see Section 5.5.2). We rearranged their work to make it fit in our framework and
we explain how we were able to give a partial solution to the flaw of their research.

5.1 Internalization of the notion of satisfiability

This section is divided in four parts:
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1. We start by an internalization of the syntax of PA2−. To this end, we intensively use the
programming made in the Section 1.2.2.

2. Building on this work, we internalize inside of PA2− the notion of the satisfiability of a
formula relativized to standard individuals for the first-order part and to a class of sets
(encoded by the slices of a family of sets as explained in Paragraph 4.1.1) for the second-
order part. Specifically, for every family of sets U , the goal is to show the existence of a
set Sat(U) such that for all closed formulas ϕ:

(ϕB)S(U) ⇔ _ϕ^ ∈ Sat(U).

It is done in Theorem 5.1.2.2.

3. This work will allow us to consider families of sets as structures for the language of PA2.
We will then see how to express that such a structure models a theory T (represented by
a definable set of codes of formulas). In particular, these encoded structures will always
satisfy the axiom of induction as the first-order part of a formula will be relativized to the
set B.

4. Finally, we will define the operator Def2 that sends a family of set U to the family Def2(U)
whose slices are exactly the sets definable by a formula relativized to B for the first-order
part and to S(U) for the second-order part.

5.1.1 Internalization of the syntax

The goal of this subsection is to develop tools to interpret the language of PA2− inside PA2−.
We will successively define the encodings (à la Gödel) of a code of functions, a term and a formula.
We will then define the notion of valuations, allowing us to consider formulas with parameters.
Finally, we will show how to compute the denotation of the encoding of a term with parameters.
In this chapter, we strongly use all the programming done in Section 1.2.2. In particular, we will
not write the codes of the primitive functions that we use in this subsection. We will only give
the equations that they satisfy (as advertised in Remark 1.2.2.1).

Gödel encodings

We suppose given

1. A bijection x 7→ ♯x from the set of first-order variables into the set N.

2. A bijection X 7→ ♯X from the set of second-order variables into the set N.

Definition 5.1.1.1. A code of primitive recursive functions f (of the syntax ofPA2−) is mapped
to its Gödel encoding _f ^ defined by the following clauses.

_0^ ≜ 0

_id^ ≜ 1 _(f ◦ g)^ ≜ ⟨1, _f ^, _g^⟩
_fst^ ≜ 2 _⟨g, f⟩^ ≜ ⟨2, _f ^, _g^⟩

_snd^ ≜ 3 _(f [f |g]^ ≜ ⟨3, _f ^, _g^⟩
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We also consider a primitive recursive function check func testing if its entry is the Gödel
encoding of a primitive recursive function, i.e. satisfying

ACA−
0 ⊢ (∀x ∈ B)(check func(x) = 1 ⇔

x = 0 ∨ x = 1 ∨ x = 2 ∨ x = 3 ∨
∃n∃y∃z(x = ⟨n, y, z⟩ ∧ (n = 1 ∨ n = 2 ∨ n = 3) ∧

check func(y) = 1 ∧ check func(z) = 1))

Definition 5.1.1.2. A term t (of the syntax of PA2−) is mapped to its Gödel encoding _t^
defined by the following clauses.

_0^ ≜ 0 _⟨t, u⟩^ ≜ ⟨1, _t^, _u^⟩
_x^ ≜ ⟨0, ♯x⟩ _f(t)^ ≜ ⟨2, _f ^, _t^⟩

We also consider a primitive recursive function check term testing if its entry is the Gödel
encoding of a term, i.e. satisfying

ACA−
0 ⊢ (∀x ∈ B) (check term(x) = 1 ⇔

x = 0 ∨
∃y(x = ⟨0, y⟩ ∧ check nat(y) = 1) ∨
∃y∃z(x = ⟨1, y, z⟩ ∧ check term(y) = 1 ∧ check term(z) = 1) ∨
∃y∃z(x = ⟨2, y, z⟩ ∧ check func(y) = 1 ∧ check term(z) = 1))

We can then define the set containing all the encodings of terms as Term ≜ {x | x ∈ B ∧
check term(x) = 1}.

Definition 5.1.1.3. A formula ϕ (of the syntax of PA2−) is mapped to its Gödel encoding _ϕ^
defined by the following clauses.

_⊥^ ≜ 0 _ϕ⇒ ψ^ ≜ ⟨2, _ϕ^, _ψ^⟩
_t = u^ ≜ ⟨0, _t^, _u^⟩ _∀xϕ^ ≜ ⟨3, ♯x, _ϕ⟩
_t ∈ X^ ≜ ⟨1, _t^, ♯X⟩ _∀Xϕ^ ≜ ⟨4, ♯X, _ϕ^⟩

We also consider a primitive recursive function check form testing if its entry is the Gödel
encoding of some formulas, i.e. satisfying

ACA−
0 ⊢ (∀x ∈ B)(check form(x) = 1 ⇔

x = 0 ∨
∃y∃z(x = ⟨0, y, z⟩ ∧ check term(y) = 1 ∧ check term(z) = 1) ∨
∃y∃z(x = ⟨1, y, z⟩ ∧ check term(y) = 1 ∧ check nat(z) = 1) ∨
∃y∃z(x = ⟨2, y, z⟩ ∧ check form(y) = 1 ∧ check form(z) = 1) ∨
∃y∃z(x = ⟨3, y, z⟩ ∧ check nat(y) = 1 ∧ check form(z) = 1) ∨
∃y∃z(x = ⟨4, y, z⟩ ∧ check nat(y) = 1 ∧ check form(z) = 1))

We can then define the set containing all the encodings of formulas as Form ≜ {x | x ∈ B ∧
check form(x) = 1}.

Definition 5.1.1.4. We define in the same way a primitive recursive function check arith that
checks if its entry is the Gödel encoding of some arithmetical formulas (i.e. without second-order
quantifiers) and the set FormArith ≜ {x | x ∈ B ∧ check arith(x) = 1}.
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Notation 5.1.1.1. Given n ∈ N, f ∈ Form, g ∈ Form, t ∈ Term, u ∈ Term, the following notations
are used in the sequel.

_⊥^ ≜ 0 f _ ⇒ ^g ≜ ⟨2, f, g⟩
t_ = ^u ≜ ⟨0, t, u⟩ _∀1^nf ≜ ⟨3, n, f⟩
t_ ∈ ^n ≜ ⟨1, t, n⟩ _∀2^nf ≜ ⟨4, n, f⟩.

The notion of free variables can also be internalized and, in particular, we define a primitive
recursive function FV2(n, f) that returns 1 if the second-order variable of code n appears freely
in f and that returns 0 otherwise. It allows us to define the set FV2 ≜ {⟨f, n⟩ |f ∈ Form ∧ n ∈
N∧FV2(n, f) = 1} whose slice at _ϕ^ is the set containing the encodings of all the free second-order
variables of ϕ.

Valuations and denotation of encodings

Definition 5.1.1.5. A valuation is a finite list that associates individuals to natural number:

ρ ≜ [⟨n1, ν1⟩, ..., ⟨nk, νk⟩].

It is a finite list of pairs of the shape ⟨n, ν⟩ where n is an integer (denoting the encoding of a
variable) and where ν is a value which is associated to n in the list ρ.

In the sequel, valuations will be used to interpret free first-order variables but also, when
coupled with the concept of families of sets, they will be used to interpret free second-order
variables. When valuations are used to interpret free first-order variables, they will only assign
pure binary trees to first-order variables. It will allow us to recover the axiom of induction in
the structures that we will consider. A first-order valuation ρ should then belong to B while a
second-order valuation can range over all individuals1. We introduce new notations for the set
of first-order valuations and the set of second-order valuations:

Val1 ≜ B and Val2 ≜ {ρ | ρ = ρ}.

By convention, we treat the list ρ as a stack satisfying the FILO principle (First In Last Out).
In the list ⟨⟨n, ν⟩, ρ′⟩, the first association ⟨n, ν⟩ hides all the other affectations of the integer n
in ρ′. Therefore, the function find(ρ, n) that extracts the value associated to an integer n in ρ
satisfies the equations:

ACA−
0 ⊢∀n find(0, n) = 0

ACA−
0 ⊢(∀n ∈ N)∀ν∀ρ find(⟨n, ν⟩::ρ, n) = ν

ACA−
0 ⊢(∀n ∈ N)(∀m ∈ N)∀ν∀ρ(m ̸= n⇒ find(⟨m, ν⟩::ρ, n) = find(ρ, n))

We note that:

1. The function find always returns the most recent affectation, i.e. the leftmost one in the
valuation ρ.

2. When no value is associated to the integer n, the function find returns 0.

3. The previous equations are satisfied by find even if the individuals ν and ρ are not in the
set B (of pure binary trees).

1Because a second-order valuation can range over all individuals, the set of second-order valuations will contain
all the individuals.
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We now define a formula EvalTerm(_t^, ρ, y) allowing us to compute the denotation of the
encoding of a term t with first-order parameters in ρ. To achieve this goal, we need to overcome
the following difficulty, explained in the next remark.

Remark 5.1.1.1. There is no primitive recursive function eval func that is universal for primitive
recursion, in the sense that eval func(_f ^, x) = f(x) for all primitive recursive functions f . This
is a consequence of a standard diagonal argument: if such a function existed then we could define
a primitive recursive function g such that g(f, x) = eval func(f, ⟨x, x⟩) + 1 and conclude that

g(_g^, _g^) = eval func(_g^, ⟨_g^, _g^⟩) + 1 = g(_g^, _g^) + 1.

However, we can construct a primitive recursive function evaln func(n, f, x) simulating n
steps of the computation of the function encoded by f on the entry x, i.e. satisfying the equations:

evaln func(n, _f ^, x) =

{
s(f(x)) if n ∈ N and the computation takes less than n steps
0 otherwise.

We can then define the formula

EvalFunc(f, x, y) ≜ (∃n ∈ N) evaln func(n, f, x) = s(y).

For all primitive recursive function f , this formula satisfies:

ACA−
0 ⊢ (∀x ∈ B)∀y(EvalFunc(_f ^, x, y) ⇔ y = f(x)).

Note that EvalFunc can only compute a function on a pure binary tree (indeed, induction on x
is used to prove the last formula). Therefore, in the following, the computation of a term should
always be a pure binary tree. This is why first-order valuations interpret variables by pure binary
trees.

Using the function evaln func, we implement a primitive recursive func-
tion evaln term(n, t, ρ) simulating n steps of the computation of the value of the term
encoded by t with parameters described by the valuation ρ. We, can then define the formula

EvalTerm(t, ρ, y) ≜ (∃n ∈ N) evaln term(n, t, ρ) = s(y).

This formula has the following properties.

ACA−
0 ⊢ ∀y(∀ρ ∈ Val1)(EvalTerm(_t^, ρ, y) ⇒ y ∈ B)

ACA−
0 ⊢ ∀y(EvalTerm(_0^, ρ, y) ⇔ y = 0)

ACA−
0 ⊢ ∀y∀ρ(EvalTerm(_x^, ρ, y) ⇔ y = find(ρ, ♯x))

ACA−
0 ⊢ ∀y(∀ρ ∈ Val1)(EvalTerm(_⟨t, u⟩^, ρ, y) ⇔ ∃y1∃y2(y = ⟨y1, y2⟩ ∧

EvalTerm(_t^, ρ, y1) ∧ EvalTerm(_u^, ρ, y2)))

ACA−
0 ⊢ ∀y(∀ρ ∈ Val1)(EvalTerm(_f(t)^, ρ, y) ⇔ ∃y′(EvalTerm(_t^, ρ, y′) ∧ EvalFunc(_f ^, y′, y)))

Note that the first formula is a necessary lemma to prove the last one. Finally, we summarize
these results in the following scheme of propositions.

Proposition 5.1.1.1. For each term t(x1, ..., xp) of PA2−:

1. ACA−
0 ⊢ (∀ρ ∈ Val1) EvalTerm(_t^, ρ, t[x1 := find(ρ, ♯x1); ...;xp := find(ρ, ♯xp)])

2. ACA−
0 ⊢ ∀v(∀ρ ∈ Val1)(EvalTerm(_t^, ρ, v) ⇒ v = t[x1 := find(ρ, ♯x1); ...;xp := find(ρ, ♯xp)])
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5.1.2 Internalization of satisfiability

Intuition

Every class Θ induces a structure ΘM of the language of SOL:

1. The first-order part of ΘM is the term model of PA2−, i.e. the set of closed terms (with
parameters in B) of PA2− quotiented by the equivalence relation

t ∼= u if and only if PA2− ⊢ t = u.

In particular, it is a standard model as this quotient set is isomorphic to B (we will see
that each structure ΘM satisfies the axiom of induction).

2. The second-order part is defined as all the sets included in the class Θ.

A formula is then inductively interpreted in the structure ΘM. If Θ is encoded by a family
of sets U , it is possible to internalize this process inside PA2−. The formula SatGraph(U , G)
(Definition 5.1.2.2) expresses that the set G contains all triples ⟨_ϕ^, ρ1, ρ2⟩ such that

“ S(U)M satisfies the formula ϕ[x⃗ := find(ρ1, ♯x⃗),
−→
X := U [find(ρ2, ♯

−→
X )]]”.

Especially:

1. Under the valuation ρ1, the code of a first-order variable ♯x is interpreted as the individ-
ual find(ρ1, ♯x) (which is a pure binary tree).

2. Under the valuation ρ2, the code of a second-order variable ♯X is interpreted as the
slice U [find(ρ2, ♯X)]. Consequently, valuations are also used to interpret second-order
variables. Because the index of a set in S(U) is not necessarily a pure binary tree2, second-
order valuations are not restricted to pure binary trees. All in all, this process will replace
second-order quantifiers by first-order quantifiers.

The first-order part of a structure S(U)M will be isomorphic to B. Therefore, the struc-
ture S(U)M will satisfy a formula ϕ if and only if its relativization to the set B (for the first-order
part) and to the class S(U) (for the second-order part) is satisfied. This is the motivation for
the following definition that introduces a notation for these two successive relativizations.

Definition 5.1.2.1. For a class of sets Θ, we introduce the operation of relativization to the
structure ΘM obtained by composing the operations of relativization to the set B and to the
class Θ:

ϕΘM ≜ (ϕB)Θ.

In particular, if a class is always used as a structure3, the index M will be dropped.

2The use of the axiom scheme of collection forbids us to only consider sets in S(U) indexed by a standard indi-
vidual. Indeed, families of sets constructed with this axiom scheme may contain sets only indexed by individuals
which are not in the set B.

3For instance, it is the case for RAHα and RAH.
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The graph of satisfiability

Definition 5.1.2.2. The following formula, with two distinguished second-order variables de-
noting a family U and a set G, expresses that the set G is the graph of the relation of satisfiability
in the class S(U):

SatGraph(U , G) ≜ U ∈ Fam ∧
∀x(x ∈ G⇒ (∃f ∈ Form)(∃ρ1 ∈ Val1)(∃ρ2 ∈ Val2) x = ⟨f, ρ1, ρ2⟩) ∧
(∀n ∈ N)(∀t ∈ Term)(∀u ∈ Term)(∀f ∈ Form)(∀g ∈ Form)(∀ρ1 ∈ Val1)(∀ρ2 ∈ Val2)
(⟨_⊥^, ρ1, ρ2⟩ /∈ G ∧
(⟨t_ = ^u, ρ1, ρ2⟩ ∈ G⇔ ∃x(EvalTerm(t, ρ1, x) ∧ EvalTerm(u, ρ1, x))) ∧
(⟨t_ ∈ ^n, ρ1, ρ2⟩ ∈ G⇔ ∃v(EvalTerm(t, ρ1, v) ∧ v ∈ U [find(ρ2, n)])) ∧
(⟨f _ ⇒ ^g, ρ1, ρ2⟩ ∈ G⇔ (⟨f, ρ1, ρ2⟩ ∈ G⇒ ⟨g, ρ1, ρ2⟩ ∈ G)) ∧
(⟨_∀1^nf, ρ1, ρ2⟩ ∈ G⇔ (∀x ∈ B) ⟨f, ⟨⟨n, x⟩, ρ1⟩, ρ2⟩ ∈ G) ∧
(⟨_∀2^nf, ρ1, ρ2⟩ ∈ G⇔ ∀x ⟨f, ρ1, ⟨⟨n, x⟩, ρ2⟩⟩ ∈ G))

In the formula SatGraph(U , G), a code of formulas is lifted to denote a formula of PA2−.
For instance, the code of an implication is interpreted as an implication. All in all, the for-
mula SatGraph(U , G) implements an internalization of the notion of satisfiability à la Tarski (see
Definition 1.1.3.6).

For every family U , there is a unique set GU satisfying the formula SatGraph(U , GU ). The
set GU is defined by transfinite recursion over a well-order γF on the set of formulas.

Definition 5.1.2.3. The order γF is defined as the restriction of ωb to the set of formulas:

γF ≜ ωb|Form (where ωb is the well-order on the set B defined in Example 4.1.2.1).

In particular, the relation γF is a well-order.

The fundamental property of γF is that it respects the order of the subformulas. In other
words, if ϕ is a subformula of ψ, then _ϕ^ ≤γF _ψ^.

Theorem 5.1.2.1. Given a family U , there is a unique set GU such that SatGraph(U , GU ).

1. ACA−
0 + Fam(U) + SatGraph(U , G) + SatGraph(U , G′) ⊢ G = G′

2. Π1
1 -CA−

0 + Fam(U) ⊢ ∃G SatGraph(U , G)

Proof. 1. It is enough to show:

(∀f ∈ Form)(∀ρ1 ∈ Val1)(∀ρ2 ∈ Val2)(⟨f, ρ1, ρ2⟩ ∈ G⇔ ⟨f, ρ1, ρ2⟩ ∈ G′).

It is done by induction over γF.

2. We recursively define a family GU such that SatGraph(U , GU ). We consider the for-
mula H(X1, X2, Y,U ,B) with parameters U and B:

(∀n ∈ N)(∀t ∈ Term)(∀u ∈ Term)(∀f ∈ Form)(∀g ∈ Form)
[¬(X1 ⊆s.i. γF) ⇒ Y = ∅ ∧
X1 = γF<_⊥^ ⇒ Y = ∅ ∧
X1 = γF<t_=^u ⇒
Y = {⟨ρ1, ρ2⟩ | ρ1 ∈ Val1 ∧ ρ2 ∈ Val2 ∧ ∃x(EvalTerm(t, ρ1, x) ∧ EvalTerm(u, ρ1, x))} ∧
X1 = γFt_∈^n ⇒
Y = {⟨ρ1, ρ2⟩ | ρ1 ∈ Val1 ∧ ρ2 ∈ Val2 ∧ ∃x(EvalTerm(t, ρ1, x) ∧ x ∈ U [find(ρ2,n)])} ∧
X1 = γF<f _⇒^g ⇒ Y = {⟨ρ1, ρ2⟩ | ρ1 ∈ Val1 ∧ ρ2 ∈ Val2 ∧ (⟨ρ1, ρ2⟩ ∈ X2[f ] ⇒ ⟨ρ1, ρ2⟩ ∈ X2[g])} ∧
X1 = γF_∀1^nf ⇒ Y = {⟨ρ1, ρ2⟩ | ρ1 ∈ Val1 ∧ ρ2 ∈ Val2 ∧ (∀x ∈ B)⟨⟨n, x⟩, ρ1⟩, ρ2⟩ ∈ X2[f ]} ∧
X1 = γF<_∀2^nf ⇒ Y = {⟨ρ1, ρ2⟩ | ρ1 ∈ Val1 ∧ ρ2 ∈ Val2 ∧ ∀x ⟨ρ1, ⟨n, x⟩, ρ2⟩⟩ ∈ X2[f ]}]
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The formula H denotes a total functional relation with two arguments. Therefore, Theo-
rem 4.2.3.1 implies the existence of a unique family V which is (γF,H)-inductive. Intuitively,
for a formula ϕ, the slice V[_ϕ^] contains all the valuations ρ1 and ρ2 making “ϕ[ρ1][ρ2]”
satisfied by the structure S(U)M.

The family V has the following property: DomV ⊆ EγF ∧ (∀f ∈ Form) H(γF<f ,V|EγF
<f

,V[f]).
We can then show by induction on γF that SatGraph(U ,V).
Finally, the formula H is arithmetical, with only U and B as parameters. Indeed, all the
sets Form, Term,N, γF,Val1,Val2 can be rewritten using an arithmetical definition (with B
as parameter). Therefore, all this previous reasoning can be done inside Π1

1 -CA−
0 .

As a consequence, the formula SatGraph(U , X) describes a functional relation, mapping a
family U to the only set GU satisfying SatGraph(U , GU ). This functional relation will also be
written Sat : Fam → Fam. Therefore, Sat(U) denotes GU . In other words, Sat(U) denotes the
only set GU such that SatGraph(U , GU ). This set can be defined with the Π1

1-formula:

x ∈ Sat(U) ≜ ∀G(SatGraph(U , G) ⇒ x ∈ G).

However, it also has a Σ1
1-definition:

Π1
1 -CA−

0 + U ∈ Fam ⊢ ∀x(x ∈ Sat(U) ⇔ ∃G(SatGraph(U , G) ∧ x ∈ G))

Consequently, Sat(U) is a ∆1
1-set.

Internalization of satisfiability

The next theorem shows that we successfully internalized the notion of satisfiability (inside a
structure encoded by a family of sets).

Theorem 5.1.2.2. Given a family U , for every formula ϕ(x1, ..., xp, X1, ..., Xq) of free variables
among x1, ...xp, X1, ..., Xq and without parameters:

Π1
1 -CA−

0 + Fam(U) ⊢ (∀ρ1 ∈ Val1)(∀ρ2 ∈ Val2)

(⟨_ϕ^, ρ1, ρ2⟩ ∈ Sat(U) ⇔
ϕS(U)M [x1 := find(ρ1, ♯x1); ...; xp := find(ρ1, ♯xp); X1 := U [find(ρ2, ♯X1)]; ...; Xq := U [find(ρ2, ♯Xq)]])

In particular, if ϕ is a closed formula:

Π1
1 -CA0 + U ∈ Fam ⊢ ⟨_ϕ^, [ ], [ ]⟩ ∈ Sat(U) ⇔ ϕS(U)M

Proof. The proof is done by external induction on the formula ϕ:

1. Case ϕ ≜ ⊥. It follows from ⟨_⊥^, ρ1, ρ2⟩ /∈ Sat(U).

2. Case ϕ ≜ t = u. It follows from Proposition 5.1.1.1 relating codes of terms and com-
putations: for a term v(x1, ..., xp), the only individual that satisfies EvalTerm(t, ρ, v)
is v[x1 := find(ρ, ♯x1), ..., xp := find(ρ, ♯xp)].

3. Case ϕ ≜ t ∈ X. Again, it follows from Proposition 5.1.1.1 and from the interpretation of
the variable X by U [find(ρ2, ♯X]).

4. Case ϕ ≜ ϕ1 ⇒ ϕ2. It is deduced from the induction hypothesis over ϕ1 and ϕ2.
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5. Case ϕ ≜ ∀xψ. Recall that

⟨_∀xψ^, ρ1, ρ2⟩ ∈ Sat(U) if and only if (∀y ∈ B)⟨_ψ^, ⟨♯x, y⟩::ρ1, ρ2⟩ ∈ Sat(U).

If y ∈ B, then ⟨♯x, y⟩::ρ1 ∈ Val1. The relativization of ∀xψ to the structure S(U)M is

(∀xψ)S(U)M ≜ (∀x ∈ B)ψS(U)M .

Thus, it is possible to conclude from the induction hypothesis.

6. Case ϕ ≜ ∀Xψ. Recall that

⟨_∀Xψ^, ρ1, ρ2⟩ ∈ Sat(U) if and only if ∀z⟨_ψ^, ρ1, ⟨♯X, z⟩::ρ2⟩ ∈ Sat(U).

We consider the relativization of ∀Xψ to the structure S(U)M:

(∀Xψ)S(U)M ≜ ∀X(X ∈ S(U) ⇒ ψS(U)M)

⇔ ∀X∀z(X = U [z] ⇒ ψS(U)M)

⇔ ∀zψS(U)M [X := U [z]].

For all second-order valuations ρ2 ∈ Val2, find(⟨♯X, z⟩::ρ2, ♯X) = z. From these remarks,
the induction hypothesis allows us to conclude.

5.1.3 Families as structures of the language of PA2−

Internalization of the notion of models of a theory

A family U encodes a class of sets that can be used as a structure of the language of SOL.
In particular, the notion of satisfiability for the structure S(U)M was internalized in the last
section. Therefore, we can then internally describe when such a structure models a theory.

Definition 5.1.3.1. Let F be a set of codes of formulas. The structure S(U)M models F if

ModF (U) ≜ (∀f ∈ F)(∀ρ1 ∈ Val1)(∀ρ2 ∈ Val2)⟨f, ρ1, ρ2⟩ ∈ Sat(U).

In this case, we may simply say that the family U models F .

In particular, we can express the fact that a family U (seen as a structure) models subsystems
of second-order arithmetic. We note that:

1. The codes of the first-order axioms of PA2 are always in Sat(U).

2. Because first-order quantifiers are relativized to B when a formula is interpreted in S(U)M,
the code of the axiom of induction is in Sat(U).

Consequently, a structure S(U)M always models the axioms of injectivity, of non confusion, of
computation and of induction. It remains to deal with the axiom scheme of comprehension.
We study the cases of full comprehension and of arithmetical comprehension. First, we can
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express these schemes as sets described by a formula. For a formula ϕ, the axiom scheme of
comprehension is written as follow:

∃X∀x(x ∈ X ⇔ Φ) ≜ ¬∀X¬∀x((x ∈ X ⇒ ϕ) ∧ (ϕ⇒ x ∈ X))

≜ ∀X
(
∀x(((x ∈ X ⇒ Φ) ⇒ (Φ ⇒ x ∈ X) ⇒ ⊥) ⇒ ⊥) ⇒ ⊥

)
⇒ ⊥

We fix a first-order variable x of code ♯x and a second-order variable X of code ♯X and we
introduce a term c(f) that represents a code for the previous formula:

c(f) ≜ ⟨2, ⟨4, ♯X, ⟨2, ⟨3, ♯x, ⟨2, ⟨2, ⟨2, ⟨1, ♯x, ♯X⟩, f⟩, ⟨2, ⟨2, f, ⟨1, ♯x, ♯X⟩⟩, 0⟩, 0⟩, 0⟩, 0⟩

The point of this computation is to show that the axiom scheme of comprehension is indeed
recursive4. Finally, we consider the sets:

_CA^ ≜ {c(f) | f ∈ Form ∧ ♯X /∈ FV2[f ]}
_ACA^ ≜ {c(f) | f ∈ FormArith ∧ ♯X /∈ FV2[f ]}

We say that U

1. models PA2 if Mod_CA^(U)

2. models ACA0 if Mod_ACA^(U).

In particular, if U models ACA0,S(U) is stable under all boolean operations over sets.

An application: Tarski’s theorem

We finish this section with a formalization of Tarski’s Theorem saying that there is no first-order
definition of a truth predicate for arithmetical formulas. As a consequence, we will deduce that
the logical complexity of the formula x ∈ Sat(U) cannot be arithmetical and, therefore, that the
definition we use has the least possible logical complexity (because it is ∆1

1 in Π1
1 -CA−

0 ).

Theorem 5.1.3.1 (Tarski). If Π1
1 -CA0 is consistent, the formula x ∈ Sat(U) is not equivalent

to an arithmetical formula (in PA2).

Proof. We work in Π1
1 -CA0 and, consequently, with the axiom of induction. Note that Theo-

rem 5.1.2.2 is still valid. Assume x ∈ Sat(U) is equivalent to an arithmetical formula ψ(x,U)
(without parameters), i.e.:

∀x∀U(x ∈ Sat(U) ⇔ ψ(x,U)).
We use as structure the set5 ∅ ≜ {x | ⊥} and consider the formula ϕ(x) ≜ ψ[U := ∅] that charac-
terizes the satisfiability in the structure ∅M. Consider the formula Diag(y) ≜ ¬ϕ(⟨y, [⟨♯x, y⟩], []⟩).
Then, for the code _Diag^ ∈ B of the formula Diag(y):

¬ϕ(⟨_Diag^, [⟨♯x, _Diag^⟩], []⟩) ≜ Diag[y := _Diag^] ⇔ DiagS(∅)M [y := _Diag^]

⇔ ⟨_Diag^, [⟨♯x, _Diag^⟩], []⟩ ∈ Sat(∅)
⇔ ϕ(⟨_Diag^, [⟨♯x, _Diag^⟩], []⟩)

where
4I mean that the codes of all the formulas in this scheme can be enumerated by a (primitive) recursive function.
5Because the second-order part of the structure won’t be used, any sets will work. However, it needs to be

defined by an arithmetical formula so that it can be replaced by its definition without increasing the logical
complexity of ϕ. Also note that any arithmetical sets can be used in ψ. For instance, the set B is arithmetical in
presence of the axiom of induction and therefore can be used in ψ.
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1. The first equivalence is because the formula Diag(x) is arithmetical and therefore the

relativization to the structure S(∅) simplifies: DiagS(∅)M(x) ≜ DiagB(x) ⇔ Diag(x) in
presence of the axiom of induction.

2. The second equivalence is a consequence of Theorem 5.1.2.2.

3. The last equivalence is the hypothesis that ϕ(x) is a definition of the set Sat(U).

This leads to an inconsistency (as shown in Remark 1.2.1.1).

Remark 5.1.3.1. The last proof is done in Π1
1 -CA0 as the axiom of induction is used. This is due

to the fact that the structures S(U)M have a standard first-order part. In particular, for every
arithmetical formula ϕ, S(U)M ⊩ ϕ if and only if ϕB. However, the hypothesis “Π1

1 -CA0 is
coherent” is not stronger than the hypothesis “Π1

1 -CA−
0 is coherent” because we prove a result

of relative consistency between these theories (see Remark 2.2.3.1).

5.1.4 The operator Def2

Operator of definability

We define an operator on the families of sets that sends a family U into the family Def2(U) of
sets definable in U by a second-order formula.

Definition 5.1.4.1. Given a family U , we define the family Def2(U) as follow:

Def2(U) ≜ {⟨⟨f, ρ1, ρ2⟩, x⟩ | ⟨f, ⟨0, x⟩::ρ1, ρ2⟩ ∈ Sat(U)}.

The sets in the slices of Def2(U) are the one definable in S(U)M by a second-order formula.
An index of a set X in Def2(U) is a definition of X in S(U)M. Precisely, it is an individual of
the form ⟨f, ρ1, ρ2⟩ satisfying:

∀x(x ∈ X ⇔ ⟨f, ⟨⟨0, x⟩, ρ1⟩, ρ2⟩ ∈ Sat(U)).

Therefore, using Theorem 5.1.2.2, to show that a set is in S(Def2(U)), it is enough to find a
definition of this set that relativizes to S(U)M.

Remark 5.1.4.1. Note that the meta-variable of code 0 plays a particular role. Say that it is the
variable z, i.e. ♯z = 0. Then, to show that a set is in S(Def2(U)), we need to show that it can
be defined as {z | z ∈ B ∧ ϕ(z)S(U)}.

Example 5.1.4.1. For all families U , the set of pure binary trees (B) is in the slices of Def2(U).
A definition of this set that relativizes to S(U)M is {z | z = z}. It means that the individuals
of S(U)M are exactly the pure binary trees (defined as the elements of the set B).

Properties of this operator

We show some properties of this operators that we will use in our study of the Ramified Analytic
Hierarchy.

Lemma 5.1.4.1. The class S(U) is included in S(Def2(U)).

Π1
1 -CA−

0 + Fam(U) ⊢ ∀X(X ∈ S(U) ⇒ X ∈ S(Def2(U))).

Proof. Let v be such that X = U [v]. Then X = Def2(U)[⟨⟨0, 0⟩_ ∈ ^0, [ ], [⟨0, v⟩]⟩].
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We will now show that the operator Def2(X) is well-defined up to the equality over families
of sets (see Proposition 5.1.4.1). The proof of this fact uses the following technical lemma.

Lemma 5.1.4.2. If two families U and V contain the same sets, if f is a code of a formula
and if ρ2 (seen as a valuation for S(U)) and ρ′2 (seen as a valuation for S(V)) assigns the same
set to the free second-order variables of f , then Def2(U) [⟨f, ρ1, ρ2⟩] = Def2(V) [⟨f, ρ1, ρ′2⟩] for
every first-order valuation ρ1.

Π1
1 -CA−

0 + Fam(U) ⊢ S(U) = S(V) ⇒ (∀f ∈ Form)(∀ρ1 ∈ Val1)(∀ρ2 ∈ Val2)(∀ρ′2 ∈ Val2)

(∀n ∈ FV2[f)])(U [find(ρ2, n)] = V[find(ρ′2, n)]) ⇒ Def2(U) [⟨f, ρ1, ρ′2⟩] = Def2(V) [⟨f, ρ1, ρ′2⟩]

Proof. By induction over the well-order γF (i.e. by internal induction over the set of formulas).

1. The case f ≜ t_ ∈ ^♯X uses the hypothesis U [find(ρ2, ♯X)] = V[find(ρ′2, ♯X)].

2. The case f ≜ _∀2^♯Xg uses the hypothesis S(U) = S(V).

Proposition 5.1.4.1. The operator Def2(X) is well-defined: if two families U and V contain
the same sets, then S(Def2(U)) and S(Def2(V)) also contain the same sets.

Π1
1 -CA−

0 + Fam(U) + Fam(V) ⊢ S(U) = S(V) ⇒ S(Def2(U)) = S(Def2(V))

Proof. We show S(Def2(U) ⊆ S(Def2(V)). Assume X = Def2(U)[⟨f, ρ1, ρ2⟩]. Define a valua-
tion ρ′2 such that:

(∀n ∈ FV2(f)) U [find(ρ2, n)] = V[find(ρ′2, n)].

We can then conclude using the previous point.

Families in the image of the operator X 7→ Def2(X) satisfies “closures properties”. In
particular, they are closed under all arithmetical definitions and, therefore, they (internally)
model the axiom scheme of arithmetical comprehension.

Lemma 5.1.4.3. For every family U , the structure S(Def2(U))M models the axiom scheme of
arithmetical comprehension (viewed in a theory with induction).

Π1
1 -CA−

0 + Fam(U) ⊢ Mod_ACA^(Def2(U))

Proof. An arithmetical definition relativizes to S(U)M. Therefore, the structure S(Def2(U))M
contains all the arithmetical sets with second-order parameters taken from its slices.

Lemma 5.1.4.4. A family U models _CA^ if and only if it is a fixed-point for the opera-
tor Def2(x).

Π1
1 -CA−

0 + Fam(U) ⊢ Mod_CA^(U) ⇔ S(U) = S(Def2(U))

Proof. 1. Assume that U models _CA^ and X = Def2(U)[⟨f, ρ1, ρ2⟩], i.e.:

∀x (x ∈ X ⇔ ⟨f, ⟨⟨0, x⟩, ρ1⟩, ρ2⟩ ∈ Sat(U)).

Because S(U)M models _CA^, it satisfies ⟨c(f), ρ1, ρ2⟩ ∈ Sat(U) and it implies that X ∈
S(U).

2. If U is a fixed-point for the operator X 7→ Def2(X), the family S(U) is closed under all
set definitions and, therefore, satisfies the axiom scheme of comprehension.
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5.2 The ramified analytic hierarchy

This section is devoted to the construction of the ramified analytic hierarchy. Recall that the
ramified analytic hierarchy is the transfinite sequence RAHα indexed by well-preorders and
satisfying

RAHα =
⋃
β<α

Def2(RAHβ).

We interpret each stage of this sequence as a family of sets and we will study the sets con-
tained in S(RAHα). The ramified analytic hierarchy is then the union of the classes S(RAHα)
(Part 5.2.2).

We define the sequence (RAHα)α∈WPO in the Subsection 5.2.1. In particular, we do not
define it as the transfinite union of the operator Def2. We use a definition that highlights a
precise characterization of the elements of RAHα (Subsection 5.2.3). This characterization will
be used to define a well-order on the class S(RAH) (see Section 5.3)

5.2.1 A definition of RAH

We define the following total functional relation on the class of well-preorders.

RAH(X1, X2, Y ) ≜
X1 /∈ PreOrd ⇒ Y = ∅ ∧
X1 = ∅ ⇒ Y = ∅ ∧
(X1 ∈ PreOrd ∧X1 ∈ Succ) ⇒

Y =
⋃

m∈MX1

X2[m] ∪ {⟨⟨m, f, ρ1, ρ2⟩, x⟩ | ⟨⟨f, ρ1, ρ2⟩, x⟩ ∈ Def2(X2[m])} ∧

(X1 ∈ PreOrd ∧X1 ∈ Lim) ⇒ Y =
⋃

i∈EX1

X2[i]

The definition is made by case, in particular:

1. If X1 is a successor, Y is obtained as an union indexed by the set of the maximal elements
of X1 (denoted MX1

, see Definition 4.1.2.1). Note that if m and m′ are maximal elements
of α and if X2 is constructed by induction along the formula RAH, then X2[m] and X2[m

′]
will in fact be equal. However, this formulation of RAH(X1, X2, Y ) allows us to show
directly that this formula denotes a total functional relation.

2. If X1 is limit, Y is obtained as the union of all the previously constructed objects.

3. In all the other cases, Y is empty.

RAH is a total functional relation with two arguments. Theorem 4.2.3.1 implies that

PA2− +WPO(α) ⊢ ∃!U∃!R(Ind(α,RAH)(U) ∧ RAH(α,U , R))

Definition 5.2.1.1. We follow the notations introduced for the (α,H)-inductive families (see
Notation 4.2.3.1). In particular, for all well-preorders α, RAHα is the only set satisfy-
ing ∃U∃X RAH(α,U , X). In particular:

x ∈ RAHα ≜ ∃U∃R(Ind(α,RAH)(U) ∧ RAH(α,U , R) ∧ x ∈ R).

Remark 5.2.1.1. The existential quantifiers in the formula RAHα can be replaced by universal
quantifiers:

PA2− +WPO(α) ⊢ ∀x(x ∈ RAHα ⇔ ∀U∀R(Ind(α,RAH)(U) ⇒ RAH(α,U , R) ⇒ x ∈ R))

The definition of RAHα can be seen to be ∆1
1 (but we will not use this fact).
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Remark 5.2.1.2. In set theory, the set Lα representing the level α of the constructible universe
can be defined as the following union:

Lα =
⋃
β<α

Def(Lβ).

Such a direct definition is not possible in PA2−. The set RAHα needs to be defined as a disjoint
union of the previously constructed objects. This is the reason why the elements of RAHα are
indexed by the field of the well-preorder α. Our definition of the functional RAH(X1, X2, Y )
conveys this intuition (although it may look cumbersome).

5.2.2 RAHα as a family and RAH as a class

The set RAHα encodes a family (i.e. Fam(RAHα) is provable) because it contains only elements
of the shape ⟨x, y⟩. Given a well-preorder α, the formula X ∈ S(RAHα) expresses that X is in
the class encoded by RAHα:

X ∈ S(RAHα) ≜ ∃s∀x(x ∈ X ⇔ x ∈ RAHα[s])

⇔ ∃U∃R∃s∀x(Indα,RAH(U) ∧ RAH(α,U , R) ∧ (x ∈ X ⇔ x ∈ R[s]))

⇔ ∀U∀R∃s∀x(Indα,RAH(U) ⇒ RAH(α,U , R) ⇒ (x ∈ X ⇔ x ∈ R[s]))

We can then consider the class obtained by the (meta-theoretic) union of all the
classes S(RAHα). For this purpose, we introduce the new notation ”X ∈ S(RAH)” to express
that the set X is in some S(RAHα):

X ∈ S(RAH) ≜ (∃α ∈ WPO) X ∈ S(RAHα)

⇔ ∃α∃U∃R∃s∀x(α ∈ WPO ∧ Indα,RAH(U) ∧ RAH(α,U , R) ∧ (x ∈ X ⇔ x ∈ R[s]))

⇔ ∃α∀U∀R∃s∀x(α ∈ WPO ∧ (Indα,RAH(U) ⇒ RAH(α,U , R) ⇒ (x ∈ X ⇔ x ∈ R[s])))

Remark 5.2.2.1. RAH is not a family of sets and, consequently, the notation S( ) (as we defined
it in Part 4.1.1) should not apply. However, we overload it to convey the intuition that S(RAH)
is obtained as the (meta-theoretic) union of all the families of the form S(RAHα):

S(RAH) =
⋃

α∈WPO

S(RAHα).

The sequence RAH is increasing only for the relation of being an initial segments:

RAHα ⊆ RAHβ if α ⊆s.i. β.

However, when viewed as a sequence of families, it is increasing for ≼WPO and it is well-
defined up to the equivalence relation ∼=WPO, meaning that two isomorphic well-preorders are
mapped to two families containing the same sets. A special case of this result is that if i ∼=α
j, then S(RAHα<i) = S(RAHα<j ). This result is proved before the more general one by an
induction over α.

Lemma 5.2.2.1. If α is a well-preorder and if i ∼=α j, then S(RAHα<i) = S(RAHα<j ).

Proposition 5.2.2.1. If α and β are two isomorphic well-preorders, then S(RAHα) = S(RAHβ).

Proof. We use Proposition 4.2.3.3 and reason by simultaneous induction over α and β. Fix-
ing an isomorphism F between α and β, assume (∀i ∈ Eα)(∀j ∈ Eβ)(iFj ⇒ S(RAHα<i) =
S(RAHβ<j )). We reason by cases whether α is empty, limit or successor.
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1. Case: α is empty. Both families are {∅}.

2. Case: α is successor. In this case, we show that both classes are equal to Def2(RAHα<m)
for all m ∈ Mα.

(a) First, if m,m′ are both in Mα, then m ∼=α m′ (because a well-preorder is total6) and
the previous lemma implies S(RAHα<m) = S(RAHα<m′ ). It is also valid for β.

(b) Therefore, fixing m ∈ Mα and m′ ∈ Mβ , the induction hypothesis implies
that S(RAHα<m) and S(RAHβ<m′ ) are equal.

(c) Lemma 5.1.4.1 implies that S(RAHα<m) ⊆ Def2(RAHα<m) and, as a conse-
quence, S(RAHα) = Def2(RAHα<m).

(d) This is also valid for β: S(RAHβ) = Def2(RAHα<m′ ).

(e) Finally, the result follows from Proposition 5.1.4.1 saying that the operator Def2(X)
is well-defined.

3. Case: α is limit. It directly follows from the induction hypothesis as the two families are
obtained as an union of the previously constructed families.

Corollary 5.2.2.1. If U is a family of well-preorders, then S(RAHsup(U)) =
⋃

x∈DomU

S(RAHU [x]).

PA2− + Fam(U) + (∀x ∈ DomU )WPO(U [x]) ⊢ ∀X(X ∈ S(RAHsup(U)) ⇔ (∃x ∈ DomU )X ∈ S(RAHU [x]))

Proof. It is a consequence of the results of this subsection and of Theorem 4.2.2.1 characterizing
the supremum of a family of well-preorders.

5.2.3 Characterization of the elements of RAH

An element X of S(RAHα) has an index of the form ⟨m, f, ρ1, ρ2⟩ where m ∈ Eα and ⟨f, ρ1, ρ2⟩
is a (second-order) definition of X in RAHα<m . The fact that all reals in RAHα are indexed by
an element of the field of α will be important to define a well-order on S(RAHα).

Lemma 5.2.3.1. All the elements of RAHα have the shape ⟨⟨l, t⟩, x⟩ for l ∈ Eα.

Proof. It is done by induction on α.

Thus, by construction, RAHα is “indexed” by the well-preorder α: individuals in RAHα are
indexed by the “level” at which they arrive in the hierarchy. This is the subject of the next
lemma.

Lemma 5.2.3.2. An individual ⟨⟨l, t⟩, x⟩ is in RAHα if and only if ⟨t, x⟩ ∈ Def2(RAHα<l).

PA2− +WPO(α) ⊢ (∀l ∈ Eα)∀t∀x(⟨⟨l, t⟩, x⟩ ∈ RAHα ⇔ ⟨t, x⟩ ∈ Def2(RAHα<l))

Proof. We show the implication (⇒). We reason by induction on α (i.e. we use Proposi-
tion 4.2.3.2).

1. Case: α is empty. RAHα is empty and the result is immediate.

6see the comment after Definition 4.1.2.1
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2. Case: α is successor. If l ∈ Mα and ⟨⟨l, t⟩, x⟩ ∈ RAHα. The definition of RAH implies that
⟨t, x⟩ ∈ Def2(RAHα<l). If l is not maximal, it is in RAHα<m for some m and the induction
hypothesis gives the result.

3. Case: α is limit. It directly follows from the induction hypothesis.

We summarize the previous lemmas in the following theorem that gives a full characterization
of the elements of RAH.

Theorem 5.2.3.1. For a well-preorder α, all the elements of RAHα have the
shape ⟨⟨l, f, ρ1, ρ2⟩, x⟩ and they satisfy ⟨f, ⟨0, x⟩::ρ1, ρ2⟩ ∈ Sat(RAHα<l).

1. PA2− +WPO(α) ⊢(∀y ∈ RAHα)(∃l ∈ Eα)(∃f ∈ Form)(∃ρ1 ∈ Val1)(∃ρ2 ∈ Val2)(∃x ∈ B)
y = ⟨⟨l, f, ρ1, ρ2⟩, x⟩

2. PA2− +WPO(α) ⊢(∀l ∈ Eα)(∀f ∈ Form)(∀ρ1 ∈ Val1)(∀ρ2 ∈ Val2)(∀x ∈ B)
⟨⟨l, f, ρ1, ρ2⟩, x⟩ ∈ RAHα ⇔ ⟨f, ⟨0, x⟩::ρ1, ρ2⟩ ∈ Sat(RAHα<l)

Proof. Lemma 5.2.3.1 says that all elements of RAHα are of the shape ⟨⟨l, t⟩, x⟩ with l ∈ Eα.
For all individuals l ∈ Eα, t and x:

⟨⟨l, t⟩, x⟩ ∈ RAHα ⇔⟨t, x⟩ ∈ Def2(RAHα<l)

⇔(∃f ∈ Form)(∃ρ1 ∈ Val1)(∃ρ2 ∈ Val2)

(t = ⟨f, ρ1, ρ2⟩ ∧ ⟨f, ⟨0, x⟩::ρ1, ρ2⟩ ∈ Sat(RAHα<l))

where the first equivalence is given by Lemma 5.2.3.2.

This theorem shows that S(RAHα) was indeed obtained by iterating the operator X 7→
Def2(X) along the well-preorder α.

5.3 Well-order on S(RAH)

The goal of this section is to define a well-order on S(RAH) This will be achieved in three steps:

1. For all well-preorders α, we construct a well-preorder Rα on RAHα (see Subsection 5.3.1).

2. Using Proposition 4.2.5.1, we deduce the existence of a well-order on S(RAHα) (Subsec-
tion 5.3.2).

3. Finally, we construct a well-order on S(RAH) as the union of all the well-orders
on S(RAHα). (see Subsection 5.3.3).

5.3.1 Well-preorder on RAHα

We consider the following functional relation:

R(X1, X2, Y ) ≜
X1 /∈ PreOrd ⇒ Y = ∅ ∧
X1 = ∅ ⇒ Y = {⟨0, 0⟩} ∧
X1 ∈ PreOrd ∧X1 ∈ Succ ⇒

Y = ∪
m∈MX1

(X2[m] ⊎ (
⋃

m1,m2∈MX1

({⟨m1,m2⟩})⊗ γF ⊗ (ωB)
ω ⊗ (ω ⊗X2[m])ω)) ∧

X1 ∈ PreOrd ∧X1 ∈ Lim ⇒ Y =
⋃
i∈EX1

X2[i]
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Remark 5.3.1.1. As noted before for the functional RAH, if m and m′ are maximal elements
of α and if X2 is constructed by induction along the formula R, then X2[m] and X2[m

′] will in
fact be equal. However, this formulation of R(X1, X2, Y ) (using an union for the successor case)
allows us to show directly that this formula denotes a total functional relation.

Remark 5.3.1.2. We strongly use the operations introduced in Proposition 4.1.2.2 and the well-
order γF on the set of formulas (Definition 5.1.2.3).

In particular, the relation R(X1, X2, Y ) is functional. Therefore, Theorem 4.2.3.1 implies
that:

Π1
1 -CA−

0 +WPO(α) ⊢ ∃!U∃!R (Ind(α,R)(U) ∧R(α,U , R))

We use the notations introduced for (α,R)-inductive family:

1. Rα will denote the unique set such that ∃U(Ind(α,R)(U) ∧R(α,U , X)).

2. Rα will denote the unique set such that Ind(α,R)(Rα).

Our first goal is to show that Rα is a well-preorder.

Lemma 5.3.1.1. Each element b ∈ ERα
is either 0 or of the form ⟨l, f, ρ1, ρ2⟩ with l ∈ Eα, f ∈

Form, ρ1 ∈ Val1, ρ2 ∈ Seq(N× ERα<l
).

Proof. By induction on α.

Proposition 5.3.1.1. The relation Rα is a well-preorder and for all i ∈ Eα, Rα[i] is equal
to (Rα)<⟨i,0,0,0⟩.

Proof. It is done by induction on α (i.e. using Proposition 4.2.3.2). We reason by case whether α
is empty, successor or limit.

1. Case: α is empty. Rα = {⟨0, 0⟩} and it is a well-preorder.

2. Case: α is successor. Rα is obtained as an union of different relations indexed by the set of
the maximal elements of α. However, all these relations are equal because R is functional
and two maximal elements of α are isomorphic (if i ∼=α j then α<i = α<j and Ind(α,R)(Rα)
implies that Rα[i] = Rα[j] ). Specifically, they are equal to the sum of two relations. These
two relations are well-preorders (using the induction hypothesis and Proposition 4.2.1.1).
Thus, by Proposition 4.2.1.1, Rα is a well-preorder. Moreover, by the definition of ⊎ (or
by induction hypothesis if i /∈ Mα), Rα[i] = (Rα)<⟨i,0,0,0⟩.

3. Case: α is limit. It is enough to show that Rα is an α-chain (by Proposition 4.2.1.1). It
is the case because if i <α j,Rα[i] = Rα[j]<⟨i,0,0,0⟩ and if i ∼=α j,Rα[i] = Rα

<⟨i,0,0,0⟩ =

Rα
<⟨j,0,0,0⟩ = Rα[j].

5.3.2 Well-order on S(RAHα)

We show that Rα induces a well-order on S(RAHα). We use Proposition 4.2.5.1 and we thus
have to show the two following properties.

1. The field of Rα contains an index for every set in S(RAHα). It is done in Lemma 5.3.2.1.

2. Two isomorphic elements x ∼=Rα
y denotes the same set in S(RAHα). It is done by

induction on α using Lemma 5.3.1.1 and Theorem 5.2.3.1.
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Lemma 5.3.2.1. The field of Rα contains an index for every set in S(RAHα).

Proof. We prove this lemma by simultaneous induction on R and RAH. We reason by case
whether α is empty, successor or limit.

1. Case: α is empty. S(RAHα) = {∅} and Rα = {⟨0, 0⟩}, in particular RAHα[0] = ∅ and 0 ∈
ERα .

2. Case: α is successor. Let X = RAHα[⟨l, f, ρ1, ρ2⟩]. We need to find ρ′2 ∈ Seq(N × ERα<l
)

such that for all n ∈ FV(f),RAHα<l [find(ρ2, n)] = RAHα<l [find(ρ
′
2, n)]. We prove the

following property by induction on ω:

(Hn) ≜ (∃ρ′2 ∈ Seq(N× ERα<l
))(∀m < n)RAHα<l [find(ρ2, n)] = RAHα<l [find(ρ

′
2, n)].

It is done as follow:

(a) For the base case, take ρ′2 to be empty.

(b) Assume the property true up to n and consider a valuation ρ′ ∈ Seq(N × ERα<l
)

given by the induction hypothesis Hn. Then, by the (general) induction hypothe-
sis, RAHα<l [find(ρ2, n)] has an index t in ERα<l

and we can consider the valua-

tion ρ′2 = ⟨n, t⟩::ρ′.

Let n0 be the smallest code of variables that does not appear in f and consider ρ′2 given
by Hn0

. Therefore, ⟨l, f, ρ1, ρ′2⟩ ∈ ERα
and

RAHα[⟨l, f, ρ1, ρ2⟩] = Def2(RAHα<l)[⟨l, f, ρ1, ρ2⟩]
= Def2(RAHα<l)[⟨l, f, ρ1, ρ′2⟩]

using Lemma 5.2.3.2 and Lemma 5.1.4.2.

3. Case: α is limit. It follows from the induction hypothesis.

Corollary 5.3.2.1. The well-preorder Rα induces a well-order on S(RAHα).

Moreover, isomorphic well-preorders yield isomorphic well-orders.

Proposition 5.3.2.1. If α ∼=WPO β, the well-preorders Rα and Rβ are isomorphic and the
isomorphism respects the structure of the families S(RAHα) and S(RAHβ): an index for X
in S(RAHα) is sent to an index for X in S(RAHβ).

PA2−+WPO(α) +WPO(β) + α ∼=WPO β ⊢
(∃I)(Isom(I, Rα, Rβ) ∧ (∀x ∈ Dom(Rα))(∀y ∈ Dom(Rβ))(xIy ⇒ RAHα[x] = RAHβ [y])

Proof. We use a simultaneous induction on R and RAH to show the existence of the desired
isomorphism.

Corollary 5.3.2.2. In particular, if α and β are isomorphic, X≤RAHα
Rα

Y if and only

if X≤RAHβ
Rβ

Y .
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5.3.3 Well-order on S(RAH)

We can now define a well-order on S(RAH).

Theorem 5.3.3.1. Consider the formula ≤RAH (X,Y ) defined below:

X ≤RAH Y : ≜ (∃α ∈ WPO)(X ∈ S(RAHα) ∧ Y ∈ S(RAHα) ∧X≤RAHα
Rα

Y )

Then, the formula ≤RAH is a well-order on S(RAH). Moreover, for all well-preorders α, ≤RAHα
Rα

is an initial segment of ≤RAH.

Proof. By definition ≤RAHα
Rα

is an initial segment of ≤RAH. Because ≤RAH is obtained as an
increasing sequence on well-orders, it is also a well-order.

5.4 S(RAH) is a model of PA2

5.4.1 Reflection principle

Thanks to the use of well-preorders and of the axiom scheme of collection, the Reflection principle
in PA2− +Coll can be proven in the same way as in set theory [29]. This principle will be the
key to show that S(RAH) satisfies the axiom scheme of comprehension.

Definition 5.4.1.1. Let ϕ(x⃗,
−→
X ) be a formula of PA2−. We say that a well-preorder α suits ϕ

when
Suitϕ(α) ≜ ∀x⃗(∀

−→
X ∈ S(RAHα))(ϕ

S(RAH)(x⃗,
−→
X ) ⇔ ϕS(RAHα)(x⃗,

−→
X )).

We say that α strongly suits ϕ when α suits ϕ and all its strict subformulas, i.e. if ϕ1, ..., ϕn are
the strict subformulas of ϕ:

SSuitϕ(α) ≜ Suitϕ(α) ∧ Suitϕ1
(α) ∧ ... ∧ Suitϕn(α).

We use the next lemmas in the proof of the principle of Reflection.

Lemma 5.4.1.1. If α ∼=WPO β and α strongly suits ϕ then β also strongly suits ϕ.

Proof. By external induction on ϕ. It is a consequence of the fact that the hierar-
chy (RAHα)α∈WPO is well-defined.

Lemma 5.4.1.2. Let ϕ(x⃗,
−→
X ) be a formula of PA2−. If U is a family of well-preorders that all

suit ϕ, then the well-preorder sup(U) also suits ϕ.

PA2− + Fam(U) + (∀i ∈ DomU )(WPO(U [i]) ∧ SSuitϕ(U [i])) ⊢ SSuitϕ(sup(U)).

Proof. Let α ≜ sup(U). We reason by external induction on ϕ.

1. Case: ϕ atomic. Then, ϕS(RAH) ≜ ϕ ≜ ϕS(RAHα) and the result is immediate.

2. Cases: ϕ ≜ ψ1 ⇒ ψ2 or ϕ ≜ ∀xψ. It follows from the induction hypothesis.
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3. Case: ϕ ≜ ∀Xψ. Because of the induction hypothesis, α strongly suits ψ. Let t⃗ be individ-

uals and
−→
E ∈ S(RAHα). On one hand, we observe that:

ϕS(RAH)ψ[x⃗ := t⃗;
−→
X :=

−→
E ] ≜ (∀X ∈ S(RAH))ψS(RAH)[x⃗ := t⃗;

−→
X :=

−→
E ]

:⇒ (∀X ∈ S(RAHα))ψ
S(RAH)[x⃗ := t⃗;

−→
X :=

−→
E ] (1)

:⇒ (∀X ∈ S(RAHα))ψ
S(RAHα)[x⃗ := t⃗;

−→
X :=

−→
E ] (2)

≜ ϕS(RAHα)[x⃗ := t⃗;
−→
X :=

−→
E ]

where (1) because S(RAHα) ⊆ S(RAH), (2) because α suits ψ.

On the other hand, Corollary 5.2.2.1 says that S(RAH(sup(U))) =
⋃

x∈DomU

S(RAHU [x]).

Therefore, let n ∈ DomU such that all sets E ∈
−→
E are in S(RAHU [n]). Then, we observe

that:

ϕS(RAHα)[x⃗ := t⃗;
−→
X :=

−→
E ] ≜ (∀X ∈ S(RAHα))ψ

S(RAHα)[x⃗ := t⃗;
−→
X :=

−→
E ]

⇒ (∀X ∈ S(RAHα))ψ
S(RAH)[x⃗ := t⃗;

−→
X :=

−→
E ] (1)

⇒ (∀X ∈ S(RAHU [n]))ψ
S(RAH)[x⃗ := t⃗;

−→
X :=

−→
E ] (2)

⇒ (∀X ∈ S(RAHU [n]))ψ
S(RAHU[n])[x⃗ := t⃗;

−→
X :=

−→
E ] (3)

≜ ϕS(RAHU[n])[x⃗ := t⃗;
−→
X :=

−→
E ]

⇒ ϕS(RAH)[x⃗ := t⃗;
−→
X :=

−→
E ] (4)

where (1) because α suits ψ, (2) because S(RAHU [n]) ⊆ S(RAHα), (3) and (4) because U [n]
strongly suits ϕ (and in particulars it suits ψ and ϕ).

We can now state and prove the Reflection principle. Note that the next theorem uses the
axiom scheme of collection.

Theorem 5.4.1.1. Let ϕ(x⃗,
−→
X ) be a formula of PA2−. For every well-preorder α, there is a

well-preorder λ greater than α that strongly suits ϕ. Formally, for every formula ϕ(x⃗,
−→
X ), we

design a compatible functional (up to ∼=WPO) relation Fϕ(X,Y ) such that:

PA2− +Coll ⊢ CompatFϕ ∧ Func
∼=WPO

Fϕ ∧ (∀α ∈ WPO)(∀β ∈ WPO)(Fϕ(α, β) ⇒ (SSuitϕ(β) ∧ α ≼WPO β))

Proof. We reason by external induction on ϕ.

1. Case: ϕ atomic. Take Fϕ(α, β) ≜ β ∼=WPO α.

2. Case: ϕ ≜ ψ1 ⇒ ψ2. Given a well-preorder α, we consider the sequence Uα defined by iter-
ation along ω (see Theorem 4.2.4.1 and Remark 4.2.4.2, note that it uses the axiom scheme
of collection) using the compatible functional relation

G(n, α, β) ≜ (∃m ∈ N)((n = 2m ∧ Fψ1
(α, β)) ∨ (n = 2m+ 1 ∧ Fψ2

(α, β))).

and starting at α. We check that

sup(Uα) = sup(Uα|{x|SSuitψ1
(Uα[x])})

= sup(Uα|{x|SSuitψ2
(Uα[x])})
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and Lemma 5.4.1.2 implies that sup(Uα) strongly suits ψ1 and ψ2. As a conse-
quence, sup(Uα) strongly suits ϕ and we set Fϕ(α, β) ≜ β ∼=WPO sup(Uα).

3. Case: ϕ ≜ ∀xψ. Take Fϕ(α, β) ≜ Fψ(α, β).

4. Case: ϕ ≜ ∀Xψ. If ψ(x⃗,
−→
Y ,X) is a formula of PA2− and α a well-preorder, given indi-

viduals t⃗ and s⃗ that respectively match the length of x⃗ and
−→
Y , we define the following

formula saying that γ is a well-preorder “large” enough to contain counter-examples to the

assertion (∀X ∈ S(RAH))ψS(RAH)[x⃗ := t⃗;
−→
Y :=

−−−−−−→
RAHα[s];X].

Witψ(⟨⃗t, s⃗⟩, α, γ) ≜ (∀X ∈ S(RAHγ))ψ
S(RAH)[x⃗ := t⃗;

−→
Y :=

−−−−−−→
RAHα[s];X]) ⇒

(∀X ∈ S(RAH))ψS(RAH)[x⃗ := t⃗;
−→
Y :=

−−−−−−→
RAHα[s];X].

Note that by a classical reasoning ∀t∃γWitψ(t, α, γ). Therefore, the axiom of collection
and the operation of supremum on families of well-preorders show the existence of a well-
preorder γ such that WitUnivψ(α, γ) ≜ ∀tWitψ(t, α, γ). Moreover, because this formula is
compatible, there is a minimal well-preorder that satisfies it. Consequently, the following
relation is compatible and functional:

G(α, β) ≜ (∃γ0 ∈ WPO)(WitUnivψ(α, γ0)∧(∀γ ∈ WPO)(WitUnivψ(α, γ) ⇒ γ0 ≼WPO γ)∧Fψ(α+γ0, β)).

We can consider the family Uα obtained by iteration of G along ω (starting at α) and define

Fϕ(α, β) ≜ β ∼=WPO sup(Uα).

Now, let λ such that Fϕ(α, λ). Therefore, λ is a well-preorder that strongly suits ψ (by
induction hypotheses and Lemma 5.4.1.2). We show that λ suits ϕ. Let t⃗ be individuals

and E⃗ ∈ S(RAHλ). On one hand, we observe that:

ϕS(RAH)[x⃗ := t; X⃗ := E] ≜ (∀X ∈ S(RAH))ψS(RAH)[x⃗ := t;
−→
X := E]

⇒ (∀X ∈ S(RAHλ))ψ
S(RAH)[x⃗ := t;

−→
X := E] (1)

⇒ (∀X ∈ S(RAHλ))ψ
S(RAHλ)[x⃗ := t;

−→
X := E] (2)

≜ ϕS(RAHλ)[x⃗ := t; X⃗ := E]

where (1) because S(RAHλ) ⊆ S(RAH), (2) because λ suits ψ.

On the other hand, let m such that
−→
E ⊆ S(RAHUα[m]) and n such that G(Uα[m],Uα[n]).

Then, we observe that:

ϕS(RAHλ)[x⃗ := t; X⃗ := E] ≜ (∀X ∈ S(RAHλ))ψ
S(RAHλ)[x⃗ := t;

−→
X := E]

⇒ (∀X ∈ S(RAHλ))ψ
S(RAH)[x⃗ := t;

−→
X := E] (1)

⇒ (∀X ∈ S(RAHUα[n]))ψ
S(RAH)[x⃗ := t;

−→
X := E] (2)

⇒ (∀X ∈ S(RAH))ψS(RAH)[x⃗ := t;
−→
X := E] (3)

≜ ϕS(RAH)[x⃗ := t; X⃗ := E]

where

• (1) because λ suits ψ,
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• (2) because S(RAHUα[n]) ⊆ S(RAHλ),

• (3) because WitUnivψ(Uα[m],Uα[n]) and
−→
E ⊆ S(RAHUα[m]).

5.4.2 S(RAH) is an inner model of PA2

Theorem 5.4.2.1. S(RAH) is an inner model of PA2 (in the sense of Definition 1.2.4.3)
inside PA2− +Coll.

Proof. Because the relativization to the set B of the induction principle is provable in PA2−

and that it is a Π1
1-formula, it is valid in S(RAH). It remains the case of the axiom scheme of

Comprehension. Let ϕ(x, y⃗,
−→
X ) a formula of PA2, we need to show

PA2− +Coll ⊢ (∀x⃗ ∈ B)(∀
−→
X ∈ S(RAH))(∃X ∈ S(RAH))∀x(x ∈ X ⇔ ϕ(x, x⃗,

−→
X )S(RAH))

Let t⃗ ∈ B be individuals and
−→
E ∈ S(RAH). Because the hierarchy {S(RAHα)}α∈WPO is

increasing, there exists α such that
−→
E ∈ S(RAHα) By the Reflection principle, let β ≥ α that

strongly suits ϕ, then:

∀x (ϕS(RAH)[x; y⃗ := t⃗;
−→
X :=

−→
E ] ⇔ ϕS(RAHβ)[x; y⃗ := t⃗;

−→
X :=

−→
E ])

But then it is a definition of

{x | ϕS(RAH)[x; y⃗ := t⃗;
−→
X :=

−→
E ]}

with parameters in S(RAHβ) and that relativizes to S(RAHβ). Therefore, we can conclude that

{x | ϕS(RAH)[x; y⃗ := t⃗;
−→
X :=

−→
E ]} ∈ Def2(S(RAHβ)) ⊆ S(RAH).

From now on, for all closed formula ϕ, we say that S(RAH) proves ϕ if

PA2− +Coll ⊢ ϕS(RAH).

5.4.3 S(RAH) models the axiom scheme of the well-ordered universe

The axiom scheme of the well-ordered universe

We extend the language of PA2− with a symbol ≤U for a third-order binary relation. We
consider the axiom saying that it is a well-order on the class of all sets, defined similarly as in
Definition 4.2.5.1.

Definition 5.4.3.1. The axiom scheme of the well-ordered universe states that the universe of
sets is well-ordered by the third-order relation ≤U. Formally it contains the following formulas.

1. The relation ≤U is an order, i.e.

Ord≤U
≜ ∀X∀Y ∀Z(X≤UX∧(X≤UY ⇒ Y≤UZ ⇒ X≤UZ)∧(X≤UY ⇒ Y≤UX ⇒ X = Y )).

2. For every non-empty class Θ(X), there is a ≤U-minimal set in it. Formally, for every
formula with parameters ϕ(X):

WO(≤U,ϕ) ≜ ∀X(ϕ[X] ⇒ ∃M(ϕ[X :=M ] ∧ ∀Y (ϕ[X := Y ] ⇒M≤UY ))).

Remark 5.4.3.1. This axiom is weaker than the principle of choice [29] stating that there exists
a definable third-order relation that is a well-order on the universe of sets.
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S(RAH) satisfies the axiom scheme of the well-ordered universe

The definition of the relativization needs to be extended to the new third-order predicate ≤U. It
will be interpreted as the order ≤RAH defined in Theorem 5.3.3.1, which means that we extend
the relativization ϕ 7→ ϕS(RAH) with the clause

(X≤UY )S(RAH) ≜ X ≤RAH Y.

Theorem 5.4.3.1. When ≤U is interpreted as ≤RAH, S(RAH) satisfies the axiom scheme of
the well-ordered universe.

Proof. This is a reformulation of Theorem 5.3.3.1.

Theorem 5.4.3.2. The theory PA2 extended with the axiom scheme of the well-ordered universe
is relatively consistent to PA2− +Coll.

Remark 5.4.3.2. However, with the work we did, we were not able to show that ≤RAH is internally

a well-order on S(RAH). In other words, we were not able to show WO
S(RAH)
(≤S(RAH),ϕ)

in general. It

is connected to our failure to show that S(RAH) satisfies the axiom of constructibility.

5.5 Open problems, related works and future work

5.5.1 What about the axiom of constructibility?

The goal of this section is to explain why results that felt known in the community [15] are in
fact still open problems. These results are connected with the problem of the consistency of the
axiom of constructibility in second-order arithmetic (Open problems 2 page 112 and 3 page 113).

Definition 5.5.1.1. The axiom of constructibility in PA2− is defined as the formula ∀X(X ∈
S(RAH)). Mimicking the notation of set theory, we will write V = S(RAH) to denote the axiom
of constructibility in PA2−.

The axiom of constructibility in set theory

The axiom of constructibility in set theory [21], written V = L, is defined as the formula ∀xL(x).
It implies the well-order principle and the generalized continuum hypothesis. Gödel showed that
the class L succeeded in interpreting this axiom and that it was the smallest inner model of set
theory[21, 29, 23]. It is a consequence of a technical result about absoluteness of the definition
of L and of the fact that all ordinals are in L. However, we were not able to adapt this proof to
the realm of second-order arithmetic, namely we were not able to show that S(RAH) contains
“enough” well-preorders.

Yet an other technical result about RAH

The goal of this section is to show the following technical result: if α ∈ S(RAHβ), then RAHα ∈
S(RAHβ+α+1) where 1 ≜ {⟨0, 0⟩}.
Remark 5.5.1.1. The well-preorder α+1 is used as a choice of a successor for the well-preorder α.

Lemma 5.5.1.1. Let U be a family of sets satisfying the scheme of arithmetical comprehension
and containing the set B, then for all individuals p, Def2(U [p]) ∈ S(Def2(U)).
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Proof. We need to show that the following set is in S(Def2(U)):

Def2(U [p]) ≜ {⟨⟨f, ρ1, ρ2⟩, x⟩ |⟨f, ⟨⟨0, x⟩, ρ1⟩, ρ2⟩ ∈ Sat(U [p])}
≜ {⟨⟨f, ρ1, ρ2⟩, x⟩ |⟨f, ⟨⟨0, x⟩, ρ1⟩, ρ2⟩ ∈ GU [p]}

Because of the closure property of S(Def2(U)) (see Lemma 5.1.4.3), it is enough to show
that GU [p] is in S(Def2(U)).

The set GU [p] is obtained by induction over the limit well-order γF using a functional relation
denoted H with U [p] and γF as parameters (see Theorem 5.1.2.1). Therefore, the set GU [p] has
the following definition:

x ∈ GU [p] ⇔ (∃f ∈ γF)∃Vf∃Rf (H(γF<f ,Vf , Rf ,U [p], γF) ∧ x ∈ Vf )

We show that this definition relativizes to S(U). First, we know that

(∀f ∈ Form) H(γF<f , GU |EγF
<f

, GU [f ],U [p], γF)

We then need to show:

1. The well-order γF is in U . This is the case because of the closure property of U (it models
the scheme of arithmetical comprehension and γF has an arithmetical definition with B as
parameter).

2. For all codes f , the sets GU [f ] are in S(U). It is done by induction on γF: for all codes f ,
there is an arithmetical definition of GU [f ] with parameters included in U [p] and GU [fi]
for a finite number of subformulas fi of f .

3. For all codes f , the set G|EγF
<f

is in S(U). It is done by induction using the previous point.

Corollary 5.5.1.1. If α ∈ S(RAHβ) then RAHα ∈ S(RAHβ+α+1).

Proof. This proof is done by induction on α. The hypothesis that α ∈ S(RAHβ) is used for the
limit case where a definition of RAHα that relativizes to S(RAHβ+α) is produced, with α as
parameter.

Remark 5.5.1.2. This result can be generalized in the following manner. If α ∈ S(RAHβ)
and RAHα<i ∈ S(RAHβ) for all i ∈ Eα, then RAHα ∈ S(RAHβ+1).

Russel paradox for RAH

We describe a variant of Russel paradox for the ramified analytic hierarchy. It will be used in
the remainder of this section.

Lemma 5.5.1.2. For all non-empty well-preorders α, RAHα /∈ S(RAHα).

Proof. Assume that RAHα ∈ S(RAHα). Because of the closure properties of S(RAHα), the
set {u | u /∈ RAHα[u]} is in S(RAHα). Let u0 be an index for this set. Then u0 ∈ RAHα[u0] if
and only if u0 /∈ RAHα[u0].

Remark 5.5.1.3. This proof can be adapted to well-preorders β isomorphic to α, showing that,
in this case, RAHβ /∈ S(RAHα).
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The construction of RAH in ZF

The construction of RAH can be carried in ZF to obtain a model of PA2. We recall here the
definition given by Apt and Marek [2].

Definition 5.5.1.2. The set R.A. (representing the ramified analytic hierarchy in ZF) is induc-
tively defined by the clause

R.A.0 ≜ ∅
R.A.α+1 ≜ Def2(R.A.α)

R.A.λ ≜
⋃
ξ∈λ

R.A.ξ for λ limit

R.A. ≜
⋃

α∈On

R.A.α

where, in this context and for X ⊆ N, Def2(X) is the set of subsets of P(N) that can be defined
using a second-order formula with second-order parameters inX and second-order quantifications
relativized to X.

Note that the class R.A. is a set because it is included in P(N). Even more, Cohen observed
that this sequence becomes stationary after a countable ordinal [14], called β0.

Lemma 5.5.1.3. There exists a countable ordinal β0 which is a fixed point for R.A.:

R.A.β0+1 = R.A.β0 .

Corollary 5.5.1.2. The set R.A. is not closed by countable unions of well-preorders.

Proof. If it was the case, one would be able to show that a well-preorder β of order-type β0 is
in R.A.β0

and therefore, by Lemma 5.5.1.1, that the set R.A.β0
is in R.A.β0+1 = R.A.β0

. It is in
contradiction with the variant of Russel paradox proved in Lemma 5.5.1.2.

An intent on proving that the class S(RAH) contains “enough” well-preorders

The goal of this section is to try to prove that “almost” all well-preorders are in S(RAH). In other
words, we want to prove the formula (∀α ∈ WPO)α ∈ S(RAH). However, it is not reasonable
because well-preorders can have representations that are not constructible. It seems better to
focus on the formula (∀α ∈ WPO)(∃β ∈ WPO)(α ∼=WPO β ∧ β ∈ S(RAH)).

In set theory, the stronger formula α ∈ Lα+1 is proved by induction on the class of ordinals.
We follow this lead and we will try to to prove (∀α ∈ WPO)(∃β ∈ WPO)(α ∼=WPO β ∧ β ∈
S(RAHα+1) by induction over the class of well-preorders.

In the limit case, we need to show that if all the proper initial segments of a well-preorder β
are in S(RAHα) then this well-preorder β is also in S(RAHα+1) But it is not the case, as shown
in Corollary 5.5.1.2.

We will explain how this problem was tackled in the literature and conclude that it is not yet
solved.

The notion of contributive well-preorders

As far as the author knows, there is only one work who studied the ramified analytic hierarchy
in the syntax of PA2. It is the paper of Colson and Griogirief [15] where, in the appendix, they
describe a formalization of RAH in second-order arithmetic. They overcome the issue presented
in the last section by introducing the notion of contributive well-order.

111



Definition 5.5.1.3. A well-preorder α is contributive if S(RAHα+1) \ S(RAHα) ̸= ∅.

Before analyzing more in depth their work, note that RAH is not closed by countable union
of contributive well-preorders.

Lemma 5.5.1.4. The set R.A. is not closed by countable union of contributive well-preorders.

Proof. It is done as in Lemma 5.5.1.2 because all the initial segments of β0 are contributive.

Colson and Grigorieff show that any contributive well-order is isomorphic to a well-order
in S(RAH) (Proposition D.9.4). In fact, for α a contributive well-order, they show that the
defined well-ordered on RAHα (called Rα here in Section 5.3.3 and λα in their work, see Theo-
rem D.3.(a)) is in RAHα+1 (Proposition D.9.3). I think that the proof of this fact is flawed. The
problem is in the limit case:

1. Their proof brings a contradiction when applied in set theory to R.A. (the semantic ver-
sion of RAH). In their proof, for a contributive limit well-order α (limit case of Propo-
sition D.9.3), they do not use the fact that α is contributive, it is enough that all the
initial segments of α are contributive. Therefore, by applying this proof to R.A., we would
obtain that λβ0 ∈ R.A.β0+1 = R.A.β0 . However, the order-type of λβ0 is at least β0. It is
a contradiction, as shown in the proof of Corollary 5.5.1.2.

2. We describe here (precisely and technically) where the flaw is in their proof of the limit
case (for a well-order α). They prove that the sets RAHα and Rα are in S(RAHα+1) by
giving definitions of theses sets that relativize to S(RAHα). However, theses definitions
crucially use the well-order α as a parameter. But it is not yet proven that the well-order α
appears in S(RAHα).

Conclusion: an old open problem?

All in all, as far as the author’s knowledge, the problem of the consistency of the axiom of
constructibility in PA2 remains unresolved7.

Open problem 2. Is the theory PA2 + V = S(RAH) relatively consistent to the theory PA2?

I personally find that this is a very interesting and important question, connected to do-
mains of logic that were deeply studied since more than 60 years (constructibility, second-order
arithmetic, recursion theory...). Note that a very similar result appeared in the work of Vetu-
lani [51] (described below). He worked in third-order analysis and used results of interpretability
between set theories and higher-order analysis to show the relative consistency of the axiom of
constructibility (formulated for the framework of higher-order logic). Therefore, while a solution
of Open problem 2 is not yet explicitly written in the literature, it seems probable that one can
be found by combining the work of Vetulani and the work of Simpson [47] (also described below).
Concretely, Simpson showed the relative consistency of the axiom of choice with respect to PA2
and Vetulani’s work could be adapted to show the relative consistency of the axiom V = S(RAH)
with respect to PA2+ACι ; thus combining these two results would lead to a proof of the relative
consistency of the axiom of constructibility with resepct to PA2.

However, in this thesis, we followed an other path and we tried to show that S(RAH) contains
“enough” well-orders, namely the contributive well-orders. Our work led to the following prob-
lem: can it be shown in PA2− +Coll that S(RAH) contains all the contributive well-preorders?

7At least, it seems that it is not explicitly written in the literature.
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On the necessity of the axiom scheme of collection and an other open problem

It seems that no proofs of the fact that RAH models the axiom scheme of comprehension was
written internally in second-order arithmetic: the only fully written proof that saw the author
in the literature is the one of Colson and Grigorieff. However, their proof uses the fact that the
contributive well-orders have representatives in S(RAH). Concretely, they use this fact to prove
a principle of reflection (Theorem 5.4.1.1 in this thesis and Proposition D.10 in their work) which
is crucial to show that S(RAH) interprets the axiom scheme of comprehension. This leads to the
formulation of an other potentially open problem.

Open problem 3. Can it be shown in PA2 that S(RAH) models the axiom scheme of compre-
hension? Is the principle of reflection provable in PA2?

We noted that this flaw can be overcome by the use of an axiom of countable choice. However,
a careful analysis of the reflection principle in set theory inspired us to work in second-order
arithmetic without induction and to introduce a new logical scheme in this syntax: the scheme
of collection.

Therefore, we answer partially to this problem in Theorem 5.4.2.1 stating that PA2− +Coll
proves that S(RAH) is an inner model of PA2.

5.5.2 Related works

The literature about RAH [26] is vast but is mainly concerned about the set-theoretic property
of RAH, in connection for instance with recursivity [10] or with model theory of second-order
arithmetic [2]. Consequently, I consider that all these works are not directly related to my
research. I will mention the few sources that deal with a theme closer to the formalization of the
ramified analytic hierarchy in second-order arithmetic.

The work of Colson and Griogorieff

This part of the thesis is very strongly inspired by the paper of Colson and Griogorieff [15] In
fact, most of this chapter is a direct adaptation of their research: the structure of this chapter
and the notations used are very close to the one of their work. The differences are the following:

1. We work here without induction. This is not a major difference as it is almost never used.
However, small technical details appeared when working without induction. In order to
define a well-order on S(RAH), it is necessary to define a well-order on the set of first-
order valuations. If they range over all the individuals, we will not be able to well-order
them. Therefore, it is essential that the first-order valuations range over pure binary trees8.
Consequently, the internalization of the notion of satisfiability is concerned with structures
that have a standard first-order part. In other words, we internalize the satisfiability of
formulas relativized to the set B of pure binary trees (Section 5.1).

2. We work with well-preorders instead of well-orders. It is also not a major difference: the
results about well-orders extend mostly easily to well-preorders. However, it is notable that
all the results about well-orders scale to well-preorders. Notably, the well-order on S(RAH)
is defined similarly when using well-orders or well-preorders to index this hierarchy! In fact,
because the class of well-orders is only well-preordered, the well-order on S(RAH) is defined
as a quotient of a well-preorder in both oh these cases. In spite of all these similarities,

8Anyway, computing the value of a code of an individual enforces the code to denote a pure binary tree.
Consequently, it is necessary for a first-order valuation to range over pure binary tree.
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the class of well-preorders have one major advantage: the supremum of a family of well-
preorders can be easily defined (Theorem 4.2.2.1). This ingredient, combined with the
axiom scheme of collection, is the key to prove the principle of reflection.

3. The use of the axiom scheme of collection allows us to prove the reflection principle and to
fix the flaw contained in their paper. It is specifically used in Theorem 4.2.4.1 that seems
necessary to prove the principle of reflection (Theorem 5.4.1.1).

The work of Vetulani

Vetulani studied and formalized an adaptation of the ramified analytic hierarchy in third-order
analysis, i.e. in third-order arithmetic with choice [51]. He constructed a variant of the ramified
analytic hierarchy for third-order analysis and showed that it was a model satisfying (a variant
of) the axiom of constructibility. In his work, he used results of interpretability between weak
set theory and higher-order analysis. It seems possible that his work could be adapted to second-
order analysis9 and could (almost) give a solution to the Open Problem 2. Notably, I have never
seen such an adaptation written. It remains as a future work for me to try and write it! Then,
the next step would be to investigate if the axiom of choice is crucial in all his proofs. During
this thesis, we chose to work directly in second-order arithmetic and not inside a set-theoretic
conservative extension. Our main reason behind this choice is explained below.

I wanted to use the ramified analytic hierarchy to give a new meaning of impredicative quan-
tification inside a type system (such as System F). The impredicative quantification, through
relativization, would have been replaced by quantification along well-preorders and codes of for-
mulas with parameters. This new way of understanding second-order quantification could have
led to a new computational interpretation of the axiom of choice10. All in all, I thought that
working in a set-theoretic interpretation of second-order arithmetic would blurred the compu-
tational content of RAH. Moreover, it may be impossible to adapt the proofs of Vetulani in a
framework without axiom of choice ; thus this approach may not be suited for a computational
interpretation of the axiom of choice.

The work of Simpson

Simpson formalized results about the constructible universe in a weak set theory that is a con-
servative extension of a subsystem of PA2 [47]. In particular, he showed in this weak set theory
that the class L satisfies the axiom of constructibility. Moreover, his work scales to stronger
versions of arithmetic and, in particular, to full second-order arithmetic. Therefore, he proved
that adding the principle of well-ordered universe to PA2 does not lead to inconsistencies.

5.5.3 Future work: a translation of proof systems by relativization to
the ramified analytic hierarchy

In this part, we sketch how to design a translation between two proof systems:

1. The source proof system λPA2AC is an extension of λPA2 (presented in Figure 2.1
page 42) with extra instructions to interpret the axiom scheme of the well-ordered uni-
verse.

2. The target proof system λPA2−
Coll is an extension of λPA2− (presented in Figure 2.2

page 45) obtained by adding a rule to use the axiom scheme of collection.

9Vetulani wrote at the end of his paper that his method adapts directly to second-order arithmetic with choice.
10However, it still remains as a future work.
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This translation implements a relativization of the first-order quantifiers to the set B and a
relativization of the second-order quantifiers to the class S(RAH). As in the negative transla-
tion described in Section 3.2.1, all the logical parts of a λ-term M of λPA2AC will be given
a computational meaning, thus describing (again) a translation from a Church-style calculus
into a Curry-style calculus. We will see that, through these relativizations, the translation will
interpret the principle of the well-ordered universe. Note that the principle of the well-ordered
universe allows to extract a witness from a non-empty class of sets. Moreover, this witness
extraction is extensional: the same witness is extracted from two extensionally equal classes.
It is a very important difference with the non-extensional axiom of choice, which is realized in
Krivine models [30]. However, this translation remains as a future work: we have yet to study
the computational content of the “unformalized” proofs done in this chapter.

The source system: λPA2AC

The system λPA2AC is obtained from λPA2− by adding the necessary tools to interpret the
axiom scheme of the well-ordered universe defined in Definition 5.4.3.1, specifically:

1. a new atomic formula X≤UY

2. proof terms ord≤U
and wo≤U,ϕ for each formula ϕ(X) with one free second-order variable X

3. typing rules for the added proof terms

Γ ⊢ ord≤U
: Ord≤U

Γ ⊢ wo≤U,ϕ : WO≤U,ϕ

All in all, it is a proof system for PA2 with the axiom of the well-ordered universe. We are
interested in the computational behavior that can be given to the terms wo≤U,ϕ. However, it
will remain as a future work.

The target system: the system λPA2−
Coll

The target system λPA2−
Coll is obtained from λPA2− by adding the following typing rule

⊢ λξ.ξ : ∀Z∃x∀yϕ(x, Z[y]) ⇒ ∃x∀Y ϕ(x, Y )

By the work we did in Section 2.3 and specifically in Theorem 2.4.0.1, we know that adding
this rule to the system λPA2− will not break the soundness of its interpretation by classical
realizability (Theorem 2.3.3.1). Therefore, the soundness of this system is guaranteed and all
the tools of classical realizability are available to study its computational properties.

The translation from λPA2AC into λPA2−
Coll

We follow the model of the negative translation done in Section 3.2.1 and we define 4 translations:

1. A translation ϕ 7→ ϕRAH of formulas which is a relativization to the first-order quantifiers
to the set B and to the second-order quantifiers to the class S(RAH).

2. A translation t 7→ t∗ of individuals already done in Section 2.2.3, each individual t is
translated to a proof term t∗ : t ∈ B.

3. A translation E 7→ E∗ of sets, each set E is translated into a proof term E : E ∈ S(RAH).
This part remains as future work.
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4. A translationM 7→M∗ from the proof terms of λPA2AC into the proof terms of λPA2−
Coll.

This part, depending on the previous one, also remains as a future work.

The translation ϕ 7→ ϕRAH from formulas of λPA2AC intro formulas of λPA2−
Coll is defined

as follow

(t ∈ X)RAH ≜ t ∈ X(
null(t)

)RAH
≜ null(t)

(⊥)RAH ≜ ∀Z(0 ∈ Z)

(t = u)RAH ≜ ∀Z(t ∈ Z ⇒ u ∈ Z)

(X≤UY )RAH ≜ X ≤RAH Y

(ϕ⇒ ψ)RAH ≜ ϕRAH ⇒ ψRAH

(∀xϕ)RAH ≜ (∀x ∈ B)ϕRAH

(∀Xϕ)RAH ≜
(
∀X ∈ S(RAH)

)
ϕRAH

Lemma 5.5.3.1. If ϕ ≃ ϕ′ (in λPA2AC), then ϕ
RAH ≃ ϕ′RAH (in λPA2−

Coll).

This translation extends to contexts and sets as follow:

{x | ϕ}RAH ≜ {x |ϕRAH} and (ξ1 : ϕ1, ..., ξn : ϕn)
RAH ≜ ξ1 : ϕRAH

1 , ..., ξn : ϕRAH
n

We associate a new proof variable ξX to each second-order variable X. From each finite list
of second-order variables X⃗ ≜ (X1, ..., Xp), we associate a context ΞX⃗ defined by

ΞX⃗ ≜ ξX1 : X1 ∈ S(RAH), ..., ξXp : Xp ∈ S(RAH).

Future work 1. For each set E ≜ {x | ϕ} (in λPA2AC), of free variables among x⃗ =

x1, ..., xp and
−→
X = X1, ..., Xq, there exists a proof term E∗ (in λPA2−

Coll) with free variables
among ξx1

, ..., ξxp , ξX1
, ..., ξXq such that:

Ξx⃗,Ξ−→
X

⊢ E∗ : ERAH ∈ S(RAH)B

The proof terms E∗ should be constructed by induction on the formula ϕ underlying the
set E, by carefully analyzing the proof of the reflection principle (Theorem 5.4.1.1).

Finally, a proof termM (in λPA2AC) with free variables among ξ⃗, x⃗,
−→
X should be translated

into a proof term M∗ (in λPA2−
Coll) with free variables among ξ⃗, ξx⃗, ξ−→X :

ξ∗ ≜ ξ

efq(M,ϕ)∗ ≜ M∗
cc(ϕ, ψ)∗ ≜ cc

ind(E,M,N, t)∗ ≜ ind∗M∗N∗t∗

refl(t)∗ ≜ λξ.ξ

peel(M,E,N)∗ ≜ M∗N∗

(λξ : ϕ.M)∗ ≜ λξ.M∗

(MN)∗ ≜ M∗N∗

(λx.M)∗ ≜ λξx.M
∗

(Mt)∗ ≜ M∗t∗

(ΛX.M)∗ ≜ λξX .M
∗

(ME)∗ ≜ M∗E∗

(ord≤U
)∗ ≜

(wo≤U,ϕ)
∗ ≜
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However, the translations of the proof terms ord≤U and wo≤U,ϕ remain as future works.

Future work 2. There exists a translation from the proof terms of λPA2AC into the proof
terms of λPA2−

Coll such that Γ ⊢M : ϕ (in λPA2AC) implies

ΓRAH,Ξx⃗,Ξ−→
X

⊢M∗ : ϕRAH (in λPA2−
Coll)

where x⃗ and
−→
X are the free first-order and second-order variables of M .

This unfinished translation is very close to the negative translation described in Section 3.2.1.
It interprets a Church-style λ-calculus inside a Curry-style λ-calculus, giving a computational
meaning to the logical parts of proof terms of the system λPA2AC. While the negative trans-
lation interprets sets as decidable predicates, this translation would interpret sets as elements of
the ramified analytic hierarchy.

5.5.4 Motivation behind this translation

The target system has a well-known computational content, thanks to Krivine realizability.
From a study of the image of the translation, we can imagine to extract reduction rules for the
terms ord≤U

and wo≤U,ϕ. This could lead to the design of a classical type system incorporating
the notion of constructibility and in which the principle of the well-ordered universe would be
provable. The computational properties (strong normalization...) of such a system would be
directly ensured by the translation. All in all, with this work, we could design a “calculus of
constructibles” allowing to prove the full (and extensional) axiom of choice in a classical setting.
However, this goal is very ambitious and is still quite far away right now.
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Part II

Study of extension of equality in
Higher Type Arithmetic
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Introduction

Higher type arithmetic (HAω) is a first-order many-sorted theory. It is a conservative extension
of Heyting arithmetic obtained by extending the syntax of terms to all of System T: the objects
of interest here are the functionals of “higher types”. While equality between natural numbers
is specified by the axioms of Peano, how can equality between functionals be defined? From
this question, different versions of HAω arise, such as an extensional version (E-HAω) and an
intentional version (I-HAω). The initial plan of this part was to study both of these versions
and to show that they can be interpreted in a system with equality only on the base type N.
The idea behind these interpretations is shared with the translations presented before in this
report. Namely, it is to restrict the range of quantification, leading us to describe yet an other
translation by relativization.

1. For extensional equality, the range of the quantifiers should be restricted to “extensional”
elements. It is done in Chapter 6 where we fully describe a translation by parametricity
from E-HAω into HAω. This work was presented in an international workshop [11].
In the next chapter of this thesis, we include the paper coming from this work without
modification. Note that this paper was already published [11].

2. For intentional equality, the range of the quantifiers should be restricted to “generalized
recursive functions”. My work on this aspect led to various presentations [12] but I was
not able to include it in this thesis as it is still an on-going work. The main intuition of this
work was to formalize the model HRO [49] as a syntactic translation from a type system
for a variant of I-HAω into a type system for HA. Through this translation, a functional
of HAω (described in the syntax by a closed term of System T) would be interpreted as a
natural number representing a code for its normal form. This translation would justify the
addition of a family of instructions quoteσ (of type σ → N) to the syntax of System T,
implementing quoting operators that return the source code of the normal form of its
argument. The soundness of such a system and its operational semantic would be fully
justified in the meta-theory. Notably, the system obtained from HAω by adding these new
instructions is not proof-theoretically stronger than HAω (and, therefore, than HA). In
particular, even with the quoting operators in the syntax, one cannot prove internally that
System T is strongly normalizing. I want to emphasize that these results are not new:
a model for a theory (called HRO

:::::
) incorporating all the previous features was already

described internally in HA [49]. Our idea was to reformulate this work as a syntactic
translation ; leading to the design of a type system for I-HAω. In such a system, an
interpretation for the full axiom of choice could be obtained by adapting and extending the
computational analysis of the axiom of countable choice done through the Berardi-Bezem-
Coquand (BBC) functional11 [7]. It remains as a future work to write down this research.
Finally, Pédrot adapted these results from first-order logic into dependent type theory ;
thus showing the compatibility of Church Thesis within dependent type theory [44]. As
a last remark, we mention that by extending and combining the works of Pédrot [44], of
Herbelin [22] and of Miquey [38], it could be possible to give a computational interpretation
of the full axiom of choice in a dependent type theory where all types are decidable12.

11It is already known that their interpretation can be extended to any decidable types.
12It is already known that the work of Herbelin and Miquey can be extended to any decidable types [39].
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Chapter 6

An interpretation of E-HAω

inside HAω

In second-order logic, it can be shown as a meta-theorem that two extensionally equal pred-
icates satisfy the same properties. It is not the case in higher-order logic: this is due to the
potential existence of non extensional (higher-order) predicates. However, Gandy showed that
axioms of extensionality could be consistently added by restraining the range of quantification to
extensional elements [18]. A similar phenomenon occurs in higher type arithmetic (HAω): one
cannot prove in HAω that two extensionally equal functions satisfy the same formulas. It can be
seen for instance by working in the model of Hereditary Recursive Operations HRO [49] where
a functional can inspect the source code of its argument. But, again, axioms of extensionality
can be added without loss of consistency: Zucker showed that every model of N-HAω (higher
type arithmetic with equality at all levels of sort) can be turned into a model of E-HAω (higher
type arithmetic with extensional equality at all levels of sort) [54].

In this work we tackle a similar problem. Starting from HAω, we show that an extensional
equality can be consistently added at all levels of sorts. Taking inspiration from syntactical
models of type theory [9, 1], we chose to do it in a syntactical fashion: we design an interpretation
of E-HAω inHAω that we express as a translation between two proof systems (without reduction
rules). Concretely, we will compile a language with extensional equality at all levels of sorts to a
language that merely has equality in the sortN. It will be done using techniques of parametricity,
as one goal of this paper is to emphasize that parametricity can be used to extend equality.

After exposing a proof system λHAω that captures higher type arithmetic (Section 6.1), we
will study families (indexed by the sorts of System T) of (internal) partial equivalence relations
that could be used to extend equality (Section 6.2). In particular, we will compare two potential
candidates:

1. a family =ext
σ generated from equality (over N) in an extensional fashion,

2. a family =pm
σ generated from equality (over N) in a way reminiscent of binary parametric-

ity [45].

While the former is reflexive, the latter is not. But being reflexive is not desirable in this context.
Indeed, as explained above, one needs to restrict the range of quantifications before extending
equality, specifically we will restrict quantifications on a sort σ to the domain of =pm

σ . Our first
translation will be used to show that each closed term of System T is indeed in the domain of
=pm: we translate judgments of System T into judgments of λHAωand we follow the typical
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∆1, x
σ,∆2 ⊢T x

σ : σ

∆, xσ ⊢T t : τ

∆ ⊢T λx
σ.t : σ → τ

∆ ⊢T t : σ → τ ∆ ⊢T u : σ

∆ ⊢T tu : τ

∆ ⊢T 0 : N

∆ ⊢T t : N

∆ ⊢T s t : N

∆ ⊢T t : σ ∆ ⊢T u : σ → N → σ ∆ ⊢T v : N

∆ ⊢T Recσ t u v : σ

Figure 6.1: Derivation in System T

translation by parametricity, as it will allow us to show that typed terms satisfy the relation
linked to their type [45, 52, 8]. Finally, by keeping the idea of a translation by parametricity,
we will translate a proof system λE-HAω (capturing E-HAω) to λHAω (Section 6.3). Before
concluding, we will compare our result and our methodology to related works (Section 6.4).

6.1 A proof system for higher type arithmetic

6.1.1 System T

We use a version of Gödel’s System T obtained by extending simply typed λ-calculus (à la
Church) with a type constant N and native constructors to use it. Terms, sorts and signatures
of System T are described as follows:

Sorts σ, τ ::= N | σ → τ

Terms t, u ::= xσ | λxσ.t | tu
| 0 | s t | Recσ t u v

Signatures ∆ ::= ∅ | ∆, xσ

System T is presented in Church’s style so terms come associated with a unique sort. Never-
theless, we use a type system (see Figure 6.1 page 121) to take into account in which signature
(or environment) a term is considered. We may omit sort annotations on variables.

We consider the following rules on terms

(λx.t)u ≻ t[x ::= u]
Rec t u 0 ≻ t

Rec t u (s v) ≻ u (Rec t u v) v

from which we generate reduction and congruence

t ⇝ u and t ∼= u

as respectively the least reflexive, transitive and closed by congruence relation containing ≻ and
the least closed by congruence equivalence relation containing ≻. We define a substitution θ to
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be a finite function from variables to terms. The action of a substitution θ on terms, denoted
t[θ], corresponds to the simultaneous substitutions of free variables x in the domain of θ by θ(x).

Meta-theoretical results about System T can be found in the book of Girard, Lafont and
Taylor [19], for instance:

1. terms of System T are strongly normalizable,

2. closed normal terms of type N are of the form sn 0, closed normal terms of type σ → τ are
of the form λxσ.t.

Finally, we will use the two following facts.

Fact 1. A generalized version of the weakening rule is admissible for this system:

if ∆ ⊆ ∆′ and ∆ ⊢T t : σ then ∆′ ⊢T t : σ

where ∆ ⊆ ∆′ is interpreted as the set theoretic inclusion (while seeing signatures as sets).

Fact 2. If θ is a substitution then t ∼= u implies t[θ] ∼= u[θ].

6.1.2 Higher type arithmetic

Higher type arithmetic (HAω) is a theory of many-sorted first-order logic. It is a conservative
extension of HA obtained by extending the term language to the System T. Models of HAω are
described in the book of Troelstra [49], in particular the following will be used in the sequel:

1. the set theoretic model M defined by

MN ≜ N

Mσ→τ ≜ MMσ
τ

2. the model of Hereditary Recursive Operations HRO defined by

HRON ≜ N

HROσ→τ ≜ {e ∈ N | ∀n ∈ HROσ {e}(n) ↓∈ HROτ}

where {e}(n) ↓∈ E means that the computation of the function of index e terminates on
the input n and that the result of this computation is in E.

We define a proof system λHAω that captures HAω. Formulas, proof terms and contexts
of λHAω are generated by the following grammar:

Formulas Φ,Ψ ::= t = u | ⊥ | null(t)
| Φ ⇒ Ψ | Φ ∧Ψ
| ∀xσΦ | ∃xσΦ

Proof terms M,N ::= ξ | refl t | peelt,u(M, x̂.Φ, N) | efq(M,Φ)
| λξ.M | M N
| (M,N) |M.1 | M.2
| λxσ.M | M t
| [t,M ] | let [x, ξ] :=M in N
| Ind(x̂.Φ,M,N, t)

Contexts Γ ::= ∅ | Γ, ξ : Φ
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(∆; Γ) wf
(ξ : ϕ ∈ Γ)

∆;Γ ⊢ ξ : Φ
∆; Γ ⊢M : ⊥

(FV (Φ) ⊆ ∆)
∆;Γ ⊢ efq(M,Φ) : Φ

∆;Γ ⊢M : Φ
(Φ ≃ Ψ)

∆;Γ ⊢M : Ψ
∆; Γ, ξ : Φ ⊢M : Ψ

∆; Γ ⊢ λξ.M : Φ ⇒ Ψ

∆;Γ ⊢M : Φ ⇒ Ψ ∆;Γ ⊢ N : Φ

∆; Γ ⊢M N : Ψ

∆; Γ ⊢M1 : Φ1 ∆;Γ ⊢M2 : Φ2

∆;Γ ⊢ (M1,M2) : Φ1 ∧ Φ2

∆;Γ ⊢M : Φ1 ∧ Φ2
(i = 1, 2)

∆;Γ ⊢M.i : Φi

∆, xσ; Γ ⊢M : Φ
(xσ /∈ FV (Γ))

∆;Γ ⊢ λxσ.M : ∀xσΦ
∆;Γ ⊢M : ∀xσΦ ∆ ⊢T t : σ

∆;Γ ⊢M t : Φ[xσ := t]

∆; Γ ⊢M : Φ[xσ := t] ∆ ⊢T t : σ

∆;Γ ⊢ [t,M ] : ∃xσΦ
∆;Γ ⊢M : ∃xσΦ ∆, xσ; Γ, ξ : Φ ⊢ N : Ψ

(xσ /∈ FV (Γ,Ψ))
∆;Γ ⊢ let [x, ξ] :=M in N : Ψ

(∆; Γ) wf ∆ ⊢T t : N

∆;Γ ⊢ refl t : t = t

∆;Γ ⊢M : t = u ∆;Γ ⊢ N : Φ[xN := t]

∆; Γ ⊢ peelt,u(M, x̂.Φ, N) : Φ[xN := u]

∆; Γ ⊢M : Φ[xN := 0] ∆; Γ ⊢ N : ∀xN.(Φ ⇒ Φ[xN := sxN]) ∆ ⊢T t : N

∆;Γ ⊢ Ind(x̂.Φ,M,N, t) : Φ[x := t]

Figure 6.2: Proof derivations in λHAω

This syntax contains three different λ-abstractions: two λ-abstractions at the level of proof
terms (λξ.M and λxσ.M) and the λ-abstraction of System T at the level of formulas (λxσ.t).
The sort annotation on a variable may be omitted in the sequel if it can be inferred. In the
proof terms peelt,u(M, x̂.Φ, N) and Ind(x̂.Φ,M,N, t), the variable x is bound in Φ: the binder x̂
is used to specify which variable will be substituted. The connectives ⊤ and ∨ are not included
in λHAω but can be defined as ⊤ ≜ ⊥ ⇒ ⊥ and Φ ∨Ψ ≜ ∃xN (x = 0 ⇒ Φ ∧ x ̸= 0 ⇒ Ψ) where
the relation x ̸= y denotes x = y ⇒ ⊥.

We consider sequents of the form ∆;Γ ⊢M : Φ where

1. ∆ is a signature of System T,

2. Γ is a context of λHAω.

The typing rules of λHAω are presented in Figure 6.2 page 123. Note that equality is only
defined on the sort N. A pair of a signature and a context (∆; Γ) is well formed when the free
first-order variables of Γ are contained in ∆, i.e

(∆; Γ) wf ≜ FV (Γ) ⊆ ∆.

This system is not equipped with reduction rules for proof terms: they are used as annotations
for the derivation and they serve as a tool to formulate our work as a fully specified translation.
The congruence relation Φ ≃ Ψ between formulas used in λHAω is generated from the reduction
rules of System T and two extra rules:

null(0) ≻ ⊤
null(sx) ≻ ⊥.
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Because of the rule of conversion, terms of System T are treated up to the equivalence ∼=.
For instance, one can prove (λxN.x)0 = 0 in λHAω. Moreover, all the axioms of HAω [49] are
derivable. In particular, the predicate null(t) is used to prove ∀xN sx ̸= 0.

Fact 3. λHAω captures HAω in the following manner: a closed formula Φ is derivable in λHAω

if and only if the formula obtained from Φ by replacing all occurrences of subformulas null(t) by
t = 0 is a logical consequence of HAω.

The notion of substitutions extends from System T to λHAω. Concretely, a (first-order)
substitution θ is a finite function from first-order variables (x, y...) to terms of System T while
the operation of substitutions on proof terms M and formulas Φ is defined as before. The
notation Γ[θ] is used to denote the application of the substitution θ to each terms and formulas
in the context Γ. The system λHAω satisfies the following properties:

Fact 4. If ∆;Γ ⊢M : Φ then FV (Φ) ⊆ ∆.

Fact 5. A generalized version of the weakening rule is admissible for this system:

if ∆ ⊆ ∆′, Γ ⊆ Γ′ and ∆;Γ ⊢M : Φ then ∆′; Γ′ ⊢M : Φ

where the set-theoretic inclusion is used to compare signatures and contexts.

Fact 6. Let θ be a substitution of first-order variables, ∆ a signature included in its domain and
∆′ a signature containing all free variables of its image then

∆;Γ ⊢M : Φ implies ∆′; Γ[θ] ⊢M [θ] : Φ[θ].

Fact 7. If ∆;Γ, ξ : Ψ ⊢M : Φ and ∆;Γ ⊢ N : Ψ then ∆;Γ ⊢M [ξ := N ] : Φ.

6.2 A preliminary study of possible extensions of equality

6.2.1 Two examples of Partial Equivalence Relation

Let σ be a sort of System T. A symbol of binary relation R on σ (added to the syntax of λHAω)
is a partial equivalence relation when it is symmetric and transitive. It is the case if the formulas

SymR ≜ ∀xσ∀yσ xRy ⇒ yRx
TransR ≜ ∀xσ∀yσ∀zσ xRy ⇒ yRz ⇒ xRz

are provable in λHAω.
A partial equivalence relation is an equivalence relation on its domain

x ∈ DomR ≜ xRx.

Moreover, using symmetry and transitivity, one can show that

xRy ⇒ x ∈ DomR ∧ y ∈ DomR.

Therefore, a partial equivalence relation on σ is exactly an equivalence relation on a collection
of individuals of sort σ (that is a formula with one free variable of sort σ).

Let {=ext
σ }σ and {=pm

σ }σ be two families of binary relations indexed by the sorts of System T
and defined as follows:

xN =ext
N yN ≜ x = y xN =pm

N yN ≜ x = y

fσ→τ =ext
σ→τ g

σ→τ ≜ ∀x f x =ext
τ g x fσ→τ =pm

σ→τ g
σ→τ ≜ ∀x∀y x =pm

σ y ⇒ f x =pm
τ g y.
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Note that

1. The relation =ext is obtained from equality by extending it to higher sorts in an extensional
fashion (two functions are in =ext if they are extensionally equal).

2. The relation =pm is obtained from equality by extending it to higher sorts in a parametric
fashion (two functions are in =pm if they send related entries to related outputs).

With an (external) induction on the sorts of System T, it can be shown that for all sorts σ:

1. =ext
σ is an equivalence relation.

2. =pm
σ is a partial equivalence relation.

We exhibit proof terms that are used on forthcoming translations:

⊢ sympm
σ : Sym=pm

σ

⊢ transpmσ : Trans=pm
σ

⊢ reflpmσ : ∀xσ∀yσ x =pm
σ y ⇒ (x =pm

σ x ∧ y =pm
σ y)

They are defined by induction on the sort of System T:

sympm
N ≜ λxλy.λξ.peel(ξ, ẑ.(z = x), reflx)

sympm
σ→τ ≜ λfλg.λξ.λxλy.λη.sympm

τ (f y)(g x)(ξ y x (sympm
σ x y η))

transpmN ≜ λxλyλz.λξλη.peel(η, ŵ.x = w, ξ)

transpmσ→τ ≜ λfλgλh.λξλη.λxλy.λχ.transτ (f x)(g y)(h y)(ξ x y χ)(η y y(transσ y x y(sym
pm
σ x y χ)χ))

reflpmσ ≜ λxσλyσλξ.(transpmσ x y x ξ(sympm x y ξ), transpmσ y x y (sympm x y ξ)ξ).

One cannot prove inside λHAω that =pm
σ is reflexive for all sorts σ as it can be seen by

working in HRO. Let

quote ∈ HRO(N→N)→N

be an index for the identity function1 and

p, q ∈ HRON→N

two distinct indexes for the same total unary function. Note that

HRO ⊨ p =pm
N→N q

HRO ⊨ {quote}(p) ̸=pm
N {quote}(q).

Consequently

HRO ⊨ quote ̸=pm
(N→N)→N quote

and =pm
(N→N)→N is not reflexive in HRO.

Because =ext
(N→N)→N is reflexive, the previous result shows that in HRO, =ext

(N→N)→N is not

included in =pm
(N→N)→N. Therefore, one cannot prove in λHAω

∀x∀y x =ext
(N→N)→N y ⇒ x =pm

(N→N)→N y.

1quote is a functional that takes a function as argument and returns its source code. Here the index of the
identity function is used as a polymorphic object. For all sorts σ, it can denote in HROσ→N a functional that
returns the source code of its argument ; thus giving a possible interpretation for quoteσ .
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Going one step higher in the hierarchy of sorts, one can show that

∀x∀y x =pm
((N→N)→N)→N y ⇒ x =ext

((N→N)→N)→N y

is not provable in λHAω. Indeed, consider a variant HROo of HRO where natural numbers
denote recursive functions that can access an oracle deciding if its entry is an index of the identity
function2 (i.e for instance it returns 1 if it accepts and 0 otherwise). Let

n ∈ HROo
((N→N)→N)→N

be an index for this oracle and

m ∈ HROo
((N→N)→N)→N

be an index of the constant function x 7→ 0. It turns out that

HROo ⊨ n =pm
(N→N)→N)→N m

HROo ⊨ n ̸=ext
(N→N)→N)→N m

because indexes of the identity function are not in the domain of =pm
(N→N)→N.

Finally, in the set theoretic model M of HAω (and in fact in any extensional model), one
can show

M ⊨ ∀x∀y x =ext
σ y ⇔ x =pm

σ y

for all σ (by induction on the sorts of System T).
Therefore, in λHAω, one cannot prove that the relations =pm and =ext are different. We

wrap up all these results in the following theorem.

Theorem 6.2.1.1. In λHAω one cannot prove that

1. =pm
(N→N)→N is reflexive

2. =ext
(N→N)→N ⊆ =pm

(N→N)→N

3. =pm
((N→N)→N)→N ⊆ =ext

((N→N)→N)→N

4. =pm
σ ⊊ =ext

σ and =ext
σ ⊊ =pm

σ (for any sort σ).

where the symbols ⊆,⊊ and the property of being reflexive are defined inside λHAω in the usual
way.

6.2.2 A first translation: from System T into λHAω

Although one cannot prove inside λHAω that =pm is reflexive, it can be shown that all closed
terms of System T are in its domain. With this goal in mind, we design a translation from
System T into λHAω:

(∆ ⊢T t : σ)
pm ⇝ ∆1,∆2; ∆pm ⊢ tpm : t1 =pm

σ t2.

1. Declarations of variables in signatures are duplicated. Fixing i = 1, 2:

∅i ≜ ∅
(∆, xσ)i ≜ ∆i, (xi)σ

2Here again, the index of the identity function is seen as an interpretation of quote.
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where xi are fresh distinct variables.

2. Terms of System T are duplicated. Fixing i := 1, 2:

ti ≜ t[θit]

will denote the term obtained by substituting all free variables x of t by xi (i.e θit is the
substitution defined on the free variables of t and that associates to a variable x the variable
xi).

3. Signatures of System T are translated into contexts of λHAω:

∅pm ≜ ∅
(∆, xσ)pm ≜ ∆pm, xpm : x1 =pm

σ x2.

4. Terms of System T are translated into proof terms of λHAω:

(x)pm ≜ xpm

(λx.t)pm ≜ λx1λx2.λxpm.tpm

(t u)pm ≜ tpm u1 u2 upm

0pm ≜ refl 0

(s t)pm ≜ peel
(
tpm, x̂.(s t1 = sx), refl (s t1)

)
(Rec t u v)pm ≜ Ind

(
x̂.(∀yN x = y ⇒ Recσ t1 u1 x =pm

σ Recσ t2 u2 y),
λy.λξ.peel(ξ, ẑ.(t1 =pm

σ Recσ t2 u2 z), tpm),
λx.λη.λy.λξ.peel(ξ, ẑ.(u1(Rec t1 u1 x)x =pm

σ (Rec t2 u2 z)),
upm(Rec t1 u1 x)(Rec t2 u2 x)(η x (reflx))xx (reflx)),

v1)v2 vpm

The translation works as follows:

1. An abstraction in System T is interpreted as 3 abstractions in λHAω: 2 abstractions
of first-order variables and one of proof variable. Indeed, (λxσ.t)pm should be of type
∀x1∀x2 x1 =pm

σ x2 ⇒ t1 =pm t2 (assuming λxσ.t : σ → τ).

2. Symmetrically, an application in System T is interpreted as 3 applications.

3. Because the relation =pm
N is merely the equality, 0 and s t are interpreted as equality proofs.

4. Finally, the recursor is interpreted using an induction. During the induction, the synchro-
nization between the two copies of the term v (of sort N) is lost. Therefore, we need an
extra generalization in the hypothesis to retrieve that these terms are equal.

Theorem 6.2.2.1. If ∆ ⊢T t : σ then ∆1,∆2; ∆pm ⊢ tpm : t1 =pm
σ t2. In particular, ⊢ tpm :

t =pm
σ t for all closed terms of sort σ.

Proof. By induction on the derivations of System T.

We deduce from the previous theorem that each closed terms of System T are in the domain
of =pm.

The following terms are used lated:

∆1,∆2; ∆pm ⊢ Elimi
ẑ.t : ∀z1∀z2 z1 =pm

σ z2 ⇒ ti[zi = z1] =pm
τ ti[zi = z2].
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for i = 1, 2. Note that these proof terms are indexed by a term t and a variable z.
These terms are constructed using the previous translation as follows:

Elim1
ẑ.t ≜ λz1λz2.λzpm.transpm t1 t2t1[z1 := z2]tpm

(sympmt1[z1 := z2]t2tpm[z1 := z2][zpm := (reflpmz1z2zpm).2])

Elim2
ẑ.t ≜ λz1λz2.λzpm.transpm t2[z2 := z1] t1t2

(sympmt1t2[z2 := z1]tpm[z2 := z1][zpm := (reflpm z1z2zpm).1])tpm)

They are well typed as soon as FV (t) ⊆ ∆, z.

6.3 Interpreting extensional equality: from λE-HAω into
λHAω

6.3.1 A preliminary step: a translation from λHAω into λHAω

Although all closed terms of System T are in the domain of =pm, one cannot prove

∀xσ x =pm
σ x

in λHAω (for σ = (N → N) → N for instance). Nevertheless, building on the intuition of
restricting quantifications and on the work of the previous section, we can design a translation

(∆; Γ ⊢M : Φ)pm ⇝ ∆1,∆2; ∆pm,Γpm ⊢Mpm : Φpm.

from λHAω into itself that will serve as a basis to interpret extensional equality.

1. This translation extends the one defined formerly. In particular

∆i,∆pm, ti and tpm

are already defined.

2. Formulas of λHAω are translated into formulas of λHAω :

(t = u)pm ≜ t1 =pm
N u2

⊥pm ≜ ⊥
(Φ ⇒ Ψ)pm ≜ Φpm ⇒ Ψpm

(Φ ∧Ψ)pm ≜ Φpm ∧Ψpm

(∀xσΦ)pm ≜ ∀x1∀x2 x1 =pm
σ x2 ⇒ Φpm

(∃xσΦ)pm ≜ ∃x1∃x2 x1 =pm
σ x2 ∧ Φpm.

3. Contexts of λHAω are translated into contexts of λHAω:

∅pm ≜ ∅
(Γ, ξ : Φ)pm ≜ Γpm, ξ : Φpm.

4. Proof terms of λHAω are translated into proof terms of λHAω:
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(ξ)pm ≜ ξ

(λξ.M)pm ≜ λξ.Mpm

(M N)pm ≜ MpmNpm

(M,N)pm ≜ (Mpm, Npm)

(M.i)pm ≜ Mpm.i

(λx.M)pm ≜ λx1λx2λxpm.Mpm

(M t)pm ≜ Mpmt1t2tpm

([t,M ])pm ≜ [t1, [t2, (tpm,Mpm)]]

(let [x, ξ] :=M inN)pm ≜ let [x1, η] :=Mpm in let [x2, χ] := η inNpm[xpm = χ.1][ξpm := χ.2]

(efq(M,Φ))pm ≜ efq(Mpm,Φpm)

(refl t)pm ≜ tpm(
peelt,u(M, x̂.Φ, N)

)pm
≜ peel

(
Mpm

2 , x̂2.Φpm[x1 := u1],peel(Mpm
1 , x̂1.Φpm[x2 := t2], Npm)

)(
Ind(x̂.Φ,M,N, t)

)pm
≜ Ind(x̂.∀y x = y ⇒ Φpm[x1 := x][x2 := y],

λyλξ.peel(ξ, ẑ.Φpm[x1 := 0][x2 := z],Mpm),
λxληλyξ.peel(ξ, ẑ.Φpm[x1 := sx][x2 := z], Npmxx (reflx)(η x (reflx)),
t1) t2tpm

where in the translation of peel(M, x̂.Φ, N), Mpm
i denotes a proof of ti = ui:

Mpm
1 ≜ transpmN t1 u2 u1Mpm(sympm

N u1 u2upm) : t1 = u1

Mpm
2 ≜ transpmN t2 t1 u2(sympm

N t1 t2tpm)Mpm : t2 = u2.

Here, the translation of peel is ad hoc: it is merely done by using peel on two distinct equalities.
However, it will not be the case in the last translation where we will need an external recursion
on the formulas of the source system to interpret it.

The translation of induction follows the same principle as the translation of the recursor done
in Section 6.2.2: because the synchronization between the copies of t is lost, we need to generalize
the induction hypothesis.

Theorem 6.3.1.1. If ∆;Γ ⊢M : Φ then ∆1,∆2; ∆pm,Γpm ⊢Mpm : Φpm.

The proof of this theorem is by induction on the derivation of λHAω and it uses three lemmas:

Lemma 6.3.1.1. If t ∼= u then ti ∼= ui for i = 1, 2 and t, u terms of System T.

Lemma 6.3.1.2. If t(xσ) and u are terms with u of sort σ,then
(
t[x := u]

)i
≜ ti[xi := ui] for

i = 1, 2.

Lemma 6.3.1.3. If Φ(xσ) is a formula and t is a term of sort σ, then
(
Φ[x := t]

)pm
≜ Φpm[x1 :=

t1][x2 := t2].

6.3.2 Extending equality through parametricity: A translation from
λE-HAω into λHAω

Our next goal is to extend the previous translation to give an interpretation of extensional
equality inside λHAω.

Consider an extension λE-HAω of λHAω obtained by extending equality in an extensional
way to all higher sorts, i.e by adding
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(∆; Γ) wf ∆ ⊢T t : σ

∆;Γ ⊢e reflσ t : t =σ t

∆;Γ ⊢e M : t =σ u ∆;Γ ⊢e N : Φ[xσ := t]

∆; Γ ⊢e peel
t,u
σ (M, x̂.Φ, N) : Φ[xσ := u]

∆; Γ ⊢e M : ∀xσf x =τ g x

∆;Γ ⊢e extσ,τ (M) : f =σ→τ g

∆;Γ ⊢e M : f =σ→τ g ∆;Γ ⊢e N : t =σ u

∆;Γ ⊢e appσ,τ (M, t, u,N) : f t =τ g u

Figure 6.3: Additional typing rules for extensional equality

1. atomic formulas t =σ u for all sorts σ,

2. proof terms (reflσ t), peelt,uσ (M, x̂.Φ, N), extσ,τ (M) and appσ,τ (M, t, u,N) for all
sort σ and τ ,

3. typing rules for the added proof terms presented in Figure 6.3 page 130.

The symbol ⊢e will be used to denote sequents (and provability) in λE-HAω. The translation
( )pm can be extended to a translation from λE-HAω into λHAω. Indeed, one interprets

(t =σ u)
pm as t1 =pm

σ u2.

It is then possible to extend the translation with

(reflσ t)
pm ≜ tpm

and to preserve adequacy. The case of
(
peelt,uσ (M, x̂.Φ, N)

)pm
is more involved and it is treated

below. We first construct a family of terms Elimx̂σ.Φ satisfying that if

FV (Φ) ⊆ ∆, xpm

then

∆1,∆2; ∆pm ⊢ Elimx̂σ.Φ : ∀x1∀x2∀y1∀y2 x1 =pm
σ y1 ⇒ x2 =pm

σ y2 ⇒ Φpm ⇒ Φpm[x1 := y1][x2 := y2].

It is done by induction on the syntax of formulas:

Elimx̂.t=σu ≜ λx1λx2λy1λy2λξ1λξ2λξ.transpm t1[x1 := y1] t1 u2[x2 := y2]

(Elim1
x̂.t y

1 x1 (sympm x1 y1 ξ1))

(transpm t1 u2 u2[x2 := y2]ξ(Elim2
x̂.u x

2 y2 ξ2))

Elimx̂.⊥ ≜ λx1λx2λy1λy2λξ1λξ2λξ.ξ

Elimx̂.(Φ⇒Ψ) ≜ λx1λx2λy1λy2λξ1λξ2λξ.λη.Elim+
x̂.Ψ(ξ (Elim−η))

Elimx̂.(Φ∧Ψ) ≜ λx1λx2λy1λy2λξ1λξ2λξ.(Elim+
x̂.Φξ.1,Elim

+
x̂.Ψξ.2)

Elimx̂.(∀zΦ) ≜ λx1λx2λy1λy2λξ1λξ2λξ.λz1λz2λzpm.Elimx̂.Φ(ξ z
1z2zpm)

Elimx̂.(∃zΦ) ≜ λx1λx2λy1λy2λξ1λξ2λξ.let [z1, η] := ξ in let [z2, χ] := η in [z1, [z2, (η.1,Elim+
x̂.Φη.2)]]

where

Elim+
x̂.Φ ≜ Elimx̂.Φ x

1 x2 y1 y2 ξ1 ξ2

Elim− ≜ Elimŷ.Φ[x:=y] y
1 y2 x1 x2 (sympm x1 y1 ξ1)(sympm x2 y2 ξ2).
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The proof that Elimx̂.Φ satisfies the given property is by induction on the syntax, where the
hypothesis is used to treat the case of equality.

We can now define(
peelt,uσ (M, x̂.Φ, N)

)pm
≜ Elimx̂.Φt

1t2u1u2(transpmt1u2u1Mpm(sympmu1u2upm))
(transpmt2t1u2(sympmt1t2tpm)Mpm)Npm.

Finally, we set (
extσ→τ (M)

)pm
≜ λx1, x2λxpm.Mpm x1 x2 xpm(

appσ→τ (M, t, u,N)
)pm

≜ Mpm t1 u2Npm.

Theorem 6.3.2.1. If ∆;Γ ⊢e M : Φ then ∆1,∆2; ∆pm,Γpm ⊢Mpm : Φpm.

Proof. The case of
(
peelσ(M, x̂.Φ, N)

)pm
uses the property of Elimx̂.Φ and a generalization of

Fact 4 saying that if ∆; Γ ⊢e M : Φ then FV (Φ) ⊆ ∆.

Corollary 6.3.2.1. If λHAω is consistent, then so is λE-HAω.

Proof. If λE-HAω is inconsistent, there exists a proof term M such that ⊢e M : ⊥. By the
previous translation, one gets a derivation ⊢Mpm : ⊥ and concludes that λHAω is inconsistent.

6.3.3 Characterizing the image of the translation

In the previous section, we showed that if a closed formula Φ is provable in λE-HAω then Φpm

is provable in λHAω. The goal of this section is to prove the converse: if Φpm is provable in
λHAω then Φ is provable in λE-HAω. It shows that the system λE-HAω fully characterizes
the image of the translation we designed.

We first show that the relation =pm collapses to the equality relation in λE-HAω. For every
sort σ, we construct a proof term

⊢e Collapsσ : ∀xσ∀yσ x =σ y ⇔ x =pm
σ y

by external induction on the sorts of System T:

CollapsN ≜ λxλy
(
λξ.ξ, λξ.ξ)

Collapsσ→τ ≜ λfλg(λξλxλyλη.Collapsτ .1 (f x) (g y) appσ,τ (ξ, x, y,Collapsσ.2x y η),
λξ.extσ,τ (λz.Collapsτ .2 (f z) (g z)(ξ z z (Collapsσ.1 z z,(refl z))))

)
Proposition 6.3.3.1. For every sort σ, the binary relations =pm

σ and =ext
σ collapse to =σ in

λE-HAω.

Proof. We proved that =pm
σ collapses to =σ and it can be proved in a similar fashion that =ext

σ

also collapses to =σ in λE-HAω.

Using this fact, we can now show that the image of the last translation is fully characterized
by the type system λE-HAω.

We exhibit a family of proof terms EquiviΦ for i = 1, 2 satisfying for any formula Φ and any
signatures ∆ containing the free variables of Φ

∆1,∆2; ∆pm ⊢e Equiv1Φ : Φ1 ⇒ Φpm

∆1,∆2; ∆pm ⊢e Equiv2Φ : Φpm ⇒ Φ1
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as follows:

Equiv1t=σu ≜ λξ.transσ t
1 u1 u2(Collapsσ.1 t

1 u1 ξ)upm

Equiv2t=σu ≜ λξ.Collapsσ.2 t
1 u1 (transσ t

1 u2 u1 ξ (sympm u1 u2 upm))

Equiv1Φ⇒Ψ ≜ λξλη.Equiv1Ψ(ξ (Equiv
2
Φ η))

Equiv2Φ⇒Ψ ≜ λξλη.Equiv2Ψ(ξ (Equiv
1
Φ η))

Equiv1Φ∧Ψ ≜ λξ.(Equiv1Φξ.1,Equiv
1
Ψξ.2)

Equiv2Φ∧Ψ ≜ λξ.(Equiv2Φξ.1,Equiv
2
Ψξ.2)

Equiv1∀xσ Φ ≜ λξλx1λx2.λxpm.Equiv1Φ (ξ x1)

Equiv2∀xσ Φ ≜ λξλx1.Equiv2Φ[x2 := x1][x
pm := (Collapsσ.1x

1 x1 (reflσ x
1))]

(ξ x1 x1 (Collapsσ.1x
1 x1 (reflσ x

1)))

Equiv1∃xσΦ ≜ λξ.let [x, η] := ξ in [x, [x, (Collapsσ.1xx (reflσ x),Equiv
1
Φξ)]]

Equiv2∃xσΦ ≜ λξ.let [x1, η] := ξ in let [x2, χ] := η in [x1,Equiv2Φχ.2]

We can then conclude that a closed formula Φ is provable in λE-HAω if and only if its translation
is provable in λE-HAω.

Theorem 6.3.3.1. For a closed formula Φ of λE-HAω:

⊢e (Equiv1Φ,Equiv
2
Φ) : Φ ⇔ Φpm.

In particular, if Φpm is provable in λHAω then Φ is provable in λE-HAω.

6.3.4 Adding reduction rules: a conjecture

The proof systems used here lack of computational rules, such as

(λx.M) t ≻β M [x := t]
(λξ.M)N ≻β M [ξ := N ]

let [x, ξ] := [t,M ] inN ≻β N [x := t][ξ :=M ]
(M1,M2).i ≻β M.i

Ind(x̂.Φ,M,N, 0) ≻ι M
Ind(x̂.Φ,M,N, S t) ≻ι N t Ind(x̂.Φ,M,N, t)
peel(refl t, x̂.Φ, N) ≻ι N

and in λE-HAω

app(ext(M), t, t, refl t) ≻ M t.

One could try to figure out if the translation ( )pm respects reductions, i.e to obtain a result
of the shape

M ⇝ N implies Mpm ≃β,ι,η Npm.

While it will be true for β-reductions, it seems that it will not be the case in general for the
reduction of Ind(x̂.Φ,M,N, s t) if t contains free first-order variables. Indeed, the term s t will
be translated as a proof term asserting an equality and if it does not compute into refl (s t), it
will block the reduction of the subterm peel(...) inside (Ind(x̂.Φ,M,N, S t))pm. In the case of a
closed term t, we conjecture it will compute as desired. Concretely, we think that the proof will
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use the meta properties of System T described at the end of Section 6.1.1: one will use that every
closed term of sort N is β-equivalent to a term of the shape sn 0 and that the translation of such
a term computes into refl (sn 0), assuming that the translation from System T to λHAωrespects
reductions.

Conjecture 1. If M is a proof term of λE-HAω without free first-order variables and if M does
not contain peel then

M ⇝ N implies Mpm ≃β,ι Npm.

However, the case of the reduction rule of peel seems more difficult to treat as the translation
of peel relies on an external induction over the syntax but also because it uses proofs of symmetry
and transitivity of =pm that do not seem to compute as needed.

6.4 Related works

The idea to build a syntactic model satisfying extensionality axioms is already present in the work
of Gandy [18]. Concretely, in Higher Order Logic, Gandy defined a syntactic model by restricting
the elements of discourse to parametric ones and proved that, in this model, extensionally equal
elements satisfy the same properties. Here, we adapt this construction to the theory HAω

and, using ideas of the Curry-Howard correspondence, we formulate it as a translation of proof
systems. Our translation slightly differs from the one of Gandy because we use techniques from
parametricity. This choice comes from the idea that parametric translation can serve to extend
equality. Nevertheless, because extensionality and parametricity relations collapse to equality in
an extensional model, it is somehow a matter of design.

Zucker already proved a result of relative consistency between E-HAω and N-HAω [54, 49].
He did it in a semantical fashion by transforming models of N-HAω into models of E-HAω. The
method he used is similar to the method of Gandy but, in this context, it suffices to restrict the
domain to parametric elements and to check that the relation of extensionality is an equivalence
relation that is congruent (thus suited to interpret equality). In our work, rather from N-HAω,
we start with HAω: we reconstruct the equality from scratch and show that it respects Leibniz
principle. Despite this slight difference, our work can be seen as the syntactical counterpart
of the result of Zucker. One advantage is that a syntactical translation comes with an explicit
translation of proofs, that we formulate here as a translation of proof terms.

The ideas behind the proof system λHAω are folklore3. For instance, representing the axiom
scheme of induction as an inference rule can be seen in many other proof systems as for instance
in Martin-Löf Type Theory [33]. The idea to use the predicate null(t) to derive the forth axiom
of Peano already appears in the work of Miquel [35]. The terminology peel that we use to denote
the eliminator of equality is similar to the one used in some presentations of type theory [42],
however our own motivation to use it is to emphasize that Leibniz principle is recovered by doing
an external induction on the formulas or, more graphically, by peeling out the syntax.

6.5 Conclusion

We designed a translation from λE-HAω into λHAω using techniques reminiscent of parametric-
ity and we proved a result of relative consistency: if λHAω is consistent, then so is λE-HAω.
The following diagram shows an intuition of the translation:

3This paragraph explains similar ideas as the one I wrote in Subsection 2.2.4.
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λE-HAω λHAω

t ⇝
t1

t2

tpm

M : t = u ⇝
t1 u1

t2 u2

tpm
M

pm
upm

A first-order term t is interpreted as a proof of (parametric) equality between two copies of
itself and an equality proof M : t = u is translated into a proof of (parametric) equality between
a copy of t and a copy of u. While the choice to translate M as an equality between t1 and u2 is
ad hoc (in the sense that it is not imposed by the translation), it is notable that equality proofs
are translated into (parametric) equality proofs without need of higher order structures (that do
not exist in this framework).
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