UNIVERSIDAD DE LA REPÚBLICA FACULTAD DE AGRONOMÍA

ESTUDIO DE LA ASISTENCIA AL PARTO COMO MEDIDA DE MANEJO PARA DISMINUIR LA MORTALIDAD DE CORDEROS. ANÁLISIS DE LOS DATOS OBTENIDOS SOBRE OVEJAS Y BORREGAS CORRIEDALE

por

Javier Alessandro VILLA AVIAGA

TESIS presentada como uno de los requisitos para obtener el título de Ingeniero Agrónomo

MONTEVIDEO URUGUAY 2010

Tesis aprobada por:
Director:Dra. M.V. Mariel Regueiro MSc.
Dra. M.V. Raquel Pérez Clariget PhD.
Ing. Agr. Andrea Álvarez-Oxiley
Fecha: 28 de diciembre de 2010
Autor: Javier Alessandro Villa Aviaga

AGRADECIMIENTOS

A mis padres, hermanos y amigos quienes han sido un gran apoyo en esta carrera.

A mi directora de tesis, los docentes de producción animal, al personal de biblioteca y a todos los que me ayudaron en la realización de esta tesis, así como a los funcionarios de Bañado de Medina que fueron fundamentales para el trabajo de campo.

A todos gracias.

TABLA DE CONTENIDO

	Página
PÁGINA DE APROBACIÓN	11
AGRADECIMIENTOS	
LISTA DE CUADROS E ILUSTRACIONES	VI
1. INTRODUCCIÓN	1
2. REVISIÓN BIBLIOGRÁFICA	5
2.1 EFICIENCIA REPRODUCTIVA	5
2.1.1Perdidas neonatales	6
2.1.1 <u>Perdidas neonatales</u>	
NEONATAL	
2.2.1 Factores intrínsecos al cordero	
2.2.2 Factores inherentes a la madre	
2.2.3 Comportamiento materno al parto	
2.3. MEDIDAS DE MANEJO TENDIENTES A DISMINUIR LA	
MORTALIDAD NEONATAL	21
3. MATERIALES Y MÉTODOS	26
3.1 LOCALIZACIÓN	26
3.2 ANIMALES	26
3.2.1 Manejo de la majada	26
3.2.2Manejo periparto de la majada	27
3.3 CONTROL DE PARTO	27
3.3.1 Mediciones en ovejas	
3.3.2 Mediciones en corderos	
3.3.3 <u>Analisis estadístico</u>	31
,	
4. RESULTADOS Y DISCUSIÓN	32
4.1 RESULTADOS	
4.1.1 Resultados de las mediciones en las madres	
4.1.2Resultados de las mediciones en corderos	
4.2 DISCUSIÓN	
4.2.1 Mortalidad neonatal	
4.2.2 Resultados en las madres	
4.2.3 Diferencias entre borregas y adultas	
4.2.4 Resultados en corderos	48

4.2.5 <u>Viabilidad de la aplicación de las medidas de ma recomendadas en predios comerciales</u>	-
5. <u>CONCLUSIONES</u>	52
6. RESUMEN	53
7. <u>SUMMARY</u>	54
8. <u>BIBLIOGRAFÍA</u>	55
9. <u>ANEXOS</u>	61

LISTA DE CUADROS E ILUSTRACIONES

Cuadro No. Pá	igina
Efecto del aumento en el porcentaje de destete sobre el sistema de producción	2
Probables causas de mortalidad neonatal expresadas como porcentaje del total de corderos muertos	10
Medidas de manejo para disminuir las pérdidas reproductivas e importancia relativa de cada una	23
4. Descripción de las medidas de manejo propuestas en el PTI del SUL	24
5. Planilla de registro para control de comportamiento materno	28
6. Planilla de control para el registro de APGAR	29
7. Peso al nacimiento de los corderos muertos según días al nacimiento	33
8. Distribución en porcentaje del comportamiento materno según condición corporal de las madres al parto	38
9. Tiempo en parase de los corderos según duración del largo de parto	44
10. Tiempo en pararse de los corderos según edad de la madre	44
11. Tiempo en mamar de los corderos según duración del parto	45
12. Tiempo en mamar de los corderos según edad de la madre	45
Figura No.	
1. Evolución del stock ovino del Uruguay	1
2. Porcentaje de señalada nacional para los últimos años	3

3. Resultados reproductivos del Proyecto SUL de Transferencia Integral	6
4. Tasa de crecimiento diario en campo natural de Cristalino	7
5. Tasa de crecimiento diario en campo natural de Basalto	8
6. Representación esquemática del complejo inanición-exposición	9
7. Efecto del peso al nacer de corderos hijos de borregas de parto simple sobre la mortalidad	12
8. Curva epidémica de 83 muertes de corderos mellizos y únicos	14
9. Peso vivo de corderos hijos de ovejas esquiladas preparto y posparto	17
10. Distribuciones obtenidas del largo de gestación de una población Corriedale con dos manejos (momento de esquila) y dos tipos de parto	18
11. Distribución de partos según horario en que se produjeron	32
12. Distribución de las muertes según días al nacimiento de corderos	33
13. Distribución en porcentaje del largo de gestación de ovejas y borregas	34
14. Distribución de la CC al parto de ovejas y borregas	35
15. Largo de parto de ovejas y borregas en porcentaje del total y porcentaje de los partos que fueron asistidos	
16. Distribución en porcentaje de ovejas y borregas según comportamiento materno	37
17. Distribución del porcentaje de partos asistidos según CM de ovejas y borregas dentro de cada rango de CM	38

18. Comportamiento materno de ovejas y borregas según tiempo que demoró el parto	39
19. Rango de peso de los corderos nacidos y su frecuencia, la segunda barra muestra el porcentaje de partos asistidos dentro de cada rango	40
20. Mediciones de largo del cuerpo de los corderos al parto y circunferencia del cuello	41
21. Temperatura rectal registrada en los corderos al nacimiento, a la hora y a las seis horas de nacido, y su distribución en porcentaje	42
22. Resultado de la prueba de Apgar y distribución en porcentaje de los corderos nacidos según valor de este	43
23. Resultado de la prueba de Apgar y distribución en porcentaje de los corderos según asistencia o no al parto	43
24. Resultado de la prueba de Apgar y distribución en porcentaje de los corderos según sean hijos de borregas o adultas	44

1. INTRODUCCION

Las existencias ovinas a nivel mundial han presentado durante las últimas décadas una marcada reducción, esta se debe principalmente a las variaciones en los precios de la lana y pérdida de competitividad frente a otros rubros.

El Uruguay ha seguido esta tendencia internacional y su stock ovino se ha reducido fuertemente estos resultados se observan en la figura No. 1, además se originó un cambio en la composición del stock, debido una mayor reducción relativa en la categoría capones frente a ovejas, resultando en una majada nacional más orientada hacia el proceso de cría (Montossi et al., 2006c).

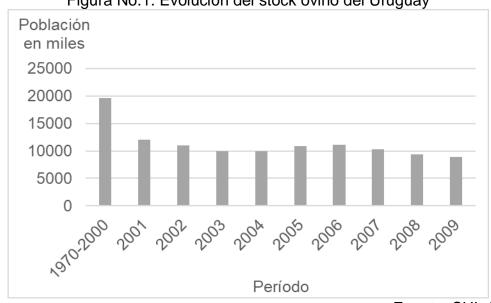


Figura No.1. Evolución del stock ovino del Uruguay

Fuente: SUL (2009)

Estas tendencias destacadas para el stock ovino, tuvieron también su impacto diferencial en el sector primario, resultando en una regionalización de la producción ovina, concentrada esencialmente en las regiones de Basalto y Cristalino (75% del total de existencias ovinas se ubican en estas regiones); demostrando así, debido a las características productivas en estas regiones, la extensividad del rubro (Montossi et al., 2006b).

Si bien existe un consenso generalizado sobre la viabilidad de la producción ovina, existen señas claras que para mantener la sustentabilidad del mismo es necesario, por un lado producir lanas cada vez más finas y por otro maximizar los kilogramos de corderos por hectárea. Para lograr ambos objetivos es preponderante la mejora y optimización de los resultados reproductivos, ya que por medio de éstos es posible aumentar la velocidad del progreso genético, así como también la maximización del retorno económico al aumentar los resultados reproductivos.

El impacto de aumentar la tasa reproductiva queda claramente demostrado en el cuadro No. 1 desarrollado por Azzarini, citado por Fernández Abella¹, donde se observa como el aumento en el porcentaje (%) de destete repercute en los resultados finales del sistema de producción aumentando exponencialmente tanto el número de animales para la venta, así como el número de animales disponibles para la selección de la reposición (ver supuestos utilizados en anexo).

Cuadro No.1. Efecto del aumento en el porcentaje de destete sobre el sistema de producción

		notorric	a do pi	oaaoo	1011		
DESTETE (%)	60	70	80	90	100	110	120
Corderos destetados							
machos	30 35 40 45 50 55 6				60		
hembras	30	35	40	45	50	55	60
REPOSICIÓN	25 Corderas						
Cord. disponibles venta							
machos	30	35	40	45	50	55	60
hembras	5	10	15	20	25	30	35
total	35	45	55	65	75	85	95
Incremento (%)	-	29	57	86	114	143	171

Fuente: Azzarini, citado por Fernández Abella¹

Es así que en la 1era Auditoría de Calidad de la Cadena Cárnica Ovina del Uruguay, es identificada también a la mejora de la eficiencia reproductiva, como la mayor restricción que enfrenta el rubro para su crecimiento sustentable (Montossi et al., 2003). Lo cual, condice con las líneas de investigación desarrolladas durante los últimos años donde claramente se identifica una búsqueda por aumentar la prolificidad de las majadas y una reducción en las perdidas reproductivas

Ganzábal y Echevarría (2006a) afirman que el deficitario comportamiento reproductivo es la limitante tecnológica de mayor peso, dificultando la mejora de

¹ Fernández Abella, D. 2008. Curso de Ovinos y Lanas (sin publicar)

la eficiencia productiva, siendo ésta uno de los principales escollos a vencer para la reactivación del sector ovino nacional.

Según Salgado (2004) la reducción de la población ovina no ha sido acompañada de una mayor eficiencia del proceso productivo de la majada nacional. Por el contrario las principales restricciones productivas se encuentran actualmente en los bajos índices de señalada, la baja utilización del potencial reproductivo de las hembras, los elevados índices de mortalidad y la baja productividad de lana por cabeza.

Si bien es clara la tendencia hacia sistemas más criadores y a su vez queda bien marcado que una gran limitante es la eficiencia reproductiva, a pesar que se observa una leve mejora a nivel país del porcentaje de señalada en los últimos años, ésta presenta una importante variabilidad entre años y sigue siendo muy por debajo del potencial. De todos modos, sigue existiendo un gran margen para mejorar esta eficiencia.

Figura No.2. Porcentaje de señalada nacional para los últimos años

Fuente: SUL (2009)

Estos bajos porcentajes de señalada se dan principalmente debido a que la cifra promedio de mortalidad perinatal se estima en 20% de los corderos nacidos, con una variación del 14% al 32% según los años y los predios, siendo esto fuertemente influenciado por factores climáticos. Además es de remarcar que el 90% a 95% de las muertes ocurren durante las primeras 72 horas de vida (Dutra, 2005).

Es claro que la limitante tecnológica de mayor envergadura que el rubro enfrenta, es el deficitario comportamiento reproductivo de las majadas. Es así que el aumento de los porcentajes de señalada, obtenido por un aumento en la prolificidad, una menor edad de encarnerada y una marcada reducción en la mortalidad de corderos, son objetivos ineludibles para la recuperación del stock ovino nacional.

El objetivo del presente trabajo apunta a la disminución de la mortalidad neonatal de corderos aplicando medidas de manejo en el entorno al parto, como la asistencia del mismo, fortalecimiento del vinculo madre-hijo y auxilio en la nutrición y termorregulación del recién nacido.

En base a la información recabada se analizan y comparan los datos obtenidos sobre el parto y comportamiento materno de ovejas y borregas Corriedale en partos asistidos y normales; así como también una serie de parámetros recabados de los corderos recién nacidos y la comparación de estos según el tipo de parto y madre. Con esta misma información recabada y analizada es evaluado como el manejo realizado al parto logra incidir sobre la sobrevivencia de los corderos y el comportamiento materno de las madres a las cuales se les aplicaron las medidas.

2. REVISIÓN BIBLIOGRÁFICA

2.1 EFICIENCIA REPRODUCTIVA

La eficiencia reproductiva es resultado de la fertilidad y prolificidad de la hembra, así como de la supervivencia de sus crías. Según Azzarini y Fernández Abella (2004) la baja supervivencia neonatal es una de las fuentes de pérdidas de eficiencia más visibles, si bien este autor enfatiza que la baja fertilidad de las hembras en algunos casos y la magra fertilidad en la mayoría, son importantes responsables del bajo porcentaje de señalada.

Ganzábal y Echevarría (2006a) aseguran que la mortalidad de corderos es conjuntamente con la tasa ovulatoria uno de los parámetros de mayor importancia en determinar los resultados reproductivos de un rebaño.

Por su parte Dutra (2005), afirma que la mortalidad perinatal de corderos es uno de los factores más importantes que limitan la eficiencia biológica y económica de los sistemas de producción ovina en todo el mundo. Las pérdidas derivan no sólo de la muerte de animales, sino también de la mayor utilización de forraje y menor producción de lana de la oveja gestante, y de la reducción del número de animales disponibles para la selección.

Estos niveles de pérdidas son difíciles de disminuir más allá del 10% (Banchero, citado por Dutra, 2005) a pesar de que se controlen las enfermedades infecciosas o se implementen prácticas de manejo y alimentación adecuadas.

En un intento por disminuir las perdidas reproductivas el SUL desarrollo un trabajo de transferencia integral de tecnología (Oficialdegui, Azzarini y Fernández Abella, citados por Montossi et al., 2006b), donde sobre la base de 108 productores (2001) con los cuales se aplico una serie de medidas tendientes a disminuir las perdidas reproductivas (ver punto 2.3), fue posible lograr un promedio de 76% de señalada, y en los subsiguientes años los resultados alcanzados fueron 75% (2002) y 70.5% (2003), estos resultados se observan en la figura No. 3. Si bien los resultados de estos años fueron sustancialmente superiores a la media de señalada del país para igual período (57.6%), lo cual es una mejora sustancial, estos siguen estando lejos del potencial reproductivo de nuestras majadas (120% o mayor).

Transferencia Integral n=109 establecimientos, Promedio=87 35 % de establecimientos 30 25 20 15 10 5 0 <60 70-80 60-70 80-90 90-100 >100 % de señalada

Figura No.3. Resultados reproductivos del Proyecto SUL de Transferencia Integral

Fuente: Montossi et al. (2006b)

Al analizar las fuentes de pérdidas reproductivas y debido a que los corderos nacidos como únicos constituyen al menos el 88% de los corderos que nacen en nuestro territorio, siendo un 12% mellizos o menor en la proporción de corderos totales producidos, en la actualidad, los corderos nacidos como únicos son la principal fuente de pérdida económica por su importante mortalidad neonatal (Montossi et al., 2006c). Es así que, la disminución de estas pérdidas es uno de los factores preponderantes a disminuir para la sustentabilidad del sector a pesar de las variaciones de precios de mercado.

2.1.1 Perdidas neonatales

La sobrevivencia neonatal depende de una interacción exitosa entre la madre y su cría. Esta interacción permite a la oveja identificar a su cría y a la cría identificar a su madre. Sin embargo, la creación de este vínculo madre-cría no es suficiente. El cordero necesita además un adecuado suministro de calostro en las primeras horas de vida (Nowak, citado por Banchero et al., 2006), ya que el calostro es la fuente más importante de energía y es la única fuente de inmunoglobinas y agua que dispone luego del nacimiento (Pattinson et al., citados por Banchero y Quintans, 2002)

Dwyer (2002) también considera que para que se consolide la unión y una correcta alimentación de la cría, esto depende de un correcto comportamiento entre madre y cría coordinadas, para que esta última

sobreviva. Este autor afirma que es tan importante el comportamiento de la madre como de la cría. Trabajando con ovejas merino Alexander y Peterson, citados por Dwyer (2002) encontraron que las muertes neonatales se debieron en un 14 % al comportamiento materno aislado, 33% al comportamiento del cordero y el resto al comportamiento conjunto madre-hijo.

Para entender las principales causas de mortalidad es importante remarcar la característica extensiva de la producción ovina en nuestro país (Montossi et al., 2006a). Esto trae aparejado una dependencia casi exclusiva del aporte nutricional del campo natural, el cual como característica tiene una baja disponibilidad en los meses de invierno (Formoso, 2005), donde la mayoría de los vientres están gestando, junto a una gran variabilidad entre años; esto se observa en las figuras No. 4 y No. 5. Además la supervisión de los partos es casi nula por las características de estos sistemas (potreros demasiado grandes, etc.) lo cual trae en conjunto un aumento de los corderos abandonados y por consiguiente un aumento en la mortalidad de los mismos.

El crecimiento diario del campo natural y la variabilidad para Cristalino y Basalto, dos de las principales zonas en cuanto a cantidad de existencias ovinas, se observa en las figuras No. 4 y No. 5.

Figura No. 4. Tasa de crecimiento diario en campo natural de Cristalino, expresada en kg. de materia seca/ha./día y periodo habitual de gestación de nuestras majadas

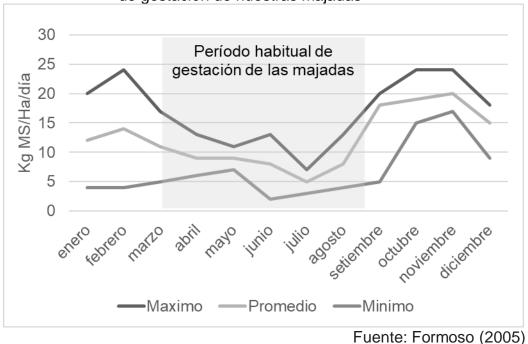
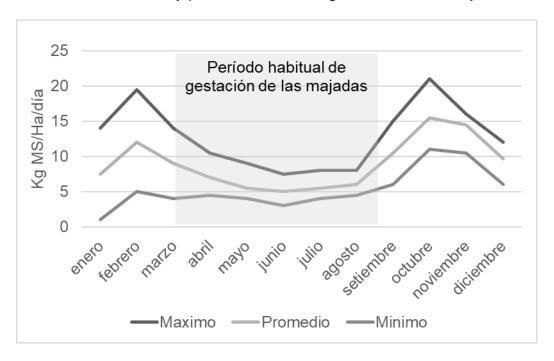



Figura No.5. Tasa de crecimiento diario en campo natural de Basalto (suelo superficial pardo rojizo), expresada en kg. de materia seca/ha./día y periodo habitual de gestación de las majadas

Fuente: adaptado de Berreta (1998)

Debido a la realización de encarneradas de otoño con pariciones de mediados a fines de invierno sobre campo natural, se explica en parte las bajas señaladas nacionales dadas principalmente por una importante mortalidad de corderos que ocurre en las primeras 72 horas de vida, la cual está relacionada entre otros factores, a una inadecuada alimentación y manejo de la oveja de cría durante el último tercio de gestación (Montossi et al., Azzarini y Fernández Abella, citados por Montossi et al., 2006c).

Las perdidas reproductivas se dan en la mayoría de los casos debido a la interacción de manejo y estado corporal de las ovejas, lo cual contribuye a la variación del peso al nacer del cordero, largo de gestación y sobrevivencia de los mismos (Holst et al., 2002). Estos autores afirman que debido a estas características, las principales causas de mortandad se deben a la mala alimentación previa de los vientres y desatenciones durante las pariciones.

Las muertes se producen en muchos casos debido a la imposibilidad de mamar y/o mantener la temperatura corporal por parte del cordero, esto depende en gran medida del vigor del mismo al nacer, pero también del comportamiento de la madre al parto y luego del mismo, del vínculo madre-hijo ya que de éste depende que la madre continúe con los cuidados de su cría y que la cría continúe interesada en la madre, para alimentarse, resguardarse, etc. (Fernández Abella,1995)

La interacción del clima con el consumo de leche por el cordero determina cierta tasa de producción de calor por unidad de peso vivo (Fernández Abella, 1995). Este autor afirma que los fenómenos atmosféricos actuando negativamente provocan la caída de la producción de calor, entrando el animal en un estado de hipotermia que lleva a la muerte del mismo. Este hecho ha sido el más estudiado a nivel nacional e internacional para lograr reducir la mortandad de corderos.

Según Fernández Abella (1995) la hipotermia se produce por dos grandes causas, una excesiva perdida de calor en las primeras horas de vida del cordero (Alexander, Eales y Smal, citados por Fernández Abella, 1995), y una disminución de la producción de calor provocada por la inanición de los corderos en sus primeras 12 a 48 horas (Alexander, Mc Cutcheon et al., Eales et al., citados por Fernández Abella, 1995).

A continuación se observa en la figura No. 6 una representación esquemática de las causas y sus interacciones en el complejo inanición-exposición.

Exposición al frio < Aumenta la producción Incrementan las pérdidas de calor de calor Hipotermia Malestar? Daños del SNC Abandono de la madre Agotamiento de reservas Fallas del Decremento Corporales Amamantamiento ritmo metabólico Inanición Exposición

Figura No.6. Representación esquemática del complejo inanición-exposición

Fuente: McCutcheon et al., citados por Fernández Abella (1995)

En términos muy generales puede asegurarse que el complejo inanición exposición explica la mayor proporción de las perdidas neonatales. La causa final de la muerte es la hipotermia. En esta situación los corderos ven interferida de alguna manera sus posibilidades de producir calor, ya sea por su poca capacidad para hacerlo o por no poder mamar y reponer las fuentes de energía que consume (Azzarini, 1985). Según Fernández Abella (1993) el cordero durante sus primeras horas de vida debe regular su temperatura corporal, produciéndose normalmente caídas de 2 a 3 grados. Si las condiciones le son desfavorables las pérdidas de temperatura pueden ser mayores lo cual conduce a la muerte del mismo.

La distribución de las causas de mortandad más aceptadas a nivel nacional y su incidencia sobre el total de muertes se observan en el cuadro No.2.

Cuadro No.2. Probables causas de mortalidad neonatal expresadas como porcentaje del total de corderos muertos

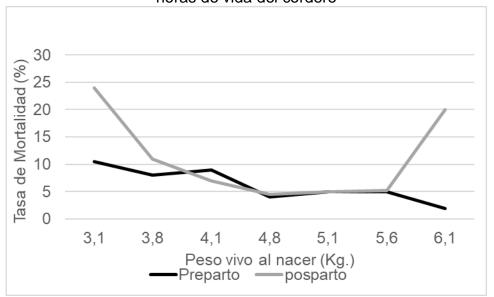
Causas	Promedio
Clima-inanición	61.84
Predadores	18.24
Partos distócicos	6.69
Infecciones	6.61
Accidentes	1.04
Anormalidades morfológicas	0.98
Desconocidas	4.60

Fuente: adaptado de Fernández Abella por Fernández Abella (1995)

No obstante existen nuevos enfoques sobre cuáles son las principales causas de mortandad debido a que las medidas realizadas para evitar estas muertes difícilmente logran que las mismas lleguen a menos del 10%. Es por esta razón que Dutra (2005) propone un nuevo enfoque hacia la investigación de las causas remarcando que en investigaciones recientes realizadas en conjunto entre INIA Estación Experimental del Este y el Laboratorio Regional de Treinta y Tres de DILAVE "Miguel C Rubino", mostraron que una alta proporción de los corderos muertos en el período perinatal temprano presentaba lesiones

cerebrales de encefalopatía hipóxico-isquémica, estos resultados se observan en la figura No. 10.

2.2 FACTORES PREDISPONENTES A LA MORTALIDAD NEONATAL


2.2.1 Factores intrínsecos al cordero

Las reservas corporales y manifestaciones de vitalidad (vigor), que le permiten al cordero enfrentar las condiciones climáticas adversas, desatenciones temporales de sus progenitoras y la rápida adaptación a su nueva fuente de alimento, están directamente relacionadas con su desarrollo corporal y el peso vivo del cordero, por lo cual, la sobrevivencia aumenta hasta cierto rango de peso, a partir del cual el incremento de éste determina que el tamaño del cordero sea una causa predisponente para ocasionar problemas de distocia en los partos (Ganzábal, 2006b). Esta variable entonces, no se comporta en forma lineal sino que el porcentaje de mortalidad decrece en la medida que aumenta el peso del cordero al parto hasta alcanzar un valor mínimo a partir del cual comienza a incrementarse nuevamente

Según Montossi et al. (2006b) las incidencias negativas del efecto del complejo "exposición-inanición" disminuyen a medida que aumenta el peso al nacer del cordero, y así se logra un aumento en la sobrevivencia de los mismos, donde el rango óptimo estaría ubicado aproximadamente entre 3.5 y 5.5 kg, para los biotipos ovinos que predominan en el país.

Montossi et al. (2006b) también afirman que cuando a las madres se les realiza una esquila preparto temprana (eppt.) ocurren cambios en la conformación de los corderos al nacer, siendo los de eppt. más largos y menos altos que los de la esquila posparto. Con lo cual esta diferencia en la conformación de cordero podría facilitar el trabajo al parto de las ovejas, permitiendo mayores pesos al nacer antes de que se produzca un aumento de la mortalidad, estas afirmaciones se deben a los resultados que se observan en la figura No. 7.

Figura No. 7. Efecto del momento de esquila en la tasa de mortalidad de corderos de acuerdo al peso vivo al nacer en las primeras 72 horas de vida del cordero

Fuente: adaptado de Montossi et al. (2006b)

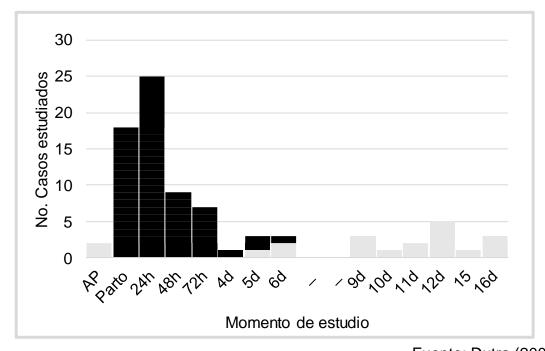
La EPPT. reduciría el tiempo que necesita el cordero para alcanzar la ubre y mamar así como mejoraría el tiempo durante el cual mama en su primera hora de vida, factores imprescindibles para establecer un vínculo fuerte con su madre y aumentar las chances de sobrevivencia (Ganzábal, 2005).

Por otro lado Banchero et al. (2006), consideran que la nutrición preparto de la madre afecta el comportamiento del cordero durante el período neonatal. Los corderos muy grandes y lentos (menos vigorosos) así como los corderos muy livianos y débiles están más predispuestos a una pobre unión madre-hijo y tendrán menos chances de vivir que corderos más activos y con peso intermedio. También afirma que el aumento en la actividad de los corderos (vigor) no se debe a un mayor peso de estos, sino a una mayor partición de nutrientes en el preparto debido por ejemplo a la realización de una suplementación de las madres.

Es así que Banchero et al. (2007) concluyen que el vigor del cordero durante las primeras horas de vida estaba afectado por la nutrición recibida por las ovejas entre los 80 y 135 días de gestación, independientemente del peso vivo de los corderos al nacer. Los corderos más vigorosos se levantan y maman antes estableciendo un vínculo fuerte con sus madres lo cual según los autores repercute en mayor probabilidad se sobrevivencia.

Banchero et al. (2006) trabajando sobre suplementación preparto concluyeron que el incremento en el vigor del cordero es probablemente responsable de la mayor sobrevivencia, durante los primeros 25 días de vida, de corderos únicos y mellizos nacidos de ovejas en buena condición corporal, todos los corderos que murieron tenían peso similar y sus madres estaban interesadas en ellos y los limpiaron de la misma manera que a los que sobrevivieron. Estas afirmaciones ponen en juego además del peso al nacer, el vigor del cordero en ese momento, como una de las principales variables para determinar la sobrevivencia neonatal.

Para que el cordero se pueda alimentar en las primeras horas de vida es necesario además de la atención de la madre, que éste se levante y busque la ubre, es así que Dwyer (2002) afirma que los corderos que mas rápido se levantan y buscan la ubre (más vigorosos) se alimentan antes y poseen más chances de sobrevivencia en los primeros tres días, afirmando este autor que la sobrevivencia y mayor crecimiento de los corderos que se incorporan y maman más rápido no solo se debe a los beneficios nutricionales e inmunológicos de la ingesta temprana de calostro, sino también del efecto del mamar en el reconocimiento y creación del vínculo entre madre e hijo.


Dwyer (2002) considera que el peso al nacer de los corderos no tiene un efecto directo sobre su comportamiento neonatal. El mismo autor si identifica que el peso al nacer tiene efecto sobre las complicaciones al parto y éstas a su vez un efecto directo sobre el comportamiento neonatal, siendo los corderos nacidos de partos con complicaciones, más lentos y menos activos durante el período neonatal. Según el autor esto se da debido a lesiones en el sistema nervioso que son provocadas por hemorragias o asfixia, esto provoca una supresión en las actividades motoras, entre las que está incluida el mamar, afectando ambas la capacidad de termorregulación del cordero.

Si bien el peso al nacimiento es de las variables mas estudiadas y sobre la cual se aplican la mayoría de las medidas tendientes a disminuir la mortalidad neonatal, existe un grado de mortalidad en los corderos que a pesar de tener los pesos óptimos no puede ser reducido, debido a esto toma mayor relevancia la afirmación de Dutra (2005), la cual va en el mismo sentido de Dwyer (2002) acerca de las lesiones producidas al parto en los corderos.

Dutra (2005) sostiene que la especie ovina parece estar bioanatómicamente proclive a desarrollar lesiones al momento del parto, ya que los corderos tienen al nacer un cuello cilíndrico, largo, y muscularmente muy poco desarrollado, con articulaciones cervicales inestables y sumamente flexibles, que lo predisponen a desarrollar lesiones isquémicas al momento del parto. Estas lesiones según el autor de encefalopatía hipóxico-isquémica son probablemente el resultado de la asfixia y trauma al sistema nervioso central producidas durante el proceso de parto.

Según Dutra (2005) trabajos clásicos de Haughey en Australia a principios de los '70, demostraron que muchos de los corderos muertos durante el período perinatal presentaban hemorragias meníngeas, aunque no se realizaron estudios histológicos para evaluar el tipo y severidad de las lesiones en el cerebro. Esto mismo lo pudo demostrar según los datos que se observan en la figura No. 8

Figura No.8. Curva epidémica de 83 muertes de corderos mellizos y únicos. En color oscuro se muestran los corderos con lesiones microscópicas moderadas o severas en el cerebro

Fuente: Dutra (2005)

Apoyando esta afirmación Ganzábal y Echevarría (2006a) también identifican como una de las principales causas de muerte no solo a la inanición, sino también a la encefalopatía hipóxico isquémica, logrando disminuir a estas con una suplementación preparto adecuada.

Estas últimas afirmaciones sobre las causas de mortalidad resultan ser controversiales ya que Duff et al., citados por Fernández Abella (1995) ubican las lesiones en el SNC como importantes solo en los casos de partos distócicos,

siendo una causa de menor importancia en los corderos muertos por el complejo inanición- exposición. Si bien este mismo autor citando a Hauger afirma que los daños del SNC tienen un efecto depresivo en el instinto de succión del cordero (Fernández Abella, 1995), el cual es primordial a la hora de evitar las muertes ocasionadas por el complejo inanición- exposición.

2.2.2 Factores inherentes a la madre

Durante las primeras horas de vida, el cordero recién nacido no sólo depende del vigor del mismo sino también de la habilidad materna y la rapidez para establecer el vínculo entre ambos (Banchero et al., 2006).

El establecimiento de la unión madre-hijo es muy afectado por la atención que la oveja preste al cordero, la que a su vez puede estar influenciada por problemas de alta dotación, distocia, permanencia en el sitio de parición, etc. (Azzarini, 1985).

El mismo autor toma en cuenta que la capacidad de la oveja para producir descendencia viable, depende de factores como la nutrición durante la gestación, la nutrición previo al parto, la edad de la madre, el tipo de parto y de las condiciones durante el mismo que le permitan prestar la atención necesaria al cordero. A esto se agrega el efecto de la edad de la madre que influye sobre la supervivencia de los corderos, debido a que los hijos de borregas u ovejas mayores a los 6 años tienden a ser más livianos, lo que incrementa la mortalidad (Fernández Abella, 1995).

Nowak, citado por Everett-Hincks et al. (2005) relaciona la máxima sobrevivencia neonatal y relación madre-hijo cuando las medidas de manejo conllevan a un aumento del tiempo de permanencia de la madre en el sitio de parto y se asegura un ambiente adecuado para la correcta interacción entre la madre y sus hijos en este lugar.

En cuanto a la nutrición previo al parto Montossi et al. (2006b) aseguran que el estado alimenticio evaluado a través de la condición corporal (CC) de la oveja al momento del parto, es una de las "llaves" más importantes para reducir la tasa de mortalidad de corderos que normalmente ocurre en nuestros sistemas ganaderos.

La condición corporal entre 2.7 y 4.4 parece no afectar el comportamiento maternal de ovejas con corderos únicos (Banchero, citado por Banchero et al., 2006) sin embargo, esto puede ser completamente diferente para el caso de las ovejas melliceras. Las ovejas con mejor condición corporal tienen más reservas corporales y ésto puede ser muy beneficioso para las

ovejas gestando mellizos desde el momento que necesitan más energía para cuidar de dos corderos y para permanecer cerca ellos al menos por 6 horas posparto (Putu, citado por Banchero et al., 2006) sin dejarlos solos en el afán de buscar comida

El hecho que la CC de la madre mejore los niveles de sobrevivencia se debe a que los corderos nacidos de ovejas en buena condición fueron más vigorosos y activos que los corderos nacidos de ovejas en baja condición al parto; los corderos hijos de madre con alta CC intentaron pararse antes y mamaron más del doble del tiempo que los corderos nacidos de ovejas en baja condición (Banchero et al., 2006).

Si bien existe un consenso generalizado de que la CC al parto es una de las llaves para aumentar las chances de sobrevivencia del cordero, Montossi et al. (2006a) trabajando sobre la eppt. (60 a 90 días de gestación) encontró que las ovejas esquiladas, si bien obtenían un aumento significativo del peso vivo, la CC tuvo un comportamiento inverso. Según este autor estas tendencias son, en general, consistentes para ambas categorías (borregas y ovejas) y tipos de partos (únicos y mellizos). Esta información está demostrando que existe una distribución de peso y probablemente de tejidos diferente, entre la madre y su(s) feto(s), provocada por el efecto de la eppt..

Esto es comprobado por Jopson et al., citados por Montossi et al. (2006a), con el uso de tomografía computada, quien encontró que el mayor peso generado en la unidad oveja-feto a favor de la esquiladas pre-parto (74 días de gestación) versus aquellas que tuvieron una esquila posparto, estuvo explicado por un mayor peso del feto de las primeras; estos resultados se observan en la figura No.9.

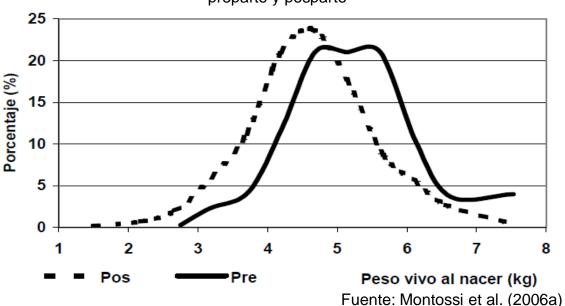
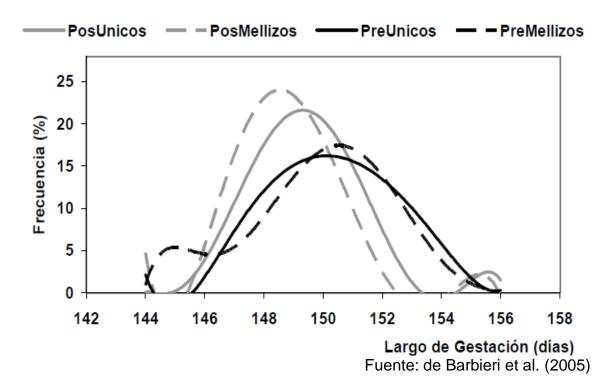


Figura No.9. Peso vivo de corderos hijos de ovejas esquiladas preparto y posparto

Según Banchero et al. (2007) con la eppt. (50 a 90 días de gestación), el estrés se estaría dando en el período de mayor crecimiento de la placenta, lo cual provocaría un incremento suplementario en el tamaño de la misma, así como en el feto y en consecuencia un aumento del peso del cordero al nacer. Este efecto estaría explicado por el aumento del flujo de nutrientes al feto como consecuencia del incremento en el consumo voluntario de la madre y un

aumento en la movilización de reservas corporales de la oveja.

Con la eppt. se logran aumentos de hasta 20% de supervivencia de los corderos nacidos en comparación con la esquila preparto tradicional (tardía), debido a que en ese momento se manifiesta una mayor crisis forrajera como se observa en las figuras No. 4 y No. 5, sumado a que las ovejas tienen una capacidad de consumo reducida por el mayor tamaño del feto (Banchero et al., 2006).


La esquila preparto, además de facilitar el manejo de los vientres durante el periodo de partos, permite reducir significativamente la mortalidad de corderos, particularmente en las primeras 72 horas de vida, prolongándose este efecto hasta el destete con respecto a la de corderos nacidos de ovejas que no han sido esquiladas (Montossi et al., 2006a).

En un ensayo realizado por Banchero et al. (2007) al analizar la esquila preparto realizada a los 70 o 120 días de gestación concluyeron que éstas

producen cambios en la oveja que de alguna manera se traducen a la cría en diferente grado, de acuerdo a la edad de la madre y a su carga fetal. La borrega parece ser la menos susceptible a las señales que envía el estrés de la esquila preparto, ya que no se registró ningún cambio en las variables de conducta del cordero, ni en su peso vivo, ni en las características de la placenta. Aún teniendo corderos de similar peso al nacimiento, las ovejas esquiladas a los 70 o 120 días de gestación tuvieron corderos más vigorosos al parto que las ovejas sin esquilar (Banchero et al., 2007).

Además de los factores mencionados por Montossi et al. (2006a), es de destacar que se comprobó que otro de los factores que está influyendo en el aumento del peso vivo al nacer de los corderos por la aplicación de la tecnología de eppt., es el mayor largo de gestación generada por ella. Este incremento se observa en la figura No. 10 donde se observa la mayor variabilidad y largo de gestación de las ovejas esquiladas preparto frente a las sin esquilar (De Barbieri et al., 2005).

Figura No.10. Distribuciones obtenidas del largo de gestación de una población Corriedale con dos manejos (momento de esquila) y dos tipos de parto

El largo de gestación promedio en Corriedale es de 147 días y este varía entre 145 a 155 días, cuando no se implementan medidas para modificar el largo de este. La edad de la madre también tiene efecto sobre el largo de gestación siendo en borregas 1-2 días menos, así como también cuando se produce una subnutrición durante las últimas etapas de preñez acortándose esta en 4 a 7 días (Fernández Abella, 1993).

2.2.3 Comportamiento materno al parto

El comportamiento materno está relacionado con la nutrición. Thomson y Thomson, citados por Banchero et al. (2006), demostraron que una mala nutrición durante la gestación deprime el comportamiento materno e incrementa la mortalidad de corderos únicos y mellizos. A su vez la nutrición en el preparto también tiene efecto importante en la sobrevivencia de los corderos.

Putu et al., citados por Banchero et al. (2006) demostraron que la suplementación con lupino durante la última semana de gestación mejoró el comportamiento materno de ovejas que estaban pariendo en condiciones de pasturas muy pobres en calidad y cantidad.

La suplementación preparto aumenta la proporción de ovejas con corderos únicos y mellizos que tuvieron un mejor cuidado de sus hijos y permanecieron más tiempo en el lugar del parto (Banchero et al., 2006).

Ganzábal (2005) también comprobó que los corderos nacidos de ovejas suplementadas con concentrado o con acceso a *Lotus maku* tuvieron una mayor sobrevivencia que los corderos nacidos de ovejas con acceso sólo a campo natural, lo cual no sólo se debió a una disminución de muertes por inanición, sino que también una disminución de la muerte por trauma o injuria al parto.

Según Banchero y Quintans (2002) uno de los principales factores por lo cual la inanición sigue siendo la causa más importante de la mortalidad en corderos es la falta de calostro de las ovejas al parto. Una suplementación corta preparto con granos ricos en almidón permite incrementar significativamente la producción de calostro tanto en ovejas con corderos únicos como mellizos. Asimismo, la viscosidad del calostro disminuye sin alterar su calidad, haciéndolo más fácil de consumir por parte del cordero.

De todos modos en situaciones donde a pesar de cubrir las necesidades nutricionales, para evitar la incidencia de enfermedades metabólicas y obtener corderos dentro del rango de peso objetivo, se registran niveles basales de mortalidad difíciles de reducir; es así que nuevos enfoques sobre las causas toman mayor relevancia (Azzarini, 1985).

Muchas ovejas no muestran el mismo comportamiento materno frente a similares condiciones preparto, estas no limpian a sus corderos y los empujan y abandonan inmediatamente luego de paridos (Alexander, citado por Banchero et al., 2005). Este es el caso de un alto porcentaje de borregas de primera parición, categoría en la cual se registran la mayor cantidad de muertes de corderos. Una posible explicación a este fenómeno vincula la alta tasa de abandono con el tiempo más prolongado de trabajo de parto que presentan las hembras de primer parto (Banchero et al., 2005).

Según Dwyer (2005) la mayor mortalidad de corderos en las primíparas se debe a una serie de causas en conjunto. En las borregas generalmente se da una reducción de la CC durante la gestación, lo que indicaría un balance energético negativo, produciendo corderos más livianos y por ende de menor vigor. Esto sumado a que la madre no coopera en gran medida en los intentos de mamar del cordero recién nacido y que en general presentan menos leche y de menor calidad que las multíparas, hace que la energía del cordero recién nacido se agote rápidamente reduciendo así el vigor del cordero. Este autor asevera que estos factores estarían afectando no sólo el vigor del cordero sino también el comportamiento de la madre, lo cual es fundamental para el establecimiento del vinculo madre-hijo y reducir así la mortalidad neonatal.

Alexander, Shelley, Arnold y Morgan, citados por Fernández Abella (1995) también afirman que la oveja primípara manifiesta generalmente problemas de comportamiento, aumentando los mismos con el tamaño de majada y de camada, lo cual explica, junto con la menor producción láctea en las borregas, que los porcentajes de supervivencia sean menores a pesar de tener igual peso al nacer que corderos hijos de multíparas.

Azzarini (1985) estima que las investigaciones en el área de comportamiento animal pueden contribuir a disminuir la mortalidad neonatal, particularmente entre corderos nacidos de partos múltiples. A ello se agrega la posibilidad de mejorar la habilidad materna por selección.

Piper et al., citados por Azzarini y Fernández Abella (2004) indicaron que es posible mejorar la supervivencia de los corderos seleccionando por habilidad materna, debido a que la heredabilidad de la habilidad materna es entre 0.1 y 0.19, definida esta como el número de corderos destetados por cordero nacido. Valores similares encontraron Lambe et al., citados por Everett-Hincks et al. (2005) quienes reportan una heredabilidad del 0,13 y una repetibilidad de 0,32 para el comportamiento materno.

Si bien Everett-Hincks et al. (2005) trabajando en un predio en particular encontraron una baja heredabilidad y repetibilidad del comportamiento materno medido como mbs. (Maternal Behaviour Score), aseguran que la baja repetibilidad sobre el comportamiento entre una parición y otra es explicada según los autores debido a que el mbs. estudiado por estos autores presentó baja variación genética, con efectos ambientales temporarios del orden del 91% del total de la variación, lo cual es explicado según los autores a los años de selección dentro de la majada en estudio. Sin embargo en el establecimiento en que realizaron dicho estudio, el cual lleva 30 años seleccionando a favor de MBS, muestra mayores niveles de sobrevivencia de corderos que la media nacional neozelandesa y esto se da particularmente en mellizos (89% vs. 94%).

Estos autores también encontraron que el mbs. fue aumentando a medida que transcurría la parición. Lo cual según estos se deba seguramente a un acostumbramiento por parte de las ovejas a la presencia humana, permitiendo esto el realizar un control de parto y asistencia sobre el mismo sin la ocurrencia de abandonos por la interferencia humana

2.3 MEDIDAS DE MANEJO TENDIENTES A DISMINUIR LA MORTALIDAD NEONATAL

En base a las diferentes investigaciones de INIA, INAC, SUL, Facultad de Agronomía y Veterinaria es que Montossi et al. (2006c) proponen una serie de pasos de innovación y adopción de tecnología para lograr pasar del 50-60% de destete al 80-90%. Se debe incluir la aplicación principalmente de medidas de manejo (ej.: manejo del campo natural, ajuste de la carga animal, empotreramiento, etc.). De las tecnologías disponibles, aquellas de manejo según los autores son las primeras que se deben aplicar por su gran impacto relativo en la productividad e ingreso del productor en comparación con la reducida demanda en inversión e infraestructura, menor riesgo y baja demanda en la capacitación de los recursos humanos cuando se las aplica en un sistema de producción.

El uso integral de tecnologías de bajo costo e inversión y de sencilla aplicación (diferimiento de forraje de campo natural y/o mejoramientos de campo, manejo de la disponibilidad y/o altura del forraje, uso de la condición corporal, correcta sanidad de los animales y esquila preparto temprana) aparecen como opciones de alto impacto para mejorar la eficiencia reproductiva de la majada de cría y los ingresos de los productores ubicados en las principales regiones ganaderas donde se concentra la producción ovina del Uruguay (Montossi et al., 2006c).

Por otra parte Banchero et al. (2006) realizan un listado de las medidas que consideran fundamentales para la disminución de la mortalidad neonatal, estas medidas se listan a continuación.

Ecografía: conociendo la carga fetal y el momento del parto se pueden hacer manejos diferenciales en cuanto a condición corporal y carga fetal asignando las mejores pasturas o suplementando a las ovejas en baja condición o gestando mellizos.

Sanidad: la dosificación preparto de las ovejas es vital para que estas se mantengan saludables durante el parto y luego del mismo produciendo una cantidad adecuada de leche. Otro punto importante en la sanidad es la vacunación de las ovejas previo al parto contra clostridiosis.

No hacinar las ovejas melliceras: el proceso del parto hace que la oveja esté más susceptible a buscar corderos recién nacidos. Cuando las ovejas están muy juntas esto ocasiona que la oveja parturienta "robe" corderos nacidos en horas previas. Una vez que la oveja parturienta pare su propio cordero puede abandonar el cordero robado y éste indefectiblemente si no es adoptado por otra madre muere.

Supervisión y Asistencia al parto: supervisar la parición sin interferir en los parto a menos que la oveja necesite ayuda. Los problemas se presentan en el caso de ovejas en muy baja CC y/o con poca experiencia, como la borrega primeriza u ovejas de temperamento nervioso. Por tanto, conviene encerrar a la oveja con su(s) cría(s) en un brete que se construye en el mismo potrero y dejarla con su(s) cordero(s) varias horas, hasta que se establezca el vínculo entre ellos. Es importante vigilar que ese cordero haya mamado y, si no, ayudarlo.

Esquila preparto: la esquila preparto es otra de los manejos indiscutibles para mejorar la sobrevivencia de corderos.

Banchero et al. (2006) califican las distintas medidas de manejo tendientes a disminuir la mortalidad de cordero según su impacto en la baja de la tasa de mortalidad, esta calificación se puede observar en el cuadro No.3 donde según la cantidad de puntos es la importancia asignada a cada una.

Cuadro No.3. Medidas de manejo para disminuir las perdidas reproductivas e importancia relativa de cada una

Ecografía	• • •
Esquila preparto	• • •
Potrero de parición	• • •
Condición corporal	• • •
Sanidad	• • •
Suplementación preparto o pastoreo de	• •
pasturas de alta calidad en los últimos 7 a	
15 días de gestación	
Carga instantánea de ovejas al parto	•
Supervisión y asistencia al parto	• •
Personal capacitado y motivado	• •
Cuidados intensivos de corderos	•

Fuente: Banchero et al. (2006)

El Secretariado Uruguayo de la Lana lleva a cabo un proyecto técnico integrado (pti.) donde también propone una serie de medidas de manejo tendientes a disminuir las pérdidas reproductivas, las cuales se observan en el cuadro No.4.

La fundamentación de la aplicación de estas medidas se basa en el aprovechamiento de la variación estacional de los componentes de la reproducción. El efecto del estado nutricional de las ovejas en los momentos clave del ciclo reproductivo (relacionado estrechamente con el ajuste de la carga animal en relación a los recursos forrajeros). La atención sanitaria fundamentalmente en el relacionado con las enfermedades podales y con los parásitos gastrointestinales. La instrumentación de algunas prácticas de manejo como el momento de esquila de la majada de cría son las claves para la reducción de las pérdidas reproductivas.

.

Cuadro No.4. Descripción de las medidas de manejo propuestas en el pti. del SUI

en ei pii. dei OOL					
	Antes	Propuesta			
Previo a la encarnerada					
Pesar borregas	No	+35 Kg			
Condición corporal	No	-3 a pasturas			
Encarnerada	febrero-marzo	abril-mayo			
Ecografía	No	Si			
Parición	agosto-setiembre	setiembre-octubre			
Esquila	octnoviembre	agosto-setiembre			
Señalada	Completa	Incompleta			
Destete	Diciembre	enero			

Fuente: Fernández Abella¹

En general las medidas de manejo tendientes a disminuir la mortalidad de corderos tienden a mejorar la nutrición de la oveja en los momentos críticos para obtener coderos con pesos adecuados, mejorar la producción de calostro de las madres y por último reducir las incidencias negativas del clima en el entorno del parto. Es así que una correcta elección del potrero de parición, junto a las medidas antes descriptas son fundamentales a la hora de reducir las pérdidas neonatales.

Cabrera (2006) realizando especial énfasis en la elección del potrero de parición como una de las medidas para reducir la mortalidad de corderos, selecciona como los principales aspecto a tener en cuenta:

Alimentación que ofrece_ En este aspecto no solo debe ser tenida en cuenta la cantidad de pastura que se ofrece sino también, con especial atención, la calidad de la misma.

Características topográficas y ambientes_ Potreros planos, sin ondulaciones, no aportan barreras contra muchos de los vientos que determinan bajas sensaciones térmicas en nuestro país y que son un elemento negativo para los corderos que nacen. Así como también la orientación que

24

presente el terreno donde se desarrolla el potrero además los potreros bajos o muy húmedos no son los más adecuados.

Abrigos_ El o los potreros deberían contar con cortinas de árboles naturales o artificiales que redunden en un beneficio para el abrigo de la majada. Pero se debe evitar potreros donde si bien su vegetación arbórea representa un gran abrigo, también dado su volumen o configuración y estado representa una limitante para el control de las ovejas o son un reservorio de predadores. El control sobre la vegetación y su adecuación al objetivo son medidas que mucho beneficio nos darán.

Dimensiones del potrero y accesibilidad al mismo_ La época previa al parto y el período parto y primeras etapas de vida y lactancia, son momentos en donde la majada requiere una especial atención, por lo que muchas veces potreros muy grandes requieren de más personas para su control, o terminan siendo recorridos parcialmente. Potreros muy alejados de donde viven las personas que realizan el control de los mismos, representan también una limitante para una buena evaluación de lo que está ocurriendo.

Aspectos sanitarios_ Una majada que ingresa a un potrero destinado a su parto, debería haber recibido todas aquellas medidas que aseguren un buen estado sanitario en los próximos 30 a 60 días. Potreros que hayan estado libres de ovinos por 60 días o más serán los adecuados para recibir a una majada que viene con controles sanitarios, libre de enfermedades podales, controlados sus parásitos internos y externos y con tratamientos preventivos contra enfermedades provocadas por clostridios.

Es importante remarcar que a pesar de existir estos paquetes tecnológicos tendientes a disminuir la mortalidad de corderos los intentos de transferencia de dicha tecnología no han superado porcentajes de señalada superiores al 80% (Montossi et al., 2006c) y que aun en condiciones experimentales se presentan niveles de pérdidas que son difíciles de disminuir más allá del 10% (Banchero, citado por Dutra, 2005) a pesar de que se controlen las enfermedades infecciosas o se implementen prácticas de manejo y alimentación adecuadas. Esto mismo es afirmado por Azzarini (1985), quien afirma que aún en situaciones donde a pesar de cubrir las necesidades nutricionales, para evitar la incidencia de enfermedades metabólicas y obtener corderos dentro del rango de peso objetivo, se registran niveles basales de mortalidad difíciles de reducir.

3. MATERIALES Y MÉTODOS

3.1 LOCALIZACIÓN

El trabajo de tesis fue realizado en la Estación Experimental Bernardo Rosengurtt (EEBR), de la Facultad de Agronomía (Cerro Largo), ubicada en el Km. 408 Ruta 26 (Paraje Bañados de Medina).

3.2 ANIMALES

Fue utilizada la totalidad de la majada perteneciente a la Estación, la cual está compuesta exclusivamente por animales de la raza Corriedale. De esta majada se obtuvieron datos de 278 ovejas, de las cuales 86 fueron primíparas, y el resto multíparas en un rango de edad entre los 2 y 6 años. Los datos registrados se obtuvieron durante la parición 2009 (11 de setiembre a 11 de octubre)

3.2.1 Manejo de la majada

En la majada se realizó una sincronización de celos mediante el uso de Prostaglandina F2α (Glandinex ® Universal Lab.) con dos dosis de 0.3 ml. por animal, separadas por 8 días de intervalo entre las mismas. Para la sincronización se dividió la majada en 2 tandas con el fin de efectivizar el uso de las instalaciones y poder realizar inseminación artificial en aquellos animales que salían en celo. Esta división permitió también tener un mejor control de los partos, ya que el trabajo realizado en los mismos requería de visualización y toma de datos que no podían realizarse si había demasiados partos al mismo tiempo.

El celo fue detectado cada 12 horas mediante la utilización de machos vasectomizados (retarjos) los cuales eran pintados con tierra de color en el pecho, y re-pintados cada vez que se realizada control de celo.

Posteriormente se realizó inseminación artificial (I.A.) por vía cervical a las 12 horas de detectado el celo. Esta se ejecutó entre los días 17 y 26 de abril. Para la misma se utilizó semen de siete carneros de la raza Corriedale pertenecientes a la Estación Experimental. Luego de ésta se loteó por carnero y se realizó el repaso a campo con los correspondientes padres.

A los 90 días del comienzo de la I.A. mediante ultrasonografía por vía transrectal se determino preñez, carga fetal y tamaño de feto, con lo cual fue calculada la fecha probable de parto (ffp.).

La majada durante la gestación fue manejada en 42Ha. pastoreando campo natural (Unidad A.º Hospital, coneat 109) durante los primeros 4 meses de gestación, con una carga de 1,5 UG.; en el mes preparto sobre 20 Ha. de un verdeo de raigrás, con una carga de 3,1 UG.

El 15 de agosto se procedió a la realización de la esquila determinando esto una esquila preparto entre los 94 y 120 días de gestación, siendo en promedio a los 104 días de gestación.

3.2.2 Manejo periparto de la majada

Primeramente se determinó la condición corporal (CC) de la majada y se realizó un loteo según ffp.; las ovejas próximas al parto se manejaron en potreros cercanos a las mangas, realizando un pastoreo sin restricciones (ver anexos), los cuales tienen un tamaño promedio de 1,5 Has. lo que permitió una correcta visualización del trabajo de parto de los animales. Por la noche y hasta la mañana siguiente se encerraban en mangas cercanas a los potreros de parición, las cuales contaron con iluminación para el control nocturno de los partos.

Luego del parto y de haber obtenido los datos correspondientes, las ovejas con sus respectivas crías se apartaban del resto de la majada en potreros cercanos por unos tres a cuatro días, para después ser llevados a una pradera de segundo año compuesta por trébol blanco, trébol rojo y raigrás, cercana a los potreros de parición.

3.3 CONTROL DE PARTO

Para la realización de éste se realizó guardia durante las 24hs. desde 11 hasta 22 de setiembre y desde 28 hasta 11 de octubre. El mismo fue realizado desde cierta distancia (con la ayuda de prismáticos) de forma tal que se pudiera observar las ovejas que comienzan trabajo de parto interfiriendo lo menos posible en éste.

Para recabar los datos se utilizó una planilla de control, la cual puede observarse en anexos

3.3.1 Mediciones en ovejas

En las madres se realizó la identificación de ésta con su fecha y hora de parto, así como la duración del mismo y las complicaciones cuando existieron. En caso de mellizos los datos de cada parto fueron tomados individualmente.

Las mediciones realizadas en el parto fueron:

Inicio del parto: se consideró como inicio cuando se podía observar la aparición de alguna parte del cordero (patas, cabeza o cola).

Fin de parto: se consideró fin del parto cuando se producía la expulsión total del cordero

Largo de parto: éste fue medido como el tiempo transcurrido desde el inicio del parto hasta fin (expulsión del cordero)

Asistencia al parto: ésta se brindó cuando existía mala presentación del cordero, se observaba un agotamiento excesivo en la madre, o se excedía las dos horas desde el inicio del mismo sin que exista un progreso evidente (Dwyer, 2003).

Escore de Comportamiento Materno (ecm.) (O'Connor et al., citados por Everett-Hincks et al., 2005): a la hora de nacido el cordero, se realizó la evaluación de comportamiento materno. En éste se observa la reacción de la madre cuando uno manipula el cordero recién nacido. A cada comportamiento le fue asignado un escore entre el 1 y el 5, donde 1 corresponde a una mala madre y 5 una madre excelente; también fue medido el tiempo que se tardó la madre en volver a acercarse al cordero luego de la manipulación del mismo. El criterio de asignación de los puntajes se observa en el cuadro No. 5.

Cuadro No.5. Planilla de registro para control de comportamiento materno

GRADO	Tiempo	Descripción del comportamiento
1		Se va ante la presencia de gente. No muestra interés en el cordero. No vuelve
2		Se va a más de 10 mts. pero regresa con el cordero cuando nos vamos
3		Se va a una distancia entre 5 y 10 mts.
4		Se va a menos de 5 mts.
5		Se queda cerca y toca al cordero durante nuestras maniobras

3.3.2 <u>Mediciones en corderos</u>

Al nacer los corderos se registró:

Temperatura rectal: la misma se registró mediante un termómetro de mercurio, a los pocos minutos de nacido, inmediatamente después de realizado el Test de Apgar (ver siguiente párrafo). Se volvía a tomar la temperatura a la hora de nacido y nuevamente a las seis horas de nacido. En los casos en que los corderos presentaran temperaturas inferiores a los 36°C se procedió a abrigarlos.

Test de Apgar: en este test se evalúan 5 parámetros a los cuales se les atribuye un puntaje de 0 a 2 a cada uno, como se observa en el cuadro No.6; éste es una modificación para ovinos del Apgar utilizado para la evaluación de bebes recién nacidos (Apgar y Beck, citados por Pfister et al., 2005). Para el cálculo del APGAR se suman los puntajes brindados a cada parámetro obteniéndose así un mínimo de 0 y máximo de 10

Cuadro No.6. Planilla de control para el registro de APGAR

	Tono muscular	Pulso	Reflejo de irritabilidad	Apariencia	Respiración
0	Ausente	ausente	Sin respuesta	Azul grisácea o cianótica	Ausente
1	Flexiona patas	>105 lpm.	Leve movimiento de orejas	Amarilla, manchada con meconio	Disminuida e irregular
2	Logra decúbito esternal	<105 lpm.	Estornudos, sacude orejas y cabeza	Piel limpia y normal	Buena y regular

Los parámetros evaluados fueron los definidos por Pfister et al.(2005) los cuales son:

Tono muscular: en éste se asignó el valor según la reacción del cordero inmediatamente después de nacido

Pulso: se midió la cantidad de pulsaciones mediante estetoscopio durante un minuto, según el número de las mismas fue asignado el valor. Se considera normal un número de pulsaciones mayor a 105 por minuto

Reflejo de irritabilidad: para éste se procedió a realizar una molestia en el cordero (en este caso tocar la parte interna de la oreja) y se observó su reacción a la misma.

Apariencia: se observa el color de la piel del cordero recién nacido, pudiéndose presentar con la piel limpia y coloración normal (2), en caso de que esté manchado con meconio o amarillo se le asigna un 1 y si presenta coloración azulada, cianótica es un 0.

Respiración: se observa que la respiración del cordero sea regular (2), irregular (1) o esté ausente (0).

Transcurrida una hora dese el nacimiento se procedió a identificar los corderos mediante el uso de caravanas identificadoras, también tomar nuevamente la temperatura y las medidas que se detallan a continuación:

Largo de cordero: mediante un centímetro se registró el largo comenzando en el occipital y hasta la base de la cola.

Circunferencia de cuello: se midió ésta en la base del cuello mediante la utilización de centímetro.

Peso: para esta medida se utilizó una balanza electrónica marca Walmur con una capacidad de 50 Kg. y una precisión de 20 grs.

Tiempo que demora en pararse: definido como el tiempo transcurrido entre el nacimiento y el momento en el que el cordero queda parado con las cuatro patas por lo menos durante 10 segundos.

Tiempo que demora en mamar: tiempo transcurrido desde el nacimiento hasta que efectivamente se lo ve mamar.

A las 6 horas de nacido cuando se realizaba nuevamente la medición de la temperatura, se procedía a la aplicación de banditas elásticas para provocar una isquemia con caída subsecuente de cola y escroto, dejando los testículos por debajo de esta ligadura para provocar así la castración de los machos.

3.3.3 Análisis estadístico

Los análisis estadísticos se realizaron utilizando el programa SAS System (SAS, del año 2001). Los datos de peso de los corderos, comportamiento materno, APGAR, largo de parto, tiempo en pararse y mamar, temperatura rectal fueron analizadas con PROC GLM. El modelo incluyó el grupo y la edad como efectos fijos.Las variables tipo de parto se analizaron con PROC FREQ.

Los datos son presentados como medias + eem y las diferencias fueron consideradas significativas cuando p<0.05.

4. RESULTADOS Y DISCUSIÓN

4.1 RESULTADOS

Durante los 26 días en los cuales se realizó control de partos durante las 24 horas del día, de las 278 ovejas observadas (de las cuales 86 eran primíparas) fueron recabados los datos totales de 231 partos y de 273 corderos. En este periodo se procedió a la asistencia de 32 partos (13,8% de los partos registrados), y a la aplicación de medidas de auxilio (mantenimiento de temperatura corporal e ingesta de calostro) en el entorno del parto a 19 corderos (7% de los corderos nacidos durante el control de partos).

La distribución del horario en el cual se produjeron los partos se observa en la figura No. 11, donde el 57% de los partos se dieron durante las horas de luz y la ocurrencia de éstos no presentó grandes variaciones durante el día.

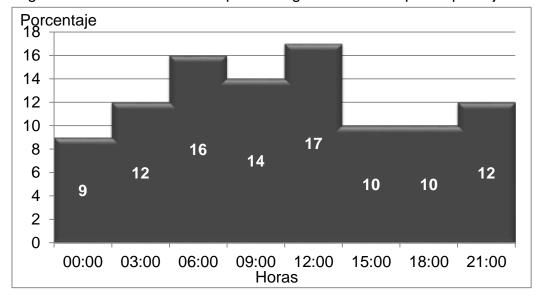


Figura No.11. Distribución de partos según horario en que se produjeron

La mortalidad neonatal registrada durante las primeras 72 horas de vida de los corderos fue de 1,5%, mientras las pérdidas en la primer semana de vida sumaron el 3%, sumando estas pérdidas se observó una mortalidad a la señalada (26 de noviembre) del orden de 11% de los corderos nacidos. Es de destacar que de los corderos muertos en las primeras 72 horas de vida y durante la primera semana de vida un 75% fueron mellizos, mientras el porcentaje de mellizos en el total de las muertes fue de un 22,2%. Al dividir los

corderos muertos según su madre fuera primípara o multípara, se observó una mortalidad de 15,9% en borregas vs un 8,6% en las ovejas adultas.

No. Corderos
25
20
15
10
5
1 2 3 4 6 8 · >14
Días de nacido

Figura No.12. Distribución de las muertes de corderos según días al nacimiento

Los corderos muertos presentaron un peso máximo de 7,34 Kg y un peso mínimo de 2,87 Kg. Los pesos al nacimiento de los corderos muertos se observan en el cuadro No. 7.

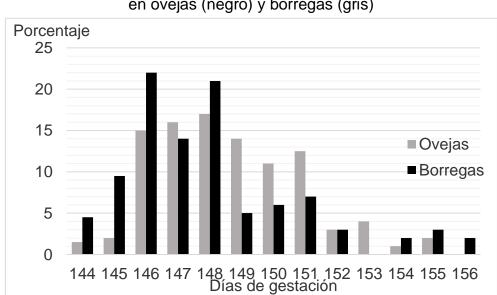
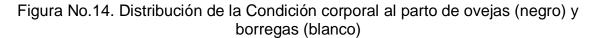
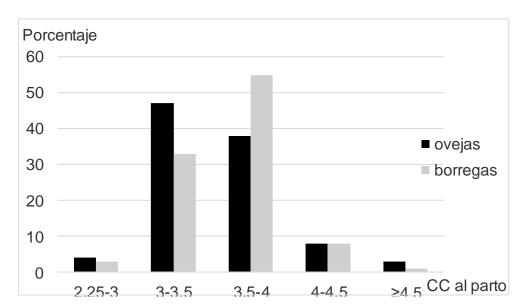
Cuadro No. 7. Peso al nacimiento de los corderos muertos, según días de nacidos

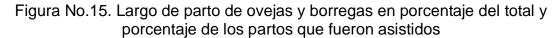
			-			
Días de nacido	1	2	4	6	8	>14
Peso (Kg)	4,45	4,65	4,40	4,48	3,72	5,45±1,06*
	2,87	4,80	5,40			
			4,16			

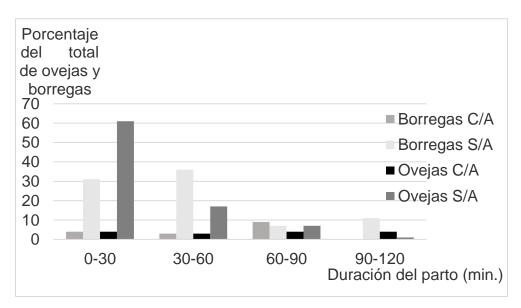
^{*(}los pesos de los animales muertos después del día 14 se presentan como promedio)

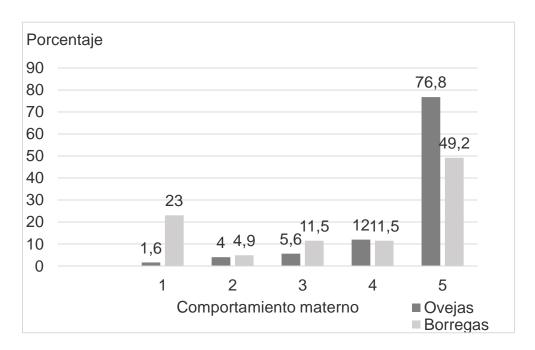
4.1.1 Resultados de las mediciones en las madres

A partir de los datos de parición e inseminación fue calculado el largo de gestación de la majada, el cual presentó una duración promedio de 148,54 \pm 2,23 días para las ovejas adultas y 147,9 \pm 2,70 días promedio para las borregas (p<0.05).


Figura No.13. Distribución en porcentaje del largo de gestación en ovejas (negro) y borregas (gris)


La majada presentó al parto una condición corporal promedio de 3,18 \pm 0,40 para ovejas y 3,22 \pm 0,34 para borregas; siendo la condición corporal mínima del orden de 2,25 para las ovejas y 2,5 para borregas. La distribución de la condición corporal al parto se observa en la figura No.14 donde se destaca que más del 96 % de los vientres la presentan igual o mayor a 3.


De las mediciones de largo de parto se observa que el largo promedio de éste fue de 47 ± 28,86 minutos para las borregas, mientras en las ovejas presenta un tiempo promedio de 31 ± 31,09 minutos. El 65% de las ovejas presentaron una duración de parto menor a la media hora. En las borregas la duración del parto se agrupó en un 74% durante la primera hora, pero solo el 36% lo hicieron durante los primeros 30 minutos. La distribución de la duración del parto en ovejas y borregas se observa en la figura No.15, donde se encuentran agrupados por largo de parto (rangos crecientes de 30 minutos) y dentro de cada porcentaje se diferencian los partos asistidos.

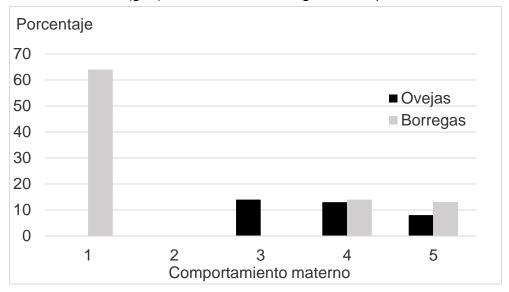

La evaluación del comportamiento materno dio como resultado un CM promedio de $4,58 \pm 0,89$ para las ovejas, mientras en borregas éste se ubicó en $3,00 \pm 1,78$ (p>0.05). El 39,4% de las borregas presentaron un comportamiento materno inferior a 4 mientras en las ovejas este valor es del 11,2%. Al analizar los datos de las madres de los corderos muertos hasta la señalada resulta que el promedio de las borregas fue de $2,4 \pm 1,76$ mientras en las ovejas adultas fue de $3,9\pm 1,55$.

Figura No.16. Distribución en porcentaje de ovejas (negro) y borregas (blanco) según comportamiento materno

Al analizar el comportamiento materno según se haya realizado asistencia al parto o no, se identifica que el 64% de las borregas que se clasificó como 1 se les había brindado asistencia al parto, mientras en las ovejas ninguna de las que mostró comportamientos menores a 2 habían recibido asistencia durante sus partos; las madres adultas que requirieron asistencia al parto presentaron un comportamiento materno de 3, 4 o 5.

Figura No.17. Distribución del porcentaje de partos asistidos según comportamiento materno de ovejas (negro) y borregas (gris) dentro de cada rango de comportamiento materno

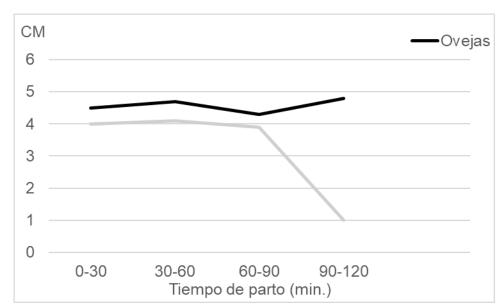
El comportamiento materno según la condición corporal al parto de las madres no presentó diferencias significativas entre borregas y adultas; el mismo se observa en el cuadro No. 8 donde también se aprecia el número de animales según condición corporal.

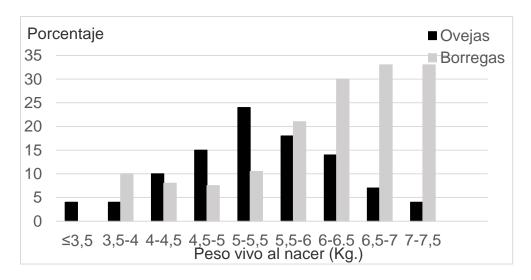
Cuadro No.8. Distribución en porcentaje del comportamiento materno según condición corporal de las madres al parto, en paréntesis se observa el Nº de animales dentro de cada condición corporal

	CONDICIÓN CORPORAL					
CM.	2,5 (8)	3 (72)	3,5 (79)	4 (14)	4,5 (6)	
1	0	8,5	10	7	0	
2	0	7	2,5	0	0	
3	12,5	11	4	7	16,5	
4	0	11	15	14,5	16,5	
5	87,5	62,5	68,5	71,5	67	

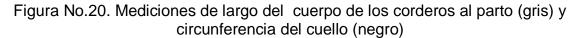
El comportamiento materno según el largo de parto (utilizando el mismo criterio anterior de agrupar el largo según rangos crecientes de 30 minutos) se presenta en la figura No.18, donde se observa que las ovejas adultas no modifican su comportamiento materno en función del tiempo que demora el

parto mientras en las borregas un aumento en el tiempo de parto se asocia a una disminución en este.




Figura No.18. Comportamiento materno de ovejas (negro) y borregas (gris) según tiempo que demoró el parto (minutos)

4.1.2 Resultados de las mediciones realizadas en corderos


El peso promedio al nacimiento de los corderos fue de 5,44Kg. ±0,96, siendo el mínimo 2,86 Kg. y el máximo 7,80. Kg. Al analizar los pesos de hijos de borregas estos dieron un promedio de 5,18Kg.±0,98 mínimo 3,52Kg. y máximo 7,20Kg.; mientras en ovejas el promedio fue de 5,52Kg. ±0,79, no registrándose diferencias significativas entre ambas categorías (p<0.05).

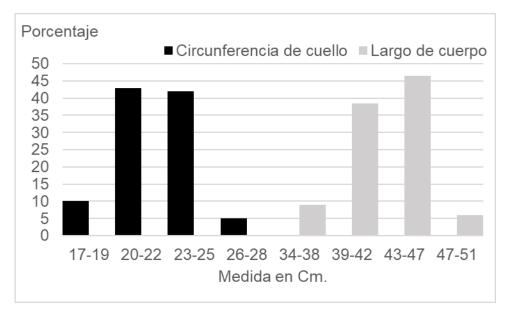
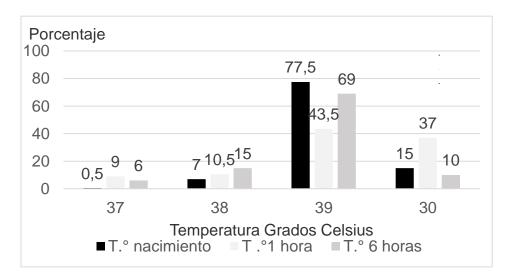
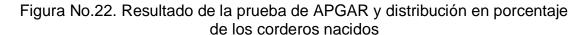
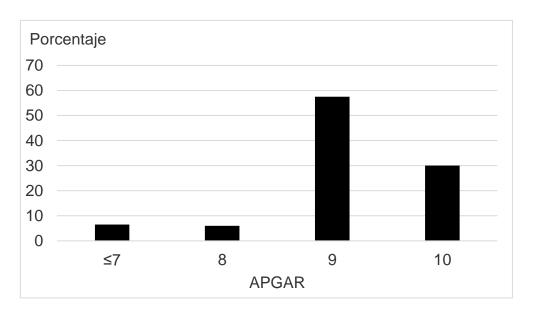

El porcentaje de partos asistidos dentro de cada rango de peso se observa en la figura No.19 donde se observa un claro aumento en la asistencia de partos en aquellos animales que son más pesados al nacer.

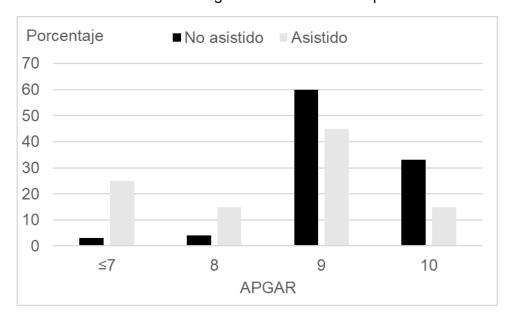
Figura No.19. Rango de peso de los corderos nacidos y su frecuencia (negro), la segunda barra muestra el porcentaje de partos asistidos dentro de cada rango (gris)


Las mediciones realizadas en los corderos al parto no presentaron diferencias significativas entre borregas y adultas, por lo que los datos de ambas categorías se presentan agrupados. El largo promedio se ubicó en 42,3 \pm 3,6 cm. La circunferencia del cuello de los corderos fue en promedio de 22,5 \pm 1,7 cm. Tanto en largo como en circunferencia de cuello el 85% de los corderos se agrupa en las medidas intermedias.


En cuanto a la temperatura de los corderos tanto al nacimiento, a la hora y a las 6 horas éstas presentaron en los tres casos una media de $39,5^{\circ}$ C. $\pm 0,8$. A la hora de nacido es cuando se observa una mayor dispersión de las temperaturas, si bien en un rango de +/- 1° C., se agrupan el 90 % de las mediciones realizadas; mientras al parto y a las 6 horas la distribución es más concentrada entorno a los 39° .


Figura No.21. Temperatura rectal registrada en los corderos al nacimiento (negro), a la hora (blanco) y a las seis horas(gris) de nacido, y su distribución en porcentaje

Al tomar los datos de temperatura y separarlos según se haya brindado asistencia o no al parto de éstos, se observa que la distribución de las temperaturas es similar en ambos casos donde la mayoría de los corderos presentaron temperaturas en el orden de los 39-40°C. y sus medias no presentaron diferencias (39,35°C. vs. 39,45°C.).


Los resultados obtenidos para la prueba de APGAR se muestran en la figura No.22 donde se destaca que solo un 6,5% de los corderos presentaron valores menores a 7, siendo el mínimo 2. El 87,5% presentó valores por encima de 9.

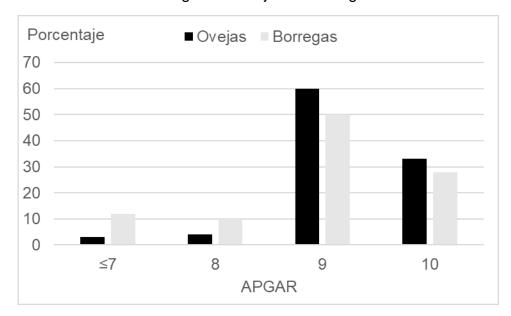

Cuando se agruparon los corderos según se hubiera realizado o no asistencia al parto los resultados de la prueba de Apgar se ubicaron en promedio para los hijos de partos asistidos en $8,23 \pm 1,79$ frente a los $9,21 \pm 0,68$ de los corderos donde no se brindó ningún tipo de asistencia.

Figura No.23. Resultado de la prueba de Apgar y distribución en porcentaje de los corderos según asistencia o no al parto

Al tomar nuevamente los resultados de Apgar y analizar estos según sean hijos de borregas o adultas también se observa que cuando se realizan los promedios estos no presentan diferencias significativas (promedio 8,65 ±1,3 borregas vs. 8,79 ±1,1 en ovejas).

Figura No.24. Resultado de la prueba de Apgar y distribución en porcentaje de los corderos según sean hijos de borregas o adultas

Al analizar el efecto del largo de parto sobre el tiempo en pararse de los corderos surge que éste no tiene ningún efecto ya que no se registraron diferencias significativas entre el largo de parto (agrupados de a 30 minutos) y el tiempo que demora el cordero en parase. Tampoco se observa un efecto de la edad de la madre sobre el tiempo que demora el cordero en parase.

CuadroNo.9. Tiempo en parase de los corderos según duración del parto

Largo de	Tiempo en
parto	pararse
>30	27,29±2,46 a
30-60	24,45±3,30 ^a
60-90	30,07±5,06 a
90-120	23,18±6,52 a

Cuadro No.10. Tiempo en pararse de los corderos según edad de la madre

Edad de la madre	Tiempo en pararse			
ovejas	24,65±2,66 a			
borregas	27,82±3,30 a			

Al analizar la relación entre el largo de parto y su efecto en el tiempo que demora el cordero en mamar, sí se encuentran diferencias significativas entre ambos parámetros, al igual que lo que ocurre al analizar la edad de la madre.

Cuadro No.11. Tiempo en mamar de los corderos según duración del largo de parto

Largo de parto	Tiempo en mamar
>30	55,39±4,37 ^{ab}
30-60	46,99±5,87 ^a
60-90	60,29±9,01 b
90-120	94,7±11,61 ^c

Cuadro No.12. Tiempo en mamar de los corderos según edad de la madre

Edad de la madre	Tiempo en mamar
ovejas	55,66±4,71 a
borregas	73,02±5,78 ^b

4.2 DISCUSIÓN

4.2.1 Mortalidad neonatal

De las muertes producidas tan solo un 3 % ocurrió dentro de la primera semana de vida; obviamente este valor dista mucho de los valores de mortalidad registrados a nivel nacional, los cuales según manejo y "efecto año" se encuentran entre un 14 y 32 %, siendo difícil de disminuir por debajo del 10% (Dutra, 2006). Al analizar estos resultados y debido a las medidas de manejo aplicadas durante el periparto, en el cual se atendieron todos los casos en que se podría haber presentado el complejo clima-inanición, los aspectos relacionados a predadores, así como también partos distócicos (los cuales en conjunto según Fernández Abella (1995) suman el 87% de las causas de muerte perinatal); es posible afirmar que frente a un control y accionar permanente durante el periodo de parto las principales causas de mortalidad perinatal se disminuyan de manera notable y por lo tanto se dé una gran disminución en las perdidas reproductivas. También cabe aclarar que los corderos fueron controlados hasta la realización de la última medida de temperatura (6 horas de nacido), excepto aquellos casos en que requirieron asistencia y por lo tanto eran retirados junto a sus madres de los potreros de parición al otro día de nacidos.

Según Montossi et al. (2006b) el rango óptimo de peso para un aumento en la sobrevivencia de corderos, estaría ubicado aproximadamente entre 3.5 y 5.5 kg., si bien este rango es mayor cuando se aplica esquila preparto. En este trabajo los corderos muertos en su mayoría presentaron pesos superiores a los mínimos del rango establecido (excepto 1 de los corderos cuyo peso fue de

2,870 Kg.). Se destaca entonces, que un 96% de los corderos nacidos presentaron pesos superiores al mínimo expresado por Montossi y ya que debido al manejo realizado los problemas que se pudieran presentar por pesos mayores (asociados a distocias) estarían descartados, es que se explicarían en parte los bajos porcentajes de mortalidad obtenidos, los cuales son algo menores a los presentados por Ganzábal (2006b).

Si bien se presenta una clara reducción en las pérdidas neonatales, las tendencias registradas de mayores pérdidas en los corderos nacidos como mellizos (un 75% del total de corderos muertos en los primeros 3 días) se mantiene, al igual que la tendencia a un aumento en la mortalidad de corderos hijos de borregas frente a los hijos de multíparas (15,9 vs. 8,9); esto deja una serie de dudas acerca de las causas, ya que si bien se intentó que éstos sobrevivieran y que sus madres les brindaran la atención necesaria, no se logró en estos casos evitar las muertes

4.2.2 Resultados de las madres

El largo de gestación de ovejas y borregas si bien no tuvo diferencia (148,54 ± 2,23 vs. 147,9 ± 2,70 días) la distribución de estos se observa en la figura No. 13 permite observar que las borregas tienden a no tener una gran variabilidad (o amplitud) en el largo de gestación (mas agrupadas) mientras q en las ovejas adultas se observa mayor dispersión de este parámetro. En cuanto a la duración del largo (148 días en promedio) éste se acerca al promedio manejado por Fernández Abella (1993), mientras que la dispersión de los mismos es similar a la presentada por De Barbieri et al. (2006) para ovejas esquiladas posparto, lo cual se explica en este caso debido a que la esquila realizada en el mes previo al parto no tendría efecto sobre el largo de gestación.

Al parto las madres presentaron una CC que se encuentra en su mayoría dentro de los rangos que Banchero et al. (2006) dicen no afectaría el comportamiento materno (2,7 a 4,4 unidades). En el cuadro comparativo entre comportamiento materno y condición corporal se observa que no hubo un patrón de comportamiento definido según fueran animales de alta o baja condición corporal, destacándose en éste que ovejas con ≤ 2,5 fueron excelentes madres.

Durante el control de partos realizado no fueron respetadas algunas de las consideraciones tendientes a disminuir la mortalidad neonatal que se encuentran en la bibliografía. Una de las medidas no respetadas fue la de no hacinar las ovejas durante el parto debido al posible robo de corderos (Banchero et al., 2006), en este caso este hecho no presento problemas ya que, si bien existieron ovejas parturientas interesadas en corderos ajenos, las

madres de los mismos se mantuvieron junto a éste, y en los casos de robo de corderos cuando la oveja que se había robado el cordero paría el propio y abandonaba el ajeno, este rápidamente era atendido por la madre original. La experiencia obtenida durante el trabajo de campo, permite poner en duda la afirmación y plantear que tal vez los casos en que se dan estos robos de corderos y su posterior muerte se deba al tamaño de los potreros donde se dan las pariciones, al realizarse las pariciones en potreros más pequeños (como en este caso de 2-3 Ha.) si bien existen robos es muy difícil que la madre verdadera no encuentre su cordero una vez que este sea abandonado.

Otra de las medidas no respetadas es la de no interferir durante el parto a no ser que sea indispensable. La intervención realizada durante los partos no demostró afectar el comportamiento materno de las madres adultas ya que las que requirieron asistencia al parto presentaron un comportamiento materno de 3, 4 o 5; si bien en borregas un gran porcentaje de las madres con comportamiento 1 tuvieron partos con asistencia no se observa claramente una tendencia a que la asistencia durante el parto conlleve a un aumento en los corderos abandonados.

La aplicación del control de partos, también permitió debido a la presencia constante de personal en el potrero de parición, obtener ovejas más calmas, lo cual también es reportado por Everet-Hinks et al. (2005), esto permite realizar un control de partos sin que este ocasione abandonos por la presencia humana y que la oveja permanezca junto a su cría por más tiempo ya que no la abandona frente a interferencias externas, ésto también permite un mejor control y manejo en el posparto.

4.2.3 <u>Diferencias entre borregas y adultas</u>

Al analizar los datos de ovejas y borregas por separado se observa que estas últimas presentaron el doble de corderos muertos (8,6% vs. 15,9%), lo cual coincide con lo expuesto por Fernández Abella (1995), Dwyer (2005), Banchero (2006) quienes afirman que la mayor mortalidad de corderos se presenta en las primíparas.

Sin embargo, Dwyer (2005) considera que la mortalidad en esta categoría se debe a una serie de causas en conjunto; en las primíparas se da una reducción de la condición corporal durante la gestación, lo que indicaría un balance energético negativo, produciendo corderos más livianos y por ende de menor vigor. En este caso la causas expresadas por este autor no presentaron las mismas tendencias ya que la misma al parto no presentó diferencias significativas entre adultas y borregas, el peso al nacer tampoco presentó diferencias y al ver los rangos de pesos se observa que el peso mínimo de los hijos de borregas fue de 3,52 kg. lo cual según la bibliografía está ubicado en

los valores mínimos de mortalidad (Ganzábal, 2006b); tampoco se encuentran diferencias en el Apgar promedio de corderos hijos de ovejas y borregas el cual fue utilizado para medir el vigor de los mismos.

Si bien no existieron diferencias estadísticas en estos parámetros entre ovejas y borregas, sí se encuentran tendencias a que un mayor porcentaje de los corderos nacidos de borregas presentaron pesos por debajo de la media, las madres presentaron un peor comportamiento materno y requirieron mayor asistencia al parto (el cual en promedio presento una duración mayor) y mas corderos presentaron valores de Apgar por debajo de 7.

Otro aspecto donde también se observa una diferencia es en el comportamiento materno en función del largo de parto, el cual al aumentar la duración del mismo se observó una disminución en el comportamiento materno de las borregas mientras en las ovejas adultas la duración del parto no tuvo efecto; este comportamiento permite inferir que una de las posibles causas de mayor mortalidad de los hijos de borregas se deba a que en esta categoría los partos son más prolongados, observándose mayor incidencia de partos distócicos, lo cual repercute en peores madres.

4.2.4 Resultados en corderos

Los pesos promedio de los corderos al nacer no mostraron diferencias significativas entre ovejas y borregas, a no ser cuando vemos los rangos de pesos más altos en donde existe una tendencia hacia mayores pesos en las ovejas adultas. De igual forma el Apgar de hijos de borregas y ovejas presentan medias sin diferencia estadística, si bien la distribución de los valores presenta mayor porcentaje de corderos hijos de borregas en los valores más bajos.

Frente al vigor de los corderos medido en base a la prueba de Apgar se observa que los valores de éste fue considerablemente alto en la mayoría de los casos. Dichos valores pueden ser explicados según las afirmaciones de Ganzábal (2006b) en base a que debido a los altos pesos los corderos presentaron altas reservas y por lo tanto mayor vigor. Por otro lado la alimentación brindada en el mes previo al parto (pastoreo de raigrás) también tendría un efecto sobre el vigor de los mismos, ya que Banchero et al.(2006), Banchero et al. (2007) afirman que la suplementación preparto aumenta el vigor de los corderos al nacer.

Otro aspecto muy importante que debe ser tomado en cuenta es que gracias a la asistencia brindada durante el parto, evitando así los partos distócicos se reducen los problemas relacionados a lesiones al sistema nervioso los cuales ocasionan corderos menos vigorosos (Duff, citado por Fernández Abella 1995, Dwyer 2002, Dutra 2005). Estas afirmaciones se

condicen con los resultados obtenidos al analizar el Apgar de los corderos hijos de partos asistidos frente a los no asistidos los cuales en promedio presentaron valores de 8,23 y 9,21 respectivamente destacándose que los corderos hijos de partos asistidos sumaron en promedio un 75% de casos en valores por encima del valor de 8.

Por otro lado se observa que el tiempo de los corderos en pararse no fue afectado por el largo de parto, ni la edad de la madre, mientras que sí se afectó el tiempo que los corderos demoraron en mamar, tanto por la edad de la madre como por el largo del parto. Estos resultados permiten suponer que el vigor de los corderos no es afectado gracias a la aplicación de medidas en el periparto, pero que cuando es necesaria la interacción madre-cría (tiempo en mamar), existe una interacción entre el tiempo que demora el parto, así como también de la experiencia de la madre; que conlleva a un aumento la duración de este tiempo. Esto repercute en el vigor posterior del cordero y en sus posibilidades de sobrevivencia.

Con estos datos queda claro entonces que aquellos parámetros que están relacionados directamente con el cordero, como lo son el valor de Apgar, el tiempo que demora en parase o el peso al nacer, no se ven afectados por el largo de parto ni tampoco por la categoría a la que pertenecen sus madres. Sin embargo, en los parámetros relacionados con la madre como comportamiento materno y tiempo que demora el cordero en mamar (donde la madre tiene una directa participación permitiéndolo o no) el hecho de un parto más prolongado hace que se establezcan diferencias entre ovejas adultas y borregas.

4.2.5 <u>Viabilidad de la aplicación de las medidas de manejo recomendadas en predios comerciales</u>

Al analizar los resultados reproductivos de la majada nacional (donde el porcentaje de señalada jamás supera el 80%) surge como interrogante cuáles son las razones de que exista tan marcada diferencia entre los resultados experimentales vs los obtenidos en el país, y porque si la majada nacional presenta en la mayoría de los casos un potencial reproductivo que sería capaz de obtener un 120% de destete se obtienen tan magros resultados. Es claro que la sustentabilidad de los sistemas ovejeros debe pasar por una mejora en la eficiencia del sistema de producción, por lo cual el reducir las pérdidas reproductivas cobra mayor importancia. Si bien en los últimos años el crecimiento sostenido del precio de los productos obtenidos de la explotación lanar marcan una tendencia clara hacia la suba (principalmente la carne de cordero, pero también en las lanas y sobre todo aquellas de mayor finura), la aplicación de medidas de manejo tendientes a aumentar la producción generalmente pasa por medidas de bajo costo y escasa mano de obra.

Al analizar cuáles de las medidas utilizadas durante el presente trabajo son viables de aplicar en los predios comerciales surge que es posible aplicarlas tanto en la práctica como al realizar un análisis económico de éstas.

La primer medida en orden cronológico es la de elección de fecha de encarnerada (abril) la cual ya es una práctica habitualmente utilizada en el país y que ha demostrado ser de alto impacto para disminuir las pérdidas debido al aporte de alimento que brinda el campo natural, así como mejores condiciones climáticas del período de parición.

La siguiente medida es la sincronización e inseminación de la majada; la sincronización de las majadas se trata de una práctica común hoy en día, donde inclusive existen actualmente varios protocolos de inseminación artificial a tiempo fijo para lanares q permiten una excelente concentración en la parición con los importantes beneficios que esto acarrea; también existen métodos alternativos (flushing, efecto macho y hembra, etc.) que pueden lograr similares resultados con escasa inversión.

Siguiendo el orden cronológico antes planteado la siguiente medida es la utilización de ecografía para definir carga fetal y fecha probable de parto lo cual es fundamental para establecer medidas de manejo como lo son alimentación preparto y/o suplementación, organización y loteo de la majada para poder realizar un eficiente control de parto.

En cuanto a la esquila preparto esta medida si bien es usualmente utilizada en los establecimientos, por lo que no sería un problema su aplicación, trae aparejado otra medida que es la de la planificación del pastoreo para dicho momento lo cual es fundamental para obtener los beneficios que esta medida brinda.

Otro de los controles que debe ser aplicado durante todo el año es el uso de la condición corporal y planificación del sistema pastoril.

Por último se plantea en este trabajo como una medida de manejo si se quiere innovadora para los sistemas de producción, la realización de un control y asistencia durante el parto intentando por un lado evitar los partos distócicos, y por otro ayudar al establecimiento del vinculo madre-hijo. Esta medida puede ser una de las más controversiales entre las planteadas anteriormente, debido a que ésto significa no solo un aumento de las horas hombre utilizadas en esta tarea sino también en un cambio cultural, no sólo en cómo realizarla sino también en la idiosincrasia del ovinocultor nacional.

Para evaluar la viabilidad económica de aplicar un control de partos como el planteado, se desarrolla el siguiente planteo. Tomando determinados

supuestos (ver anexos) y en base a los precios reportados por DIEA los costos de aplicar estas medidas serían los de mano de obra de dos peones comunes los cuales para el periodo en cuestión fueron de 5022 pesos uruguayos por mes, más un ficto de alimentación y vivienda de 1594,55 pesos uruguayos. Esto supondría un costo de 13233,54 pesos uruguayos durante el periodo, lo cual según el precio del dólar interbancario para octubre 2009 (URUGUAY. INE, 2010) que se ubicó en 20,820 representa un costo de 635,6 U\$S.

Para igual período en diciembre el precio en segunda balanza para el Kg de cordero liviano (12,5Kg. carcasa) se ubicó en 2,40 U\$S (URUGUAY. MGAP. DIEA, 2010), lo cual significa unos 29,8 U\$S por cordero. Con estos precios para cubrir los costos serían necesarios unos 21,3 corderos.

En este trabajo el impacto de las medidas aplicadas repercute en unos 41 corderos, cifra superior a los costos de aplicar estas medidas aún cuando no se toman las potenciales perdidas de vientres, ni el valor agregado debido al progreso genético al aumentar la reposición y tampoco la ganancia en caso de producir, como producto final un cordero pesado el cual tiene un valor muy superior.

5. CONCLUSIONES

No existen dudas que la producción ovina debe superar las limitantes que la pérdida de corderos le presenta, es por esto que si bien mucho se ha trabajado sobre el tema y se han realizado grandes avances sobre el mismo muchas otras interrogantes quedan por resolver. Nuevos enfoques deben ser tomados en cuenta en lo que refiere a selección por habilidad materna, facilidad de parto y vigor de los corderos al nacer. En este estudio se llega a la conclusión de que en lo referente a medidas de manejo tendientes a la disminución de la mortalidad neonatal, el uso integrado de las diferentes tecnologías (fecha de encarnerada, diagnóstico de gestación y fecha probable de parto, esquila preparto, nutrición preparto y adecuación de los potreros para la parición) en conjunto con un adecuado control del parto y asistencia durante el mismo, son medidas viables de ser aplicadas las cuales repercutirían de gran forma sobre los sistemas productivos preponderantes en el país y aún de mayor impacto cuanto más intensivos sean estos sistemas (producción de corderos pesados, utilización de razas más prolíficas, etc.).

La aplicación de un control y asistencia sobre el parto demostró ser una medida de manejo de gran importancia para aumentar las posibilidades de sobrevivencia de los recién nacidos; con ésta parece solucionarse en gran parte las muertes ocurridas en lo que Dutra (2005) denomina el "núcleo duro" de la mortalidad (muertes dadas en las primeras 72 horas de vida) debidas a lesiones isquémicas al momento del parto.

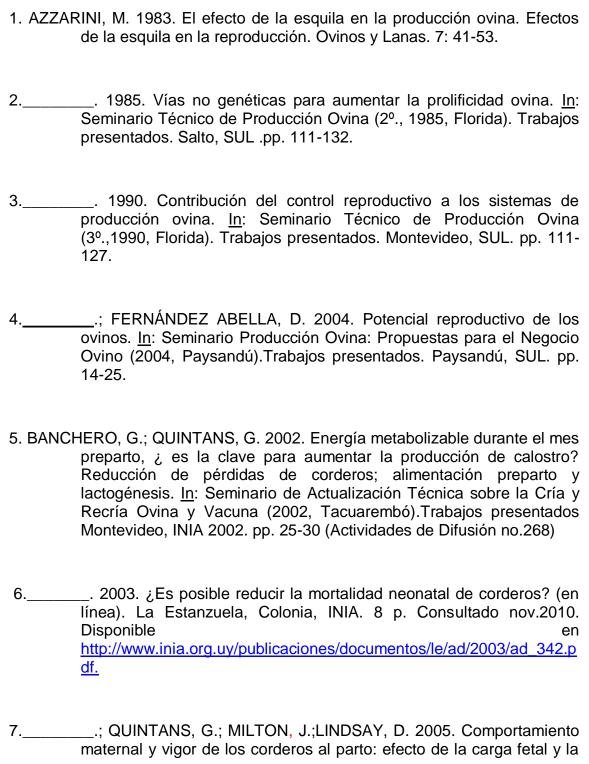
El fortalecimiento del vínculo madre-hijo aplicado durante el control, y la asistencia para asegurarse la ingesta de calostro (el cual se lograba al encerrar las madres que no demostraban interés en sus corderos) sería responsable de la disminución de otra de las causas principales de mortalidad en el periparto.

Finalmente se genera la necesidad de analizar y estudiar más en profundidad las causas que llevan a la perdida de corderos hijos de borregas, así como también en los casos de mellizos, lo cual debe ser encarado desde el punto de vista del estudio de los procesos metabólicos que ocurren tanto en la madre como en los corderos. Estos 2 puntos (borregas y melliceras) son donde se han encontrado los mayores problemas de mortalidad que no pudieron ser totalmente solucionados a pesar de las medidas de manejo empleadas.

Por último como conclusión final queda claro que los sistemas de producción ovina están lejos de alcanzar su potencialidad y que tan solo con medidas de manejo podemos romper dichas limitantes.

6. RESUMEN

El objetivo del presente trabajo apunta a la disminución de la mortalidad neonatal de corderos aplicando medidas de manejo en el entorno al parto, como la asistencia del mismo, fortalecimiento del vinculo madre-hijo y auxilio en la nutrición y termorregulación del recién nacido. En base a la información recabada se analizan y comparan los datos obtenidos sobre el parto y comportamiento materno de ovejas y borregas Corriedale en partos asistidos y normales; así como también una serie de parámetros recabados de los corderos recién nacidos y la comparación de estos según el tipo de parto y madre. Con esta misma información recabada y analizada es evaluado como el manejo realizado al parto logra incidir sobre la sobrevivencia de los corderos y el comportamiento materno de las madres a las cuales se les aplicaron las medidas. El trabajo de tesis fue realizado en la Estación Experimental Bernardo Rosengurtt (EEBR), se trabajo con 278 ovejas, de las cuales 86 fueron primíparas, y el resto multíparas en un rango de edad entre los 2 y 6 años. Los datos registrados se obtuvieron durante la parición 2009. Para la realización de éste se realizó guardia durante las 24hs durante la parición. El mismo fue realizado desde cierta distancia (con la ayuda de prismáticos) de forma tal que se pudiera observar las ovejas que comienzan trabajo de parto interfiriendo lo menos posible en el mismo. Los datos recabados fueron largo de parto, asistencia o no al parto y comportamiento materno en la madres (CM) mientras en los corderos se midió temperatura al nacer, a la hora y seis horas de nacido; se realizó la prueba de APGAR para recién nacidos, largo del cordero y circunferencia de cuello, peso, tiempo que se demoraba en parar y mamar. Los resultados obtenidos demuestran que la aplicación de un control y asistencia en el entorno del parto son una medida de gran impacto en el aumento de la sobrevivencia perinatal de corderos, ya que con esta medida se disminuyen en gran parte las principales causas de mortalidad neonatal.


Palabras clave: Ovinos; Cordero; Mortalidad neonatal; Comportamiento materno.

7. SUMMARY

The aim of this work points to the decline in neonatal mortality of lambs applying management measures in the delivery environment, such as attend, mother-lamb and strengthening the bond help thermoregulation of the newborn. Based on the information gathered is analyzed and compared the data obtained on delivery and maternal behavior of primiparous and multiparous Corriedale sheep and in normal and assisted deliveries, as well as a number of parameters collected from newborn lambs and comparison of these according to type of birth and mother. With the same information collected and analyzed is evaluated as the management of these birth does influence the survival of the lambs and maternal behavior of mothers to whom the measures were applied. The thesis work was conducted at the Experimental Station Rosengurtt Bernardo (EEBR) is working with 278 sheep, of which 86 were primiparous, multiparous and the rest ranging in age from 2 to 6 years. The data were gathered during the lambing 2009. To carry out this duty was performed during 24 hours from 11th-22nd September and from 28th-11th October. The same was done from a distance (with the aid of binoculars) so that sheep could see labor start interfering as little as possible on it. Data were collected during childbirth, or care delivery and maternal behavior in mothers while in lambs at birth was measured the temperature at the time and six hours after birth, APGAR, long neck, weight, while delayed in stopping and feeding. The results demonstrate that the application of control and assistance in the delivery environment is a measure of great impact on the increase in perinatal survival of lambs, and that this measure will reduce large steps leading cause of neonatal mortality.

Keywords: Sheep; Lamb; Neonatal mortality; Maternal behavior.

8. BIBLIOGRAFÍA

condición corporal. <u>In</u>: Seminario de Actualización Técnica en Reproducción Ovina (2005, Tacuarembó). Recientes avances realizados por el INIA. Montevideo, INIA. pp. 61-68 (Actividades de Difusión no. 401).

- 8.______.; MONTOSSI, F.; DE BARBIERI, I.2006.Si no tomamos medidas este año podemos perder más de un millón de corderos. (en línea). El País Agropecuario. no. 17: 30-32. Consultado nov. 2010. Disponible en http://www.inia.org.uy/publicaciones/documentos/ara/ara_215.pdf
- 9._____.; ____.; ____.; QUINTANS, G. 2007. Esquila preparto: una tecnología para mejorar la supervivencia de corderos. Programa nacional de producción de carne y lana. Revista INIA. no. 12: 2-5.
- 10. BERRETA, E. 1998. Producción de comunidades nativas sobre suelos de basalto de la comunidad Itapevi-Tres Árboles con diferentes frecuencias de corte. <u>In</u>: Seminario de Actualización en Tecnologías para Basalto (1998, Tacuarembó).Trabajos presentados. Montevideo, INIA. pp.21-22 (Serie Técnica no.102).
- 11. CABRERA, N. 2006. Elección y preparación de potreros destinados a la parición de nuestras ovejas. Ovinos notas prácticas. Secretariado Uruguayo de la Lana. Hoja coleccionable no. 26. s.p.
- 12. DE BARBIERI, I.; MONTOSSI, F.; DIGHIERO, A.; NOLLA, M.; LUZARDO, S.; MARTÍNEZ, H.; ZAMIT, W.; LEVRATTO, J.; FRUGONI, J. 2005. Largo de gestación de ovejas Corriedale; efecto de la esquila preparto temprana. <u>In</u>: Seminario de Actualización Técnica en Reproducción Ovina (2005, Tacuarembó). Recientes avances realizados por el INIA. Montevideo, INIA. pp. 115-122 (Actividades de Difusión no. 401).
- 13. DUTRA, F. 2005. Nuevos enfoques sobre la patología de la mortalidad perinatal de corderos. <u>In</u>: Seminario de Actualización Técnica en

Reproducción Ovina (2005, Tacuarembó). Recientes avances realizados por el INIA. Montevideo, INIA. pp. 137-144 (Actividades de Difusión no. 401).

14. DWYER, C. M. 2002. Behavioural development in the neonatal lamb; effect of maternal and birth-related factors. (en línea). Applied Animal Behaviour Science. 92: 1027-1050. Consultado nov. 2010 Disponible en:

http://www.sciencedirect.com.proxy.timbo.org.uy:443/science?_ob=MImg&_imagekey=B6T48-4GG2HJR-1-

9& cdi=4968& user=7632284& pii=S0168159105001437& origin=s earch& zone=rslt_list_item& coverDate=08/31/2005& sk=99907999 6&wchp=dGLbVzz-

zSkWA&md5=99fe89139ef38f03bb60ba2597a5f2f5&ie=/sdarticle.pdf

- 15. EVERETT-HINKS, J.; BLAIR, H.; STAFFORD, K.; LOPEZ-VILLALOBOS, N. 2005. Effect of ewe maternal behaviour score on lamb survival and litter survival. (en línea). Livestock Production Science. 93: 51-61. Consultado nov. 2010.Disponible en <a href="http://www.sciencedirect.com.proxy.timbo.org.uy:443/science?_ob=ArticleListURL&method=list&ArticleListID=1566097845&sort=r&st=13&view=c&acct=C000072357&version=1&urlVersion=0&userid=7632284&md5=40c21290033763feff0a0648ca1d7da2&searchtype=a
 - FERNÁNDEZ ABELLA, D. 1993. Principios de fisiología reproductiva ovina. Montevideo, Uruguay, Hemisferio Sur. 247 p.
- 17._____.1995. Temas de reproducción ovina e inseminación artificial en bovinos y ovinos; mortalidad neonatal de corderos. Montevideo, Facultad de Agronomía. 206 p.
- 18. FORMOSO, D.2005.La investigación en utilización de pasturas naturales sobre cristalino desarrollada por el Secretariado Uruguayo de la Lana. <u>In</u>: Seminario de Actualización Técnica en Manejo de Campo Natural

(2005, Montevideo). Trabajos presentados. Montevideo, INIA. pp. 51-59.

- 19. GANZÁBAL, A.2005. Manejo antes del parto para disminuir la mortalidad de corderos recién nacidos; Esquila y suplementación preparto. <u>In</u>: Día de Campo Producción Ovina Intensiva (2005, Colonia). Trabajos presentados. Montevideo, INIA. pp. 5-7. Consultado nov. 2010. Disponible en http://www.produccion-animal.com.ar/produccion-ovina/produccion-ovina/141-intensiva.pdf
- 21._____.2006b. Análisis de registros reproductivos en ovejas Corriedale.

 In: Seminario de Actualización Técnica en Reproducción Ovina (2005, Tacuarembó). Recientes avances realizados por el INIA. Montevideo, INIA. pp. 69-85 (Actividades de Difusión no. 401).
- 22. HOLST, P.; FOGARTY,N.; STANLEY, D. 2002.Birth weights, meningeal lesions, and survival of diverse genotypes of lambs from merino and crossbred ewes. (en linea). Australian Journal of Agricultural Research. 53: 175-181. Consultado nov. 2010. Disponible en http://www.publish.csiro.au/AR/pdf/AR01046
- 23. MONTOSSI, F.; DE BARBIERI, I.; DIGHIERO, A.; NOLLA, M.; LUZARDO,
 - S.; MARTÍNEZ, H. 2003. Evaluación del momento de esquila sobre la eficiencia reproductiva y productiva de ovejas y corderos. (en línea). La Estanzuela, Colonia, INIA. 8 p. Consultado nov. 2010. Disponible en

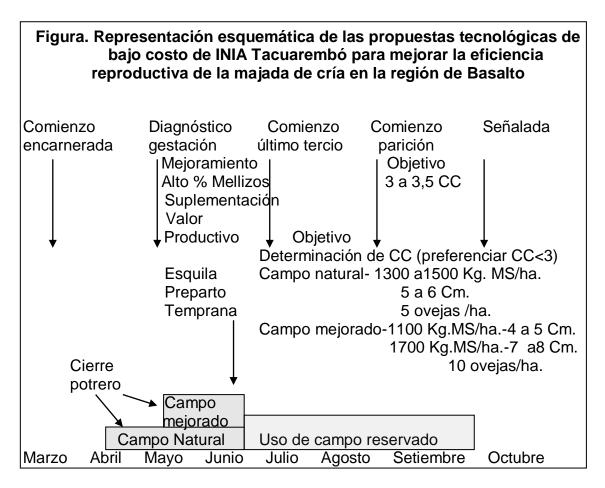
http://www.inia.org.uy/publicaciones/documentos/le/ad/2003/ad_342.pdf.

- 24. ______; ______; MARTÍNEZ, H.; NOLLA, M.; LUZARDO, S.; MEDEROS, A.; SAN JULIÁN, R.; ZAMIT, W.; LEVRATTO, J.; FRUGONI, J.; LIMA, G.; COSTALES, J. 2006a. La esquila preparto temprana; una nueva opción para la mejora reproductiva ovina. ln: Seminario de Actualización Técnica en Reproducción Ovina (2005, Tacuarembó). Recientes avances realizados por el INIA. Montevideo, INIA. pp. 85-104 (Actividades de Difusión no. 401).
- 26. _____; ____; _____; _____; _____; _____.; ______. 2006c. La mejora de la eficiencia reproductiva de la majada nacional; un desafío posible, necesario e impostergable. <u>In</u>: Seminario de Actualización Técnica en Reproducción Ovina (2005, Tacuarembó). Recientes avances realizados por el INIA. Montevideo, INIA. pp. 1-16 (Actividades de Difusión no. 401).
- 27. PFISTER, J. A.; ASTORGA, J. B.; PANTER, K. E.; STEGELMEIER, B. L.; MOLYNEUXC, R. J. 2005. Maternal ingestion of locoweed I. Effects on ewe-lamb bonding and behavior. Small Ruminant Research. 65:51-63.
- 28. SALGADO, C. 2004. Producción Ovina; Situación Actual y Perspectivas. <u>In:</u>
 Seminario Producción Ovina; Propuestas para el Negocio Ovino(2005, Paysandú). Trabajos presentados. Paysandú. SUL. pp. 7-13.

- 29. SECRETARIADO URUGUAYO DE LA LANA (SUL). 2009. Evolución del stock ovino. (en línea). Montevideo. s p. Consultado nov. 2010. Disponible en http://www.sul.org.uy/estadisticas.asp
- 30. SEMINARIO DE ACTUALIZACIÓN TÉCNICA REPRODUCCIÓN OVINA (2005, Tacuarembó). 2006. Recientes avances realizados por el INIA. Montevideo, INIA.120 p. (Actividades de Difusión no. 401).
- 31. UNIVERSIDAD DE LA REPÚBLICA (URUGUAY). FACULTAD DE AGRONOMÍA. s.f. Manejo. Paysandú. 139 p.
- 32. URUGUAY. INSTITUTO NACIONAL DE ESTADÍSTICA (INE). 2010. Cotización interbancario dólar billete, periodo 1968-2010. (en línea). Montevideo. s.p. Consultado nov. 2010. Disponible en http://www.ine.gub.uy/preciosysalarios/cotizacion2008.asp?Indicador=cotizacion
- 33.______. MINISTERIO DE GANADERÍA AGRICULTURA Y PESCA.
 DIRECCIÓN DE INVESTIGACIONES ESTADÍSTICAS
 AGROPECUARIAS. 2010. Anuario estadístico agropecuario 2009.
 (en línea). Montevideo. s.p. Consultado nov. 2010. Disponible en
 http://www.mgap.gub.uy/portal/hgxpp001.aspx?7,5,85,O,S,0,MNU;E;
 27:5:MNU

9. ANEXOS

9.1 SUPUESTOS UTILIZADOS PARA LA ELABORACIÓN DEL CUADRO No.1


Los supuestos utilizados por Azzarini, citado por Fernández Abella (2008) para la elaboración del cuadro Efecto del aumento en el porcentaje de destete sobre el sistema de producción son los siguientes ;

- _ Majada de cría estabilizada con 5 categorías de edad en ovejas
- _Sistema criador con venta de todos los corderos machos
- _Reposición de ovejas = 22 borregas de 2 dtes./año
- _Mortalidad anual:

Corderas a 1ª encarnerada: 10%

Ovejas: 5%

9.2 REPRESENTACIÓN ESQUEMÁTICA DE LA PROPUESTA DE INIA

Fuente: Montossi et al., 2006a.

9.3. PLANILLA UTILIZADA PARA EL CONTROL DE PARTOS

OV	EJA						
Cai	avana:	Lomo: CC: Lote		Edad			
PAI	RTO						
Fecha: Hora inicio Hora fin Hora inicio Hora fin							
Tip	o de parto:	Normal □	Asistido 🗆	Número	corderos:_		
Ob	S						
СО	RDERO 1						
No.	caravana	Sexo	Peso _	Larç	go C	uello	
Se	para hora	()	Mama hora _	()		
		AP	GAR				
	Tono muscular	Pulso	Reflejo de irritabilidad	Apa	ariencia	Respiració	n
0							
1							
2							
Ter	nperatura rect	al: Reci	én nacido (AF	GAR)			1
		1 ho	ra de nacido _			T° ambiente	
6 horas de nacido						3,115,51116]

CORDERO 2 No. caravana _____ Sexo ____ Peso ____ Largo ___ Cuello ____ Se para hora _____ () Mama hora _____ () **APGAR** Reflejo de Apariencia Respiración Tono Pulso irritabilidad muscular 0 1 2 Temperatura rectal: Recién nacido (APGAR) _____ Τ° 1 hora de nacido _____ ambiente

6 horas de nacido _____

COMPORTAMIENTO MATERNO

GRA DO	•	Tiem po	Descripción del comportamiento
1			Se va ante la presencia de gente. No muestra interés en el cordero. No vuelve
2			Se va a más de 10 mts. pero regresa con el cordero cuando nos vamos
3			Se va a una distancia entre 5 y 10 mts.
4			Se va a menos de 5 mts.
5			Se queda cerca y toca al cordero durante nuestras maniobras

9.4. SUPUESTOS UTILIZADOS PARA EVALUAR LA VIABILIDAD DE LA APLICACIÓN DE CONTROL DE PARTOS

Para analizar la viabilidad económica de aplicar un control de partos como el realizado, se tomaron los siguientes supuestos:

La adecuación de los potreros para realizar esto no requiere de ninguna inversión de infraestructura ya que las divisiones de potreros con tal fin puede realizarse de manera temporal mediante la utilización de cercas electrificadas lo cual es habitual se encuentren en los establecimientos. La adecuación de un potrero con iluminación para la noche no es tomada en cuenta ya que los materiales para su iluminación pueden ser utilizados con otros fines durante el resto del año.

_En una parición normal el cuidado de esta requiere por lo menos de 1 persona destinada a tal tarea por lo cual si se piensa controlar durante las 24 horas sería necesario el sumar 2 personas más para cubrir la totalidad del horario.

La duración del periodo se supone de 1 mes por ser esto lo más habitual en los sistemas productivos del país. Si bien esto podría ser reducido de manera significativa en el caso de realizar sincronización de los celos, así como la utilización de diagnostico de gestación y calculo de fecha probable de parto; los cuales no son tomados en cuenta debido a que no es lo habitual si bien esto debería ser evaluado económicamente en cuanto a su viabilidad caso a caso. A pesar que la viabilidad del control es más eficiente si se hace en majadas que han sido previamente sincronizadas,

_ El aumento en la sobrevivencia de corderos utilizado es en referencia al porcentaje de partos asistidos y corderos a los cuales se les aplico medidas para evitar su muerte, sin tomar en cuenta los casos en que a pesar de recibir asistencia los corderos murieron.

_No es calculado el impacto de las pérdidas de vientres frente a partos distócicos ya que no se cuenta con los elementos necesarios para este cálculo, si bien se subvalora el impacto económico de la asistencia al parto.