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Listeria innocua isolated from diseased ruminants harbour
minor virulence genes of L. monocytogenes
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1 | INTRODUCTION

Listeriosis is one of the most common nervous diseases reported in
ruminants. The etiological agent responsible for the disease is Liste-
ria monocytogenes, a Gram-positive, facultative intracellular bacterium,
which enters the host through contaminated feed (Walland et al.,
2015).

L.innocua is genetically close to L. monocytogenes, but classically con-
sidered non-pathogenic (Buchrieser et al., 2003). It has a wide distribu-
tion in the environment, including in ruminant farms as well as in the
food industries (Matto et al., 2018; Moreno et al., 2012). Contradict-
ing the classical idea, it has been shown that haemolytic strains of L.
innocua are capable of infecting eukaryotic cells in experimental mod-
els like mouse and zebrafish (Mouraet al., 2019). However scarce, there
are reports of this agent in humans (Favaro et al., 2014; Perrin et al.,
2003) and animal infections (Rocha et al., 2013; Walker et al., 1994).

Here we describe two cases of nervous listeriosis in ruminants asso-
ciated with non-haemolytic L. innocua isolates, as well as the phyloge-
netic analysis and the virulence profile based on the complete genomic

sequences.

2 | MATERIALS AND METHODS

The Northwest Regional Laboratory of DILAVE ‘Miguel C. Rubino’,
DGSG-MGAP Uruguay, received the complete central nervous system
(CNS) (cerebral hemispheres, cerebellum and brainstem) of a 1-year-
old Aberdeen Angus bull. The animal came from a beef cattle operation
in Flores County, Uruguay. The bull showed circling, aggressiveness and
ataxia. The clinical symptoms lasted two days until death. Of 41 bulls in
the herd, only one was affected.

A second specimen was received from a different farm, correspond-
ing to the whole CNS of a 1-year-old crossbreed sheep. The animal
showed lateral left head deviation and circling. The nervous symptoms
lasted seven days until death. It was the only sheep affected from a
flock of 120 animals, located in Paysandd County, Uruguay.

The CNS of both animals was sectioned longitudinally in two halves.
One half was fixed in 10% buffered formalin for histopathology. Dif-
ferent anatomical sections were dehydrated, embedded in paraffin and
cut at 5 um for haematoxylin and eosin staining.

The other half was immersed in buffered Listeria enrichment broth
(BLEB) (Ox0id®) and incubated for 48 h at 30°C in aerobiosis. At 24
and 48 h, 100 ul of broth was scattered on a Modified Oxford Agar plate
(MOX) (Oxoid®). Plates were incubated in aerobiosis at 35°C, checking
for growth at 24 and 48 h. Small white colonies surrounded by a black
halo, were transferred to a 5% sheep blood agar plate (SBA-5%) and
also, inoculated in a 1.5 ml vial with tripticase soybean broth (TSB) plus
glycerol to preserve them at -80°C. To identify the isolates, we per-
formed Gram stain; catalase test, esculin hydrolysis; and sucrose, glyc-
erol, D-xylose, D-mannitol and D-mannose utilisation assays (Carlin
et al., 2021; Hitchins et al., 2020). We also used the API Listeria system
(BioMérieux®) following the manufacturer’s instructions. L. monocyto-
genes ATCC 19111 was included as control. PCR was also performed to
detect the inlA gene, according to Liu et al. (2007).

Genomic DNA from both isolates was extracted with the DNeasy
Blood & Tissue kit (Qiagen®) and used for whole-genome sequencing
(WGS) on an lllumina MiSeq platform with a TruSeq Nano library kit.
The reads where trimmed using the software Trimmomatic (version
0.39) (Bolger et al., 2014), with the following parameters ILLUMINA-
CLIP: ‘adapter file’:2:30:10 LEADING:20 TRAILING:20 SLIDINGWIN-
DOW:5:20 AVGQUAL:20 MINLEN:90, being that the adapter file used
(TruSeq3-PE-2.fa) is part of the Trimmomatic distribution. Genome
assembly was performed using SPAdes software (version 3.13.1) (Prji-
belski et al., 2020) with the following settings: -k 21,33,55,77 -careful
-only-assembler -cov-cutoff ‘auto’. Quality of assemblies was assessed
using QUAST software (version: 5.0.2) (Gurevich et al., 2013) (see Sup-
plementary Table S1). Genome-based species identification was per-
formed using the average nucleotide identity (ANIb) with the refer-
ence genome Clip11262 (NCBI accession NC_003212.1) (http://enve-
omics.ce.gatech.edu/ani/) (Rodriguez-R & Konstantinidis, 2014).

The genomes of other 12 L. innocua strains were selected from
the NCBI Genome Database (https://www.ncbi.nlm.nih.gov/genome/)
for phylogenetic and virulence profile analysis (see Supplementary
Table S2). Whole genome phylogeny was performed from the assem-
blies using the Enterobase Tool Kit (EToKi) pipeline (Zhou et al., 2020).
First, the align module was run using the genome sequence of strain
Clip11262 as the reference with the following options: -a- and -c 1.
Then, the alignment output file obtained in the previous step was
used to perform the phylogeny using the RAXML-NG software (version
0.9.0) (Kozlov et al., 2019) with the following options: -model GTR+G,
-seed 3 and -bs-metric fbp. Using this setup the bootstrapping con-
verged after 550 replicates. The tree support values were drawn on the
best-scoring tree (best value for estimated likelihood).

To complement this information, a comparative test was performed
to count the difference in single nucleotide polymorphisms (SNPs)
between the two isolates. To obtain specific SNPs between pairs of
genomes, the nucmer module of the MUMmer software (Marcais et al.,
2018) (version 4.0.0) was used with the settings -maxmatch and -| 12,
followed by the show-snps module with the -CHIrT setting.

Finally, genome sequence analysis was focused on the presence of
genes encoding putative virulence factors. The software ABRicate ver-
sion 1.0.1 (https://github.com/tseemann/abricate) was run with default
parameters (>80% sequence identity and >80% sequence coverage)
using the core dataset from the Virulence Factor Database 2.0 (VFDB)
(last update in April 2020). The core dataset of VFDB only contains
genes from virulence factors experimentally verified from the same
genus as the query genome (Liu et al., 2019). For all the genes found
using this approach, the presence of premature stop codons and par-
tial sequencing coverage was checked by manual curation. To search
for orthologs of these putative virulence genes, the genomes were
first annotated using Prokka (Seeman, 2014), to then retrieve tar-
get genes’ protein sequences from the .faa files, together with their
genome feature metadata (.gff files). Automatic annotations were con-
firmed by finding orthologous sequences on the UniProtKB database
with two rounds of PSI-BLASTp (blast.ncbi.nlm.nih.gov) followed by
multiple sequence alignments of hits (using Cobalt at the NCBI server),
spanning different Listeria species and other bacterial genera includ-

ing pathogenic species. These results also allowed us to manually
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FIGURE 1 Whole genome maximum likelihood phylogenetic tree including the two reported L. innocua strains (L innocua 1074 and L innocua
1174) and another 12 representative strains of the L. innocua diversity, selected from the NCBI Genome Database. The tree is rooted to the LIN67
leaf and the reference genome is Clip11262. Coloured boxes represent the presence of the different genetic traits obtained with the VFDB core
dataset. Red boxes indicate the presence of a complete gene. Red boxes with stars indicate truncated genes due to the presence of internal stop
codons. Pale orange boxes indicate genes partially covered by the assembly. FBP bootstrap values are shown

confirm conservation of key residues of target proteins in some cases.
A more extensive virulence profile of all the L. innocua genomes used
in this work was also performed using the BIGSdb-Lm server from the
Institut Pasteur (Moura et al., 2016); however, these results were not
manually curated. The plugin Gene Presence was ran using the Viru-
lence scheme and the following parameters: >80% sequence identity,
>80% sequence coverage and 20 bp BLASTN word size (https://bigsdb.
pasteur.fr/cgi-bin/bigsdb/bigsdb.pl?db=pubmlst_listeria_isolates).

3 | RESULTS

Histopathology analyses of both CNS samples showed a moderate
suppurative meningoencephalitis with presence of multifocal microab-
scess lesions, compatible with listeriosis.

In both CNS cultures grew suspicious colonies of Listeria spp.
The colonies were non-haemolytic, made up of Gram-positive rods,
catalase-positive, capable of hydrolysing esculin, sucrose and glycerol
fermenters, and unable to produce acid from D-xylose, D-mannitol or
D-mannose. The API Listeria yielded the bionumber 7510 correspond-
ing to L. innocua with a 99.6% probability. They were PCR-negative for
the gene encoding internalin A. According to these results, the isolates
were identified as L. innocua, and named L. innocua 1074 (cattle isolate)
and L. innocua 1174 (sheep isolate), respectively.

Whole genomes from both isolates were sequenced (reads are avail-
able in the SRA database from NCBI; see supplementary Table S2), and
their ANIb analysis confirmed both as L. innocua species (98.8% identity
with the reference genome).

A whole genome phylogenetic analysis was performed, including
the two isolates reported here and 12 additional genomes that span
L. innocua diversity. The obtained tree showed that the local iso-
lates obtained from both animals were closely related to each other

(Figure 1). This was further studied by a SNPs comparative analysis,

which resulted in a difference of 86 SNPs using the cattle isolate as ref-
erence, and of 115 SNPs if the reference was the sheep strain.

Virulence factor profiling using the VFDB core dataset identified
the presence of 13 genes conserved in both isolates as shown in
Figure 1. Manual curation of these results showed that none of these
genes had premature stop codons or failed to be covered by the
sequencing process. Through this analysis we also found that the
virulence factors harboured in these two isolates were also present
in most of L. innocua reference strains (Figure 1). A more extensive
profiling using the BIGSdb-Lm confirmed these results as well as the
presence of other genes potentially involved in Listeria pathogenesis,
which were also present in the other L. innocua genomes used in this
study (see Supplementary Table S3).

4 | DISCUSSION

In this work L. innocua was isolated from the central nervous system
of two animals with encephalitis. Along with the observed histopatho-
logic lesion in the CNS, this supports the hypothesis that L. innocua was
the agent responsible for the nervous symptoms of these animals. It has
been previously described that cattle are asymptomatic carriers of L.
innocua, shedding this microorganism in the faeces (Hofer & Reis, 2005;
Matto et al., 2018). However, there are only two reports of L. innocua
as the cause of meningoencephalitis in ruminants (Rocha et al., 2013;
Walker et al., 1994), to be contrasted to the numerous reports of animal
listeriosis due to L. monocytogenes strains (Walland et al., 2015). This is
the first report of nervous listeriosis in ruminants due to L. innocua in
which their genomes were sequenced, and the presence of virulence
factors was studied.

The narrow phylogenetic difference found between the genomes of
the two isolates is quite interesting (Figure 1), as they were isolated

from different animals in two unrelated farms, distanced more than
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150 km apart, and without exchange of animals between them. This
result suggests a common source of contamination or, a common cir-
culation pathway for these bacteria in ruminants throughout the coun-
try or the region. Also, our results encourage the need to maintain the
surveillance of cases of nervous diseases in ruminants, and to sequence
more Listeria isolates, in order to confirm or refute these hypotheses.

Neither of both isolates showed R-haemolysis in SBA-5% plates.
This finding is consistent with the absence of the hly gene, coding for
haemolysin O (a cholesterol-dependent pore-forming toxin), one of the
main virulence factors of L. monocytogenes, located in the cluster called
LIPI-1(Vazquez-Boland et al.,2001). The absence of hly motivated us to
search for the entire LIPI-1 cluster, finding that neither of both isolates
possessed any LIPI-1 genes. Other authors have reported B-haemolytic
L. innocua strains, but harbouring LIPI-1 genes (such as prfA, picA, hly,
actA, mpl and PIcB) (Clayton et al., 2013; Johnson et al., 2004; Moura
etal., 2019). Similarly, Moreno et al. (2012) described six L. innocua iso-
lates with the presence of the hly gene and the inlAB operon.

Moving further in the study of the genetic background of these
L. innocua isolates, we did not find any of the internalin genes. The
absence of the inlA gene was first detected by PCR and then confirmed
with the whole genome sequences. Additionally, neither of these two
isolates possess the listeriolysin S gene cluster (LIPI-3) of L. monocyto-
genes. Other reports described the presence of inlA gene in 9 out of 42
L. innocua isolates (Moura et al., 2019), or the LIPI-3 cluster (Clayton
et al., 2013; Moura et al., 2019). However, both isolates harboured full
LIPI-4 cluster and involved in placental and neural tropism of L. mono-
cytogenes clonal complex CC4 (Maury et al., 2016). Moura et al. (2019)
alsoreported the presence of the LIPI-4 cluster in most of the L. innocua
isolates studied in their work; however, some of them presented
mutations.

Taking into account our results, we wonder if the genes identified
in VFDB (Figure 1) could provide the molecular basis to explain the
pathogenic behaviour of the isolates of this work. Some of these genes
have been reported in L. monocytogenes and other Gram-positive bacte-
ria, individually associated with roles in virulence and/or pathogenicity
(Burkholder & Bhunia, 2010; Forster et al., 2011; Keeney et al., 2007;
Meireles et al., 2020; Osanai et al., 2013; Rae et al., 2011; Réglier-
Poupet et al., 2003a,b; Vazquez-Boland et al., 2001). At least 5 of the
13 virulence genes found encode proteins related to bacterial adhesion
to, and/or invasion into mammalian cells. (i) The iap gene (invasion-
associated protein) codes for the extracellular protein p60 with murein
hydrolase activity and necessary for bacterial division and invasion of
host cells (Vazquez-Boland et al., 2001; Wuenscher et al., 1993). (ii) The
IpeA gene encodes a protein that belongs to the Lipoprotein Receptor-
associated Antigen | (Lral) superfamily. Lral proteins are associated
to the bacterial surface and include several adhesion proteins from
many Gram-positive pathogenic bacteria such as PsaA adhesins from
Streptococcus pneumoniae, FimA from S. parasanguis and EfmA from
Enterococcus faecium, among others. Like the other Lral proteins, L.
innocua LpeA includes an extracelullar SBP domain (‘Streptococcal
solute-binding proteins’), which in L. monocytogenes binds Zn*2 and
Mn*2 and mediates the entry to eukaryotic cells including hepatocytes

and macrophages (Réglier-Poupet et al., 2003b). (iii) The identification

of the IspA gene further confirms the role of LpeA in promoting cell
entry. LpsA is a type Il signal peptidase, shown to be essential for
LpeA maturation (Réglier-Poupet et al., 2003a), with genetic defects
in IpsA inducing faulty LpeA maturation, consequent loss of its proper
surface localisation, and ultimately significant attenuation of L. mono-
cytogenes virulence (Réglier-Poupet et al.,, 2003a). (iv) lap (Listeria
adhesion protein) promotes adhesion to intestinal epithelial cells and
facilitates extraintestinal dissemination of the bacteria (Burkholder &
Bhunia, 2010). (v) Finally, the fbpA gene encodes an adhesin comprising
fibronectin-binding domains, FbpA, that functions as an adhesion
protein to host cells, especially hepatocytes (Osanai et al., 2013).

Among the virulence-encoding genes, these L. innocua isolates
also include genes coding for enzymes that protect bacteria against
host defences, or that enhance their survival within the cytosol of
infected cells. For example, the pdgA and oatA genes (peptidoglycan N-
deacetylase and O-acetylase, respectively) may be essential to resist
the host’s lysozyme. Mutants in these two genes result in increase
of peptidoglycan’s sensitivity to lysozyme inducing L. monocytogenes
virulence attenuation (Rae et al, 2011). We also found the IplA1
gene, which encodes a lipoate-ligase, an enzyme that promotes Listeria
cytosolic replication within host cells (Keeney et al., 2007).

Other two genes found in these two genomes encode for enzymes
that likely play important roles in maintaining the integrity and stability
of the bacterial wall in Listeria. The gtcA gene encodes an enzyme that
catalyses teichoic acid glycosylation on L. monocytogenes wall. Proper
glycosylation mediates key pathogenicity features: the correct anchor-
ing of major surface virulence factors (Ami e InIB); resistance to antimi-
crobial peptides and decreased susceptibility to antibiotics (Meireles
et al., 2020). The second gene present is prsA2, which encodes a pep-
tidyl prolyl cis-trans isomerase that assists in correct protein folding. As
such, PrsA2 regulates the maturation and secretion of some proprotein
virulence factors (such as phospholipase C PC-PLC) of L. monocytogenes
(Forster etal.,2011).

Finally, three genes that encode proteases, clpC, cIpE and clpP, were
also identified; these are proposed to act as stress response media-
tors and to assist with intracellular replication (Vazquez-Boland et al.,
2001).

This genetic background might be consistent with virulence reten-
tion in both L. innocua isolates from clinical cases of listeriosis. The
genes identified using VFDB and BIGSdb-Lm databases, code for vir-
ulence factors called minor or accessory but it has been proven that
many are capable of promote cell invasion and/or intracellular repli-
cation (Burkholder & Bhunia, 2010; Forster et al., 2011; Keeney et al.,
2007; Meireles et al., 2020; Osanai et al., 2013; Rae et al., 2011;
Réglier-Poupet et al., 2003a,b; Vazquez-Boland et al., 2001). It is note-
worthy that genes identified in both isolates are present in most of the
reference strains of L. innocua from the NCBI genome database. How-
ever, none of them were obtained from diseased ruminants. As we men-
tioned above, there are only two cases of animal listeriosis due to L.
innocua reported previously, but their genome sequences are not avail-
able to compare with those described here.

Regarding that just one of several animals per farm was affected,

other issues to be considered in order to attempt to explain the
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situation are (i) the previous animal health condition and (ii) bacterial
exposure load to which these animals were subjected. Disease could
be due to unequal exposure to L. innocua present in feed or farm
environment, presence of debilitating factors in these animals, or
both simultaneously. However, until now, individual risk factors for
ruminants are poorly understood (Walland et al., 2015). The findings
reported in this work highlight the multifactorial nature of the Listeria
pathogenesis and reinforce the need for detailed scientific research
that include microbiological, environmental and veterinary aspects.
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