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Abstract 
Agricultural production is a cornerstone of Uruguay's economy, contributing significantly to 

its GDP with an impact of approximately 11 points. This sector is characterized by its high 

technological demand and a declining labor force. Traditionally, the agricultural workforce 

has not required extensive technical skills, but the rapid advancement of technology ne-

cessitates a shift towards more technologically adept labor. Thus, the adoption of ad-

vanced technologies and the retraining of the workforce are imperative. Labor retraining 

within the agricultural domain is essential to fortify the sector's competitiveness, sustaina-

bility, and resilience amidst contemporary challenges. Precision agriculture advocates 

integrating cutting-edge technologies to optimize crop management and agricultural re-

source utilization. Implementing autonomous robotics has the potential to mitigate labor 

requirements, foster workforce technological education, and propel advancements toward 

precision agriculture. Founded in 2013, the MINA group at the Faculty of Engineering of 

the University of the Republic (Uruguay) has been actively engaged in robotics projects 

tailored for agricultural applications. Initially focusing on orchards of pome fruits from 2013 

to 2023, the group undertook tasks such as harvest support and estimation of harvest 

quantity and quality. Subsequently, efforts have been directed towards pest control 

measures targeting pests such as birds and ants, and weed management. This paper 

delineates the intricacies of these distinct projects, elucidating the technologies employed 

and developed, outlining achieved results to date, and envisaging the potential for wide-

spread adoption of this technology at a feasible cost. 

Keywords: autonomous robot navigation, computer vision, artificial neural networks, 

precision agriculture 

 

Integración de robótica avanzada para la agricultura de precisión y la 
sostenibilidad: Compendio de divulgación de los esfuerzos realizados por el 
grupo MINA 

Resumen 

La producción agropecuaria es una piedra angular de la economía uruguaya que contribuye significativamente a su PBI 

con un impacto de aproximadamente 11 puntos. Este sector se caracteriza por su alta demanda tecnológica y una 

mano de obra en declive. Tradicionalmente, la mano de obra agrícola no ha requerido grandes conocimientos técnicos, 

pero el rápido avance de la tecnología hace necesario un cambio hacia una mano de obra más formada en tecnología. 

Así pues, la adopción de tecnologías avanzadas y la reconversión de la mano de obra son imperativas. La reconversión 
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de la mano de obra en el ámbito agrícola es esencial para reforzar la competitividad, la sostenibilidad y la resistencia del 

sector en medio de los retos contemporáneos. La agricultura de precisión aboga por integrar tecnologías innovadoras 

para optimizar la gestión de los cultivos y la utilización de los recursos agrícolas. La implementación de la robótica autó-

noma tiene el potencial de mitigar las necesidades de mano de obra, fomentar la educación tecnológica de los trabaja-

dores e impulsar los avances hacia la agricultura de precisión. Fundado en 2013, el grupo MINA de la Facultad de Inge-

niería de la Universidad de la República (Uruguay) ha participado activamente en proyectos de robótica enfocados en 

aplicaciones agrícolas. Inicialmente centrado en montes de frutales de pepita desde 2013 hasta 2023, el grupo empren-

dió tareas como el apoyo a la cosecha y la estimación de la cantidad y calidad de la cosecha. Posteriormente, los es-

fuerzos se han dirigido a medidas de control de plagas en pájaros y hormigas, y a la gestión de malezas. En este artícu-

lo se describen los aspectos más sobresalientes y las complejidades de estos proyectos, se explican las tecnologías 

empleadas y desarrolladas, se esbozan los resultados obtenidos hasta la fecha y se vislumbra el potencial de adopción 

generalizada de esta tecnología a un coste viable. 

Palabras clave: navegación autónoma robótica, visión por computador, redes neuronales artificiales, 

agricultura de precisión 

 

Integração da robótica avançada na agricultura de precisão e sustentável: Um 
compêndio de divulgação de esforços do MINA 

Resumo 

A produção agrícola é uma pedra angular da economia do Uruguai, contribuindo significativamente para o seu PIB com 

um impacto de aproximadamente 11 pontos. Este sector caracteriza-se pela sua elevada exigência tecnológica e por 

uma mão de obra em declínio. Tradicionalmente, a mão de obra agrícola não exigia grandes competências técnicas, 

mas o rápido avanço da tecnologia exige uma mudança para uma mão de obra mais tecnologicamente apta. Assim, a 

adoção de tecnologias avançadas e a reconversão da mão de obra são imperativas. A reconversão da mão de obra no 

domínio agrícola é essencial para reforçar a competitividade, a sustentabilidade e a resiliência do sector face aos desa-

fios contemporâneos. A agricultura de precisão defende a integração de tecnologias de ponta para otimizar a gestão 

das plantações e a utilização dos recursos agrícolas. A implementação da robótica autônoma tem o potencial de mitigar 

os requisitos de mão de obra, promover a educação tecnológica da força de trabalho e impulsionar os avanços em 

direção à agricultura de precisão. Fundado em 2013, o grupo MINA da Faculdade de Engenharia da Universidade da 

República tem estado ativamente envolvido em projetos de robótica focados em aplicações agrícolas. Inicialmente cen-

trado nos pomares de pomóideas de 2013 a 2023, o grupo realizou tarefas como o apoio à colheita e a estimativa da 

quantidade e qualidade da colheita. Posteriormente, os esforços foram direcionados para medidas de controlo de pra-

gas, como aves e formigas, e para a gestão de ervas daninhas. Este documento delineia as complexidades destes 

projetos, elucidando as tecnologias utilizadas e desenvolvidas, delineando os resultados alcançados até à data e pre-

vendo o potencial de adoção generalizada desta tecnologia a um custo viável. 

Palavras-chave: navegação robótica autônoma, visão por computador, redes neurais artificiais, agricultura de precisão 

 
 

1. Introduction 

The MINA Group at the Faculty of Engineering of the University of the Republic (Uruguay) specializes in re-

search and development in mobile autonomous robotics. The group focuses on creating technological solu-

tions that combine mechatronics, machine learning, and automation, intending to address various challenges 

in dynamic and complex environments.  

Recently, the MINA group has been actively working on four case studies that reflect the applicability of their 

research. This article resumes the work of several undergraduate students and researchers guided by the 

authors. We aim to share our developments with the community to foster future collaborations and trace new 

research avenues. 
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Through advanced technologies, our group develops solutions that enhance efficiency across various sectors, 

including agriculture, helping to make practices more innovative and effective. In recent years, we have inte-

grated neural networks into our work. These are computer models inspired by the way the human brain pro-

cesses information. They learn to recognize patterns and make decisions based on data. The most common 

approach is supervised learning, where the model is trained using a set of examples that have already been 

labeled with the correct answers. By analyzing this data, the neural network gradually adjusts its internal set-

tings to improve its predictions and solve specific problems more accurately.  

The first case focuses on apple counting and quality assessment. In collaboration with the National Livestock 

and Agriculture Research Institute (INIA in Spanish), an autonomous system has been developed using the 

Jackal robot equipped with ZED cameras. This project employs computer vision algorithms to automate crop 

monitoring, allowing accurate counting and assessment of apples' health status. This work contributes to more 

efficient plantation management. 

The second case study addresses the detection of pest birds in agricultural areas. Pest birds can cause signif-

icant damage to crops, so their early detection is critical. The MINA group is developing an autonomous sys-

tem that uses sensor networks and drones equipped with cameras to identify the presence and deterrent of 

these birds. The system distinguishes between bird species using image processing and machine learning 

algorithms, alerting farmers to potential threats and enabling timely intervention. 

The third case study focuses on ant nest localization, especially in agricultural environments where ants can 

affect crop health. The group has designed an autonomous robot, equipped with cameras, to identify and track 

ant activity. This system applies computer vision and neural network techniques to map ant movements and 

follow them to the nest, providing valuable data for pest control and plantation protection.  

Finally, the fourth case presents studies using neural network models for weed detection. These works focus 

on developing and evaluating machine learning-based approaches to identify and classify weeds in agricultural 

environments accurately. The proposed models leverage advanced image processing techniques and deep 

learning architectures to enhance detection performance, contributing to precision agriculture and sustainable 

weed management. 

 

2. Apple Counting and Quality Assessment  

2.1 Introduction  

An accurate estimate of the amount of fruit produced allows growers to make key strategic decisions regarding 

crop production, distribution, and marketing. Similarly, early identification of diseases is crucial to minimize 

their spread during the crop's development. The omission of disease identification can lead to substantial loss-

es in the total harvest, making early detection a critical factor in agricultural success.  

Traditionally, human observation has carried out the detection and identification of fruit diseases and pests. 

Although this practice is still prevalent in many countries, it is a costly and time-consuming task. Furthermore, 

detection by human observation presents another major problem due to the periodic application of agrochemi-

cals to combat pests and diseases that can cause health problems for the people in charge of monitoring due 

to prolonged exposure to these products. Automating the detection and quality classification of fruits such as 

apples would be highly beneficial.  
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2.2 Materials and Methods  

In the context of this project, the proposed solution uses the Jackal robot(1) as a base platform. This ground 

robotic platform, developed by Clearpath Robotics, is recognized for its robustness and versatility in field envi-

ronments. The Jackal platform is a compact, high-performance autonomous vehicle specifically designed for 

outdoor applications, making it ideal for inspecting and monitoring agricultural plantations. The robotic platform 

was adapted to incorporate sensors for image capture using ZED cameras developed by Stereolabs. These 

high-resolution stereo cameras provide depth data and allow 3D perception of the environment. The combina-

tion of the Jackal robot and ZED sensors offers an integrated and efficient solution for the automation of agri-

cultural monitoring (Figure 1), significantly improving the accuracy and efficiency of crop analysis and contrib-

uting substantially to decision-making in plantation management. This integration has resulted in the MAGRO 

dataset(2), which openly provides valuable information for counting, quality and autonomous navigation work in 

agricultural environments.  

 

Figure 1. Robot used for detecting and monitoring the quantity and quality of apples 

 

The Robot Operating System (ROS)(3) is a flexible, open-source platform designed for robotic software devel-

opment. It provides many tools, libraries, and conventions that simplify creation of complex robotic applica-

tions. ROS's use in robotics research is primarily justified by its flexibility, modularity, standardization, simula-

tion capability, and broad hardware compatibility. These aspects consolidate ROS as an essential tool for de-

veloping advanced and efficient robotic solutions. Recently, the use of computer vision and image processing 

has increased considerably in a wide variety of tasks, including agriculture. Agricultural environments present 

several challenges, particularly the use of computer vision in environments with high illumination variations 

and occlusions caused by fruits, leaves, or branches, what makes this task an open problem. The main objec-

tive of this work is to develop a solution to automate and optimize fruit analysis in agricultural environments. 
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Specifically, solutions are sought to solve the problem of detecting and counting apples using object detection 

and tracking algorithms based on neural networks. Once the apples are detected, disease detection can be 

performed only in the image section where they are located. This development has the potential to significantly 

impact agricultural practices, making them more efficient and productive. 

To achieve this purpose, a system was designed that combines computer vision and deep learning tech-

niques. In this context, a system was developed that counts and classifies apples as healthy or diseased and 

associates them with a geographic position to identify their location (Figure 2). This system is a pipeline that 

integrates detection algorithms, video tracking, and apple classification, linking them to a geographic location 

to generate a heat map that identifies areas with a higher presence of diseased apples. 

During the processing of each video frame, the apples present are detected and tracked over time, and the 

number of apples seen is counted. At the end of the video processing, the detected apples are classified using 

all the images obtained from each one. The system can also classify the apples as the frames are processed 

in real time. Since it was implemented generically, the pipeline is very flexible in using other algorithms, allow-

ing the implementation of interfaces using different algorithms. 

 

Figure 2. Parts of the system. Left: Detection and tracking of apples. Right: Heat map 

2.2.1 System Architecture  

A generic architecture has been developed for detecting, classifying, and tracking various targets. This archi-

tecture integrates multiple modules, including data acquisition, preprocessing, and feature extraction, thereby 

enabling the incorporation of decision-making algorithms to ensure robust and accurate performance across 

diverse scenarios. The design of this solution is depicted in Figure 3, which illustrates the systematic flow and 

interaction between the different components of the architecture. By providing a comprehensive framework, 

this architecture facilitates the implementation of advanced algorithms, enhancing their adaptability and effec-

tiveness in real-world applications. 

Various state-of-the-art algorithms were trained and evaluated using different datasets. You Only Look Once 

(YOLO) model version 8 achieved near-state-of-the-art results for close-up apples but had lower recall for 

apples on trees, detecting them quickly but missing many. Faster Region-Based Convolutional Neural Network 

(Faster R-CNN) had high recall but lower precision; while Segment Anything Model (SAM) and Contrastive 

Language-Image Pretraining (CLIP) performed poorly compared to expectations. For quality classification, 
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CLIP excelled in quality datasets, though the Transformer model was better at detecting diseased apples in 

tracking datasets, but was slower. 

Tracking algorithms, especially StrongSORT, BoT-SORT, and DeepOCSORT, performed well. They associat-

ed detections across frames and recovered quickly if a detection failed. Their performance is tied to the quality 

of the detection algorithms. 

 

Figure 3. System architecture for counting and quality assessment in apple orchards 

2.3 Results  

2.3.1 Apple Detection and Counting  

The availability of adequate data is essential when training deep neural network models. Upon reviewing the 

available data for detection, disease classification, and counting, we find several works that, although de-

signed for other tasks such as fruit harvesting –where images are seen in close-up– or using high-altitude 

drone flights –where images are seen from a distance–, are relevant as they can still provide variability to the 

type of data used, especially if the availability of data on trees is scarce(4)(5)(6)(7). The use of tracking algorithms 

is evaluated to avoid counting the same apples multiple times. The datasets are composed of image sequenc-

es and the identification of not only the apple but also the assignment of a unique identifier. For this, two da-

tasets are used(8)(9), one with images acquired at INIA. 

Neural network models for object detection, such as YOLO(10), Faster R-CNN(11), and SAM(12), were used and 

evaluated with various public and self-developed datasets. Tracking algorithms such as StrongSort, 

ByteTrack, and OCSort were also assessed. For this, video datasets were constructed from recordings of a 

plantation and data generated with an apple field simulator. The simulator is used to create controlled condi-

tions for testing tracking algorithms, complementing real-world data, which is often scarce, particularly in terms 

of labeled apple tracking datasets. Finally, two adjustment models that seek to minimize the error of the pre-

dictions using linear regression were evaluated for counting.  



Marzoa Tanco M, Trinidad Barnech G, Benavides F, Tejera López G 

 

 

Agrociencia Uruguay 2025;29:e1528 7 
 

2.3.2 Apple Quality  

In the study on apple quality, we carried out two works that encountered the same obstacle: the need for sig-

nificant public datasets with images of apples classified as diseased or healthy on the trees, or significant da-

tasets that specify the type of disease or defect. 

In the first work, Rieppi and others(13) created a dataset with images obtained from Kaggle(14), Roboflow(15), 

and QuIIL(16). This dataset was curated by removing unrelated images, cropping those with multiple apples to 

generate one image per instance, correcting misclassifications, and eliminating duplicates. The resulting da-

taset contains 8410 images of healthy apples and 4116 of defective apples. 

We conducted experiments with five models: two for anomaly detection (GANomaly(17) and PaDiM(18)) and 

three for image classification (ResNet50V2(19), MobileNetV2(20), InceptionV3(21)). The results showed that the 

classification models outperformed the anomaly detection models regarding F1-Score, with MobileNetV2 being 

the best, achieving the highest scores in all dimensions (mean 0.94). 

The other study was conducted by Sheppard and Guchin(22), who used two datasets: Dataset 1: Fruits fresh 

and rotten for classification(23) with 1694 training images of healthy apples and 2343 diseased apples, and 

Dataset 2: Apple Detection Dataset(24) with 294 training images of healthy apples and 269 diseased apples. 

They used CLIP(25) and Vision Transformer(26), two state-of-the-art algorithms for classification. CLIP was not 

trained, and the labels “a healthy apple” and “a rotten apple” were used for classification, while Vision Trans-

former was trained with Dataset 1. 

The results showed that Vision Transformer is approximately three times slower than CLIP. In Dataset 1, Vi-

sion Transformer achieved perfect performance, as it was trained on this dataset, albeit with a different parti-

tion. CLIP achieved balanced results with metrics around 80%. In Dataset 2, CLIP had similar results to the 

other dataset, although with lower recall for diseased apples. In contrast, the Transformer showed lower preci-

sion and accuracy than CLIP, with a tendency to classify more frequently diseased apples. 

In conclusion, CLIP achieved the best results, similar results in both datasets, outperforming the Vision Trans-

former in the untrained dataset. However, both methods fell short of state-of-the-art algorithms, which achieve 

around 94% precision and accuracy, using datasets that are unavailable for comparison. 

 

Table 1. Quality apple: F1-Score in both datasets  

  Diseased Positive Class Healthy Positive Class 

  Dataset 1 Dataset 2 Dataset 1 Dataset 2 

Clip 

F1-score 0.81 0.73 0.77 0.8 

Precision 0.85 0.84 0.73 0.73 

Recall 0.78 0.64 0.81 0.44 

Vision Tran-
sformer 

F1-score 1.0 0.75 1.0 0.6 

Precision 1.0 0.62 1.0 0.94 

Recall 1.0 0.98 1.0 0.44 
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2.4 Conclusions  

Counting the number of apples and detecting diseases in time are fundamental to improving crop quality and 

productivity. Both tasks can benefit from technology, and thanks to current advances in machine learning, 

these tasks can be performed successfully. 

The developed pipeline for apple classification in videos is not just a solution for today but a platform for the 

future. It is designed to seamlessly integrate with any upcoming detection, classification, or tracking algorithm. 

This adaptability ensures its relevance and usefulness in the ever-evolving field of agricultural technology.  

Larger, diverse datasets are needed for detection, quality classification, and tracking. The lack of such da-

tasets led to models overfitting and poor generalization. More varied datasets with different backgrounds, siz-

es, and lighting conditions are necessary for better performance.  

 

3. Sound-Based Parakeet Detection System  

This section summarizes and highlights the most important aspects and results achieved in a previous work 

entitled as the section name(27). 

3.1 Introduction 

In recent years, the rapid increase in parakeets has become a significant and pressing issue for crops in the 

Rio de la Plata region. Their ability to adapt to various environments, their high reproductive rates, and versa-

tile diet have led to rapid population growth, seriously threatening agricultural productivity. This study is part of 

an essential feasibility assessment for developing a parakeet detection system and subsequent deterrence 

mechanism using real-time audio signals captured in the field. 

The Argentine parakeet (Myiopsitta monachus, Figure 4), also known as the monk parakeet, is a species of 

psittaciform bird from the Psittacidae family, native to South America. It is commonly found in Uruguay, Argen-

tina, Brazil, Paraguay, and Bolivia(28). The bird predominantly feeds on seeds from both wild and cultivated 

plants, including thistle, sorghum, corn, and rice. It also consumes fruits, flowers, adult insects, and larvae(29).  

 

Figure 4. Myiopsitta monachus 

 

Due to these feeding habits, the monk parakeet has been a long-standing issue for crops, particularly fruit 

trees, negatively impacting agricultural output. In Uruguay, it was officially classified as a pest in 1947, and by 

1981, the FAO estimated an annual loss of US$ 6 million due to the bird's damage, a figure that has likely 
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risen since then(29). Additionally, conventional bird control methods have proven ineffective due to the para-

keet's remarkable environmental adaptability. 

Recent research has revealed an intriguing aspect of parakeet behavior: they possess a distinct acoustic sig-

nature, which allows them to encode their identity through various calls. This enables them to recognize one 

another and share information. This complex acoustic behavior distinguishes their calls from other sounds in 

the field, a characteristic our proposed detection system seeks to utilize(30)(31)(32)(33)(34)(35)(36). 

3.2 Materials and Methods  

3.2.1 Sound-Based Detection System  

Given the large control area, equipment costs, processing time, and the potential frequency of events, a sound 

sensor system is the most viable option. In this study, only a single audio source will be processed to simplify 

the problem and evaluate the feasibility of detecting parakeets through audio. This results in a binary classifi-

cation problem, where continuous audio sampling is used to determine parakeets' presence (True/1) or ab-

sence (False/0).  

As some authors indicate(31)(32)(33)(34), learning from their sounds appears feasible. The primary techniques 

used include Spectrographic Cross-Correlation (SPCC) and Mel Frequency Cepstral Coefficients (MFCC); 

however, the spectrogram image was deemed the most suitable alternative since it inherently contains much 

of the information provided by the other methods.  

3.2.2 The Data  

To train the model, the parakeet audio must include a variety of calls and account for variability in the number 

of emitting parakeets, ranging from a single bird to small groups or flocks. Meanwhile, the ambient noise da-

taset must cover all possible sounds in the field, including those from other birds and animals. A database was 

compiled using audio from various public sources found on the internet, along with several recordings cap-

tured at different locations across the country between November 2023 and March 2024, using the eBird app.  

3.2.2.1 The Parakeet Spectrogram  

The parakeets’ spectrograms were studied to adjust their construction parameters to most clearly express the 

patterns inherent in the sounds emitted by the parakeets (their harmonics). See Figure 5 (a) parakeet, and (b) 

other species. 

 

(a)      (b) 

Figure 5. Sonic Visualiser screenshots (Spectrogram: Window 512, 87.5%, dB), approx. two seconds duration 
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3.2.2.2 The Dataset  

With 30% set aside for validation, the dataset results in 511 samples (43.6 minutes of total recording) of the 

negative class and 309 samples (26.8 minutes) of the positive class for training. In total, including the valida-

tion data, there are 1171 recordings of 5 seconds each. 

3.2.3 Classification Model: Convolutional Neural Network  

3.2.3.1 Architecture  

Based on the architecture suggested in Prosise(37), after numerous performance tests modifying various pa-

rameters, addressing the trade-off between the model’s size and weight and its performance as a classifier, 

the model architecture is summarised in the diagram shown in Figure 6. 

Note that this architecture, for an input size of 192×256, has approximately 700,000 trainable parameters and 

occupies 2.64 MB of memory, which is relatively low for a CNN.  

 

Figure 6. CNN model architecture 

3.2.3.2 Data Augmentation  

Data augmentation is applied to 30% of the training set's parakeet base (label = True) to balance the classes 

(while the validation set remains the same). White noise is added to 15% at two low power levels.  

Natural noise from nine background samples (field, rain, crickets, some bird sounds, etc.) is added to the other 

15%. The result was an increase in the sample of parakeets in the Train from 309 to 402, representing 44% of 

the total Train set, compared to 38% before the rise.  

3.2.4 Event Detector  

Since the binary classifier expects five-second inputs to determine the presence or absence of parakeets, it 

does not seem feasible to compute the spectrogram and process it as an image in the neural network every 

five seconds permanently, especially considering that the sensing comes from a network of multiple micro-

phones. Therefore, an event detector is needed as a previous instance of filtering, maintaining a low computa-

tional cost (and consumption). When a relevant acoustic event occurs, it sends five-second fragments to the 

classifier to determine whether it is a parakeet. 

Some tracks were taken (and others were created) to test and tune the event detector. The objective is to pre-

vent ambient noise from triggering the event. The concept of a sliding window, and thus a moving average, 

seeks to adapt to the variable acoustic conditions at a given time and place while allowing for gradual and 

‘smooth’ changes, yet recognizing sudden ones (Figure 7). 
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Figure 7. Sliding window graphic 

3.3 Results  

The complete system consists of an event detector that operates continuously. When an event occurs, it 

sends the last 5 seconds of audio to the classifier. The classifier then converts the time window into an image 

using the spectrogram, adjusts its size, and feeds it into the trained neural network. If the classification is posi-

tive, a drone is dispatched, the detector is paused to conserve energy, and a second detection awaits confir-

mation. A simulation of the entire system was conducted to test the whole pipeline, simulating the real-time 

arrival of samples. 

Figure 8 illustrates an example by showing an audio file featuring the sounds of a parakeet and a benteveo 

bird. Both sounds trigger the event detector, but they are classified differently. The vertical lines in the chart 

indicate when events are detected: if the classification is positive, the line is green; if negative, it is red. The 

corresponding spectrogram is displayed below the chart. Based on this information, both classifications are 

deemed correct. 

 

 

Figure 8. Whole system simulation results 



 

Marzoa Tanco M, Trinidad Barnech G, Benavides F, Tejera López G 

 

12 Agrociencia Uruguay 2025;29:e1528 
 

3.4 Conclusions  

After a thorough review of the literature on acoustic event detection in general and the sounds produced by 

parakeets specifically, along with the promising experimental results, we conclude that it is feasible to develop 

a detection system. This system can apply models already established in the field for identifying parakeets 

based on audio classification using spectrogram frequencies. The primary challenge moving forward is to con-

tinue improving the dataset. Additionally, the intensity of information exchange and sound production during 

foraging or feeding is high enough to affect the model's sensitivity, presenting a potential unaddressed compli-

cation. 

Future work will focus on enhancing the classification model, particularly by collecting more balanced data and 

considering the environmental factors in which the system will be deployed.  

 

4. Ant Nest Localization  

4.1 Introduction  

Ants are one of the factors that reduce agricultural productivity, causing economic losses due to decreased 

production and the cost of controls. These insects are considered pests and constitute one of the leading sani-

tary problems for agricultural production. Their adaptability and resistance to controls have made ants a global 

and central issue in agricultural production. Leaf-cutting ants are polyphagous, meaning they feed on many 

plant species, making them a problem for various sectors, such as forestry, agriculture, viticulture, and horti-

culture(38). For forestry companies, leaf-cutting ants of the genus Acromyrmex cause enormous economic 

losses due to the damage caused by the defoliation of young plants.  

Currently, the only effective control method is agrochemicals, but this creates an unavoidable tension between 

the principles of environmental sustainability that govern agricultural activity and production's success (39)(40)(41). 

Additionally, ants have demonstrated a remarkable ability to avoid chemical controls by adapting their behavior 

to minimize the effect. In this context, it is necessary to adopt alternative methods to chemicals and/or reduce 

their use to preserve health and the environment.  

This project aims to develop an autonomous robot capable of traversing plantations in search of ant nests. To 

achieve this, it must be able to localize itself and move freely in highly challenging terrains while attempting to 

recognize both potential ant nests and ant trails, which it can then follow to find the nest. Locating the ant 

nests would allow for more environmentally friendly control techniques, such as mechanical removal of the 

nest or localized application of chemicals. In addition, a robotic worker has inherent advantages, including 24-

hour operation, autonomy, and precision. 

4.2 Materials and Methods  

4.2.1 Robotic Platforms  

The first step towards a fully autonomous ant-nest detecting robot is a navigation platform ready to traverse 

the rough terrain of the plantations. The robot base must remain stable and close to the ground to keep its 

sensors close to the (possible) ants and nests, maximizing the likelihood of detecting them. It is also desirable 

for the robot to be affordable, easy to build, robust, and easy to control. 

To this end, we developed two distinct prototypes based on our experience and the current trends in agricul-

tural robotics. Both are based on the Dynamixel AX-12 servo motors(42), which provide good torque and pre-

cise control through a Python script and a ROS Controller. Having the motors modeled in the ROS framework 
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allows us to easily use all ROS features, including our own localization and mapping algorithms developed for 

previous projects. The robots are equipped with an Odroid N2 Single Board Computer (SBC) for computing 

and control, capable of running low-level motor control, ROS framework, mapping algorithms, and object de-

tection neural networks. 

4.2.1.1 Hexapod Robot  

The first prototype, shown in Figure 9a, is a hexapod robot with three motors per leg. Using legs instead of 

wheels means the robot can fully control each point of contact with the ground, adjusting for irregularities in the 

terrain to maintain its level. This locomotion is also robust to obstacles, using feedback from each leg to detect 

them and either climb or avoid each one depending on its height, angle or other factors. 

In our preliminary test, the robot showed these virtues: moving around dirt, grass, and concrete without major 

issues. However, the fine control of 18 motors comes at a high computational cost that has proven hard to 

balance with sensor acquisition and image processing. Using the onboard SBC, the robot can only process 

one image every two seconds and has to stop entirely before doing so. This limitation can be overcome using 

a more powerful board or straightforward leg controls.  

 

  

(a)      (b) 

Figure 9. Robot prototypes for ant nest localization 

 

4.2.1.2 Rover Robot  

This other prototype (Figure 9b) is inspired by the NASA Mars Rover (as replicated by Sawppy the Rover(43)) 

and built by combining aluminum and 3D printing. It features 10 motors, one for each wheel and one for each 

corner wheel, to adjust its angle.  

The robot features a Rocker-Bogie suspension mechanism, which is key to climbing steep terrain and over-

coming big obstacles. This system ensures that at least one wheel is always in contact with the ground, mean-

ing it never loses traction. Another advantage is that by connecting both sides of the robot through a mobile 

link, the base keeps relatively parallel to the ground even when facing obstacles.  
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4.2.2 Ant Detection  

To address the problem of locating the ant nest in an automated manner, detection technologies such as vi-

sion with aerial and ground vehicles have been explored, with adequate results only in cases where the envi-

ronments are controlled and isolated. Additionally, representing the state of the art, these works address the 

problem of ant species that build their nests superficially, greatly simplifying detection. The ant species in our 

country build underground nests, representing a much more significant challenge that has not been explored 

nationally or internationally. However, extensive literature highlights image analysis through deep neural net-

works as technological tools for identifying and monitoring ants(44)(45). 

In this work, we studied various architectures, considering their applicability to the task, performance, and re-

source requirements for training and deployment –the selected model needed to run efficiently on the available 

hardware alongside the rest of the system. Several widely used models were evaluated, including MobileNet, 

ResNet, and YOLO. Among all the evaluated options, YOLO proved to be the best fit for these requirements. 

Specifically, YOLOv8 was chosen through the Ultralytics API, as it was the most advanced YOLO architecture 

available at the start of this project phase. 

To retrain the YOLOv8 model and adapt it to our objective, a dataset for ant detection was created using 

Computer Vision Annotation Tool (CVAT), a manual labeling tool. This dataset consists of frames extracted 

from videos we captured using the camera installed on the robot. The images were collected to reflect the 

camera's actual position, height, and angle in the real environment, providing a more accurate context for ant 

detection under conditions similar to the model's practical application.  

Since ants are tiny, frames were captured at a resolution of 1280×852. This ensured that the labeled ants oc-

cupied bounding boxes between 30 and 70 pixels in width or height (depending on orientation), facilitating their 

detection. 

This dataset has the advantage of being specifically tailored to the environment where the tests will be con-

ducted, as the images were taken directly from that context. However, a limitation is that it does not include 

ants of different sizes or from environments other than those considered in our project. This restricts its gener-

alizability to scenarios outside the project, such as different cameras, variations in camera positioning, or di-

versity in ant sizes, species, and ground characteristics.  

The dataset consists of 2,975 images, with 2,679 allocated for training and 296 for validation.  

4.2.3 Ant Following  

Once ant detection is implemented, the robot must be able to determine the path direction they are following 

and move accordingly. 

4.2.3.1 Path Direction Estimation  

The output of the detection model consists of bounding boxes corresponding to each detected ant. From these 

bounding boxes, the midpoint of each is calculated and used as input for the least squares algorithm, which 

returns the best-fitting line for these points. This method was chosen because, given the robot's limited field of 

view and its proximity to the ground, it is assumed that the paths formed by the ants will have an approximate-

ly linear distribution. 

Using this line, the robot determines its direction so that it stays centered on the path. This is done by analyz-

ing the location of the midpoint of the detected line segment within the image. The image is divided into three 
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zones: if the midpoint falls in the left zone, the robot turns counterclockwise; if it is in the center, the robot 

moves forward; and if it is in the correct zone, it turns clockwise. 

Additionally, the division into zones depends on the line's inclination. If the line is vertical, each zone occupies 

one-third of the image. If the line is inclined to the left, the rightmost quarter of the image is assigned to clock-

wise turning, the next quarter to forward movement, and if the point falls in the left half, the robot turns coun-

terclockwise. A similar reasoning applies when the line is inclined to the right. 

4.2.3.2 Simulation  

To conduct tests in a controlled manner, a simulation of the robot's working environment was implemented 

using the Unreal Engine 5 game engine. This simulation allows for the adjustment of grass height and density, 

the creation of paths of any shape and length, and the configuration of the number of ants moving along them. 

The robot is then placed on these simulated paths, and its camera view can be rendered. This setup enables 

testing the effectiveness of tracking algorithms in various scenarios. Figure 10 presents an example scenario 

from a far point of view, not the one from the robot. 

 

Figure 10. Unreal 5 simulation of ant path over grass  

4.3 Results 

4.3.1 Ant Detection  

The ant recognition model was trained using our dataset for 50 epochs, with early stopping applied. The model 

achieved a precision of 95.57%, and a recall of 96.57% on the validation set. However, when tested on other 

videos collected after the dataset was built and the training was completed, the model detected only 40% of 

the ants on average. This indicates clear overfitting, likely caused by the fact that both the training and valida-

tion images were sourced from the same videos, where not all frames present significant differences.  

Nevertheless, the model can recognize between two and five ants (40% of the total) at any point during testing 

(examples in Figure 11). Given this performance, it was decided to proceed with this model and evaluate the 

feasibility of tracking under these conditions. 
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For the tests with a maximum of five detectable ants, the robot reached the goal in 46 out of 50 trials when 

taking the path to the left and 48 out of 50 trials when going right, achieving a success rate of 94%. This result 

validates the complete system (locomotion, detection, and decision-making) under conditions similar to a real-

world environment.  

When comparing performance between the cases with five and two detectable ants, a moderate decrease in 

success rate was observed, dropping from 93% to 75% –an 18% reduction. This decline is relatively small, 

especially considering that the number of ants detected by the model decreases by 60% when moving from 

five to two. 

 

Figure 13. Results of the path following test inside the simulation 

Each bar represents the number of times the robot reached the end of the path, depending on which direction it took and the maxi-

mum detectable ants 

4.4 Conclusions 

Identifying ants in an uncontrolled environment has proven to be highly challenging. The low contrast between 

the ants and the background causes the models to perform poorly regarding precision and recall. On the other 

hand, tests conducted in the simulation suggest that a system capable of detecting three or more ants (when 

approximately 12 ants enter the robot’s field of view at any time) should be able to follow the path without is-

sues. 

These results are auspicious, as they suggest that deploying these solutions does not require further increas-

es in detection accuracy. In the following stages of development, we will implement these models in the robots 

designed for real-world testing in an uncontrolled environment. This will allow us to identify the limitations of 

the complete system and compare the two robot models we developed for this purpose. 
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5. Weed Control  

5.1 Introduction  

Weed control is critical in agriculture because it significantly impacts crop productivity and overall farm efficien-

cy. Weeds compete with crops for nutrients, water, light, and space, producing substantial crop yields and 

quality reductions. Poor weed elimination can cause crop losses of up to 50%. In cases where weed control is 

absent, meaning the weeds are left uncontrolled, losses of up to 90% have been reported. 

Since 2023, we have initiated multiple projects to develop a fully autonomous weed control system utilizing 

robots. These robots are designed to traverse agricultural fields and accurately identify and eliminate weeds –

ideally without pesticide use. As has been indicated, the use of pesticides is not only costly but also detri-

mental to the environment. It poses significant health risks to consumers of food products exposed to these 

agrochemicals and the individuals who apply them. Moreover, pesticide application can reduce crop quality 

and notably increase the resistance of the weeds intended for removal. 

5.2 Materials and Methods 

5.2.1 Segmentation and Object Detection for Weed Detection 

The first project initiated in 2023 focused on developing segmentation and object detection models for weed 

identification to enable real-time use on a robot. Object detection and segmentation are the two most popular 

approaches to address this problem. Object detection results in a bounding box that contains the weed of in-

terest. In contrast, segmentation involves identifying all pixels belonging to the weed species, which can be 

considered a pixel-by-pixel image classification for weed detection. Figure 14 presents an image from the 

object detection dataset, while Figure 15 and Figure 16 show images from the segmentation datasets. 

 

Figure 14. Representative images from the Weeds Computer Vision Project dataset(46) 
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Figure 15. Representative images from the SeSame dataset(47) 

 

 

Figure 16. Representative images from the A CropWeedField Image dataset(48) 

Regarding segmentation, a neural network called UNet was implemented, while a YOLO (version 8) model 

was used for object detection. The YOLOv8 nano version was chosen because it requires less computational 

power than its larger counterparts. This is crucial for deploying the model on a resource-constrained robot. 

Moreover, the nano model delivers adequate performance for this application. 

UNet is a convolutional neural network with a U-shaped architecture. It consists of two main parts: an encod-

ing (contracting) path and a decoding (expanding) path. This structure is typical in many neural network archi-

tectures. The encoding path is responsible for extracting the most essential features from each image. In con-

trast, the decoding path uses these important features identified during encoding to produce the desired output 

for our application, in this case, generating a segmentation map of the input image.  

YOLO is considered a superior model for inference due to its speed. It enables real-time object detection on 

devices with limited computational power.  

5.2.2 Segmentation and Object Detection for Weed Identification  

The previous project, which was developed in 2023, focused on weed detection without identifying the spe-

cies. In the beginning of 2024, a second project explored species identification possibilities and limitations. The 

main challenge in detecting weed species is the availability of high-quality data for training artificial neural net-

work models. Consequently, the decision was made to focus on the most relevant local fruit-farming species, 

prioritizing those with the highest agricultural significance (e.g., Lolium, Cyperus rotundus, and Ipomoea). Due 

to its maturity and robustness, this project utilizes YOLO, one of the most widely adopted object detection 

models. YOLO has reached an advanced stage of development. By the time the project began, its tenth ver-
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sion and implementation were already available, ensuring a reliable and efficient foundation for our application. 

Given the lack of available datasets, the only viable option was to create a dataset. This task is complex, as it 

not only involves labeling the location of each plant within the image but also requires a thorough analysis to 

identify the best images that add value to the training process. The images were meticulously selected, ensur-

ing specific angles capturing the plant at different growth stages and times of the year to achieve a compre-

hensive representation and improve prediction accuracy.  

The first task was to acquire unlabeled images. We utilized the Global Biodiversity Information Facility (GBIF) 

platform, which collects plant information worldwide, including pictures of each species. The images included 

in GBIF were taken to document plant occurrences rather than for dataset construction. As a result, we en-

countered a wide variety of non-useful images. We selected the front-facing and good-quality images that 

could represent the problem. However, it was impossible to capture transitional growth stages or other facets 

due to seasonal limitations. 

 

Figure 17. Representative images from the created dataset  

 

The dataset includes 300, 393, and 426 labeled images for Ipomoea, Cyperus, and Lolium, respectively. Each 

image has been carefully annotated to provide high-quality data for model training and evaluation. Figure 17 

presents an example for each of the species. 

5.3 Results  

The image processing pipeline developed in the weed detection project was evaluated on the three weed da-

tasets. Table 2 presents the results on the object detection dataset and the two segmentation datasets.  

Table 2. Object detection and segmentation: F1-Score in the three datasets  

DATASET  TASK  F1 SCORE 

Weeds Computer Vision Project  Object detection  0.88 

A Crop/Weed Field Image  Segmentation  0.91 

SeSame Segmentation  0.93 

 

The results obtained in the weed identification project are preliminary but promising. For Ipomoea, the F1 

score is notably high, exceeding 0.6 even at low confidence levels. This indicates that the system performs 

relatively well in identifying Ipomoea, likely due to its distinctive morphological features, which significantly 
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differ from the background elements. Consequently, Ipomoea achieves robust performance metrics despite 

lower confidence thresholds. 

In contrast, Cyperus and Lolium exhibit considerably lower F1 scores at similar confidence levels. This dis-

crepancy is attributed to their greater susceptibility to being misclassified as background elements, such as 

common grasses or non-target weeds. The morphological similarities of Cyperus and Lolium to these back-

ground elements lead to a higher mislabeling rate, resulting in lower overall F1 scores. This highlights the chal-

lenge of accurately distinguishing these species from background clutter under conditions of low confidence. 

These findings underscore the importance of refining the model to better differentiate between target species 

and background elements, particularly for species like Cyperus and Lolium, which exhibit more remarkable 

similarity to non-target species. Figure 18 presents the F1 score curves as a function of confidence for each 

species and the entire dataset. 

 

Figure 18. F1 score graphs for the compiled dataset  

5.4 Conclusions  

While still in its developmental stages, the emerging weed detection system demonstrates promising potential 

for effective weed management. The system leverages advanced computer vision techniques, including seg-

mentation and object detection, to identify and classify weeds with increasing accuracy. Initial results indicate 

that the system can detect and classify weeds with a reasonable degree of accuracy. Segmentation allows for 

detailed pixel-level classification, while object detection provides useful bounding boxes around detected 

weeds, contributing to a comprehensive approach to weed identification. Despite its promising performance, 

the system is still nascent and requires further refinement. Enhancements in model training, data quality, and 

algorithm optimization are necessary to improve accuracy and reliability. The system's ability to generalize 

across different environments and weed species remains a focus for future development. Currently, we are 

undertaking a larger-scale project supported by the Promotion Fund for Agricultural Technologies (FPTA in 

Spanish) of the National Livestock and Agriculture Research Institute (INIA). This project focuses on develop-

ing a fully autonomous weed control system utilizing aerial and ground-based robots. 
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6. Discussion  

This paper explores four distinct autonomous mobile robotics applications promoted by the MINA Group at the 

Faculty of Engineering of the University of the Republic. These applications aim to improve agricultural prac-

tices. Each project showcases innovative approaches to addressing critical challenges in precision agriculture 

and pest management. 

The first case study focused on apple counting and quality assessment. This system integrates advanced 

computer vision algorithms to automate crop monitoring, offering precise and efficient tools for orchard man-

agement. The MAGRO dataset, developed through this project, is a valuable resource for further advance-

ments in autonomous navigation and agricultural analytics. 

The second case study introduced a novel approach to pest management by using drones to detect bird pests. 

Utilizing image processing and machine learning, an autonomous system capable of early detection and iden-

tification of pest birds enhances crop protection strategies and reduces potential damages.  

The third case study addressed ant nest localization, a critical issue in agricultural environments. By employing 

robotic platforms equipped with vision systems and deep learning algorithms, the system tries to identify and 

track ant nests with high accuracy, paving the way for more sustainable pest control methods that minimize 

environmental impact. 

The latest case study, initiated in 2023, will be developed until 2027, utilizing both autonomous ground and 

aerial vehicles for weed detection and control in fruit orchards. This project integrates computer vision, neural 

network-based detection models, and state-of-the-art autonomous navigation algorithms, presenting significant 

challenges in achieving a robust system capable of operating under uncontrolled environmental conditions. By 

integrating cutting-edge technology, we seek to enhance the precision and efficiency of weed management, 

thereby reducing the reliance on chemical herbicides and promoting sustainable agricultural practices. The 

successful execution of this project has the potential to revolutionize traditional weed control methods, contrib-

uting to both environmental conservation and improved crop yields. 

These projects exemplify the MINA Group's work to integrate cutting-edge technologies into agriculture, im-

proving productivity, sustainability, and resilience against contemporary challenges. The successful deploy-

ment and ongoing development of these technologies underscore their potential for widespread adoption in 

agricultural sectors worldwide. 

Looking forward, our research will continue to push the boundaries of agricultural robotics, focusing on several 

key areas to enhance impact and innovation:  

1. Dataset Creation: We are committed to expanding our datasets and making them openly accessible to the 

global research community. By curating comprehensive datasets across different agricultural scenarios, we 

aim to facilitate advancements in machine learning and robotics for agriculture. 

2. Collaboration with Agricultural Stakeholders: We will deepen our partnership with agricultural producers and 

researchers to co-develop solutions tailored to local realities. 

3. Advancing Autonomous Robotic Solutions: We will focus on developing autonomous robotic solutions to 

address pressing agricultural challenges. This includes refining existing systems for crop monitoring, pest de-

tection, and soil management and exploring new applications that enhance efficiency and sustainability in 

farming practices. 
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