## Influencia del clima sobre la producción lechera en explotaciones extensivas

Ing. Agr. Esteban F. Campal Gómez

Ing. Agr. Julio A. Plottier

Trabajo realizado en la Escuela de Práctica y Campo Experimental de Agronomía de Paysandú.

Interesa a Sud América, donde las explotaciones lecheras son extensivas y fundamentalmente pastoriles, la influencia que ejerce el clima sobre la producción.

La Escuela posee un rodeo numeroso de vacas lecheras (aproximadamente 100 vacas en ordeñe) de raza Holstein, Normanda y Cruza Normanda-Hereford. Se pesa la leche de estas vacas todos los días.

Como hasta el momento los datos reunidos son insuficientes para encarar estudios experimentales serios sobre sistemas de controles, influencia de diversos factores biológicos, como edad, época del parto, período de descanso u otros relacionados con alimentación, temas todos ellos de palpitante interés, nos hemos limitado al estudio parcial de la influencia del clima, entendiendo que con ello contribuinos a la apreciación del "medio exterior", uno de los elementos, cuya repercusión debe eliminarse, cuando quiere conocerse la "producción genotípica" de una vaca lechera.

En la Escuela se practican observaciones meteorológicas 5 veces al día desde 1935. Las lluvias y temperaturas se aprecian desde 1922 y 1929 respectivamente.

Como las lecheras se alimentan en praderas naturales (campos que no se han arado nunca) y praderas artificiales (cultivo de cereales de invierno como avena, trigo y cebada) la producción de leche experimenta la influencia del clima directa e indirectamente. Las lluvias y temperaturas ejercen una marcada acción sobre la vegetación de las praderas naturales y también artificiales, en las que la vaca encuentra la base de su alimentación. Esta es la influencia indirecta del clima. Además la temperatura, presión atmosférica y humedad, es probable que hagan sentir sus efectos inmediatos sobre el organismo de la vaca, aspecto que estudiamos más adelante.

# INFLUENCIA INDIRECTA DE LAS LLUVIAS Y TEMPERATURAS

La explotación lechera de la Escuela tuvo un período extensivo (1929 - 32), en el que las vacas recibían pocas raciones. alimentándose casi exclusivamente en praderas naturales. Tampocose dirigían las montas para evitar las pariciones de primavera y aumentar las de otoño e invierno.

Siendo las lluvias y temperaturas las que determinan el desarrollo de los pastos indígenas y sirviendo estos de base para la alimentación de las lecheras, cabe establecer correlaciones entre aquellas y la producción.

Calculamos para los años 1929, 1930, 1931 y 1932 los promedios individuales de producción (aproximadamente 70 vacas), distribuyéndolos por meses. De igual manera procedimos con las lluvias y temperaturas. Los valores básicos para el cálculo de los

promedios de temperaturas fueron las medias diarias  $\left(\frac{\text{máx.} + \text{mín.}}{2}\right)$ 

Aunque interesan más los extremos térmicos (mínimas y máximas absolutas) y pluviométricos (grandes precipitaciones y carencia de lluvias o sequías), al promediar los datos de 4 años se uniformiza la influencia de estos factores para todo el periodo que abarcan los promedios, quedando disminuidas las posibilidades de error:

Las series fueron:

#### PROMEDIOS MENSUALES DE 4 AÑOS

| Meses     | Producción individual | Temperaturas | Lluvias    |  |
|-----------|-----------------------|--------------|------------|--|
|           | (1)                   | (2)          | (3)        |  |
| Enero     | 6.27 Kls.             | 24.20 C.     | 105.40 mm. |  |
| Febrero   | 6.14 "                | 24.23 "      | 60.25 "    |  |
| Marzo     | 5.30 "                | 22.20 "      | 112.47 "   |  |
| Abril     | 4.59 "                | 18.90 "      | 74.32 "    |  |
| Mayo      | . 4.11 "              | 13.40 "      | 115.57 "   |  |
| Junio     | . 4.32 "              | 12.46 "      | 8512 "     |  |
| Julio     | 4.74 "                | 13.75 "      | 85.00 "    |  |
| Agosto    | 5.22 "                | 12.55 "      | 84.80 "    |  |
| Setiembre | . 5.87 "              | 14.27 "      | 69.30 "    |  |
| Octubre   | 6.99 "                | 17.90 "      | 92.05 "    |  |
| Noviembre | . 7.21 "              | 20.43 "      | 103.22 "   |  |
| Diciembre | . 6.40 "              | 23.63 "      | 86.17 "    |  |

El cálculo de correlación total arrojó los coeficientes que siguen:

Correlación 1 - 2 = 0.5981Correlación 1 - 3 = -0.0347Correlación 2 - 3 = 0.0426

Como la acción de las temperaturas y lluvias se interfiere, se hace necesario el cálculo de correlación parcial, dejando constante la influencia de unas y otras sucesivamente.

> Correlación 1 — 2 a constancia de 3 = 0.6005Correlación 1 — 3 a constancia de 2 = -0.0751

Al dejar constante la influencia de las lluvias, aumenta la significación del coeficiente 1 — 2, que pasa la seguridad de 95 % según las tablas de Fischer.

#### Como conclusiones tenemos:

- La temperatura ha favorecido la vegetación, aumentando el rendimiento lechero.
- 2.º) Las lluvias influyeron negativamente, pero el coeficiente carece en absoluto de significación. Se explica que las lluvias no hayan aumentado el rendimiento, porque en el Uruguay se reparten más o menos uniformemente durante el año y no hay por lo general estaciones lluviosas ni secas. Las precipitaciones de los meses cálidos favorecen la acción de la temperatura, mientras que en los meses fríos acentúan los efectos desventajosos de las bajas temperaturas, primando la influencia térmica que define los ciclos estacionales.

# INFLUENCIA DIRECTA DE LA TEMPERATURA PRESION Y HUMEDAD RELATIVA

Esta parte de nuestro estudio ofrece mayores dificultades. Tomamos para ello cuatro períodos climatéricos normales, dos correspondientes a meses fríos y dos a meses cálidos, a saber: 8 días comprendidos del 7 al 14 de Julio de 1936; 10 días del 4 al 13 de Agosto de 1936; 10 días del 9 al 18 de Diciembre de 1936 y 10 días del 1.º al 10 de Enero de 1937. Todos estos períodos carecieron de lluvia, vientos fuertes, tormentas u otros fenómenos meteorológicos anormales. Además en esos períodos las vacas recibieron todos los días la misma alimentación.

Elegimos de las fichas de control el mayor número posible de vacas que en esos períodos se encontraran entre el segundo y tercer mes de lactancia y que además no presentaran ninguna anomalía en la secreción. Reunimos así 13, 14, 14 y 14 vacas para cada período respectivamente. Como todas las vacas se controlan diariamente, sumamos la producción de la mañana y de la tarde separadamente, de cada grupo y para cada día de los períodos antedichos. Los totales de la mañana y tarde sivieron de base a dos series para cada período de 8, 10 10 y 10 variantes respectivamente.

La ordenación de las series de variación de temperaturas, presión y humedad, requieren explicación. Regularmente se practican las observaciones meteorológicas a las 7, 8 y 30, 14 y 30, 18 y 30 y 21 horas.

Para el ordeñe de la mañana tomamos la temperatura de las 21 horas del día precedente, la de las 7 del día del ordeñe y la mínima, si ésta se produjo, antes de las 7 horas, pues las vacas se ordeñan de las 6 a las 8 horas. Estos tres valores fueron promediados. En igual forma procedimos con la presión atmosférica. corregida a 0º y al nivel del mar y con la humedad relativa, apreciada con psicrómetro August. Para el ordeñe de la tarde tomamos las observaciones de las 8 y 30 y 14 y 30 horas, agregando las náximas o mínimas de temperatura, presión y humedad, si se producían entre esas horas y promediando luego estos valores.

Los valores medios de cada período se incluyen en el cuadro siguiente:

# PRODUCCION, TEMPERATURA, PRESION Y HUMEDAD MEDIAS PARA LA MAÑANA Y TARDE DE LOS 4 PERIODOS

Mañana

#### Valores a correlacionar Julio Agosto Diciembre Enero Total leche ...... 42.8 K. 67.2 K. 52.2 K. 62.8 K. Temperatura ..... 9.38° C. 1.17º C. 18.08∘ C. 17.670 C. P. atmosférica .... 58.44 m. 65.15 m. 70.10 m. 58.35 m. Hum, relativa ..... 95.25 % 89.20 % 72.28 % 75.59 % Tarde Valores a correlacionar Julio Agosto Diciembre Enero Total leche ...... 27.4 K. 39.2 K. 40.4 K. 46.8 K. Temperatura ..... 13,489 C. 10.090 C. 29.36° C. 28.35° C. P. atmosférica .... 65.54 m. 58.98 m. 70.07 m. 58.44 m. Hum. relativa ..... 87.25 % 73.76 % 49.02 % 51.20 %

Designamos cada serie así: Producción de leche 1; temperatura 2; presión atmosférica 3 y humedad relativa 4.

Todos los coeficientes de correlación hallados, correspondientes a correlaciones totales; correlaciones parciales dejando constante un sólo factor; y correlaciones parciales dejando constantes dos factores, se adjuntan en el cuadro siguiente:

## COEFICIENTES DE CORRELACION CORRESPONDIENTES A LA MAÑANA DE LOS CUATRO PERIODOS

| Coeficientes   |         |         |           |         |          |
|----------------|---------|---------|-----------|---------|----------|
| de correlación | Julio   | Agosto  | Diciembre | Enero   | Promedio |
| 1 - 2          | 0.4724  | 0.6560  | -0.3708   | 0.5264  | 0.3210   |
| 1 — 3          | -0.3136 | -0.2410 | -0.2199   | -0.5344 | -0.3272  |
| 1 — 4          | 0.7759  | 0.1770  | -0.2203   | 0.2910  | 0.2559   |
| 2 - 3          | -0.5110 | -0.6700 | -0.4917   | -0.8388 | -0.6279  |
| 2 - 4          | 0.4561  | 0.5210  | -0.0855   | 0.3299  | 0.3054   |
| 3 - 4          | -0.5638 | -0.1580 | -0.1215   | -0.3735 | -0.3042  |
|                |         |         |           |         |          |
| 1 - 2.3        | 0.3824  | 0.6864  | -0.5638   | 0.1698  | 0.1687   |
| 1 - 2.4        | 0.2111  | 0.6741  | -0.4009   | 0.4765  | 0.2402   |
| 1 - 3.2        | -0.0953 | 0.3543  | -0.4974   | -0.2006 | -0.1098  |
| 1 - 3.4        | 0.2377  | -0.2199 | -0.2548   | -0.4797 | -0.1792  |
| 1 - 4.2        | 0.7145  | -0.2651 | -0.2723   | 0.1462  | 0.0808   |
| 1 - 4.3        | 0.7639  | 0.1387  | -0.2551   | 0.1166  | 0.1910   |
| 2 - 3.4        | -0.3454 | -0.6973 | -0.5307   | -0.8171 | -0.5976  |
| 2 - 4.3        | 0.2366  | 0.5663  | -0.1680   | 0.3288  | 0.2409   |
| 3 - 4.2        | -0.4323 | 0.3015  | -0.1885   | -0.1883 | 0.1269   |
|                |         |         |           |         |          |
| 1 - 2.34       | 0.3216  | 0.7447  | -0.6579   | -0.2277 | 0.0452   |
| 1 - 3.24       | 0.3385  | 0.4723  | -0.5973   | -0.1781 | 0.0089   |
| 1 - 4.23       | 0.7501  | -0.4171 | -0.4416   | 0.1127  | 0.0010   |
|                |         |         |           |         |          |

#### COEFICIENTES DE CORRELACION CORRESPONDIENTES A LA TARDE DE LOS CUATRO PERIODOS

| Coeficientes   |         |         |           |         |          |
|----------------|---------|---------|-----------|---------|----------|
| de correlación | Julio   | Agosto  | Diciembre | Enero   | Promedio |
| 1 — 2          | -0.3784 | -0.1294 | 0.6228    | 0.1922  | 0.0768   |
| 1 - 3          | 0.2547  | 0.4029  | 0.1330    | -0.1418 | 0.1622   |
| 1 — 4          | 0.1160  | -0.1913 | 0.4102    | -0.3918 | -0.0142  |
| 2 — 3          | -0.3124 | -0.8727 | -0.4677   | -0.5258 | -0.5444  |
| 2 — 4          | -0.4452 | 0.2159  | -0.0286   | 0.3334  | 0.0189   |
| 3 — 4          | -0.5033 | -0.4340 | -0.1072   | -0.3973 | -0.3605  |
|                |         |         |           |         |          |
| 1 - 2.3        | -0.3253 | 0.4973  | 0.7813    | 0.1397  | 0.2733   |
| 1 - 2.4        | -0.3674 | 0.0920  | 0.6960    | 0.3683  | 0.1972   |
| 1 - 3.2        | 0.1552  | 0.5989  | 0.6123    | 0.0488  | 0.3538   |
| 1 — 3.4        | 0.3642  | 0.3617  | 0.1952    | -0.3523 | 0.1422   |
| 1 - 4.2        | -0.0632 | -0.1687 | 0.5928    | -0.4944 | -0.0334  |
| 1 — 4.3        | 0.2922  | 0.0199  | 0.4307    | -0.4933 | 0.0524   |
| 2 — 3.4        | -0.6933 | -0.8855 | -0.4727   | -0.4546 | -0.6265  |
| 2 - 4.3        | -0.7339 | -0.3702 | -0.0894   | 0.1595  | -0.3383  |
| 3 - 4.2        | -0.7552 | -0.5151 | -0.1363   | -0.2768 | -0.4209  |
|                |         |         |           |         |          |
| 1 - 2.34       | -0.1706 | 0.5275  | 0.9120    | 0.2543  | 0.3808   |
| 1 - 3.24       | 0.1643  | 0.6060  | 0.8687    | -0.2219 | 0.3543   |
| 1 — 4.23       | 0.0834  | 0.2036  | 0.8634    | -0.5292 | 0.1553   |
|                |         |         |           |         |          |

#### Se deduce de los coeficientes expuestos:

- 1.º) Existe correlación negativa y significativa entre temperatura y presión a constancia de humedad (2 3 4), siendo mayor en la tarde, correlación que expresa una interdependencia natural, conocida.
- Cuando interviene la temperatura, la presión y humedad se correlacionan negativamente y con cierta significación (3 — 4).
- 3.º) Eliminando la influencia de la temperatura, disminuye la correlación negativa de presión y humedad para la mañana y aumenta para la tarde (3 4 a constancia de 2), lo que se explica según 1.º.
- 4.º) Para cada uno de los períodos considerados, la relación temperatura, presión y humedad, define condiciones climatéricas distintas.

- 5.9) De acuerdo con las condiciones climatéricas de cada período y en forma distinta para la mañana y la tarde, la influencia de la temperatura y presión sobre el rendimiento de leche varía antre —0.6579 y 0.9120 y entre —0.5973 y 0.8687, respectivamente (1—2.34 y 1—3.24).
- 6.º) Llaman la atención los coeficientes 1 2.34 y 1 3.24 para la mañana y tarde del período de Diciembre, que se apartan por completo de los promedios correspondientes. Esta anomalía podría encontrar explicación en en los hechos siguientes: la temperatura media del período fué la más alta, la humedad relativa fué la más baja y las vacas permanecieron durante la noche anterior al ordeñe de la mañana, en praderas naturales, mientras que en los otros períodos estuvieron en praderas artificiales más productivas. El escaso rendimiento de la mañana revela la influencia de la poca alimentación.
- 7.°) Los coeficientes 1 2.34, 1 3.24 y 1 4.23, promediados, para los cuatro períodos, revelan que en la tarde la temperatura, presión y humedad tuvieron más influencia sobre la producción que en la mañana, alcanzando los coeficientes 1 2.34 y 1 3.24, para la tarde, una seguridad de 80 % aproximadamente. En la mañana los resultados carecen de seguridad experimental.
- 8.º) Por orden decreciente la influencia se manifestó así: primero, temperatura; segundo, presión y tercero humedad, esta última con muy escasa influencia sobre la producción, salvo para el período de Julio de mañana y Diciembre de tarde, en que su acción fué positiva (1—4.23) con seguridad superior a 95 %, correspondiendo precisamente a los extremos que según el cuadro inserto, fueron 95, 25 y 49.02 %, de donde cabe suponer que la humedad influye cuando experimenta grandes variaciones.

En resumen, parece evidente que la temperatura y la presión tienen influencia inmediata en la producción lechera y teóricamente es posible determinar el óptimo de la temperatura, presión y humedad, realizando correlaciones en numerosos períodos climatéricos normales y determinando los coeficientes medios.

Para definir categóricamente la influencia directa del clima, que es evidente, deben ampliarse estos estudios, tomando todos los períodos climatéricos normales posibles y controlando dos lotes de vacas, uno estabulado y otro no estabulado.

Para los cálculos de correlación fueron empleadas las fórmulas siguientes:

$$\tau xy = \frac{S (dx \cdot dy)}{\sqrt{S (dx^2) S (dy^2)}} (de Fischer)$$

$$r12.34...n = \frac{r12.34...(n-1) - [r1n.34...(n-1).r2n.34...(n-1)]}{\sqrt{1 - r^21n.34...(n-1).1 - r^22n.34...(n-1)}}$$