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Abstract. This study aims to develop a data-driven tool for monthly water quality 

simulation using machine learning techniques. The study focuses on the upper 

basin of the Santa Lucía Chico River in Uruguay, utilizing data from two water 

quality monitoring stations (XSLH010 and XSLH020). The variables considered 

include dissolved oxygen (DO), temperature (T), total nitrogen (NT), and phos-

phate (PO₄³⁻). The time series data were split into training (80%) and testing 

(20%) sets, with separate min-max normalization applied to ensure consistent 

scaling across variables. The prediction models were trained using Extra Trees 

Regressor (ET) and Histogram-based Gradient Boosting Regressor (HGB), eval-

uated with Mean Absolute Error (MAE) and Mean Squared Error (MSE). This 

resulted in four models trained per variable. Nash-Sutcliffe Efficiency (NSE) was 

also calculated for model performance evaluation. Optimal hyperparameters 

were identified using a 5-fold cross-validation process and optimized with Op-

tuna. The input dataset integrates domain knowledge by incorporating spatial de-

pendencies, spatial correlations, physical dependencies, and temporal variability. 

Additionally, SHapley Additive exPlanations (SHAP) values were used to refine 

model inputs by removing low-importance variables. The models operate at a 

monthly time step, allowing for the assessment of long-term water quality trends. 

The results were highly satisfactory, with NSE values exceeding 0.6 for all vari-

ables across both stations, except for PO₄³⁻ at XSLH010. These findings demon-

strate the potential of machine learning models for water quality prediction and 

provide a valuable tool for improving water resource management. Future efforts 

will focus on refining the model, incorporating additional data sources, and ex-

tending its applicability to other basins. 

Keywords: Water quality modeling, Machine learning, Monthly prediction, 

Hydroinformatics. 
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1 Introduction 

Water quality management is essential for maintaining sustainable water resources, 

particularly in regions experiencing significant anthropogenic pressure [1]. Tradition-

ally, water quality assessments rely on physical and process-based models, which sim-

ulate hydrological and biogeochemical processes. While effective, these models often 

require extensive input data, complex parameterization, and significant computational 

resources, making their implementation challenging, especially in data-scarce regions 

[2]. Recent advancements in machine learning (ML) offer a data-driven alternative, 

enabling predictive modeling of water quality by identifying complex, nonlinear rela-

tionships between environmental variables and leveraging historical datasets [3, 4]. 

In many regions worldwide, water bodies are under increasing pressure due to agri-

cultural expansion, industrial activities, and urbanization. These factors contribute to 

the degradation of water quality by introducing pollutants such as nutrients, heavy met-

als, and organic matter into aquatic ecosystems [5]. Predictive models play a vital role 

in assessing and mitigating these impacts, enabling better decision-making for sustain-

able water management. ML-based approaches, in particular, have gained traction due 

to their ability to process large and complex datasets, integrate spatial and temporal 

dependencies, and improve forecasting accuracy compared to traditional models [6, 7]. 

Uruguay, like many other countries, faces growing concerns over water pollution. 

The Santa Lucía River basin, a critical source of drinking water, has been significantly 

affected by nutrient enrichment, leading to algal blooms and eutrophication [8, 9, 10]. 

Despite ongoing monitoring efforts, the development of robust, data-driven predictive 

models remains limited. Adapting ML techniques to the region’s specific conditions is 

essential to enhance water quality management and ensure the long-term sustainability 

of aquatic ecosystems. 

The main objective of this study is to develop and evaluate ML-based models to 

predict key water quality parameters in the Santa Lucía Chico River Basin at a monthly 

timescale. By integrating spatial correlations, temporal dependencies, and domain 

knowledge, the proposed models aim to improve forecasting accuracy and provide ac-

tionable insights for water resource management. The study specifically focuses on pre-

dicting dissolved oxygen (DO), water temperature (T), total nitrogen (TN), and phos-

phate (PO₄³⁻), using data from two monitoring stations (XSLH010 and XSLH020). 

The methodology involves preprocessing historical water quality data, training and 

optimizing ML models, and evaluating their performance against observed data. This 

study contributes to the growing body of research on ML applications in water quality 

prediction and provides a framework for data-driven decision-making in water resource 

management. 
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2 Materials and Methods 

2.1 Study area and data availability 

The Santa Lucía Chico River basin, located in Uruguay, plays a vital role in the 

regional water supply. This study focuses on two monitoring stations, XSLH010 and 

XSLH020, where water quality data—including DO, T, TN, and PO₄³⁻—have been 

collected. These variables serve as the output for the models developed in this study 

(Figure 1). Additionally, other water quality parameters, such as total phosphorus (TP), 

nitrate (𝑁𝑂2
−), nitrite (𝑁𝑂3

−), total solids (TS), turbidity (Turb) and conductivity 

(Cond), were recorded and used as model inputs. 

These stations were selected for their strategic location in the upper basin, enabling 

an assessment of water quality trends before the river reaches the primary drinking wa-

ter source for Montevideo and its surrounding areas [11]. Furthermore, hydrometeoro-

logical variables—including streamflow, precipitation, air temperature, solar radiation, 

heliophany, relative humidity, wind speed, and evapotranspiration—were incorporated 

as model inputs. Data for these variables were obtained from the hydrometric monitor-

ing station in Florida, the meteorological station at INIA Las Brujas, and additional 

pluviometers (Cerro Colorado,  La Cruz, San Gabriel, Sarandí Grande) (Figure 1). 

Given the presence of significant missing data, this multivariate dataset was properly 

imputed at a monthly frequency before being used in this study [12]. 

The basin has experienced significant water quality degradation due to increasing 

agricultural activities and urban expansion. Elevated nutrient levels, particularly nitro-

gen and phosphorus, have contributed to periodic algal blooms and eutrophication 

events, underscoring the need for improved predictive models to support effective wa-

ter resource management. 

 

 

Fig. 1. Study area and location of the monitoring stations. 
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2.2 Data pre-processing and modeling optimization 

The modeling process began by dividing the original dataset into two subsets: 80% for 

training and 20% for testing. Prior to model development, all variables were normalized 

using min-max scaling to ensure consistency in scale and to facilitate algorithm con-

vergence. To enhance model accuracy, the dataset was further enriched with key hydro-

meteorological variables, including daily precipitation, mean air temperature, and sur-

face runoff. 

Two machine learning algorithms were selected for comparative analysis: the Extra 

Trees Regressor (ET) and the Histogram-based Gradient Boosting Regressor (HGB). 

These ensemble methods were chosen for their robustness in handling nonlinear rela-

tionships and multivariate datasets. Model performance was primarily assessed using 

Mean Absolute Error (MAE) and Mean Squared Error (MSE). Additionally, the Nash-

Sutcliffe Efficiency (NSE) coefficient was calculated to provide a domain-specific met-

ric for evaluating the predictive skill of the models in hydrological contexts. 

For each target variable, four models were trained (two algorithms × two metrics), 

and optimal hyperparameters were identified using a 5-fold cross-validation strategy. 

The hyperparameter optimization process was carried out using the Optuna framework, 

which employs Bayesian optimization techniques to efficiently search the parameter 

space. 

To incorporate domain knowledge and reduce input redundancy, feature selection 

was guided by correlation analysis. Pearson, Spearman, and Kendall correlation coef-

ficients were computed between each predictor and the target variable. Predictors with 

a median correlation magnitude below 0.5 (|ρ| < 0.5) across the three methods were 

discarded to retain only the most relevant features. 

To address spatial dependencies, downstream stations were systematically excluded 

from the training set when predicting upstream variables. This strategy was imple-

mented to avoid information leakage that could arise from including future (down-

stream) data in the training process. In parallel, physical dependencies between varia-

bles were respected; for instance, air temperature was explicitly included as an input 

when predicting water temperature, reflecting its known influence in the physical sys-

tem. 

Temporal dependencies in the data were refined using the Exponentially Weighted 

Moving Average (EWMA) technique (Eq. 1). This method assigns greater weight to 

recent observations, enhancing the model’s responsiveness to short-term fluctuations 

while still retaining long-term trends. 

 

𝐸𝑊𝑀𝐴 (𝑌𝑛) =
∑ (1 − 𝛼)𝑖𝑌𝑛−1−𝑖

𝑡
𝑖=0

∑ (1 − 𝛼)𝑖𝑡
𝑖=0

 

 (Eq. 1) 

𝛼 =
2

𝑡 + 1
 

 

where, Y represents the time series, n denotes the total number of observations, and 

α corresponds to the weighting factor. The parameter t defines the temporal window 
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applied during imputation, which varies depending on the type of variable: approxi-

mately two months for water quality data, one week for hydrometric measurements, 

and one day for climatic variables. 

Finally, additional physical constraints integrated into the models, such as non-neg-

ativity of certain outputs and hydrologically plausible limits, are described in further 

detail in reference [12]. 

3 Results and Discussion 

The machine learning (ML) models demonstrated strong predictive performance over-

all, with NSE values exceeding 0.6 for all water quality variables, except for PO₄³⁻ at 

station XSLH010 (Table 1). These results underscore the effectiveness of the modeling 

framework, particularly the inclusion of spatial and temporal dependencies and the in-

tegration of domain-specific knowledge during feature selection and preprocessing. 

Among the variables, DO exhibited the most robust predictive accuracy, with NSE 

values greater than 0.85 at both monitoring stations. This performance highlights the 

models’ ability to capture the temporal dynamics and diurnal variations typically asso-

ciated with DO fluctuations, which are strongly influenced by temperature, flow con-

ditions, and biological activity. The ET model outperformed the HGB at XSLH020, 

while the reverse was true at XSLH010. These differences suggest that local hydro-

environmental conditions and data distributions play a significant role in determining 

which algorithm generalizes better at a given site. 

T was the variable with the highest accuracy during training, achieving NSE values 

close to 0.99. However, this came with a noticeable drop in test performance (0.84 at 

XSLH020 and 0.77 at XSLH010) indicating a degree of overfitting, especially at the 

latter station. This discrepancy could stem from limited variability in temperature pat-

terns during training or from changes in local environmental conditions not captured in 

the training period. 

TN predictions were satisfactory, with NSE values of 0.80 at XSLH020 and 0.60 at 

XSLH010. The lower performance at XSLH010 may reflect greater spatial heteroge-

neity in nitrogen sources, such as diffuse runoff or intermittent discharges, which were 

not fully captured by the selected input features. This result suggests that additional 

explanatory variables (e.g., land use, upstream agricultural practices) or finer spatial 

resolution could improve model performance. 

PO₄³⁻ proved to be the most challenging variable to model, particularly at XSLH010, 

where the best-performing model achieved only 0.28 NSE during training and 0.26 

during testing. Such low predictive skill indicates that key drivers of phosphate varia-

bility, such as episodic releases, sediment interactions, or localized anthropogenic in-

puts, may not be adequately represented in the current input dataset. This finding sug-

gests the need for either richer input data (e.g., point-source locations, in-stream pro-

cesses) or alternative modeling strategies, such as hybrid models combining process-

based and data-driven approaches. In contrast, PO₄³⁻ modeling at XSLH020 was mark-

edly better (0.81 NSE for the test set), reinforcing the influence of site-specific charac-

teristics in determining model reliability and the importance of local calibration. 
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Overall, the results confirm the value of tailoring ML models to local conditions, the 

importance of feature engineering, and the potential limitations of purely data-driven 

approaches when key environmental drivers are unobserved or poorly quantified. 

Table 1. Summary of the model's performance. 

Variable Station Best model Train - NSE Test - NSE 

DO 
XSLH020 ET (MSE) 0.76 0.88 

XSLH010 HGB (MAE) 0.88 0.85 

T 
XSLH020 ET (MAE) 0.99 0.84 

XSLH010 HGB (MAE) 0.90 0.77 

TN 
XSLH020 ET (MAE) 0.92 0.80 

XSLH010 ET (MAE) 0.79 0.60 

PO₄³⁻ 
XSLH020 ET (MSE) 0.99 0.81 

XSLH010 HGB (MSE) 0.28 0.26 

4 Conclusions 

This study demonstrates the potential of ML models for monthly water quality predic-

tion in the Santa Lucía Chico River Basin. The models performed well for DO and T, 

achieving NSE values above 0.85 for DO and highlighting strong predictive capability. 

However, T models exhibited some overfitting, indicating the need for further refine-

ment. 

TN predictions were satisfactory, with better accuracy at XSLH020 than XSLH010, 

suggesting the influence of local environmental factors. PO₄³⁻ predictions were the least 

accurate, particularly at XSLH010, where performance remained below 0.30 NSE, em-

phasizing the need for additional predictors or alternative modeling approaches. 

To improve model robustness, physical constraints were introduced in the model 

implementation. This approach helped enhance interpretability and reduce information 

leakage, though further refinements are needed to optimize its impact. 

Overall, while the models effectively captured temporal water quality trends, im-

provements in feature selection, additional explanatory variables, and strategies to en-

hance generalization could further refine their accuracy. Future work should focus on 

addressing overfitting, incorporating more spatial and environmental factors, and vali-

dating the models in other watersheds to assess their broader applicability. 
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