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• The novel framework successfully imputes multi-domain environmental data.9

• It combines machine-learning algorithms with physical knowledge.10

• It adequately works in case of a high percentage of missing values.11

• It has a good generalization capability and can represent any scenario at a basin scale.12

• Accurate data imputations will improve the performance of integrated models.13
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In water resources management, new computational capabilities have made it pos-26

sible to develop integrated models to jointly analyze climatic conditions and water27

quantity/quality of the entire watershed system. Although the value of this integrated28

approach has been demonstrated so far, the limited availability of field data may hinder29

its applicability by causing high uncertainty in the model response. In this context, be-30

fore collecting additional data, it is recommended first to recognize what improvement31

in model performance would occur if all available records could be well exploited.32

This work proposes a novel machine learning framework with physical constraints33

capable of successfully imputing a high percentage of missing data belonging to34

several environmental domains (meteorology, water quantity, water quality), yielding35

satisfactory results. In particular, the minimum NSE computed for meteorologic36

variables is 0.72. For hydrometric variables, NSE is always >0.97. More than 78%37

of the physical-water-quality variables is characterized by NSE>0.45, and more than38

66% of the chemical-water quality variables reaches NSE>0.35. This work’s results39

demonstrate the proposed framework’s effectiveness as a data augmentation tool to40

improve the performance of integrated environmental modeling.41

42

1. Introduction43

1.1. Background and literature review44

Over the past decade, there has been a notable increase in the utilization of integrated models for45

managing water quality concerns at the watershed scale (Freni et al., 2011). An integrated model is a specific46

model capable of simulating the interactions between multiple physical systems, such as the atmosphere,47

soil, and various water bodies (Freni and Mannina, 2012). These models are highly intricate and require48

substantial input data, parameters, and variables to maintain accuracy and reliability (Freni et al., 2009).49

It is of utmost importance to estimate missing data sequences within time series, as we need adequate50
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Enhancing Environmental Data Imputation

environmental data to accurately represent the natural processes that occur and how the system responds51

at the catchment scale (Gorgoglione et al., 2020a).52

Environmental time series may be incomplete due to technical issues with sensors or measurement53

instruments and data storage or transmission failures. Changes in the measurement site, data collectors,54

or instruments over time can also contribute to this (Chivers et al., 2020; Oriani et al., 2016; Sattari et al.,55

2017). To avoid spending a lot of time and money on collecting and analyzing further environmental records;56

it is essential first to understand how much the existing data can be improved (Gorgoglione et al., 2019,?).57

A methodology that can accurately fill in missing data from different but related environmental domains is58

necessary for this purpose.59

Researchers have recently explored many approaches to minimize the missing data problem (Chen60

et al., 2021). Various techniques exist for managing missing data, from straightforward exclusion to more61

sophisticated imputation methods. To conduct statistical analysis, omitting all observations with missing62

values could work well if only a few observations contain unknown values (Bertsimas et al., 2018).63

Alternatively, it would introduce bias, and the information loss would often threaten the models’ descriptive64

and predictive capabilities (White and Carlin, 2010). Furthermore, deleting observations would produce65

discontinuous time series, generating further difficulties in temporal data analysis.66

When data is missing in a time series, data imputation can estimate the missing values and maintain the67

length of the series. One standard method is statistical analysis, using mean, median, or mode to fill in missing68

data (Kabir et al., 2020). However, this technique can result in flat imputed values (Chen et al., 2021). In69

the environmental domain, observations from neighboring monitoring stations can also replace missing data.70

However, this may only sometimes be reliable due to weak correlations at longer distances (Blenkinsop et al.,71

2017). Distance-based weighted interpolation techniques have been used for missing meteorological data.72

Still, they may not account for the non-linear spatiotemporal relationships that describe most environmental73

variables, especially if the variables under study are water-quality related.74

With this purpose, many multivariate methods have been proposed, including hot-deck imputation,75

expectation maximization, predictive mean matching, least squares regression, support vector regression,76

gradient boosting, nearest neighbor techniques, decision tree techniques, and artificial neural networks77

(Andridge and Little, 2010; Bertsimas et al., 2018; Bø et al., 2004; Dempster et al., 1977; Gill et al., 2007;78

Honaker et al., 2009; Körner et al., 2018; Templ et al., 2011; Troyanskaya et al., 2001; Wang et al., 2006). In79
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addition, supervised machine learning techniques can effectively represent non-linear relationships between80

variables measured at different spatially distributed stations (Chivers et al., 2020). However, many machine81

learning methods fail to consider data’s temporal variability, which hampers their accuracy in imputing82

variables that exhibit predictable temporal patterns. To effectively impute water quality data at the catchment83

scale, it is crucial to integrate environmental data from interconnected domains such as meteorology and84

hydrology. This integration enables a comprehensive understanding of water quality’s dynamic nature and85

enhances imputation techniques’ accuracy.86

1.2. Related work87

Various machine learning techniques have been used to address missing data in environmental data sets,88

including in the fields of meteorology, hydrology, and water quality (Chandra et al., 2021; Chrobak et al.,89

2022; Tencaliec et al., 2015). Researchers have recently focused on addressing data imputation in the water-90

quality domain. For example, Chen et al. (2021) developed a new TrAdaBoostLSTM framework combining91

deep learning and transfer learning to impute large-scale consecutive missing data. The framework also92

employs the dynamic time-warping method to identify the source domain with complete data most similar93

to the target domain with incomplete data. This approach imputes the dissolved oxygen concentration data94

from ten monitoring stations in the Qiantang River basin in China. Tabari and Hosseinzadeh Talaee (2015)95

evaluated the efficiency of the multilayer perceptron (MLP) and radial basis function (RBF) networks for96

reconstructing the missing values of thirteen water quality variables at five monitoring stations in the Maroon97

River basin, Iran. They concluded that the MLP outperforms the RBF networks for this purpose. Bi et al.98

(2022) proposed a method based on generative adversarial networks applied for the first time to impute99

water quality data (water temperature, pH value, total nitrogen, and dissolved oxygen). Such time series100

were collected at one monitoring station in China and characterized by a maximum data missing rate of101

30%.102

Although several methods are available for imputing missing data, only a few effectively handle a high103

percentage of missing values. Aguilera et al. (2020) conducted a study to compare the performance of104

spatiotemporal kriging (STK), random forest (RF) algorithm, and multiple imputations by chained equations105

through predictive mean matching (PMM) in imputing daily precipitation data from 112 rain gauges in106

southwestern Spain. The study tested different percentages of missing data (ranging from 64% to over 90%)107

and missing patterns. The results showed that STK performed better than PMM and RF in simulating the108
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precipitation distribution under missing chronological patterns, although it had a higher computing cost.109

Meanwhile, RF was an efficient alternative for imputing daily precipitation data, especially in random110

missing patterns.111

Ratolojanahary et al. (2019) combined multivariate imputations by chained equations (MICE) with112

different machine learning models (RF, boosted regression trees (BRT), K-nearest neighbors (KNN), and113

support vector regression (SVR)) to tackle multiple correlations between a high amount of water quality114

variables (257) and a high rate of missing data (more than 80%). The research findings showed that115

combining MICE with SVR, RF, KNN, and BRT outperforms the original MICE alone. Moreover, MICE-116

SVR represents a good trade-off regarding computing time and performance. Jones et al. (2014) evaluated the117

performance of MICE to impute the values of six chemicals in community water systems. The technique was118

applied in a simulated environment using data from the Atrazine Monitoring Programme in five Midwestern119

US states, where 65-92% of the observations were suppressed. The authors found multiple imputations to120

be an effective method to fill in water-quality data.121

A recent study by Zhang and Thorburn (2021) developed a deep neural network architecture (Dual-SSIM)122

for hydrologic (water level, discharge) and water quality (water temperature, conductivity, turbidity, nitrate)123

data imputation. Experimental results demonstrated that Dual-SSIM outperformed other benchmarks such124

as Expectation Maximization, K-nearest neighbor, sequence-to-sequence architecture with global attention125

mechanisms (SSIM), recurrent neural network-based method (BRITS), and Multi-directional Recurrent126

Neural Networks. This method was successfully applied in Iowa River (USA) and Russel River (Australia)127

(Zhang and Thorburn, 2022).128

While many studies have developed imputation methods or compared various algorithms for specific129

environmental variables, it remains a challenge to determine the most effective technique for variables130

belonging to different environmental domains and under various circumstances.131

1.3. Objective and contributions132

This study presents a novel machine-learning framework that incorporates physical constraints to133

support various imputation algorithms. Our framework offers two key advancements: i) It can effectively134

and simultaneously impute many variables from different environmental fields, including meteorology,135

hydrology, and water quality (physical and chemical); ii) It adopts a physically-constrained approach,136
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enabling the integration of data-driven algorithms with the temporal and spatial variability of the variables137

and their correlations.138

Compared to previous methods, our approach offers several advantages. Firstly, it can successfully handle139

a high percentage of missing values. Secondly, it takes a multivariate approach by considering many variables140

simultaneously. Lastly, it leverages a wide range of statistical and machine-learning techniques.141

What distinguishes our approach from previous studies is its systematic strategy to addressing missing142

data in meteorological, hydrometric, and water quality variables at the catchment scale. This approach can143

be applied to any environmental dataset, improving water quality simulation and prediction. The accurate144

imputation of missing environmental data not only refines our understanding of specific environmental145

dynamics but holds broader implications for informed environmental management and decision-making,146

enabling policymakers to develop targeted strategies based on a more comprehensive and reliable dataset.147

It is important to note that this work builds upon the study conducted by Rodríguez et al. (2021), which148

evaluated the performance of various statistical and machine learning algorithms for imputing water quality149

data with a high percentage of missing values at six monitoring stations in the Santa Lucía Chico river,150

Uruguay.151

Our data imputation framework is expected to significantly improve environmental model accuracy and152

enable a more comprehensive understanding of environmental dynamics. This not only accelerates scientific153

advancements but also directly aids policymakers in developing precise, data-driven policies for real-world154

challenges.155

2. Materials156

2.1. Study area157

The study area is the Santa Lucía Chico (SLC) watershed, located between S33◦42′ - S34◦50′ and158

W55◦0′ - W57◦6′ (Figure 1). It is one of the most critical watersheds in Uruguay (South America) since159

it is the country’s primary source of drinking water and also supports numerous agricultural and industrial160

activities (Navas et al., 2019; Vilaseca et al., 2023). The primary national drinking water reservoir, Paso161

Severino, is located in this watershed. This catchment was chosen not only for its strategic importance but162

also because it is a mixed lotic and lentic system (Rodríguez et al., 2021). We found it interesting to test163

our framework with data recorded at sites characterized by different hydraulic and hydrologic conditions164
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to analyze its generalization capabilities. SLC catchment has a surface equal to 2570 km2 and a perimeter165

of 300 km. Its elevation ranges between 177 m a.s.l in the northeast area, 25 m a.s.l at the Paso Severino166

reservoir, and 3 m a.s.l at the main channel outlet ([dataset] MGAP, 2020). The average slope of the basin167

is 2.68%, and the length of the main channel is 128.7 km. The catchment is in a temperate climate zone168

characterized by four seasons (Gorgoglione et al., 2020b). Average annual temperatures can vary between169

3 ◦C (in winter) and 30 ◦C (in summer). Annual precipitation can vary between 1000 mm and 1500 mm170

(INUMET, 2020).171

Figure 1: Location of the Santa Lucía Chico watershed, with its hydrographic network and DTM elevation.
Coordinate system WGS 84/UTM 21s.

2.2. Data description172

The dataset selected for this study includes the following three groups of variables: i) meteorological173

variables: precipitation (P) [mm], evapotranspiration (ET) [mm], air temperature (average (𝑇𝑎𝑣𝑒), maximum174

(𝑇𝑚𝑎𝑥), and minimum (𝑇𝑚𝑖𝑛)) [◦C], solar radiation (SR) [cal/cm2/d], heliophany (sunshine hours) (Hel) [!htb],175

average relative humidity (RH) [%], and wind speed (WS) [2m/km/d]; ii) hydrometric variables: streamflow176

(Q) [m3/s], water level (h) [m]; iii) physical and chemical water-quality variables: water temperature177

(WT) [◦C], conductivity (Cond) [𝜇S/cm], nitrite (𝑁𝑂−
3 ) [mg/L], nitrate (𝑁𝑂−

2 ) [mg/L], ammonium (𝑁𝐻+
4 )178

[mg/L], total nitrogen (TN) [mg/L], dissolved oxygen (DO) [mg/L], potential of hydrogen (pH) [NA],179
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turbidity (Turb) [NTU], phosphate (𝑃𝑂3−
4 ) [mg/L], total phosphorus (TP) [𝜇g P/L], chlorophyll-a (Chl-a)180

[𝜇g/L], biochemical oxygen demand (BOD) [mg/L], total suspended solids (TSS) [mg/L], total solids (TS)181

[mg/L]. The dataset corresponds to the period 2014-2020, except for the variables 𝑃𝑂3−
4 , TSS, and TS, which182

were monitored from 2018 and were discarded from the imputation process.183

The National Institute of Agricultural Research (INIA) and the Uruguayan Institute of Meteorology184

(INUMET) collected the meteorological dataset. The following variables (ET, RH, 𝑇𝑎𝑣𝑒, 𝑇𝑚𝑎𝑥, 𝑇𝑚𝑖𝑛, and WS)185

were measured at “Las Brujas” meteorological station once a day. The dataset corresponds to the period186

1/8/2014 - 31/12/2020, and it is freely downloadable from the data bank of the Agroclimate and Information187

Systems Unit (INIA, 2020). Precipitation was collected from nine INUMET conventional rain gauges and a188

meteorological station with a daily frequency from 1/8/2014 - 29/6/2020.189

This study also analyzed a hydrometric dataset collected by the Uruguayan National Water Board190

(DINAGUA) from August 1, 2014 to June 30, 2020. The water level (h) was measured three times a191

day at hydrometric stations in Florida to determine streamflow ((Q)). The National Board for Quality and192

Environment Assessment (DINACEA) gathered a water-quality dataset from 2014 to 2020. This data is free193

and available to the public through the National Environmental Observatory (OAN) ([dataset] DINACEA,194

2020). The dataset was collected at six monitoring stations along the SLC River. Three of these stations195

(SLC01, SLC02, PS01=SLC03) are located upstream of the Paso Severino reservoir, while the remaining196

ones (PS03, PS04, and PS02) are in the reservoir. To give a visual representation of the stations and197

measurement points, refer to Figure 2.198

A summary of the datasets used in this study, along with the percentage of missing values detected for199

each variable, is reported in the Supplementary Information (A.1).200

3. Methods201

3.1. Methodology conceptualization202

We designed and implemented a novel missing data imputation framework in this study. The methodol-203

ogy comprises four main phases: in Phase 1, we apply physical constraints to our framework that considers204

variables’ temporal and spatial variability, correlations, and range of variation. Each of these constraints is205

implemented as an artificial variable (column) that is added to the original dataset, creating, in this way, a206

new dataset variant. Phase 2 involves selecting helper variables for data preparation to aid imputation. These207
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Figure 2: Location of monitoring stations. Coordinate system WGS 84/UTM 21s.

variables will be used to train imputation models. In Phase 3, we train and test these models to determine208

the best one for data imputation. Finally, we generate the imputed dataset in Phase 4. We follow an iterative209

process, starting with variables with the least missing data. These variables then act as helper variables to210

complete missing values in other time series.211
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Figure 3 depicts the proposed methodology, while each phase is thoroughly described in the following212

sections. Our framework was implemented using Python on a desktop computer (Ubuntu Operating System,213

16 GB of RAM, and Intel i3 Processor), and the front end was developed using the Streamlit library.214

3.2. Definition and application of domain constraints215

As mentioned, Phase 1 involves applying physical domain constraints to the framework, considering216

variables’ temporal and spatial variability, correlations, and range of variation. We analyzed the variables’217

temporal patterns, spatial variations, and correlations to incorporate relevant constraints. Additionally,218

we considered each variable’s permissible range of values to prevent unrealistic imputations. Doing so219

establishes a solid foundation for accurate and reliable imputations in subsequent phases. The following220

subsections will provide detailed definitions and procedures for each domain restriction.221

3.2.1. Variable correlation222

The machine-learning framework considers the correlation between variables using Pearson, Spearman,223

and Kendall correlation matrices with a > |0.5| threshold. All three matrices produced similar results, and224

Figure 4 shows the Spearman correlation matrix with each line representing a variable at a monitoring225

station. Similar variables were grouped together and reported only once to avoid confusion, while Pearson226

and Kendall’s matrices can be found in the Supplementary Information (A.2).227

We will now focus on the strongest correlations we have identified, but a full list can be found in228

the Supplementary Information (A.2) for your reference. The positive relationship between WT and the229

meteorological variables, particularly SR, air temperature, and Hel is clear. A strong inverse correlation exists230

between WT and DO, supported by warm water holding less DO than cold water. In winter and early spring,231

when the WT is low, the DO concentration is high; in summer and early fall, when the water temperature232

rises, the DO concentration is often lower (Gorgoglione et al., 2020b; Rodríguez et al., 2021). Based on such233

relationships, it is easy to understand the inverse correlation between DO and the meteorological variables,234

especially SR, air temperature, and Hel.235

Furthermore, Cond is highly influenced by WT and Turb. An increase in WT determines a more236

significant amount of ions due to molecule dissociation and an increase in ionic mobility. Since Cond depends237

on such factors, an increase in WT causes an increase in Cond Hayashi (2004). Moreover, Cond represents238

the ability of a liquid to conduct an electric charge, which depends on dissolved ion concentration, usually239
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Figure 3: Conceptualization of the proposed methodology.

measured as total dissolved solids (Bakhtiar Jemily et al., 2019). Since the latter is highly correlated to240

Turb, it is easy to justify the strong relationship between Cond and WT and, consequently, between WT241
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Figure 4: Spearman correlation matrix.

and Turb. The latter is also supported by the fact that suspended particles in water bodies, whose proxy is242

Turb, absorb heat from SR more efficiently than water. Such heat is then transferred from the particles to243

water molecules, raising, in this way, the surrounding WT (Paaijmans et al., 2008). Based on the above,244

the negative correlations between Turb and the meteorological variables, particularly air temperature, and245

between DO and Cond are simple to understand.246

The variables TP and WT are also directly correlated. The increase in WT improves the microorganism247

activity and phosphorus diffusion from the interstitial water to the overlying water, thus affecting phosphorus248

release (Cheng et al., 2020). Such a relationship explains the robust direct correlation between TP and Cond.249
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TP also resulted highly correlated to Turb, which is especially true in watersheds characterized by a high250

proportion of agricultural land like the one under study (Villa et al., 2019). This phenomenon is explained by251

the fact that most phosphorus export occurs from agricultural areas due to solids off-site movement, which252

carries the phosphorus to water bodies.253

We also considered the correlations between Chl-a with WT, Cond, and Turb, respectively. Growth of254

cyanobacteria in freshwater containing only Chl-a is generally favored at higher temperatures, with well-255

defined thermal optima for growth at temperatures ranging from 20 to 30 ◦C (Haakonsson et al., 2017). The256

correlation Chl-a-Cond depends on the cyanobacteria species. Haakonsson et al. (2020) found a negative257

correlation between these two variables at Punta del Tigre in the Río de la Plata Estuary, Uruguay, since258

high salinity limits or inhibits cyanobacterial growth.259

The positive correlation Chl-a-Turb depends on cyanobacteria being part of the suspended particles260

that contribute to Turb. Crisci et al. (2017) found that WT, Cond, and Turb were among the most relevant261

phytoplankton biomass predictors at Laguna del Sauce, Uruguay. The results obtained from the three262

correlation matrices were complemented by other variable correlations presented in the scientific literature.263

Figure 5 displays a dependency tree that summarizes the correlations between variables used in our264

framework. The tree highlights variables that were imputed with the help of one, two, or three other variables265

(helper variables) are represented in yellow, orange, and red, respectively. Meteorological variables used as266

helpers are depicted in green since their imputation doesn’t depend on any other imputation. Table 9 provides267

the scientific literature that supports each correlation reported in Figure 5.268

3.2.2. Spatial variability269

We evaluated and incorporated spatial dependencies (SD) and spatial corrections (SC) between various270

monitoring stations to account for spatial variability. SD considers the spatial placement of monitoring sites,271

including upstream and downstream locations. For example, knowing that Q is influenced by P (Section272

3.2.1), the imputation of Q-time series will be helped by P-times series monitored at those upstream273

Florida stations, where Q was monitored. The SD implemented in the framework is depicted in Figure 6.274

Additionally, the SC represents the weight given to helper variables based on how far they are from the275
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Figure 5: Variable-dependency tree for data imputation.

monitoring stations of the imputation variable. The closer the measured values are to the imputation location,276

the more influence they have, according to the Inverse Distance Weighted (IDW) method.277

IDW assumes that the influence of each measured point decreases as the distance increases:278

𝑌𝑚 =

𝑛
∑

𝑖=1
𝑌𝑖𝑑

−𝑘
𝑚𝑖

𝑛
∑

𝑖=1
𝑑−𝑘
𝑚𝑖

(1)

where 𝑌𝑚 is the observation at station 𝑚, 𝑛 is the number of stations, 𝑌𝑖 is the observation at station 𝑖, 𝑑𝑚𝑖279

is the distance between 𝑚 and 𝑖, 𝑘 is the exponent that generally ranges between 1 and 6. In this study, 𝑘 = 2280

was assumed. Two separate dataset variants were created within the framework to complete the imputation281

process: Dataset SD and Dataset SC.282
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Figure 6: Spatial dependency tree.

3.2.3. Temporal variability and value constraints283

We used the Exponentially Weighted Moving Average (EWMA) to account for the temporal variability284

in the studied variable. This method gives more weight to recent observations and less weight to older ones,285

based on an exponential decay function:286

⎧

⎪

⎪

⎨

⎪

⎪

⎩

EWMA(𝑌𝑛) =

𝑡
∑

𝑖=0
(1 − 𝛼)𝑖𝑌𝑛−1−𝑖

𝑡
∑

𝑖=0
(1 − 𝛼)𝑖

𝛼 = 2
𝑡+1 (2)

where 𝑌 is a time series, 𝑛 is the number of observations, 𝛼 is the weight assigned, and 𝑡 is the temporal287

time window selected based on the variable to impute: two months for water-quality variables, one week for288

hydrometric variables, and one day for climatic variables.289

A new dataset variant called "Dataset EWMA" was created by adding the EWMA artificial variable as a290

new feature. In addition, specific ranges of variation were imposed for all variables in the models. The output291

variables can range from 0 to +∞, while pH can range from 0 to 14.292
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3.3. Data preparation293

Before conducting any analysis, it was important to address the challenge of dealing with variable names294

that were not standardized, different units of measurement, varying orders of magnitude, and sampling295

frequencies. To address this, a group of helper variables (𝑋𝑠) was selected along with the variable 𝑌 that296

needed to be imputed based on the domain constraints outlined in Section 3.2. If a helper variable had less297

than 50% missing values, it was temporarily imputed using linear regression. However, if the percentage of298

missing values was greater than 50%, the variable was not considered a helper to avoid introducing noise. If299

a helper variable 𝑋 ∈ 𝑋𝑠 had a different monitoring frequency than 𝑌 , it was substituted with its maximum300

(𝑋𝑚𝑎𝑥), mean (𝑋𝑚𝑒𝑎𝑛), and minimum (𝑋𝑚𝑖𝑛) to match the frequency of 𝑌 . Furthermore, all variables were301

reduced to a monthly frequency, which was the sparser one that characterized the water-quality variables. A302

min-max normalization approach was implemented to equalize the importance of each variable and manage303

their different measurement units. Finally, the data were tabulated, resulting in a dataset where each data304

point (row) included time information (in the form of new artificial variables, i.e., EWMA column). In this305

way, data points were independent from each other.306

Moreover, the dataset variants generated from the domain-constraint application were created and added307

to𝑋𝑠. It is important to remark that the framework trained and tested all the imputation models using the orig-308

inal dataset (Original dataset), all the dataset variants (Dataset EWMA, Dataset SD, Dataset SC), and their309

combinations (Dataset EWMA+SD, Dataset EWMA+SC, Dataset SD+SC, Dataset EWMA+SD+SC). The310

output of the framework is the best dataset-model pair. It is selected based on a comprehensive evaluation311

across these diverse datasets and the different models.312

3.4. Imputation models313

We examined various models to determine the most effective ones for imputing different variables from314

various environmental domains, as outlined in Wolpert and Macready (1997). Since many of the variables,315

especially those related to water quality, had limited data available, it was crucial that the chosen methods316

had strong predictive capabilities with a smaller amount of data.317

Imputation methods can be grouped into two categories (Durbin and Koopman, 2012): i) univariate:318

algorithms that only take into account the values of the imputing variable; ii) multivariate: methods that,319

besides the values of the imputing variable, also consider other variables’ data-points as input. Table 1 lists320

Pastorini et al.: Preprint submitted to Elsevier Page 15 of 44



Enhancing Environmental Data Imputation

Table 1
Imputation algorithms taxonomy.

Single model Multi-model

Univariate Inverse Distance Weighting (IDW)

Multivariate

Ridge Regressor (RR)
TheilSen Regressor (TR)
Huber Regressor (HR) Random Forest Regressor (RFR)
Bayesian Ridge Regressor (BRR) Multivariate Imputation by Chained Equations (MICE)
Support Vector Regressor (SVR)
K-nearest neighbors Regressor (KNNR)

the imputation methods implemented in the framework, while a brief description of each method is given in321

the following section.322

3.4.1. Univariate imputation methods323

The Inverse Distance Weighting (IDW) interpolation model assumes that closer objects are more similar324

than those farther apart. It estimates unmeasured values using observed values from nearby locations,325

with greater impact from closer locations. Weights decrease as the distance from the imputation location326

increases (Fortin and Dale, 2005). We implemented the model using numpy (Harris et al., 2020) and pandas327

(McKinney, 2010) libraries.328

3.4.2. Multivariate imputation methods329

The methods in this category are based on a set of simple regression models and machine-learning-aided330

regression models. In all the following cases, our implementation is based on Python’s scikit-learn library331

(Pedregosa et al., 2012).332

The Random Forest Regressor (RFR) is a machine-learning method that utilizes an ensemble of333

decision trees (Breiman, 2001). Decision trees are structures that divide input-feature space into smaller334

subspaces (Stockman et al., 2019). The RF method trains each decision tree on a different set of data335

points obtained by bootstrapping, and each tree may include a different subset of randomly chosen input336

features. The RF method’s output is obtained by aggregating the outcomes of all decision trees, which is337

done by considering the mean for regression problems (Mital et al., 2020). We utilized Python’s scikit-learn338

Extremely Randomized Trees Regressor. This regressor differs from the RFR in the node division decision339

method, where each division is made randomly instead of searching for the optimal cut. This change reduces340

training time without affecting prediction power (Geurts et al., 2006).341
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The Ridge Regressor (RR) is a tool for estimating regression coefficients for high dimensional data where342

the dataset contains correlated features (Hoerl and Kennard, 2000). This is often the case for environmental343

data. RR can be used to get stable parameter estimates when standard multiple regression methodologies344

fail. RR coefficients can be efficiently calculated by computing an orthogonal transformation of the high-345

dimensional data (Cule and De Iorio, 2012).346

The TheilSen Regressor (TR) trains a regression model based on data statistics instead of single points to347

make it robust to outliers (Dang et al.), while the Huber Regressor (HR) trains a regression model optimizing348

the squared loss or the absolute loss depending on the samples used. This approach allows the model not to349

be heavily influenced by outliers while still taking their effect into consideration (Owen, 2006).350

The Bayesian Ridge Regressor (BRR) consents to a natural mechanism to survive poorly distributed351

or insufficient data by formulating linear regression employing probability distributors rather than point352

estimates. The output is assumed to be drawn from a probability distribution rather than estimated as a353

single value (Tipping, 2001).354

The Support Vector Regressor (SVR) uses Support vector machines. These algorithms look for a355

hyperplane or a set of them in data, which is non-linearly transformed into a higher dimensional space356

through kernel methods (Suykens and Vandewalle, 1999). The hyperplane and boundary layers minimize an357

error function for regression applications to estimate equation coefficients (Chivers et al., 2020).358

The K-nearest neighbors Regressor (KNNR) uses the nearest neighbors algorithm: a non-parametric359

technique. In the feature space, some nearest neighbors are weighted based on a distance function chosen by360

the user (Euclidean distance is the most commonly used). The output is the average of the k nearest neighbors361

(Kramer, 2013).362

Finally, we implemented the Multivariate Imputation by Chained Equations (MICE) based on each363

of the previous multivariate imputation models. It operates under the hypothesis that given the variables364

used in the imputation process, the missing data are missing at random (MAR), assuming that missing value365

probability depends exclusively on recorded values (Graham, 2009). In other words, after checking for all366

available data (i.e., the variables included in the imputation model), any remaining missing information367

is entirely random (Azur et al., 2011). With MICE, a base regression model is selected and then used for368

imputing each variable with missing values. Here, each variable with missing data is iteratively modeled369

based on the other variables in the dataset. The use of MICE generates a model variant hereafter called370
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Table 2
Summary of the dataset and model variants.

Variant Description

Dataset and model Original Model and data without any variant

Dataset
SC Spatial correlations (Equation 1)
SD Spatial dependency (Figure 6)

EWMA Temporal variability (Figure 2)

Model MICE Base model retrained with MICE

“MICE.” Table 2 summarizes all the datasets and model variants described in this section and implemented371

in our framework.372

3.5. Model cross-validation and data imputation373

The framework implemented cross-validation to ensure the best model for each variable by splitting the374

input dataset into approximately equal-sized groups (folds). The first fold was used as the validation set, and375

the rest as the training set. This process was repeated 𝑘 times (we chose 10-fold cross-validation for the input376

datasets), and the average loss-function values (Nash-Sutcliffe efficiency (NSE), percent bias (PBIAS), and377

Kling-Gupta efficiency (KGE)) were calculated. If the input dataset had less than 100 observations, we ran378

repeated 𝑘-fold cross-validation, with 𝑘 = max(𝑁∕10, 2) (where 𝑁 is the number of data points), 𝑛 times,379

with 𝑛 = 10∕𝑘, randomly selecting folds during any iteration. This ensured that the number of times each380

performance metric was measured was equal to the classical 𝑘-fold cross-validation.381

To ensure accuracy and reliability, we conducted a validation process with and without repetitions and382

tuned hyperparameters using the Python library Optuna, which is open-source (Akiba et al., 2019). Our383

objective function was to select the best model for each variable based on the highest NSE. This model384

imputes the selected variable 𝑌 during Phase 2. If there were more variables to impute, the imputed 𝑌 could385

be used as a helper variable to complete those time series. Once all variables were imputed, we obtained the386

final complete dataset.387

3.6. Model performance evaluation388

To evaluate the performance of the imputation models, we calculated and compared NSE, PBIAS, and389

KGE:390
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NSE = 1 −

𝑛
∑

𝑖=1
(𝑦𝑜𝑖 − 𝑦𝑚𝑖 )

2

𝑛
∑

𝑖=1
(𝑦𝑜𝑖 − 𝑦𝑜)2

(3)

PBIAS = 100 ⋅

𝑛
∑

𝑖=1
𝑦𝑜𝑖 − 𝑦𝑚𝑖

𝑛
∑

𝑖=1
𝑦𝑜𝑖

(4)

KGE = 1 −
√

(𝑟 − 1)2 + (𝛼 − 1)2 + (𝛽 − 1)2 (5)

where 𝑦𝑜𝑖 is the 𝑖𝑡ℎ observed value, 𝑦𝑚𝑖 is the corresponding modeled value (imputed), 𝑦𝑜 is the mean of391

observed values, and 𝑛 is the size of the testing dataset. Being 𝜇𝑚, 𝛿𝑚 and 𝜇𝑜, 𝛿𝑜 mean and standard deviation392

(the first two statistical moments) of 𝑦𝑚 and 𝑦𝑜, respectively; 𝑟 is the linear correlation between observations393

and imputations, 𝛼 is a measure of the flow variability error (𝛼 = 𝜇𝑚∕𝜇𝑜), and 𝛽 is a bias term (𝛽 = 𝛿𝑚∕𝛿𝑜).394

The NSE is a normalized statistical method that defines the relative magnitude of the residual variance395

of a model compared to the variance of measured data (Nash and Sutcliffe, 1970). It ranges between -∞396

and 1. If NSE=1, imputed values perfectly reproduce the observed ones. If NSE=0, imputed values are only397

as good as the observation mean. If NSE<0, the mean observation value is a better predictor than imputed398

values. Therefore, higher NSE values are preferable since they imply a more accurate imputation model.399

PBIAS measures the average tendency of the imputed data to be smaller or larger than their observed400

counterparts (Moriasi et al., 2007). PBIAS=0 is the optimal value, with low-magnitude values representing401

accurate model imputation. Negative values characterize model overestimation bias, while positive values402

represent model underestimation bias.403

Finally, KGE represents the Euclidean distance computed using the coordinates of 𝑟, 𝛼, and 𝛽 (Gupta404

et al., 2009). As well as NSE, it ranges between -∞ and 1. However, there are no well-defined KGE thresholds405

that outline a “good” model as for NSE (Knoben et al., 2019; Rodríguez et al., 2021). The benchmark406

associated with NSE estimates (i.e., NSE=0) occurs when the estimate of KGE=1 −
√

2, i.e., when the407

estimate of KGE=-0.41 (Knoben et al., 2019).408
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Table 3
Performance ratings defined for each evaluation metric.

Performance rating Hydrometric and climatic variables Physical water quality variables Chemical water quality variables

NSE
Very good NSE > 0.80 NSE > 0.80 NSE > 0.65
Good 0.70 <NSE≤0.80 0.70 < NSE≤0.80 0.50 <NSE≤ 0.65
Satisfactory 0.50 <NSE≤0.70 0.45 <NSE≤0.70 0.35 <NSE≤ 0.50
Unsatisfactory NSE ≤ 0.50 NSE ≤ 0.45 NSE ≤ 0.35

PBIAS
Very good |PBIAS|< 5 |PBIAS|< 10 |PBIAS|< 15
Good 5 ≤|PBIAS|< 10 10 ≤|PBIAS|< 15 15 ≤|PBIAS|< 20
Satisfactory 10 ≤|PBIAS|< 15 15 ≤|PBIAS|< 20 20 ≤|PBIAS|< 30
Unsatisfactory |PBIAS|≥ 15 |PBIAS|≥ 20 |PBIAS|≥ 30

KGE
Satisfactory/Good KGE ≥ -0.41 KGE≥ -0.41 KGE≥ -0.41
Unsatisfacory KGE < -0.41 KGE < -0.41 KGE < -0.41

Table 3 summarizes the performance ratings defined for each evaluation metric (NSE, PBIAS, KGE).409

These metrics are derived from previously published studies (Chen et al., 2017; Moriasi et al., 2015;410

Rodríguez et al., 2021). NSE was chosen as the objective function because of its strict standards for411

determining a good fit. PBIAS and KGE were also calculated to validate the accuracy of each model used412

in the study.413

4. Results and discussion414

4.1. Imputation results415

To evaluate the performance of the implemented imputation models within the framework and determine416

the most suitable model for each variable, a 10-fold cross-validation approach was employed. In cases where417

a time series had fewer than 100 records, repeated 10-fold cross-validation was used. The best model selection418

for each variable was based on the highest Nash-Sutcliffe Efficiency (NSE) value, serving as the objective419

function. Additionally, model accuracy was assessed using Percent Bias (PBIAS) and Kling-Gupta Efficiency420

(KGE). The framework outputs include augmented time series data for all variables across the climate,421

hydrology, and water quality domains, with a monthly frequency. The comprehensive results, including the422

winning model, the dataset used (original or variant), the corresponding goodness-of-fit indicators, and the423

respective rating, are presented in Table 4.424
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Table 4: Imputation results with the winning model, the dataset used (original or variant), the corresponding goodness-
of-fit indicators (NSE, KGE, PBIAS), and the respective rating: Very good (VG), Good (G), Satisfactory (S) and
Unsatisfactory (U).

Variable Station Best model + dataset variant NSE NSE ranking KGE KGE ranking PBIAS PBIAS ranking

P

25 de Agosto Hubber Regressor (MICE) + EWMA 0.80 G 0.77 G 9.17 G
San Gabriel Hubber Regressor (MICE) 0.80 VG 0.78 G 5.71 G
Reboledo Hubber Regressor (MICE) 0.83 VG 0.80 G -1.56 VG

Cerro Colorado Ridge + EMA 0.76 G 0.76 G -1.68 VG
La Cruz Bayesian Ridge + SC 0.80 VG 0.81 G 1.10 VG

Sarandí Grande Ridge (MICE) 0.73 G 0.73 G -3.37 VG
Villa 25 de Mayo Hubber Regressor + SC 0.89 VG 0.85 G 1.76 VG

Villa Cardal KNN + SC 0.86 VG 0.85 G -0.55 VG
Mendoza SVR 0.89 VG 0.89 G -1.63 VG

h Florida KNN + SC 0.98 VG 0.97 G 0.02 VG
Q Florida Random Forest Regressor 0.98 VG 0.90 G -1.85 VG

WT

SLC01 IDW 0.93 VG 0.90 G -3.14 VG
SLC02 Hubber Regressor + SC + SD 0.96 VG 0.93 G 0.39 VG

PS01=SLC03 IDW + SD 0.95 VG 0.95 G 3.77 VG
PS03 IDW 0.98 VG 0.97 G -1.21 VG
PS04 IDW + SD 0.98 VG 0.97 G 1.40 VG
PS02 IDW 0.97 VG 0.96 G 0.01 VG

DO

SLC01 Hubber Regressor + SC 0.74 G 0.80 G -0.22 VG
SLC02 Ridge (MICE) + EWMA 0.81 VG 0.85 G -0.12 VG

PS01=SLC03 IDW + SD 0.47 S 0.56 G -2.31 VG
PS03 Ridge + EWMA + SC 0.75 G 0.78 G 0.07 VG
PS04 Hubber Regressor 0.87 VG 0.85 G -0.01 VG
PS02 IDW 0.65 S 0.77 G -1.75 VG

Cond

SLC01 IDW 0.63 S 0.77 G -1.22 VG
SLC02 SVR 0.69 S 0.69 G 0.29 VG

PS01=SLC03 Ridge + SD 0.82 VG 0.86 G 0.77 VG
PS03 Ridge + EWMA + SC 0.85 VG 0.87 G 1.76 VG
PS04 IDW 0.97 VG 0.95 G -1.97 VG
PS02 Hubber Regressor + SC 0.92 VG 0.91 G 0.04 VG

pH

SLC01 Hubber Regressor + SC 0.45 S 0.52 G -0.13 VG
SLC02 SVR (MICE) 0.76 G 0.77 G -0.03 VG

PS01=SLC03 SVR + SD 0.49 S 0.52 G 0.09 VG
PS03 IDW 0.57 S 0.72 G 0.18 VG
PS04 Ridge + SC 0.79 G 0.80 G 0.00 VG
PS02 IDW 0.81 VG 0.84 G -0.41 VG

Turb

SLC01 IDW 0.16 U 0.27 G 12.52 G
SLC02 Ridge (MICE) 0.53 S 0.63 G -1.58 VG

PS01=SLC03 IDW + SD 0.58 S 0.58 G 11.33 G
PS03 IDW 0.61 S 0.74 G 1.06 VG
PS04 IDW 0.87 VG 0.90 G 4.27 VG
PS02 Ridge + SC 0.89 VG 0.89 G -0.58 VG

BOD

SLC01 TheilSen Regressor + SC 0.38 U 0.39 G 5.55 VG
SLC02 IDW + SD 0.38 U 0.48 G -4.61 VG

PS01=SLC03 SVR 0.21 U 0.18 G -0.36 VG

NH4+

SLC01 SVR (MICE) + EWMA 0.03 U 0.03 G 11.37 VG
SLC02 KNN 0.23 U 0.43 G 4.43 VG

PS01=SLC03 SVR + SD 0.05 U 0.05 G 9.19 VG
PS03 Hubber Regressor + EWMA + SC 0.80 VG 0.77 G 3.03 VG
PS04 KNN + SC + SD 0.84 VG 0.80 G 3.69 VG
PS02 IDW 0.48 S 0.41 G 19.61 G

NO3-

SLC01 Hubber Regressor + SC 0.24 U 0.28 G 22.08 S
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Table 4 continued from previous page

Variable Station Best model + dataset variant NSE NSE ranking KGE KGE ranking PBIAS PBIAS ranking

SLC02 Random Forest Regressor + EWMA + SD 0.38 S 0.45 G -7.69 VG
PS01=SLC03 Random Forest Regressor + SC -0.08 U -0.10 G -1.22 VG

PS03 Hubber Regressor + SC 0.60 G 0.69 G -1.99 VG
PS04 IDW 0.80 G 0.78 G -4.14 VG
PS02 IDW 0.54 G 0.77 G 4.72 VG

NO2-

SLC01 KNN (MICE) 0.50 S 0.51 G 14.67 VG
SLC02 SVR 0.69 G 0.58 G -10.89 VG

PS01=SLC03 SVR 0.21 U 0.26 G 10.70 VG
PS03 Hubber Regressor + SC 0.75 G 0.74 G -4.89 VG
PS04 IDW 0.93 VG 0.89 G -1.60 VG
PS02 IDW 0.85 VG 0.83 G -4.02 VG

TN

SLC01 Random Forest Regressor + SC 0.23 U 0.30 G 1.05 VG
SLC02 Bayesian Ridge (MICE) + EWMA 0.69 G 0.71 G -0.32 VG

PS01=SLC03 Ridge + SC + SD 0.14 U 0.22 G 0.41 VG
PS03 IDW 0.83 VG 0.90 G 3.31 VG
PS04 IDW 0.93 VG 0.94 G -2.49 VG
PS02 IDW 0.86 VG 0.86 G 1.52 VG

TP

SLC01 Hubber Regressor + SC -0.04 U 0.02 G 13.22 VG
SLC02 Random Forest Regressor (MICE) + EWMA 0.16 U 0.29 G -1.67 VG

PS01=SLC03 IDW 0.61 G 0.63 G -3.92 VG
PS03 IDW 0.80 G 0.80 G -1.27 VG
PS04 Hubber Regressor + SC 0.78 G 0.80 G -0.90 VG
PS02 Bayesian Ridge (MICE) + EWMA 0.79 G 0.78 G -0.95 VG

Chl-a

PS01=SLC03 IDW -0.20 U -0.21 G 49.34 U
PS03 KNN + SC -0.43 U -0.18 G 1.95 VG
PS04 Hubber Regressor + EWMA + SC + SD -0.08 U 0.08 G 23.60 S
PS02 SVR + EWMA -0.15 U -0.37 G 14.61 VG

Considering the NSE rating, the imputation performance for the climatic and hydrometric variables was425

good overall (NSE>0.73). Regarding the physical water quality variables, on average, adequate imputation426

performances were obtained. WT was the best-imputed variable at the six monitoring stations, reporting427

very good performance (NSE>0.90). The high daily and annual seasonality that characterizes this variable428

makes its simulation and, therefore, its imputation less challenging (Rodríguez et al., 2021). The correlations429

between WT-Cond and WT-DO (Figure 5) are reflected in the good performance of such variables at the430

six monitoring sites. The imputation process for the other water-quality variables (physical and chemical)431

returned different results depending on the station considered. It is significant to remark that the performance432

is always outstanding at the three monitoring stations located in the Paso Severino reservoir (PS03, PS04,433

and PS02), while the imputation can sometimes be unsatisfactory at the sites located upstream of the lake434

along Santa Lucía Chico river (SLC01, SLC02, and PS01). SLC01 and SLC02 are located several kilometers435

upstream of the reservoir, where the water body has a fluvial behavior associated with a lotic ecosystem.436
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While PS02, PS03, and PS04 are located within the lake, where the water body is lacustrine, associated with437

a lentic ecosystem.438

This finding may be due to the different hydrologic response times considering the location of the439

measurement sites. The hydrograph-base time observed at Florida hydrometric station is overall equal to440

6 days, and it generally does not change with the variation of the streamflow magnitude (Rodríguez et al.,441

2021). Ríos (2019) reported that the Paso Severino renewal time ranges between 2 and 8 weeks. Furthermore,442

during precipitation events, such renewal time could be a few days long, while it can last several months443

during dry periods. Chl-a and BOD were the only two variables that the framework could not adequately444

impute at any site. They are among the water-quality variables, with data recorded only in three (BOD) or four445

stations (Chl-a). This means the spatial constraints related to the variant SD and SC are limited. Furthermore,446

the correlated variables resulted from the three correlation matrices (Pearson, Spearman, and Kendall) and447

from the variable-dependency tree (Figure 5) that were supposed to aid the imputation of Chl-a and BOD448

were very few. This supports the reliability of the domain constraints implemented in the framework.449

The validation of the imputation process was notable, showing overall very good and good results in450

terms of the PBIAS and KGE ratings. A box-plot representation of the framework NSE performance per451

domain is represented in Figure 7. Additionally, box plots of the framework PBIAS and KGE performance452

are reported in the Supplementary Information (A.3).453

More than 75% of the imputed data is characterized by NSE>0.45 (satisfactory results). In particular,454

the minimum NSE computed for meteorologic variables is 0.72, meaning that all the imputations can be455

considered good (33%) and very good (66%). For hydrometric variables, NSE is always >0.97, showing456

the very good performance of the proposed framework. The performance tends to decrease when dealing457

with water-quality variables. More than 78% of the physical-water-quality variables are characterized by458

NSE>0.45 (satisfactory results), and more than 66% of the chemical-water quality variables reach NSE>0.35459

(satisfactory results). For both domains, more than 91% of the imputed data has NSE>0, meaning that for460

almost all the water-quality imputations, the proposed framework is better than the mean function used as461

an imputer.462

4.2. Selection of the best dataset-model pair463

In this study, we considered various model and dataset options in our framework beyond the original ones.464

Table 5 displays how often each model with corresponding variants was chosen and Table 6 summarizes the465
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Figure 7: Box plots depicting the framework’s performance in terms of Nash-Sutcliffe Efficiency (NSE) are shown
for variables within the meteorological, hydrometric, physical-water quality, and chemical-water quality domains.

number of times a dataset and model variant was selected to impute a variable. It is crucial to note that there466

is no superior model for a specific variable type or domain (Wolpert and Macready, 1997). This emphasizes467

the significance of a framework like ours, where multiple models are implemented and run to achieve optimal468

imputation performance in varying scenarios.469

From Table 5, it is clear that IDW is a successful imputation technique, particularly for water-quality470

variables (chosen 27 times). It returns outstanding results for the variables recorded at the three stations471

located in the Paso Severino reservoir (especially for WT, Turb, and TN), and it is sometimes chosen as472

the best model for WT, DO, Cond, Turb, BOD, TP, and Chl-a at the stations located along SLC river. It is473

interesting to see that IDW was always chosen in its original form (22 times) or with the SD variant (5 times)474

(Table 5). The HR, RR, and TR models are similar linear methods that differ from each other only in their475

training techniques. They were also chosen as best models 27 times (29.3% of the time) as well as IDW.476

The MICE-model variant was selected 12 times as the best model. This confirmed the results by Jones477

et al. (2014), where they report that MICE can effectively fill in missing values in water-quality data, and478

the findings reported by Ratolojanahary et al. (2019), where they state that the hybridization of MICE with479
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Table 5
Number of times each model was selected as the best model to impute a variable.

Imputation model Dataset and/or model variant Number of imputed variables Total

Inverse Distance Weighting (IDW) Original 22 27SD 5

Hubber Regressor (HR)

SC 9

16

MICE 2
SC + SD 1

EWMA + SC 1
Original 1

MICE + EWMA 1
EWMA + SC + SD 1

Ridge Regressor (RR)

EWMA + SC 2

10

MICE 2
SC 2

MICE + EWMA 1
EWMA 1

SC + SD 1
SD 1

Support Vector Regressor (SVR)

Original 5

10
SD 2

MICE + EWMA 1
MICE 1

EWMA 1

K-nearest Neighbors Regressor (KNNR)

SC 3

6Original 1
SC + SD 1

MICE 1

Random Forest Regressor (RFR)

SC 2

5Original 1
EWMA + SD 1

MICE + EWMA 1

Bayesian Ridge Regressor (BRR) MICE + EWMA 2 3SC 1

TheilSen Regressor (TR) SC 1 1

several machine-learning algorithms (SVR, KNN, RF, and boosted regression tree) always performs better480

than the original MICE taken alone. It is worth noting that, in our work, the MICE variant was always selected481

either with the original dataset or with the EWMA-dataset variant (Table 5).482

The data presented in Table 6 clearly shows that the best model selection occurred a whopping 62 times,483

which represents over 67% of the total selection instances. This undoubtedly emphasizes the crucial role of484

incorporating physical constraints in the machine-learning framework to enhance imputation performance.485

Notably, dataset variants related to spatial variability were preferred over those related to temporal variability,486
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Table 6
Number of times each model variant was selected to impute a variable.

Variant N◦ of imputed variables

Dataset and model Original 30

Dataset
SC 25
SD 13

EWMA 12

Model MICE 12

with remarkable selection rates of 41.3% and 13%, respectively. SC was the most frequently selected among487

the spatial variants, accounting for 27.2% of the total selection instances. These results undoubtedly call for488

further in-depth exploration of the subject.489

The integration of interpretable machine learning models within the proposed data imputation framework490

presents a forward-looking perspective, enhancing the transparency and understanding of the imputation491

process for environmental data encompassing meteorology, hydrology, and water quality. This shift towards492

interpretability fosters trust and credibility by demystifying the model’s decision-making, allowing for in-493

sightful evaluation of the framework’s efficacy. Researchers benefit from the identification of environmental494

patterns and actionable insights, while stakeholders receive clear explanations for imputed values, crucial495

for informed decision-making. The interpretable nature of the framework aligns with scientific principles,496

ensuring adherence to known physical processes and reinforcing its applicability in real-world contexts.497

Overall, the emphasis on interpretability adds depth and transparency to the proposed framework, positioning498

it as a robust and insightful approach to environmental data imputation.499

4.3. On the value of the proposed framework500

The proposed framework exhibits three distinctive features that contribute to its effectiveness. Firstly,501

it adopts a multi-domain approach, which sets it apart from previous studies. By simultaneously imputing502

environmental variables from different domains, it becomes a powerful tool for enhancing the performance503

of integrated complex models at the catchment scale through data imputation. This unique characteristic504

enables comprehensive analysis and improves the accuracy of predictions.505

Secondly, the framework incorporates physical constraints, combining machine learning with domain-506

specific knowledge. This incorporation ensures that imputations align with the known physical processes,507

enhancing the reliability and interpretability of results. The latter demonstrates the advantages of this508
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approach compared to purely data-driven techniques. A notable comparison can be made with our previous509

work (Rodríguez et al., 2021) where we evaluated the performance of different machine learning algorithms510

for water-quality imputation. The physically-constrained framework consistently outperformed the pure data-511

driven models, highlighting the value of integrating physical constraints.512

It is important to note that the physical constraints utilized in this study, such as variable correlation and513

spatial variability, were specifically designed for our study site. However, they can be adapted and applied514

to other geographical regions, showcasing the framework’s generalization capability. This flexibility allows515

the framework to be effectively utilized in diverse watershed scenarios.516

Thirdly, the proposed framework addresses the challenge of model selection, acknowledging the inherent517

uncertainty in choosing a single machine-learning model. Unlike a simplistic approach of running a single518

model, the framework systematically evaluates and compares the performance of multiple machine learning519

and statistical models. By assessing various algorithms and configurations, it aims to identify the most520

suitable model for imputing environmental missing data under diverse conditions.521

Furthermore, the proposed approach consolidates the positive aspects observed in previous studies.522

It effectively handles a high percentage of missing values and incorporates a wide range of statistical523

and machine-learning techniques, as observed in various works (Aguilera et al., 2020; Chen et al., 2021;524

Jones et al., 2014; Ratolojanahary et al., 2019,?; Zhang and Thorburn, 2022). The framework offers525

a comprehensive and versatile solution for data imputation tasks by encompassing these advantageous526

elements.527

Our framework significantly contributes to advancing the understanding of the environmental system,528

addressing both direct and indirect aspects. Through direct contributions, it enhances model accuracy and529

parameter optimization and facilitates improved predictive modeling and hypothesis testing in environ-530

mental science. Policymakers benefit directly by gaining access to accurate and complete environmental531

data, enabling the development of precise, data-driven policies for real-world challenges. Indirectly, the532

framework minimizes biases from incomplete datasets, fostering a robust foundation for environmental533

studies and enriching our overall understanding. The imputed data supports a holistic view of environmental534

variables, contributing to a broader knowledge base. Additionally, the framework’s impact extends over time,535

accumulating reliable data to strengthen the scientific foundation of long-term environmental research.536
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5. Conclusions537

In this study, we have developed a novel framework that effectively addresses the challenge of imputing538

missing data in various environmental domains, including meteorology, hydrology, and water quality. This539

framework combines data-driven models with physical knowledge, resulting in satisfactory imputation540

results. The key features of this framework are as follows:541

i) It incorporates physical constraints such as variable correlations (Pearson, Spearman, and Kendall542

correlation matrices), temporal variability (EWMA), and spatial variability (SD and SC) of the features543

under study. By considering these constraints, the framework ensures that the imputed data aligns with the544

underlying physical characteristics of the variables.545

ii) The framework demonstrates a high success rate in imputing a substantial percentage of missing546

data, surpassing 70%. This ability to handle a large proportion of missing values enhances the overall data547

completeness.548

iii) It adopts a multivariate approach, simultaneously considering various variables. This multivariate549

aspect allows for comprehensive analysis and improves the accuracy of the imputed data.550

iv) The framework incorporates diverse statistical and machine-learning methods, contributing to551

flexibility and robustness. The framework can effectively capture the complex relationships within the data552

by employing various techniques.553

The framework’s performance was rigorously evaluated through cross-validation, selecting the best554

model for each variable. Overall, the results were satisfactory, with minimum Nash-Sutcliffe Efficiency555

(NSE) values above 0.72 for meteorologic variables, indicating good to very good imputations. Hydrometric556

variables consistently achieved NSE values above 0.97, demonstrating excellent performance. Water-quality557

variables exhibited slightly lower NSE values, but over 78% of the physical-water-quality variables and 66%558

of the chemical-water quality variables reached satisfactory NSE levels.559

Regarding model selection, the Inverse Distance Weighting (IDW) method was particularly effective for560

imputing water-quality variables. In contrast, linear methods such as Historical Records (HR), Regression561

Relations (RR), and Transfer Relations (TR) were also successful. The study highlights that no single best562

model per variable type or domain exists, underscoring the importance of employing a framework rather563

than relying on individual models. Furthermore, more than 67% of the time, a variant or combination of564

variants was identified as the best-selected model, emphasizing the significance of incorporating physical565
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knowledge into the framework. In our case study, dataset variants related to spatial variability were selected566

more frequently than those related to temporal variability (41.3% and 13%, respectively).567

The outcomes of this study are expected to contribute significantly to the accurate imputation and568

augmentation of environmental data. Integrating such data into watershed-scale models will enhance the569

performance of water-quality simulations and predictions, enabling improved decision-making in various570

applications.571

To further improve the framework, it is crucial to highlight its limitations, which will be the gaps572

where to focus future research. Upstream of the reservoir, changes in hydrological conditions, such as flow573

rates or pollutant sources, may be more dynamic and less predictable. The physics-based constraints in the574

framework might not fully account for the complexities of upstream hydrological and water quality processes.575

This incomplete understanding could lead to inaccuracies in imputing water quality missing values in these576

regions. Another weakness of the framework is represented by the availability and quality of auxiliary data577

used for training it. Its effectiveness depends on them. In situations where relevant auxiliary data are scarce578

or unreliable, the imputation accuracy may be compromised. Understanding these limitations and tailoring579

the framework to address these specific challenges is essential for improving its overall performance and580

ensuring accurate imputations in diverse environmental settings.581

6. Software and data availability582

The source datasets used in this work are available for reuse [dataset] Environmental data imputation583

project (2022a). They are published as four PARQUET files: i) CA_DINACEA_2004_2020 (water quality584

variables), ii) HIDRO_DINAGUA_1971_2020 (hydrometric variables), iii) MET_INIA_2013_2020 and iv)585

MET_INUMET_1980_2020 (meteorological variables) with a total size of 1.11 MB.586

The datasets obtained after applying the imputation methodology described in this work are also available587

[dataset] Environmental data imputation project (2022b). We provide four PARQUET files corresponding588

to the original datasets, which are available with a total size of 0.21 MB.589

The data imputation framework developed for this work is freely available at https://gitlab.com/590

fing-hydroinformatics/fsda-lu-wq. Models devised in this work can be accessed from https://591

gitlab.com/fing-hydroinformatics/fsda-lu-wq/-/tree/paper. The framework is implemented592

using Python 3.10 and can be executed using docker-compose on any general-purpose computer.593
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A. Supplementary information604

A.1. Complete dataset605

A summary of the complete dataset used in this study is presented in Table 7 (meteorological and606

hydrometric variables) and Table 8 (water quality variables), where the percentage of missing values detected607

for each variable (% N/A) is also reported.608

Table 8: Summary of the water quality dataset.

Water Quality Dataset. Source: DINACEA

Variable Station Frequency Period % N/A

WT

SLC01

Monthly

30/9/2014 - 31/8/2020 51.4
SLC02 30/9/2014 - 31/8/2020 51.4

PS01=SLC03 30/9/2014 - 31/8/2020 63.9
PS02 30/9/2014 - 31/8/2020 61.1
PS03 30/9/2014 - 31/8/2020 59.7
PS04 30/9/2014 - 31/8/2020 59.7

Cond

SLC01

Monthly

30/9/2014 - 31/8/2020 51.4
SLC02 30/9/2014 - 31/8/2020 51.4

PS01=SLC03 30/9/2014 - 31/8/2020 63.9
PS02 30/9/2014 - 31/8/2020 59.7

Continued on next page
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Table 8 – continued from previous page

Water Quality Dataset. Source: DINACEA

Variable Station Frequency Period % N/A

PS03 30/9/2014 - 31/8/2020 59.7
PS04 30/9/2014 - 31/8/2020 59.7

NO2-, NO3-, NH4+

SLC01

Monthly

30/9/2014 - 31/8/2020 51.4
SLC02 30/9/2014 - 31/8/2020 51.4

PS01=SLC03 30/9/2014 - 31/8/2020 63.9
PS02 30/9/2014 - 31/8/2020 59.7
PS03 30/9/2014 - 31/8/2020 61.1
PS04 30/9/2014 - 31/8/2020 61.1

TN

SLC01

Monthly

30/9/2014 - 31/8/2020 52.8
SLC02 30/9/2014 - 31/8/2020 52.8

PS01=SLC03 30/9/2014 - 31/8/2020 65.3
PS02 30/9/2014 - 31/8/2020 61.1
PS03 30/9/2014 - 31/8/2020 62.5
PS04 30/9/2014 - 31/8/2020 62.5

DO

SLC01

Monthly

30/9/2014 - 31/8/2020 51.4
SLC02 30/9/2014 - 31/8/2020 51.4

PS01=SLC03 30/9/2014 - 31/8/2020 63.9
PS02 30/9/2014 - 31/8/2020 59.7
PS03 30/9/2014 - 31/8/2020 59.7
PS04 30/9/2014 - 31/8/2020 59.7

Turb

SLC01

Monthly

30/9/2014 - 31/8/2020 52.8
SLC02 30/9/2014 - 31/8/2020 52.8

PS01=SLC03 30/9/2014 - 31/8/2020 65.3
PS02 30/9/2014 - 31/8/2020 61.1
PS03 30/9/2014 - 31/8/2020 62.5
PS04 30/9/2014 - 31/8/2020 62.5

PO43-

SLC01

Monthly

31/10/2018 - 31/8/2020 47.8
SLC02 31/10/2018 - 31/8/2020 47.8

PS01=SLC03 31/10/2018 - 31/8/2020 47.8
PS02 31/10/2018 - 31/8/2020 73.9
PS03 31/10/2018 - 31/8/2020 69.6

Continued on next page
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Table 8 – continued from previous page

Water Quality Dataset. Source: DINACEA

Variable Station Frequency Period % N/A

PS04 31/10/2018 - 31/8/2020 69.6

TP

SLC01

Monthly

31/10/2018 - 31/8/2020 51.4
SLC02 31/10/2018 - 31/8/2020 51.4

PS01=SLC03 31/10/2018 - 31/8/2020 65.3
PS02 31/10/2018 - 31/8/2020 62.5
PS03 31/10/2018 - 31/8/2020 61.1
PS04 31/10/2018 - 31/8/2020 61.1

Chl-a

PS01=SLC03

Monthly

31/10/2018 - 31/8/2020 63.9
PS02 31/10/2018 - 31/8/2020 61.1
PS03 31/10/2018 - 31/8/2020 62.5
PS04 31/10/2018 - 31/8/2020 62.5

BOD

SLC01

Monthly

31/10/2018 - 31/8/2020 51.4
SLC02 31/10/2018 - 31/8/2020 51.4

PS01=SLC03 31/10/2018 - 31/8/2020 56.9
PS02 31/10/2018 - 31/8/2020 71.4
PS03 31/10/2018 - 31/8/2020 71.4
PS04 31/10/2018 - 31/8/2020 71.4

pH

SLC01

Monthly

31/10/2018 - 31/8/2020 52.8
SLC02 31/10/2018 - 31/8/2020 52.8

PS01=SLC03 31/10/2018 - 31/8/2020 65.3
PS02 31/10/2018 - 31/8/2020 61.1
PS03 31/10/2018 - 31/8/2020 61.1
PS04 31/10/2018 - 31/8/2020 61.1

TS

SLC01

Monthly

31/10/2018 - 31/8/2020 47.8
SLC02 31/10/2018 - 31/8/2020 47.8

PS01=SLC03 31/10/2018 - 31/8/2020 47.8
PS02 31/10/2018 - 31/8/2020 69.6
PS03 31/10/2018 - 31/8/2020 69.6
PS04 31/10/2018 - 31/8/2020 69.6

TSS

SLC01

Monthly

31/10/2018 - 31/8/2020 47.8
SLC02 31/10/2018 - 31/8/2020 47.8

PS01=SLC03 31/10/2018 - 31/8/2020 47.8
Continued on next page
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Table 8 – continued from previous page

Water Quality Dataset. Source: DINACEA

Variable Station Frequency Period % N/A

PS02 28/2/2018 - 31/8/2020 74.2
PS03 31/10/2018 - 31/8/2020 69.6
PS04 31/10/2018 - 31/8/2020 69.6

A.2. Variable correlation and results609

Table 9 provides the scientific literature that supports each correlation reported in Figure 5.610

For the sake of completeness, Pearson and Kendall’s matrices are reported in Figure 8 Figure and 9.611

The complete list of the variable correlation resulting from the Pearson, Spearman, and Kendall matrices612

is reported below:613

’Precipitation’: [’Chlorophyll-a’, ’Nitrite’, ’Potential of hydrogen’, ’Precipitation’, ’Total nitrogen’],614

’Evapotranspiration’: [’Average air temperature’, ’Average relative humidity’, ’Chlorophyll-a’, ’Dis-615

solved oxygen’, ’Evapotranspiration’, ’Heliophany’, ’Maximum air temperature’, ’Minimum air temperature’,616

’Solar Radiation’, ’Water temperature’],617

’Maximum air temperature’: [’Average air temperature’, ’Chlorophyll-a’, ’Dissolved oxygen’, ’Evap-618

otranspiration’, ’Heliophany’, ’Maximum air temperature’, ’Minimum air temperature’, ’Solar Radiation’,619

’Turbidity’, ’Water temperature’],620

’Average air temperature’: [’Average air temperature’, ’Chlorophyll-a’, ’Conductivity’, ’Dissolved oxy-621

gen’, ’Evapotranspiration’, ’Maximum air temperature’, ’Minimum air temperature’, ’Solar Radiation’,622

’Turbidity’, ’Water temperature’],623

’Minimum air temperature’: [’Average air temperature’, ’Chlorophyll-a’, ’Conductivity’, ’Dissolved624

oxygen’, ’Evapotranspiration’, ’Maximum air temperature’, ’Minimum air temperature’, ’Turbidity’, ’Water625

temperature’],626

’Solar Radiation’: [’Average air temperature’, ’Average relative humidity’, ’Dissolved oxygen’, ’Evapo-627

transpiration’, ’Heliophany’, ’Maximum air temperature ’, ’Solar Radiation’, ’Water temperature’],628

’Heliophany’: [’Average relative humidity’, ’Dissolved oxygen’, ’Evapotranspiration’, ’Heliophany’,629

’Maximum air temperature’, ’Solar Radiation’, ’Water temperature’],630
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Table 7
Summary of the meteorological and hydrometric datasets.

Metereological Datasets
Source Variable Station Frequency Period % N/A

INIA

ET, RH,

Las Brujas Once a day 1/8/2014 – 31/12/2020 0Tave , Tave ,
Tmax , Tmin ,
Hel , SR, WS

INUMET P

Florida

Once a day

1/8/2014 – 29/6/2020 0
Reboledo 1/8/2014 – 29/6/2020 23

San Gabriel 1/8/2014 – 29/6/2020 3.2
Villa 25 de Mayo 2/8/2014 – 20/2/2019 3.3

Mendoza 1/8/2014 – 29/6/2020 1.8
Cerro Colorado 1/8/2014 – 29/6/2020 1.6
Sarandí Grande 1/8/2014 – 29/6/2020 1.3

La Cruz 1/8/2014 – 29/6/2020 1.9
Villa Cardal 1/8/2014 – 29/6/2020 1.1

25 de Agosto 1/8/2014 – 29/6/2020 1.7
Hydrometric dataset

DINAGUA Q , h Florida Three times a day 1/8/2014 – 30/6/2020 5.6

’Average relative humidity’: [’Average relative humidity’, ’Dissolved oxygen’, ’Evapotranspiration’,631

’Heliophany’, ’Solar Radiation’],632

’Wind speed’: [’Wind speed’],633

’Streamflow’: [’Chlorophyll-a’, ’Nitrate’, ’Streamflow’, ’Water level’],634

’Water level’: [’Chlorophyll-a’, ’Streamflow’, ’Turbidity’, ’Water level’],635

’Water temperature’: [’Average air temperature’, ’Chlorophyll-a’, ’Conductivity’, ’Dissolved oxygen’,636

’Evapotranspiration’, ’Heliophany’, ’Maximum air temperature’, ’Minimum air temperature’, ’Solar Radia-637

tion’, ’Total phosphorus’, ’Turbidity’, ’Water temperature’],638

’Conductivity’: [’Average air temperature’, ’Chlorophyll-a’, ’Conductivity’, ’Dissolved oxygen’, ’Glyphosate’,639

’Minimum air temperature’, ’Nitrate’, ’Nitrite’, ’Potential of hydrogen’, ’Total nitrogen’, ’Total phosphorus’,640

’Turbidity’, ’Water temperature’],641

’Dissolved oxygen’: [’Average air temperature ’, ’Average relative humidity’, ’Chlorophyll-a’, ’Conduc-642

tivity’, ’Dissolved oxygen’, ’Evapotranspiration’, ’Heliophany’, ’Maximum air temperature’, ’Minimum air643

temperature’, ’Solar Radiation’, ’Total nitrogen’, ’Total phosphorus’, ’Turbidity’, ’Water temperature’],644

’Potential of hydrogen’: [’Biochemical oxygen demand’, ’Conductivity’, ’Potential of hydrogen’, ’Pre-645

cipitation’, ’Total nitrogen’, ’Total phosphorus’, ’Turbidity’],646
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Table 9
Scientific literature supporting correlations presented in Figure 5.

Correlation Reference

Solar radiation - Water temperature Shinohara et al. (2021)
Heliophany - Water temperature Shinohara et al. (2021)
Air temperature - Water temperature Shinohara et al. (2021)
Solar radiation - Clorophyll-a Poll et al. (2021)
Heliophany - Clorophyll-a Villate et al. (2008)
Air temperature - Clorophyll-a Villate et al. (2008)
Air temperature - Turbidity Gorgoglione et al. (2020b)
Precipitation - Water level Chen et al. (2020)
Precipitation - Turbidity Gorgoglione et al. (2020b)
Evapotranspiration - Water level Zhang and Wang (2021)
Evapotranspiration - Turbidity Gorgoglione et al. (2020b)
Water temperature - Dissolved oxygen Gorgoglione et al. (2020b); Rodríguez et al. (2021)
Water temperature - Conductivity Hayashi (2004); Paaijmans et al. (2008)
Water temperature - Clorophyll-a Crisci et al. (2017); Haakonsson et al. (2017)
Water level - Streamflow Ye et al. (2017)
Streamflow - Ammonium Gorgoglione et al. (2020b)
Streamflow - Nitrite Gorgoglione et al. (2020b)
Streamflow - Nitrate Gorgoglione et al. (2020b)
Streamflow - Turbidity Göransson et al. (2013)
Streamflow - Total Nitrogen Song et al. (2022)
Streamflow - Clorophyll-a Acker (2005)
Streamflow - Total Phosphorus Ellison and Brett (2006)
Ammonium - Clorophyll-a Iriarte et al. (2007)
Ammonium - Total Nitrogen Iriarte et al. (2007); Satpathy et al. (2011)
Nitrite - Clorophyll-a Balachandran et al. (1989)
Nitrite - Total Nitrogen Allott et al. (1995)
Nitrate - Clorophyll-a Gong et al. (2000)
Nitrate - Total Nitrogen Allott et al. (1995)
Turbidity - Conductivity Bakhtiar Jemily et al. (2019)
Turbidity - Total Nitrogen Lintern et al. (2018)
Turbidity - Total Phosphorus Villa et al. (2019)
Turbidity - Clorophyll-a Crisci et al. (2017)
Conductivity - pH Saalidong et al. (2022)
Total Nitrogen - Clorophyll-a Bennett et al. (2021); Kärcher et al. (2020)
Total Phosphorus - Clorophyll-a Bennett et al. (2021); Kärcher et al. (2020)

’Turbidity’: [’Average air temperature’, ’Chlorophyll-a’, ’Conductivity’, ’Dissolved oxygen’, ’Maximum647

air temperature’, ’Minimum air temperature ’, ’Nitrate’, ’Nitrite’, ’Potential of hydrogen’, ’Total nitrogen’,648

’Total phosphorus’, ’Turbidity’, ’Water level’, ’Water temperature’],649

’Biochemical oxygen demand’: [’Biochemical oxygen demand’, ’Potential of hydrogen’],650

’Chlorophyll-a’: [’Average air temperature’, ’Chlorophyll-a’, ’Conductivity’, ’Dissolved oxygen’, ’Evap-651

otranspiration’, ’Maximum air temperature ’, ’Minimum air temperature’, ’Nitrate’, ’Nitrite’, ’Precipitation’,652

’Streamflow’, ’Total phosphorus’, ’Turbidity’, ’Water level’, ’Water temperature’],653
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Figure 8: Pearson correlation matrix.

’Total phosphorus’: [’Ammonium’, ’Chlorophyll-a’, ’Conductivity’, ’Dissolved oxygen’, ’Potential of654

hydrogen’, ’Total nitrogen’, ’Total phosphorus’, ’Turbidity’, ’Water temperature’],655

’Glyphosate’: [’Conductivity’, ’Glyphosate’, ’Nitrite’], ’Total nitrogen’: [’Conductivity’, ’Dissolved656

oxygen’, ’Nitrate’, ’Potential of hydrogen’, ’Precipitation’, ’Total nitrogen’, ’Total phosphorus’, ’Turbidity’],657

’Ammonium’: [’Ammonium’, ’Nitrate’, ’Total phosphorus’],658

’Nitrate’: [’Ammonium’, ’Chlorophyll-a’, ’Conductivity’, ’Nitrate’, ’Streamflow’, ’Total nitrogen’, ’Tur-659

bidity’],660

’Nitrite’: [’Chlorophyll-a’, ’Conductivity’, ’Glyphosate’, ’Nitrite’, ’Precipitation’, ’Turbidity’].661
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Figure 9: Kendall correlation matrix.

A.3. Complementary results662

Box plots of the framework PBIAS and KGE performance are reported in Figures 10 and 11.663
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Figure 10: Box plots of the framework PBIAS performance for the variables belonging to the meteorological,
hydrometric, physical-water quality, and chemical-water quality domain.

Figure 11: Box plots of the framework KGE performance for the variables belonging to the meteorological,
hydrometric, physical-water quality, and chemical-water quality domain.
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