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improvement in model performance would occur if all available records could be well
exploited. This work proposes a novel machine learning framework with physical
constraints capable of successfully imputing a high percentage of missing data
belonging to several environmental domains (meteorology, water quantity, water
quality), yielding satisfactory results. In particular, the minimum NSE computed for
meteorologic variables is 0.72. For hydrometric variables, NSE is always >0.97. More
than 78% of the physical-water-quality variables is characterized by NSE>0.45, and
more than 66% of the chemical-water quality variables reaches NSE>0.35. This work's
results demonstrate the proposed framework's effectiveness as a data augmentation
tool to improve the performance of integrated environmental modeling.
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e The novel framework successfully imputes multi-domain environmental data.

e It combines machine-learning algorithms with physical knowledge.

It adequately works in case of a high percentage of missing values.

It has a good generalization capability and can represent any scenario at a basin scale.

Accurate data imputations will improve the performance of integrated models.
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ABSTRACT

In water resources management, new computational capabilities have made it pos-
sible to develop integrated models to jointly analyze climatic conditions and water
quantity/quality of the entire watershed system. Although the value of this integrated
approach has been demonstrated so far, the limited availability of field data may hinder
its applicability by causing high uncertainty in the model response. In this context, be-
fore collecting additional data, it is recommended first to recognize what improvement
in model performance would occur if all available records could be well exploited.
This work proposes a novel machine learning framework with physical constraints
capable of successfully imputing a high percentage of missing data belonging to
several environmental domains (meteorology, water quantity, water quality), yielding
satisfactory results. In particular, the minimum NSE computed for meteorologic
variables is 0.72. For hydrometric variables, NSE is always >0.97. More than 78%
of the physical-water-quality variables is characterized by NSE>0.45, and more than
66% of the chemical-water quality variables reaches NSE>0.35. This work’s results
demonstrate the proposed framework’s effectiveness as a data augmentation tool to
improve the performance of integrated environmental modeling.

1. Introduction

1.1. Background and literature review

Over the past decade, there has been a notable increase in the utilization of integrated models for

managing water quality concerns at the watershed scale (Freni et al., 2011). An integrated model is a specific

model capable of simulating the interactions between multiple physical systems, such as the atmosphere,

soil, and various water bodies (Freni and Mannina, 2012). These models are highly intricate and require

substantial input data, parameters, and variables to maintain accuracy and reliability (Freni et al., 2009).

It is of utmost importance to estimate missing data sequences within time series, as we need adequate
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Enhancing Environmental Data Imputation
environmental data to accurately represent the natural processes that occur and how the system responds
at the catchment scale (Gorgoglione et al., 2020a).

Environmental time series may be incomplete due to technical issues with sensors or measurement
instruments and data storage or transmission failures. Changes in the measurement site, data collectors,
or instruments over time can also contribute to this (Chivers et al., 2020; Oriani et al., 2016; Sattari et al.,
2017). To avoid spending a lot of time and money on collecting and analyzing further environmental records;
it is essential first to understand how much the existing data can be improved (Gorgoglione et al., 2019,?).
A methodology that can accurately fill in missing data from different but related environmental domains is
necessary for this purpose.

Researchers have recently explored many approaches to minimize the missing data problem (Chen
et al., 2021). Various techniques exist for managing missing data, from straightforward exclusion to more
sophisticated imputation methods. To conduct statistical analysis, omitting all observations with missing
values could work well if only a few observations contain unknown values (Bertsimas et al., 2018).
Alternatively, it would introduce bias, and the information loss would often threaten the models’ descriptive
and predictive capabilities (White and Carlin, 2010). Furthermore, deleting observations would produce
discontinuous time series, generating further difficulties in temporal data analysis.

When data is missing in a time series, data imputation can estimate the missing values and maintain the
length of the series. One standard method is statistical analysis, using mean, median, or mode to fill in missing
data (Kabir et al., 2020). However, this technique can result in flat imputed values (Chen et al., 2021). In
the environmental domain, observations from neighboring monitoring stations can also replace missing data.
However, this may only sometimes be reliable due to weak correlations at longer distances (Blenkinsop et al.,
2017). Distance-based weighted interpolation techniques have been used for missing meteorological data.
Still, they may not account for the non-linear spatiotemporal relationships that describe most environmental
variables, especially if the variables under study are water-quality related.

With this purpose, many multivariate methods have been proposed, including hot-deck imputation,
expectation maximization, predictive mean matching, least squares regression, support vector regression,
gradient boosting, nearest neighbor techniques, decision tree techniques, and artificial neural networks
(Andridge and Little, 2010; Bertsimas et al., 2018; Bg et al., 2004; Dempster et al., 1977; Gill et al., 2007;

Honaker et al., 2009; Korner et al., 2018; Templ et al., 2011; Troyanskaya et al., 2001; Wang et al., 2006). In
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Enhancing Environmental Data Imputation
addition, supervised machine learning techniques can effectively represent non-linear relationships between
variables measured at different spatially distributed stations (Chivers et al., 2020). However, many machine
learning methods fail to consider data’s temporal variability, which hampers their accuracy in imputing
variables that exhibit predictable temporal patterns. To effectively impute water quality data at the catchment
scale, it is crucial to integrate environmental data from interconnected domains such as meteorology and
hydrology. This integration enables a comprehensive understanding of water quality’s dynamic nature and

enhances imputation techniques’ accuracy.

1.2. Related work

Various machine learning techniques have been used to address missing data in environmental data sets,
including in the fields of meteorology, hydrology, and water quality (Chandra et al., 2021; Chrobak et al.,
2022; Tencaliec et al., 2015). Researchers have recently focused on addressing data imputation in the water-
quality domain. For example, Chen et al. (2021) developed a new TrAdaBoostLSTM framework combining
deep learning and transfer learning to impute large-scale consecutive missing data. The framework also
employs the dynamic time-warping method to identify the source domain with complete data most similar
to the target domain with incomplete data. This approach imputes the dissolved oxygen concentration data
from ten monitoring stations in the Qiantang River basin in China. Tabari and Hosseinzadeh Talaee (2015)
evaluated the efficiency of the multilayer perceptron (MLP) and radial basis function (RBF) networks for
reconstructing the missing values of thirteen water quality variables at five monitoring stations in the Maroon
River basin, Iran. They concluded that the MLP outperforms the RBF networks for this purpose. Bi et al.
(2022) proposed a method based on generative adversarial networks applied for the first time to impute
water quality data (water temperature, pH value, total nitrogen, and dissolved oxygen). Such time series
were collected at one monitoring station in China and characterized by a maximum data missing rate of
30%.

Although several methods are available for imputing missing data, only a few effectively handle a high
percentage of missing values. Aguilera et al. (2020) conducted a study to compare the performance of
spatiotemporal kriging (STK), random forest (RF) algorithm, and multiple imputations by chained equations
through predictive mean matching (PMM) in imputing daily precipitation data from 112 rain gauges in
southwestern Spain. The study tested different percentages of missing data (ranging from 64% to over 90%)

and missing patterns. The results showed that STK performed better than PMM and RF in simulating the

Pastorini et al.: Preprint submitted to Elsevier Page 3 of 44
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Enhancing Environmental Data Imputation
precipitation distribution under missing chronological patterns, although it had a higher computing cost.
Meanwhile, RF was an efficient alternative for imputing daily precipitation data, especially in random
missing patterns.

Ratolojanahary et al. (2019) combined multivariate imputations by chained equations (MICE) with
different machine learning models (RF, boosted regression trees (BRT), K-nearest neighbors (KNN), and
support vector regression (SVR)) to tackle multiple correlations between a high amount of water quality
variables (257) and a high rate of missing data (more than 80%). The research findings showed that
combining MICE with SVR, RF, KNN, and BRT outperforms the original MICE alone. Moreover, MICE-
SVR represents a good trade-off regarding computing time and performance. Jones et al. (2014) evaluated the
performance of MICE to impute the values of six chemicals in community water systems. The technique was
applied in a simulated environment using data from the Atrazine Monitoring Programme in five Midwestern
US states, where 65-92% of the observations were suppressed. The authors found multiple imputations to
be an effective method to fill in water-quality data.

A recent study by Zhang and Thorburn (2021) developed a deep neural network architecture (Dual-SSIM)
for hydrologic (water level, discharge) and water quality (water temperature, conductivity, turbidity, nitrate)
data imputation. Experimental results demonstrated that Dual-SSIM outperformed other benchmarks such
as Expectation Maximization, K-nearest neighbor, sequence-to-sequence architecture with global attention
mechanisms (SSIM), recurrent neural network-based method (BRITS), and Multi-directional Recurrent
Neural Networks. This method was successfully applied in Iowa River (USA) and Russel River (Australia)
(Zhang and Thorburn, 2022).

While many studies have developed imputation methods or compared various algorithms for specific
environmental variables, it remains a challenge to determine the most effective technique for variables

belonging to different environmental domains and under various circumstances.

1.3. Objective and contributions

This study presents a novel machine-learning framework that incorporates physical constraints to
support various imputation algorithms. Our framework offers two key advancements: i) It can effectively
and simultaneously impute many variables from different environmental fields, including meteorology,

hydrology, and water quality (physical and chemical); ii) It adopts a physically-constrained approach,

Pastorini et al.: Preprint submitted to Elsevier Page 4 of 44
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Enhancing Environmental Data Imputation
enabling the integration of data-driven algorithms with the temporal and spatial variability of the variables
and their correlations.

Compared to previous methods, our approach offers several advantages. Firstly, it can successfully handle
a high percentage of missing values. Secondly, it takes a multivariate approach by considering many variables
simultaneously. Lastly, it leverages a wide range of statistical and machine-learning techniques.

What distinguishes our approach from previous studies is its systematic strategy to addressing missing
data in meteorological, hydrometric, and water quality variables at the catchment scale. This approach can
be applied to any environmental dataset, improving water quality simulation and prediction. The accurate
imputation of missing environmental data not only refines our understanding of specific environmental
dynamics but holds broader implications for informed environmental management and decision-making,
enabling policymakers to develop targeted strategies based on a more comprehensive and reliable dataset.
It is important to note that this work builds upon the study conducted by Rodriguez et al. (2021), which
evaluated the performance of various statistical and machine learning algorithms for imputing water quality
data with a high percentage of missing values at six monitoring stations in the Santa Lucia Chico river,
Uruguay.

Our data imputation framework is expected to significantly improve environmental model accuracy and
enable a more comprehensive understanding of environmental dynamics. This not only accelerates scientific
advancements but also directly aids policymakers in developing precise, data-driven policies for real-world

challenges.

2. Materials

2.1. Study area

The study area is the Santa Lucia Chico (SLC) watershed, located between S33°42" - S34°50" and
W55°0 - W57°6' (Figure 1). It is one of the most critical watersheds in Uruguay (South America) since
it is the country’s primary source of drinking water and also supports numerous agricultural and industrial
activities (Navas et al., 2019; Vilaseca et al., 2023). The primary national drinking water reservoir, Paso
Severino, is located in this watershed. This catchment was chosen not only for its strategic importance but
also because it is a mixed lotic and lentic system (Rodriguez et al., 2021). We found it interesting to test

our framework with data recorded at sites characterized by different hydraulic and hydrologic conditions

Pastorini et al.: Preprint submitted to Elsevier Page 5 of 44
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Enhancing Environmental Data Imputation
to analyze its generalization capabilities. SLC catchment has a surface equal to 2570 km? and a perimeter
of 300 km. Its elevation ranges between 177 m a.s.l in the northeast area, 25 m a.s.] at the Paso Severino
reservoir, and 3 m a.s.] at the main channel outlet ([dataset] MGAP, 2020). The average slope of the basin
is 2.68%, and the length of the main channel is 128.7 km. The catchment is in a temperate climate zone
characterized by four seasons (Gorgoglione et al., 2020b). Average annual temperatures can vary between
3 °C (in winter) and 30 °C (in summer). Annual precipitation can vary between 1000 mm and 1500 mm

(INUMET, 2020).

oF 12 4 gty 1 |

§ 110 15 M0 25 ¥
¥m

Legend

| | P Sevaring ieservalr - DTM (Renare)

[ sic catchment Elevation (m a.5.1)
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= Santa Lucia Chico river Min: 3

—— Secondary sbreams

Figure 1: Location of the Santa Lucia Chico watershed, with its hydrographic network and DTM elevation.
Coordinate system WGS 84/UTM 21s.

2.2. Data description
The dataset selected for this study includes the following three groups of variables: i) meteorological

variables: precipitation (P) [mm], evapotranspiration (£7) [mm], air temperature (average (T,,,), maximum

ve

(T,

max

), and minimum (7,,,;,,)) [°C], solar radiation (SR) [cal/cm?/d], heliophany (sunshine hours) (Hel) [!htb],

in
average relative humidity (RH) [%], and wind speed (WS) [2m/km/d]; ii) hydrometric variables: streamflow
(Q) [m?/s], water level (h) [m]; iii) physical and chemical water-quality variables: water temperature
(WT) [°C], conductivity (Cond) [uS/cm], nitrite (N O; ) [mg/L], nitrate (N 02‘ ) [mg/L], ammonium (N HI)

[mg/L], total nitrogen (TN) [mg/L], dissolved oxygen (DO) [mg/L], potential of hydrogen (pH) [NA],

Pastorini et al.: Preprint submitted to Elsevier Page 6 of 44
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Enhancing Environmental Data Imputation
turbidity (Turb) [NTU], phosphate (POi_) [mg/L], total phosphorus (TP) [ug P/L], chlorophyll-a (Chl-a)
[ug/L], biochemical oxygen demand (BOD) [mg/L], total suspended solids (7SS) [mg/L], total solids (7S)
[mg/L]. The dataset corresponds to the period 2014-2020, except for the variables PO3~, TSS, and TS, which
were monitored from 2018 and were discarded from the imputation process.

The National Institute of Agricultural Research (INIA) and the Uruguayan Institute of Meteorology
(INUMET) collected the meteorological dataset. The following variables (ET, RH, T,,,, T,,,x> Lpin» and WS)
were measured at “Las Brujas” meteorological station once a day. The dataset corresponds to the period
1/8/2014 - 31/12/2020, and it is freely downloadable from the data bank of the Agroclimate and Information
Systems Unit (INIA, 2020). Precipitation was collected from nine INUMET conventional rain gauges and a
meteorological station with a daily frequency from 1/8/2014 - 29/6/2020.

This study also analyzed a hydrometric dataset collected by the Uruguayan National Water Board
(DINAGUA) from August 1, 2014 to June 30, 2020. The water level () was measured three times a
day at hydrometric stations in Florida to determine streamflow ((Q)). The National Board for Quality and
Environment Assessment (DINACEA) gathered a water-quality dataset from 2014 to 2020. This data is free
and available to the public through the National Environmental Observatory (OAN) ([dataset] DINACEA,
2020). The dataset was collected at six monitoring stations along the SLC River. Three of these stations
(SLCO01, SLCO02, PS01=SLCO03) are located upstream of the Paso Severino reservoir, while the remaining
ones (PS03, PS04, and PS02) are in the reservoir. To give a visual representation of the stations and
measurement points, refer to Figure 2.

A summary of the datasets used in this study, along with the percentage of missing values detected for

each variable, is reported in the Supplementary Information (A.1).

3. Methods

3.1. Methodology conceptualization

We designed and implemented a novel missing data imputation framework in this study. The methodol-
ogy comprises four main phases: in Phase I, we apply physical constraints to our framework that considers
variables’ temporal and spatial variability, correlations, and range of variation. Each of these constraints is
implemented as an artificial variable (column) that is added to the original dataset, creating, in this way, a

new dataset variant. Phase 2 involves selecting helper variables for data preparation to aid imputation. These

Pastorini et al.: Preprint submitted to Elsevier Page 7 of 44
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Figure 2: Location of monitoring stations. Coordinate system WGS 84/UTM 21s.

variables will be used to train imputation models. In Phase 3, we train and test these models to determine
the best one for data imputation. Finally, we generate the imputed dataset in Phase 4. We follow an iterative
process, starting with variables with the least missing data. These variables then act as helper variables to

complete missing values in other time series.
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Enhancing Environmental Data Imputation
Figure 3 depicts the proposed methodology, while each phase is thoroughly described in the following
sections. Our framework was implemented using Python on a desktop computer (Ubuntu Operating System,

16 GB of RAM, and Intel i3 Processor), and the front end was developed using the Streamlit library.

3.2. Definition and application of domain constraints

As mentioned, Phase 1 involves applying physical domain constraints to the framework, considering
variables’ temporal and spatial variability, correlations, and range of variation. We analyzed the variables’
temporal patterns, spatial variations, and correlations to incorporate relevant constraints. Additionally,
we considered each variable’s permissible range of values to prevent unrealistic imputations. Doing so
establishes a solid foundation for accurate and reliable imputations in subsequent phases. The following

subsections will provide detailed definitions and procedures for each domain restriction.

3.2.1. Variable correlation

The machine-learning framework considers the correlation between variables using Pearson, Spearman,
and Kendall correlation matrices with a > |0.5] threshold. All three matrices produced similar results, and
Figure 4 shows the Spearman correlation matrix with each line representing a variable at a monitoring
station. Similar variables were grouped together and reported only once to avoid confusion, while Pearson
and Kendall’s matrices can be found in the Supplementary Information (A.2).

We will now focus on the strongest correlations we have identified, but a full list can be found in
the Supplementary Information (A.2) for your reference. The positive relationship between WT and the
meteorological variables, particularly SR, air temperature, and Hel is clear. A strong inverse correlation exists
between WT and DO, supported by warm water holding less DO than cold water. In winter and early spring,
when the WT is low, the DO concentration is high; in summer and early fall, when the water temperature
rises, the DO concentration is often lower (Gorgoglione et al., 2020b; Rodriguez et al., 2021). Based on such
relationships, it is easy to understand the inverse correlation between DO and the meteorological variables,
especially SR, air temperature, and Hel.

Furthermore, Cond is highly influenced by WT and Turb. An increase in WT determines a more
significant amount of ions due to molecule dissociation and an increase in ionic mobility. Since Cond depends
on such factors, an increase in W7 causes an increase in Cond Hayashi (2004). Moreover, Cond represents

the ability of a liquid to conduct an electric charge, which depends on dissolved ion concentration, usually

Pastorini et al.: Preprint submitted to Elsevier Page 9 of 44
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Figure 3: Conceptualization of the proposed methodology.

240 measured as total dissolved solids (Bakhtiar Jemily et al., 2019). Since the latter is highly correlated to

21 Turb, it is easy to justify the strong relationship between Cond and WT and, consequently, between WT
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Figure 4: Spearman correlation matrix.

and Turb. The latter is also supported by the fact that suspended particles in water bodies, whose proxy is
Turb, absorb heat from SR more efficiently than water. Such heat is then transferred from the particles to
water molecules, raising, in this way, the surrounding WT (Paaijmans et al., 2008). Based on the above,
the negative correlations between Turb and the meteorological variables, particularly air temperature, and
between DO and Cond are simple to understand.

The variables TP and WT are also directly correlated. The increase in WT improves the microorganism
activity and phosphorus diffusion from the interstitial water to the overlying water, thus affecting phosphorus

release (Cheng et al., 2020). Such a relationship explains the robust direct correlation between TP and Cond.
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Enhancing Environmental Data Imputation
TP also resulted highly correlated to Turb, which is especially true in watersheds characterized by a high
proportion of agricultural land like the one under study (Villa et al., 2019). This phenomenon is explained by
the fact that most phosphorus export occurs from agricultural areas due to solids off-site movement, which
carries the phosphorus to water bodies.

We also considered the correlations between Chl-a with WT, Cond, and Turb, respectively. Growth of
cyanobacteria in freshwater containing only Chl-a is generally favored at higher temperatures, with well-
defined thermal optima for growth at temperatures ranging from 20 to 30 °C (Haakonsson et al., 2017). The
correlation Chl-a-Cond depends on the cyanobacteria species. Haakonsson et al. (2020) found a negative
correlation between these two variables at Punta del Tigre in the Rio de la Plata Estuary, Uruguay, since
high salinity limits or inhibits cyanobacterial growth.

The positive correlation Chl-a-Turb depends on cyanobacteria being part of the suspended particles
that contribute to Turb. Crisci et al. (2017) found that WT, Cond, and Turb were among the most relevant
phytoplankton biomass predictors at Laguna del Sauce, Uruguay. The results obtained from the three
correlation matrices were complemented by other variable correlations presented in the scientific literature.

Figure 5 displays a dependency tree that summarizes the correlations between variables used in our
framework. The tree highlights variables that were imputed with the help of one, two, or three other variables
(helper variables) are represented in yellow, orange, and red, respectively. Meteorological variables used as
helpers are depicted in green since their imputation doesn’t depend on any other imputation. Table 9 provides

the scientific literature that supports each correlation reported in Figure 5.

3.2.2. Spatial variability

We evaluated and incorporated spatial dependencies (SD) and spatial corrections (SC) between various
monitoring stations to account for spatial variability. SD considers the spatial placement of monitoring sites,
including upstream and downstream locations. For example, knowing that Q is influenced by P (Section
3.2.1), the imputation of Q-time series will be helped by P-times series monitored at those upstream
Florida stations, where O was monitored. The SD implemented in the framework is depicted in Figure 6.

Additionally, the SC represents the weight given to helper variables based on how far they are from the
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Figure 5: Variable-dependency tree for data imputation.

monitoring stations of the imputation variable. The closer the measured values are to the imputation location,
the more influence they have, according to the Inverse Distance Weighted (IDW) method.

IDW assumes that the influence of each measured point decreases as the distance increases:

n
> vdk
_ i=1
> dk
i=1

where Y, is the observation at station m, » is the number of stations, Y; is the observation at station i, d,,;

Y,

m

6]

is the distance between m and i, k is the exponent that generally ranges between 1 and 6. In this study, k = 2
was assumed. Two separate dataset variants were created within the framework to complete the imputation

process: Dataset SD and Dataset SC.

Pastorini et al.: Preprint submitted to Elsevier Page 13 of 44



283

284

285

286

287

288

289

290

291

292

Enhancing Environmental Data Imputation

Sarandi Las Cerro San
Grande LaCruz Brujas Colorado Reboledo  Gabriel

v
Florida *f l

(Route 5 bridge) = steor .
SLCO2 @
Villa 25
de Mayo
PS01=5LCO3 [ ]
PS03
Villa
Mendoza Cardal
) PS04 @
PS02

Figure 6: Spatial dependency tree.

3.2.3. Temporal variability and value constraints

Pluviometric station

Meteorological and
hydrometric station

Water quality station

We used the Exponentially Weighted Moving Average (EWMA) to account for the temporal variability

in the studied variable. This method gives more weight to recent observations and less weight to older ones,

based on an exponential decay function:

t
2a-a)Y,

EWMA(Y,) = =2 a= =

t
Y —ay
i=0

2

where Y is a time series, # is the number of observations, « is the weight assigned, and ¢ is the temporal

time window selected based on the variable to impute: two months for water-quality variables, one week for

hydrometric variables, and one day for climatic variables.

A new dataset variant called "Dataset EWMA" was created by adding the EWMA artificial variable as a

new feature. In addition, specific ranges of variation were imposed for all variables in the models. The output

variables can range from O to +o0, while pH can range from 0 to 14.
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3.3. Data preparation

Before conducting any analysis, it was important to address the challenge of dealing with variable names
that were not standardized, different units of measurement, varying orders of magnitude, and sampling
frequencies. To address this, a group of helper variables (X s) was selected along with the variable Y that
needed to be imputed based on the domain constraints outlined in Section 3.2. If a helper variable had less
than 50% missing values, it was temporarily imputed using linear regression. However, if the percentage of
missing values was greater than 50%, the variable was not considered a helper to avoid introducing noise. If
a helper variable X € X's had a different monitoring frequency than Y, it was substituted with its maximum
(X

), mean (X

mean)» and minimum (X

max min) to match the frequency of Y. Furthermore, all variables were
reduced to a monthly frequency, which was the sparser one that characterized the water-quality variables. A
min-max normalization approach was implemented to equalize the importance of each variable and manage
their different measurement units. Finally, the data were tabulated, resulting in a dataset where each data
point (row) included time information (in the form of new artificial variables, i.e., EWMA column). In this
way, data points were independent from each other.

Moreover, the dataset variants generated from the domain-constraint application were created and added
to X s. Itis important to remark that the framework trained and tested all the imputation models using the orig-
inal dataset (Original dataset), all the dataset variants (Dataset EWMA, Dataset SD, Dataset SC), and their
combinations (Dataset EWMA+SD, Dataset EWMA+SC, Dataset SD+SC, Dataset EWMA+SD+SC). The

output of the framework is the best dataset-model pair. It is selected based on a comprehensive evaluation

across these diverse datasets and the different models.

3.4. Imputation models

We examined various models to determine the most effective ones for imputing different variables from
various environmental domains, as outlined in Wolpert and Macready (1997). Since many of the variables,
especially those related to water quality, had limited data available, it was crucial that the chosen methods
had strong predictive capabilities with a smaller amount of data.

Imputation methods can be grouped into two categories (Durbin and Koopman, 2012): i) univariate:
algorithms that only take into account the values of the imputing variable; ii) multivariate: methods that,

besides the values of the imputing variable, also consider other variables’ data-points as input. Table 1 lists
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Table 1
Imputation algorithms taxonomy.

Single model Multi-model

Univariate  Inverse Distance Weighting (IDW)

Ridge Regressor (RR)

TheilSen Regressor (TR)

Huber Regressor (HR) Random Forest Regressor (RFR)

Bayesian Ridge Regressor (BRR) Multivariate Imputation by Chained Equations (MICE)
Support Vector Regressor (SVR)

K-nearest neighbors Regressor (KNNR)

Multivariate

the imputation methods implemented in the framework, while a brief description of each method is given in

the following section.

3.4.1. Univariate imputation methods

The Inverse Distance Weighting (IDW) interpolation model assumes that closer objects are more similar
than those farther apart. It estimates unmeasured values using observed values from nearby locations,
with greater impact from closer locations. Weights decrease as the distance from the imputation location
increases (Fortin and Dale, 2005). We implemented the model using numpy (Harris et al., 2020) and pandas

(McKinney, 2010) libraries.

3.4.2. Multivariate imputation methods

The methods in this category are based on a set of simple regression models and machine-learning-aided
regression models. In all the following cases, our implementation is based on Python’s scikit-learn library
(Pedregosa et al., 2012).

The Random Forest Regressor (RFR) is a machine-learning method that utilizes an ensemble of
decision trees (Breiman, 2001). Decision trees are structures that divide input-feature space into smaller
subspaces (Stockman et al., 2019). The RF method trains each decision tree on a different set of data
points obtained by bootstrapping, and each tree may include a different subset of randomly chosen input
features. The RF method’s output is obtained by aggregating the outcomes of all decision trees, which is
done by considering the mean for regression problems (Mital et al., 2020). We utilized Python’s scikit-learn
Extremely Randomized Trees Regressor. This regressor differs from the RFR in the node division decision
method, where each division is made randomly instead of searching for the optimal cut. This change reduces

training time without affecting prediction power (Geurts et al., 2006).
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The Ridge Regressor (RR) is a tool for estimating regression coefficients for high dimensional data where
the dataset contains correlated features (Hoerl and Kennard, 2000). This is often the case for environmental
data. RR can be used to get stable parameter estimates when standard multiple regression methodologies
fail. RR coefficients can be efficiently calculated by computing an orthogonal transformation of the high-
dimensional data (Cule and De Iorio, 2012).

The TheilSen Regressor (TR) trains a regression model based on data statistics instead of single points to
make it robust to outliers (Dang et al.), while the Huber Regressor (HR) trains a regression model optimizing
the squared loss or the absolute loss depending on the samples used. This approach allows the model not to
be heavily influenced by outliers while still taking their effect into consideration (Owen, 2006).

The Bayesian Ridge Regressor (BRR) consents to a natural mechanism to survive poorly distributed
or insufficient data by formulating linear regression employing probability distributors rather than point
estimates. The output is assumed to be drawn from a probability distribution rather than estimated as a
single value (Tipping, 2001).

The Support Vector Regressor (SVR) uses Support vector machines. These algorithms look for a
hyperplane or a set of them in data, which is non-linearly transformed into a higher dimensional space
through kernel methods (Suykens and Vandewalle, 1999). The hyperplane and boundary layers minimize an
error function for regression applications to estimate equation coefficients (Chivers et al., 2020).

The K-nearest neighbors Regressor (KNNR) uses the nearest neighbors algorithm: a non-parametric
technique. In the feature space, some nearest neighbors are weighted based on a distance function chosen by
the user (Euclidean distance is the most commonly used). The output is the average of the k nearest neighbors
(Kramer, 2013).

Finally, we implemented the Multivariate Imputation by Chained Equations (MICE) based on each
of the previous multivariate imputation models. It operates under the hypothesis that given the variables
used in the imputation process, the missing data are missing at random (MAR), assuming that missing value
probability depends exclusively on recorded values (Graham, 2009). In other words, after checking for all
available data (i.e., the variables included in the imputation model), any remaining missing information
is entirely random (Azur et al., 2011). With MICE, a base regression model is selected and then used for
imputing each variable with missing values. Here, each variable with missing data is iteratively modeled

based on the other variables in the dataset. The use of MICE generates a model variant hereafter called
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Table 2
Summary of the dataset and model variants.

Variant Description

Dataset and model Original Model and data without any variant

SC Spatial correlations (Equation 1)

Dataset SD Spatial dependency (Figure 6)
EWMA  Temporal variability (Figure 2)
Model MICE  Base model retrained with MICE

“MICE.” Table 2 summarizes all the datasets and model variants described in this section and implemented

in our framework.

3.5. Model cross-validation and data imputation

The framework implemented cross-validation to ensure the best model for each variable by splitting the
input dataset into approximately equal-sized groups (folds). The first fold was used as the validation set, and
the rest as the training set. This process was repeated k times (we chose 10-fold cross-validation for the input
datasets), and the average loss-function values (Nash-Sutcliffe efficiency (NSE), percent bias (PBIAS), and
Kling-Gupta efficiency (KGE)) were calculated. If the input dataset had less than 100 observations, we ran
repeated k-fold cross-validation, with k = max(NN /10, 2) (where N is the number of data points), n times,
with n = 10/k, randomly selecting folds during any iteration. This ensured that the number of times each
performance metric was measured was equal to the classical k-fold cross-validation.

To ensure accuracy and reliability, we conducted a validation process with and without repetitions and
tuned hyperparameters using the Python library Optuna, which is open-source (Akiba et al., 2019). Our
objective function was to select the best model for each variable based on the highest NSE. This model
imputes the selected variable Y during Phase 2. If there were more variables to impute, the imputed Y could
be used as a helper variable to complete those time series. Once all variables were imputed, we obtained the

final complete dataset.

3.6. Model performance evaluation
To evaluate the performance of the imputation models, we calculated and compared NSE, PBIAS, and

KGE:
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PNC

NSE=1-2L 3)
D 07—
i=1

n
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PBIAS = 100- =1 4)
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i=1

KGE=1-Vr—12+@—- 12+ - 1) 5)

where y? is the i'" observed value, y" is the corresponding modeled value (imputed), y° is the mean of
observed values, and n is the size of the testing dataset. Being 4,,, 6,, and u,, 5, mean and standard deviation
(the first two statistical moments) of y and y?, respectively; r is the linear correlation between observations
and imputations, « is a measure of the flow variability error (« = y,,/1,), and f is a bias term (f = 6,,/5,).

The NSE is a normalized statistical method that defines the relative magnitude of the residual variance
of a model compared to the variance of measured data (Nash and Sutcliffe, 1970). It ranges between -oco
and 1. If NSE=1, imputed values perfectly reproduce the observed ones. If NSE=0, imputed values are only
as good as the observation mean. If NSE<O0, the mean observation value is a better predictor than imputed
values. Therefore, higher NSE values are preferable since they imply a more accurate imputation model.

PBIAS measures the average tendency of the imputed data to be smaller or larger than their observed
counterparts (Moriasi et al., 2007). PBIAS=0 is the optimal value, with low-magnitude values representing
accurate model imputation. Negative values characterize model overestimation bias, while positive values
represent model underestimation bias.

Finally, KGE represents the Euclidean distance computed using the coordinates of r, a, and f (Gupta
etal.,2009). As well as NSE, it ranges between -co and 1. However, there are no well-defined KGE thresholds
that outline a “good” model as for NSE (Knoben et al., 2019; Rodriguez et al., 2021). The benchmark
associated with NSE estimates (i.e., NSE=0) occurs when the estimate of KGE=1 — \/5, i.e., when the

estimate of KGE=-0.41 (Knoben et al., 2019).
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Table 3
Performance ratings defined for each evaluation metric.

Performance rating Hydrometric and climatic variables Physical water quality variables Chemical water quality variables

NSE

Very good NSE > 0.80 NSE > 0.80 NSE > 0.65
Good 0.70 <NSE<0.80 0.70 < NSE<0.80 0.50 <NSE< 0.65
Satisfactory 0.50 <NSE<0.70 0.45 <NSE<0.70 0.35 <NSE< 0.50
Unsatisfactory NSE < 0.50 NSE < 0.45 NSE < 0.35
PBIAS

Very good |PBIAS|< 5 |[PBIAS|< 10 |PBIAS|< 15
Good 5 <|PBIAS|< 10 10 <|PBIAS|< 15 15 <|PBIAS|< 20
Satisfactory 10 <|PBIAS|< 15 15 <|PBIAS|< 20 20 <|PBIAS|< 30
Unsatisfactory |[PBIAS|> 15 |[PBIAS|> 20 |PBIAS|> 30
KGE

Satisfactory/Good KGE > -0.41 KGE> -0.41 KGE> -0.41
Unsatisfacory KGE < -0.41 KGE < -0.41 KGE < -0.41

Table 3 summarizes the performance ratings defined for each evaluation metric (NSE, PBIAS, KGE).
These metrics are derived from previously published studies (Chen et al., 2017; Moriasi et al., 2015;
Rodriguez et al., 2021). NSE was chosen as the objective function because of its strict standards for
determining a good fit. PBIAS and KGE were also calculated to validate the accuracy of each model used

in the study.

4. Results and discussion

4.1. Imputation results

To evaluate the performance of the implemented imputation models within the framework and determine
the most suitable model for each variable, a 10-fold cross-validation approach was employed. In cases where
atime series had fewer than 100 records, repeated 10-fold cross-validation was used. The best model selection
for each variable was based on the highest Nash-Sutcliffe Efficiency (NSE) value, serving as the objective
function. Additionally, model accuracy was assessed using Percent Bias (PBIAS) and Kling-Gupta Efficiency
(KGE). The framework outputs include augmented time series data for all variables across the climate,
hydrology, and water quality domains, with a monthly frequency. The comprehensive results, including the
winning model, the dataset used (original or variant), the corresponding goodness-of-fit indicators, and the

respective rating, are presented in Table 4.
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Table 4: Imputation results with the winning model, the dataset used (original or variant), the corresponding goodness-

of-fit indicators (NSE, KGE, PBIAS), and the respective rating: Very good (VG), Good (G), Satisfactory (S) and

Unsatisfactory (U).

Variable Station Best model + dataset variant NSE NSE ranking KGE KGE ranking PBIAS PBIAS ranking
25 de Agosto Hubber Regressor (MICE) + EWMA 0.80 G 0.77 G 9.17 G
San Gabriel Hubber Regressor (MICE) 0.80 VG 0.78 G 5.71 G
Reboledo Hubber Regressor (MICE) 0.83 VG 0.80 G -1.56 VG
Cerro Colorado Ridge + EMA 0.76 G 0.76 G -1.68 VG
P La Cruz Bayesian Ridge + SC 0.80 VG 0.81 G 1.10 VG
Sarandi Grande Ridge (MICE) 0.73 G 0.73 G -3.37 VG
Villa 25 de Mayo Hubber Regressor + SC 0.89 VG 0.85 G 1.76 VG
Villa Cardal KNN + SC 0.86 VG 0.85 G -0.55 VG
Mendoza SVR 0.89 VG 0.89 G -1.63 VG
Florida KNN + SC 0.98 VG 0.97 G 0.02 VG
Q Florida Random Forest Regressor 0.98 VG 0.90 G -1.85 VG
SLCO1 IDW 0.93 VG 0.90 G -3.14 VG
SLC02 Hubber Regressor + SC + SD 0.96 VG 0.93 G 0.39 VG
PS01=SLC03 IDW + SD 0.95 VG 0.95 G 3.77 VG
v PS03 IDW 0.98 VG 0.97 G -1.21 VG
PS04 IDW + SD 0.98 VG 0.97 G 1.40 VG
PS02 IDW 0.97 VG 0.96 G 0.01 VG
SLCO1 Hubber Regressor + SC 0.74 G 0.80 G -0.22 VG
SLCO02 Ridge (MICE) + EWMA 0.81 VG 0.85 G -0.12 VG
PS01=SLCO03 IDW + SD 0.47 0.56 G -2.31 VG
bo PS03 Ridge + EWMA + SC 0.75 G 0.78 G 0.07 VG
PS04 Hubber Regressor 0.87 VG 0.85 G -0.01 VG
PS02 IDW 0.65 S 0.77 G -1.75 VG
SLCO1 IDW 0.63 S 0.77 G -1.22 VG
SLC02 SVR 0.69 S 0.69 G 0.29 VG
PS01=SLC03 Ridge + SD 0.82 VG 0.86 G 0.77 VG
cond PS03 Ridge + EWMA + SC 0.85 VG 0.87 G 1.76 VG
PS04 IDW 0.97 VG 0.95 G -1.97 VG
PS02 Hubber Regressor + SC 0.92 VG 0.91 G 0.04 VG
SLCO1 Hubber Regressor + SC 0.45 S 0.52 G -0.13 VG
SLC02 SVR (MICE) 0.76 G 0.77 G -0.03 VG
PS01=SLC03 SVR + SD 0.49 S 0.52 G 0.09 VG
P PS03 IDW 0.57 S 0.72 G 0.18 VG
PS04 Ridge + SC 0.79 G 0.80 G 0.00 VG
PS02 IDW 0.81 VG 0.84 G -0.41 VG
SLCO1 IDW 0.16 U 0.27 G 12.52 G
SLC02 Ridge (MICE) 0.53 S 0.63 G -1.58 VG
PS01=SLC03 IDW + SD 0.58 S 0.58 G 11.33 G
furt PS03 IDW 0.61 0.74 G 1.06 VG
PS04 IDW 0.87 VG 0.90 G 4.27 VG
PS02 Ridge + SC 0.89 VG 0.89 G -0.58 VG
SLCO1 TheilSen Regressor + SC 0.38 U 0.39 G 5.55 VG
BOD SLC02 IDW + SD 0.38 U 0.48 G -4.61 VG
PS01=SLCO03 SVR 0.21 U 0.18 G -0.36 VG
SLCO1 SVR (MICE) + EWMA 0.03 U 0.03 G 11.37 VG
SLC02 KNN 0.23 U 0.43 G 4.43 VG
PS01=SLC03 SVR + SD 0.05 U 0.05 G 9.19 VG
NH4+
PS03 Hubber Regressor + EWMA + SC 0.80 VG 0.77 G 3.03 VG
PS04 KNN + SC + SD 0.84 VG 0.80 G 3.69 VG
PS02 IDW 0.48 S 0.41 G 19.61 G
SLCO1 Hubber Regressor + SC 0.24 U 0.28 G 22.08

NQ3- . . .
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Table 4 continued from previous page

Variable Station Best model + dataset variant NSE NSE ranking KGE KGE ranking PBIAS PBIAS ranking

SLC02 Random Forest Regressor + EWMA + SD 0.38 S 0.45 G -7.69 VG

PSO1=SLCO03 Random Forest Regressor + SC -0.08 u -0.10 G -1.22 VG

PS03 Hubber Regressor + SC 0.60 G 0.69 G -1.99 VG

PS04 IDW 0.80 G 0.78 G -4.14 VG

PS02 IDW 0.54 G 0.77 G 4.72 VG

SLCO1 KNN (MICE) 0.50 S 0.51 G 14.67 VG

SLC02 SVR 0.69 G 0.58 G -10.89 VG

PS01=SLCO03 SVR 0.21 U 0.26 G 10.70 VG

oz PS03 Hubber Regressor + SC 0.75 G 0.74 G -4.89 VG
PS04 IDW 0.93 VG 0.89 G -1.60 VG

PS02 IDW 0.85 VG 0.83 G -4.02 VG

SLCO1 Random Forest Regressor 4+ SC 0.23 U 0.30 G 1.05 VG
SLC02 Bayesian Ridge (MICE) + EWMA 0.69 G 0.71 G -0.32 VG
PS01=SLCO03 Ridge + SC + SD 0.14 §) 0.22 G 0.41 VG
™ PS03 IDW 0.83 VG 0.90 G 3.31 VG
PS04 IDW 0.93 VG 0.94 G -2.49 VG
PS02 IDW 0.86 VG 0.86 G 1.52 VG

SLCO1 Hubber Regressor + SC -0.04 18] 0.02 G 13.22 VG
SLCO02 Random Forest Regressor (MICE) + EWMA 0.16 U 0.29 G -1.67 VG
PS01=SLCO03 IDW 0.61 G 0.63 G -3.92 VG
" PS03 IDW 0.80 G 0.80 G -1.27 VG
PS04 Hubber Regressor + SC 0.78 G 0.80 G -0.90 VG
PS02 Bayesian Ridge (MICE) + EWMA 0.79 G 0.78 G -0.95 VG

PS01=SLCO03 IDW -0.20 U -0.21 G 49.34 U

PS03 KNN + SC -0.43 U -0.18 G 1.95 VG

Chla PS04 Hubber Regressor + EWMA + SC + SD -0.08 U 0.08 G 23.60 S
PS02 SVR + EWMA -0.15 U -0.37 G 14.61 VG

Considering the NSE rating, the imputation performance for the climatic and hydrometric variables was
good overall (NSE>0.73). Regarding the physical water quality variables, on average, adequate imputation
performances were obtained. WT was the best-imputed variable at the six monitoring stations, reporting
very good performance (NSE>0.90). The high daily and annual seasonality that characterizes this variable
makes its simulation and, therefore, its imputation less challenging (Rodriguez et al., 2021). The correlations
between WT-Cond and WT-DO (Figure 5) are reflected in the good performance of such variables at the
six monitoring sites. The imputation process for the other water-quality variables (physical and chemical)
returned different results depending on the station considered. It is significant to remark that the performance
is always outstanding at the three monitoring stations located in the Paso Severino reservoir (PS03, PS04,
and PS02), while the imputation can sometimes be unsatisfactory at the sites located upstream of the lake
along Santa Lucia Chico river (SLCO1, SLCO02, and PSO1). SLC0O1 and SLCO2 are located several kilometers

upstream of the reservoir, where the water body has a fluvial behavior associated with a lotic ecosystem.
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While PS02, PS03, and PS04 are located within the lake, where the water body is lacustrine, associated with
a lentic ecosystem.

This finding may be due to the different hydrologic response times considering the location of the
measurement sites. The hydrograph-base time observed at Florida hydrometric station is overall equal to
6 days, and it generally does not change with the variation of the streamflow magnitude (Rodriguez et al.,
2021). Rios (2019) reported that the Paso Severino renewal time ranges between 2 and 8 weeks. Furthermore,
during precipitation events, such renewal time could be a few days long, while it can last several months
during dry periods. Chl-a and BOD were the only two variables that the framework could not adequately
impute at any site. They are among the water-quality variables, with data recorded only in three (BOD) or four
stations (Chl-a). This means the spatial constraints related to the variant SD and SC are limited. Furthermore,
the correlated variables resulted from the three correlation matrices (Pearson, Spearman, and Kendall) and
from the variable-dependency tree (Figure 5) that were supposed to aid the imputation of Chl-a and BOD
were very few. This supports the reliability of the domain constraints implemented in the framework.

The validation of the imputation process was notable, showing overall very good and good results in
terms of the PBIAS and KGE ratings. A box-plot representation of the framework NSE performance per
domain is represented in Figure 7. Additionally, box plots of the framework PBIAS and KGE performance
are reported in the Supplementary Information (A.3).

More than 75% of the imputed data is characterized by NSE>0.45 (satisfactory results). In particular,
the minimum NSE computed for meteorologic variables is 0.72, meaning that all the imputations can be
considered good (33%) and very good (66%). For hydrometric variables, NSE is always >0.97, showing
the very good performance of the proposed framework. The performance tends to decrease when dealing
with water-quality variables. More than 78% of the physical-water-quality variables are characterized by
NSE>0.45 (satisfactory results), and more than 66% of the chemical-water quality variables reach NSE>0.35
(satisfactory results). For both domains, more than 91% of the imputed data has NSE>0, meaning that for
almost all the water-quality imputations, the proposed framework is better than the mean function used as

an imputer.

4.2. Selection of the best dataset-model pair
In this study, we considered various model and dataset options in our framework beyond the original ones.

Table 5 displays how often each model with corresponding variants was chosen and Table 6 summarizes the
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Figure 7: Box plots depicting the framework’s performance in terms of Nash-Sutcliffe Efficiency (NSE) are shown
for variables within the meteorological, hydrometric, physical-water quality, and chemical-water quality domains.

number of times a dataset and model variant was selected to impute a variable. It is crucial to note that there
is no superior model for a specific variable type or domain (Wolpert and Macready, 1997). This emphasizes
the significance of a framework like ours, where multiple models are implemented and run to achieve optimal
imputation performance in varying scenarios.

From Table 5, it is clear that IDW is a successful imputation technique, particularly for water-quality
variables (chosen 27 times). It returns outstanding results for the variables recorded at the three stations
located in the Paso Severino reservoir (especially for W7, Turb, and TN), and it is sometimes chosen as
the best model for WT, DO, Cond, Turb, BOD, TP, and Chl-a at the stations located along SLC river. It is
interesting to see that IDW was always chosen in its original form (22 times) or with the SD variant (5 times)
(Table 5). The HR, RR, and TR models are similar linear methods that differ from each other only in their
training techniques. They were also chosen as best models 27 times (29.3% of the time) as well as IDW.

The MICE-model variant was selected 12 times as the best model. This confirmed the results by Jones
et al. (2014), where they report that MICE can effectively fill in missing values in water-quality data, and

the findings reported by Ratolojanahary et al. (2019), where they state that the hybridization of MICE with
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Table 5
Number of times each model was selected as the best model to impute a variable.

Imputation model Dataset and/or model variant Number of imputed variables Total

Original
SD

SC
MICE
SC +SD
Hubber Regressor (HR) EWMA + SC
Original
MICE + EWMA
EWMA 4 SC + SD

EWMA + SC
MICE
SC
Ridge Regressor (RR) MICE + EWMA
EWMA
SC+ SD
SD

Original
SD
Support Vector Regressor (SVR) MICE + EWMA
MICE
EWMA

SC
Original
SC+ 5D

MICE

SC
Original
EWMA + SD
MICE + EWMA

MICE + EWMA
SC

TheilSen Regressor (TR) SC

Inverse Distance Weighting (IDW) 27

16

10

10

K-nearest Neighbors Regressor (KNNR)

Random Forest Regressor (RFR)

Bayesian Ridge Regressor (BRR)

R | RN | RFRPR RN RRRRRRRNOORRRRNOMNONNRRRRRNDO U‘IB

several machine-learning algorithms (SVR, KNN, RF, and boosted regression tree) always performs better
than the original MICE taken alone. It is worth noting that, in our work, the MICE variant was always selected
either with the original dataset or with the EWMA-dataset variant (Table 5).

The data presented in Table 6 clearly shows that the best model selection occurred a whopping 62 times,
which represents over 67% of the total selection instances. This undoubtedly emphasizes the crucial role of
incorporating physical constraints in the machine-learning framework to enhance imputation performance.

Notably, dataset variants related to spatial variability were preferred over those related to temporal variability,
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Table 6
Number of times each model variant was selected to impute a variable.
Variant N° of imputed variables
Dataset and model  Original 30
SC 25
Dataset SD 13
EWMA 12
Model MICE 12

with remarkable selection rates of 41.3% and 13%, respectively. SC was the most frequently selected among
the spatial variants, accounting for 27.2% of the total selection instances. These results undoubtedly call for
further in-depth exploration of the subject.

The integration of interpretable machine learning models within the proposed data imputation framework
presents a forward-looking perspective, enhancing the transparency and understanding of the imputation
process for environmental data encompassing meteorology, hydrology, and water quality. This shift towards
interpretability fosters trust and credibility by demystifying the model’s decision-making, allowing for in-
sightful evaluation of the framework’s efficacy. Researchers benefit from the identification of environmental
patterns and actionable insights, while stakeholders receive clear explanations for imputed values, crucial
for informed decision-making. The interpretable nature of the framework aligns with scientific principles,
ensuring adherence to known physical processes and reinforcing its applicability in real-world contexts.
Overall, the emphasis on interpretability adds depth and transparency to the proposed framework, positioning

it as a robust and insightful approach to environmental data imputation.

4.3. On the value of the proposed framework

The proposed framework exhibits three distinctive features that contribute to its effectiveness. Firstly,
it adopts a multi-domain approach, which sets it apart from previous studies. By simultaneously imputing
environmental variables from different domains, it becomes a powerful tool for enhancing the performance
of integrated complex models at the catchment scale through data imputation. This unique characteristic
enables comprehensive analysis and improves the accuracy of predictions.

Secondly, the framework incorporates physical constraints, combining machine learning with domain-
specific knowledge. This incorporation ensures that imputations align with the known physical processes,

enhancing the reliability and interpretability of results. The latter demonstrates the advantages of this
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approach compared to purely data-driven techniques. A notable comparison can be made with our previous
work (Rodriguez et al., 2021) where we evaluated the performance of different machine learning algorithms
for water-quality imputation. The physically-constrained framework consistently outperformed the pure data-
driven models, highlighting the value of integrating physical constraints.

It is important to note that the physical constraints utilized in this study, such as variable correlation and
spatial variability, were specifically designed for our study site. However, they can be adapted and applied
to other geographical regions, showcasing the framework’s generalization capability. This flexibility allows
the framework to be effectively utilized in diverse watershed scenarios.

Thirdly, the proposed framework addresses the challenge of model selection, acknowledging the inherent
uncertainty in choosing a single machine-learning model. Unlike a simplistic approach of running a single
model, the framework systematically evaluates and compares the performance of multiple machine learning
and statistical models. By assessing various algorithms and configurations, it aims to identify the most
suitable model for imputing environmental missing data under diverse conditions.

Furthermore, the proposed approach consolidates the positive aspects observed in previous studies.
It effectively handles a high percentage of missing values and incorporates a wide range of statistical
and machine-learning techniques, as observed in various works (Aguilera et al., 2020; Chen et al., 2021;
Jones et al., 2014; Ratolojanahary et al., 2019,?; Zhang and Thorburn, 2022). The framework offers
a comprehensive and versatile solution for data imputation tasks by encompassing these advantageous
elements.

Our framework significantly contributes to advancing the understanding of the environmental system,
addressing both direct and indirect aspects. Through direct contributions, it enhances model accuracy and
parameter optimization and facilitates improved predictive modeling and hypothesis testing in environ-
mental science. Policymakers benefit directly by gaining access to accurate and complete environmental
data, enabling the development of precise, data-driven policies for real-world challenges. Indirectly, the
framework minimizes biases from incomplete datasets, fostering a robust foundation for environmental
studies and enriching our overall understanding. The imputed data supports a holistic view of environmental
variables, contributing to a broader knowledge base. Additionally, the framework’s impact extends over time,

accumulating reliable data to strengthen the scientific foundation of long-term environmental research.
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5. Conclusions

In this study, we have developed a novel framework that effectively addresses the challenge of imputing
missing data in various environmental domains, including meteorology, hydrology, and water quality. This
framework combines data-driven models with physical knowledge, resulting in satisfactory imputation
results. The key features of this framework are as follows:

1) It incorporates physical constraints such as variable correlations (Pearson, Spearman, and Kendall
correlation matrices), temporal variability (EWMA), and spatial variability (SD and SC) of the features
under study. By considering these constraints, the framework ensures that the imputed data aligns with the
underlying physical characteristics of the variables.

ii) The framework demonstrates a high success rate in imputing a substantial percentage of missing
data, surpassing 70%. This ability to handle a large proportion of missing values enhances the overall data
completeness.

iii) It adopts a multivariate approach, simultaneously considering various variables. This multivariate
aspect allows for comprehensive analysis and improves the accuracy of the imputed data.

iv) The framework incorporates diverse statistical and machine-learning methods, contributing to
flexibility and robustness. The framework can effectively capture the complex relationships within the data
by employing various techniques.

The framework’s performance was rigorously evaluated through cross-validation, selecting the best
model for each variable. Overall, the results were satisfactory, with minimum Nash-Sutcliffe Efficiency
(NSE) values above 0.72 for meteorologic variables, indicating good to very good imputations. Hydrometric
variables consistently achieved NSE values above 0.97, demonstrating excellent performance. Water-quality
variables exhibited slightly lower NSE values, but over 78% of the physical-water-quality variables and 66%
of the chemical-water quality variables reached satisfactory NSE levels.

Regarding model selection, the Inverse Distance Weighting (IDW) method was particularly effective for
imputing water-quality variables. In contrast, linear methods such as Historical Records (HR), Regression
Relations (RR), and Transfer Relations (TR) were also successful. The study highlights that no single best
model per variable type or domain exists, underscoring the importance of employing a framework rather
than relying on individual models. Furthermore, more than 67% of the time, a variant or combination of

variants was identified as the best-selected model, emphasizing the significance of incorporating physical
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knowledge into the framework. In our case study, dataset variants related to spatial variability were selected
more frequently than those related to temporal variability (41.3% and 13%, respectively).

The outcomes of this study are expected to contribute significantly to the accurate imputation and
augmentation of environmental data. Integrating such data into watershed-scale models will enhance the
performance of water-quality simulations and predictions, enabling improved decision-making in various
applications.

To further improve the framework, it is crucial to highlight its limitations, which will be the gaps
where to focus future research. Upstream of the reservoir, changes in hydrological conditions, such as flow
rates or pollutant sources, may be more dynamic and less predictable. The physics-based constraints in the
framework might not fully account for the complexities of upstream hydrological and water quality processes.
This incomplete understanding could lead to inaccuracies in imputing water quality missing values in these
regions. Another weakness of the framework is represented by the availability and quality of auxiliary data
used for training it. Its effectiveness depends on them. In situations where relevant auxiliary data are scarce
or unreliable, the imputation accuracy may be compromised. Understanding these limitations and tailoring
the framework to address these specific challenges is essential for improving its overall performance and

ensuring accurate imputations in diverse environmental settings.

6. Software and data availability

The source datasets used in this work are available for reuse [dataset] Environmental data imputation
project (2022a). They are published as four PARQUET files: i) CA_DINACEA_2004_2020 (water quality
variables), ii) HIDRO_DINAGUA_1971_2020 (hydrometric variables), iii) MET_INIA_2013_2020 and iv)
MET_INUMET_1980_2020 (meteorological variables) with a total size of 1.11 MB.

The datasets obtained after applying the imputation methodology described in this work are also available
[dataset] Environmental data imputation project (2022b). We provide four PARQUET files corresponding
to the original datasets, which are available with a total size of 0.21 MB.

The data imputation framework developed for this work is freely available at https://gitlab.com/
fing-hydroinformatics/fsda-lu-wqg. Models devised in this work can be accessed from https://
gitlab.com/fing-hydroinformatics/fsda-1lu-wq/-/tree/paper. The framework is implemented

using Python 3.10 and can be executed using docker-compose on any general-purpose computer.
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A. Supplementary information

A.1. Complete dataset
A summary of the complete dataset used in this study is presented in Table 7 (meteorological and
hydrometric variables) and Table 8 (water quality variables), where the percentage of missing values detected

for each variable (% N/A) is also reported.

Table 8: Summary of the water quality dataset.

Water Quality Dataset. Source: DINACEA

Variable Station Frequency Period % N/A
SLCO1 30/9/2014 - 31/8/2020  51.4
SLCO02 30/9/2014 - 31/8/2020  51.4
PS01=SLCO03 30/9/2014 - 31/8/2020  63.9
wT — Monthly
PS02 30/9/2014 - 31/8/2020  61.1
PS03 30/9/2014 - 31/8/2020  59.7
PS04 30/9/2014 - 31/8/2020  59.7
SLCO1 30/9/2014 - 31/8/2020  51.4
SLCO02 30/9/2014 - 31/8/2020  51.4
PS01=SLCO03 30/9/2014 - 31/8/2020  63.9
Cond — Monthly
PS02 30/9/2014 - 31/8/2020  59.7

Continued on next page
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Table 8 — continued from previous page

Water Quality Dataset. Source: DINACEA

Variable Station Frequency Period % N/A
PS03 30/9/2014 - 31/8/2020 59.7
PS04 30/9/2014 - 31/8/2020 59.7
SLCO1 30/9/2014 - 31/8/2020 51.4
SLC02 30/9/2014 - 31/8/2020 51.4
PS01=SLCO03 30/9/2014 - 31/8/2020 63.9
NO2-, NO3-, NH4+ — Monthly
PS02 30/9/2014 - 31/8/2020 59.7
PS03 30/9/2014 - 31/8/2020 61.1
PS04 30/9/2014 - 31/8/2020 61.1
SLCO1 30/9/2014 - 31/8/2020 52.8
SLC02 30/9/2014 - 31/8/2020 52.8
PS01=SLCO03 30/9/2014 - 31/8/2020 65.3
N — Monthly
PS02 30/9/2014 - 31/8/2020 61.1
PS03 30/9/2014 - 31/8/2020 62.5
PS04 30/9/2014 - 31/8/2020 62.5
SLCO1 30/9/2014 - 31/8/2020 51.4
SLC02 30/9/2014 - 31/8/2020 51.4
PS01=SLC03 30/9/2014 - 31/8/2020 63.9
DO —  Monthly
PS02 30/9/2014 - 31/8/2020 59.7
PS03 30/9/2014 - 31/8/2020 59.7
PS04 30/9/2014 - 31/8/2020 59.7
SLCO1 30/9/2014 - 31/8/2020 52.8
SLC02 30/9/2014 - 31/8/2020 52.8
PS01=SLC03 30/9/2014 - 31/8/2020 65.3
Turb —— Monthly
PS02 30/9/2014 - 31/8/2020 61.1
PS03 30/9/2014 - 31/8/2020 62.5
PS04 30/9/2014 - 31/8/2020 62.5
SLCO01 31/10/2018 - 31/8/2020  47.8
SLC02 31/10/2018 - 31/8/2020  47.8
PS01=SLC03 31/10/2018 - 31/8/2020  47.8
PO43- —— Monthly
PS02 31/10/2018 - 31/8/2020  73.9
PS03 31/10/2018 - 31/8/2020  69.6

Continued on next page
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Table 8 — continued from previous page

Water Quality Dataset. Source: DINACEA

Variable Station Frequency Period % N/A
PS04 31/10/2018 - 31/8/2020  69.6
SLCO1 31/10/2018 - 31/8/2020 51.4
SLCO02 31/10/2018 - 31/8/2020 51.4
PS01=SLC03 31/10/2018 - 31/8/2020  65.3
TP —— Monthly
PS02 31/10/2018 - 31/8/2020  62.5
PS03 31/10/2018 - 31/8/2020  61.1
PS04 31/10/2018 - 31/8/2020  61.1
PS01=SLCO03 31/10/2018 - 31/8/2020  63.9
PS02 31/10/2018 - 31/8/2020  61.1
Chl-a Monthly
PS03 31/10/2018 - 31/8/2020  62.5
PS04 31/10/2018 - 31/8/2020  62.5
SLCO1 31/10/2018 - 31/8/2020 51.4
SLC02 31/10/2018 - 31/8/2020 51.4
PS01=SLC03 31/10/2018 - 31/8/2020  56.9
BOD — Monthly
PS02 31/10/2018 - 31/8/2020 71.4
PS03 31/10/2018 - 31/8/2020 71.4
PS04 31/10/2018 - 31/8/2020 71.4
SLCO1 31/10/2018 - 31/8/2020  52.8
SLCO02 31/10/2018 - 31/8/2020  52.8
PS01=SLC03 31/10/2018 - 31/8/2020  65.3
pH — Monthly
PS02 31/10/2018 - 31/8/2020  61.1
PS03 31/10/2018 - 31/8/2020  61.1
PS04 31/10/2018 - 31/8/2020  61.1
SLCO1 31/10/2018 - 31/8/2020  47.8
SLC02 31/10/2018 - 31/8/2020  47.8
PS01=SLC03 31/10/2018 - 31/8/2020  47.8
TS —— Monthly
PS02 31/10/2018 - 31/8/2020  69.6
PS03 31/10/2018 - 31/8/2020  69.6
PS04 31/10/2018 - 31/8/2020  69.6
SLCO1 31/10/2018 - 31/8/2020  47.8
SLCO02 31/10/2018 - 31/8/2020  47.8
PS01=SLC03 31/10/2018 - 31/8/2020  47.8
TSS Monthly

Continued on next page
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Table 8 — continued from previous page

Water Quality Dataset. Source: DINACEA

Variable Station Frequency Period % N/A
PS02 28/2/2018 - 31/8/2020  74.2
PS03 31/10/2018 - 31/8/2020  69.6
PS04 31/10/2018 - 31/8/2020  69.6

A.2. Variable correlation and results

Table 9 provides the scientific literature that supports each correlation reported in Figure 5.

For the sake of completeness, Pearson and Kendall’s matrices are reported in Figure 8 Figure and 9.

The complete list of the variable correlation resulting from the Pearson, Spearman, and Kendall matrices
is reported below:

'Precipitation’: [’Chlorophyll-a’, *Nitrite’, *Potential of hydrogen’, *Precipitation’, ’Total nitrogen’],

"Evapotranspiration’: [’Average air temperature’, ’Average relative humidity’, *Chlorophyll-a’, ’Dis-
solved oxygen’, ’Evapotranspiration’,’Heliophany’, ’Maximum air temperature’,”’Minimum air temperature’,
’Solar Radiation’, *Water temperature’],

"Maximum air temperature’: ['Average air temperature’, ’Chlorophyll-a’, *Dissolved oxygen’, *Evap-
otranspiration’, "Heliophany’, "Maximum air temperature’, ’Minimum air temperature’, ’Solar Radiation’,
"Turbidity’, *Water temperature’],

"Average air temperature’: [’Average air temperature’, *Chlorophyll-a’, ’Conductivity’, ’Dissolved oxy-
gen’, ’Evapotranspiration’, "Maximum air temperature’, "Minimum air temperature’, ’Solar Radiation’,
"Turbidity’, *Water temperature’],

"Minimum air temperature’: [’Average air temperature’, *Chlorophyll-a’, ’Conductivity’, ’Dissolved
oxygen’, ’Evapotranspiration’, ’Maximum air temperature’, ’Minimum air temperature’, *Turbidity’, *Water
temperature’],

"Solar Radiation’: [’Average air temperature’, ’Average relative humidity’, *Dissolved oxygen’, ’Evapo-
transpiration’, *Heliophany’, ’Maximum air temperature ’, ’Solar Radiation’, *Water temperature’],

"Heliophany’: ['Average relative humidity’, 'Dissolved oxygen’, 'Evapotranspiration’, Heliophany’,

’Maximum air temperature’, ’Solar Radiation’, *Water temperature’],
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Table 7
Summary of the meteorological and hydrometric datasets.

Metereological Datasets

Source Variable Station Frequency Period % N/A
ET, RH,
INIA ;‘j'r‘]’jx 'T%Vsir’] —  Las Brujas Onceaday  1/8/2014 —31/12/2020 0
Hel , SR, WS
Florida 1/8/2014 - 29/6/2020 0

Reboledo 1/8/2014 — 29/6/2020 23

San Gabriel 1/8/2014 — 29/6/2020 3.2

Villa 25 de Mayo 2/8/2014 — 20/2/2019 3.3

Mendoza 1/8/2014 — 29/6/2020 1.8

INUMET P Cerro Colorado Once a day 1?8?2014 - 29;6;2020 1.6

Sarandi Grande 1/8/2014 — 29/6/2020 1.3

La Cruz 1/8/2014 —29/6/2020 1.9

Villa Cardal 1/8/2014 — 29/6/2020 1.1

25 de Agosto 1/8/2014 — 29/6/2020 1.7

Hydrometric dataset
DINAGUA @, h Florida Three times a day 1/8/2014 —30/6/2020 5.6

‘Average relative humidity’: ['Average relative humidity’, ’Dissolved oxygen’, ’Evapotranspiration’,

’Heliophany’, *Solar Radiation’],

"Wind speed’: ["Wind speed’],

"Streamflow’: [’ Chlorophyll-a’, *Nitrate’, ’Streamflow’, *Water level’],

"Water level’: [’Chlorophyll-a’, *Streamflow’, *Turbidity’, *Water level’],

"Water temperature’: ['Average air temperature’, *Chlorophyll-a’, ’Conductivity’, ’Dissolved oxygen’,

’Evapotranspiration’, *Heliophany’, ’Maximum air temperature’, ’Minimum air temperature’, ’Solar Radia-

tion’, *Total phosphorus’, *Turbidity’, >Water temperature’],

"Conductivity’: [’Average air temperature’,’Chlorophyll-a’, ’Conductivity’, ’Dissolved oxygen’,’Glyphosate’,

’Minimum air temperature’, ’Nitrate’, *Nitrite’, *Potential of hydrogen’, *Total nitrogen’, Total phosphorus’,

"Turbidity’, *Water temperature’],

"Dissolved oxygen’: ['Average air temperature ’, ’Average relative humidity’, ’Chlorophyll-a’, ’Conduc-

tivity’, "Dissolved oxygen’, ’Evapotranspiration’, ’Heliophany’, "Maximum air temperature’, "Minimum air

temperature’, *Solar Radiation’, *Total nitrogen’, *Total phosphorus’, *Turbidity’, *Water temperature’],

"Potential of hydrogen’: [’Biochemical oxygen demand’, ’Conductivity’, ’Potential of hydrogen’, *Pre-

cipitation’, *Total nitrogen’, *Total phosphorus’, *Turbidity’],
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Table 9
Scientific literature supporting correlations presented in Figure 5.

Correlation

Reference

Solar radiation - Water temperature
Heliophany - Water temperature
Air temperature - Water temperature
Solar radiation - Clorophyll-a
Heliophany - Clorophyll-a

Air temperature - Clorophyll-a

Air temperature - Turbidity
Precipitation - Water level
Precipitation - Turbidity
Evapotranspiration - Water level
Evapotranspiration - Turbidity
Water temperature - Dissolved oxygen
Water temperature - Conductivity
Water temperature - Clorophyll-a
Water level - Streamflow
Streamflow - Ammonium
Streamflow - Nitrite

Streamflow - Nitrate

Streamflow - Turbidity
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Figure 9: Kendall correlation matrix.

A.3. Complementary results

Box plots of the framework PBIAS and KGE performance are reported in Figures 10 and 11.

References

Acker, J.G., 2005. Remotely-sensed chlaat the Chesapeake Bay mouth is correlated with annual freshwater flow to Chesapeake Bay. Geophysical
research letters 32. URL: http://dx.doi.org/10.1029/2004g1021852, doi:{10.1029/2004g1021852}.

Aguilera, H., Guardiola-Albert, C., Serrano-Hidalgo, C., 2020. Estimating extremely large amounts of missing precipitation data. Journal of
hydroinformatics 22, 578-592. URL: http://dx.doi.org/10.2166/hydro.2020.127, doi:{10.2166/hydro.2020.127}.

Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M., 2019. Optuna: A next-generation hyperparameter optimization framework, in: Proceedings

of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, ACM, New York, NY, USA.

Pastorini et al.: Preprint submitted to Elsevier Page 37 of 44


http://dx.doi.org/10.1029/2004gl021852
http://dx.doi.org/{10.1029/2004gl021852}
http://dx.doi.org/10.2166/hydro.2020.127
http://dx.doi.org/{10.2166/hydro.2020.127}

671

672

673

674

675

40

30

20

PBIAS

10

Meteorological
variables

Enhancing Environmental Data Imputation

40

30

Hydrometric
variables

40

30

20

10

-10

40

30

20

10

———;

Physical water-
quality variables

-10

Chemical water-
quality variables

Figure 10: Box plots of the framework PBIAS performance for the variables belonging to the meteorological,
hydrometric, physical-water quality, and chemical-water quality domain.

0.8

0.6

0.4

KGE

0.2

-0.2

Meteorological

variables

0.8

0.6

04

0.2

-0.2

=

Hydrometric
variables

0.8

0.6

0.4

0.2

-0.2

S

L]

Physical water-
quality variables

08

0.6

04

02

-0.2

Chemical water-
quality variables

Figure 11: Box plots of the framework KGE performance for the variables belonging to the meteorological,
hydrometric, physical-water quality, and chemical-water quality domain.

Allott, T.E.H., Curtis, C.J., Hall, J., Harriman, R., Battarbee, R.W., 1995. The impact of nitrogen deposition on upland surface waters in Great Britain:

A regional assessment of nitrate leaching. Water, air, and soil pollution 85, 297-302. URL: http://dx.doi.org/10.1007/bf00476845,

doi:{10.1007/bf00476845}.

Andridge, R.R., Little, R.J.A., 2010. A review of hot deck imputation for survey non-response. Revue internationale de statistique [International

statistical review] 78, 40-64. URL: http://www.jstor.org/stable/27919794, doi:{10.1111/j.1751-5823.2010.00103.x}.

Pastorini et al.: Preprint submitted to Elsevier

Page 38 of 44


http://dx.doi.org/10.1007/bf00476845
http://dx.doi.org/{10.1007/bf00476845}
http://www.jstor.org/stable/27919794
http://dx.doi.org/{10.1111/j.1751-5823.2010.00103.x}

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

707

708

709

710

711

712

713

714

Enhancing Environmental Data Imputation

Azur, MJ., Stuart, E.A., Frangakis, C., Leaf, PJ., 2011. Multiple imputation by chained equations: what is it and how does it work?: Multiple
imputation by chained equations. International journal of methods in psychiatric research 20, 40-49. URL: http://dx.doi.org/10.1002/
mpr . 329, doi:{10.1002/mpr . 329%.

Bakhtiar Jemily, N.H., Ahmad Sa’ad, F.N., Mat Amin, A.R., Othman, M.F., Mohd Yusoff, M.Z., 2019. Relationship between electrical conductivity
and total dissolved solids as water quality parameter in teluk lipat by using regression analysis. Springer International Publishing, Cham. p.
169-173.

Balachandran, V.K., Rajagopalan, M., Pillai, V.K., 1989. Chlorophyll a and pheo - pigment as indices of biological productivity in the inshore
surface waters off Cochin. Indian Journal of Fisheries 36, 227-237. URL: http://eprints.cmfri.org.in/315/.

Bennett, M.G., Lee, S.S., Schofield, K.A., Ridley, C.E., Washington, B.J., Gibbs, D.A., 2021. Response of chlorophyll a to total nitrogen and
total phosphorus concentrations in lotic ecosystems: a systematic review. Environmental evidence 10. URL: http://dx.doi.org/10.1186/
s13750-021-00238-8, doi:{10.1186/s13750-021-00238-8}.

Bertsimas, D.J., Pawlowski, C., Zhuo, Y.D., 2018. From predictive methods to missing data imputation: An optimization approach. Journal of
machine learning research: JIMLR , 1-39URL: https://dspace.mit.edu/handle/1721.1/1301117?show=full.

Bi, J., Wang, Z., Yuan, H., Ni, K., Qiao, J., 2022. Multi-indicator water time series imputation with autoregressive generative adversarial networks,
in: 2022 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 2003-2008. doi:10.1109/SMC53654.2022.9945604.

Blenkinsop, S., Lewis, E., Chan, S.C., Fowler, H.J., 2017. Quality-control of an hourly rainfall dataset and climatology of extremes for the UK:
QUALITY-CONTROL AND EXTREMES CLIMATOLOGY FOR UK HOURLY RAINFALL. International journal of climatology: a journal
of the Royal Meteorological Society 37, 722-740. URL: http://dx.doi.org/10.1002/joc.4735, doi:{10.1002/joc.4735}.

Breiman, L., 2001. Random Forests. Machine learning 45, 5-32. URL: http://dx.doi.org/10.1023/a:1010933404324, doi:{10.1023/a:
1010933404324}

Bg, T.H., Dysvik, B., Jonassen, 1., 2004. LSimpute: accurate estimation of missing values in microarray data with least squares methods. Nucleic
acids research 32, e34. URL: http://dx.doi.org/10.1093/nar/gnh026, doi:{10.1093/nar/gnh026}.

Chandra, R., Cripps, S., Butterworth, N., Muller, R.D., 2021. Precipitation reconstruction from climate-sensitive lithologies using Bayesian
machine learning. Environmental Modelling & Software 139, 105002. URL: https://www.sciencedirect.com/science/article/
pii/S1364815221000451, doi:{https://doi.org/10.1016/j.envsoft.2021.105002}.

Chen, H., Luo, Y., Potter, C., Moran, P.J., Grieneisen, M.L., Zhang, M., 2017. Modeling pesticide diuron loading from the San Joaquin watershed
into the Sacramento-San Joaquin Delta using SWAT. Water Research 121, 374-385. URL: http://dx.doi.org/10.1016/j.watres.2017.
05.032, doi:{10.1016/j.watres.2017.05.032}.

Chen, Z., Lin, X., Xiong, C., Chen, N., 2020. Modeling the relationship of precipitation and water level using grid precipitation products with a
neural network model. Remote sensing 12, 1096. URL: http://dx.doi.org/10.3390/rs12071096, doi:{10.3390/rs12071096}.

Chen, Z., Xu, H., Jiang, P., Yu, S., Lin, G., Bychkov, I., Hmelnov, A., Ruzhnikov, G., Zhu, N., Liu, Z., 2021. A transfer Learning-Based LSTM
strategy for imputing Large-Scale consecutive missing data and its application in a water quality prediction system. Journal of hydrology 602,
126573. URL: http://dx.doi.org/10.1016/j . jhydrol.2021.126573, doi:{10.1016/j . jhydrol.2021.126573}.

Cheng, X., Huang, Y., Li, R., Pu, X., Huang, W., Yuan, X., 2020. Impacts of water temperature on phosphorus release of sediments under
flowing overlying water. Journal of contaminant hydrology 235, 103717. URL: http://dx.doi.org/10.1016/j.jconhyd.2020.103717,
doi:{10.1016/7 . jconhyd.2020.103717}.

Chivers, B.D., Wallbank, J., Cole, S.J., Sebek, O., Stanley, S., Fry, M., Leontidis, G., 2020. Imputation of missing sub-hourly precipitation data in a
large sensor network: A machine learning approach. Journal of hydrology 588, 125126. URL: http://dx.doi.org/10.1016/j. jhydrol.

2020.125126, doi:{10.1016/j. jhydrol.2020.125126}.

Pastorini et al.: Preprint submitted to Elsevier Page 39 of 44


http://dx.doi.org/10.1002/mpr.329
http://dx.doi.org/10.1002/mpr.329
http://dx.doi.org/10.1002/mpr.329
http://dx.doi.org/{10.1002/mpr.329}
http://eprints.cmfri.org.in/315/
http://dx.doi.org/10.1186/s13750-021-00238-8
http://dx.doi.org/10.1186/s13750-021-00238-8
http://dx.doi.org/10.1186/s13750-021-00238-8
http://dx.doi.org/{10.1186/s13750-021-00238-8}
https://dspace.mit.edu/handle/1721.1/130111?show=full
http://dx.doi.org/10.1109/SMC53654.2022.9945604
http://dx.doi.org/10.1002/joc.4735
http://dx.doi.org/{10.1002/joc.4735}
http://dx.doi.org/10.1023/a:1010933404324
http://dx.doi.org/{10.1023/a:1010933404324}
http://dx.doi.org/{10.1023/a:1010933404324}
http://dx.doi.org/{10.1023/a:1010933404324}
http://dx.doi.org/10.1093/nar/gnh026
http://dx.doi.org/{10.1093/nar/gnh026}
https://www.sciencedirect.com/science/article/pii/S1364815221000451
https://www.sciencedirect.com/science/article/pii/S1364815221000451
https://www.sciencedirect.com/science/article/pii/S1364815221000451
http://dx.doi.org/{https://doi.org/10.1016/j.envsoft.2021.105002}
http://dx.doi.org/10.1016/j.watres.2017.05.032
http://dx.doi.org/10.1016/j.watres.2017.05.032
http://dx.doi.org/10.1016/j.watres.2017.05.032
http://dx.doi.org/{10.1016/j.watres.2017.05.032}
http://dx.doi.org/10.3390/rs12071096
http://dx.doi.org/{10.3390/rs12071096}
http://dx.doi.org/10.1016/j.jhydrol.2021.126573
http://dx.doi.org/{10.1016/j.jhydrol.2021.126573}
http://dx.doi.org/10.1016/j.jconhyd.2020.103717
http://dx.doi.org/{10.1016/j.jconhyd.2020.103717}
http://dx.doi.org/10.1016/j.jhydrol.2020.125126
http://dx.doi.org/10.1016/j.jhydrol.2020.125126
http://dx.doi.org/10.1016/j.jhydrol.2020.125126
http://dx.doi.org/{10.1016/j.jhydrol.2020.125126}

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

Enhancing Environmental Data Imputation

Chrobak, G., Kowalczyk, T., Fischer, T.B., Szewrariski, S., Chrobak, K., Wasowicz, B., Kazak, J.K., 2022. First, do no harm - Missing data treatment
to support lake ecological condition assessment. Environmental Modelling & Software 158, 105558. URL: https://www.sciencedirect.
com/science/article/pii/S1364815222002584, doi:{https://doi.org/10.1016/j.envsoft.2022.105558}

Crisci, C., Terra, R., Pacheco, J.P., Ghattas, B., Bidegain, M., Goyenola, G., Lagomarsino, J.J., Méndez, G., Mazzeo, N., 2017. Multi-model
approach to predict phytoplankton biomass and composition dynamics in a eutrophic shallow lake governed by extreme meteorological
events. Ecological modelling 360, 80-93. URL: https://www.sciencedirect.com/science/article/pii/S0304380016304422
doi:{10.1016/j.ecolmodel.2017.06.017}.

Cule, E., De Iorio, M., 2012. A semi-automatic method to guide the choice of ridge parameter in ridge regression. URL: http://arxiv.org/
abs/1205.0686

Dang, X., Peng, H., Wang, X., Zhang, H., . Theil-Sen estimators in a multiple linear regression model. URL: http://www.olemiss.edu/ xdang/
papers/MTSE.pdf.

[dataset] DINACEA, 2020. OAN. National Environmental Observatory. URL: https://www.ambiente.gub.uy/oan/datos-abiertos/.
(Accessed on 16 November, 2022).

[dataset] Environmental data imputation project, 2022a. Metereological, Hydrometric and Data Quality variables, Santa Lucia Chico, Uruguay.
URL: https://gitlab.com/fing-hydroinformatics/fsda-1lu-wq/-/tree/paper/data/datasets.

[dataset] Environmental data imputation project, 2022b. Metereological, Hydrometric and Data Quality variables, Santa Lucia Chico, Uruguay.
URL: https://gitlab.com/fing-hydroinformatics/fsda-1lu-wq/-/tree/paper/data/imputations.

[dataset] MGAP, 2020. RENARE. Digital Terrain Model elaborate by Uruguayan National Board of Renewable Natural Resources of the Ministry
of Livestock, Agriculture and Fisheries (MGAP). Available on request at Uruguay Spatial Data Infrastructure (ideuy@ide. gub.uy).

Dempster, A.P., Laird, N.M., Rubin, D.B., 1977. Maximum likelihood from incomplete data via theEMAlgorithm. Journal of the Royal
Statistical Society 39, 1-22. URL: http://dx.doi.org/10.1111/j.2517-6161.1977.tb01600.x,doi:{10.1111/3.2517-6161.1977.
tb01600.x}

Durbin, J., Koopman, S.J., 2012. Time series analysis by state space methods. OUP Oxford.

Ellison, M.E., Brett, M.T., 2006. Particulate phosphorus bioavailability as a function of stream flow and land cover. Water research 40, 1258—1268.
URL: http://dx.doi.org/10.1016/j.watres.2006.01.016, doi:{10.1016/j.watres.2006.01.016}.

Fortin, M.J., Dale, M., 2005. Spatial Analysis: A Guide for Ecologists. 1 ed., Cambridge University Press, Cambridge, England.

Freni, G., Mannina, G., 2012. The identifiability analysis for setting up measuring campaigns in integrated water quality modelling. Physics and
chemistry of the earth (2002) 42-44, 52-60. URL: http://dx.doi.org/10.1016/j.pce.2011.06.001, doi:{10.1016/j.pce.2011.06.
001}.

Freni, G., Mannina, G., Viviani, G., 2009. Assessment of data availability influence on integrated urban drainage modeling uncertainty. Environ-
mental Modelling & Software 24, 1171-1181. URL: https://www.sciencedirect.com/science/article/pii/S136481520900084X,
doi:{https://doi.org/10.1016/j.envsoft.2009.03.0073}.

Freni, G., Mannina, G., Viviani, G., 2011. Assessment of the integrated urban water quality model complexity through identifiability analysis. Water
research 45, 37-50. URL: http://dx.doi.org/10.1016/j.watres.2010.08.004, doi:{10.1016/j.watres.2010.08.004}

Geurts, P., Ernst, D., Wehenkel, L., 2006. Extremely randomized trees. Machine learning 63, 3—42. URL: http://dx.doi.org/10.1007/
$10994-006-6226-1, doi:{10.1007/s10994-006-6226-1}.

Gill, MK, Asefa, T., Kaheil, Y., McKee, M., 2007. Effect of missing data on performance of learning algorithms for hydrologic predictions:
Implications to an imputation technique. Water Resources Research 43, . URL: https://agupubs.onlinelibrary.wiley.com/doi/abs/

10.1029/2006WR005298, doi:{https://doi.org/10.1029/2006WR005298}.

Pastorini et al.: Preprint submitted to Elsevier Page 40 of 44


https://www.sciencedirect.com/science/article/pii/S1364815222002584
https://www.sciencedirect.com/science/article/pii/S1364815222002584
https://www.sciencedirect.com/science/article/pii/S1364815222002584
http://dx.doi.org/{https://doi.org/10.1016/j.envsoft.2022.105558}
https://www.sciencedirect.com/science/article/pii/S0304380016304422
http://dx.doi.org/{10.1016/j.ecolmodel.2017.06.017}
http://arxiv.org/abs/1205.0686
http://arxiv.org/abs/1205.0686
http://arxiv.org/abs/1205.0686
http://www.olemiss.edu/~xdang/papers/MTSE.pdf
http://www.olemiss.edu/~xdang/papers/MTSE.pdf
http://www.olemiss.edu/~xdang/papers/MTSE.pdf
https://www.ambiente.gub.uy/oan/datos-abiertos/
https://gitlab.com/fing-hydroinformatics/fsda-lu-wq/-/tree/paper/data/datasets
https://gitlab.com/fing-hydroinformatics/fsda-lu-wq/-/tree/paper/data/imputations
ideuy@ide.gub.uy
http://dx.doi.org/10.1111/j.2517-6161.1977.tb01600.x
http://dx.doi.org/{10.1111/j.2517-6161.1977.tb01600.x}
http://dx.doi.org/{10.1111/j.2517-6161.1977.tb01600.x}
http://dx.doi.org/{10.1111/j.2517-6161.1977.tb01600.x}
http://dx.doi.org/10.1016/j.watres.2006.01.016
http://dx.doi.org/{10.1016/j.watres.2006.01.016}
http://dx.doi.org/10.1016/j.pce.2011.06.001
http://dx.doi.org/{10.1016/j.pce.2011.06.001}
http://dx.doi.org/{10.1016/j.pce.2011.06.001}
http://dx.doi.org/{10.1016/j.pce.2011.06.001}
https://www.sciencedirect.com/science/article/pii/S136481520900084X
http://dx.doi.org/{https://doi.org/10.1016/j.envsoft.2009.03.007}
http://dx.doi.org/10.1016/j.watres.2010.08.004
http://dx.doi.org/{10.1016/j.watres.2010.08.004}
http://dx.doi.org/10.1007/s10994-006-6226-1
http://dx.doi.org/10.1007/s10994-006-6226-1
http://dx.doi.org/10.1007/s10994-006-6226-1
http://dx.doi.org/{10.1007/s10994-006-6226-1}
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2006WR005298
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2006WR005298
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2006WR005298
http://dx.doi.org/{https://doi.org/10.1029/2006WR005298}

754

755

756

757

758

759

760

761

762

763

764

765

767

768

769

770

771

772

773

774

775

776

T

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

Enhancing Environmental Data Imputation

Gong, G.C., Shiah, F.K., Liu, K.K., Wen, Y.H., Liang, M.H., 2000. Spatial and temporal variation of chlorophyll a, primary productivity and chemical
hydrography in the southern East China Sea. Continental shelf research 20,411-436. URL: http://dx.doi.org/10.1016/s0278-4343(99)
00079-5, doi:{10.1016/s0278-4343(99) 00079-5}.

Gorgoglione, A., Bombardelli, F.A., Pitton, B.J., Oki, L.R., Haver, D.L., Young, T.M., 2019. Uncertainty in the parameterization of sediment
build-up and wash-off processes in the simulation of sediment transport in urban areas. Environmental Modelling & Software 111, 170-
181. URL: https://www.sciencedirect.com/science/article/pii/S1364815217307491, doi:{https://doi.org/10.1016/j.
envsoft.2018.09.022}.

Gorgoglione, A., Castro, A., Chreties, C., Etcheverry, L., 2020a. Overcoming Data Scarcity in Earth Science. Data 5, 5. URL: http:
//dx.doi.org/10.3390/data5010005, doi:{10.3390/data5010005}.

Gorgoglione, A., Gioia, A., lacobellis, V., 2019. A framework for assessing modeling performance and effects of rainfall-catchment-drainage
characteristics on nutrient urban runoff in poorly gauged watersheds. Sustainability 11, 4933. URL: http://dx.doi.org/10.3390/
su11184933, doi:{10.3390/su11184933}.

Gorgoglione, A., Gregorio, J., Rios, A., Alonso, J., Chreties, C., Fossati, M., 2020b. Influence of land use/land cover on surface-water quality of
Santa Lucia river, Uruguay. Sustainability 12, 4692. URL: http://dx.doi.org/10.3390/su12114692, doi:{10.3390/su12114692}.
Graham, J.W., 2009. Missing data analysis: making it work in the real world. Annual review of psychology 60, 549-576. URL: http:

//dx.doi.org/10.1146/annurev.psych.58.110405.085530, doi:{10.1146/annurev.psych.58.110405.085530}.

Gupta, H.V., Kling, H., Yilmaz, K.K., Martinez, G.F., 2009. Decomposition of the mean squared error and NSE performance criteria: Implications
for improving hydrological modelling. Journal of hydrology 377, 80-91. URL: http://dx.doi.org/10.1016/j.jhydrol.2009.08.003,
doi:{10.1016/j . jhydrol.2009.08.003}.

Goransson, G., Larson, M., Bendz, D., 2013. Variation in turbidity with precipitation and flow in a regulated river system — river Gota
Alv, SW Sweden. Hydrology and earth system sciences 17, 2529-2542. URL: http://dx.doi.org/10.5194/hess-17-2529-2013,
doi:{10.5194/hess-17-2529-2013}.

Haakonsson, S., Rodriguez, M.A., Carballo, C., Pérez, M.D.C., Arocena, R., Bonilla, S., 2020. Predicting cyanobacterial biovolume from water
temperature and conductivity using a Bayesian compound Poisson-Gamma model. Water research 176, 115710. URL: http://dx.doi.org/
10.1016/j.watres.2020.115710, doi:{10.1016/j .watres.2020.115710%}.

Haakonsson, S., Rodriguez-Gallego, L., Somma, A., Bonilla, S., 2017. Temperature and precipitation shape the distribution of harmful cyanobacteria
in subtropical lotic and lentic ecosystems. The Science of the total environment 609, 1132-1139. URL: http://dx.doi.org/10.1016/j.
scitotenv.2017.07.067,doi:{10.1016/j.scitotenv.2017.07.067}.

Harris, C.R., Millman, K.J., van der Walt, S.J., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern,
R., Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A., Del Rio, J.F., Wiebe, M., Peterson, P., Gérard-Marchant, P., Sheppard,
K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T.E., 2020. Array programming with NumPy. Nature 585, 357-362. URL:
http://dx.doi.org/10.1038/s41586-020-2649-2, doi:{10.1038/541586-020-2649-2}.

Hayashi, M., 2004. Temperature-electrical conductivity relation of water for environmental monitoring and geophysical data inversion. Environ-
mental monitoring and assessment 96, 119-128. URL: http://dx.doi.org/10.1023/b:emas.0000031719.83065.68,doi:{10.1023/b:
emas.0000031719.83065.68%}.

Hoerl, A.E., Kennard, R.W., 2000. Ridge regression: Biased estimation for nonorthogonal problems. Technometrics: a journal of statistics for the
physical, chemical, and engineering sciences 42, 80. URL: http://dx.doi.org/10.2307/1271436, doi:{10.2307/1271436}.

Honaker, J., King, G., Blackwell, M., 2009. AMELIA II: A program for missing data. URL: https://r.iq.harvard.edu/docs/tmp_bak/

amelia.pdf.

Pastorini et al.: Preprint submitted to Elsevier Page 41 of 44


http://dx.doi.org/10.1016/s0278-4343(99)00079-5
http://dx.doi.org/10.1016/s0278-4343(99)00079-5
http://dx.doi.org/10.1016/s0278-4343(99)00079-5
http://dx.doi.org/{10.1016/s0278-4343(99)00079-5}
https://www.sciencedirect.com/science/article/pii/S1364815217307491
http://dx.doi.org/{https://doi.org/10.1016/j.envsoft.2018.09.022}
http://dx.doi.org/{https://doi.org/10.1016/j.envsoft.2018.09.022}
http://dx.doi.org/{https://doi.org/10.1016/j.envsoft.2018.09.022}
http://dx.doi.org/10.3390/data5010005
http://dx.doi.org/10.3390/data5010005
http://dx.doi.org/10.3390/data5010005
http://dx.doi.org/{10.3390/data5010005}
http://dx.doi.org/10.3390/su11184933
http://dx.doi.org/10.3390/su11184933
http://dx.doi.org/10.3390/su11184933
http://dx.doi.org/{10.3390/su11184933}
http://dx.doi.org/10.3390/su12114692
http://dx.doi.org/{10.3390/su12114692}
http://dx.doi.org/10.1146/annurev.psych.58.110405.085530
http://dx.doi.org/10.1146/annurev.psych.58.110405.085530
http://dx.doi.org/10.1146/annurev.psych.58.110405.085530
http://dx.doi.org/{10.1146/annurev.psych.58.110405.085530}
http://dx.doi.org/10.1016/j.jhydrol.2009.08.003
http://dx.doi.org/{10.1016/j.jhydrol.2009.08.003}
http://dx.doi.org/10.5194/hess-17-2529-2013
http://dx.doi.org/{10.5194/hess-17-2529-2013}
http://dx.doi.org/10.1016/j.watres.2020.115710
http://dx.doi.org/10.1016/j.watres.2020.115710
http://dx.doi.org/10.1016/j.watres.2020.115710
http://dx.doi.org/{10.1016/j.watres.2020.115710}
http://dx.doi.org/10.1016/j.scitotenv.2017.07.067
http://dx.doi.org/10.1016/j.scitotenv.2017.07.067
http://dx.doi.org/10.1016/j.scitotenv.2017.07.067
http://dx.doi.org/{10.1016/j.scitotenv.2017.07.067}
http://dx.doi.org/10.1038/s41586-020-2649-2
http://dx.doi.org/{10.1038/s41586-020-2649-2}
http://dx.doi.org/10.1023/b:emas.0000031719.83065.68
http://dx.doi.org/{10.1023/b:emas.0000031719.83065.68}
http://dx.doi.org/{10.1023/b:emas.0000031719.83065.68}
http://dx.doi.org/{10.1023/b:emas.0000031719.83065.68}
http://dx.doi.org/10.2307/1271436
http://dx.doi.org/{10.2307/1271436}
https://r.iq.harvard.edu/docs/tmp_bak/amelia.pdf
https://r.iq.harvard.edu/docs/tmp_bak/amelia.pdf
https://r.iq.harvard.edu/docs/tmp_bak/amelia.pdf

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

Enhancing Environmental Data Imputation

INIA, 2020. Uruguayan National Institute of Agricultural Research. URL: http://www.inia.uy/gras/Clima/
Banco-datos-agroclimatico. (accessed on 8 November, 2022).

INUMET, 2020. Uruguayan Institute of Meteorology. URL: https://www.inumet.gub.uy/. (accessed on 10 November, 2022).

Iriarte, J.L., Gonzélez, H.E., Liu, K.K., Rivas, C., Valenzuela, C., 2007. Spatial and temporal variability of chlorophyll and primary productivity
in surface waters of southern Chile (41.5-43° S). Estuarine, coastal and shelf science 74, 471-480. URL: http://dx.doi.org/10.1016/j.
ecss.2007.05.015, doi:{10.1016/j.ecss.2007.05.015}.

Jones, R.M., Stayner, L.T., Demirtas, H., 2014. Multiple imputation for assessment of exposures to drinking water contaminants: evaluation with
the Atrazine Monitoring Program. Environmental research 134, 466—473. URL: http://dx.doi.org/10.1016/j.envres.2014.07.027,
doi:{10.1016/j.envres.2014.07.027}.

Kabir, G., Tesfamariam, S., Hemsing, J., Sadiq, R., 2020. Handling incomplete and missing data in water network database using imputation
methods. Sustainable and resilient infrastructure 5, 365-377. URL: http://dx.doi.org/10.1080/23789689.2019.1600960, doi:{10.
1080/23789689.2019.1600960}.

Knoben, W.J.M., Freer, J.E., Woods, R.A., 2019. Technical note: Inherent benchmark or not? Comparing Nash-Sutcliffe and Kling-Gupta efficiency
scores. Hydrology and earth system sciences discussions , 1-7URL: http://dx.doi.org/10.5194/hess-2019-327, doi:{10.5194/
hess-2019-327}.

Kramer, O., 2013. K-Nearest Neighbors. Springer Berlin Heidelberg, Berlin, Heidelberg. p. 13-23.

Karcher, O., Filstrup, C.T., Brauns, M., Tasevska, O., Patceva, S., Hellwig, N., Walz, A., Frank, K., Markovic, D., 2020. Chlorophyll a
relationships with nutrients and temperature, and predictions for lakes across perialpine and Balkan mountain regions. Inland waters: journal
of the International Society of Limnology 10, 29-41. URL: http://dx.doi.org/10.1080/20442041.2019.1689768, doi:{10.1080/
20442041.2019.1689768}.

Korner, P., Kronenberg, R., Genzel, S., Bernhofer, C., 2018. Introducing Gradient Boosting as a universal gap filling tool for meteorological time
series. Meteorologische Zeitschrift 27, 369-376. URL: http://dx.doi.org/10.1127/metz/2018/0908, doi:{10.1127/metz/2018/
09083%.

Lintern, A., Webb, J.A., Ryu, D., Liu, S., Bende-Michl, U., Waters, D., Leahy, P., Wilson, P., Western, A.W., 2018. Key factors influencing differences
in stream water quality across space: Key factors influencing differences in stream water quality across space. WIREs. Water 5, e1260. URL:
http://dx.doi.org/10.1002/wat2.1260, doi:{10.1002/wat2.12603}.

McKinney, W., 2010. Data Structures for Statistical Computing in Python, in: Proceedings of the 9th Python in Science Conference, SciPy.

Mital, U., Dwivedi, D., Brown, J.B., Faybishenko, B., Painter, S.L., Steefel, C.I.,2020. Sequential imputation of missing spatio-temporal precipitation
data using random forests. Frontiers in Water 2. URL: http://dx.doi.org/10.3389/frwa.2020.00020, doi:{10.3389/frwa.2020.
00020}.

Moriasi, D.N., Arnold, J.G., Liew, M.W.V., Bingner, R.L., Harmel, R.D., Veith, T.L., 2007. Model evaluation guidelines for systematic quantification
of accuracy in watershed simulations. Transactions of the ASABE 50, 885-900. URL: http://dx.doi.org/10.13031/2013.23153,
doi:{10.13031/2013.23153}.

Moriasi, D.N., Gitau, M.W., Pai, N., Daggupati, P., 2015. Hydrologic and water quality models: Performance measures and evaluation criteria.
Transactions of the ASABE URL: https://handle.nal.usda.gov/10113/62083.

Nash, J.E., Sutcliffe, J.V., 1970. River flow forecasting through conceptual models part I — A discussion of principles. Journal of hydrology 10,
282-290. URL: http://dx.doi.org/10.1016/0022-1694(70)90255-6, doi:{10.1016/0022-1694(70)90255-6}.

Navas, R., Alonso, J., Gorgoglione, A., Vervoort, R.-W., 2019. Identifying climate and human impact trends in streamflow: A case study in Uruguay.

Water 11, 1433. URL: http://dx.doi.org/10.3390/w11071433, doi:{10.3390/w11071433}.

Pastorini et al.: Preprint submitted to Elsevier Page 42 of 44


http://www.inia.uy/gras/Clima/Banco-datos-agroclimatico
http://www.inia.uy/gras/Clima/Banco-datos-agroclimatico
http://www.inia.uy/gras/Clima/Banco-datos-agroclimatico
https://www.inumet.gub.uy/
http://dx.doi.org/10.1016/j.ecss.2007.05.015
http://dx.doi.org/10.1016/j.ecss.2007.05.015
http://dx.doi.org/10.1016/j.ecss.2007.05.015
http://dx.doi.org/{10.1016/j.ecss.2007.05.015}
http://dx.doi.org/10.1016/j.envres.2014.07.027
http://dx.doi.org/{10.1016/j.envres.2014.07.027}
http://dx.doi.org/10.1080/23789689.2019.1600960
http://dx.doi.org/{10.1080/23789689.2019.1600960}
http://dx.doi.org/{10.1080/23789689.2019.1600960}
http://dx.doi.org/{10.1080/23789689.2019.1600960}
http://dx.doi.org/10.5194/hess-2019-327
http://dx.doi.org/{10.5194/hess-2019-327}
http://dx.doi.org/{10.5194/hess-2019-327}
http://dx.doi.org/{10.5194/hess-2019-327}
http://dx.doi.org/10.1080/20442041.2019.1689768
http://dx.doi.org/{10.1080/20442041.2019.1689768}
http://dx.doi.org/{10.1080/20442041.2019.1689768}
http://dx.doi.org/{10.1080/20442041.2019.1689768}
http://dx.doi.org/10.1127/metz/2018/0908
http://dx.doi.org/{10.1127/metz/2018/0908}
http://dx.doi.org/{10.1127/metz/2018/0908}
http://dx.doi.org/{10.1127/metz/2018/0908}
http://dx.doi.org/10.1002/wat2.1260
http://dx.doi.org/{10.1002/wat2.1260}
http://dx.doi.org/10.3389/frwa.2020.00020
http://dx.doi.org/{10.3389/frwa.2020.00020}
http://dx.doi.org/{10.3389/frwa.2020.00020}
http://dx.doi.org/{10.3389/frwa.2020.00020}
http://dx.doi.org/10.13031/2013.23153
http://dx.doi.org/{10.13031/2013.23153}
https://handle.nal.usda.gov/10113/62083
http://dx.doi.org/10.1016/0022-1694(70)90255-6
http://dx.doi.org/{10.1016/0022-1694(70)90255-6}
http://dx.doi.org/10.3390/w11071433
http://dx.doi.org/{10.3390/w11071433}

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

Enhancing Environmental Data Imputation

Oriani, F., Borghi, A., Straubhaar, J., Mariethoz, G., Renard, P., 2016. Missing data simulation inside flow rate time-series using multiple-point
statistics. Environmental modelling & software: with environment data news 86, 264-276. URL: http://dx.doi.org/10.1016/j.envsoft.
2016.10.002, doi:{10.1016/j.envsoft.2016.10.002}.

Owen, A.B., 2006. A robust hybrid of lasso and ridge regression. URL: https://statweb.stanford.edu/ owen/reports/hhu.pdf.

Paaijmans, K.P., Takken, W., Githeko, A.K., Jacobs, A.F.G., 2008. The effect of water turbidity on the near-surface water temperature of larval
habitats of the malaria mosquito Anopheles gambiae. International journal of biometeorology 52, 747-753. URL: http://dx.doi.org/10.
1007/s00484-008-0167-2, doi:{10.1007/s00484-008-0167-2}.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Miiller, A., Nothman, J., Louppe, G., Prettenhofer,
P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E., 2012. Scikit-learn: Machine
Learning in Python. URL: http://arxiv.org/abs/1201.0490.

Poll, W.H., Maat, D.S., Fischer, P., Visser, RJ.W., Brussaard, C.P.D., Buma, A.G.J., 2021. Solar radiation and solar radiation driven cycles
in warming and freshwater discharge control seasonal and inter-annual phytoplankton chlorophyll a and taxonomic composition in a high
Arctic fjord (Kongsfjorden, Spitsbergen). Limnology and oceanography 66, 1221-1236. URL: http://dx.doi.org/10.1002/1no.11677,
doi:{10.1002/1no0.11677}.

Ratolojanahary, R., Houé Ngouna, R., Medjaher, K., Junca-Bourié, J., Dauriac, F., Sebilo, M., 2019. Model selection to improve multiple
imputation for handling high rate missingness in a water quality dataset. Expert systems with applications 131, 299-307. URL: http:
//dx.doi.org/10.1016/j.eswa.2019.04.049, doi:{10.1016/j.eswa.2019.04.049}.

Rodriguez, R., Pastorini, M., Etcheverry, L., Chreties, C., Fossati, M., Castro, A., Gorgoglione, A., 2021. Water-quality data imputation with a high
percentage of missing values: A machine learning approach. Sustainability 13, 6318. URL: http://dx.doi.org/10.3390/su13116318,
doi:{10.3390/su13116318}.

Rios, A., 2019. Implementacién de un modelo hidrodinamico tridimensional en el embalse de Paso Severino. Aportes para la modelacién de calidad
de agua. Ph.D. thesis. Universidad de la Reptblica. Facultad de Ingenieria.. Montevideo, Uruguay. URL: https://www.colibri.udelar.
edu.uy/jspui/handle/20.500.12008/21553.

Saalidong, B.M., Aram, S.A., Otu, S., Lartey, P.O., 2022. Examining the dynamics of the relationship between water pH and other water quality
parameters in ground and surface water systems. PloS one 17, €0262117. URL: http://dx.doi.org/10.1371/journal.pone.0262117,
doi:{10.1371/journal .pone.02621173}.

Satpathy, K.K., Mohanty, A K., Sahu, G., Sarguru, S., Sarkar, S.K., Natesan, U., 2011. Spatio-temporal variation in physicochemical properties of
coastal waters off Kalpakkam, southeast coast of India, during summer, pre-monsoon and post-monsoon period. Environmental monitoring and
assessment 180, 41-62. URL: http://dx.doi.org/10.1007/s10661-010-1771-2, doi:{10.1007/s10661-010-1771-2}.

Sattari, M.T., Rezazadeh-Joudi, A., Kusiak, A., 2017. Assessment of different methods for estimation of missing data in precipitation studies.
Hydrology research 48, 1032-1044. URL: http://dx.doi.org/10.2166/nh.2016.364, doi:{10.2166/nh.2016.364}.

Shinohara, R., Tanaka, Y., Kanno, A., Matsushige, K., 2021. Relative impacts of increases of solar radiation and air temperature on the temperature
of surface water in a shallow, eutrophic lake. Hydrology research 52, 916-926. URL: http://dx.doi.org/10.2166/nh.2021.148,
doi:{10.2166/nh.2021.148}.

Song, J.H., Her, Y., Guo, T., 2022. Quantifying the contribution of direct runoff and baseflow to nitrogen loading in the Western Lake Erie Basins.
Scientific reports 12, 9216. URL: http://dx.doi.org/10.1038/s41598-022-12740-1, doi:{10.1038/s41598-022-12740-1}.

Stockman, M., Dwivedi, D., Gentz, R., Peisert, S., 2019. Detecting control system misbehavior by fingerprinting programmable logic controller
functionality. International journal of critical infrastructure protection 26, 100306. URL: http://dx.doi.org/10.1016/j.ijcip.2019.

100306, doi:{10.1016/j.ijcip.2019.100306}.

Pastorini et al.: Preprint submitted to Elsevier Page 43 of 44


http://dx.doi.org/10.1016/j.envsoft.2016.10.002
http://dx.doi.org/10.1016/j.envsoft.2016.10.002
http://dx.doi.org/10.1016/j.envsoft.2016.10.002
http://dx.doi.org/{10.1016/j.envsoft.2016.10.002}
https://statweb.stanford.edu/~owen/reports/hhu.pdf
http://dx.doi.org/10.1007/s00484-008-0167-2
http://dx.doi.org/10.1007/s00484-008-0167-2
http://dx.doi.org/10.1007/s00484-008-0167-2
http://dx.doi.org/{10.1007/s00484-008-0167-2}
http://arxiv.org/abs/1201.0490
http://dx.doi.org/10.1002/lno.11677
http://dx.doi.org/{10.1002/lno.11677}
http://dx.doi.org/10.1016/j.eswa.2019.04.049
http://dx.doi.org/10.1016/j.eswa.2019.04.049
http://dx.doi.org/10.1016/j.eswa.2019.04.049
http://dx.doi.org/{10.1016/j.eswa.2019.04.049}
http://dx.doi.org/10.3390/su13116318
http://dx.doi.org/{10.3390/su13116318}
https://www.colibri.udelar.edu.uy/jspui/handle/20.500.12008/21553
https://www.colibri.udelar.edu.uy/jspui/handle/20.500.12008/21553
https://www.colibri.udelar.edu.uy/jspui/handle/20.500.12008/21553
http://dx.doi.org/10.1371/journal.pone.0262117
http://dx.doi.org/{10.1371/journal.pone.0262117}
http://dx.doi.org/10.1007/s10661-010-1771-2
http://dx.doi.org/{10.1007/s10661-010-1771-2}
http://dx.doi.org/10.2166/nh.2016.364
http://dx.doi.org/{10.2166/nh.2016.364}
http://dx.doi.org/10.2166/nh.2021.148
http://dx.doi.org/{10.2166/nh.2021.148}
http://dx.doi.org/10.1038/s41598-022-12740-1
http://dx.doi.org/{10.1038/s41598-022-12740-1}
http://dx.doi.org/10.1016/j.ijcip.2019.100306
http://dx.doi.org/10.1016/j.ijcip.2019.100306
http://dx.doi.org/10.1016/j.ijcip.2019.100306
http://dx.doi.org/{10.1016/j.ijcip.2019.100306}

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

Enhancing Environmental Data Imputation

Suykens, J.AK., Vandewalle, J., 1999. Least Squares Support Vector Machine Classifiers. Neural processing letters 9, 293-300. URL:
http://dx.doi.org/10.1023/a:1018628609742, doi:{10.1023/a:1018628609742}.

Tabari, H., Hosseinzadeh Talaee, P., 2015. Reconstruction of river water quality missing data using artificial neural networks. Water Quality
Research Journal 50, 326-335. URL: http://dx.doi.org/10.2166/wqrjc.2015.044, doi:{10.2166/wqrjc.2015.044}.

Templ, M., Kowarik, A., Filzmoser, P., 2011. Iterative stepwise regression imputation using standard and robust methods. Computational statistics
& data analysis 55, 2793-2806. URL: http://dx.doi.org/10.1016/j.csda.2011.04.012, doi:{10.1016/j.csda.2011.04.012}.
Tencaliec, P., Favre, A.C., Prieur, C., Mathevet, T., 2015. Reconstruction of missing daily streamflow data using dynamic regression models.
Water Resources Research 51, 9447-9463. URL: https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2015WR017399,

doi:{https://doi.org/10.1002/2015WR017399}.

Tipping, M.E., 2001. Sparse Bayesian learning and the relevance vector machine. Journal of machine learning research 1, 211-244.

Troyanskaya, O., Cantor, M., Sherlock, G., Brown, P., Hastie, T., Tibshirani, R., Botstein, D., Altman, R.B., 2001. Missing value estimation methods
for DNA microarrays. Bioinformatics (Oxford, England) 17, 520-525. URL: http://dx.doi.org/10.1093/bioinformatics/17.6.520,
doi:{10.1093/bioinformatics/17.6.520}.

Vilaseca, F., Castro, A., Chreties, C., Gorgoglione, A., 2023. Assessing influential rainfall-runoff variables to simulate daily streamflow using
random forest. Hydrological Sciences Journal 68, 1738-1753. doi:10.1080/02626667 .2023.2232356.

Villa, A., Folster, J., Kyllmar, K., 2019. Determining suspended solids and total phosphorus from turbidity: comparison of high-frequency
sampling with conventional monitoring methods. Environmental monitoring and assessment 191, 605. URL: http://dx.doi.org/10.
1007/s10661-019-7775-7, doi:{10.1007/s10661-019-7775-7}.

Villate, F., Aravena, G., Iriarte, A., Uriarte, I., 2008. Axial variability in the relationship of chlorophyll a with climatic factors and the North
Atlantic Oscillation in a Basque coast estuary, Bay of Biscay (1997-2006). Journal of plankton research 30, 1041-1049. URL: http:
//dx.doi .org/10.1093/plankt/fbn056, doi:{10.1093/plankt/fbn056}.

Wang, X., Li, A., Jiang, Z., Feng, H., 2006. Missing value estimation for DNA microarray gene expression data by Support Vector Regression
imputation and orthogonal coding scheme. BMC bioinformatics 7, 32. URL: http://dx.doi.org/10.1186/1471-2105-7-32, doi:{10.
1186/1471-2105-7-32%.

White, IR., Carlin, J.B., 2010. Bias and efficiency of multiple imputation compared with complete-case analysis for missing covariate values.
Statistics in medicine 29, 2920-2931. URL: http://dx.doi.org/10.1002/sim.3944, doi:{10.1002/sim.3944}.

Wolpert, D.H., Macready, W.G., 1997. No free lunch theorems for optimization. IEEE transactions on evolutionary computation: a publication of
the IEEE Neural Networks Council 1, 67-82. URL: http://dx.doi.org/10.1109/4235.585893, doi:{10.1109/4235.585893}.

Ye, X., Xu, C.Y., Li, Y., Li, X., Zhang, Q., 2017. Change of annual extreme water levels and correlation with river discharges in the middle-lower
Yangtze River: Characteristics and possible affecting factors. Chinese geographical science 27, 325-336. URL: http://dx.doi.org/10.
1007/s11769-017-0866-x, doi:{10.1007/s11769-017-0866-x}.

Zhang, H., Wang, L., 2021. Analysis of the variation in potential evapotranspiration and surface wet conditions in the Hancang River Basin, China.
Scientific reports 11, 8607. URL: http://dx.doi.org/10.1038/s41598-021-88162-2, doi:{10.1038/s41598-021-88162-2}.

Zhang, Y., Thorburn, P.J., 2021. A dual-head attention model for time series data imputation. Computers and Electronics in Agriculture 189,
106377. URL: https://www.sciencedirect.com/science/article/pii/S016816992100394X, doi:https://doi.org/10.1016/
j.compag.2021.106377.

Zhang, Y., Thorburn, P.J., 2022. Handling missing data in near real-time environmental monitoring: A system and a review of selected
methods. Future generations computer systems: FGCS 128, 63-72. URL: https://www.sciencedirect.com/science/article/pii/

S0167739X21003794, doi:{10.1016/j.future.2021.09.033}.

Pastorini et al.: Preprint submitted to Elsevier Page 44 of 44


http://dx.doi.org/10.1023/a:1018628609742
http://dx.doi.org/{10.1023/a:1018628609742}
http://dx.doi.org/10.2166/wqrjc.2015.044
http://dx.doi.org/{10.2166/wqrjc.2015.044}
http://dx.doi.org/10.1016/j.csda.2011.04.012
http://dx.doi.org/{10.1016/j.csda.2011.04.012}
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2015WR017399
http://dx.doi.org/{https://doi.org/10.1002/2015WR017399}
http://dx.doi.org/10.1093/bioinformatics/17.6.520
http://dx.doi.org/{10.1093/bioinformatics/17.6.520}
http://dx.doi.org/10.1080/02626667.2023.2232356
http://dx.doi.org/10.1007/s10661-019-7775-7
http://dx.doi.org/10.1007/s10661-019-7775-7
http://dx.doi.org/10.1007/s10661-019-7775-7
http://dx.doi.org/{10.1007/s10661-019-7775-7}
http://dx.doi.org/10.1093/plankt/fbn056
http://dx.doi.org/10.1093/plankt/fbn056
http://dx.doi.org/10.1093/plankt/fbn056
http://dx.doi.org/{10.1093/plankt/fbn056}
http://dx.doi.org/10.1186/1471-2105-7-32
http://dx.doi.org/{10.1186/1471-2105-7-32}
http://dx.doi.org/{10.1186/1471-2105-7-32}
http://dx.doi.org/{10.1186/1471-2105-7-32}
http://dx.doi.org/10.1002/sim.3944
http://dx.doi.org/{10.1002/sim.3944}
http://dx.doi.org/10.1109/4235.585893
http://dx.doi.org/{10.1109/4235.585893}
http://dx.doi.org/10.1007/s11769-017-0866-x
http://dx.doi.org/10.1007/s11769-017-0866-x
http://dx.doi.org/10.1007/s11769-017-0866-x
http://dx.doi.org/{10.1007/s11769-017-0866-x}
http://dx.doi.org/10.1038/s41598-021-88162-2
http://dx.doi.org/{10.1038/s41598-021-88162-2}
https://www.sciencedirect.com/science/article/pii/S016816992100394X
http://dx.doi.org/https://doi.org/10.1016/j.compag.2021.106377
http://dx.doi.org/https://doi.org/10.1016/j.compag.2021.106377
http://dx.doi.org/https://doi.org/10.1016/j.compag.2021.106377
https://www.sciencedirect.com/science/article/pii/S0167739X21003794
https://www.sciencedirect.com/science/article/pii/S0167739X21003794
https://www.sciencedirect.com/science/article/pii/S0167739X21003794
http://dx.doi.org/{10.1016/j.future.2021.09.033}

