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Abstract

Apiculate yeasts belonging to the genus Hanseniaspora are predominant on grapes and other fruits. While some species, such as
Hanseniaspora uvarum, are well known for their abundant presence in fruits, they are generally characterized by their detrimental
effect on fermentation quality because the excessive production of acetic acid. However, the species Hanseniaspora vineae is adapted to
fermentation and currently is considered as an enhancer of positive flavour and sensory complexity in foods. Since 2002, we have been
isolating strains from this species and conducting winemaking processes with them. In parallel, we also characterized this species
from genes to metabolites. In 2013, we sequenced the genomes of two H. vineae strains, being these the first apiculate yeast genomes
determined. In the last 10 years, it has become possible to understand its biology, discovering very peculiar features compared to the
conventional Saccharomyces yeasts, such as a natural and unique G2 cell cycle arrest or the elucidation of the mandelate pathway for
benzenoids synthesis. All these characteristics contribute to phenotypes with proved interest from the biotechnological point of view

for winemaking and the production of other foods.
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Introduction

Searching for flavour diversity represents the main target in to-
day’s wine industry, and in fact in the entire food fermentation in-
dustry. In a massive market where quality has improved through
standardization of production, in the case of wine the accessibil-
ity of consistent strains of Saccharomyces cerevisiae yeast provides
similar flavour and characteristics to different grape varieties all
around the world. Although this strategy avoids the appearance
of many wine defects, it may pose some limitations. In fact after
many years of its application, the human palate evolves, and con-
sumers ‘learn’ to enjoy diversity of colour and flavours to discover
what is defined as the ‘terroir identity’. Following this concept,
many winemakers have started to search for nonconventional
yeast species focusing on the natural microbial flora of the grapes
(Suérez-Lepe and Morata 2012). This situation brought some ideas
of returning to the ancestral roots of working with the sponta-
neous community, which gives increased flavour complexity to
some industrially fermented foods. However, this style of work is
much more complicated for a master producer, requiring a certain
yeast management, i.e. not very easy to control in a small fer-
mentation facility. This complication is exacerbated when these
producers start to grow in larger volume as has been happen-
ing lately with many craft wineries. Spontaneous or mother sour-

dough or a ‘pied de cuve’ as it was called by the traditional wine-
makers of only 50 years ago, has come to be seen as a roman-
tic way of producing some wine batches. Regrettably, only some
to these batches are of good quality, whereas others are of poor
quality and even some, which might be discarded. This situation
convinced researchers and winemakers in the 2000s to systemat-
ically work on the selection of diverse yeasts of non-Saccharomyces
strains to increase complexity (Fleet 2008).

Some of the studies of non-Saccharomyces species began with
species such as Schizosaccharomyces pombe, Torulaspora delbrueckii,
Lachancea thermotolerans, Pichia kluyveri, or Metschnikowia pulcher-
rima.

However, the first commercial non-Saccharomyces starter was
launched in 2004 and was a combination of T. delbrueckii and
Kluyveromyces thermotolerans, with Saccharomyces. It was not until
2011, that other species were launched on the market, such as M.
pulcherrima and M. fructicola (Roudil et al. 2019).

In 2002, we focused on the selection of apiculate yeasts that
usually were considered not very attractive in terms of flavour,
but on the other hand this group is the most abundant in grapes
and other fruits (genus Hanseniaspora/Kloeckera) (see Fig. 1).

There are some reviews about these species of the Hansenias-
pora yeast group that are found in the literature (Capece et al. 2007,
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Figure 1. We discovered H. vineae from the whole apiculate yeast group by the nose. Less than 5% of the apiculate genus Hanseniaspora were producers
of superior flavours, and from this selection about 90% were H. vineae strains using a limited yeast assimilable nitrogen (YAN) concentration of

100 mgN/1 (Carrau et al. 2015). Interestingly, H. vineae shows the best flavour characteristics of the genus and secondly H. osmophila, the closest species
to H. vineae of the fermentation group (see Fig. 4). WLN, WL nutrient medium where apiculates grow with dark green colonies.

Zottetal. 2008, Diaz-Montano and de Jestus Ramirez Cordova 2009,
Cade? et al. 2014, 2021, Martin et al. 2018, Steenwyk et al. 2019,
Carrau et al. 2020, Valera et al. 2022). Interestingly, reviews before
2014 contain almost no mention of the species H. vineae.

In this article, we review the main results obtained in the last
decade on the biology and applied characteristics of H. vineae.
A wide variety of technological approaches have been applied
to study this species, such as genome sequencing, transcrip-
tomics, flow cytometry, and metabolomics studies using mainly
GCMS/HPLC and sensory analysis. Recent results about its biology
are discussed with particular emphasis on phenomena such as a
cell cycle arrest at the G2 phase, a very unstable genome in terms
of DNA repair, very variable mitochondrial genomes that involves
the very fast gain and loss of mobile Group I self-splice introns
in genes COB and COXI, and the development of the pathways re-
lated to the synthesis of aromatic amino acid derived compounds
such as their acetate esters.

In reference to food applications, many of these characteris-
tics have been shown to affect the flavour phenotype. Examples
that have been studied are a fast cell lysis process increasing
palate; an overproduction of key flavours such as acetates of 2-
phenylethanol, tyrosol and tryptophol, benzenoids, or acetoin-
related compounds; and an active protease activity that increases
free amino acids and protein stability.

In conclusion, H. vineae could help to identify and understand
genetic adaptations that emerged during yeast domestication for
fermentation, being at a intermediary stage between the wild fruit
yeast Hanseniaspora uvarum and the efficient fermentor S. cere-
visiae. We propose here that H. vineae is attractive for evolutionary
analysis as an interesting eukaryotic model to study ancestral fer-
mentor genomes and a greater diversity of secondary metabolic
pathways of alcoholic fermentation.

Origins, genomics, and the cell cycle of
H. vineae

The development of molecular techniques allowed the detailed
analysis and comparison of genomes from different Hanseniaspora
species with Saccharomyces and other yeast species.

The genome of H. vineae was the first of the genus Hansenias-
pora to be sequenced in 2013. A total of 4733 gene models were
predicted from the assembly (Giorello et al. 2014). The number
of genes shared with S. cerevisiae was on average 83% (see Fig. 2).
This is more than other species of the genus, such as Hanseniaspora
guilliermondii, Hanseniaspora opuntiae, and H. uvarum, which shared
70% of genes with Saccharomyces (Seixas et al. 2019).

Interestingly, compared to other budding yeasts from the Sac-
charomycotina, including Saccharomyces, the genus Hanseniaspora
exhibited very high evolutionary rates ((Riley et al. 2016, Zhang
et al. 2018). The study performed by Steenwyk et al. (2019), based
on the analysis of 25 genomes, demonstrated that species in the
genus Hanseniaspora lost many genes involved in diverse processes
and identified two lineages within the genus: a faster-evolving lin-
eage (FEL), which comprises H. guilliermondii, H. opuntiae, H. uvarum,
and other fruit species, and a slower-evolving lineage (SEL) cor-
responding to Hanseniaspora osmophila, Hanseniaspora occidentalis,
and H. vineae. The FEL lineage began diversifying approximately
87 million years ago (mya), and the SEL lineage began diversifying
approximately 54 mya. Remarkably, both lineages lost genes as-
sociated with the cell cycle and genome integrity, but these losses
were greater in the FEL group (Steenwyk et al. 2019).

In a recent publication, Schwarz et al. (2022) evaluated the
ability to growth in an aerobic and discontinuous system of four
Hanseniaspora species to analyse their viability and cell cycle pro-
gression. Hanseniaspora uvarum and H. opuntiae (representing the
FEL group), and H. osmophila (SEL group) exhibited a typical arrest
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Figure 2. Functional clustering of predicted proteins from the H. vineae (Hv) genome. Clustering was performed using MIPS [Munich Information Center
for Protein Sequences (MIPS-GSF, Neuherberg, Germany)] functional catalogue and S. cerevisiae S288c (Sc) genome database was used for comparison.
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Figure 3. Proportions of cells with one copy of DNA content (G1), or with two copies of DNA content (G2), and the representative flow cytometry profiles
of S. cerevisiae, H. opuntiae, H. uvarum, H. osmophila, H. vineae (Hv205), and H. vineae (Hv219) during aerobic growth. Adapted from Schwarz et al. (2022).

in GO/G1 during the stationary phase (Fig. 3), as is also observed 2013, Lleixa et al. 2016b, Martin et al. 2016b, Del Fresno et al.

in S. cerevisiae. Conversely, three different strains of H. vineae (SEL
group) presented G2/M arrest and lost viability rapidly when en-
tering the stationary phase compared with other Hanseniaspora
and Saccharomyces yeasts. Studies are now underway to determine
whether G2 arrest is modulated by the carbon/nitrogen ratio.
From the oenological point of view, H. vineae presents out-
standing characteristics. The phenotypic differences found in fer-
mentative environments (Viana et al. 2009, 2011, Medina et al.

2020) are consistent with the fact that the genes of the species
present higher identities with S. cerevisiae compared to all the
other species of Hanseniaspora. Predicted protein sequences of
three key enzymes involved in glycolysis and fermentation, hex-
okinase (HXK2), phosphofructokinase (PFK1 and PFK2), and pyru-
vate kinase (CDC19) from H. vineae exhibit higher amino acid iden-
tities with S. cerevisiae than with H. uvarum, H. guilliermondii, H. val-
byensis, H. opuntiae and H. osmophila. Also, a significantly higher
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Table 1. Genes involved in sugar transport, glycolysis, alcoholic fermentation, and aroma biosynthesis from S. cerevisiae and H. vineae.

Gene CNs are indicated in brackets.

Biological function

S. cerevisiae

H. vineae

Sugar transport and sensors

Glycolysis

Alcoholic fermentation
Key genes of wine yeasts
adaptations

Aroma biosynthesis (higher
alcohols, esters, and volatile
organic acids)

HXT (x17); SNF3; RGT2;FPS1; GPR1; GUP1; GUP2;
STL1; JEN1; ASC1; ASC2; GPA2

HXK1; HXK2; PGI1; PFK1; PFK2; FPBA1; TPI1;
TDH1; TDH2; TDH3; PGK1; GPM1; ENO1; ENOZ2;
CDC19; PYK2

PDC1; PDC2; PDC5; PDC6; ADH (x8)

SSU1; CUP1 (x2); SUC2; THIS; THI11; THI12;
THI13; THI14; THI16; THI20; THI21; THIZ2;
THI73; THISO; TPC1

AROS; ARO9; BAT1; BAT2: ARO10; PDC1: PDC5:
PDC6; THI3; SEA1; GRE2; YPR1; PAD1; SPE1;
OYE2; HOM2; AAD3; AAD4; AAD6; AAD10;
AAD14; AAD15; AAD16; AROS0; GAT2; GLN3;
GZF3; DALSO; ATF1; ATF2; EEB1; EHT1; MGL2;
AAD; IAH1; ALD2; ALD3; ALD4; ALDS; ALD6

HXT (x2); SNF3; GPR1; GUP1; STL1 (x2); JENT;
ASC1; GPA2

HXK2; PGI1; PFK1; PFK2; FPBA1; TPI1; TDH2;
TDH3; PGK1; GPM1; ENO1; ENO2; CDC19

PDC1; ADH (x8)
SSU1; SUC2; THI7; THI72; THIO; TPC1

AROS (x3); ARO9 (x4); BAT1; ARO10 (x2); PDC1
(x2); ADH2 (x2); ADH3 (x2); ADH6 (x4); SFAT;
GRE2 (x4); OYE2 (x3); HOM2; AROS0; ATF2;
ATF-like (x4); EHT1; MGL2; TAH1; ALD2 (x2);
ALDS5; ALD6

copy number (CN) of alcohol dehydrogenase genes (ADH) present
in the genome of H. vineae might account for the increased alcohol
resistance of H. vineae compared to other Hanseniaspora species.
The molecular basis of aroma production has been thoroughly
described (Giorello et al. 2019, Valera et al. 2021) showing marked
differences to other Hanseniaspora species and Saccharomyces. The
high number of predicted acetyl transferase genes in H. vineae
and H. osmophila is remarkable, presenting six genes with alco-
hol acetyl transferase (AATase) domains, superior to S. cerevisiae
S288c that presents just three or H. uvarum with only two genes
(Valera et al. 2021). These activities are involved in the esterifica-
tion of higher alcohols with acetate. This fact would explain the
enhanced production of acetate esters by H. vineae contributing
to wine aroma (Viana et al. 2009, 2011, Medina et al. 2013, Giorello
et al. 2019), mainly from the aromatic higher alcohols tryptophol,
tyrosol, and phenylethanol (Valera et al. 2021). See Table 1.

Hanseniaspora and Saccharomyces diverged before the whole
genome duplication event that took place in the latter species
(Langenberg et al. 2017, Giorello et al. 2019), however, some genes
involved in oenological traits exhibited by H. vineae are present
in high CN, similarly to S. cerevisiae (Table 1), supporting the idea
of a convergent evolutionary adaptation to fermentative environ-
ments as discussed below.

A similar, but partial, adaptation to fermentative environments
is also observed in H. osmophila and H. occidentalis. However, this
latter species has been isolated from grape wine fermentations
and might be confined to orange juice fermentations (Martin et
al. 2018).

The new species H. gamundiae was recently described and as
shown in Fig. 4, belongs to the same clade of H. vineae. This species
was isolated from a rare fermented beverage of Patagonia (Cadez
et al. 2019), which might explain its close relationship with other
species of the fermentation group, contrasting with other Hanseni-
aspora species of fruits such as H. uvarum (Martin et al. 2018, Valera
et al. 2020a). The genetic and oenological differences found in di-
verse studies (Viana et al. 2009, 2011, Medina et al. 2013, Martin
2016, Lleixa et al. 2016b, Giorello et al. 2019, Valera et al. 2020a), al-
low us to categorize the Hanseniaspora genus into two clusters that
have a techological: the fermentation group and the fruit group
(Fig. 4) (Martin et al. 2018). Interestingly, these two groups coin-
cide with the FEL and SEL reported by Steenwyk et al. (2019). This

fact might explain that the fermentation niche demands more
stable genomic events compared to the increased variability that
appears in the fruit group of species, as the fruit niche might be
highly diverse compared to grape juice.

In Table 1, a group of key genes that are related to wine fermen-
tation are shown; their presence in H. vineae is considered to be a
signal of wine domestication. One of the most interesting genes
is SSU1, which encodes a sulphur transport protein that increases
sulphite resistance of the yeast cell. This gene is present only in
the fermentation clade of Hanseniaspora. Notably, within eukary-
otes this gene has only been identified in some fungi within eu-
karyotes. Figure 5 presents a phylogenetic tree built with the group
of yeasts that contain SSU1.

Hanseniaspora vineae mitochondrial genome

Studies of mitochondrial genomes within the genus Hansenias-
pora are limited (Pramateftaki et al. 2006). We assembled the mi-
tochondrial genomes from two H. vineae strains. Figure 6 shows
some important features of these genomes. A worth mentioning
aspect is that there is remarkably different intron content be-
tween strains HV219 and HV205 of H. vineae. In particular, the
genes encoding COXI and cytochrome B exhibit high variability
within species that involves the very fast gain and loss of mo-
bile Group I self-splice introns as observed in S. cerevisiae. Specif-
ically in COX I gene, only the HV219 strain contains an intron lo-
cated between exons 1 and 2 that encodes endonuclease al5 al-
pha. Moreover in the same gene, in the region located between
exons 3 and 4 there is another Type I intron but this one is very
different between the two H. vineae strains described here. Finally,
in cytochrome B gene only HV219 contains an intron that also
contains an ORF encoding a maturase. Overall, these results il-
lustrate the existence of a highly dynamic composition of introns
in these two mitochondrial genes, which appears to be more fluid
than that observed in other yeast groups.

Ev_olgtion and a domestiqation model
within the genus Hanseniaspora

Overall, there is a clear trajectory of adaptations evidencing signs
of yeast domestication from the fruit ecosystem (Fig. 7). The main
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Figure 4. Phylogenetic tree obtained using the concatenated DNA sequences of nine genes of the alcohol fermentation pathway (CDC19, FBA1, PGI1,
PFK1, PFK2, HXK2, ENO1, PGK1, and PDC1). The tree was built using the neighbour-joining method. The robustness of nodes is indicated by bootstrap
values (%) calculated using 1000 pseudoreplicates. The entries in brackets correspond to NCBI BioSample identifiers. Interestingly, H. osmophila and H.

vineae diverged more recently from each other than to the other species of the fermenter group, and might be more efficient in fermentation as will be
discussed.
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Figure 5. Phylogenetic tree depicting the relationships and genetic distances among predicted amino acid sequences of SSU1 from different yeasts.
Amino acid identity (%) was calculated for each species against S. cerevisiae sequences. This gene is involved in one of the key functions related to
domestication for wine fermentation. It is a very peculiar gene, not found in eukaryotic cells other than fungi and is related to the sulphite resistance
during fermentation. Something similar is also observed with the gene encoding SUC2 (beta-fructofuranosidase), another enzyme, i.e. key in wine
adaptations of yeast. It is found in S. cerevisiae, other fungi, but not in other eukaryotes.
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High production of acetate Low production of acetate Lower production of acetate compared with Sc Moderate production of acetate

Low CN of ADH=4 Moderate CN of ADH <7 The higher CN of ADH=S of the genus. Up to 11% alc. High CN of ADH and AAD. Up to 15% alc.
Fast Evol. Linage FEL Slow Evolve Linage SEL Slow Evolving Linage SEL Higher production of higher alcohols

No sulfite resistance genes Sulphite resistance gene SSUI Sulphite resistance gene SSUI Higher production of MCFA.

No sucrose use Sucrose use SUC2 Sucrose use SUC2, but not fermentation Sucrose and maltose fermentation

Small genomes <4000 proteins Bigger genome 15% than fiuit species  The bigger genome of the genus, 4800 proteins The bigger genome, 6500 proteins
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Increase gene CN acetyl fe of ic alcohols x6.
o Thiamine dependent.
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Figure 7. Four-stage model of genetic adaptations that might explain the process of domestication within the genus Hanseniaspora, and how H. vineae
shows an approximation to the characteristics of the most adapted juice fermenting yeast: S. cerevisiae. The highly adapted species for ethanol
production lost some flavour pathways that reduced the formation of desirable aroma compounds, such as the benzenoid pathway and aromatic
higher alcohols production. This model might explain how the extreme specialization for ethanol fermentation reduced the activity of the secondary
metabolism, mainly flavour compounds. In each stage of the figure, domestication signals or genetic adaptations are described. Sc: S. cerevisiae; CN:
copy numbers; WGD: whole genome duplication event in Sc; and MCFA: medium-chain fatty acids.
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representative species in fruit is H. uvarum, which is closely re-
lated to other species such as H. guilliermondii and H. opuntiae,
that are not successful for fermentations above 6% of alcohol
by volume. Throughout the process of adaptation from fruits to
the fermentative ecosystem, clearly H. vineae is the most adapted
species.

In the last decade, many similarities of H. vineae with Saccha-
romyces were characterized, and this species of the genus was
found to be unique in having the capacity to ferment up to 10%—
11% of alcohol by volume (Martin et al. 2022b). The fact that it
has a higher percentage of glycolytic enzymes similarities with
Saccharomyces, and the presence of a significantly higher CN of
ADH genes compared to the rest of the genus, might explain its
increased ethanol resistance. Although the concept of domesti-
cation is still under discussion (Pontes et al. 2020), clear signs of
domestication appear in H. vineae but not in the other species
of this genus (Liti et al. 2009, Borneman et al. 2011, Libkind
et al. 2011, Almeida et al. 2014). These data suggest the exis-
tence in this species of a clear advanced stage of domestica-
tion for fermentation within the genus Hanseniaspora. Hanseni-
aspora vineae characteristics might help understanding adapta-
tion processes from fruit to juice fermentation niches. Interest-
ingly, adaptations found in H. vineae compared to Saccharomyces
show that some flavour pathways are still present in H. vineae
and explain the increased flavour synthesis, i.e. detected in this
species.

Future advances in the genetic and transcriptomic mecha-
nism utilized by H. vineae will be developed with new molecular
tools. Genetic manipulation of Hanseniaspora species is still very
limited, but recently some tools were developed for successful
transformation of H. uvarum (Badura et al. 2021). These studies
might be useful for H. vineae genetic modification, e.g. to improve
our knowledge of the mandelate pathway recently discovered for
the synthesis of benzenoids (Valera et al. 2020b, c), or to develop
the overproduction of the intense flavours of acetate esters of
higher aromatic alcohols.

Flavour and particular metabolism in
H. vineae

Wine aroma must be visualized not just as the sum of individ-
ual components, but the result of complex interactions between
many chemical compounds. Volatile components can interact
with each other, in a synergistic or antagonistic manner (Ferreira
etal. 2016). In this sense, from an organoleptic perspective the use
of H. vineae could provide distinctive features in comparison to the
use of conventional S. cerevisiae strains as it confers a moderate
fermentation process, but with a new balance of volatile metabo-
lites, with an increased formation of aromatic flavour compounds.
The use of H. vineae has been reported to be beneficial for many
types of wines. The contribution of this yeast to the aroma of white
and rosé wines has been highlighted at the pilot and winery lev-
els (Medina et al. 2007, 2013, Lleixa et al. 2016b, Del Fresno et al.
2020, Del Fresno et al. 2021b). The production of 2-phenylethyl ac-
etate represents the main contribution of H. vineae from the point
of view of wine volatile composition (Martin et al. 2022b). This
compound is characterized by its fruity, honey, and floral notes
with an olfactory perception threshold of 0.250 mg/l. As shown
in Table 2 in different fermentations using this yeast either in
pure form or in a sequential culture (with S. cerevisiae), using red
or white grapes of different varieties, the perception threshold is
exceeded in all cases, in a range of 2-60 times depending on the
type of vinification used (Medina et al. 2013, Martin et al. 2018,
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Del Fresno et al. 2021b). Although many of the data shown in Ta-
ble 1 are at the winery scale, where there might not be perfect
yeast implantation controls, a comparison of the metabolic ca-
pacity of B-2-phenylethyl acetate production of H. vineae with S.
cerevisiage shows thatitis on average 18 times greater (ranging from
1.1 to 90 times) (Table 2). This capacity can be explained by the in-
creased CN of genes that are expressed and have alcohol acetyl-
transferase (AATase) domains present in the H. vineae genome
(x6), compared to industrial S. cerevisiae strains (x2) (Giorello et al.
2019).

In wine, the presence of ethyl acetate and acetic acid at lev-
els above the perception threshold is undesirable being a clear
indication of the presence of microbial spoilage. But it has been
reported that at low levels the presence of these components
adds complexity and enhances the fruity aroma of the wine (Cliff
and Pickering 2006, Jackson 2017). Hanseniaspora vineae produces
similar or lower levels of acetic acid and a smaller increase in
ethyl acetate than S. cerevisiae (R average 1.2 and 1.8, respectively)
as shown in Table 2. However, the wines obtained in these fer-
mentations, instead of being associated with the presence of aro-
matic defects, have been assigned to fruity descriptors and in-
creased palate volume (Medina et al. 2013, Lleixa et al. 2016b, Del
Fresno et al. 2021b). These two key components of the sensory
perception of the wine are in equilibrium in wines produced with
H. vineae.

Phenylpropanoids synthesis pathways in H.
vineae. A model eukaryote

It was well-determined that at least in a synthetic medium
H. vineae produced high concentrations of monoterpenes and
sesquiterpenes compared to Saccharomyces (Martin et al. 2018) and
natural white wine fermentations (Del Fresno et al. 2020). Inter-
estingly, it was recently detected the formation of safranal in Al-
billo Mayor white wine by H. vineae above the threshold level, and
this aroma compound was not found in the same trials with H.
opuntiae or Saccharomyces control fermentations (Del Fresno et al.
2022). Studies are now underway to determine whether safranal
was synthetized de novo or by a particular biotransformation path-
way of H. vineae from grape precursors.

Benzyl alcohol, benzaldehyde, p-hydroxybenzaldehyde, and p-
hydroxybenzyl alcohol are synthesized de novo in the absence of
grape-derived precursors by H. vineae (Martin et al. 2016b). The
levels of benzyl alcohol produced by different strains of H. vineae
were 20-200 times higher than those measured in fermentations
with S. cerevisiae. Table 2 shows the results of different vinifica-
tions with H. vineae, including fermentations in mixed culture,
obtaining an average benzyl alcohol production 14 times higher
than in vinifications with S. cerevisiae solely. The absence of the
phenylalanine lyase pathway (PAL) in H. vineae suggests that ben-
zenoids synthesis necessarily depends on de novo synthesis from
chorismate (Martin 2016, Martin et al. 2016b). Recently, this fea-
ture has allowed the elucidation of the biosynthetic pathway
of these aromatic compounds in ascomycetous yeasts using H.
vineae as a model microorganism (Valera et al. 2020b). Benzyl al-
cohol is synthesized from phenylalanine through the so-called
mandelate pathway, which has been validated in S. cerevisiae us-
ing deletion mutants of key genes such as ARO10 encoding not
only phenylpyruvate decarboxylase but also a benzoylformate de-
carboxylase function (Valera et al. 2020c). Using *C precursors,
the authors showed that a simultaneous parallel biosynthetic
pathway in H. vineae synthetizes 4-hydroxybenzyl alcohol from
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tyrosine via the 4-hydroxymandelate pathway, which was con-
firmed in S. cerevisiae by decreasing yeast assimilable nitrogen
(YAN) levels in the synthetic mediums (Martin 2016). Interest-
ingly, the discovery of this pathway was key to understanding
the synthesis of a compound such as the coenzyme Q6 head,
the 4-hydroxy benzoic acid in ascomycetes fungi (Fernandez-del-
Rio and Clarke 2021). More recently, 4-hydroxymandelate was de-
tected in human cells (Banh et al. 2021), and the authors speculate
that these cells might be using the 4-hydroxymandelate pathway
proposed for yeast. Tyrosol is found in significantly higher concen-
trations in S. cerevisiae fermentations, but its acetate ester, which
was shown to increase its sensory impact, is highly produced in
coinoculations with H. vineae and not in S. cerevisiae fermentations
(Martin et al. 2018). Similar results were obtained with tryptophol
in fermentations with H. vineae, where practically all this aromatic
alcohol was acetylated to another little-known aroma compound,
tryptophol acetate. It is worth noting that this compound was not
found in Saccharomyces, or in H. osmophila and H. uvarum (Valera et
al.2021). These resultsindicate that some of the acetyl transferase
(ATF) genes that were identified in H. vineae are specialized in aro-
matic alcohols acetylation. Phenylpropanoid synthesis is clearly
dependent on the availability of nitrogenous nutrients. Tests with
different levels of assimilable nitrogen in fermentations with H.
vineae have shown that the reduction of DAP salts leads to an in-
crease of these aromatic compounds (Martin et al. 2016a). When
we decreased YAN levels in S. cerevisiae below 100 mgN/1, we could
detect some small concentrations of benzenoids formed by this
yeast.

Increase of acetoin in H. vineae

Acetoin affects the wine bouquet; it is of particular interest
as a precursor for the biosynthesis of 2,3-butanediol and di-
acetyl. Three possible metabolic pathways have been proposed
for acetoin biosynthesis in S. cerevisiae based directly on the
decarboxylation of pyruvate to form acetaldehyde (Cheynier et
al. 2010). One of the main factors affecting acetoin formation
is the intracellular redox state (NAD+/NADH ratio) and the in-
tracellular concentration of pyruvic acid (Cheynier et al. 2010).
In the case of H. vineae, a higher production of acetoin is ob-
served compared to conventional fermentations with S. cerevisiae
for the production of Chardonnay and Tempranillo wines (Ta-
ble 2). This is in agreement with what has been reported previ-
ously for apiculate yeasts (Cheynier et al. 2010). In the case of
2,3 butanediol, its production by H. vineae is on average a lit-
tle lower than that obtained by fermentation with S. cerevisiae
(Table 2).

Decrease of higher alcohols, ethyl esters,
and medium-chain fatty acids in H. vineae

Vinifications with H. vineae in different grape varieties show thatin
general a lower concentration of higher alcohols is produced com-
pared to Saccharomyces (Table 2). The mean R (relation between
compound concentration produced by H. vineae/compound con-
centration produced by S. cerevisiae) is greater than 1, although in
some vinifications the opposite result is obtained. This behaviour
observed for some vinifications can be explained by the ability
of H. vineae to form acetates from higher alcohols (Giorello et al.
2019), which reduces the alcohol concentration compared to vini-
fications with S. cerevisiae.
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Medium-chain fatty acids (MCFA) are synthesized from acetyl
Co-A and their high concentration is associated with toxic effects
on yeast, but they play a fundamental role as biosynthetic in-
termediates of long-chain fatty acids, which are essential con-
stituents in the cell membrane (Restrepo et al. 2019). The pres-
ence of MCFA is associated with descriptors that are not of-
ten desirable in wine aroma (acid, rancid, fatty, and cheese),
but are part of the pool of compounds conforming the com-
mon aroma base (Ferreira et al. 2016). Among the MCFA, hex-
anoic acid and octanoic acid have similar perception thresh-
olds and when analyzing wines fermented by S. cerevisiae, their
concentration far exceeds this threshold. As shown in Table 2,
this has been reported previously (Ferreira et al. 2000, Farifia
et al. 2015). For decanoic acid, its perception threshold is twice
that of hexanoic and octanoic acids and in conventional fermen-
tations it does not usually reach this threshold. Hanseniaspora
vineae produces a lower concentration of hexanoic and octanoic
acid (R = 0.6 and 0.5, respectively) compared to S. cerevisiae and
produces higher concentrations of decanoic acid that rarely ex-
ceeds its threshold (1 in 4 times reported). This MCFA balance
achieved by H. vineae from a sensory point of view could enhance
the fruity aromas due to other components originating from the
yeast.

Application and quality impact on
winemaking

Hanseniaspora vineae presents different outstanding characteris-
tics that make its industrial application possible and interesting,
namely resistance to sulphur dioxide (SO, and ethanol, exocel-
lular protease and B-glucosidase enzymatic activity, fast cell ly-
sis with early release of polysaccharides, DNA and proteins, ideal
for aging on lees and other highly produced flavours that are not
found in S. cerevisiae fermented wines. All these characteristics
make it a very interesting yeast for cellar application, since it al-
lows the production of wines with characteristics that differenti-
ate them from the rest without the sensory defect risks. It was suc-
cessfully used with different grape varieties, to produce increased
complexity of white wines with neutral grapes such as Trebbiano,
Ugni blanc, Airen, Albillo, or Macabeo, or to increase floral flavour
notes in Chardonnay, Viognier, or Petit Manseng, or rosé wines
produced with red varieties such as Tempranillo, Cabernet, and
Tannat.

One of the outstanding characteristics that gives it good appli-
cability at the industrial level is its resistance to SO,. This com-
pound is the main additive for winemaking when used moder-
ately at harvest time (2-4 g/HI) and depending on varieties pro-
tects grapes from oxidation in conventional or low input wine-
making processes (Tavares et al. 2021). Therefore, it is important
that the yeast to be used resists the presence of this compound in
the must. In a study carried out with 11 strains of H. vineae (Martin
2016), even though all the yeasts analyzed reduced their growth
as the concentration of SO, increased in the medium (Fig. 8, all H.
vineae showed a good performance under 75 mg/1 SO,, a consider-
ably high level at the industrial scale, where 50 mg/1 is considered
enough to protect grape juice processes before fermentation. Ex-
cept yeast strain C12 213F, all H. vineae showed similar SO, resis-
tance levels compared to the S. cerevisiae control. Indicating that
for most of the strains of H. vineae analyzed, the concentration
of SO, in the medium of 50 mg/l was acceptable. Some contrast-
ing reports described for other species of Hanseniaspora (Fleet and
Heard 1993), suggest that species such as H. uvarum have a very
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Figure 8. Growth measured as optical density (OD at 640 nm) recorded for each H. vineae strain at four SO, concentrations levels (mg/l). Data with the
same letter do not differ from each other (LSD test, 95% confidence level). QA23 was the S. cerevisiae control strain.

weak resistant capacity to SO, Thisis confirmed by the findings of
Valera et al. (2020a), where both H. vineae and H. osmophila present
the key gene SSU1 that confers resistance to sulphites as well as
S. cerevisiae and that is not found in the rest of the species of the
genus Hanseniaspora.

Another important characteristic to consider when selecting a
yeast for fermentation is its ability to tolerate the conditions of
the fermentation medium. Most non-Saccharomyces yeasts have
been described as poorly tolerant to the presence of high con-
centrations of sugars or ethanol and responsible for fermentation
defects and/or stuck fermentations, which is why they have not
been selected for winemaking (Toit and Pretorius 2000, Padilla et
al. 2016). With the passage of time, these concepts about noncon-
ventional yeasts have changed. In the work carried out by Viana et
al. (2011) on Tempranillo musts coinoculated with S. cerevisiae in
a sequential manner, they were able to demonstrate the presence
of H. vineae in the final stages of fermentation. More recently this
species was again identified at the end of fermentation (Lleixa et
al. 2016a), showing the ability of H. vineae to resist high ethanol
concentrations. This was also seen in ice-wine production where
H. vineae in sequential inoculation with S. cerevisiae had a better
growth rate and higher cell number during fermentation com-
pared to another fermentation coinoculated with M. pulcherrima
(Zhang et al. 2018). In agreement with these works are the re-
sults obtained by Valera et al. (2020a), where H. vineae was able to
grow in conditions of higher alcohol content, 10% ethanol, com-
pared to other species of the genus Hanseniaspora sp., such as the
species of the fruit clade shown in Fig. 4, that were not able to
grow when alcohol was above 5%-10% by volume. These works
exemplify the ability of H. vineae yeasts to adapt to fermentation
conditions compared to other non-Saccharomyces species. Interest-
ingly, Giorello et al. (2019) reported that H. vineae, unlike the rest
of the species of the genus Hanseniaspora, had a higher CN of ADH
genes (see Fig. 5), which may be associated with its high toler-

ance to ethanol and other adaptations to fermentation conditions
(Fig. 8).

Extracellular enzymes of H. vineae in
winemaking

Another desirable characteristic present in H. vineae is the ex-
tracellular enzymatic activity like B-glucosidase and protease,
as yeasts with enzymatic activity are able to transform grape
compounds and in so doing, modify the sensory profile of the
wines.

Some of the compounds that affect the organoleptic qual-
ity of wines are found in the must in conjugated form, bound
to a glucose moiety in the form of B-glucosides. This implies,
in the case of volatile aroma compounds, that they are not yet
in their volatile form. As for the precursors of aromatic com-
pounds, their hydrolysis determines the typicity of certain va-
rieties such as Muscats and other aromatic varieties such as
Chardonnay, Riesling, or Cabernet. The glycosidic g-(1-4) bonds
are characteristic of the aroma precursors present in grape musts
and are the most frequently cleaved by yeasts. Therefore, the
presence of B-glucosidase activity in yeasts is of great interest
as it allows breaking these bonds and releasing these aromatic
precursors.

For H. vineae, B-glucosidase activity has been reported in sev-
eral papers. In a study with 11 strains of the species, all showed
activity in vitro with plating methods at pH 6, without significant
differences between strains (Martin 2016). This agrees with results
previously reported by us (Pérez et al. 2011), but in this case differ-
ences among strains could be observed. In another work (Lopez
et al. 2015), the presence of B-glucosidase activity in H. vineae
was also determined at an optimum pH of 6 in contrast to an-
other report where activity could be observed at pH 3.5 (Mostert
2013). There were other reports (Lopez et al. 2014) about H. vineae

202 4990100 L.z U0 1asn 434N Aq SZHEE0.L/010PEOYIASWY/EE0L 0 L/10P/AIoILE/IASWaY/WO0" dNo"olWapedE//:sdny wolj papeojumoq



glucosidase activity in different strains with plating methods. In-
terestingly, in our experience many plating methods to detect en-
zymatic activity at the wine pH (3-4), are sometimes not seen in
agar plates (glucosidase, protease, or killer toxins), however, they
are functionally at real winemaking conditions in grape juice (Car-
rau et al. 2020).

From an oenological point of view, proteolytic activity is rele-
vant because it is responsible for the hydrolysis of proteins and
peptides present in musts and wines and, therefore, for obtain-
ing protein stability specially in white wines (Waters et al. 1994,
2005). This provides a possible solution to address problems as-
sociated with clarification, stabilization, and filtration of wines.
It contributes to reduce the haze in finished and bottled white
wines, which causes great economic losses for the wine indus-
try because it is perceived as a defect by consumers (Cosme et
al. 2020, Saracino et al. 2021). In addition, the hydrolytic process
releases small peptides and amino acids to the medium making
them available to yeasts as a nitrogen source and, in certain cir-
cumstances, avoiding sluggish fermentations caused by nitrogen
deficiency in the must.

For H. vineae, protease activity has been determined on several
occasions.

During the characterization of the extracellular protease ac-
tivity of 23 strains of H. vineae on skim milk medium plates, all
presented protease activity at pH 6, three standing out for their
higher activity, as indicated by the presence of a clear halo around
the colony (Martin et al. 2022a). These results confirmed those re-
ported by other authors (Lopez et al. 2014).

Recently, by means of heat stability tests, the ability to reduce
the appearance of haze in Sauvignon Blanc wines fermented with
two strains (Martin et al. 2022b) and with twenty strains (Martin
et al. 2022a) of H. vineae were evaluated. A total of four of the
strains significantly reduced the haze of the wine compared a con-
trol fermented only with S. cerevisiae. These studies show that the
presence of protease activity might reduce the needed amount
of bentonite by 50% to achieve protein stability, reducing the risk
of losing flavours. Protease activity is strain-dependent and not
species-dependent.

Usually many wine yeasts degrade a certain percentage of
malic acid of grape juices. Reduction of this acid sometimes might
be attractive for some unripe grapes in cool regions (Benito et
al. 2012, Loira et al. 2018) or for red wines. Recently, malic acid
degradation by H. occidentalis was reported with a higher percent-
age than any Saccharomyces strain (van Wyk et al. 2022). Hansenias-
pora vineae strains have some levels of degradation of malic acid
that are currently under study mainly for white base sparkling
wines due to the interest in avoiding the malolactic fermenta-
tion by LAB (Roman Villegas et al. 2021). Although the majority of
Hanseniaspora species have the gene for the malate dehydrogenase
synthesis, they do not have the malate cell transporter as hap-
pens with all Saccharomyces species. The lack of this transporter
significantly limit malic acid degradation, as opposite to what
happens in Schizosaccharomyces species. However, further studies
are needed to understand how some of the species of Hansenias-
pora degrade an increased level of malic acid compared to Saccha-
romyces. It is known in Pichia kudriavzevii, that the transporters of
fumarate and succinic acid of the JEN family genes (Xi et al. 2021),
play a role in malate import capacity into the cell. Interestingly,
we have found these genes in H. vineae, and with highly protein
similarity with Pichia JEN proteins.
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Curiously, it was reported in H. uvarum that secrets active killer
proteins similar to those of Saccharomyces produced by virus like
particles of double stranded RNA (Radler et al. 1985, 1990, Schmitt
and Neuhausen 1994). This killer activity was demonstrated re-
cently against many pathogenic yeasts and other fungi in vitro
(Hameed et al. 2019). However, we have screened 23 different
strains of H. vineae for killer activity against other Hanseniaspora-
and Saccharomyces-sensitive strains and all behaved as neutral.
They did not kill and were not killed by Saccharomyces killer strains
(data not shown).

Decrease of biogenic amines, and fast lysis

Another interesting feature of H. vineae, is the ability to influ-
ence the formation of biogenic amines. Cofermentations of S.
cerevisiae with H. vineae show a decrease in the concentration of
amines in comparison to fermentations with S. cerevisiae alone
(Medina et al. 2013, Zhang et al. 2022a). The mechanism that
H. uvarum uses to degrade some biogenic amines was described
recently (Han et al. 2022), and may be the same as that of
H. vineae.

Another aspect to consider when using H. vineae during fer-
mentation is its contribution to the mouthfeel of the wine, as it
has been shown that during fermentation there is an early re-
lease of polysaccharides, DNA, and proteins through the cell wall.
In turn, these compounds are of higher molecular weight than
those released by S. cerevisiae, thus allowing a better mouthfeel
sensation ideal to produce wines aged on lees (Del Fresno et al.
2020). Lysis of H. vineae cells takes place as soon as sugars are ex-
hausted from the grape must, reducing the need for lees contact
from months to weeks compared to Saccharomyces (Carrau et al.
2020).

Hanseniaspora vineae and wine colour

Few studies have looked at the influence of yeast on wine
colour although it is known that they synthetize some key com-
pounds that promote anthocyanin reactions, such as the syn-
thesis of compounds as pyruvic acid or acetaldehyde (Medina
et al. 2018). A synthetic red grape juice medium (RGJM) sup-
plemented with an anthocyanin extract obtained from grape
skins of Vitis vinifera cv. Tannat, prepared according to a previ-
ous work (Medina et al. 2005), showed the formation of vitisin
A, vitisin B, malvidin-3-glucoside-4-vinylphenol, and malvidin-
3-glucoside-4-vinylguaiacol by H. vineae. In that study, H. vineae
Hv205 showed the highest chemical age value with no corre-
lation found between colour intensity and total anthocyanin
content.

In addition, the cofermentation of H. vineae with S. cere-
visizge resulted in a significantly higher concentration of ac-
etaldehyde when compared with the pure culture of S. cere-
visiae. The HPLC-DAD-MS analysis confirmed an increase of vi-
tisin B, demonstrating the positive effect of mixed cultures of
H. vineae with S. cerevisiae that increase acetaldehyde forma-
tion, a key compound for the formation of vitisins (Medina et al.
2016).

Interesting results were obtained recently in the production
of rosé wines with Tempranillo and Albillo grapes of Ribera del
Duero. A better colour intensity resulted from the application of
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H. vineae in sequential inoculation with Saccharomyces (Del Fresno
et al. 2021b). Winemaking was carried out in oak and stainless
steel barrels, and H. vineae wines resulted in up to 44% more an-
thocyanin concentration in the final wines.

Practical application at winery scale and
H. vineae implantation

White wines using H. vineae have been produced on a commercial
scale since 2007 (Medina et al. 2007) and could be sensorially dif-
ferentiated from wines produced by conventional Saccharomyces
fermentations (Medina et al. 2013, Lleixa et al. 2016a, Martin et
al. 2018, Del Fresno et al. 2020, Del Fresno et al. 2021a). It is clear
from a practical point of view that to produce increased and in-
tense flavour compounds of higher aromatic alcohols and their
esters during winemaking, H. vineae likes low temperatures (15—
22°C), grape must of low YAN (around 100 mgN/l), and moderate
microaerobic conditions such as open tanks and barrel fermenta-
tions (Yan et al. 2020). The species requires thiamine addition of
about 0.5 mg/l as it cannot synthetize this vitamin, but diammo-
nium phosphate (DAP) addition should be avoided so as not to
inhibit phenylpropanoid synthesis. Hanseniaspora vineae ferments
glucose and fructose well, but not sucrose, so chaptalization with
the disaccharide of sugarcane should be also avoided (Carrau et
al. 2020).

Although red wines made with these treatments can be dif-
ferentiated by chemical techniques, the sensory differentiation
or qualitative evaluations of these processes at the winery scale
were less clear. Our observation is that young red wines can
be more easily differentiated than full-bodied and powerfully
structured red wines, and even less so after barrel maturation.
However, chemically, red wines made from H. vineae showed the
presence of increased concentrations of benzenoids, acetoin, 2,3-
butanediol, and acetate esters derived from aromatic alcohols
such as tryptophol, tyrosol, and phenyl ethanol compared to con-
ventionally vinified wines (Valera et al. 2021). Metabolic finger-
printing by gas chromatographic analysis (Howell et al. 2006) al-
lowed us to demonstrate that H. vineae had contributed to the
aromatic chemical composition on an industrial scale of wine fer-
mentation (Martin et al. 2022b). Confirmation of a good implanta-
tion is easily effected by microscopy due to the distinctive cellu-
lar shape of apiculate yeast cells (see Fig. 7), although the analy-
sis of the metabolic chemical fingerprint can determined its real
contribution.

Nutrients and metabolites under mixed
cultures. The concept of friendly yeasts

Saccharomyces starters are highly competitive with the natural
community of grapes and grape-musts of a certain terroir, de-
fined as a microbial terroir (Gilbert et al. 2014, Carrau et al. 2020).
High alcohol excludes other yeast species from the grape juice
at the winery. Saccharomyces has developed several mechanisms
to control this environment, such as rapid removal of nitrogen
and vitamins, high production of ethanol and CO,, increasing
temperature, and the production of certain metabolites that are
considered toxic to many yeast species cells such as higher alco-
hols, short- and medium-chain fatty acids, and isoacids (Carrau
and Henschke 2021). In the last two decades, mixed cultures fer-
mentations have been studied in order to increase flavour diver-
sity and sensory complexity of wines. The facts that defined Sac-
charomyces strains as ‘selfish yeasts’ have promoted work with se-

quential inoculation for mixed cultures conditions to give 24 or 48
hours to the non-Saccharomyces species to act in the medium. Se-
quential inoculation methods allowed non-Saccharomyces strains
to influence the fermentation with diverse flavours for 1 or 2 days
before introducing the Saccharomyces strain to the must to en-
sure the completion of fermentation (Domizio et al. 2011, Jolly
et al. 2014, Loira et al. 2015, Borren and Tian 2021). The defini-
tion of H. vineae as a ‘friendly yeast’ is supported not by a hu-
mane sympathy, but by its metabolic characteristics. Unlike Sac-
charomyces, H. vineae produces very low levels of compounds con-
sidered toxic to cells, such as higher alcohols and MCFA (an aver-
age of ten times less), and instead has a high capacity to acety-
late alcohols, which is considered a form of medium detoxifica-
tion, decreasing the free acids and alcohols concentrations (Ped-
die 1990). All these aspects together with its capacity to pro-
duce moderate temperature and CO, levels during fermentation
makes H. vineae an interesting model of friendly yeast that al-
lowed growth of other yeast strains compared to the efficient
Saccharomyces’ single strain fermentations (Carrau and Henschke
2021).

Application of H. vineae in beer

More recently, H. vineae has begun to be studied for its use
in the brewing industry, particularly for craft beer production.
In this sense, H. vineae has been characterized for sugar uti-
lization, alcohol production, aromas, phenolic off-flavours (POF),
sensory trials, hops sensitivity, and organic acids production in
beers.

Regarding sugar utilization, H. vineae is only able to ferment the
wort sugars glucose and fructose (no sucrose, maltose, or mal-
totriose utilization), resulting in increased residual maltose sugar
concentrations and contributing to enhanced sweetness in beers
(Bellut et al. 2018, Bellut and Arendt 2019, Larroque et al. 2021,
Postigo et al. 2022). The inability to ferment maltose and mal-
totriose introduces the possibility of brewing alcohol-free beer
(AFB) (< 0.5% v/v) (Bellut et al. 2018). Bellut et al. (2018) conducted
a study with five strains isolated from kombucha, one of them be-
ing H. vineae, which were compared to a commercially applied AFB
strain Saccharomycodes ludwigii and a S. cerevisiae brewer’s yeast.
An experienced sensory panel could not discriminate between
the H. vineae AFB and the one produced with the commercial AFB
strain.

Additionally, Bellut and Arendt (2019) reported nonalcoholic
beer reached final ethanol contents of 0.34% v/v. Again, in a sen-
sory analysis with an expert sensory panel, the AFB produced
with Hanseniaspora could not be distinguished from the AFB pro-
duced with the commercially employed S. ludwigii strain. Hanseni-
aspora vineae was given the attributes of ‘black tea’, ‘honey’, and
‘caramel-like’.

The results mentioned above indicated its suitability in AFB
brewing, opening the possibility to produce AFB product category,
which offers economic benefits in the form of a growing market, a
lower tax burden, enables brewers to expand their variety of prod-
ucts, and promote healthier and more responsible alcohol con-
sumption.

In a recent study, Larroque et al. (2021) reported a cofermen-
tation beer treatment using a native yeast strain of H. vineae
(Hv205), because of its reported capacity to produce derived aro-
matic amino acids acetates, such as 2-phenylethyl acetate and
benzyl alcohol in wines as is shown above. The results demon-
strated that even though Hv T02/05F was maltose negative, it was
a promising yeast for the production of fruity beers in mixed cul-
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ture for its contribution to the aromatic profile by a high ester
production, which adds fruitiness nuances to beer. In this study,
mixed cultures of native non-Saccharomyces yeast strains were
tested (Hv205, Zygoascus meyerae, Hv T12_135F, and Pichia anomala
BCMO15_2), resulting that the mixed culture of S. cerevisiae Sc
00/35 + Hv205 had the highest fermentation capacity and the
highest population of viable cells at the end of fermentation. Mon-
itoring population dynamics and H. vineae implantation during
fermentation, on the fourth day of fermentation, S. cerevisiae 00/35
dominated the culture, while the population of H. vineae was 32%,
and 13% at the end of fermentation.

Postigo et al. (2022) confirmed previous reports for cofermenta-
tion studies (Larroque et al. 2021), and under single fermentation
for low alcohol beer production (Bellut et al. 2018, 2019).

Regarding aromas in beer, Budroni et al. (2017), and Callejo
et al. (2019) reported that higher alcohols are the most abun-
dant organoleptic compounds generally regarded as desirable.
These compounds impart refreshing, floral and pleasant notes
in concentrations below 300 mg/l, and add complexity to the
beer. The two most important higher alcohols in beers are isobu-
tanol and isoamyl alcohol. In this sense, the results reported by
Postigo et al. (2022) suggested that H. vineae (22.51-43.43 m/l)
was a poor/medium producer of higher alcohols compared to S.
cerevisiae (119.55 mg/l), as shown in wines. Hanseniaspora vineae
was below the threshold levels for aldehyde and ketone pro-
duction. For acetoin, H. vineae showed higher production than
the commercial Saccharomyces strains, which is consistent with
the reported data in wines. Hanseniaspora vineae produced low
concentrations of y-butyrolactone, which was contrary to re-
sults obtained in wine studies (Giorello et al. 2019). This com-
pound imparts a sweet and worty flavour to beer. The absence
of phenolic aromas in the sensory analysis confirmed that this
species is POF negative (the phenolic aroma is associated mainly
with a clove-like aroma) (Postigo et al. 2022), which is a desir-
able selection criterion for some brewing yeasts (Burini et al.
2021).

Additionally, Bellut et al. (2019) confirmed the absence of POF
production and showed no signs of sensitivity toward iso-a-acids
(hops component) concentrations of up to 100 mg/1.

Finally, another possible brewing application with H. vineae has
been its use to produce sour beer. Osburn et al. (2018) reported for
H. vineae an excellent attenuation, lactic acid production, and de-
sirable sensory characteristics, positioning it as a viable alterna-
tive to lactic acid bacteria (LAB) for the production of sour beers.
They suggested a new LAB-free paradigm to produce sour beerin a
‘primary souring’ because the lactic acid production and resultant
PH decrease occurs during primary alcoholic fermentation. Simi-
lar results have been reported by de Souza Varize et al. (2019). In
this study, H. vineae has been used to produce sour beers in a sin-
gle fermentation step, without the need of LAB for souring. The
resulting beers showed both lactic tartness and fruity aromatic
and flavour notes. In our experience with wines, we never found
production of lactic acid by H. vineae.

Application of H. vineae in other fermented
foods

Cider

Apple juice to produce cider is also an interesting source of Hanse-
niaspora species (Valles et al. 2007, De Arruda Moura Pietrowski
et al. 2012, Al Daccache et al. 2020a, b, 2021). Hanseniaspora vinedae
has the potential to produce cider in single yeast fermentation
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processes up to 10% by volume (Tournas et al. 2006, Wei et al.
2019, Hou et al. 2022). This is an interesting application for the
species as complete fermentation might be done with single or
mixed cultures of strains of other Hanseniaspora species indepen-
dently of Saccharomyces strains. Aromatic acetate esters were pro-
duced at significantly higher concentrations compared to con-
ventional fermentation processes with Saccharomyces at optimal
temperatures of about 20°C (Hou et al. 2022). Some nutrient dif-
ferences between apple juice and grape juice very probably have
some effects indicting the need for further studies to understand
the best conditions to obtain high quality ciders (Gschaedler et al.
2021).

Tequila and kombucha

Hanseniaspora vineae is a component of the native community of
yeasts responsible for the fermentation of agave juice in the pro-
duction of Tequila (Lachance 1995). The species was used to fer-
ment agave and some difficulties in completing the fermentation
were solved by the addition of yeast extract and not ammonium
phosphate, a more common practice (Gonzélez-Robles et al. 2015).
This may be due to the lack of de novo synthesis of thiamine,
i.e. characteristic in H. vineae (Carrau and Henschke 2021) and in
other Hanseniaspora species (Seixas et al. 2019).

The evaluation of the application of H. vineae in agave fermen-
tation was that it increased fruity flavour in the distillates. We
could not find any published reference on the use of H. vineae in
kombucha fermentation; this beverage is based on tea infusions
with some other fruit components depending on the producer.
However, our first trials with the addition of H. vineae in the ini-
tial mixed culture resulted in a decrease of acetic acid production
and with an increased fruity sensory character in the final bever-
age (Peyrot Andrada 2021). Further studies are required to evalu-
ate the potential of this species for kombucha.

Bread

Baker’s yeast has been utilized for centuries and S. cerevisiae has
always played an important role in the inocula. Depending on the
processes, LAB or other yeasts may play a role. The key factor is
the production of CO, for increasing dough volume, but secondary
metabolism also increases the flavour complexity of the bread. Al-
though very traditional production includes many yeast species,
in the last decade alternative nonconventional yeast species have
been explored to increase diversity with the commercial Saccha-
romyces usually added (Zotta et al. 2022). It was not expected
that apiculate yeast might function for this process, but a few
reports showed promising results with H. uvarum and H. vineae.
Recently, H. vineae was successfully applied with good and even
superior results for leavened doughs than Saccharomyces in lab-
oratory tests (Takaya et al. 2019, 2021). Sucrose was replaced by
glucose sources (fruit juices, honey, or commercial glucose), as
H. vineae does not have the capacity to hydrolyse the former fer-
mentatively. These authors confirm the increased flavour com-
plexity produced by H. vineae with the production of acetoin and
phenyl ethyl acetate. Further studies will contribute to a better
understanding the potential of H. vineae for bread commercial
application.

The timeline of the discovery of H. vineae since
1957
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History of the wine yeast Hanseniasporavineae

First H. vineae was isolated from vineyard soils in South
Africa. New apiculate species with pseudomycelium
and wartiness ascospore walls.

Van der Walt and Tscheunschner. 1957.

Characterization of bipolar budding scars in apiculate
yeasts and H. vineae very different than Saccharomyces

multipolar division scars. Streiblova et al. 1964.

O

Firstthree strains HV205, HV225 and
HV219 of H. vineae were isolated during
Tannat red wine fermentationsinan
Uruguayan winery. Medina et al. 2007.

HV205 first
comercial wine
produced with
Chardonnay
barrel fermented.
Medina et al. 2007
and 2013.

HV20S first liquid
commercial
preparation by Lage
y Cia, Uruguay.

Benzenoids and isoprenoids were
identified as key flavor fruity aromas

produced by HV. Viana et al. 2011 ; Medina et
al. 2013; Martin et al. 2016; Del Fresno et al. 2021.

H. vineae HV205 was the first apiculate yeast genome to be
completely sequenced. Giorello et al. 2014 and 2018, Carrauet al.

2015 ;Projects ANII H. vineae 2013-2022.

HV20S firstactivedry
yeast commercial
preparation by
Oenobrands France.

H. vineae HV205
was launched in
the winemaking
market by
Oenobrands.

VINEAE

Hanseniaspora vincae
# HV205 - SELECTION UNIVERSITY OF URUGUAY

HV slow D by Si vk et al. 2019.
i v of Mandelate pathway for Q6
synthesis in yeast Valera et al. AEM 2020.
Characterization of HV as a friendly yeast to
increase yeast diversity.

Carrau and Henschke, 2021.

Discovery of a unique eukaryotic cell
cycle arrest at G2 and a fast lysis
process. Schwarz et al. 2022; Del

Fresno et al. 2020.

Figure 9. Timeline of relevant events in H. vineae history and its application for winemaking. After 20 years of research and development studies at our
laboratory and winery level, a strain Hv205 was finally commercially launched this year by Oenobrands France.

Conclusions and future perspectives

In the last 20 years it has been shown that H. vineae posseses un-
usual characteristics within the genus Hanseniaspora. Species of
this genus predominate in fruits, whereas H. vineae shows a spe-
cial adaptation to fermentation. The species shares many simi-
larities with Saccharomyces as opposed to congeners such as H.
uvarum. The data presented in this review demonstrate that H.
vineae is an ancestral fermenter that evolved with some key gene
changes from fruit to fermentations niches. The increased similar-
ity of glycolytic enzymes to Saccharomyces, the presence of genes

such as SSU1 and SUC2, and the increased CN of ADH genes, are
good examples. We propose here that this species would be an ex-
cellent cell model to understand the concept of domestication for
fermentation.

We have summarized the important contribution of H. vineae
to the flavour phenotype in wines, and in other fermented prod-
ucts that are under study today in many research groups on food
science, such as beer, bread, and cider. Today, H. vineae is the first
apiculate yeast available commercially.

Finally, H. vineae can make a significant contribution as a model
eukaryotic cell for understanding the phenolic aroma compounds
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pathways that are very poor in the Saccharomyces genus. Many of
the compounds in the phenolic group are very important not only
for flavours in foods, but also as rich antioxidants or bioactive
compounds for human nutrition. Examples of this are the precur-
sors of the coenzyme Q in eukaryotes, or many other active com-
pounds that are found uniquely in plants. Winemakers, masters
of food fermentation, biotechnologists, and scientists will enjoy
working with this particular yeast species of the genus Hansenias-
pora.
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