
SDN-Based Slicing Testbed for 5G Networks
Pablo Bertrand

Universidad de la República
Montevideo, Uruguay
pbertrand@fing.edu.uy

Claudina Rattaro
Universidad de la República

Montevideo, Uruguay
crattaro@fing.edu.uy

Antonio Hidalgo
Universidad de Extremadura

Cáceres, Spain
ahidalgof@unex.es

David Cortés-Polo
Universidad de Extremadura

Cáceres, Spain
dcorpol@unex.es

Jesús Calle-Cancho
Universidad de Extremadura

Cáceres, Spain
jesuscalle@unex.es

Abstract—The evolution of mobile networks to 5G has introduced a
key concept such as network slicing which allows network providers
to create multiple logical networks over a physical infrastructure to
satisfy the growing user demand on the network. In this work, we
present an open-source, SDN-driven testbed for 5G standalone network
slicing that enables dynamic throughput management via both reactive
and predictive controllers. Hosted on Proxmox VE, our architecture
combines Open5GS for the 5G core, UERANSIM and srsRAN for RAN
emulation and real-world SDR connectivity, OpenDaylight as the SDN
controller, and Open vSwitch for data-plane slicing. Two adaptation
strategies—a threshold-based allocator and an LSTM-based predictor
trained on VoD traffic—are evaluated through throughput measurements.
Our results demonstrate that both schemes enforce slice isolation and
guarantee prioritized bandwidth under variable loads, with the LSTM
approach offering smoother performance during traffic surges. This
modular platform opens a reproducible path for rapid prototyping of
slice orchestration policies and paves the way for advanced AI/ML-driven
slicing.

Index Terms—Network Slicing, 5G, Testbed, SDN, LSTM

I. INTRODUCTION

The evolution of 5G networks has introduced network slicing,
a paradigm that enables the creation of multiple virtual network
instances over a shared physical infrastructure, each tailored to spe-
cific application or service requirements. This approach is essential
for addressing the diverse demands of modern wireless applica-
tions, particularly the three main use cases defined by the Interna-
tional Telecommunication Union (ITU): enhanced Mobile Broadband
(eMBB), Ultra-Reliable Low-Latency Communications (URLLC),
and Massive Machine-Type Communications (mMTC) [1].

According to the 3rd Generation Partnership Project (3GPP), a
network slice is defined as a logical network that provides specific
network capabilities and characteristics, supporting various service
properties for network slice customers. The 5G system is designed
to offer optimized support for a wide variety of communication
services, different traffic loads, and diverse end-user communities.
For instance, services utilizing network slicing may include Vehicle-
to-Everything (V2X) communications, seamless eMBB services with
Fixed Mobile Convergence (FMC), and massive IoT connections.
Moreover, it enables emerging applications such as real-time cloud
gaming, 8K video streaming, immersive augmented and virtual
reality (AR/VR) experiences, and live broadcasting over mobile
networks—use cases that demand high bandwidth, ultra-low latency,
and consistent quality of service [2].

The management and orchestration of these network slices are
crucial for operators to effectively support their communication
services. In addition, they enable new business models by allowing
network resources to be allocated and monetized on-demand, tailored

to the specific needs of vertical industries and third-party service
providers [3]. Key technical aspects of network slice management
include:

• Service Level Agreement (SLA) requirements: defining and
ensuring compliance with the performance metrics agreed upon
with network slice customers.

• Performance measurements and Key Performance Indicators
(KPIs): monitoring network slices to ensure they meet the
desired performance standards.

• Management data analytics: utilizing data to optimize network
slice performance and resource allocation.

• Closed-Loop Communication Services Assurance: Implement-
ing automated feedback mechanisms to maintain and improve
service quality.

• Management of non-public networks: handling private networks
that utilize network slicing for specialized services.

• Network slice security: ensuring robust security measures are in
place to protect each network slice.

To implement network slicing efficiently, Software-Defined Net-
working (SDN) provides a programmable control mechanism that
abstracts and centralizes network management. Together with Net-
work Function Virtualization (NFV), SDN enables the decoupling of
the control plane from the data plane, allowing for highly flexible and
dynamic resource allocation [4]. Each network slice can be indepen-
dently configured to meet specific performance requirements—such
as latency, bandwidth, reliability, and security—making it suitable for
a wide range of use cases [5]. This capability is particularly crucial
in scenarios where multiple services coexist and real-time adaptation
of network resources is required to maintain quality of service (QoS).
By dynamically adjusting bandwidth and priority levels across slices,
SDN enhances the responsiveness and efficiency of the network
infrastructure.

While network slicing provides the architectural foundation for
service differentiation, the dynamic provisioning of slices—especially
in response to fluctuating demand and heterogeneous service re-
quirements—remains an open research challenge. Efficient resource
allocation mechanisms must account for varying traffic patterns,
latency constraints, and priority levels in real time. In this context,
artificial intelligence (AI) and machine learning (ML) have emerged
as a promising approach to enhance decision-making, automate
orchestration, and improve the scalability of slice management.

In this work, we present a modular and fully open-source 5G
testbed that leverages SDN-based network slicing to dynamically
allocate resources. The testbed is built on Proxmox as a virtualization
environment and integrates Open5GS as the 5G Core Network,979-8-3315-3797-5/25/$31.00 ©2025 IEEE

OpenDaylight (ODL) as the SDN controller, Open vSwitch (OVS)
for managing traffic flows, UERANSIM to simulate the Radio Access
Network (RAN), and srsRAN to support external gNB connectivity
with real-world traffic and commercial User Equipment (UEs).

A key innovation of this testbed is its adaptive slice throughput
management, controlled via SDN. Two adaptation strategies are
implemented:

• Threshold-based approach: adjusting slice bandwidth based on
predefined utilization limits.

• Machine learning-based approach: employing Long Short-Term
Memory (LSTM) neural networks to predict traffic patterns and
proactively adjust resource allocation.

These approaches ensure efficient resource utilization and maintain
performance isolation, guaranteeing that high-priority slices receive
sufficient bandwidth even under network congestion. The open and
extensible nature of this platform makes it a valuable tool for advanc-
ing research in AI-driven network orchestration and reproducible 5G
experimentation.

This paper aims to demonstrate how SDN-based control combined
with open-source 5G components can enable dynamic, intelligent,
and reproducible slice management. By comparing reactive and
predictive allocation strategies, we assess their performance in terms
of resource efficiency and service differentiation.

The remainder of this paper is organized as follows: Section II
discusses related work on network slicing and SDN-based resource
allocation. Section III details the testbed architecture, including
hardware and software components. Section IV explains the slice
adaptation mechanisms. Section V presents conclusions and future
directions.

II. RELATED WORK

Recent years have seen significant progress in the development of
5G slicing testbeds and SDN-based slicing mechanisms. Several re-
search groups have demonstrated the feasibility of dynamic resource
allocation and QoS assurance using SDN/NFV paradigms. Below, we
highlight some of the most relevant and comparable initiatives to our
own work.

Pineda et al. [6] present one of the first comprehensive open-source
deployments of a 5G Standalone (SA) testbed with SDN capabilities.
Their platform integrates Open5GS for the 5G Core, UERANSIM and
srsRAN for the RAN and UE, OpenDaylight (ODL) as the SDN con-
troller, and Open vSwitch (OVS) for data-plane forwarding. Two sce-
narios are demonstrated—one fully virtualized with UERANSIM and
another hybrid setup using srsRAN over SDR hardware—showing
how network slicing configuration and SDN policies can be applied
to shape throughput and latency. Our architecture is directly inspired
by this work, but has some key differences: we adopt Proxmox VE
for virtualization to simplify VLAN and bridge management, we
split control- and user-plane functions into separate VMs for finer
isolation, and we augment the basic slice configuration with dynamic
threshold- and machine-learning-based adaptation mechanisms.

Esmaeily et al. [7] introduce 5GIIK, a cloud-native SDN/NFV
testbed that orchestrates E2E slices across RAN, transport, and
core domains. Leveraging ETSI NFV MANO components (OSM
as the orchestrator and OpenStack as the VIM), 5GIIK emphasizes
multi-tenancy, real-time VNF onboarding, and dynamic slice provi-
sioning. While 5GIIK excels at automated slice lifecycle management
and supports multiple access technologies, it does not integrate a
full 5G SA core or physical SDR nodes. In contrast, our testbed
sacrifices NFV MANO complexity in favor of a light, SDN-centric
control plane (OpenDaylight) and a fully SA stack (Open5GS +

UERANSIM/srsRAN), enabling rapid prototyping of slice adaptation
logic.

Ye et al. [8] propose a theoretical framework for E2E QoS
provisioning via network slicing, introducing dynamic radio resource
slicing in the wireless domain and bottleneck-resource generalized
processor sharing (BR-GPS) in the wired NFV domain. Their work
formulates optimization problems to allocate bi-resources (CPU and
bandwidth) among service function chains, guaranteeing isolation
among eMBB, URLLC, and mMTC. Although highly insightful,
this approach remains analytic, without an accompanying prototype.
Our contribution complements their framework by delivering an
open-source testbed where these resource-slicing concepts can be
experimentally validated under realistic traffic conditions.

Fanibhare et al. [9] present TINetS3, an SDN-driven slicing mecha-
nism tailored to the Tactile Internet. Using OVS under OpenDaylight,
they demonstrate three scenario-based algorithms (topology, service,
and emergency slicing) on an emulated network, and validate per-
formance via throughput and RTT measurements. While TINetS3
highlights the versatility of SDN for tailored slice creation, it does
not incorporate a 5G SA core or end-to-end mobile traffic. Our testbed
bridges this gap by integrating a real 5G core and RAN, thus enabling
scenario-based SDN slicing approaches to be evaluated in a genuine
5G context.

These works collectively underline the potential of SDN-based
approaches to manage 5G slicing effectively, while also identifying
open challenges. Unlike existing platforms, our architecture uniquely
combines a fully open-source 5G SA stack, Proxmox-based virtual-
ization, ODL-driven SDN, and two adaptive slice control algorithms
(threshold and LSTM prediction), providing a flexible and repro-
ducible environment for 5G slice research.

III. TESTBED ARCHITECTURE

To evaluate the dynamic control of network slices in a 5G
environment, we built an experimental testbed using open-source
software components and SDN-based traffic steering mechanisms.
This testbed enables the configuration, monitoring, and adaptive
reallocation of bandwidth between slices, allowing researchers to
prototype resource management strategies in controlled conditions.
The system was designed to implement a full end-to-end network
with slicing capabilities at both the core and transport layers.

The testbed integrates a mix of virtualized and physical network
elements deployed over a Proxmox VE hypervisor version 8.3.5. Its
architecture aligns with the 3GPP-defined slicing framework [10],
supporting isolated paths for prioritized and best-effort traffic flows.
The slicing decisions and throughput adjustments are made in real-
time using SDN techniques and RESTful APIs, which allow external
logic to enforce dynamic policies based on traffic demand and
service-level intent.

A. Hardware and Software Components

The entire testbed is hosted on a single Proxmox VE node, selected
for its lightweight hypervisor capabilities, native VLAN-aware bridge
support, and efficient resource scheduling. The environment hosts
nine virtual machines (VMs), each assigned a specific network
function role in accordance with the 5G system architecture.

Open5GS [11] version 2.7.2 is used as the 5G Core (5GC) and
is split into three VMs: one hosting the control plane (AMF and
SMFs) and two others acting as user plane functions (UPFs), one
for each network slice. This setup is fully extensible to support n
slices by instantiating additional UPFs and associating them with

their respective slice-specific configurations. This separation allows
us to emulate per-slice user data handling.

UERANSIM [12] version 3.2.7 provides the simulated gNB and
UEs, ensuring full compatibility with Open5GS and exposing com-
plete NAS signaling. In parallel, the testbed optionally supports a
real radio access setup using srsRAN [13] and an Ettus SDR, al-
lowing over-the-air communication with a commercial mobile phone
configured with a custom SIM.

The SDN controller is OpenDaylight (ODL) version 0.8.4, running
within a dedicated VM. It was installed with OVSDB support and
integrated with Apache Karaf for module management [14]. The ODL
controller communicates with an Open vSwitch (OVS) version 2.13.8
instance hosted in another VM, which serves as the data-plane switch.
OVS [15] handles all L2 forwarding and enforces per-slice throughput
control using queues and QoS rules based on the Linux Hierarchical
Token Bucket (HTB) scheduler.

Each VM runs Ubuntu Server 20.04, with a custom network
configuration including multiple virtual NICs connected to VLAN-
tagged Linux bridges. This enables fine-grained control over traffic
paths and interconnection between nodes. All VMs were configured
with static IPs and persistent NAT rules, and SSH was enabled
to allow centralized orchestration. Proxmox’s interface is used to
manage MAC address mapping, ensuring consistent network interface
assignment across reboots.

Special attention is given to the integration of components: OVS
ports are dynamically bound to specific queues, and flow rules are
added to associate ingress traffic with the appropriate QoS policy.
The REST APIs exposed by ODL are validated using Postman and
then consumed via custom Python scripts for real-time control. Two
adaptation schemes are implemented: one uses static thresholds to
trigger bitrate changes, while the other relies on an LSTM model
trained on YouTube VoD traffic to forecast demand and proactively
reassign bandwidth.

B. Architecture

The architecture diagram (see Fig. 1) illustrates the logical sep-
aration of slices, traffic paths, and control elements. All UEs are
connected to either the simulated or real gNB, and their traffic is
routed through OVS, where it is tagged and classified. Two slices are
defined:

• Slice 1: A high-priority slice initialized with a 30 Mbps maxi-
mum bitrate.

• Slice 2: A best-effort slice with an initial 10 Mbps cap.
Each slice’s user-plane traffic is directed to a dedicated UPF,

allowing per-slice enforcement of QoS policies. The OVS switch
is the convergence point for all data traffic and is configured with
multiple Linux-HTB queues. ODL manages these queues and their
associated max-rate settings via the OVSDB protocol.

The configuration of the adaptation mechanisms required signif-
icant coordination between the data and control planes. Queue and
flow rule creation was carefully orchestrated to ensure that in-port
identifiers, MAC bindings, and VLAN tags aligned across Proxmox,
OVS, and OpenDaylight. Adaptation logic running externally com-
municates with the controller’s REST API to measure throughput on
a per-flow basis and to dynamically adjust queue settings.

The inclusion of a real gNB setup using srsRAN version 24.20.1
added further complexity, as it required hardware synchronization,
USB SDR configuration, and interface bridging across physical and
virtual environments. This hybrid model allowed us to validate the
slicing functionality with real radio traffic while maintaining the
flexibility of simulation.

The result is a modular, reproducible testbed that can be used to
explore dynamic slice allocation strategies, QoS enforcement, multi-
slice coexistence, and intelligent traffic adaptation under realistic load
conditions.

IV. SLICE ADAPTATION

A key objective of this work is to demonstrate that throughput
control in a 5G slicing environment can be achieved dynamically
using SDN techniques. This capability is particularly important for
video-on-demand services, where maintaining consistent bitrate and
minimizing buffering are critical to ensuring a high-quality user
experience. To that end, the proposed testbed includes a control
mechanism capable of monitoring real-time traffic flows and adapting
the allocated bandwidth for each slice accordingly. The core of this
mechanism is implemented in Python, leveraging the REST APIs
exposed by the OpenDaylight (ODL) SDN controller.

The adaptation logic operates on the data-plane elements con-
figured in Open vSwitch (OVS). Each slice is associated with a
dedicated queue managed by OVS using Linux HTB-based Quality of
Service (QoS). These queues are defined with maximum throughput
values (max-rate) that determine how much bandwidth a slice can
use at any given time. By adjusting these max-rates dynamically, the
testbed emulates the enforcement of service-level agreements (SLAs)
and prioritization policies.

The adaptation scripts interact with the SDN controller in two
fundamental ways:

1) Throughput Monitoring: The script periodically issues HTTP
GET requests to ODL’s RESTCONF interface to retrieve per-
flow and per-port statistics, including the number of bytes trans-
mitted through each switch port. By measuring the difference in
bytes over successive intervals, the script estimates the average
throughput in Mbps for each slice.

2) Rate Adjustment: When a decision is made to adjust a slice’s
resources, the script sends an HTTP PUT request to the REST
API, modifying the max-rate attribute of the queue associated
with that slice. Queue identifiers and their associated ports are
discovered and validated via OVS and the ODL API.

The following subsections describe two approaches implemented
for slice adaptation: one based on static thresholds, and another using
a deep learning model to forecast traffic demand.

A. Threshold Approach

The threshold-based method serves as a simple but effective
baseline for dynamic adaptation. It relies on a predefined traffic
threshold to determine whether a slice should receive more or less
bandwidth.

The process begins with the Python script monitoring the byte
counters of the switch port associated with a particular UPF or
gNB queue. These values are collected every five seconds—a period
carefully chosen to align with the refresh rate of the controller’s
internal statistics. At each interval, the script calculates the current
throughput for the slice using:

Throughput (Mbps) =
(Bt −Bt−1)× 8

T × 106
(1)

where Bt is the byte count at time t, and T is the sampling period
(5 seconds).

The adaptation logic compares this calculated throughput with
a predefined threshold (e.g., 30 Mbps). If the usage exceeds this
threshold, the script increases the max-rate of the high-priority slice
(e.g., from 30 Mbps to 60 Mbps), while simultaneously reducing

Fig. 1: Architecture diagram of the full testbed with the optional RF components.

the allocation for the best-effort slice to preserve total bandwidth
constraints. If the usage is below the threshold, the rates revert to
their default configuration.

This mechanism ensures that priority slices receive sufficient band-
width during high-demand periods, while still allowing opportunistic
use by lower-priority traffic when the network is underutilized. While
straightforward, this approach is reactive and does not account for
predicted traffic trends, making it potentially less efficient under
rapidly fluctuating conditions.

B. Deep Learning Approach

To improve upon the reactivity and rigidity of the threshold model,
a second mechanism was implemented using a Long Short-Term
Memory (LSTM) neural network to predict the future traffic demand
of each slice. This allows the testbed to proactively adjust slice
bandwidth based on expected utilization rather than relying solely
on instantaneous measurements.

The LSTM model was trained offline using real-world traffic traces
collected during previous testbed executions. The chosen traffic type
for training was Video on Demand (VoD) content from YouTube,
which exhibits a semi-periodic burst pattern: sharp peaks during
buffering phases, followed by sustained low-rate intervals during
playback. These patterns are ideal for LSTM-based modeling, which
excels at capturing temporal dependencies and long-term trends in
time-series data.

Once trained, the model is integrated into the same Python adapta-
tion script. Instead of acting on current throughput values, the script
inputs a window of recent measurements into the LSTM, which
returns a predicted throughput value for the next interval. Based on
this prediction, the script applies an adaptive policy similar to the
threshold method, but with the benefit of foresight.

For example, if the LSTM predicts that Slice 1 is about to
experience a traffic surge, the system may preemptively raise its max-
rate from 30 Mbps to 50 Mbps, ensuring smooth service continuity.
This is particularly beneficial for services with stringent latency or
buffering requirements.

The model is updated periodically with new observations, allowing
it to remain relevant as traffic patterns evolve. Additionally, by
shifting from reactive to predictive control, this approach reduces the
likelihood of transient congestion and improves resource efficiency
across slices.

Both adaptation methods are modular and extensible. They validate
the ability of SDN controllers such as ODL to serve as closed-
loop orchestrators in 5G slicing environments, managing traffic
dynamically without disrupting existing flows.

V. RESULTS

In this section, we validate the effectiveness of our SDN-driven
slice adaptation mechanisms under realistic traffic conditions, by
corroborating the testbed’s capability to enforce slice isolation and to
dynamically allocate resources both reactively and proactively.

All traffic traces were derived from a YouTube VoD stream,
selected for its ubiquity and the clear, buffer-based nature of its traffic
profile. This choice simplifies our evaluation: the threshold allocator
only needs to respond to buffer-induced throughput peaks, while the
LSTM predictors can focus on learning the characteristic patterns of
these peaks to anticipate traffic changes.

A. Slice Isolation

To verify slice isolation, we generated both real and simulated
uplink and downlink traffic on UE 1 (Slice 1) and UE 2 (Slice 2).
Packet captures were collected at the two UPF VMs and at all OVS
ports. Analysis of IP 5-tuple and VLAN tags confirms that:

• Slice 1 traffic traversed exclusively through UPF1 and the
designated OVS interfaces, with no packets observed at UPF2
or the respective interfaces.

• Slice 2 traffic followed the symmetrical path through UPF2
and the respective interfaces, with zero leakage into the Slice
1 datapath.

• Attempts to reach the other slice’s IP subnet were dropped at
the OVS bridge in accordance with the installed flow rules.

These observations confirm strict per-slice isolation as enforced
by our OVSDB-configured queues and flow rules (Section III.A),
ensuring that no cross-slice communication is possible under either
light or heavy load.

B. Threshold-based Slicing

We next evaluated the reactive threshold allocator using a step
increase policy with a 30 Mbps utilization threshold. Starting from
default caps of 30 Mbps (Slice 1) and 70 Mbps (Slice 2), we
generated a variable traffic load on Slice 1 only. As shown in Fig. 2,
each time the measured throughput for Slice 1 exceeded 25 Mbps over
a 5 second interval, our Python script issued an OVSDB RESTCONF
PUT to raise the Slice 1 max-rate to 60 Mbps while reducing Slice 2
to 40 Mbps; when throughput fell below the threshold, rates reverted
to defaults.

The resulting rate profile exhibits clear step-shaped transitions:
plateau segments at 30 Mbps followed by abrupt increases to 60
Mbps, aligned precisely with threshold crossings. These sharp adap-
tations demonstrate the reactivity of the threshold approach but also
highlight its limitation in handling rapid load fluctuations, as transient
spikes can trigger late or oscillatory adjustments.

Fig. 2: Throughput over time for Slice 1 (blue) with threshold
line (red). Rate adjustments at 5 second sampling intervals produce
characteristic step shapes.

Moreover, this mechanism can be enhanced by defining a finer-
grained hierarchy of thresholds, allowing the allocator to react more
precisely to diverse traffic profiles and use cases.

C. LSTM-based Slicing

Our exploration of predictive slice adaptation began by leveraging
the ODL RESTCONF API, which allowed us to query per-flow byte
counts at 5 second intervals. We created a dataset using different
types of multimedia contents to fit with the majority of the YouTube’s
contents. We then trained an LSTM model with the created data set,
and evaluated its ability to forecast upcoming throughput.

The model consists of three LSTM layers of 100, 50 and 50 hidden
units respectively, all of which are followed by a dropout layer, the
two first ones of 0.2 and the last one of 0.5, and finally one dense
output layer. An activation function (ReLU) is employed to enhance
non-linear representation learning at the output of the dense layer.

As shown in Fig. 3, while the model anticipated the timing of most
of the major traffic peaks, it systematically under- and over-estimated
their magnitudes, reaching a root-mean-square error (RMSE) of 0.26
when using normalized data. A closer examination revealed that
the 5 second sampling interval smoothed out short-lived bursts,
depriving the LSTM of the fine-grained patterns essential for accurate
magnitude prediction.

Fig. 3: Predictive performance using ODL API sampling (5 sec-
onds); peak timing is arguably captured, but magnitude errors are
pronounced.

Confronted with these limitations, we adopted a higher-resolution
measurement approach using the nload tool, configured to sample
throughput every 0.5 seconds. Incorporating these richer measure-
ments into our training pipeline led to a neural network that exhibited
markedly improved accuracy: it preserved peak timing and closely
matched observed magnitudes (as illustrated in Fig. 4), reaching an
RMSE of 2.6 with non-normalized data, which represents 5.25%
of the data range. This practical pivot —necessary due to the
constraints of the ODL API— demonstrates that sub-second sampling
frequencies are crucial for constructing a predictive model capable
of truly proactive and fine-grained slice resource allocation.

Collectively, these experiments demonstrate that our testbed
enforces strict slice isolation, threshold-based adaptation pro-
vides a simple reactive baseline, and LSTM-based predictive
control—particularly when fed with high-frequency measure-
ments—yields smoother and more accurate resource allocations under
dynamic traffic conditions.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we have presented the design and implementation of
an open-source SDN-based network slicing testbed for 5G Standalone
environments. Built on Proxmox VE virtualization, our platform
integrates Open5GS as the 5G core, UERANSIM and srsRAN for
RAN simulation and real-world gNB connectivity, OpenDaylight as
the SDN controller, and Open vSwitch for per-slice traffic enforce-
ment. We demonstrated two closed-loop slice adaptation mechanisms:
a reactive threshold-based controller and a proactive LSTM-driven
predictor. Experimental results show that both methods effectively
enforce slice bandwidth caps, guarantee priority for high-value traffic,

Fig. 4: Predictive performance using nload sampling (0.5 seconds);
both timing and magnitude of peaks are closely tracked.

and react to dynamic load conditions with minimal disruption to
ongoing flows.

Our testbed proved capable of:
• Emulating full end-to-end 5G SA slice flows over both simulated

and physical RAN links.
• Dynamically reallocating bandwidth between a high-priority

slice and a best-effort slice via ODL’s OVSDB interface.
• Validating that LSTM prediction reduces congestion and im-

proves overall resource utilization compared to a purely reactive
scheme.

This work provides a reproducible, modular framework for re-
searchers to prototype and compare slice control policies under
realistic 5G traffic patterns.

Future work will focus on two main directions: first, evaluating
the performance of the slicing control strategies under diverse traffic
types, including both video and non-video applications such as IoT
and cloud gaming; and second, optimizing the LSTM prediction
model to reduce computational load and inference time, making
it more suitable for real-time integration with the control loop.
Additionally, future extensions may include integration with NFV-
MANO for automated VNF lifecycle management and support for
more complex multi-slice orchestration scenarios.

VII. ACKNOWLEDGMENTS

This work has been partially funded by the Spanish Ministry
of Science and Innovation under grant PID2023-151462OB-I00, by
2025 Research and Transfer Plan of University of Extremadura under
grant AV-05, and by CSIC R&D project: 5/6G Optical Network
Convergence: an holistic view.

REFERENCES

[1] X. Foukas, G. Patounas, A. Elmokashfi, and M. K. Marina, “Network
slicing in 5g: Survey and challenges,” IEEE Communications Magazine,
vol. 55, no. 5, pp. 94–100, 2017.

[2] 3rd Generation Partnership Project (3GPP), “5g; management
and orchestration; concepts, use cases and requirements,” ETSI,
ETSI Technical Specification TS 128 530 V16.3.0, October
2020, 3GPP TS 28.530 version 16.3.0 Release 16. [Online].
Available: https://www.etsi.org/deliver/etsi ts/128500 128599/128530/
16.03.00 60/ts 128530v160300p.pdf

[3] M. Moussaoui, E. Bertin, and N. Crespi, “Telecom business models
for beyond 5g and 6g networks: Towards disaggregation?” in 2022 1st
International Conference on 6G Networking (6GNet), Paris, France,
2022, pp. 1–8. [Online]. Available: https://hal.science/hal-04005533

[4] F. Z. Yousaf, M. Bredel, S. Schaller, and F. Schneider, “Nfv and
sdn—key technology enablers for 5g networks,” IEEE Journal on
Selected Areas in Communications, vol. 35, no. 11, pp. 2468–2478, 2017.

[5] H. O. Otieno, B. Malila, and J. Mwangama, “Deployment and man-
agement of intelligent end-to-end network slicing in 5g and beyond 5g
networks: A systematic review,” IEEE Access, vol. 12, pp. 190 411–
190 433, 2024.

[6] D. Pineda, R. Harrilal-Parchment, K. Akkaya, A. Ibrahim, and A. Perez-
Pons, “Design and analysis of an open-source sdn-based 5g standalone
testbed,” in IEEE INFOCOM 2023 - IEEE Conference on Computer
Communications Workshops (INFOCOM WKSHPS), 2023, pp. 1–6.

[7] A. Esmaeily, K. Kralevska, and D. Gligoroski, “A cloud-based sdn/nfv
testbed for end-to-end network slicing in 4g/5g,” in 2020 6th IEEE
Conference on Network Softwarization (NetSoft), 2020, pp. 29–35.

[8] Q. Ye, J. Li, K. Qu, W. Zhuang, X. S. Shen, and X. Li, “End-to-
end quality of service in 5g networks: Examining the effectiveness of
a network slicing framework,” IEEE Vehicular Technology Magazine,
vol. 13, no. 2, pp. 65–74, 2018.

[9] V. Fanibhare, N. I. Sarkar, and A. Al-Anbuky, “Tinets3: Sdn-driven
network slicing enabling scenario-based applications in tactile internet,”
IEEE Transactions on Network and Service Management, vol. 21, no. 4,
pp. 4639–4654, 2024.

[10] 3GPP, “3gpp network slice management,” https://www.3gpp.org/
technologies/slice-management, accessed: 2025-04-20.

[11] S. Lee, “Open5gs documentation,” https://open5gs.org/open5gs/docs/,
accessed: 2025-04-20.

[12] A. Gungor, “Ueransim repository,” https://github.com/aligungr/
UERANSIM, accessed: 2025-04-20.

[13] S. R. Systems, “srsran documentation,” https://docs.srsran.com/, ac-
cessed: 2025-04-20.

[14] O. Project, “Opendaylight documentation,” https://docs.opendaylight.
org/, accessed: 2025-04-20.

[15] L. Foundation, “Open vswitch project,” https://docs.openvswitch.org/,
accessed: 2025-04-20.

