
Exploring 5G with Open Source Solutions:
Functional Testbed and User Equipment Evaluation

Bruno Tió, Facundo Pedreira, Leonardo Barboni and Claudina Rattaro
Facultad de Ingenierı́a, Universidad de la República

Montevideo, Uruguay
{brunot,facundo.pedreira,lbarboni,crattaro}@fing.edu.uy

Abstract—This work presents the successful implementation
of a functional 5G testbed based on the open-source project
srsRAN. The network was deployed in Standalone (SA) mode,
integrating an operational Open5GS core and a working gNB,
enabling full 5G connectivity. The gNB’s radio interface was
implemented using Software-Defined Radio (SDR) hardware,
ensuring flexibility and reconfigurability of the RF components.
Connections were established with multiple user equipment (UE)
devices. The testbed successfully connected to a commercial off-
the-shelf (COTS) device using a programmable physical SIM,
allowing stable operation and real traffic exchange. A Sixfab
5G HAT, based on a Qualcomm modem, was also acquired and
configured to validate connectivity from typical IoT platforms.
Additionally, one of the UEs was implemented using SDR-based
hardware, demonstrating the potential of open and flexible radio
solutions for both infrastructure and user-side components.

Index Terms—5G testbed, Software-Defined Radio (SDR),
srsRAN, IoT.

I. INTRODUCTION

The world of mobile networks is in constant evolution, with
the deployment of fifth-generation (5G) systems emerging as
a global focal point in recent years. With enhanced Mobile
Broadband (eMBB), 5G enables high data transmission rates
that support demanding applications such as virtual and aug-
mented reality. Ultra-Reliable and Low-Latency Communica-
tions (URLLC) open the door to critical services, including au-
tonomous vehicles and telemedicine, while massive Machine-
Type Communications (mMTC) facilitate the deployment of
Internet of Things (IoT) ecosystems with billions of simulta-
neously connected devices [1], [2].

Despite these advances, several technological challenges
remain to fully realize these use cases—challenges that are
expected to extend into the development of sixth-generation
(6G) networks. These include the need for intelligent and effi-
cient resource management to meet Quality of Service (QoS)
requirements, the deployment of network slicing across all
network segments, interoperability among heterogeneous sys-
tems, and robust approaches to cybersecurity threats, among
others [3], [4].

Although recent progress has been made, many real-world
mobile network deployments still depend on proprietary soft-
ware and expensive hardware, creating a substantial barrier
for research groups with limited resources. In response, open-
source alternatives such as srsRAN and OpenAirInterface have
emerged, offering robust tools for the local and autonomous

implementation of both 5G NR and 4G LTE networks. These
platforms democratize access to mobile network technologies,
fostering innovation and enabling broader participation in
research and education [5], [6].

OpenAirInterface (OAI) is maintained by the OpenAirIn-
terface Software Alliance (OSA)—a global consortium of
companies, universities, and institutions including major tele-
com players like Nokia, Vodafone, and Ericsson. The alliance
actively collaborates with the 3rd Generation Partnership
Project (3GPP), which defines global telecom standards. On
the other hand, srsRAN is developed by Software Radio Sys-
tems (SRS), a private company that maintains both the open-
source version and a commercial-grade edition with enterprise
support. srsRAN 5G follows their earlier open-source LTE
implementation.

Having an open, reconfigurable 5G testbed is essential for
universities, research labs, and operators exploring advanced
functionalities, interoperability, or emerging frameworks such
as O-RAN. These environments make it possible to validate
configurations, assess performance under varied conditions,
and lower the entry barrier to technologies traditionally re-
served for large vendors.

One of the main advantages of open-source testbeds like
srsRAN lies in their ability to run on low-cost, low-power
platforms—such as mini-PCs or embedded systems with virtu-
alization support. This flexibility enables the design of portable
and scalable networks deployable across diverse scenarios,
from academic labs to production environments, covering
multiple industry applications.

The main contribution of this work is the implementation
of a fully functional end-to-end 5G Standalone (SA) testbed,
entirely based on open-source solutions and general-purpose
hardware. In addition, the performance of various user equip-
ment (UE) was evaluated in practice, including both commer-
cial off-the-shelf (COTS) devices and embedded platforms.
Notably, the Sixfab 5G HAT—a recently released board based
on a Qualcomm modem designed to add 5G connectivity to
platforms like the Raspberry Pi—was successfully integrated
and tested. To the best of our knowledge, no prior studies
have documented the use of this device in experimental 5G
SA environments. Its inclusion provides concrete evidence of
the feasibility of using low-cost, low-power devices in 5G
connectivity testing, particularly in IoT scenarios and portable
deployments.



II. DEPLOYMENT OF A 5G TESTBED ARCHITECTURE -
HARDWARE AND SOFTWARE SETUP

This section defines the main components of the testbed
architecture, highlighting the most relevant aspects related to
software, hardware, and configuration. The section is orga-
nized into three parts: the core network, the base station (gNB),
and the user equipment (UE). Special attention is given to the
latter, where the different evaluated variants are described in
detail.

A. Core Network

Since srsRAN does not include its own core network
implementation, this testbed uses Open5GS for deploying the
5G core. Open5GS can be installed directly on the host,
within virtual machines, or via containerized deployments. In
this case, a container-based deployment was selected, using
Docker Compose to efficiently orchestrate and manage all
core services. In particular, authors of [7] present a 5G SA
platform based on Open5GS and srsRAN, which served as
one of the key references used to configure and implement
our testbed. Among the most important configurations to be
made is the definition of the UE list, which is specified in a
CSV file. This file includes essential parameters such as the
IMSI, Key/OPC pair, and a static IP address for each UE. This
configuration enables proper authentication and traffic control
during network access.

B. Base Station Implementation and Frequency Configuration

To deploy the base station (gNB), we used the implementa-
tion provided by the srsRAN Project. This solution adheres
to the principles of the O-RAN architecture and supports
various functional split options as defined by the 3GPP [8].
In particular, it enables Option 8, which allows the gNB com-
ponents—Central Unit (CU) and Distributed Unit (DU)—to
be deployed either jointly or separately, while the Radio Unit
(RU) functionality is delegated to the Software-Defined Radio
(SDR, [9]) device. Band n3 from Frequency Range 1 (FR1)
was configured for use, specifying both the band number and
the Absolute Radio Frequency Channel Number (ARFCN).
This band was selected due to its compatibility with the
gNB and UE implementations provided by srsRAN. The core
network and gNB were hosted on an Intel i7-12700 server with
16 GB of RAM, running Ubuntu 22.04 LTS. For the gNB’s
radio interface, two Software-Defined Radio (SDR) devices
were used: the high-end USRP X310 and the mid-range USRP
B200. In both cases, WA5VJB log-periodic antennas were
employed. Although the X310 supports more configurations
than the B200, due to limitations of srsUE in our setup, there
is no practical difference between using one or the other in
this case.

Up to this point, we have defined the core and the gNB;
now it’s time to focus on the user equipment (UE).

C. User Equipment (UE)

The srsRAN Project does not provide a dedicated 5G
UE implementation. However, its predecessor, srsRAN 4G,

Fig. 1. Sixfab 5G Development Kit installed on Raspberry Pi 4.

includes srsUE, a software-based UE emulator originally de-
signed for LTE networks. It is compatible with Frequency
Division Duplex (FDD) configurations, bandwidths from 1.4 to
20 MHz, supports up to 2x2 MIMO, and downlink modulation
up to 256-QAM. A key limitation is its fixed 15 kHz subcarrier
spacing, whereas 5G supports variable spacings up to 120 kHz.
Although originally developed for LTE, srsUE includes the
basic functionalities required to connect to a 5G SA network.
However, it does not support the full set of 5G NR features
defined in the standard. To configure this type of UE, network
identification values such as the IMSI and Key/OPC pair
can be specified directly within the configuration file used to
launch the UE. Instead of requiring a physical SIM card, srsUE
simulates SIM behavior using the provided identifiers. This UE
was implemented using a PC with the same specifications as
those used for the core and gNB. For the radio interface, a
USRP B200 was employed.

In addition, the project explored the use of Commercial
Off-The-Shelf (COTS) UE devices. srsRAN documentation
provides a list of tested 5G-compatible UEs, enabling real-
world use cases with native 5G capabilities. In particular,
a Samsung Galaxy A33 5G smartphone was used as the
commercial UE. To integrate this device into the network,
a non-commercial SIM card was used—specifically obtained
and programmed for this purpose. The SIM was provided by
the Open Cells project https://open-cells.com, which offers
programmable SIMs along with the UICC/SIM Programming
tool that enables configuration via a USB dongle.

Finally, we identified the Sixfab 5G Development Kit for
Raspberry Pi as an intermediate solution between srsUE and
COTS devices. While srsUE offers full control but limited
realism, and COTS offers realism but little configurability,
the Sixfab kit provides a practical compromise. Based on
a Qualcomm technology, it combines a modular hardware
interface with user-level configuration options. It also allowed
us to evaluate the technical and economic feasibility of using
such devices as 5G UEs in IoT or portable deployment
scenarios.

The Sixfab Kit features a 5G HAT based on the Quectel
RM502Q-AE module, offering sub-6 GHz 5G connectivity,

https://open-cells.com


USB 3.1 and PCIe interfaces, GNSS support, and compatibility
with Raspberry Pi 4 and 5. Our setup included both the Sixfab
5G module and a Raspberry Pi 4, which ran Ubuntu 22.04.
Figure 1 shows the assembled Sixfab 5G Development Kit,
featuring a base with an integrated fan and antennas. These
components connect to the 5G HAT, which also includes a slot
for a programmable SIM card, configured similarly to the one
used in the COTS UE. The HAT connects to the Raspberry Pi
via its GPIO pins and an additional USB interface. In this case,
UE configuration was carried out using Minicom, a terminal
utility provided by Sixfab.

III. RESULTS AND ANALYSIS

Once the entire testbed was assembled and end-to-end
connectivity was verified, comparative performance tests were
conducted between the different UEs (see Figure 2). The tests
included in this section use the B200 device as the gNB’s RU.

Fig. 2. 5G SA testbed.

A. Throughput Results by User Equipment

Each device was tested individually on the network, across
the four available bandwidth configurations. The downlink
recorded results are presented in Figure 3. The measurements
were performed using iPerf with UDP traffic, running the iPerf
server on the core network side and the client on each UE.

A clear performance gap was observed in favor of the com-
mercial devices. The Samsung COTS UE consistently achieved
the highest throughput across all scenarios. Nevertheless, the

Fig. 3. Average downlink (DL) throughput for each UE at different band-
widths.

Sixfab 5G HAT for Raspberry Pi 4 delivered comparable
results, with both significantly outperforming the srsUE-based
solution. Moreover, achieving a stable connection between the
srsUE and the gNB requires careful tuning of parameters such
as gain settings, attenuation, and other radio configuration
values.

B. Throughput Results by Combination of User Equipments

After validating the functionality of each UE individually,
additional tests were conducted with various combinations of
UEs connected simultaneously to the network. This approach
allowed us to evaluate the performance of the implemented
gNB under multi-UE scenarios and to observe how each
device behaved when sharing network resources. The results
are presented in Tab. I.

TABLE I
AVERAGE DL AND UL THROUGHPUT PER UE FOR DIFFERENT

SIMULTANEOUS CONNECTION SCENARIOS.

UEs Device BrDL (Mbps) BrUL (Mbps)

COTS + Sixfab COTS UE 29.3 28.5
Sixfab 27.9 27.5

srsUE + Sixfab srsUE 14.4 14.1
Sixfab 8.92 8.52

COTS + srsUE COTS UE 15.6 14.9
srsUE 35.1 34.8

All 3 UEs
Sixfab 9.43 9.12
COTS UE 19.8 19.2
srsUE 29.1 19.9

When multiple UEs were connected simultaneously, perfor-
mance varied. For example, when the COTS UE and Sixfab
transmitted in parallel, their individual bitrates dropped to
nearly half compared to isolated tests—a predictable outcome
given they share the same radio medium. However, results
were more striking when the srsUE was involved: both the
COTS UE and Sixfab experienced throughput drops exceeding
75%, performing noticeably worse than when used together
without the srsUE. This behavior is attributed to the resource
allocation mechanisms in srsRAN and the high RF gains
required by the USRP B200 SDR used with the srsUE.

C. Internet Connectivity

Speed tests were conducted using Speedtest by Ookla,
both via the web interface and the command-line tool for
Linux (CLI). It is important to note that these results should
be interpreted with caution, as the Internet access in this
setup relied on a server PC (Core Network) connected to a
public Wi-Fi network at the university. Since this connection
is subject to congestion, bandwidth limitations, and latency
variations, optimal performance was not expected.

Internet speed test results also revealed interesting vari-
ations. As shown in Figure 4, both the Sixfab and COTS
UE showed consistent Internet performance. While the mea-
sured throughput does not increase strictly with bandwidth,
it remains within expected variation margins. In contrast, the
srsUE exhibited an unexpected peak at 10 MHz, followed by



a significant drop at higher bandwidths. This behavior lacked
a clear explanation, although possible causes include USB 3.0
interface (fronthaul interface) saturation after repeated testing.

Fig. 4. Downlink throughput comparison from Speedtest measurements.

D. Qualitative Testing

We conducted real-world application tests to evaluate the
practical usability of the testbed, focusing on three represen-
tative use cases: package downloads using apt, multimedia
streaming (YouTube), and video calls between UEs. These
cases cover distinct traffic patterns—bulk data transfer, adap-
tive streaming, and real-time bidirectional communication. The
apt test involved downloading packages from the global
repositories, offering a steady HTTP-based flow. YouTube
streaming, with adaptive bitrate mechanisms, imposed more
dynamic throughput demands. Video calling proved the most
challenging, requiring low latency and sustained bidirectional
flow, often revealing the testbed’s performance limits.

To ensure consistent testing conditions, the same package
was downloaded in each case, and the same video was played
on the same platform during streaming tests. All experiments
were performed on the same day. The COTS UE was unable
to complete the apt test due to system restrictions imposed
by the manufacturer. Although quantitative data was collected
where possible, the following analysis is mostly qualitative due
to the subjective nature of user experience and variability in
real-time conditions. The focus was placed on user perception,
identifying major difficulties, responsiveness, and connection
stability.

In the apt package download test, the reference server
achieved a throughput of 160 kB/s. The COTS UE could not
perform the download due to operating system restrictions.
In contrast, the Sixfab and srsUE configurations achieved
measurable performance, with download speeds of 39.9 kB/s
and 24.3 kB/s, respectively. During video streaming, the COTS
UE experienced no issues running the Android YouTube app,
maintaining a consistent and smooth playback experience.
However, the srsUE and Sixfab UE encountered different types
of limitations. The srsUE suffered frequent disconnections
during video loading via the YouTube web interface, requiring
manual reconnection. In contrast, the Sixfab UE maintained a
steady data stream but failed to properly render video in the

browser, likely due to limitations of the Raspberry Pi. These
issues persisted in the video call tests. The COTS UE provided
the most stable experience. The Sixfab UE remained connected
but failed to run Zoom effectively via the browser—video
rendering delays caused by Firefox on Raspberry Pi with
Ubuntu 22.04 led to noticeable quality issues. In contrast, the
srsUE had no hardware limitations but continued to experience
random disconnections during the calls.

IV. CONCLUSIONS

This work demonstrates the feasibility and potential of
deploying a functional 5G SA testbed using open-source so-
lutions and general-purpose hardware. By leveraging srsRAN
and Open5GS, we successfully implemented a full 5G net-
work supporting real data exchange with multiple types
of user equipment. Our experiments show that commercial
off-the-shelf (COTS) devices offer the highest performance,
yet lower-cost and lower-power alternatives like the Six-
fab 5G HAT also achieve stable operation and are viable
for IoT and portable scenarios. Although the srsUE-based
solution presented limitations in stability and performance,
it still offers value in controlled experimental setups and
educational environments. All configurations, test procedures,
dependencies, and results are available in an open-access
repository (https://gitlab.fing.edu.uy/portaran/portaran srsran),
ensuring transparency and reproducibility of the work.

ACKNOWLEDGMENT

This work was partially supported by CSIC R&D project
“5/6G Optical Network Convergence: an holistic view”.

REFERENCES

[1] ITU-R, “Recommendation itu-r m.2083-0: Imt vision – framework and
overall objectives of the future development of imt for 2020 and beyond,”
https://www.itu.int/rec/R-REC-M.2083, 2015, accessed: 2025-04-01.

[2] E. D. S. P. J. Skold, 5g NR: The Next Generation Wireless
Access Technology. Academic Press, 2018. [Online]. Available:
libgen.li/file.php?md5=609d03b59709b6cd73adccb1e47a68e1

[3] S. Dang, O. Amin, B. Shihada, and M.-S. Alouini, “On challenges
of sixth-generation (6g) wireless networks: A comprehensive survey of
requirements, applications, and security issues,” IEEE Communications
Surveys & Tutorials, vol. 23, no. 1, pp. 6–36, 2021.

[4] M. S. Akbar, Z. Hussain, M. Ikram, Q. Z. Sheng, and S. C.
Mukhopadhyay, “On challenges of sixth-generation (6g) wireless
networks: A comprehensive survey of requirements, applications, and
security issues,” Journal of Network and Computer Applications, vol.
233, p. 104040, 2025. [Online]. Available: https://www.sciencedirect.
com/science/article/pii/S1084804524002170

[5] J. E. Håkegård, H. Lundkvist, A. Rauniyar, and P. Morris, “Performance
evaluation of an open source implementation of a 5g standalone platform,”
IEEE Access, vol. 12, pp. 25 809–25 819, 2024.

[6] P. Vázquez, W. Peña, W. Piastri, L. Inglés, and C. Rattaro, “Maq5g:
Deployment of a complete 5g standalone network testbed for testing
and development,” in 2024 XVI Congreso de Tecnologı́a, Aprendizaje
y Enseñanza de la Electrónica (TAEE), 2024, pp. 1–7.

[7] L. Mamushiane, A. Lysko, H. Kobo, and J. Mwangama, “Deploying a
stable 5g sa testbed using srsran and open5gs: Ue integration and trou-
bleshooting towards network slicing,” in 2023 International Conference
on Artificial Intelligence, Big Data, Computing and Data Communication
Systems (icABCD), 2023, pp. 1–10.

[8] L. M. P. Larsen, A. Checko, and H. L. Christiansen, “A survey of
the functional splits proposed for 5g mobile crosshaul networks,” IEEE
Communications Surveys & Tutorials, vol. 21, no. 1, pp. 146–172, 2019.

[9] J. Mitola and G. Maguire, “Cognitive radio: making software radios more
personal,” IEEE Personal Communications, vol. 6, no. 4, pp. 13–18, 1999.

https://www.itu.int/rec/R-REC-M.2083
libgen.li/file.php?md5=609d03b59709b6cd73adccb1e47a68e1
https://www.sciencedirect.com/science/article/pii/S1084804524002170
https://www.sciencedirect.com/science/article/pii/S1084804524002170

	Introduction
	Deployment of a 5G Testbed Architecture - Hardware and Software Setup
	Core Network
	Base Station Implementation and Frequency Configuration
	User Equipment (UE)

	Results and Analysis
	Throughput Results by User Equipment
	Throughput Results by Combination of User Equipments
	Internet Connectivity
	Qualitative Testing

	Conclusions
	References

