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Analysis & Design of Cognitive
Wireless Multihop Networks

Tesis presentada a la Facultad de Ingenieŕıa de la
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Learning never exhausts the mind.

Leonardo Da Vinci
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Rattaro, y tantos otros. Además en esta lista, si bien no es posible poner a todos
por un tema de espacio, no pueden faltar los nombres de Maxi, Laura y Maŕıa.
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Abstract

In the last decade, the deployment of wireless local area networks (WLANs)
based on the IEEE 802.11 standard [1] has grown significantly, mainly due to the
use of unlicensed frequency bands. It also became the de facto standard for the so-
called wireless mesh networks (WMNs) [2–4]. In this context, a typical application
of this type of wireless solutions is to provide Internet access in suburban and rural
areas. This kind of networks was useful for the deployment of Plan Ceibal [5], the
nationwide implementation in Uruguay of the novel one-to-one educational model,
which was the main motivation to carry on this thesis. The issue is how to optimize
these networks to meet the growing traffic demands and the new requirements
imposed by the future applications. In this regard, we start this thesis presenting
a characterization and statistical model of a WLAN, on the one hand analyzing
the demand in the educational context of Plan Ceibal, and on the other hand
estimating the capacity of 802.11-based wireless links from measurements of the
physical layer.

In the second part of this work, we propose a new routing and forwarding
scheme for multihop wireless networks, based on the development of a statistical
model of the links’ queues, learned from live network measurements. We address
the problem of deciding the most suitable path for the packet flows between each
source-destination pair. We seek an optimal solution, capable of balancing the
traffic load based on the resources available in each link. We present a suitable
algorithm that solves the optimization problem posed in a distributed manner.
Several simulations in different scenarios were performed to verify the performan-
ce of the proposed method, and also to compare with other schemes. In all the
simulations, independently of the topology size, we observed a quick adaptation of
the proposed algorithm to traffic changes and also an stable operation, avoiding
the routing oscillations of the routing method included in the 802.11s standard,
already noticed before by [6, 7].

Finally, the last part of the thesis is founded on the cognitive radio networks
(CRNs) paradigm [8]. In this case we propose a novel robust spectrum allocation
mechanism that takes advantage of the free spaces in licensed bands to expand
the network resources (e.g. spectrum holes in TV bands). The introduced robust
method was evaluated by several simulations for different network topologies. The
results show that in all cases the robust approach ensures compliance with the
effective capacity required on each wireless link with high probability. The addi-
tional spectrum for this robustness is below 35 % more than the optimality bound,
given by the case of knowing in advance the primary users activity.
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Resumen

Hace ya un buen tiempo que las redes inalámbricas constituyen uno de los
temas de investigación más estudiados en el área de las telecomunicaciones. Un
reflejo del avance logrado en el tema es el gran número y variedad de redes de estas
caracteŕısticas que encontramos desplegadas en el mundo hoy d́ıa. Sin embargo,
el crecimiento de las demandas de tráfico y los tipos de servicios que dichas redes
deben ser capaces de manejar hacen que la investigación en este tópico esté muy
lejos de su fin. En la última década el despliegue de redes inalámbricas de área local
(Wireless Local Area Networks o WLANs) basadas en el estándar IEEE 802.11 [1]
ha crecido en gran forma, principalmente debido al uso de bandas de frecuencia
no licenciadas. Esta solución tecnológica se ha convertido en la preferida, tanto
para redes pequeñas y medianas como hogares, empresas, hoteles, aśı como redes
de gran escala como campus universitarios y despliegues municipales. Esto ha
generado un gran interés en la comunidad cient́ıfica, que ha realizado diversos
trabajos de investigación en este tipo de redes, entre los que se destacan estudios
de modelado, estimación de la capacidad y análisis de la interacción con las capas
superiores [9–13].

Este gran crecimiento en el despliegue de redes basadas en 802.11 trajo como
efecto secundario, debido principalmente a los bajos costos del equipamiento de
radio, que el uso de esta tecnoloǵıa se extendiera a otras aplicaciones para las
que no hab́ıa sido pensada originalmente, como enlaces de largas distancias o es-
cenarios con gran concentración de usuarios. Además se convirtió en el estándar
de facto para las denominadas redes inalámbricas en malla (Wireless Mesh Net-
works o WMNs) [2–4], redes en las cuales todos los nodos pueden comunicarse
directamente con otros nodos (siempre que se escuchen mutuamente). Esta solu-
ción ha cobrado interés para extender la cobertura de las WLANs, aśı como para
la implementación de redes de sensores y otro tipo de aplicaciones. Este nuevo
desaf́ıo llevó a que una tecnoloǵıa que originalmente fue diseñada para un solo
salto (single-hop) inalámbrico, el que va del cliente al punto de acceso, ahora sea
utilizada para redes inalámbricas con múltiples saltos (multi-hop).

En este marco, una aplicación de este tipo de soluciones inalámbricas es el
acceso a Internet en zonas suburbanas y rurales, un tema de particular interés
para el despliegue del Plan Ceibal [5], lo que constituyó la principal motivación
para el desarrollo de esta tesis. El Plan Ceibal corresponde a la implementación en
Uruguay del modelo educativo uno a uno a nivel nacional, lo que implica la necesi-
dad de brindar acceso a Internet en la totalidad de los centros educativos del páıs,
tanto a nivel de enseñanza primaria como secundaria. En ese contexto las redes



inalámbricas con múltiples saltos son de gran importancia, puesto que constituyen
la tecnoloǵıa de acceso para un número importante de centros educativos ubicados
fuera de las zonas urbanas. Además, este tipo de solución inalámbrica también se
utiliza como red de acceso para brindar conectividad en espacios públicos, tanto
interiores como exteriores.

En base a lo anterior, esta tesis se desarrolla sobre la base de dos ejes funda-
mentales. Por un lado, como motivación principal de la investigación y potencial
aplicación objetivo de los algoritmos propuestos, se busca una solución de acceso
inalámbrico de bajo costo, orientada particularmente a zonas suburbanas y rurales.
Esta solución debe cumplir los requerimientos necesarios para ser la infraestruc-
tura de soporte que permita el desarrollo de un programa socio-educativo como el
Plan Ceibal. Por otro lado, la tesis se enfoca particularmente en redes inalámbri-
cas con múltiples saltos, basadas en el estándar 802.11 y operando en bandas no
licenciadas. Estas soluciones con una tecnoloǵıa de bajo costo y con diversos des-
pliegues ya existentes, se destacan como una alternativa factible para cumplir con
los requerimientos planteados y con buenas perspectivas a futuro.

A lo largo de esta tesis, se destacan tres grandes áreas de trabajo. En primer
lugar tenemos la caracterización y modelado estad́ıstico de redes WLAN, por un
lado analizando la demanda en el contexto educativo del Plan Ceibal, y por otro
lado estimando la capacidad de los enlaces inalámbricos a partir de medidas de
capa f́ısica. Luego, se desarrolló un nuevo esquema de ruteo y encaminamiento
de paquetes para una red inalámbrica con múltiples saltos, basado en un modelo
estad́ıstico de las colas de los enlaces inalámbricos, obtenido mediante aprendizaje
automático con medidas de la propia red. Por último, en base al nuevo paradig-
ma de redes cognitivas, se propuso una asignación de espectro robusta, que tiene
en cuenta tanto el espectro no licenciado como los huecos disponibles en bandas
licenciadas (ej: espacios libres en bandas de televisión).

Entrando más en profundidad en cada uno de los puntos abordados, en primer
lugar tenemos el análisis de una red inalámbrica como la del Plan Ceibal, infraes-
tructura que soporta el modelo educativo uno a uno a escala nacional. El objetivo
en esta primera parte de la tesis es la descripción del caso de uso que motiva el
resto del trabajo, aśı como identificar algunos puntos importantes en lo que hace
a la demanda que debe soportar la red. En particular, se destacan dos resultados
relevantes en este análisis. Por un lado la constatación de que la demanda crece
muy rápidamente, lo que hace necesario aumentar la capacidad de la red para po-
der hacer frente a los requerimientos futuros. Por otro lado, si bien es cierto que la
demanda va en aumento, y por lo tanto no es estacionaria, si se observan los datos
a una escala de tiempo menor (ej: un d́ıa o una semana) el comportamiento śı es
bastante estable, lo que hace posible caracterizar con buena precisión la deman-
da en base a datos estad́ısticos. Esto es importante, ya que permite el desarrollo
de algoritmos de asignación de recursos que estimen la demanda en base a datos
de la propia red y que luego hagan una asignación óptima en base a los recursos
disponibles.

Luego, para completar la primera parte de la tesis, donde por un lado vimos la
posibilidad de caracterizar la demanda de tráfico, en la segunda parte se trabaja
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en la caracterización de la capacidad de una red inalámbrica. La idea en este caso
es poder estimar y predecir, a partir de medidas de la capa f́ısica de la red, cuál es
la capacidad resultante a nivel de capas superiores. En base a los resultados obte-
nidos, se verifica que es posible realizar una inferencia estad́ıstica de la capacidad
efectiva con tráfico TCP de un enlace inalámbrico 802.11, a partir de medidas de
capa f́ısica como la potencia de la señal recibida (RSS) o la relación señal a ruido
resultante (SNR). Esta posibilidad de estimar en forma adecuada la capacidad en
capas superiores de los enlaces inalámbricos nos abre las puertas al desarrollo de
algoritmos de asignación de recursos que tengan en cuenta, ya no solamente los
recursos a nivel de cantidad de espectro asignado a un cierto enlace, sino directa-
mente la capacidad que es posible obtener dadas las caracteŕısticas f́ısicas en un
lugar y momento determinado. De esa forma es posible hacer una asignación de
recursos óptima, estimando los recursos disponibles para cada enlace, los cuales se
infieren a partir de medidas obtenidas de los enlaces de la propia red.

La segunda parte de la tesis se centra en el problema del ruteo y encami-
namiento de los paquetes en una red inalámbrica con múltiples saltos, buscando
además una solución con capacidad de balancear la carga por los distintos caminos
posibles entre cada par origen-destino. Si bien la versión 802.11s del estándar [14]
define un protocolo de ruteo que considera este nuevo escenario de múltiples sal-
tos e incorpora funcionalidades para resolver el encaminamiento de los paquetes,
el problema aún sigue abierto y es una tema de investigación importante en el
área. En particular existen diferencias importantes respecto al caso del ruteo en
redes cableadas, que hacen que los paradigmas utilizados anteriormente no sean
válidos en entornos inalámbricos. Por ejemplo se plantea la posibilidad de que la
interacción entre las capas de acceso al medio y la capa de red, aśı como capas
superiores, sea tenida en cuenta en este caso. Algunos trabajos presentan nuevas
métricas que tienen en cuenta las capas inferiores para resolver el ruteo [15, 16],
mientras que otros exploran la manera óptima de establecer los enlaces para resol-
ver el problema [17–20] y otras alternativas buscan mecanismos de optimización
cross-layer [21].

Por otro lado, los avances tecnológicos en materia de equipamiento permiten d́ıa
a d́ıa nuevas posibilidades y cambian el escenario de análisis para este tipo de redes.
En particular, estudios realizados para nodos que cuentan con una única interfaz de
radio, que por lo tanto pueden hablar en un solo canal por vez, deben extenderse
al caso con nodos que cuentan con múltiples interfaces de radio y por lo tanto
pueden operar en diferentes canales de frecuencia simultáneamente [22, 23]. Esto
permite mejorar el desempeño al aumentar sustancialmente la capacidad la red,
pero a su vez cambia el escenario de análisis para resolver la asignación de recursos,
por lo que nuevos algoritmos deben desarrollarse. Nuestro trabajo considera nodos
de estas caracteŕısticas, es decir, que cuentan con múltiples interfaces de radio, ya
que es lo habitual en el equipamiento para redes de acceso que se fabrica en la
actualidad.

En esta ĺınea, se formuló el problema de la asignación de caminos para los
paquetes entre cada par origen-destino de la red, buscando una solución capaz de
balancear la carga en forma óptima en base a los recursos disponibles en cada
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enlace. Para ello, se desarrolló un modelo de la cola de paquetes de cada enlace
inalámbrico, basado en aprendizaje estad́ıstico a partir de medidas tomadas de
los propios enlaces de la red. Mediante este modelo, se planteó un problema de
optimización definiendo como función objetivo a minimizar, a la suma de la cola
de paquetes en todos los enlaces de la red. De esta forma, la asignación de caminos
óptima será aquella que lleve la red a operar con la mı́nima congestión media.

A partir del problema de optimización planteado se presentó un algoritmo que
permite resolver el problema en forma distribuida. Se realizaron diversas simu-
laciones en distintos escenarios para verificar el funcionamiento del método pro-
puesto, aśı como la comparación con otros esquemas, como por ejemplo el ruteo
del estándar 802.11s. Los resultados fueron analizados teniendo en cuenta diversas
medidas de desempeño como el retardo y sus fluctuaciones para tráfico UDP y
la capacidad efectiva promedio para tráfico TCP. En los experimentos realizados
se observan claramente las ventajas del método propuesto frente a un esquema
de ruteo con métricas dinámicas como el que se incluye en el estándar 802.11s.
En todas las simulaciones, independientemente del tamaño de la red, se logra una
rápida adaptación del algoritmo desarrollado frente a cambios en el tráfico, mos-
trando una operación estable, evitando aśı las oscilaciones de ruteo que presenta
802.11s, ya advertidas anteriormente por [6, 7].

En la tercera y última parte de esta tesis, se trabaja en otro problema relevante
para las redes de acceso inalámbricas con múltiples saltos, que corresponde a la
asignación de espectro para cada uno de los enlaces de la red [24]. Mientras que
en la segunda parte de la tesis se desarrolló un método para aprovechar de la
mejor forma posible los recursos disponibles de la red, en ese caso asignando en
forma óptima los caminos posibles a cada uno de los flujos de la red, ahora se
busca ampliar los recuros disponibles, apelando en este caso al nuevo paradigma
de redes cognitivas. Esta idea, que apareció hace ya varios años [8], busca romper
con el esquema tradicional de asignación de espectro de bandas licenciadas para uso
exclusivo, permitiendo que los usuarios secundarios puedan usar aquellas bandas
licenciadas cuando los usuarios primarios no están presentes.

El éxito de diversos estándares en bandas libres, destacándose la relevancia
mundial de 802.11 en estos d́ıas, ha llevado a la necesidad de contar con más
espectro no licenciado. Una alternativa para ello, es justamente el desarrollo de
radios cognitivos, que sean capaces de operar también en bandas licenciadas cuando
ellas no están en uso. Un ejemplo de los esfuerzos en esta ĺınea son las tecnoloǵıas
que usan los huecos disponibles en bandas de televisión, para lo cual ya existen
hoy varios páıses con la regulación que lo ampara y estándares como el 802.11af
para su implementación. En esta ĺınea, nuestro trabajo aborda el problema de la
asignación de espectro para una red cognitiva con múltiples saltos.

Para la formulación del problema se asume una asignación de frecuencias pe-
riódica para cada enlace, cada cierto intervalo de tiempo fijo predefinido. Se define
como función objetivo la suma de los costos asociados a cada una de las bandas de
frecuencia asignadas para cada enlace. Además, se asume la posibilidad de estimar,
de manera similar a lo realizado en la primera parte de la tesis, las capacidades
efectivas que se logran en cada banda de frecuencia para cada enlace inalámbrico,
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a partir de medidas recolectadas en los propios nodos de la red. Por último, se
impone como restricción la necesidad de cumplir con cierta demanda de tráfico
a cumplir en cada uno de los enlaces. De esta forma, se llega a un problema de
optimización estocástico, debido al componente aleatorio que significa la disponibi-
lidad variable que ofrecen las bandas licenciadas, ya que dependen de la actividad
de los usuarios primarios en dichas bandas.

Para resolver este problema estocástico se utiliza un equivalente determińıstico
que es robusto a la distribución de probabilidad [25]. Esto implica que la solución
propuesta tiene en cuenta solamente la media y la varianza de la actividad de los
usuarios primarios, valores que se estiman a partir de las medidas recolectadas
de la actividad en cada banda de frecuencia. De esa forma es posible, mediante
un esquema probabiĺıstico, encontrar la mejor solución para un valor del riesgo
predefinido. Además, el esquema propuesto permite encontrar la asignación óptima
mediante un algoritmo descentralizado, y se presenta una arquitectura adecuada
para su implementación.

El método robusto propuesto fue evaluado mediante diversas simulaciones para
distintas topoloǵıas de red. Además, se comparó el desempeño con otras alternati-
vas como considerar únicamente las bandas no licenciadas o utilizar una solución
basada en el valor medio. También se tuvo en cuenta en los experimentos una cota
de optimalidad dada por la asignación correspondiente al caso de saber la actividad
de los usuarios primarios con antelación a su ocurrencia. Los resultados muestran
que la solución propuesta tiene mucho mejor desempeño que un esquema basado
en el valor medio, sin asignar mucho más espectro. El enfoque robusto garantiza
el cumplimiento de la capacidad efectiva necesaria en cada enlace inalámbrico con
alta probabilidad. El espectro adicional necesario para esta robustez está por de-
bajo del 35 %, con respecto a la cota de optimalidad dada por la asignación que
se logra sabiendo con antelación la actividad de los usuarios primarios.

Como se dijo anteriormente, el foco de esta tesis está centrado en tecnoloǵıas
de acceso para escenarios suburbanos y rurales, donde las redes inalámbricas con
múltiples saltos ya han demostrado ser una solución factible a través de varios
despliegues existentes en la actualidad. El problema planteado es cómo optimizar
estas redes para hacer frente a las crecientes demandas de tráfico y cumplir con
los requerimientos que el futuro nos impone. En este sentido, dos aspectos fueron
abordados en nuestro trabajo. Por un lado, se trabajó en el desarrollo de herra-
mientas de ingenieŕıa de tráfico para maximizar la explotación de los recursos de
la red, a través de un encaminamiento óptimo de los paquetes considerando los
flujos origen-destino. Por otro lado, en base al paradigma de redes cognitivas, se
desarrolló un nuevo marco de trabajo para la asignación de espectro y un algorit-
mo robusto que permite aprovechar los espacios libres en bandas licenciadas para
ampliar los recursos de la red.

Hace algunas décadas, la llegada de las redes basadas en la conmutación de
paquetes llevaban a predecir un futuro de convergencia, donde todos los servicios
(datos, voz, video) seŕıan transmitidos por una única red. Este proceso llevó un
tiempo, pero la realidad es que hoy podemos decir que finalmente la convergencia
ha llegado y el nuevo paradigma dejó atrás las viejas redes basadas en conmutación
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de circuitos. Estas redes permit́ıan mucho menor flexibilidad para administrar
los recursos, pero por otro lado garantizaban con certeza los requerimientos de
extremo a extremo. La flexibilidad que trajeron las redes de paquetes, si bien fue
exitosa desde los inicios para servicios de datos, muchos esfuerzos debieron llevarse
adelante para implementar mecanismos adecuados de asignación de recursos, que
permitieran cumplir con los requerimientos necesarios de los distintos servicios que
confluyen en la misma red.

Actualmente, con el nuevo paradigma de las redes cognitivas, vemos cierta
analoǵıa con la situación antes descrita. Claramente, este nuevo enfoque permite
mucho mayor flexibilidad para asignar los recursos, incorporando el espectro como
una nueva variable. Sin embargo, también es claro que para manejar este nuevo
grado de libertad, es necesario desarrollar los mecanismos adecuados para mante-
ner el cumplimiento de calidad de servicio necesario, en particular para aplicaciones
con requerimientos exigentes. Esta tesis es una contribución en esta dirección, y
probablemente, si bien el camino puede ser largo y duro, las redes cognitivas van
a convertirse algún d́ıa en realidad, de la misma forma que las redes convergentes
lo son hoy en d́ıa.
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Chapter 1

Introduction

1.1. Context and Evolution
About 50 years ago, the first research steps on packet switched networks were

being carried out, probably without knowing the global impact they would have
in the world. Nowadays, the importance acquired by the Internet is unquestio-
nable, and beyond some economic discussions, virtually everyone recognizes the
relevance it gained in the various aspects of the lives of people around the pla-
net. Many studies have found a direct relationship between the broadband access
and the investment in information and communication technology (ICT) and the
job creation, economic growth and human development index of countries [26–28].
Moreover, in many cases ICT applications are promoted as a way to make signifi-
cant progress in developing countries [29, 30]. In this sense, education emerges as
one of the most important verticals for incorporating ICT, with various initiatives
already underway in various countries and regions (e.g. Plan Ceibal [5] in Uruguay,
Conectar Igualdad [31] in Argentina, ConnectED [32] in the US and many more).

In this context, the progress in broadband deployment is key in advancing
the reduction of the digital divide [33]. The deployment, maintenance and opti-
mization of the necessary infrastructure is a tough challenge, and an additional
complexity is added, as bandwidth requirements evolve every day. For example,
the Federal Communications Commission (communications regulator in the US,
which implies a great influence worldwide) includes as part of its 2015 Broadband
Progress Report [34] the redefinition of the term broadband, by raising the mini-
mum download speeds needed from 4 Mbps to 25 Mbps, and the minimum upload
speed from 1 Mbps to 3 Mbps. This simple redefinition tripled the number of US
households without broadband access, now reaching a total of 17 % of the popula-
tion. This situation is much worse in rural areas where the percentage reaches 53 %
of the people lacking access to 25 Mbps/3 Mbps services. The previous definition
of broadband (4 Mbps/1 Mbps) was from 2010, just five years ago, a clear sign of
the challenge of keeping up with the necessary infrastructure, with requirements
that change so much and so fast.

In those suburban or rural areas, where less people have access to broadband,
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is where it becomes more difficult to afford the necessary infrastructure. The low
population density and large swathes of territory to cover, make infeasible the de-
ployment of optical fiber due to the high costs, particularly for developing countries
with lower budgets. For those cases, the only affordable alternative to build the
necessary infrastructure is to use wireless technologies [35]. This advantage from
the economic point of view becomes a major challenge from the technical point of
view, since it is necessary to develop wireless solutions, capable to cope with the
high bandwidth requirements, but which are based on a finite resource: the shared
spectrum available.

Wireless technologies have evolved dramatically in recent years. On the one
hand we have the emergence of mobile telephony over 20 years ago and its massive
deployment worldwide, mainly since the success of GSM, today extended to 3G
and 4G, providing also broadband data services. On the other hand, the regula-
tory decisions taken many years ago today see their fruits, given the success and
consolidation of various standards in unlicensed bands, particularly IEEE 802.11,
popularly known as WiFi. The latter has had an impact not only on the last hop
connectivity for which it was originally intended, but also as last-mile access tech-
nology. This alternative low-cost access technology has even led several research
efforts focused on variations to the standard to enable and improve the operation
on long distance links [36–38]. These works have not been limited to laboratory
testing, but have also deployed the technologies developed, enabling applications
such as telemedicine in rural areas [39].

In this ongoing evolution of wireless technologies, much research effort has
been recently dedicated to what is known as mesh networks [2]. More recently,
many research works focused in this type of mesh solutions, have also incorpora-
ted the cognitive radio paradigm, introduced by Mitola 15 years ago [8]. In the
next sections we briefly describe both concepts, wireless mesh networks and the
cognitive radio paradigm, which provide the general framework for the research to
be presented in this thesis. Our work will focus on these novel wireless solutions,
inspired on the motivation previously raised about the need of infrastructure to
provide ICT access to bridge the digital divide, particularly in education. With
that inspiration in mind, the two main research areas of our work are: firstly, to
exploit as much as possible the available resources using traffic engineering strate-
gies; and secondly, to take advantage of idle resources to get more capacity, based
on dynamic spectrum allocation under the cognitive radio paradigm.

1.2. Wireless Mesh Networks
The typical architecture of a wireless mesh network (WMN) is depicted in Figu-

re 1.1. As we can see, it consists of several intermediate nodes (typically stationary)
called wireless mesh routers. These nodes enable the interconnection between the
end users (mesh clients), also often called stations, which can be mobile or sta-
tionary, with one or more Internet gateways, which are usually equipped with a
(typically wired) broadband Internet access. A broad literature in the area can be
found in this book [40], and also in the previously cited survey [2].

2



1.2. Wireless Mesh Networks

Figure 1.1: Wireless Mesh Network.

A brief historical perspective on WMNs, taken from the Communication Sys-
tems Group at ETH Zurich, mentioned as the first antecedents to the WMNs the
research done by the DoD on battlefield communications in infrastructureless hos-
tile environments, during the 70s and 80s. The main characteristics were a MAC
layer mechanism combining Aloha & CSMA, distance vector routing, operating
in the frequency range 1.78 - 1.84 GHz and with data rates ranging from 100 to
400 kbps. More recently, during the 90s, another project from the DoD focused
on multimedia communications with hand-held devices in the office environment,
with more advanced characteristics: CSMA/CA and TDMA, several routing and
topology control schemes, operating frequency range 225-450 MHz and a data rate
of 300 kbps.

In the standardization field, we can mention the creation of the IETF - Mobile
Ad Hoc Networking (MANET) working group in 1997 and the IEEE - 802.11s
working group in 2004. The great success of the IEEE 802.11 standard [41] in the
WLAN environment, brought as a side effect, mainly due to lower prices of radio
equipment, to extend its usage to WMNs, becoming the de facto standard for
this kind of networks [2–4]. This fact imposed a new challenge to this technology,
that was originally designed for a single hop wireless network (between clients
and access points), and now it is being used in multihop wireless networks. The
new version of the IEEE standard, the 802.11s [14], addressed this new multihop
scenario, particularly focused on new features to solve the packet routing and
forwarding.

While the new version of the standard defines a routing protocol, this problem
in such networks is still open and is an important research topic in the area. In
a WMN, routing has significant differences with the wired case, that make the
old paradigms used before not valid in wireless environments (e.g. the interaction
between the MAC layer and the network and transport layer should be taken
into account in this case). Some people have proposed new metrics that take into
account the lower layers to solve the routing [15,16], while others explore which is

3
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Figure 1.2: Gateway selection example in a wireless mesh network.

the best way to establish the links to solve the problem [17–20] or seek alternative
cross-layer optimization mechanisms [21].

Furthermore, the technology advances fast, and allows new possibilities every
day, which changes the scenario of analysis that should be considered. For example,
previous studies analyzed the case of a WMN where nodes have a single radio
interface, which implies that each node can talk on only one channel at a time.
Then, typical WMNs equipment improved to nodes with multiple radio interfaces,
which allows them to operate in different frequency channels simultaneously [22,
23]. The multi-radio multi-channel (MR-MC) networks presented a substantial
performance improvement because of the great network capacity increase, but also
changed the scenario of analysis to solve the resource allocation. This implies that,
even for many previously well studied issues, new research should be done in order
to consider the updated scenario.

Among several open issues in the development of WMNs we can highlight the
following, which are of particular interest in this thesis. First, we have the problem
(illustrated in Figure 1.2) of how to optimally choose the gateway dynamically
[42]. Then, we already mentioned the routing and forwarding, for which traffic
engineering tools should be developed, in order to enable load-balancing in real
time, depending on the actual traffic demand [43,44]. Another issue is how to ensure
a fair access for the multiple clients to the shared resources [45,46]. Finally, we are
interested in finding algorithms that dynamically optimize resource allocation and
maximize the utility of the network [47,48].

4
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1.3. Cognitive Radio Paradigm
The cognitive radio (CR) paradigm was introduced by J. Mitola in his PhD

dissertation in 2000 [8]. He described the characteristics of a novel radio interface,
that used information from the environment in order to intelligently choose the best
parameters to use for communications. Although unrealizable in the short term,
it has converted in a unifying vision of how a future radio device might behave.
However, several key factors point in the direction that the underlying technology
for this (once utopic) idea of such a system is every day closer to become a reality.

The first proof that we are getting closer to see a real cognitive radio network
are the recent advances of the research on the subject [49]. This new paradigm
has generated an increasing research interest, with much industrial and academic
efforts, which is reflected by the number of publications and conferences on the
topic. In addition, the importance of wireless networks today is also increasing,
with a demand of ubiquity access and also novel access technologies as WMNs. As
an example, two novel standards were approved in recent years: the IEEE 802.22
standard [50] in 2011, which defines a Wireless Regional Area Network (WRAN),
and the 802.11af amendment [51] in 2014, which enables the operation of 802.11-
based networks in TV bands. Finally, software-defined radio (SDR) is becoming
possible and increasingly capable, which seems to be the most suitable technology
to support cognitive radios.

At the same time this new paradigm was being introduced, the regulatory
agencies were acknowledging the need for a new way of spectrum allocation. The
scarcity in some frequency bands, while others are unused, opens the door for a
more dynamic system. This flexibility might be very helpful for WMNs, typically
based on unlicensed spectrum, to expand the available resources through idle li-
censed bands. The main idea is to have two types of users; licensed or primary
users (PUs), which have the preferential right to use the band; and unlicensed or
secondary users (SUs), which can use the band only in the absence of the PUs.
This type of spectrum allocation contributes to a more efficient use compared to
traditional static assignments, as testified by some recent FCC rulings [52].

As described in depth in [53], there is a kind of symbiosis between WMNs
and CR, which is closely related with the focus of this thesis. In particular, the
ability to use any spectrum that is not being used could greatly improve WMNs
performance, especially in rural areas. TV white spaces or bands assigned to ce-
llular networks with low usage could be exploited by the WMNs, providing it with
valuable additional bandwidth. However, as frequency use for these bands could
be transient, the WMNs would result in a highly variable network capacity. In this
thesis we address this issue through a novel robust approach, which aims to give
greater compliance guarantees with the network requirements.

5
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1.4. Summary and Main Contributions
As previously mentioned, the main focus of this thesis is on low-cost Internet

access technologies for suburban and rural settings, particularly concerning on edu-
cation and e-learning applications, where multihop wireless networks have already
proven to be a feasible solution. The issue is how to optimize these networks to
meet the growing traffic demands and requirements imposed by the future appli-
cations. In this regard, two important aspects were addressed in our work. On the
one hand, we worked on novel traffic engineering tools, which seek to maximize the
exploitation of network resources through optimal packet forwarding considering
origin-destination flows. On the other hand, based on the cognitive radio networks
paradigm, we introduced an original spectrum assignment framework, and a ro-
bust algorithm was proposed to solve the problem posed, which takes advantage
of the free spaces in licensed bands to expand the network resources.

The thesis is divided in three main parts, each one dedicated on the different
topics addressed in this work. The first one deals with the characterization and
statistical modeling of a WLAN, firstly analyzing the demand in the educatio-
nal context of Plan Ceibal, and secondly estimating the capacity of 802.11-based
wireless links from measurements of the physical layer. Then, we propose a new
decentralized scheme for routing and forwarding in multihop wireless networks,
which optimally distributes the end-to-end traffic flows among all the possible
paths of all origin-destination pairs. The algorithm is based on the development
of a statistical model of the links’ packet queues, obtained using machine learning
techniques from live network measurements. Finally, founded on the new paradigm
of cognitive networks, we propose a novel robust spectrum allocation mechanism,
that takes into account both, the unlicensed spectrum, and the free spaces available
in licensed bands (e.g. spectrum holes in TV bands).

The thesis starts with the description and analysis of the wireless network from
Plan Ceibal, which is the supporting infrastructure to the one-to-one educational
model nationwide in Uruguay. The aim of this first part is to present the use case
that motivates the rest of the work, and also identify the key points in regard
to the requirements that the network must support. In particular, two important
findings are highlighted from the analysis. On the one hand, the confirmation that
the traffic demand is growing very rapidly, making it necessary to increase the
network capacity to cope with the future requirements. On the other hand, even
in this scenario of an increasing demand, which is therefore not stationary, if we
look at the data at a shorter time scale (e.g. a day or a week) the observed behavior
is fairly steady, making it possible to characterize the demand with good accuracy
based on statistical data. This is important because it allows the development of
resource allocation algorithms that learn the demand based on data from the live
network and then are able to perform an optimal allocation based on the available
network resources.

While in the first half of this part of the thesis we confirm that is possible to
characterize the traffic demand at short timescales, in the second half we analyze
how to compute the capacity of a wireless network. The idea here is to estimate

6
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and predict, from measurements of the physical layer, what is the resulting capa-
city at higher layers. Based on the results obtained, we verify that it is possible
to perform a statistical inference of the maximum achievable TCP throughput
on a 802.11-based wireless link, from physical layer measurements of the received
signal strength (RSS) or the resulting signal to noise ratio (SNR). This ability to
properly estimate the capacity in upper layers of the wireless links opens the door
to developing resource allocation algorithms that take into account, not only the
resources considering the amount of spectrum assigned to a certain link, but di-
rectly knowing the capacity that is possible to obtain given the physical conditions
in a certain time and location. Thus, it is possible to make an optimal resource
allocation, considering the resources available for each link, which are learned from
measurements obtained from the links of the live network.

The second part of the thesis focuses on the problem of routing and forwar-
ding packets in a multihop wireless network. The goal is to find a distributed
algorithm to decide the most suitable path for every packet flow between each
origin-destination pair. We look for a solution capable of optimally balancing the
traffic load, based on the available resources in each network link. For this purpose,
a model of the packet queue for a 802.11-based wireless link was developed, ba-
sed on statistical learning from measurements taken from the live network. Using
this model, we pose an optimization problem which seeks to minimize the sum
of the packet queues on all network links. This way, the optimal packet forwar-
ding will conduct the network to operate at the minimum average congestion, thus
exploiting in the best possible way the available resources.

Next, a suitable algorithm that solves the optimization problem posed in a
distributed manner is presented. Several simulations were performed in different
scenarios to verify the performance of the proposed method, and also for com-
parison with other schemes, such as the routing method of the 802.11s standard.
The results were analyzed considering several performance measures such as delay
and jitter for UDP traffic and average goodput for TCP traffic. The results in the
experiments clearly show the advantages of the proposed algorithm compared with
routing schemes based on a dynamic metric, as the one included in the 802.11s
standard routing method. In all the simulations, independently of the topology
size, we observed a quick adaptation of the proposed algorithm to traffic changes
and also an stable operation, avoiding the routing oscillations of 802.11s, already
noticed before by [6, 7].

In the third and final part of this thesis, our work is focused on another im-
portant issue for wireless access networks with multiple hops, which corresponds
to the spectrum allocation for each of the links in the network. Now, the goal is to
expand the available resources, based in this case on the cognitive radio networks
paradigm, using both unlicensed bands and free spaces in licensed bands. This
novel paradigm, allows secondary users to use licensed bands when the primary
users are not present. The success of various standards in unlicensed bands, with
a special mention to the global relevance of 802.11 these days, has led to the need
for more unlicensed spectrum. An alternative to solve this situation, is precisely
the development of cognitive radios, that are able to operate in licensed bands

7
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as well, when they are not in use. An example of the efforts in this line are the
technologies that use the free spaces in TV bands, for which today we already
have standards like 802.11af for the implementation and several countries with the
proper regulation to allow the operation.

For the formulation of the problem we consider a periodic assignment of fre-
quency bands for each link, with a certain predefined fixed time interval. The
objective function we seek to minimize is defined as the sum of the assignment
costs associated with each frequency bands allocated for each link. Furthermore,
we assume it is possible to estimate the effective capacity on each frequency band
for each wireless link, similarly to what was introduced in the first part of the
thesis, using measurements from the live network collected at each node. Finally,
we impose the constraint that the effective capacity assigned should be enough
to comply with certain traffic demand in each of the links. This way, we reach a
stochastic optimization problem, due to the random variable component related
to the variable availability of licensed bands, since it depends on the primary users
activity. To solve this problem we seek a deterministic equivalent, that is robust
to the probability distribution. This implies that the proposed solution takes into
account only the mean and variance of the primary users activity, values estima-
ted at each node from measurements collected on each frequency band. Thus, it
is possible, using a probabilistic scheme, to find the best solution for a predefined
value at risk.

The proposed robust method was evaluated by several simulations for different
network topologies. In addition, the performance was compared with alternatives
such as only considering unlicensed bands or an approach based on the avera-
ge value. It was also taken into account in the experiments an optimality bound
given by the solution corresponding to the case of knowing in advance the pri-
mary users activity. The results show that the proposed solution have much better
performance than a scheme based on the average value, without assigning much
more spectrum. The robust approach ensures compliance with the effective capa-
city required on each wireless link with high probability. The additional spectrum
for this robustness is below 35 % more than the optimality bound, given by the
case of knowing in advance the primary users activity. Finally, we highlight that
the proposed scheme enables to find the optimal allocation with a decentralized
algorithm, and a proper architecture for its implementation is also presented.

The ultimate goal of the whole research carried out is to deepen in the analysis
and design of suitable low-cost solutions for wireless access to the Internet in rural
areas, aimed at supporting the traffic demands imposed by the new applications of
the future, in particular the ones related to the education system under the novel
one-to-one model. With this in mind, our line of work is particularly focused in re-
source allocation mechanisms that take advantage of live network measurements,
in order to find suitable models based on statistical learning from the collected
data. Then, using a problem formulation based on the NUM (Network Utility Ma-
ximization) framework, we look for the proper optimization schemes to reach the
desired goals on each case, and we base on convex optimization and decomposition
theory to find distributed solutions, which enables to reach the optimal network

8
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operation point with decentralized algorithms.

1.5. Structure of the Thesis
The thesis is divided into three parts and is organized as follows. Part I relates

to the use case and main motivation behind this work which is Plan Ceibal, as well
as a basic statistic learning perspective to analyze 802.11-based wireless networks.
First, Chapter 2, based on paper [CP4], introduces the Plan Ceibal one-to-one
educational model approach and describes the wireless network infrastructure de-
ployed. Then, in Chapter 3, which is based on paper [CP2], the performance esti-
mation of a 802.11-based network is presented, using machine learning techniques
to estimate the capacity in these kind of networks.

Secondly, Part II deals with the problem of finding an optimal forwarding in
wireless mesh networks and is divided into two chapters. Chapter 4 covers the pre-
sentation of the problem, a brief literature review and introduces the nomenclature
used. It also includes the developed model, based on the statistical learning of the
average queue size function at each wireless link of the network. Then, Chapter 5
describes the proposed solution and illustrates the operation with several simula-
tion experiments. The content of these chapters is based on the paper [CP1] and
the article [JA1].

In Part III, another major problem addressed in this thesis is presented, which
is the spectrum assignment in a cognitive network environment. The part is di-
vided into three chapters. Chapter 6 describes the problem, presents a related
work review and develops the resource allocation model to use. In Chapter 7 a
brief review of stochastic optimization with chance constrained programming is
presented, and introduces a particular distributionally robust approach to find a
deterministic equivalent problem, which will be used in the proposed spectrum
allocation solution. Then, Chapter 8 introduces the algorithm developed, descri-
bes the distributed architecture for a proper implementation and presents several
simulation experiments to validate the proposed framework. The content of these
chapters is based on the paper [CP3] and the article [JA2].

In order to close the thesis, in Chapter 9 the general conclusions of this work
are presented and future prospects are discussed as well.
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Chapter 2

The Plan Ceibal Use Case Scenario

As discussed in the introductory chapter, wireless networks have experienced
significant growth in recent years. This importance gained by wireless solutions is
twofold. On the one hand, it is today the most common connectivity technology
for a variety of end user devices, including laptops, tables, smartphones and even
watches. On the other hand, it has also became a suitable last-mile access tech-
nology, particularly important to provide Internet access in remote rural areas. In
this context, one of the most important applications of wireless networks, and a
major vertical of the WiFi industry today, is education.

This chapter presents a real use case scenario which is the deployment of Plan
Ceibal [5]. This wireless network corresponds to the supporting infrastructure of
the nationwide implementation of the novel one-to-one educational model. We
also present a usage analysis based on measurements collected from the wired
side. This study is intended to characterize the traffic demand in this scenario and
validate the hypothesis that this demand can be estimated accurately considering
a proper time scale. This assumption will be used later on this thesis, for the
development of optimal resource allocation methods based on live measurements
from the operating network.

2.1. Introduction
During the past decade, the advances in wireless technologies suggest the pos-

sibility of a near future world where everyone is connected to the Internet everyw-
here. This fact has already been a reality in some places for the case of mobile
telephony. Lately, it has spread to broadband services, mainly because of the mas-
sive deployment experienced by the 802.11 standard, better known as the popular
WiFi. The number of places with wireless Internet access is increasing worldwide,
either through hotspots, community networks [54] or municipal deployments [55].
In parallel to this, the world of end user devices has evolved as well, and smartpho-
nes, tablets and a huge variety of new devices have joined the traditional laptops.

Within this context, being education an important aspect of our society, it
is in line with these developments and is being deeply impacted by technology.
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Regarding laptops, their low costs have cleared the way for the consideration of
one-to-one educational models. Although prices are still a bit higher than those of
the original Nicholas Negroponte’s idea (introduced in the World Economic Forum
in Davos in 2005) of getting USD 100 educational laptops, these have dropped
significantly. Nowadays it is viable to endorse this kind of programs by using a
small percentage of the national GDP (the case of Plan Ceibal is less than 0,2 %
of Uruguay’s GDP, which represents less than 5 % of the total public expenses in
primary and intermediate basic education [56]).

Over the last years the one-to-one educational model has been gaining im-
portance within different regions of the world. Aside from delivering a laptop for
each student, providing wireless Internet access (first within educational centers
and then expanded to public places as squares and clubs) has also changed the
educational paradigm completely. The access to information is no longer limited to
educational centers and technology empowers students to have all the knowledge
available, all the time, everywhere. In this respect, the Uruguayan Plan Ceibal has
been a pioneer, beginning its deployment in 2007 and being the first project of
its kind in having a national scope. This new educational model, along with the
technological breakthroughs of the last decade, have made of education one of the
main applications of wireless networks nowadays. This is clear from the products
portfolio of the main wireless industry providers, where education always takes an
important place.

The deployment of WiFi wireless networks keeps growing. In spite of the deve-
lopment of wideband technologies for cellular networks such as LTE, it is expected
that within the next years 802.11 networks will continue to grow and expand
around the world [57, 58]. As a consequence, every important wireless industry
supplier has 802.11 equipments among their portfolios. The relevance acquired by
the impact generated at the educational sector makes this application one of the
most important within solutions offered by manufacturers. Education also has an
important technical challenge regarding wireless solutions, as it presents scenarios
where technology reaches its limits. The high density of users in a reduced area,
also with high traffic demands, generates situations only comparable with events
such as large conferences or sport events [59].

Plan Ceibal has been a pioneer facing these kinds of scenarios, not only on a
national level but also worldwide. It has one of the largest wireless networks in the
country, comparable to that of a local ISP, with over 10.000 access points. It covers
every public educational center along with some private schools that have joined
the project, public spaces such as squares and clubs and also housing projects,
both rural and urban. On a worldwide level, Uruguay has been the first country to
encourage the implementation of the one-to-one educational model with a national
scope. This has placed the experience as a reference for several programs that start
every year around the world. New challenges are currently emerging, such as the
deployment of a videoconference network with over 1000 points. This network
would allow universalizing English teaching on a primary level through distance
learning programs, among other planned activities.

Finally, in addition to the presentation of the use case that motivates this the-
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sis, we present a traffic demand analysis with data collected from the wired side
of the network. This particular kind of measurement campaigns, over operative
networks and under uncontrolled environments, have been called in the wild mea-
surements, in contrast to those studies conducted under laboratory conditions, in
absence of outside interference and with controlled users behavior. There are se-
veral previous works within different contexts, such as companies or conferences,
where those which resemble the most to ours are the measurements campaigns ta-
ken on university campuses [60–62]. The variety of results and their contradictions
within these studies are explained by the constant changing of the wireless traffic
over recent years [63]. A couple of innovative aspects of this work stand out from
the previous. First, measurements have been obtained from an environment where
the one-to-one educational model is implemented, which implies that every child
and teenager has a personal computer. Besides, because of the national scale of
the study, the amount of data makes conclusions stronger.

Two important results emerge from this first analysis and should be highligh-
ted. On the one hand, we confirm that the traffic demand is growing very rapidly,
and we observe that the higher the network capacity, the greater the traffic de-
mand. This fact shows how difficult it will be to cope with the future network
requirements. On the other hand, the upward trend in the traffic demand implies
that its evolution is not stationary, but if we look at the data at a shorter timescale
(e.g. a day or a week) the observed behavior is fairly steady, making it possible to
accurately characterize the demand based on statistical data. This result is inter-
esting, as it enables the development of resource allocation algorithms that may
learn the demand based on data from the live network. Thus, it is possible to find
optimal resource assignments based on the network capabilities, a possibility that
will be exploited by the algorithms proposed later in this thesis.

2.2. Plan Ceibal’s Description
Plan Ceibal is a governmental project which goal is to promote digital inclusion,

aiming to reduce the gap both with other countries and between the citizens of
Uruguay, in order to ensure a larger and better access to education and culture.
Uruguay kick-started Plan Ceibal with the idea of Nicholas Negroponte [64] as a
starting point and through Presidential Decree of April 18, 2007 [65]. This decree
stipulated that studies, evaluations and actions necessary to provide each children
and teacher from public education a portable computer must be held, that teachers
must be trained in the use of the new tools and that the elaboration of educational
proposals must be promoted. The initial goal included, besides giving laptops to
students and teachers, providing wireless connectivity to the Internet at every
public educational center and other open public spaces.

The connectivity requirement of Plan Ceibal set the challenge of providing In-
ternet access to every educational center in the country (over 2000 sites between
primary and middle schools, plus technical high schools among others). Open spa-
ces and social centers like squares and clubs were gradually added up. Different
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Internet access technologies such as optical fiber (OF from now on), DSL, EDGE,
3G and satellite were used in the attempt of reaching the connectivity goal, all of
them provided by Uruguay’s national public ISP (Antel).

2.2.1. Plan Ceibal’s Wireless Network
This section contains a brief description of the wireless network deployed by

Plan Ceibal (illustrated in Figure 2.1). The list below summarizes all the Internet
access technologies used within the network:

Wired access: DSL (3 Mbps downlink / 512 kbps uplink) and OF (10 Mbps
downlink / 2 Mbps uplink).

Cellular network access: EDGE (256 kbps downlink) and 3G (1 Mbps down-
link).

Satellite (4 Mbps downlink shared by all services).

The wireless access technology used by Ceibal is WiFi (802.11b/g) for all the
provided laptops. The solution deployed in educational centers basically consists,
on the one hand, of a server in each school with Internet access (through any of the
aforementioned technologies). On the other hand, access points, connected to the
server via Ethernet, are distributed along the site to get a proper area coverage.
The design criteria used for the indoor solution states that:

Every classroom must be covered with WiFi. Besides, the coverage of re-
creational areas, yards and lunchrooms should be attempted.

The design is aimed to support a simultaneity factor of 80 % (80 % of the
students must have service simultaneously).

The design goal for public spaces coverage was to maximize the coverage area.
In this case the equipments were installed over facades and rooftops, again con-
nected to the server through Ethernet. 802.11 radio links at 5.8 GHz were also
implemented in order to extend the network by installing special APs over high
points, such as telecommunications towers and masts, water tanks or private buil-
dings. This extension made it possible to spread wireless coverage in every town. In
addition, these radio-links have proved to be useful to ensure connectivity to those
educational centers where no other technology was available in order to provide
a good quality of service. There are several examples of the use of 802.11 unli-
censed bands for the deployment of access networks in rural zones of developing
countries [66,67].

The group of sites to which Ceibal brings services can be divided into two main
categories: indoor service, mostly deployed in educational centers, and outdoor
coverage, concerning different type of sites. A detailed list of them is presented
next:

Educational centers (indoor):
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Figure 2.1: Plan Ceibal wireless network infrastructure.
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• Primary schools.

• Middle schools.

• Technical high schools.

• Teaching training centers.

• Centers for disabled persons.

• Other educational centers.

Outdoor coverage:

• High priority neighborhoods (HPN).

• Squares and sports and social clubs.

• Urban housing developments.

• Rural housing developments.

• High points (telco towers and water tanks).

• Other sites (communitary classrooms, companies, detention facilities).

It is also important to mention that there were differences in the connectivity
strategy for public areas between the capital city (Montevideo), and the rest of
the country. The design criteria used for the deployment along the country was
to cover those urban areas which counted with an educational center with more
than 100 students, aiming to avoid coverage holes with a diameter larger than a
300 meters. Being Montevideo the most populous city in the country, and the one
where Internet has got into more homes, the strategy there was based on hotspots.
The goal was to cover key points such as squares and clubs, instead of having a
large coverage area, which implied higher deployment and maintenance costs.

2.3. Network Measurements
The previously described connectivity solution counts with more than 3500

servers and 10.000 access points. Network management involves a permanent mo-
nitoring system to register if the service is active or not in every point. This system
also allows to register indicators about the user activity at each site. These mea-
surements are fundamental when it comes to optimizing the network because they
contain information about the performance of the solution. They are also useful
to get to know the needs of the different users and this way provide the necessary
resources to every specific case.

As it has been mentioned in the introduction, this kind of data collected from
real world operating networks is known as in the wild measurements [68]. In this
particular case they are gathered from the wired side of the network. This means
that the equipments are periodically queried via SNMP and data is obtained re-
garding the number of clients and the carried traffic. This data is then aggregated
to different scales either temporary, to identify average behaviors through a day
or a week, or spatial, to characterize usage within a town or a region.
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Data is also analyzed according to other characteristics such as the kind of
access technology of the site, or if it belongs to a primary school, or to a middle or
high school. This classification is also used for sites that are not educational centers
like squares, clubs and rural or urban housing projects. This way it is possible to
analyze where a new Internet connection would impact most in the community,
and so, establish deployment policies in order to maximize the benefits users would
get from the available resources.

The measures considered are: downlink traffic rate (from the Internet to the
access point), what we called demand, and the amount of connected users (called
clients). These metrics are then aggregated in different ways, either considering
averages or maximums depending on the case. The data was collected during five
months, starting in July 2013 (including the winter break) and ending in November
2013, the month prior to the end of the school year. In addition, a temporary filter
to keep only school hours was introduced, for which only those measurements taken
from Monday to Friday between 8 am and 5 pm are considered.

For the two measures considered (demand and number of clients) we worked
with a granularity of one hour. This implies that the minimum timescale available
is one hour and the value considered for each measure is the average during the
hour.

2.4. Statistical Data Analysis
In this section the collected data is analyzed in several different ways. First,

a long-term evolution of the data is considered, comparing the different Internet
access technologies. Then, a mid and short-term analysis is held, particularly focu-
sing on those sites with OF Internet access. An indoor usage comparison has been
made considering the different type of schools. Finally, outdoor usage has been
looked at, identifying which sites have the most impact in the community, based
on the number of clients observed on each deployed access point.

2.4.1. Long and Mid-term Analysis
Concerning only schools, Figure 2.2 shows the evolution of the average demand

within school hours. It is differentiated according to the type of Internet access,
where it can be noticed an important difference between OF and DSL and the
rest. There is a noteworthy transient during the first two weeks of July, as they
correspond to the winter break. For the following months there is a remarkable up-
ward trend in the traffic demand, except for special days when there are no classes
(official holidays). There are two main factors that could explain this evolution: a
general increase observed in the popular use of Internet and the fact that near the
end of the year school activities might demand more use. A fact to note is that
the maximum peak was on November 20th, the same day when Uruguay qualified
to the world cup Brazil 2014, something not rare in such a football fan country!

Now, looking at a shorter time scale, we can see that the data has a stationary
evolution. Figure 2.3 shows the average demand and number of clients during
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Figure 2.2: Indoor average demand evolution at class time during Jul-Nov 2013.

(a) Demand (Mbps).

(b) Number of clients.

Figure 2.3: Usage evolution for schools during school hours in October 2013.
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Internet Number of Demand (kbps) Clients Demand (kbps)
Access schools per school per school per client
OF 862 1.802,7 14,1 127,4
DSL 418 497,0 7,4 67,4
3G 349 57,4 1,0 57,6
Satellite 45 60,4 1,7 34,6
EDGE 328 7,0 0,2 30,7

Table 2.1: Indoor usage at schools between 10 am and 11am (overall peak hour) during October
2013.

October 2013 within school hours. It can be noticed that the daily typical behavior
is different depending on the type of institution, something that will be analyzed
in detail in the next section.

Table 2.1 summarizes the analysis performed looking at the usage between 10
am and 11am, which is the peak hour. It can firstly be noticed that the largest
demand is observed for those sites with OF access, with an average that is more
than three times the one observed for sites with DSL access. An interesting insight
from the results is that the demand per client is also larger for these sites (twice the
one for DSL), which implies that usage is greater where the access technology is
better. On the other side, a similar demand is observed in those sites with 3G and
satellite access, which is explained because of the context (mostly rural schools with
few students). Finally, the poor EDGE connection has the lowest usage, although
the context also influences in this case (very few students per school, typically less
than 20).

The following part of the study takes into account only the data corresponding
to schools with OF Internet access. These schools are the ones which have the
greatest part of both the demand and the number of clients, which is clear by
looking at Figure 2.4. The results show that at the overall peak hour, sites with
OF access take 87 % of the demand and 77 % of the clients. Similar results were
obtained looking at the average during school hours, instead of the peak hour.

2.4.2. Analysis by Type of Institution
Analyzing the data by type of institution, the results are in line with those

expected, with middle and high schools with larger demand than primary schools.
Table 2.2 shows the maximum usage summary for the schools with OF access
during October and November 2013. Both the demand and the number of clients
is larger for middle and high schools. Looking at the demand per client, it is unusual
to have a smaller one for middle schools than for primary schools, which suggests
access saturation problems within these schools. Although primary schools have
a lower demand per site, they still have the major part of the overall demand,
because of the greater number of sites. In Figure 2.5 it can be seen that they take
more than 60 % of the demand and almost 57 % of the clients, when the maximum
usage measured during October and November 2013 is considered.
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Figure 2.4: Indoor usage distribution at schools between 10 am and 11am (overall peak hour)
during October 2013.

Figure 2.5: Indoor maximum usage distribution for schools with OF access during October and
November 2013.

Type of Number of Demand (kbps) Clients Demand (kbps)
institution schools per school per school per client
Primary school 574 2.749 16 172
Middle school 159 3.854 31 123
Tech high school 53 4.179 28 149

Table 2.2: Indoor maximum usage for schools with OF access during October and November
2013.
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(a) Average demand per site (kbps).

(b) Average number of clients per site.

Figure 2.6: Typical day usage for schools with OF access during class time in October 2013.

Next, data corresponding to October are again analyzed, but this time with
a focus on daily averages, in order to study the typical behavior during a school
day. There is a noticeable difference between the dynamics of primary schools with
the one observed in middle and tech high schools (see Figures 2.6(a) and 2.6(b)).
On one side, the former have two comparable peaks during the day, which are
registered in the morning, close to noon, and in the mid-afternoon, respectively.
On the other side, the latter, while also has two peaks, the one in the morning is
earlier and well above the one in the afternoon.

The observed behavior can be explained by the dynamics of a typical double
shift primary school, where the drop at midday is obviously because of lunch time.
The usage at primary schools looks more uniform during the afternoon, while in the
morning it increases towards noon. Some particular schools start their school hours
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(a) Average demand per site (kbps).

(b) Average number of clients per site.

Figure 2.7: Typical day usage for primary schools with OF access during class time in October
2013.

later (full time or rural schools), which could explain the difference. Concerning
middle and high schools, evolution is similar during the morning and afternoon,
but usage is higher in the morning. In that case, the number of students per shift
could be the reason, as usually the morning shift is the busiest.

Finally, the aforementioned usage stationarity looking at a short scale deserves
special attention. In Figures 2.7(a) and 2.7(b) the average daily behavior during
school hours for primary schools is shown. While looking at the minimum an
maximum curves it can be seen that the observed variation is quite small. In fact,
the maximum standard deviation observed in October was 150 kbps (between 10
am and 11 am) and 0.83 for the clients (between 11 am and 12 pm). This is a nice
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Figure 2.8: Outdoor clients distribution at maximum usage during October and November
2013.

property, which enables the development of an accurate model of the daily usage
dynamics.

2.4.3. Outdoor Usage Analysis
To complete the study, data from the outdoor access points were analyzed. In

this case only data of the number of clients were considered, as the goal was to
measure the impact of the outdoor deployments taking into account how many
people actually use it.

Figure 2.8 shows the clients distribution at the maximum usage seen during
the months of October and November. The total number of clients is over 4000,
which is quite a significant usage, considering that is slightly above than a quarter
of the indoor usage. Now, looking at the distribution, as the number of access
points installed in high points is the largest one, when we look at the totals, the
largest number of clients connects to these access points.

Next, to get a better measure of the impact of each access point, the number of
clients per site is analyzed. Table 2.3 summarizes the results. It can be seen that the
greater impact is observed in rural housing and high priority neighborhoods. For
the former, the lack of good quality Internet connections in rural areas is probably
the cause of a higher usage. It is worth noting that not only the students benefits
from Plan Ceibal’s network, but also their families, what also appears to be an
important reason of the high usage in this context. In deprived neighborhoods
the situation is different. These are typically sites within urban areas where high
quality Internet access is available, but these families may not be able to pay for
the service. This is one of the reasons that could explain the observed high use of
Plan Ceibal resources. Added to this, it is a fact that these families do not have
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Type of Number of Number Clients
institution clients of APs per AP
Club 124,8 95 1,3
Square 151,0 118 1,3
HPN 764,2 154 5,0
Rural Housing 331,3 64 5,2
Urban Housing 489,3 139 3,5
High Point 2352,7 533 4,4

Table 2.3: Average number of clients at maximum outdoor usage during October and November
2013.

access to computers other than the ones provided by Plan Ceibal. Within these
neighborhoods, many activities are carried out working with the community, which
promotes the appropriation and use of the available resources.

High points also present quite high usage, mostly because they are installed
in high population density areas with a wide area coverage. On the other side are
squares and clubs, where the least used access points are located. In these areas,
a larger number of Internet access in households is probably the reason of a lower
usage. In between are the urban housing developments with a middle usage.

Figure 2.9 shows the average daily evolution for outdoor access points. The
typical observed dynamics looks complementary to the one observed within the
schools. It can be seen that the higher use takes place after the end of school hours,
with most of the peak usages after 7 pm (the overall peak usage is between 8 pm
and 9 pm). While it is reasonable to have a higher outdoor usage outside school
hours, families usage seems to be again another reason to explain this behavior.
During school hours there is a lower usage in the morning than in the afternoon.
This might indicate that the outdoor usage of morning shift students during the
afternoon is higher than the outdoor usage of the afternoon shift students during
the morning.

2.5. Final Comments and Reflections
While as marked in the introduction the Plan Ceibal has pioneered the massi-

ve deployment of technology and Internet access in education, other projects have
continued this line at several places in the world. Examples are the project Co-
nectar Igualdad in Argentina [31] since 2010, and the recent program ConnectED
in the United States [32], which was launched in 2013. The latter aims to achieve
99 % of American school students to have access to next-generation broadband by
2018. That means a lot of money will be used to provide Internet connectivity and
educational technology into classrooms, and of course, it is going to be wireless.

That is to say, the picture we are taking with this study is just the begin-
ning of the story. It is clear that the number of wireless networks will continue to
grow, both to provide connectivity to end-user devices, as well as to deploy access
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Figure 2.9: Typical day usage for outdoor during October and November 2013.

networks that reach suburban and rural areas. There is also no doubt that the
traffic demand will increase as well, something that we already evidenced in this
first study. Adaptation and habituation of teachers with technology tools and the
growing number of platforms and educational software, will also help this traffic de-
mand to continue increasing. It will be a great challenge for technology developers
and providers of wireless solutions to live up to support these requirements.

Finally, another important point that emerges from this study, and that could
help to meet the requirements adequately, is the possibility to characterize the
traffic demand properly. As we saw, if the timescale is suitably chosen, statisti-
cal modeling captures the demand behavior correctly, something which could be
used to optimize the network resources dynamically. This idea of optimizing the
network with resource allocation mechanisms based on a statistical model, which
is learned from actual measurements of the wireless network under operation, is
something that will be exploited in all the proposed solutions to the different pro-
blems addressed throughout this thesis.
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Chapter 3

WiFi Performance Estimation from
PHY Layer Measurements

In the previous chapter we validated the assumption that it is possible to esti-
mate the traffic demand from measurements collected from the operating network.
Now, we will concentrate in other randomness we typically have in wireless net-
works, which is the effective capacitive achievable for each link. A proper method
to estimate this capacity would be a leap ahead in the optimization of wireless
communications, as it will enable the possibility to develop optimal resource allo-
cation mechanisms which evolve dynamically, taking into account the variations
in both the traffic demand and the effective capacity of wireless links. Solutions of
this kind are the ones proposed in Part II and Part III of this thesis.

In this chapter we address the following question: is it possible to infer, given
certain physical medium conditions, what is the performance obtained at the upper
layers, i.e. network and transport layer. For this purpose, we designed a measure-
ment bench that allows us to accurately control the noise level on an unidirectional
WiFi communication link in the RF-protected-environment of an anechoic room.
This way, we generated different medium conditions and collected several mea-
surements for various physical layer (PHY) parameters on that link. Then, using
the collected data, we estimate the throughput performance from the measured
PHY parameters by means of different machine learning methods. In particular,
our work concentrates on the performance analysis of a 802.11 link.

3.1. Introduction
In recent decades the development of statistical learning has come a long way.

On the one hand, much research effort has been lately devoted to the subject.
On the other hand, the increase of computing power has enabled efficient im-
plementations of various methods that existed long ago, which today are used
for many different applications. Among others we can list medical diagnosis [69],
fraud detection [70], as well as problems in telecommunications networks, such as
automatic traffic classification [71]. These techniques offer great potential to cha-
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racterize systems with complex variability such as wireless networks, where the
physical medium is the cause of most of the errors and performance drops.

Because of the randomness of the wireless shared medium conditions, monito-
ring wireless networks is very difficult, and the performance analysis is then more
complex than in the wired case. Monitoring such networks at the IP layer is only
useful for traffic demand characterization, as presented in the previous chapter,
but it is not suitable for performance estimation. Some previous work tried to in-
clude MAC level information in the monitoring of wireless networks [72], but none
integrates the full monitoring of the network from physical to network layers. We
nevertheless argue that this is the direction to follow, and our proposal is to esti-
mate the relations between the physical signal parameters and the performance at
the network level. Physicists are doing very strong studies on the signal level, but
do not study the impact on upper layers [73]. In the work presented in this chapter,
it is intended to bridge the gap between the physical signal characteristics and the
resulting performance in the digital world of wireless communication networks.

In order to answer the question posed, first we designed and built a platform
for benchmarking wireless communications. Many wireless testbeds identified in
the literature already exist for that purpose. They typically consist of a large
grid of wireless nodes which can be programmed individually to transmit, receive
and/or measure data. Custom topologies can be made out of the grid by switching
on and off nodes. For example, Orbits [74] follows this approach. However, these
platforms are built in open environments and lack the isolation and environmental
control required to conduct an accurate cross-layer study on wireless networks.
Contrary to these works, our testbed is built in an anechoic chamber to fully
control the experimental environment, and avoid external signals to disturb the
behavior of the communicating devices and the quality of the measurements. We
used on this platform the common digital communications devices that are widely
used (laptops, tablets, smartphones), as well as dedicated signal measurement tools
specifically designed for physicists.

Our study is focused in the analysis of the relations between the PHY pa-
rameters of a WiFi connection, and the performance parameters on top of the
IP layer. It aims at demonstrating that, at the opposite of wired networks, the
monitoring of wireless networks cannot avoid monitoring the physical level. It is
shown that using a very limited number of signal parameters (one or two), it is
possible to very accurately estimate the communication performance (considering
the network level throughput). With a carefully selected and set machine learning
(ML) algorithm, it is even possible to predict performance drops at the scale of
one second. For this purpose, we rely on two different kinds of supervised machine
learning algorithms, namely Support Vector Regression (SVR) [75] and k-Nearest
Neighbors (k-NN) [76]. Both of them are known to have good prediction capa-
bilities and to succeed in many domains, as long as these domains can provide
accurate time series [77]. However, their operational characteristics are very diffe-
rent, making them more prone to different usage and applications. For example,
SVR algorithms are strong learners whereas k-NN’s learning is weak, thus making
SVR unable to assimilate training data on the fly, because of the huge compu-
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tational complexity. However, SVR algorithms are more sophisticated than k-NN
and so are more efficient to generalize data and usually more accurate on the esti-
mations [76]. Therefore, we will compare the relative estimation performances and
execution time (learning and estimation delays) corresponding to SVR and k-NN,
in order to study the trade-off between complexity and estimation accuracy.

3.2. Machine Learning Algorithms
Two different classes of machine learning algorithms were considered, Support

Vector Regression (SVR) and k-Nearest Neighbors (k-NN). In this section we pre-
sent the basics of both methods. More details can be found in [78] for SVR and
in [79] for k-NN.

3.2.1. Support Vector Regression
Given a set of training data {(x1, y1), ..., (xn, yn)} ∈ X × R with X the input

space, the purpose of SVR algorithm is to estimate a function f(x) with the re-
quirements of having at most ε deviations from the targets yi. Equations (3.1) and
(3.2) show respectively SVR approximation for linear and non-linear form, with
〈., .〉 the notation for the dot product in X. In the linear case, SVR performs a
linear regression in the input space. In the non-linear case, no regression can be
done in the input space. Therefore, on the one hand, the SVR algorithm has to
map the data into some feature space F via the function φ : X→ F. On the other
hand, the classical SV regression algorithm is applied in the new feature space.

f(x,w) = 〈w, x〉+ b with w ∈ X and b ∈ R. (3.1)

f(x,w) = 〈w, φ(x)〉+ b with w ∈ X and b ∈ R. (3.2)

The second requirement for the regression is to maximize the flatness of the
weights, here measured by ‖w‖2. Hence, in the non-linear case both coefficients w
and b are estimated by minimizing the regularized risk function given in (3.3). In
this equation, C is a user-defined constant which controls the trade-off between
the training error and the model flatness. Lε is the ε-insensitive loss function de-
fined by equation (3.4). This function allows the SVR algorithm to only penalize
estimation errors greater than ε.

R(f, C) = C
n∑
i=1

Lε(yi, f(x(i), w)) +
1

2
‖w‖2 . (3.3)

Lε(yi, f(x(i), w) =

{
|yi − f(x(i), w)| − ε if |yi − f(x(i), w)| ≥ ε.
0 otherwise.

(3.4)

To complete the regression we need to solve a convex optimization problem,
which is more easily done by maximizing its dual form and introducing the La-
grange multipliers (αi,α

∗
j ). The resulting optimization problem is:
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maximize − 1

2

n∑
i,j=1

(αi − α∗i )(αj − α∗j )〈φ(xi), φ(xj)〉

− ε
n∑
i=1

(αi + α∗i ) +

n∑
i=1

y(i)(αi − α∗i ),

subject to

n∑
i=1

(αi − α∗i ) = 0,

α∗i ∈ [0, C].

(3.5)

Solving this leads to a new definition of (3.2) as

f(x) =

n∑
i=1

(αi − α∗i )〈φ(xi), φ(x)〉+ b.

At this point, this definition shows that the solution can be found by only
knowing 〈φ(xi), φ(x)〉 instead of explicitly knowing φ. A function k(x, x′) which
corresponds to a dot product in some feature space F as defined by k(x, x′) =
〈φ(x), φ(x′)〉 is called a kernel. This kernel function can be any symmetric function
satisfying Mercer’s condition1 such as the Gaussian Radial Basis (RBF) which is
defined by K(xi, xj) = exp(−γ ‖xi − xj‖2). The Gaussian kernel is parametrized
by γ (γ > 0) which impacts the generalization capability of the regressor among
other things.

3.2.2. k-Nearest Neighbors
The learning approach of k-NN is to memorize the entire training set. As so, the

algorithm belongs to the class of the so-called lazy learners as [80,81] for instance.
Given a set of training data D = {(x1, y1), ..., (xn, yn)} ∈ X× R, with X ⊆ R, the
process followed by k-NN to estimate an object z = (x′, y′) can be easily summed-
up in three steps. Firstly, the algorithm computes the distance d(x′, x) between
z and every object (xi, yi) ∈ D. Secondly, the set F of the k closest neighbors
to z is selected. Thirdly, k-NN computes the estimation as y′ = 1

k

∑k
i=1 yi with

(xi, yi) ∈ F . Variants exist and concern essentially the method used to compute the
distance d(x, x′) such as the Manhattan, Euclidean or Minkowski distance. The p-
order Minkowski distance for two points x1 = (x1

1, ...x
1
n) and x2 = (x2

1, ...x
2
n) ∈ Rn

is defined by
(∑n

i=1

∣∣x1
i − x2

i

∣∣) 1
p .

3.3. Experimental Platform and Dataset
The implementation of a dedicated wireless testbed is a major requirement for

our work. First of all, experimentations must be reproducible, allowing comparison

1A real-valued function K(x, y) is said to fulfill Mercer’s condition if for all square
integrable functions g(x) one has

s
K(x, y)g(x)g(y)dxdy ≥ 0.
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Figure 3.1: Disposition of the different equipments in the wireless testbed. The cable from the
receiver antenna is connected to a power splitter which enables the signal from the antenna
to be dispensed similarly to the WiFi sink and to the Lecroy oscilloscope with negligible signal
alteration.

between different sets of measurements and algorithms. This point is not trivial
when using wireless networks as the environment factors have a high impact on the
network performances. Secondly, part of the originality of this work comes from the
combination of measurements made at multiple network layers, using electronics
instruments and software tools. This was also a strong requirement to be able to
monitor the physical layer (the wireless transmission), and compare it to the higher
layers, from the MAC layer information given by the network cards to the end-
to-end layers, as transport throughput for instance. The hardware introspection
requirement has an impact on the components choice as explained below. Thirdly,
the synchronization of all of these datasets was a sticky point, but absolutely
required to ensure a good behavior of the learning algorithms.

3.3.1. Wireless Testbed Description
Our wireless testbed was designed inside an anechoic room (a diagram is shown

in Figure 3.1). An anechoic room is a protected RF room which simulates free
space conditions. Our chamber model is 4,10 meters long for 2,50 meters wide.
Inside, walls are covered of microwave absorbers materials that break and scatter
any wireless signal that would come from an inside source. The chamber is then
free of any multipath propagation. There are different types of absorbers, each
of them defined for a specific frequency range that allows us to use the anechoic
chamber for different purposes and frequencies. The absorbers protect also the
inner environment of the room from outside perturbations. This protected context
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minimizes the uncontrolled parameters of our communication.

Inside the anechoic chamber we placed two WiFi nodes. The nodes are con-
trolled through a wired network to avoid interference with the wireless communi-
cation. The nodes are Avila-GW2348-4 gateway platforms [82] and run a Linux
OpenWrt OS [83]. The boxes have an Intel Xscale processor, 64 MB of SDRAM
and 16MBytes of Flash memory. The WiFi network controllers are based on the
AR5414 chipset from Atheros which uses the ath5k driver and are attached to an
omnidirectional antenna. The choice of the WiFi chipset and its driver was crucial
because they define the amount of metrics and the accuracy that it is possible to
obtain.

The ath5k driver is open source and well documented thanks to an active on-
line community support [84]. It has also a good integration within the OpenWrt
OS. The OpenWrt OS is flexible enough to allow the implementation of new fun-
ctionalities so that it accelerates the upgrade of the bench. In addition, we used an
oscilloscope connected to the receiver antenna to capture the noise level and the
received signal strength, by recording the amplitude of the received signal. The
oscilloscope chosen was a fast Lecroy WaveRunner which allows us to capture a
maximum number of frame signal with little loss and to record them on internal
memory. The precision of this instrument gives us the ground truth required by
the training methods used. It also embeds a large library of filters, and operators
which can be applied on the input signals.

As we used several equipments to get measurements, it is needed to have their
clock very accurately synchronized. This was done with NTP by using a dedicated
wired connection to a remote NTP server (accuracy with a shared network bus is
not sufficient).

3.3.2. Experimental Protocol
The noise and the interferences significantly impact the performance in wireless

communications. One of the objectives of our environment is to minimize the
presence of uncontrolled parameters during the experiments. On the other hand,
another objective is to generate and control selected parameters that will affect
the performance. For this purpose, we then inject noise in the environment using
a signal generator to perturb the communication. The signal generator is a device
which emits RF signals and it can be configured to generate realistic noise.

Among the parameters of the generated noise, two important elements have
a crucial impact. First, the modulation used defines the main characteristics of
the noise signal in the time and frequency domains (i.e. it determines the spectral
occupancy of the generated signal, its fading or narrowness). Second, the amplitude
of the signal also affects the measured level of noise on the receiver side. We found
that the AWGN (Additive White Gaussian Noise) noise was a good choice for our
preliminary studies because of its simplicity. Moreover it can be used to impact the
entire bandwidth of a 802.11g channel, contrary to most other modulation schemes
which produce narrow band noise. The noise level was determined empirically by
testing the effects on the communication.
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Training set Dataset definition
Notation {Tx Power (dBm); Noise Power (dBm)}; {sample 2};...
Dataset1 {10;-20};{10;-17};{10;-15};{10;-13};{10;-10};

(5323 vectors) {10;-7};{10;-5}; {20;-20};{20;-17};{20;-15};
{20;-13};{20;-10};{20;-7};{20;-5}

Dataset2 {10;-20};{10;-17};{10;-15};{10;-13};{20;-20};
(2661 vectors) {20;-17};{20;-15};{20;-13}
Dataset3 {10;-20};{10;-17};{10;-15};{10;-7};{10;-5};

(1330 vectors) {20;-20}

Table 3.1: Constitutions and characteristics of our training sets. Each vector represents 1 second
of measurements

Another important element that affects the noise generated in the anechoic
chamber is the antenna. It characterizes the waveform, the direction and the am-
plitude of the noise wave. In order to perturb only one side of the communication
we used a very directional antenna pointed to the receiving station. The Lecroy
oscilloscope was set to capture and flush the data as soon as a frame is detected
on the input cable. This happens when the amplitude of the sensed signal is above
a specific threshold, set to be in between the current noise floor and the mini-
mal amplitude value of a frame. This threshold has to be set in a way to prevent
exceptional high noise values that could be incorrectly detected as a frame.

The configuration of the network interfaces is done in promiscuous mode to
capture any packets sensed by their antenna. The packets are captured at the MAC
layer using the PCAP library and tools when they arrive at the kernel interface.
The packets contain data from link to application layers, such as the 802.11 channel
number, the type of frame at the MAC layer, or packet size at the network layer.
Additionally, a packet also contains a RADIOTAP header which gives radio level
information such as the received signal strength (RSS) reported by the ath5k

driver. We modified the ath5k drivers of the OpenWrt OS to permit, when possible,
the propagation of packets with frame check sequence (FCS) errors to the upper
layers, while on the original kernel they were discarded. The propagation is only
possible if the error corrupted the data but not the header fields. Following this
modification the RADIOTAP header now contains a flag specifying whether a FCS
error was detected when decoding the packet. Finally, we use Iperf [85] to generate
traffic between the two peers. The traffic is a TCP flow over a 802.11 link, with
fixed PHY layer rate of 24 Mbps. The size of the packets is set to 1470 bytes.

We generated different samples with different noise levels and different trans-
mission powers. All the samples have the same duration of 5 minutes and will
be used to constitute our training datasets. Table 3.1 sums up the characteris-
tics of the different samples. The same experimental settings (transmission power
and noise) are used for training and testing. Therefore a training dataset which
contains all these samples will be considered as having full knowledge about the
possible use cases met in the test dataset. Hence, to test the generalization ca-
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pacity of our algorithm, we built three different training datasets as described in
Table 3.1. These datasets differ by the quantities of samples they are made of, and
consequently by the level of knowledge they represent.

3.3.3. Measures Defined as Features
Throughput

In this study we are considering the throughput as the performance metric of
the communication. It is computed from the PCAP captured at the receiver side
of the transmission. It is defined as the computed throughput at second i, given
by:

BWi =

n∑
k=1

L(pk) with k ∈ N,

where L(pk) is the length of the payload at the network layer for packet pk. Thus,
it must hold that pk ∈ Pi, where Pi is the set of received packets without FCS
error during second i: Pi = {p1, ..., pn}.

Received Signal Strength @Atheros

The Atheros RSS is extracted from the RSS field in the radiotap headers of
the packets captured, so included in the PCAP files. Given that RSS(pk) is the
RSS of packet pk such as pk ∈ Pi, and Ri is the set of RSS extracted from packets
captured during second i, it is defined as:

ATH RSSi = Ri with Ri = {RSS(p1), ..., RSS(pn))} .

In addition to the Atheros values, we extract different metrics from the Lecroy
collected data. These values are computed from the Root Mean Square (RMS)
values of the raw data. These RMS values can be split into three parts, which are
the data that are before, during and after the frame. The part of the data before
and after the frame corresponds to the noise level values and therefore can be used
to extract the noise floor during the reception of that frame. We consider A and
C, the sets of these points. Therefore we compute the average noise floor of the
data during the reception of frame f with Nf = A ∪ C.

Noise level @Lecroy

With Mi the set of noise levels extracted from the frames captured by the
Lecroy oscilloscope during second i, we compute the feature for the noise floor at
second i as:

LECR NOISEi = Mi with Mi = {Np1 , ..., Npn} and pk ∈ Pi.
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Received Signal Strength @Lecroy

The RSS of the received frame is computed on the first 8 symbols to comply
with the IEEE 802.11 standard [1, 41]. These points constitute the set D. Thus,
similarly to previous equations, the RSS for a frame f is given by Rf = D, and
then the resulting measure is:

LECR RSSi = Ri with Ri = {Rp1 , ..., Rpn} and pk ∈ Pi.

Signal to Noise Ratio @Lecroy

Finally we compute the signal to noise ratio (SNR) Sf for frame f as the
difference between the noise floor and the RSS of the frame P , using both values
corresponding to the Lecroy oscilloscope measurements. Therefore, the SNR is
obtained using the previous formulas as Sf = Rf − Nf , and then the resulting
SNR measure is:

LECR SNRi = Wi with Wi = {Sp1 , ..., Spn} and pk ∈ Pi.

3.4. Throughput Estimation from PHY Measurements
3.4.1. Machine Learning-based Methodology

The presented study considers two different machine learning algorithms, SVR
and k-NN, to analyze the tradoff between complexity and estimation accuracy. The
SVR algorithm has been used with RBF as a kernel function. As pointed out in
section 3.2.1, in our configuration SVR requires three user-defined parameters (C,
γ and ε) which can impact performance, and therefore must be carefully selected
with regard to the application. For our estimations, we used a grid search to select
these SVR parameters. It is a common empirical method which consists in an
exhaustive test run of SVR training using generated settings combinations. We
then select the best combination of C, γ and ε among the results.

For the performance of k-NN, the value of k must be carefully selected. The-
refore, after several tests on the different datasets, we chose a value which allows
a good tradeoff between the estimation accuracy and the generalization results.
In the presented experimentation we set the value of k to 3. The distance used is
Minkowski of order 2, which corresponds to the Euclidean distance, recommended
in the traditional version of the algorithm [79].

One part of the analysis of the machine learning estimations concerns the
computational time associated with the training and estimations process. Our
learning setup uses Python scikit-learn implementation [86] of SVR and k-NN.
The delays are computed by reading the current clock using the ’time’ function.
The clock is read twice: before and after the measured process. The difference of the
two measures constitutes the delay for the measured process. For each estimation,
we made 100 runs and then computed the average and standard deviation of the
delays. The CPU used to conduct the measures is a 64 bits Intel Core 2 Duo
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(2x2.53 GHz) with 6 MB of cache memory. The computer disposes of 4 GB of
RAM memory. The operating system is Debian Linux.

3.4.2. Estimation Accuracy
To evaluate the accuracy of the estimations, two methods are used. On one side,

the well-known Mean Squared Error (MSE) is considered. Given that Ŷi, ..., Ŷn are
estimations and Yi, ..., Yn are the real values, the MSE is defined as:

MSE =
1

n

n∑
i=1

(Ŷi − Yi)2.

We also use the percentage of correct estimations noted P (e < λ) and defined
by:

P (e < λ) =
1

n

n∑
i=1

d(Ŷi, Yi, λ).

This value is the percentage of estimations which differ from the corresponding
real values by less than a predefined threshold λ, as shown on equation (3.6).
These estimations are then considered “correct”. Given the PHY layer rate of
24 Mbps and the size of the packets defined to be 1470 bytes, we set the value
of the threshold λ to 1 Mbps. Indeed, this threshold corresponds to an error in
the estimation of 4 % (89 packets over 2139 transmitted during one second). By
considering the preliminary measured performance of the algorithms this value
could be considered to be fair to assess the goodness of the algorithms.

d(Ŷi, Yi, λ) =

{
1 if |Ŷi − Yi| < λ.

0 if |Ŷi − Yi| ≥ λ.
(3.6)

3.4.3. Experimental Results
Table 3.2(a) contains the results of the throughput estimation based on 6 dif-

ferent PHY or combinations of PHY parameters for Dataset1, Dataset2, and
Dataset3 respectively. The first column quotes the PHY parameters that have
been used for the SVR estimation of the IP throughput. The rest of the table
shows the figures obtained for the MSE and the probability P (e < 1 Mbps) for
both machine learning algorithms. Finally, Table 3.2(b) presents the ranking for
the PHY parameters according to their ability to estimate the throughput accu-
rately. A ranking of 1 corresponds to the best estimation result among the 6 PHY
parameters considered.

For Dataset1, i.e. the full one, the best result is obtained with the parameters
LECR RSS+LECR NOISE for both machine learning algorithms. The estima-
tions for SVR are plotted in Figure 3.2. The results exhibit impressive matching
between the real and estimated values of the throughput, with just very few outliers
appearing (75 % matchings considering the 1 Mbps threshold). We also got quite
good results for Dataset2, and Dataset3, but this time, the best results for SVR
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Table 3.2: Results of the estimations using physical layer metrics. D1, D2 and D3 stands
respectively for Dataset1, Dataset2 and Dataset3.

(a) Scores of the estimations.

Physical layer parameter(s)
MSE (Mbps2) P(e < 1Mbps) ( %)

SVR k-NN SVR k-NN
no D1 D2 D3 D1 D2 D3 D1 D2 D3 D1 D2 D3
1 ATH RSS 11.24 11 10.17 23 33 34 35 33 34 24 22 14
2 LECR RSS 4.42 3.9 4.5 27 7.1 10 51 59 32 18 35 31
3 LECR NOISE 2.28 5.4 5.8 5 2.8 4.2 69 55 44 50 44 24
4 LECR SNR 1.69 1.6 1.6 4 2.3 2.8 64 66 62 48 50 45
5 ATH RSS + LECR NOISE 1.02 2.3 3.3 4 1.3 1.7 70 49 41 54 60 50
6 LECR RSS + LECR NOISE 0.88 2.0 2.53 2 1.2 2.2 75 57 49 64 63 46

(b) Pertinence of the estimations.

Physical layer parameter(s)
SVR Pertinence ranking k-NN Pertinence ranking
MSE P(e < 1Mbps) MSE P(e < 1Mbps)

no D1 D2 D3 D1 D2 D3 D1 D2 D3 D1 D2 D3
1 ATH RSS 6 6 6 6 6 5 6 6 6 5 6 6
2 LECR RSS 5 4 4 5 2 6 5 5 5 6 5 4
3 LECR NOISE 4 5 5 3 4 3 4 4 4 3 4 5
4 LECR SNR 3 1 1 4 1 1 2 3 3 4 3 3
5 ATH RSS + LECR NOISE 2 3 3 2 5 4 2 2 1 2 2 1
6 LECR RSS + LECR NOISE 1 2 2 1 3 2 1 1 2 1 1 2

Figure 3.2: Throughput estimation results obtained with the LECR RSS +LECR NOISE
metric compared to the real throughput.

were obtained with the LECR SNR parameter (60 % matchings). The difference
of the results when using a full trace for the training compared to a sampled one
exhibits the non empty intersection between PHY parameters as SNR, RSS and
NOISE. The results for k-NN improve with the use of Dataset2. Contrary to SVR,
the best estimations are obtained with the features 5 and 6 for every training da-
taset. Generally speaking, SVR performs better than k-NN excepts for Dataset2
where k-NN outperforms SVR in terms of MSE.

Table 3.3 presents the results of the measured delays for training and estima-
tions using SVR and k-NN. According to these numbers, the time taken by SVR
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to train can be very high. Hence, with Dataset1 and the RSS metrics, the delays
goes up to the tens of seconds. Then the time decreases with the use of smaller
training sets. In the case of k-NN, no model are computed, the data are simply
memorized. Therefore the training is very fast and essentially depends on the size
of the training sets. As a consequence, k-NN values decrease geometrically by a
factor of 2 when changing from Dataset1 to Dataset2 and then from Dataset2
to Dataset3. According to section 3.2.1, SVR forces the estimated function to be
within a distance ε from the averaged data, a requirement that can be tough for
the algorithm to fulfill. Hence, the high time consumption for the SVR model trai-
ning is due largely to the chosen value of the parameter ε, which affects greatly the
training accuracy as well as the computational delay. The time delays consumed
for the estimation are higher when using SVR, than when using k-NN, which is a
point in favor of the latter in the comparison. By observing the global results, we
see that k-NN can largely compete with SVR when it comes to accuracy while at
the same time being slightly faster.

Table 3.3: Results of the measured delays for training and estimations using physical layer
metrics. D1, D2 and D3 stands respectively for Dataset1, Dataset2 and Dataset3.

(a) Average delays observed for the training processes on 100 runs (values into brackets
are the standard deviation of the distributions. Due to space limitation, standard deviation
values are given in 103 unit).

Physical layer parameter(s) Time used for training (s)
SVR k-NN

no D1 D2 D3 D1 D2 D3
1 ATH RSS 5.39 (40) 1.40 (2) 0.36 (0.4) 0.048 (2) 0.023 (0.1) 0.012 (0.1)
2 LECR RSS 41.27 (300) 11.71 (7) 3.12 (2) 0.048 (1) 0.023 (0.2) 0.012 (0.1)
3 LECR NOISE 5.17 (10) 1.38 (1) 0.36 (0.8) 0.051 (6) 0.023 (0.2) 0.012 (0.1)
4 LECR SNR 11.54 (6) 3.87 (4) 1.35 (2) 0.048 (4) 0.023 (0.2) 0.012 (0.1)
5 ATH RSS + LECR NOISE 4.50 (4) 1.15 (2) 0.30 (0.2) 0.048 (0.6) 0.023 (0.1) 0.012 (0.1)
6 LECR RSS + LECR NOISE 4.72 (9) 1.23 (2) 0.31 (3) 0.046 (0.5) 0.023 (0.1) 0.012 (0.08)

(b) Average delays observed for the estimations processes on 100 runs (values into brackets
are the standard deviation of the distributions. Due to space limitation, standard deviation
values are given in 103 unit).

Physical layer parameter(s) Time used for estimation (s)
SVR k-NN

no D1 D2 D3 D1 D2 D3
1 ATH RSS 1.52 (10) 0.78 (6) 0.40 (3) 1.13 (10) 0.63 (1) 0.39 (0.6)
2 LECR RSS 1.58 (20) 0.81 (10) 0.42 (3) 0.61 (3) 0.44 (0.8) 0.29 (0.6)
3 LECR NOISE 1.47 (20) 0.76 (10) 0.42 (4) 0.96 (30) 0.35 (0.9) 0.08 (0.3)
4 LECR SNR 1.38 (30) 0.70 (10) 0.36 (3) 0.74 (60) 0.45 (0.8) 0.19 (0.3)
5 ATH RSS + LECR NOISE 1.34 (9) 0.67 (10) 0.35 (8) 0.32 (10) 0.15 (0.3) 0.06 (0.1)
6 LECR RSS + LECR NOISE 1.38 (1) 0.70 (4) 0.36 (3) 0.27 (0.4) 0.15 (0.2) 0.08 (0.1)
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3.4.4. Final Remarks
In the analysis presented in this chapter, we focus on estimating and predicting

the performance of a wireless network considering performance metrics at the net-
work and transport layer level. For this purpose we collected data from the physical
layer, which were the inputs of the machine learning algorithms considered (SVR
and k-NN). The wireless testbed was set in the RF-protected-environment of an
anechoic chamber, allowing us to control the air conditions during the experiments.

From the results obtained in the experiments, it appears that is perfectly possi-
ble to estimate and predict (on a one second scale) the performance of the wireless
network at layers 3 and 4, using information collected from layer 1 measurements.
Thus, we can answer the question posed, confirming that it is in fact possible to
infer the performance at the upper layers, from measurements of the physical me-
dium conditions. Nevertheless, a deeper analysis on larger datasets would allow
a more accurate characterization of the link between PHY parameters and the
network performance at higher layers.

As mentioned in the introduction the machine learning tools offer great po-
tential for various engineering applications, in particular for telecommunications
networks. Wireless networks present particular problems that can be addressed
with learning techniques, due to the natural randomness that has the propagation
of radio signals in the air. The final goal would be to build a generic platform for
monitoring and analyzing wireless networks. This way, it would be possible to have
real time information of the effective capacity at each link of the network, esti-
mated from measurements of the physical conditions at each link of the operating
network.
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Conclusions of Part I

The first part of this thesis is clearly divided into two different chapters. One
aspect that appears in both chapters and will be common thread throughout this
thesis, is the incorporation of statistical analysis tools and machine learning to
the analysis and design of wireless networks. In this case we saw, on one hand,
the possibility to characterize the traffic in different schools in order to develop a
predictive model of the demand, presented in Chapter 2. On the other hand, in
Chapter 3, we introduced a way for estimating the effective capacity (at the upper
layers of the network) from measurements made at the physical layer. In the next
part of this thesis we will see how the use of measurements from a live operating
network and statistical learning tools can be useful for the development of optimal
algorithms for traffic engineering.

In particular, Chapter 2 focuses on the main motivation of this thesis, which
is the national wireless infrastructure from Plan Ceibal. We also presented in this
chapter, a basic characterization of the traffic demand of this wireless network,
which supports the one-to-one educational model at a nationwide scale. Typi-
cal behaviors were identified within educational centers depending on their type.
Unsurprisingly, a larger demand was observed for middle and higher education
in every case. The demand correlation with the access technology has also been
analyzed, where it has been observed an increasing demand when the access qua-
lity is better. This fact, along with the growing use of the Internet in Uruguay [87],
and also adding the new resources and activities available for the users of Plan
Ceibal (such as virtual library and educational platforms) suggest that demand
will keep growing through the next years.

For those sites outside educational centers, the usage level is diverse, with
deprived neighborhoods of urban areas and housing developments in rural areas
registering the higher values. There is also a notorious difference in the traffic
evolution during the day in contrast to what is observed in educational centers.
This information is useful in order to define policies that contribute to an increase
in the use of the available resources in those sites with low activity levels.

For future steps in this type of analysis, the first point would be to perform a
deeper analysis of the collected data, increasing the number of different measure-
ment classifications or adding new subcategories to the ones already covered. As
an example, it would be of interest to discriminate according to the schedule of the
different schools or the context where they are immerse. Another interesting topic
to study would be a user behavior analysis on an application level. Different ap-
plications such as the virtual library and educational platforms have already been



incorporated to Plan Ceibal. It is of high importance to know which applications
are the most or least used ones. This type of data enables a deeper network usage
analysis in order to be able not only to determine how much resources are used but
also for which applications. This would reveal the kind of infrastructure necessary,
regarding both capacity and quality of service. Finally, it would be interesting to
incorporate data registered from the wireless side to the measurement campaigns.
Air measurements are harder to obtain and it would be necessary to incorporate
specific equipment. However, the information would be extremely useful in order
to characterize and optimize the performance of the deployed infrastructure.

In the second half of Part I of this thesis, Chapter 3 introduces us to the
basics of performance analysis of wireless networks based on the IEEE 802.11
standard. The main contribution presented deals with the design of a generic
platform for monitoring and analyzing wireless networks. This wireless testbed is
set in the RF protected environment of an anechoic room, allowing us to control
the perturbation on the physical medium by generating noise. It also stands as
a novelty the integration of pure physical signal measurement equipment, as the
Lecroy oscilloscope, for very accurate measurements serving as ground truth. Based
on the collected data, the second contribution of this analysis deals with exhibiting
the importance of PHY parameters on network communication performance. The
correlation between the physical environment and the communication performance
is so strong that it is possible, by only monitoring the SNR and the RSS of the
signal, to predict the performance level at the higher TCP/IP level. This result
has been demonstrated using different kinds of models, in particular the SVR and
k-NN models presented in this chapter.

The platform developed enables the realization of a much larger exploitation
and more complex future studies. Indeed, for this preliminary stage, we just set
simple scenarios with a single connection and simple noise model that can appear
a bit far from realistic situations. These first simplistic scenarios were mandatory
to validate the platform accuracy, and the monitoring and analysis tools, as well
as for gaining the required skills required for this multi-thematic work, especially
in the domain of the signal propagation and behavior. With this platform it is
possible to generate large datasets with more complex and realistic scenarios, and
for different kinds of wireless networks, not only 802.11-based, but also UMTS,
LTE or any new ones to appear in the future. A further analysis on this new
generated datasets will enable to understand how wireless networks behave, and
then try to improve the way we use and manage them.
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Chapter 4

Routing and Forwarding in Wireless
Mesh Networks

In the second part of this thesis we address the problem of routing and for-
warding in Wireless Mesh Networks (WMNs). We consider a particular but very
typical scenario: a planned WMN where all links do not interfere with each other.
For example, this is the case of the deployment from Plan Ceibal introduced in
Chapter 2, where WMNs are used to provide Internet access in suburban and rural
schools. We also assume, based on the results from the same chapter, that it is
possible to estimate the traffic demand at a certain time scale.

In the context of WMNs resources are intrinsically scarce, which has led to
the proposal of dynamic routing in order to fully exploit the network capacity. We
argue instead in favour of separating routing from forwarding (i.e. à la MPLS). Our
proposal is a dynamic load-balancing scheme that forwards incoming packets along
several pre-established paths in order to minimize a certain congestion function.
We use a simple and versatile congestion function: the sum of the average queue
length over all network nodes interfaces. We present a method to learn this function
from measurements and several simulations to illustrate the framework, comparing
our proposal with the IEEE 802.11s standard.

The rest of Part II of this thesis is structured as follows. After an introductory
section, in Section 4.2 we describe some previous work and highlight some recent
papers. In Section 4.3 we introduce the network model and most of the notation
used. The chapter continues in Section 4.4 where we describe the procedure for
learning the congestion function model from measurements. Then, the next chapter
details the proposed method and discuss its implementation in a real network in
Section 5.2 and 5.3. Finally, in Section 5.4 we present the simulation experiments
and performance comparison, while conclusions are discussed in a separate chapter
at the end of this part.
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Static Mesh Router Mobile Station
Wired Infrastructure
with internet access

Figure 4.1: Wireless mesh network typical architecture.

4.1. Introduction
Wireless mesh networks (WMNs) [2, 40] are no longer just a promise for the

future but a reality today, thanks mainly to the advantage offered in terms of cost
compared to traditional wired access networks. In particular, outdoor community
mesh networks [54] and rural deployments [66,67] based on IEEE 802.11 have seen
tremendous growth in the recent past. Lately, even service providers are beginning
to use this technology, resulting in an increasing presence of carrier-class equipment
in the market [57]. The typical architecture of a WMN (see Figure 4.1) includes one
or more Internet gateways and several relay routers. Clearly, these intermediate
routers increase the coverage of the access network without requiring more, and
probably expensive, connections to the Internet. However, several problems arise
that are specific of this kind of architectures.

The main challenge for this kind of networks, at the wireless mesh backbone
level, is routing and forwarding. In the current IEEE 802.11s standard [14] (and in
several other proposals [15]) each link has an associated metric value as cost. This
cost is expected to change over time, and reflect current conditions (propagation
conditions, interference, etc.), so as to maximize a certain criteria (e.g. through-
put). To choose a path to its destination, each router executes a shortest path
algorithm. This procedure is essentially the same than the one used in wired net-
works. The main difference is that, just like in the Internet until the early eighties,
link costs are allowed to change at a timescale of some seconds [88]. The more
static configuration that is used nowadays is due to the oscillations caused by the-
se dynamic costs. It seems like history is repeating itself, since early experiments
with WMNs have also reported routing oscillations [6, 89].
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However, a completely static routing approach is not a suitable solution in this
context. Static means non-optimized routing. In the wired case this is not such a
big issue, since resources, specially in the core, are relatively inexpensive (in fact,
most core networks are overprovisioned). On the contrary, in wireless networks
resources are intrinsically scarce, and “upgrading” a link’s capacity is not always
a possibility. Available resources must then be used at its maximum, and for this
purpose a certain form of dynamism must be implemented in the network.

We present a novel approach which separates routing from forwarding, just like
MPLS does in the wired context. That is to say, each ingress router has several
possible paths towards the destinations, and these paths remain unchanged as long
as no topological change takes place (e.g. a node failure). Please note that in the
context of WMNs we may safely assume that nodes are fixed and do not change
status nor position very often. Each new incoming flow will be forwarded along
one of these paths, a decision that each ingress router will take depending on the
current network condition. We shall call this procedure dynamic load-balancing.
We propose one such scheme that forwards incoming packets along several pre-
established paths in order to minimize a certain objective function. If correctly
designed, load-balancing will bring improved performance over static routing, wit-
hout the difficult to avoid oscillations of pure dynamic routing. For more arguments
in favour of load-balancing see the discussion presented in [90], where Caesar et al.
argue for a separation of timescale between offline computation of multiple paths
and online spreading of load over these paths, or the analysis by Pham et al. [91]
where single-path and multi-path routing protocols are compared in a wireless
networks scenario, showing that the latter provides better performance.

We consider a particular but very typical scenario: a planned WMN, where all
bidirectional point-to-point links do not interfere with each other. This assumption
means either that all backhaul links use different channels or that links in the
same channel are in different collision domains. There are many scenarios where
this assumption holds, for example suburban or rural area networks and even
campus networks, deployed with high directional antennas with proper RF design
and channel assignment. This assumption also implies that the network topology
is already defined, typically at infrastructure deployment phase. This means we
cannot decide which backhaul links to establish but only how to use them, i.e.
which traffic route through them. All these assumptions hold for the real world
case scenario from Plan Ceibal, introduced in Chapter 2.

The question that remains is to what purpose should load-balancing serve and
be worthwhile. That is to say, what function of the traffic distribution should be
optimized (where “traffic distribution” refers to the portion of traffic sent along
each path). In this work we argue that this function should be the sum over all
nodes’ interfaces of the corresponding average queue length. As shall be discussed
in Section 4.3, this is a very versatile and important performance indicator. The
problem we address is then to find the traffic distribution that minimizes the sum
over all interfaces of the average queue size. However, instead of relying in analy-
tical expressions based on (arbitrary) models, we will strive at reflecting reality as
much as possible, and design a measurement-based scheme. In this framework the
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relationship between the average queue length and the current traffic distribution
will be learned from measurements, and the optimization shall be performed based
on this learned function.

This kind of approach, using a network model developed from measurements of
queue sizes and traffic loads, has already proved suitable for a wired scenario [92]. In
this work, we extend the framework to the previously described wireless scenario.
Furthermore, we also consider the dynamic gateway selection problem and we
obtain a load-balancing solution using the proposed approach. Differently to the
wired case, in the considered wireless scenario the average queue size at a given
interface now depends not only on the incoming traffic, but also on the activity
of the interface at the other end of the link. We model each link with only one
average queue (the sum of both interfaces involved) which depends on the traffic
in both link directions. A method to learn this bi-variable function is presented,
whereas simulations illustrate the framework.

It is important to highlight that we are considering a WMN where links per-
formance is stable and predictable, with a strong correlation between the error
rate and the received signal strength. In the context of WMN, as stated in [93],
interference (and not multipath fading) is the primary cause of unpredictable per-
formance. In the scenario of interest there is no internal interference (as we assumed
links do not interfere with each other), so we expect to achieve an accurate mo-
del, based on the results obtained in the previous chapter, with similar learning
techniques. The difference in this case to what was done in Chapter 3, is that we
will not try to infer directly the effective capacity of the wireless links, but we will
model the packet queue behavior for each link, depending on the ongoing traffic.

4.2. Related Work
In the context of WMNs, several previous works presented new metrics for

single path routing that take into account information from lower layers [15]. The
need to increase the WMNs capacity led to the use of nodes with multiple radio
interfaces which was analyzed in [22,23]. In this work we consider a planned WMN,
where all links do not interfere with each other. Even in an unplanned scenario
several algorithms have been proposed [18–20] which could be used to schedule the
links so that they do not interfere with each other.

There are some recent related works that we would like to highlight. In [48] an
optimization framework is presented to reach minimum average delay per packet
in a single channel WMN. Starting from a Markov chain model for the medium
access of a single node, they derived a closed form representation for the average
system delay which is used as the objective function. The model takes into account
the neighbors interference but several parameters of the Markov chain need to be
calculated or defined which could difficult the implementation.

Another work that uses an analytical model in the context of single channel
WMNs is [44]. In particular, the authors developed a queueing-based model which
is used to estimate the network capacity and to identify network bottlenecks.
Based on a load-aware routing metric they choose the corresponding path for
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each new incoming flow, and then, based on the obtained model, a centralized
entity performs admission control to guarantee network stability. They focused on
per-flow performance and compare the results with the shortest-path first routing
algorithm.

Concerning dynamic gateway selection, in [94] an heuristic algorithm was pro-
posed to tackle the problem. A single channel WMN is considered between routers,
but operating in a different channel than links between WMN nodes and mobile
hosts. They assume that a routing protocol is executed in the WMN which esta-
blishes routes between every pair of nodes, including the gateways. They seek to
minimize the maximum number of flows served by a gateway and minimize the
cost of paths in order to avoid interference in the network. Contention regions are
modeled as the maximal cliques1 of the contention graph, which leads to a Mixed
Integer Nonlinear Programming (MINLP) formulation of the problem. Their pro-
posal solves gateway selection for Internet flows in a centralized manner using a
greedy heuristic.

To the best of our knowledge, the only work that proposes a forwarding scheme
for WMNs is the recent article [95], where the authors present an MPLS-based for-
warding paradigm. However, two important differences with our proposal should be
highlighted. Firstly, they allow traffic splitting at every node in the network while
we only allow it at ingress routers. Secondly, and most importantly, they conside-
red the hose traffic model (only knowledge about maximum traffic demands) which
leads to a robust routing fashion to solve the problem. The optimization cost fun-
ction of a routing solution is calculated as the average over all the feasible flows
allocations, where the function used is a weighted average of the total utilizations
over all the collision domains. We think that in the context of WMNs, it is more
appropriate to consider a dynamic load-balancing solution rather than a robust
routing scheme, because it is exactly in scenarios with highly dynamic traffic like
WMNs where the former takes advantage over the latter. In addition, this scenario
is the most typical one in the educational context presented in Chapter 2. For a
deep comparison between both methods please refer to [96].

All in all, two major differences should be distinguished between our proposal
and previous works. The first one is the introduction of a measurement-based
model for 802.11 links, whereas most of the literature is based on (arbitrary) MAC
layer models like the one presented in Bianchi’s seminal paper [9]. The second
important difference is the timescale at which decisions are taken. Most of routing
algorithms proposed for WMNs are based on a certain metric which changes at
a timescale of seconds. Our framework operates with averages taken over tens of
seconds and forwarding decision is taken with flow granularity. This fact enables
decoupling the link model learning phase from the forwarding decision, and ensures
better stability properties avoiding the route flapping problem.

1A clique is a complete subgraph of at least 2 vertices.
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4.3. Network Model and Problem Formulation
Firstly, let us remark that in the context of WMNs we may safely assume

that nodes are fixed and do not change position very often. In addition, we will
assume that power supply is available at every node, so we will completely ignore
energy consumption. We will then concentrate on the performance as perceived by
packets in terms of delay, dropping probability and throughput. Naturally, we will
limit ourselves to the WMN, which means that throughput will refer to a quantity
proportional to the inverse of the time that it takes any given packet to leave the
network.

Before introducing the notation, let us highlight that throughout this part of
the thesis we will assume that each node has a single FIFO queue attached to each
of its (possibly several) interfaces. This means that all packets at each interface
will receive the same treatment, independently of its destination, number of tra-
versed hops, etc. This is not a very problematic assumption, since the only queue
management that most wireless routers implement is some form of prioritization
of certain particular and few packets (e.g. ARP packets).

Let n = 1, ..., N be the set of static wireless mesh routers (including gateways)
which we shall call nodes and l = 1, ..., L the backbone bidirectional links in
the network. Typically, high gain directional antennas are used for backhaul links
with other nodes and sector panels or omnidirectional antennas are used to provide
connectivity for mobile stations. Gateways nodes have also wired links to a fixed
infrastructure network with Internet access. We will focus on the mesh core, so
only backhaul links and aggregated traffic at mesh routers will be considered.
Traffic generated at node n will refer to all traffic arriving at n from the mobile
hosts attached to it. We will assume that this traffic uses different channels (e.g.
802.11b/g/n at 2.4 GHz) than the ones used within the mesh core (e.g. 802.11a/n
at 5GHz). If n is a gateway, the generated traffic also includes that coming from the
Internet to nodes in the WMN. As we mentioned before, we shall further assume
that channels within the mesh core do not interfere with each other. Moreover,
paths are assumed to be established a priori and how to choose them is out of the
scope of the present work. In particular, we will use the k shortest paths.

Traffic generated at a node will have as final destination a set of nodes, which
may contain for instance any other node in the WMN. This defines a set of possible
origin-destination (OD) pairs, which we shall index by the integer s = 1, ..., S. The
amount of traffic corresponding to OD pair s will be noted by ds and we further
define the column vector d = [d1 ... dS ]T . We will assume that entries in d are
independent of each other. In particular, this means that the amount of traffic
sent to the Internet through a particular gateway does not influence the amount
of traffic that gateway generates.

Each pair will have a set of ns fixed, established a priori paths, which we shall
note as Psi for i = 1, ..., ns. The amount of traffic sent along path Psi shall be
noted as dPsi = αPsids, where αPsi is the traffic distribution coefficient for path
Psi. We further define α = [αP11 ... αP1n1

αP21 ... αPS1
... αPSnS

]T as the traffic
distribution vector. The following two constraints should hold

∑ns
i=1 dPsi = ds ∀ s
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Figure 4.2: Wireless link queues and flows in both directions.

and dPsi ≥ 0 ∀ s, i, which implies
∑ns

i=1 αPsi = 1 ∀ s and αPsi ≥ 0 ∀ s, i.
Within this context, for each link l we have two traffic loads, one for each

direction of the communication, which we shall call ρl1 and ρl2 , taking any arbitrary
convention (see Figure 4.2). Given a demand vector d and a traffic distribution
vector α, the total traffic load on link l in one direction (e.g. ρl1) is given by the
sum over all OD pairs of the traffic forwarded along those paths Psi which use
the link in that direction. Let Dl1 be the average amount of time a packet spends
at the queue of link l in the direction of load ρl1 . Naturally, this non-decreasing
function depends on the traffic load ρl1 , which is the queue’s input traffic intensity.
However, and due to the half-duplex operation of the link and the 802.11 medium
access control, Dl1 also depends on the load in the opposite direction (ρl2).

Let us now discuss with more detail what this delay is composed of. Once a
packet enters a node interface queue, it has to wait for several things to happen.
Firstly, it has to reach the head of the line of the queue. What happens after then
depends on whether the node is a gateway and the packet goes to the Internet,
or not. In the former case, it has to wait for all its bits to be sent by the wired
interface. In the latter case, it has to wait for the channel to be idle. Once this
happens, the packet has to be correctly received by the destination node. This
includes the transmission delay plus maybe some retransmissions. It is important
to highlight then that queueing delay captures several aspects of the wireless link
operation: congestion at the MAC layer, transmission errors at PHY layer and the
chosen modulation rate.

Let DP be the average end-to-end delay of path P . Note that, as mentioned
above, the throughput of path P is proportional to the inverse of DP . This fact
in addition to what we discussed above suggests the use of the average end-to-end
queueing delay in the network D(d,α) as a total congestion measure:

D(d,α) :=
S∑
s=1

ns∑
i=1

dPsiDP =
S∑
s=1

ns∑
i=1

αPsidsDP (4.1)

Notice that this measure depends, on the one hand, of the vector d, defined by
the OD traffic demands, which cannot be set as desired because they are given
by the network usage (e.g. the traffic demand shown in Chapter 2). On the other
hand, the function also depends on the traffic distribution vector α, which we can
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control and will set so as to minimize the network congestion. Then, it is easy to
prove that the sum over all the paths is equal to the sum over all the links, so we
have:

D(d,α) =
L∑
l=1

Dl1 (ρl1 , ρl2) ρl1 +Dl2 (ρl2 , ρl1) ρl2 (4.2)

Let Ql1 and Ql2 be the mean amount of bytes on link l queues on each direction.
Then, by Little’s law we obtain the following result: Ql1 = Dl1 × ρl1 and Ql2 =
Dl2 × ρl2 . Finally D(d,α) is given by:

D(d,α) =
L∑
l=1

Ql1 (ρl1 , ρl2) +Ql2 (ρl1 , ρl2) (4.3)

=

L∑
l=1

Ql (ρl1 , ρl2) (4.4)

where Ql is the average sum over both link queues (i.e. Ql1 + Ql2 in Figure
4.2). In Section 4.4 we will present a measurement-based scheme to characteri-
ze Ql (ρl1 , ρl2).

All in all, the dynamic load-balancing scheme should strive at solving the
following problem:

min
α

D(d,α) =
L∑
l=1

Ql (ρl1 , ρl2)

s.t.

ns∑
i=1

αPsi = 1 ∀ s,

αPsi ≥ 0 ∀ s, i.

(4.5)

Let us further justify our choice of the objective function. Equation 4.1 suggests
that our objective function may be regarded as a weighted average end-to-end
delay, where the weight of each path is how much traffic is being sent along it.
This means that

∑
lQl considers both delay and throughput at the same time.

Concerning dropping probability, the last of the three performance indicators cited
before, it should be clear that a larger value of it will result in a larger queue at the
output air interface, resulting in a larger

∑
lQl. The conclusion of this discussion

is that
∑

lQl is a number that is affected by the three performance indicators, and
as such reflects the three of them. We referred to this when we said before that∑

lQl is a versatile indicator.

4.4. Learning the Wireless Link Dynamics
In this section we present the procedure to choose the most appropriate fun-

ction Ql (ρl1 , ρl2) for every 802.11 link in the network. We shall omit the subindex l
for a matter of clarity, since the procedure is the same for every link. The function
Q (ρ1, ρ2) is not trivial as we are dealing with 802.11 wireless links which use CS-
MA/CA as medium access control mechanism. Several works since [9] have tried
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to find the relation between wireless link parameters and the corresponding TCP
and UDP achievable throughput. We use a different approach, that has already
proved suitable for wired links [92], which is learning the function from measure-
ments. This way we avoid using an arbitrary model and reflect reality as much as
possible. However, the learning procedure should be carried out with some care.
For instance, differently to the wired case, the average queue length at a given link
is now a bi-variable function, because it depends not only on the incoming traffic,
but also on the traffic in the opposite direction.

Assume we have a set ofN measurements {Q1, Q2, ...QN} for the corresponding
values {(ρ11 , ρ21), (ρ12 , ρ22), ... (ρ1N , ρ2N )} (also called training set). Assume that
the response variable Q (the average queue length measurement) is related to
(ρ1, ρ2) (the link average traffic loads measurements) by the following equation:

Q = f(ρ1, ρ2) + ε (4.6)

where ε is the measurement error and is modeled as a random variable such that
E{ε} = 0 and Var{ε} = σ < ∞. The Weighted Least Squares (WLS) problem
consists in finding the function f that minimizes the weighted sum of quadratic
errors, assuming that f belongs to a given family of functions F . The weights
represent the relative importance of each measurement point with respect to the
rest of the measurements in the training set.

We present a method that restrict the assumptions on the family of functions
F to the minimum. Regarding its shape, we have only two necessary assumptions:

1. f(ρ1, ρ2) should be non-decreasing, since more load may never mean less
queue length.

2. f(ρ1, ρ2) should be convex in order to guarantee the existence and uniqueness
of the optimum demand vector (later on we will discuss on this assumption).

We then consider F as the family of continuous, monotonous increasing and con-
vex functions. This WLS problem with such F is called Convex Non-parametric
Weighted Least Squares (CNWLS), a variation of the original unweighted Convex
Non-parametric Least Squares (CNLS) [97]. The size of F makes this problem very
difficult to solve in such general form, which motivates to use instead a subfamily
of F , the piecewise linear functions included in F . This lead us to a standard finite
dimensional Quadratic Programming (QP) problem in order to solve the regres-
sion, for which mature methods to solve it exist (e.g. interior point algorithms)
and several solver software are available (for instance, we used MOSEK [98]). This
scheme is easily adaptable to update the function in real time through online
learning as new measurements are gathered from the network. This fact could be
useful to react properly to physical changes that may affect the link capacity (e.g.
antenna misalignment or environmental changes).

4.4.1. Convexity Assumption
We will now discuss on the convexity assumption mentioned before. A necessary

condition for the convexity of Q (ρ1, ρ2) is that the feasible region of the link is
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Figure 4.3: Feasible region analysis for a 802.11a link @54Mbps.

convex (i.e. the set of {(ρ1, ρ2)} such that Q (ρ1, ρ2) <∞). Several previous works
studied the feasible region for 802.11 wireless multihop networks. This region is
known to be not necessarily convex, which is demonstrated in [99] with models
and simulations for different topologies. This fact is also analyzed in [100], where
the log-convexity of this region is established, a fact that is taken as a basis for
characterizing max-min fair rate allocations for 802.11 WMNs in [101]. However,
the model presented in [102] approximates the feasible region by a convex polytope.
The procedure is based on the computation of extreme points in order to get the
polytope convex hull (boundary) and it is shown that most of the cases presented
in [99] can be adequately captured by this model.

For the case we are considering in this work, a planned WMN, the analysis is
much simpler because we have only two nodes that can interfere with each other
(i.e. the endpoints of each link). This simplifies the feasibility region analysis to the
study of the behavior of only one link as the traffic loads in both directions changes.
For this purpose, first let us take a look at the well-known Bianchi model [9] to
notice that the capacity for two nodes is 2.5 % larger than for a single node.
This fact indicates that two simultaneously transmitting nodes may support more
traffic than only one, which means that feasible region of a 802.11 point to point
link should be convex. We further studied the feasible region for a 802.11a link
operating at 54 Mbps with simulations performed with the ns-3 simulator [103]
and real data measurements. In Figure 4.3 we can see the results for different traffic
compositions combining TCP and UDP flows. As we can see, the feasible region
increases as the proportion of UDP traffic increase, with throughput ranging from
24 to almost 30 Mbps. It is clear from the results that for all cases it is suitable to
use a convex model as an approximation, as used in [102].
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4.4.2. Average Queue Regression Example
In order to illustrate the proposed procedure we will show an example with si-

mulations performed with ns-3. We configured a wireless link operating in 802.11a,
with a distance of 100m between nodes, while the propagation model used was fi-
xed received signal strength (RSS = −65 dBm). This implies that the link is always
operating at the same modulation rate (54Mbps in this case).

As we said before, we are considering a WMN where links performance is stable
and predictable, with a strong correlation between the error rate and the received
signal strength. Under this assumption, if we do not have much RSS variation for
our network links, we will not have variation at all on each link modulation rate.
This assumption is valid for a wide range of WMNs, not only in rural or suburban
areas, but also in some urban scenarios with LOS links using directional antennas.
As an example in Figure 4.4 we show the RSS for one week for two urban links
from Plan Ceibal network. Both of them operate with line of sight and with an
approximated distance of 200m between nodes. As we can see the RSS variation
is not significant and enables a stable link operation at a fixed modulation rate,
as the receiver sensitivity for 54Mbps is -71dBm. This fact is consistent with the
data shown in [93] and with the measurements collected in Chapter 3.

Now, we present an example for one link to illustrate the procedure followed
for every link in the network in the learning phase. In this example we genera-
ted a dataset of 484 measurements, 228 used for learning the function and the
remaining 256 for testing the regression performance. To generate each flow with
the desired traffic load ρ, we used a combination of random TCP and UDP flows
(80 % and 20 % respectively). TCP flows were generated with exponential file sizes
with mean 500 Kbytes. UDP flows were generated with a fixed rate of 100 kbps
and exponential length with mean 30 seconds. The arrival rate distribution was
also exponential for both cases, with mean according with the desired traffic loads
(0.8ρ and 0.2ρ respectively). Each measurement corresponds to the average traffic
load in both directions (ρ1, ρ2) and the average queue length Q, where averages
are considered over 100 seconds.

In Figure 4.5 we present the resulting function after the regression in logarith-
mic scale (for the sake of clarity). Queue size is expressed in packets because both
ns-3 simulator and typical wireless equipment use 802.11 packet-based queues [104].
The RMSE for training data was 4.3 packets, while the RMSE for test data was
5.5 packets. The relative RMSE for training data was 2.9 % with a maximum of
14.2 %, while for test data was 4 % with a maximum of 15.2 %. The RRMSE for
test data is shown in Figure 4.6. This results show that the function approximation
is suitable.

The presented example is only to show the procedure we followed for every
link in the network in the learning phase. Once we have learned the function
Ql(ρl1 , ρl2) for each link, we are in position to tackle the optimization problem
defined in Section 4.3. The forwarding decision will come up from the optimum
traffic distribution vector α which minimizes the total network congestion.
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Figure 4.4: RSS measurements for two real 802.11 links.
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Figure 4.5: Learned function (log-scale) for the average queue size.
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Chapter 5

Minimum Queue Length
Load-Balancing

In this chapter we rely on the previously developed model, in order to arrive at
a suitable solution of the optimization problem posed. The formulation achieved in
the previous chapter can be seen as a particular case of convex optimization theory
applied to a computer networks problem. One of the most famous frameworks of
this kind is known as network utility maximization (NUM), developed by Kelly
et al. more than two decades ago. Then, we discuss briefly about this point and the
benefits this has to find an algorithm that leads to the solution of the optimization
problem. Thereafter, we introduce the distributed algorithm that carries out the
dynamic load-balancing scheme and we discuss some issues that arise in a real
world implementation. Finally, several simulation experiments are presented to
validate the framework and illustrate the advantages against other options.

5.1. Convex Optimization Problem Formulation
The process followed to pose a resource allocation issue as an optimization pro-

blem, which seems natural today, has its roots in the development of the Network
Utility Maximization (NUM) framework. The NUM framework has its origin in
the seminal paper of Kelly et al. [105] and dates from a time when a large research
community was attracted by the congestion control problem in data networks. The
formulation by Kelly et al. set the congestion control problem as a suitable con-
vex optimization problem, where connections are represented as economic actors
in a bandwidth market. The network congestion signals are interpreted as prices,
and the market equilibrium becomes the resource allocation obtained through the
decentralized mechanisms.

This formulation proved to be a valuable tool, connecting two previously dis-
joint areas, on the one hand the traditional layer analysis of network protocols and
on the other the convex optimization theory. Since then, this approach has been
extensively used to characterize real world network protocols and also to design
new ones, that improve the network performance. While it was originally applied
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to model the TCP congestion control mechanism, its use was later extended to
many other problems. As an example we can cite the work of Lin et al. where it
is used for cross-layer optimization in wireless networks [21]. Some other applica-
tions and extensions to the model can be found in [106,107] and in the references
therein.

The main idea of the NUM framework is to apply an economic network model
to solve a resource allocation problem. The goal is to maximize a certain utility fun-
ction U which depends on how much resources x are allocated. This maximization
is subject to a certain capacity constraint, which limits the set of possible assign-
ments. In our case, instead of seeking to maximize a utility function, what we have
is the minimization of a cost function, which is completely equivalent (just consider
a utility function equal to the opposite of the cost function U(d,α) = −D(d,α)).

Convex optimization problems for routing and forwarding of the type consi-
dered here, were studied before in the context of wired networks (see Section 5.4
in Bertsekas and Gallager’s book [108], and the references therein) . Also in this
context, MPLS-based schemes similar to our approach were proposed by Elwalid
et al. [109]. Let us recall the optimization problem raised:

minimize
α

L∑
l=1

Ql (ρl1 , ρl2)

subject to:
ns∑
i=1

αPsi = 1 ∀ s,

αPsi ≥ 0 ∀ s, i.

(5.1)

The problem constraints state that the sum of traffic distributions must equal
the total traffic demand for each origin-destination pair and that a non-negative
traffic portion must be allocated for each possifble path. It is well known that a
strictly convex function has a unique minimum over a closed and bounded convex
set. Then, the problem satisfies the requirements as the cost function is strictly
convex, and the constraint set is closed (since the aggregate traffic over all paths for
each origin-destination pair is equal to a constant) and bounded (since the traffic
demand for every origin-destination pair is finite). In addition, the constraint set for
the minimization problem is convex which allows us to use the method of Lagrange
multipliers and the Karush-Kuhn-Tucker (KKT) theorem [110]. This ensures that
some α satisfying the KKT conditions is the unique global minimum.

Considering the Lagrangian function we have:

L(α,λ,µ) =
L∑
l=1

Ql (ρl1 , ρl2) +
S∑
i=1

λs

(
ns∑
i=1

αPsi − 1

)
−

S∑
i=1

ns∑
i=1

µPsiαPsi (5.2)

The theorem ensures the existence of unique Lagrange multipliers λ∗,µ∗ ≥ 0
verifying the following KKT conditions, necessary for a local minimum α∗:
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θPsi + λ∗s − µ∗Psi
= 0,

µ∗Psi
α∗Psi

= 0,

where θPsi =
∂

∂αPsi

(
L∑
l=1

Ql (ρl1 , ρl2)

)
=
∑
l:l∈Psi

∂

∂αPsi

(Ql (ρl1 , ρl2)) .

Note that the second condition means that the associated Lagrange multiplier
µPsi is positive only for those paths that are not used at optimality (α∗Psi

= 0),
else it is equal to zero. Then, we shall define the cost for path Psi at the optimum
α∗ as:

φ∗Psi
=
∑
l∈Psi

φ∗l
.
=
∑
l∈Psi

∂Ql
∂αPsi

∣∣∣∣
α∗

=

{
−λ∗s if α∗Psi

> 0

−λ∗s + µ∗Psi
if α∗Psi

= 0
(5.3)

This necessary condition is true only if Ql(ρ1, ρ2) is continuously differentiable
(i.e. its derivatives are continuous). As this function Ql is convex, something that
we imposed at the learning phase, the above condition becomes necessary and
sufficient. Moreover, in such case the optimum is unique. All paths that are used
at optimality have the same cost, which is actually the minimum cost among all
paths of the corresponding origin-destination pair, and corresponds to the sum
over all the links in the path of a certain link cost function φl, defined as the
partial derivative of Ql with respect to αPsi .

Considering the Lagrangian multipliers, a couple of facts can be highlighted:

In general, for path Psi, the optimal traffic distribution coefficient αPsi is
only determined by the Lagrange multipliers on its route. This feature is
extremely useful in designing decentralized algorithms to reach the optimal
solution.

The value of αPsi is inversely proportional to the sum of the Lagrange mul-
tipliers on its route. In general, αPsi is a decreasing function of the Lagran-
ge multipliers. Thus, the Lagrange multiplier associated with a link can be
thought of the price for using that link and the price of a path can be thought
of as the sum of the prices of its links. If the price of a path increases, then
the amount of traffic routed through that path decreases.

Because of the above, which is a typical property of this kind of models, the
problem can be readily decomposed. Then, distributed algorithms can be deve-
loped, where each of the sources controls its local variable, such as the traffic
distribution coefficients, based on local observables, such as link loads or path pri-
ces. By techniques such as Lyapunov function or the descent lemma, global or local
asymptotic convergence towards the optimum can be proved for these distributed
algorithms [106]. A key insight is that the effects of network protocols can be un-
derstood as the trajectories of a controlled dynamic system. In the next section
we will introduce the design of the distributed load-balancing algorithm to reach
the optimum for the particular problem proposed.
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5.2. Distributed Algorithm Proposal
In order to drive the network to the desired operation point of minimum average

congestion, we have to solve the optimization problem previously detailed:

minimize
α

L∑
l=1

Ql (ρl1 , ρl2)

subject to:
ns∑
i=1

αPsi = 1 ∀ s,

αPsi ≥ 0 ∀ s, i.

(5.4)

For this purpose, we used a gradient descent method [110] to iteratively upda-
te the traffic distribution vector α by setting the proper load balancing leading
to the optimum. We can assure that there are no local minima because we are
minimizing a sum of convex functions, which is also a convex function. To start
the optimization algorithm we need an initialization step, so certain initial values
have to be set to enable the network to begin the operation. Then, we consider a
periodic update every ∆T seconds, given by:

αt+∆T = αt − γ · ∇

(
L∑
l=1

Ql (ρl1 , ρl2)

)
(5.5)

where γ is the gradient descent step size. Before updating α we have a normaliza-
tion step to guarantee the constraints on αPsi . With this procedure the demands
are periodically adjusted, using the following equation for updating the traffic
distribution coefficient which corresponds to the path Psi:

α̂t+∆T
Psi

=

αtPsi
− γ

∑
l:l∈Psi

∂Ql
∂ρlsi

(
ρtl1 , ρ

t
l2

)+

(5.6)

αt+∆T
Psi

= α̂t+∆T
Psi

/

ns∑
i=1

α̂t+∆T
Psi

(5.7)

Notice that the partial derivatives in the second term of Equation 5.6 are with
respect to ρlsi , which is the traffic load of link l in the direction that corresponds
to path Psi. This fact implies that for updating the traffic distribution coefficients
αPsi we only need to know the learned functions for the links used by the path
Psi, which means that edge routers only need information from the intermediate
routers included in the pre-established paths they will use, enabling a decentralized
implementation of the algorithm. All the notation used in this part of the thesis
is summarized in Table 5.1.

The complete network operation is defined by the three processes: measurement-
based learning of the objective function, update of traffic demands distribution via
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Table 5.1: Index of key notations.

Variable Description
1, .., n, .., N Set of nodes (i.e., wireless mesh

routers)
1, .., l, .., L Set of bidirectional links
1, .., s, .., S Set of OD pairs
ds Average traffic demand for OD

pair s
ns Number of paths for OD pair s
Psi i-th path for OD pair s
dPsi

Average amount of traffic for path
Psi

d Average traffic demands vector
αPsi

Traffic distribution coefficient for
path Psi

α Traffic distribution vector
ρl1 , ρl2 Average traffic load on link l for

each direction
Dl1 Average delay at link l in the di-

rection of load ρl1
DP Average delay at path P
Ql1 Average queue size at link l in the

direction of load ρl1
Ql Sum of the average queues sizes

at link l
αtPsi

Traffic distribution coefficient for
path Psi at time t

γ Gradient descent step size

gradient descent optimization and packet forwarding on a per-flow basis. These
processes operate at different timescales, which will be detailed next.

At the longest timescale we have the measurement-based learning of the average
queue length function, which takes several hours of information to update the
Ql (ρl1 , ρl2) for every link in the network following the procedure described in the
previous section.

Then we have the update of traffic demands distribution in order to lead the
network to the minimum queue length load-balancing (i.e. for each OD pair we
use Eqs. 5.6 and 5.7). In this case each iteration is performed at a shorter times-
cale than model learning, but a much longer timescale than packet forwarding.
The optimization takes into account average values, so we need an update period
long enough to take good quality average measurements. On the other hand, this
period should not be excessive in order to be able to respond quickly when traffic
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conditions change abruptly. Typically a suitable period is some tens of seconds,
which is the minimum time to get reasonable average measurements (e.g. we used
100 seconds).

The shortest timescale corresponds to the packet forwarding, which is perfor-
med with flow granularity. This means that every new traffic flow at an ingress
router corresponding to OD pair s is associated with a certain path Psi with proba-
bility αPsi . Let us recall that we have certain pre-established paths defined by the
network topology. This packet forwarding scheme is very similar to the one used
in wired networks with MPLS. Several paths are defined at edge routers, where
incoming traffic is labeled according to the corresponding path and then packet
forwarding at relay routers is based on labels. This is why we say that our proposal
of separating routing from forwarding is a solution à la MPLS.

With respect to the running time of each action, its precise value depends
on the specific hardware at use (e.g. ingress router, relay nodes). However, it is
clear that the more costly actions are the ones that operate at a longer timescale
(i.e. function learning costs more than gradient descent and both of them more
than forwarding). The different timescales involved in the proposed mechanism are
resumed in Figure 5.1.

5.3. Discussion on Implementation Issues
The application of the proposed framework in a real-world network is relatively

simple. First of all we need a routing protocol to establish the multiple routes for
each OD pair defined by the wireless network topology. Once we have learned Ql
for every link l, each ingress router receives the values ρl from the links used by
the OD flows with origin in that ingress router. A routing protocol that supports
information distribution such as OSPF-TE may be used for this purpose. With
that information, each ingress router is able to update the traffic portion that has
to be routed through each path. This process is repeated indefinitely every some
seconds.

With respect to the flow-based multipath forwarding implementation, the idea
is to use an MPLS-based solution, similar to the wired case. Although an standard

Figure 5.1: Processes involved in the proposed framework.
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Figure 5.2: Training set size analysis. On each box, the central red mark is the median and the
edges of the box are the 25th and 75th percentiles.

of MPLS over WMNs does not exist yet, several proposals were already presented.
For example in [95] the proposal considers traffic splitting at every router and
optimization over the average of all possible traffic matrices. Our proposal could
be implemented reusing the same splitting-based scheme, but considering splitting
only at ingress routers over all the different end-to-end paths and enabling dynamic
load-balancing for the average load at each moment.

Regarding the learning phase we envisage several possibilities differing in the
resulting architecture. One possibility is that a central entity gathers the measure-
ments, performs the regression and communicates the obtained parameters to all
ingress routers. This option has the advantage that the required new functionalities
on routers are minimal. However, as all centralized architectures, it may not be
suitable for some network scenarios, and handling the failure of this central entity
could be very complicated. An alternative is that for each wireless link only the
two directly involved routers perform the regression. They should keep the average
queue size measurements for themselves, perform the regression and communicate
the result to the ingress routers.

Another aspect that has different possibilities is what characterization (i.e. Ql
learned function) use at each moment and which measurements to keep for the
training set. Measurements could be gathered every day, the regression performed,
and its result could be used the next day or the same day the next week. In addi-
tion, it is clear that newer measurements should be given priority over older ones.
A possible way to manage training data is to keep always the newer measurements
and use weights in the regression to introduce temporal information (e.g. expo-
nential decay). It may also be necessary to force keeping particular measurements
to ensure a proper coverage density of the whole load value range.
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Concerning the number of measurements needed for training, we now show
how the considered learning algorithm (CNWLS) does not need a large number of
measurements, as long as the training samples adequately covers the whole range
of possible values. In Figure 5.2 we show the test error analysis for training sets
with different sizes, using the same data as in the example discussed in section
4.4.2. In particular, for each size, we randomly sampled several training sets (we
used 20) and computed the corresponding average RRMSE with the test data for
the resulting learned function. As we can see, the RRMSE is always below 10 %
with only 60 training samples and falls below 5 % with more than 150 samples.

Finally, rare events like node failures or changes in propagation conditions can
be taken into account in our framework as follows. If interference on a particular
link changes, this is captured when the learning of the function associated with
that link is repeated. As we mentioned before, this learning process is periodically
repeated. However, if several new measurements differ greatly from the learned
model, one could decide to trigger a new learning process. Moreover, if a node
fails, the ingress routers will not receive the corresponding link load information.
If no such announcements are received for a certain period of time, this should
lead to the decision of disabling all paths that use the faulty router.

5.4. Simulation Experiments
In order to validate the framework we tested the proposed minimum queue

length load-balancing (MQLLB from now on) algorithm with simulations perfor-
med with ns-3. Most of the examples considered correspond to canonical topologies
of WMNs [99] but also to typical configurations in real deployments (e.g. the wi-
reless network from Plan Ceibal introduced in Chapter 2).

In this section we present four different examples considered for the simulation
experiments. The first one is a three node topology used to describe the framework
operation. In the second example we illustrate the gateway selection problem which
can be solved within the same proposed framework. The third example corresponds
to a four node topology where we deeply analyze the advantage of the proposed
model under asymmetric traffic demands, comparing the performance with IEEE
802.11s. Finally, we present an example with a larger network, a 25 node uniform
square grid, where we analyze convergence and scalability of the algorithm.

In all the examples the traffic considered is the same described before in Sec-
tion 4.4 with a combination of TCP and UDP flows (80 % and 20 % respectively),
both of them with exponential arrival rates. We also used exponential distribu-
tions for the file size (in case of TCP flows) and length (in case of UDP flows),
with the same characteristics mentioned for the model learning example shown
before. Wireless links were set to the standard 802.11a with a distance of 100m
between nodes, while the propagation model used was fixed received signal strength
(RSS = −65 dBm) which implies that links always operate at the same modula-
tion rate (@54Mbps). The buffer size for each interface is 400 packets (ns-3 default)
which is consistent with typical wireless equipment [104]. In every case, we used
235 measurements in the learning phase for each link, which is approximately 6.5
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hours of training data. Then, we implemented the MQLLB method which uses the
described optimization framework to iteratively update α, taking the forwarding
decision with a flow level granularity.

For performance comparison we considered as a benchmark the IEEE 802.11s
routing scheme, which uses HWMP (Hybrid Wireless Mesh Protocol) [111] to
compute paths. We think this benchmark is the most suitable one, as HWMP is
the only algorithm included in an approved standard up to date and can be used
by everyone to compare with. In addition, there are implementations available as
the one included in the ns-3 simulator. Such protocol uses a routing metric called
airtime metric which is designed to represent the channel resources needed for a
frame to be transmitted over a wireless link and is calculated as follows:

airtime =

(
Oca +Op +

Bt
r

)
1

1− efr
(5.8)

where Oca, Op, and Bt are constants quantifying respectively the Channel Access
Overhead, the Protocol Overhead, and the number of Bits in a probe frame. Oca
and Op depend solely on the underlying modulation scheme, r is the transmis-
sion rate, and efr is the frame error rate. This routing metric is similar to ETX
(Expected Transmission Count) and ETT (Expected Transmission Time) [15,22].
However, airtime further accounts for channel access and protocol overheads. An
implementation of 802.11s is available in the ns-3 simulator.

For performance analysis and comparison we considered three metrics: ave-
rage delay and jitter of UDP flows and average goodput of TCP flows, which
corresponds to the amount of data per second carried by TCP flows discarding
TCP ACKs. The analysis for each flow was done using the ns-3 flow monitor [112]
which enables flow level statistical analysis of the simulation. We compared the
results with the 802.11s performance for the different scenarios. We also considered
static routing as a different alternative, using shortest path routing with hop count
as metric.

5.4.1. Multipath Forwarding: 3-nodes Topology
The first example is presented to illustrate the framework and corresponds

to the topology and flows shown in Figure 5.3. This topology has three links
1, 2 and 3, which implies we have also three functions Q1, Q2 and Q3, each of
them corresponding to the sum of the link queues in both directions. In this case
we considered flows from node 1 to nodes 2 and 3 with traffic loads d1 and d2

respectively. When we apply the described framework to this particular topology
and the considered traffic flows, we have the following function for the average end
to end queueing delay in the network:

D(d,α) = Q1(ρ11 , ρ12) +Q2(ρ21 , ρ22) +Q3(ρ31 , ρ32) (5.9)

For each OD pair we have two possible paths:

P11 = {1, 2} and P12 = {1, 3, 2} for d1.

69



Chapter 5. Minimum Queue Length Load-Balancing
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l=1
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Figure 5.3: 3-nodes topology multipath forwarding example.

P21 = {1, 2, 3} and P22 = {1, 3} for d2.

We will call αP11 the portion of traffic d1 that is routed through path P11, which
leaves αP12 = 1−αP11 through path P12. We will call αP21 the portion of traffic d2

that is routed through path P21, which leaves αP22 = 1 − αP21 through path P22.
Functions Q1, Q2 and Q3 are learned from previous measurements following the
procedure described in Section 4.4. Then, in order to find the optimum forwarding
decision for a particular combination of the considered traffic flows, we have to
find the optimum values of αPsi which lead us to the minimum network congestion.
The proposed framework applied to this particular case leads us to the following
optimization problem:

minimize
αP11

,αP21
,αP12

,αP22

Q1 +Q2 +Q3

subject to:

αP11 + αP12 = 1,

αP21 + αP22 = 1,

αP11 , αP21 , αP12 , αP22 ≥ 0.

(5.10)

Then, in order to update αP11 (for αP21 is analogous) we have to use the
following equations:

α̂t+∆T
P11

=

[
αtP11

− γ
(
∂Q1

dρ11

− ∂Q2

dρ22

− ∂Q3

dρ32

)]+

(5.11)

αt+∆T
P11

= min
(
α̂t+∆T
P11

, 1
)

(5.12)

In order to choose the most appropriate function Ql for each link we followed
the measurement-based method described in Section 4.4. In the learning phase, to
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Figure 5.4: Total queue for the 3-nodes topology symmetric case.

UDP flows UDP flows TCP flows
Method Delay (ms) Jitter (ms) Goodput (Mbps)

MQLLB 14.6 6.7 15.2
802.11s 17.5 7.6 13.9
static routing 14.3 7.1 15.4

Table 5.2: Performance metrics for the 3-nodes topology symmetric case.

generate the training data we used simulations with different traffic distribution
coefficients αPsi , uniformly covering all the possibles values. Then, to calculate the
partial derivatives of each link queue Ql we used the learned functions in order to
periodically update the αPsi .

Now, we will present the simulation results using the presented framework for
two different traffic loads: symmetric and asymmetric cases. First we will show a
symmetric example where traffic loads were d1 = d2 = 13 Mbps. In Figure 5.4
we can see the evolution during the simulation of the total queue size (expressed
in packets), which corresponds to the sum of all interfaces queues in the network.
We present the comparison of the instantaneous queue size and the 100-seconds
average with the theoretical optimum queue length, which is calculated from the
learned model and the traffic average measures. We show from time t = 400s, when
we have already reached steady state, starting with αP11 = 1 and αP21 = 1 (i.e.
both flows forwarded through link 1), which causes saturation at link 1 and we start
using MQLLB at time t = 1000s. Concerning the performance metrics, the results
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UDP flows UDP flows TCP flows
Method Delay (ms) Jitter (ms) Goodput (Mbps)

MQLLB 14.3 6.6 15.5
802.11s 43.1 8.9 9.6
static routing 35.1 8.6 11.2

Table 5.3: Performance metrics for the 3-nodes topology asymmetric case.

are summarized in Table 5.2. We can see that none of the metrics show significant
differences between the three alternatives. It is clear that with symmetric traffic
as in this case, static routing through shortest paths is a good alternative, as the
results reflect. Notice that 802.11s presents slightly worse results, something which
will be analyzed more deeply in the next simulations.

The other example with the three-node topology corresponds to an asymmetric
case, where traffic loads were d1 = 20 Mbps, d2 = 5 Mbps. We started the simu-
lation with αP11 = 1 and αP21 = 0 (i.e. only the one-hop path for each OD pair).
In Figure 5.5(a) we can see the total queue size evolution from time t = 400s. We
started the operation of MQLLB at time t = 1000s and as we can see the average
queue size goes down which means the traffic load in the network is better balan-
ced. Figure 5.5(b) shows the traffic distribution coefficients evolution. Notice that
at time t = 1100s, when the second update round happens, we already reached the
optimum load-balancing. Looking at performance metrics shown in Table 5.3, we
can see that the difference is clear in favour of MQLLB in this case where we have
asymmetric traffic. As expected, for the asymmetric example we have an important
improvement in the network performance due to the load-balancing mechanism.
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(a) Total queue size evolution.
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Figure 5.5: 3-nodes topology asymmetric case simulation.
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d1

d3

d2

d4
GW 1
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Figure 5.6: Gateway selection problem.

5.4.2. Gateway Selection Problem
In this subsection we will analyze an example corresponding to the gateway

selection scenario shown in Figure 5.6. We will show that it is possible to solve
this problem under the proposed framework, treated as an equivalent multipath
forwarding one. In this topology we considered downlink flows to nodes 3 and
4, with demands d1 and d2 respectively, which can be distributed between the
two gateways GW 1 and GW 2. Notice that both gateways could be considered
as the same traffic origin (Internet). We can think this origin as a super node,
connected to both gateways by links with infinite capacity (shown with dashed
lines in Figure 5.6). Then, the gateway selection problem turns into a multipath
forwarding problem, where we have to decide which portion of traffic demands
d1 and d2 to forward through each of the possible paths from the super node
(Internet), which is equivalent to decide which portion of traffic to route from each
gateway.

In this example, we also considered inter-gateways flows from node 1 to node
2 and viceversa, with demands d3 (from 1 to 2) and d4 (from 2 to 1) respectively.
These traffic flows may exist due to mobile hosts directly attached to one gateway
that access resources allocated at servers in the other gateway. There is only one
possible path for this flows, so there is no forwarding decision to take for those
OD pairs. However, they affect the amount of traffic on each link, which leads the
network to a different load condition than the one without inter-gateways flows. It
is a desirable property of the algorithm that the existence of those inter-gateways
flows does not affect the forwarding decision of the other flows.

We will analyze an asymmetric simulation example where traffic loads are
d1 = 15 Mbps, d2 = 5 Mbps and d3 = d4 = 3 Mbps. In this case the network
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UDP flows UDP flows TCP flows
Method Delay (ms) Jitter (ms) Goodput (Mbps)

MQLLB 21.4 8.1 10.8
static routing 48.4 9.2 8.3

Table 5.4: Performance metrics for the gateway selection asymmetric case.

started operating with shortest path routing with hop count as routing metric (i.e.
d1 through GW 1 and d2 through GW 2). The heavy traffic load from GW 1 to node
3 produces congestion in that link, which is visible in Figure 5.7(a) where the total
average queue evolution is shown from t = 400s, when we have already reached
steady state. The operation of MQLLB starts at t = 1000s and reached convergence
at t = 1200s. The final total average queue length as we reached convergence is 79
packets, which is almost 50 % smaller than before starting MQLLB where it was
154 packets (with peaks up to 235). In Figure 5.7(b) we show the average packet
delay analysis for UDP flows. Please note that the x-axis does not correspond to
time but to the flow index. It is clear that after MQLLB starts there is an important
improvement with a smaller average delay. Performance metrics are summarized in
Table 5.4, where we compare the results of MQLLB with static routing through the
nearest gateway (802.11s was not considered in this gateway selection example).
It is clear the advantage of using MQLLB in this case, particularly noticeable in
the UDP flows delay with an improvement of more than 50 %.

For the gateway selection problem there is an important issue to solve for a real-
world implementation. For the downlink case (traffic coming from the Internet)
we cannot perform path selection at the ingress routers (i.e. the gateways) since
we are distributing traffic between paths that do not share the same origin node.
A simple alternative to solve this issue is to make gateway selection with client
granularity. In this case, the routers which are directly connected to mobile hosts
may decide the proper gateway for each client. In order to improve the performance
of this approach these routers could monitor each client traffic demand. Thus, the
optimization process could use a client granularity but including the client demand
information, which allows a better traffic forwarding update at each step.
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Figure 5.7: Gateway selection with asymmetric traffic loads.
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d1

d2

d1

d2
Figure 5.8: 4-node topology multipath forwarding example, situation 1.

UDP flows UDP flows TCP flows
Method Delay (ms) Jitter (ms) Goodput (Mbps)

MQLLB 19.0 6.7 15.4
802.11s 141.3 8.0 4.8
static routing 104.0 8.4 6.8

Table 5.5: Performance metrics for 4-node topology example, situation 1.

5.4.3. Multipath Forwarding: 4-nodes Topology
The next example corresponds to a four nodes topology with five 802.11 links

and two OD pairs (see Figures 5.8 and 5.11). In this scenario we have three possible
paths for each OD pair, each of them of distance 1, 2 and 3 links. We will consider
only the two shortest paths for each one, so we have to decide for each OD pair,
how much traffic to forward on each route. As we said before, the possible paths for
each OD pair are defined by the network topology, but we can decide not to use any
given path by configuration, because we want to simplify the network operation or
just avoid the usage of a particular path. We will consider two different situations,
both of them with asymmetric traffic demands, but the difference between them
is how the paths share the different links.

First, we will analyze the situation shown in Figure 5.8, where both flows are
from left to right, so links are shared by flows in the same direction. We simulated
the scenario with d1 = 25 Mbps and d2 = 10 Mbps and compared the performance
of MQLLB with 802.11s. Both simulations have a total duration of 2500s, in one
case beginning with static routing using only the single-hop paths and MQLLB
starting at time 500s and in the other case using 802.11s during all the simulation.
The different performance metrics analyzed show a clear advantage of MQLLB
over 802.11s and static routing. The results are summarized in Table 5.5, where
we can see an improvement of more than 70 % in the average delay for UDP flows
and more than 100 % in the average goodput for TCP flows. In Figures 5.9(a) and
5.9(b) we show the average packet delay evolution for UDP flows in time order
during the first 1000s of the simulations. Similarly, in Figures 5.10(a) and 5.10(b)
we show the average goodput evolution for TCP flows. In both cases it is clear
the moment when MQLLB starts the operation (at 500s), which is reflected on
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(a) Simulation with 802.11s.
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(b) Simulation with static routing and MQLLB.

Figure 5.9: UDP flows average delay analysis for 4-node topology example, situation 1.
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(a) Simulation with 802.11s.
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(b) Simulation with static routing and MQLLB.

Figure 5.10: TCP flows average goodput analysis for 4-node topology example, situation 1.
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d1
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Figure 5.11: 4-node topology multipath forwarding example, situation 2.

the network performance with a smaller average delay for UDP flows and a larger
average goodput for TCP flows.

The other considered situation is shown in Figure 5.11. The traffic loads are
the same than before (d1 = 25 Mbps and d2 = 10 Mbps), but now d1 is from
left to right and d2 from right to left, so links are shared by flows in the opposite
direction. The results, which are summarized in Table 5.6, are quite similar to the
previous situation, with significant improvements in all the analyzed performance
metrics in favour of MQLLB. The purpose of this example is to show the ability of
the proposed framework to cope with different link sharing situations, with traffic
demands sharing the links both in the same direction or in opposite directions.

To explain the improvements of using an scheme like MQLLB instead of
802.11s, we must first note the advantage of considering multiple paths for each
origin-destination pair, which allows a better adaptation to the particular traffic
conditions. This fact is particularly clear when we analyze asymmetric traffic si-
tuations like the one of the examples. Second, we must consider the problems of
using a metric that reflects the dynamics of each link at each moment as the airti-
me used by 802.11s. As studied in [6] routing oscillations may happen because of
the dynamics of the different links metric. When more traffic is forwarded through
a link, the metric is degraded, which causes that quickly we can find an unloaded
link with a better metric. This fact causes that the node will change the selected
path and it will start forwarding the traffic on the other link. The new selected link
will suffer the same metric degradation that the other one had before, so the node
will change the selected path again. This phenomenon is repeated indefinitely ge-
nerating an oscillation of the chosen path. This phenomenon was also noticed in [7]

UDP flows UDP flows TCP flows
Method Delay (ms) Jitter (ms) Goodput (Mbps)

MQLLB 25.9 7.2 13.9
802.11s 141.6 8.4 4.7
static routing 101.9 8.2 6.8

Table 5.6: Performance metrics for 4-node topology example, situation 2.
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where it was called “ping-pong” effect, and the results reported in that work were
similar with the ETX metric. This fact explains the bad performance of 802.11s,
which is even worse than the one for static routing through one-hop paths in this
examples. The proposed MQLLB uses average measurements to reflect the dyna-
mics which allows a quick adaptation to traffic changes but ensuring an stable
operation for steady state situations.

5.4.4. Gateway Selection: 25-nodes Topology
Finally, we present a gateway selection scenario in a 25-node topology to take

a look into scalability and convergence of the proposed framework. The nodes are
disposed in a 5 x 5 uniform square grid with side 500m and links are established
between the closest nodes, all with a 100m distance. We call each node nij using
matrix notation and we have two gateways corresponding to nodes n15 and n51

(top right and bottom left of the square respectively). We have a routing protocol
(OSPF) which establishes routes between every pair of nodes, so, as we have two
gateways, each node has two possibles routes to the Internet. We will use the
proposed method to find the proper traffic distribution between gateways for each
node, which in this example is called αij for the corresponding node ij.

The traffic considered in this example is all downlink (from the gateways to
the other nodes) and it was generated with the same characteristics as in previous
examples. We chose as a convention that αij = 1 means that all the traffic for node
ij comes from gateway n15 and if αij = 0 all the traffic comes from gateway n51.
In the simulation, we started with αij = 0,5 for all nodes, which corresponds to
half of the traffic coming from each gateway for all of them. The load values used
in the simulation were 5Mbps for nodes {n11, n12, n13, n14, n52, n53, n54, n55} and
2.5Mbps for the rest of the nodes.

We enabled the operation of MQLLB at t = 300s. In Figure 5.12 we show
the evolution of the traffic distribution αij for each node, while for the gateways
we show the total traffic load that comes from each of them. We can see that all
the nodes which are at the same distance from each gateway (nodes nii, at 4-hop
distance to gateways) remained with αii = 0,5 during all the simulation. On the
other hand, nodes which are closer to gateway n15 changed to αij = 1 while the
ones closer to gateway n51 changed to αij = 0. This means that nodes with one
gateway closer than the other, change the traffic distribution in order to receive all
the traffic from the closest gateway. Taking into account the convergence, we can
see that nodes which are closer to gateways converge in less optimization steps than
the others. For example, looking at gateway n51 we can see that nodes at one hop
distance converge in one step, while nodes at two hop distance take two iterations
to converge and finally nodes at three hop distance take three iterations to reach
convergence. In Figure 5.13 we show the evolution of the total average queue,
where we can appreciate its steep descent when MQLLB starts the operation.
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Figure 5.12: Traffic distribution and aggregate load at each GW as a function of time (subplot
ij corresponds to node nij).
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Conclusions of Part II

In this part of the thesis we addressed the problem of finding a suitable routing
and forwarding scheme in a wireless mesh network. After developing a network
model based on measurements, the forwarding is posed as an optimization problem.
The achieved solution optimally distributes all end-to-end traffic over all possible
paths for each pair origin-destination. With this dynamic multipath forwarding
scheme, the algorithm enables load-balancing and conducts the network to operate
at the minimum average congestion. The proposed framework also allows to solve
the gateway selection problem in a wireless mesh network.

The problem formulation is based on learning from measurements the average
queue length function for each wireless link in the network. This statistical model
is constructed from actual network measurements, ensuring that the estimation
is adjusted in the widest possible way to reality. Then, a classical optimization
method is applied, in order to reach the minimum average queue length in the net-
work. The proper evolution and convergence of the proposed method was verified
by our packet-level simulations over several canonical topologies which served as
a proof of concept.

We further analyzed the simulations taking several flow-level performance me-
trics as average delay and jitter for UDP traffic and average goodput for TCP
traffic. With this metrics we studied the performance of the proposed MQLLB
method compared with the IEEE 802.11s standard. The results show a clear ad-
vantage of MQLLB against a dynamic metric routing method like the one used
by 802.11s. In all the simulations, independently of the topology size, we observed
a quick adaptation of MQLLB to traffic changes and also an stable operation,
avoiding the routing oscillations of 802.11s, already noticed before by [6, 7].

Among the points that could be studied in more detail in the future, we should
perform the learning phase with real data, which includes the non-zero channel
error rate, typical of a real-world wireless link. All the simulations presented in
this work are done with synthetic traffic, so our analysis could be extended using
real traffic data. It would also be very interesting to perform a statistical analysis of
the behavior of the mean queue size with respect to the load. A possible objective
would be to know how often does the regression function change over time (i.e.
answer the question of whether the mean queue size function changes over time,
and how often it does).

Another aspect that could be addressed in the future is the implementation
of the proposed framework in a real-world network, which was briefly discussed in



this work. One possible way is to explore the adaptation of a recent MPLS-based
routing scheme for WMNs [95] to our proposal. A testbed deployment would be
useful for enhancing the algorithm and detecting real-world driven problems that
need to be solved. An interesting point which could be more profoundly studied
in the future is the optimization phase. This problem could be solved by several
different methods and was not analyzed in the present work. Finally, the proposed
framework was developed for a link disjoint WMN, so it could be extended to cope
with scenarios that have not only point to point links but also point to multipoint
links.



Part III

Spectrum Assignment
in Cognitive Networks





Chapter 6

Spectrum Allocation in Cognitive Radio
Networks

The third part of this thesis is dedicated to another resource allocation problem
in wireless mesh networks, in this case the spectrum assignment. We address the
analysis of optimum spectrum allocation mechanisms, based on the novel cognitive
radio networks paradigm. A problem that is envisioned in the near future is the
spectrum scarcity, which could be a serious threat to cope with the ever increasing
demand. One of the possibilities that has emerged to solve this problem is to allow
secondary assignments in licensed bands, by means of cognitive radio equipment.

The goal is to find a dynamic mechanism that conducts to the optimum spec-
trum allocation, given the physical medium conditions and the required traffic
demand at each link. The novel robust method proposed meets these objectives,
and also could be implemented with a distributed solution. The development is
based on the assumptions validated in Chapter 2 and Chapter 3, that is to say
that we assume that it is possible to estimate the traffic demand and predict the
effective capacity of each link from the physical layer measurements.

The rest of Part III is structured as follows. In the next section we present the
previous related work and highlight some recent papers. In Section 6.3 we introduce
most of the notation used in this part of the thesis and the spectrum allocation
problem model developed. The formulation results in a stochastic optimization
problem, so Chapter 7 is entirely dedicated to review this topic. We concentrate
on chance-constrained programming, with focus on a novel technique to find the
equivalent deterministic optimization problem which leads to a robust solution.
This part of the thesis closes with Chapter 8, where we introduce the proposed
robust approach for spectrum allocation in cognitive radio multihop networks. The
chapter continues with Section 8.2, where we describe the network architecture that
enables the implementation of the proposed scheme in a decentralized way. Finally,
in Section 8.3 we present the simulation experiments and performance comparison,
while conclusions are discussed in a separate chapter at the end of this part.



Chapter 6. Spectrum Allocation in Cognitive Radio Networks

6.1. Introduction
Over the last decade, we have seen an explosive growth in the deployment

of wireless networks in unlicensed frequency bands, mainly driven by the great
success of the IEEE 802.11 standard. During the same period of time, we have also
witnessed the highest growth in the traffic load carried over wireless networks [63]
and forecasts indicate that this growth will continue [113]. Moreover, the user
density is also increasing, resulting in crowded scenarios where the technology is
reaching its limits (e.g. classrooms, large conferences, shopping centers or sport
events [59]).

Besides these most common scenarios, where we only have a wireless last hop,
requirements also increase for the wireless transport networks we found today, also
using 802.11-based technology in unlicensed bands. This is the case of the typical
wireless mesh network (WMN) solution previously introduced in this thesis (see
Figures 1.1 and 4.1), with the real world case scenario from Plan Ceibal described in
Chapter 2, which provides Internet access for schools located in rural or suburban
areas. In that case the problem is not about user density, as we only have point
to point or point to multipoint links between a few nodes. Instead, we have higher
throughput requirements, because we are talking about the network core. While
standards are still evolving, achieving increasingly higher spectral efficiency, we
may soon be faced with spectrum scarcity issues to properly cope with traffic
demands. Regulators have taken note about this fact and some proposals already
exist to extend the available spectrum [114].

Leaving aside traditional spectrum allocation, a new type of spectrum assign-
ment has emerged some years ago: the so-called cognitive radio paradigm [8]. The
main idea is to have two types of users; licensed or primary users (PUs from now
on), which have the preferential right to use the band; and unlicensed or secondary
users (SUs from now on), which can use the band only in the absence of the PUs.
This type of spectrum allocation contributes to a more efficient use compared to
traditional static assignments, as testified by some recent FCC rulings [52]. Alt-
hough adoption is not yet massive, much industrial and academic efforts have been
dedicated to this kind of technology. For instance, the IEEE 802.22 standard [50]
was approved in 2011, which defines a Wireless Regional Area Network (WRAN)
based on cognitive radio. Another industrial effort is the 802.11af amendment to
enable the operation of the standard in TV bands, which has been recently publis-
hed [51].

On the other hand, the development of cognitive radio equipment is still im-
mature, particularly concerning sensing tasks to detect PUs, so the first solutions
being deployed are based on databases queries to get the information about the
available spectrum [115]. Some major providers such as Google are already autho-
rized in the US to give such spectrum database service [116]. Everything suggests
that in the short to medium term dynamic spectrum allocation will expand, and
in a few years we will probably have several standards operating under this para-
digm. This enables new possibilities for the development of radio communications
equipment, which added to the advances in software defined radio (SDR) techno-
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logies, may cause a significant change in the world of wireless communications we
know so far.

While much research has been recently dedicated to cognitive radio networks
and dynamic spectrum allocation, most of the works have mainly focused on the
case where there are only licensed bands available [49]. In that case, unlicensed
devices can only operate as SUs in the absence of PUs, greatly limiting their
possibilities. We believe it is very complex to develop a useful solution in such
scenario with high throughput requirements. Several issues arise working only with
licensed bands, for example, a control channel should be available all the time
in order to coordinate the communication, which might be not easy to ensure
without any guaranteed frequency band to use. Moreover, it is possible to have
circumstances under which the available spectrum is not sufficient to meet the
throughput requirements, as the available capacity strongly depends on the PUs’
dynamics. In this thesis we work in a mixed licensed and unlicensed scenario,
which we believe is more appropriate to support high throughput requirements.
This solution has not been deeply explored yet in the literature and we think it
is the most suitable model for the equipment and regulations that we may have
during the coming years.

Our focus is centered on the dynamic spectrum assignment in a WMN. That
is to say, we will study possible methods to decide which frequency bands may be
used by the network devices at any given time. It is worth to highlight that such an
assignment means that the bands are available for the devices, and are not neces-
sarily used. With this in mind, the natural question that arises is to what purpose
this assignment should be performed [24]. In our particular context, examples in-
clude minimizing the number of licensed bands assigned [117] or maximizing the
user’s utility (as a function of the mean rate) [118] without exceeding a maximum
interference threshold to other networks.

However, in the context of a cognitive WMN, we argue that the most natural
objective would be to provide a lower bound to the resulting throughput in each
link. As introduced in chapter 2, the traffic demand can be estimated from mea-
surements of the live network, so we could infer the necessary capacity on each
link to cope with the demand. Besides, the variations in traffic dynamics between
spectrum assignment intervals could be solved with an algorithm as the one pre-
sented in Chapter 5, which adapts the routing and forwarding to the underlaying
links’ capacity. The purpose of the spectrum allocation should be thus to ensure
a certain effective capacity for each link, independently of the channel conditions
and the PU’s activity.

The other challenge that these systems pose is the timescale at which the
assignment should be performed. One possibility is to re-assign (and thus re-
optimize) every time a band is used or abandoned by PUs, or if significant changes
in channel conditions occur. Although this event-driven solution will lead the sys-
tem to operate with the optimal allocation all the time, it will typically result
in a dramatically high signaling overhead. In this sense, we will assume, as many
researchers, a periodic optimization every T time units, which leads us to a better
performance tradeoff. However, T may include variations in PUs’ activity. This
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Figure 6.1: Spectrum occupancy example with four licensed bands.

fact implies that a licensed band assigned when the period starts might have to be
abandoned, resulting in an effective capacity that is less than expected. In Figu-
re 6.1 we present an example to clarify this situation. In it we have four licensed
bands, with two of them available at the first spectrum assignment at time 0. Du-
ring the interval between allocations, a PU starts using band 4, so it is no longer
available. The problem occurs again in the second assignment, where bands 1 and
2 are available and the assignment is thus performed, but a PU occupies band 2
during the interval.

To address this issue, the most commonly used approach is to model the avai-
lability of licensed bands as random, and optimize the expected value of indicators
such as interference or throughput, as discussed before. Although this means that
in the long run the objective will be accomplished (e.g. the throughput will be ma-
ximized), at shorter timescales the resulting performance may be far from optimal.
In contrast with previous works, we will present a frequency assignment scheme
that provides the required throughput, which will hold with very high probability
during the whole operating time. Naturally, such guarantee will require a certain
degree of overprovisioning, but our simulations indicate that this is usually below
35 % of that required by an oracle that knows beforehand the PUs’ activities. Mo-
reover, the results show that simply considering an expected value approach leads
us to a solution where the throughput requirement is not fulfilled more than 40 %
of the time.

6.2. Related Work
More than a decade has already passed since the emergence of the cognitive

radio networks (CRNs) paradigm, and a large amount of the research done in the
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area during last years has been dedicated to spectrum assignment. An example of
this is the number of papers that can be found as references in the broad survey by
Tragos et al. [24]. However, as the authors state in the paper, there are still many
issues and challenges to be solved, something which is also remarked in [119].
As we previously mentioned, most of the work so far is focused on a scenario
with all licensed frequency bands, where cognitive nodes can only access to the
spectrum as SUs while PUs are not present, discarding the use of unlicensed bands,
available at any time. While this problem is still of interest for certain applications,
such as delay-tolerant or sensor networks, it is not suitable for a transport mesh
network, with high throughput and high availability requirements. In other cases,
the spectrum allocation simply ignores the PUs, or just consider that SUs have a
fixed set of available frequency channels, separated from the ones of the PUs.

This latter scenario reduces to the traditional spectrum allocation problem in
a WMN, which has been the focus of several articles. In this problem, different
variants arise, such as the number of radios per node, which can vary from a single
radio per node [120,121], to the higher capacity multi radio case [122–124], which
gives name to the multi-radio multi-channel (MR-MC) WMNs. Our work can be
seen as an extension to this model, as we consider the same problem but under
the paradigm of CRNs, which we believe should be the natural next step in the
evolution of multihop wireless networks. Furthermore, we consider a novel robust
approach, but in this case the uncertainty is not about the channel conditions
[125, 126], nor the traffic variations [127], but the PUs’ activity. In particular,
incorporating licensed bands generates a dynamic resources availability, so one of
the requirements of the spectrum allocation is to be robust against such variations.

To the best of our knowledge, very few works have studied the resource alloca-
tion in a mixed licensed and unlicensed scenario. In [117] an opportunistic spectrum
assignment is proposed in order to alleviate congestion in a WLAN environment.
The problem is formulated as a binary linear program, where they seek to mi-
nimize the number of assigned bands without exceeding a maximum interference
threshold. The proposal is limited to the allocation of a single frequency band
for each access point, so channel aggregation is not considered, something already
included in newer standards (802.11n and 802.11ac) and which is quite an impor-
tant limitation in order to increase capacity when needed. A similar problem, but
from the PUs’ perspective, is studied in [118]. In that case the authors analyze the
simultaneous use of both type of frequency bands by a mobile operator, in order
to increase the capacity in a femtocell scenario.

We highlight the work in [128] where the authors studied a traffic engineering
solution in the context of a multihop cognitive WMN. They considered the combi-
ned use of ISM bands and licensed bands in the absence of PUs, and also assumed
nodes have cognitive sensing capabilities in order to exploit unused primary bands.
The traffic engineering problem is formulated as a network utility maximization,
which is solved with a stochastic primal-dual approach, without knowledge of the
probability distribution of PUs’ activity. The spectrum assignment is not treated
directly as it is an underlying problem of the traffic engineering issue addressed
in the paper, so they just assume the available spectrum for each link determines
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its variable capacity. Our work is based on similar assumptions as the ones stated
in [128], but we focus on the spectrum assignment problem. The main difference is
that we consider a measurement-based approach where we estimate the probability
distribution of PUs’ activity, based on the nodes’ cognitive sensing capabilities. In
this work we thus take into account the PUs’ activity, something which was not
considered in many previous works, as stated in [24].

6.3. Network Model and Problem Formulation
In this thesis we study the spectrum allocation problem in a mixed licensed

and unlicensed scenario. In the proposed scheme, devices operate always as unli-
censed devices but in two types of frequency bands, licensed ones, where they are
only allowed to operate when there is no presence of PUs, and unlicensed ones,
where they can operate all the time. This offers greater flexibility to meet the
requirements, given the scarcity of unlicensed spectrum. Furthermore, by having
both type of bands, we simplify the protocol design complexity compared to so-
lutions which only use licensed bands, as we can perform control communications
through unlicensed bands, which are available all the time. To accomplish this goal
we will impose that any possible assignment should include a minimum amount of
unlicensed spectrum that guarantees a minimum capacity for control plane traffic
(which we shall call w). This way we ensure the control plane connectivity between
nodes, which makes possible the proper coordination for the use of the allocated
frequency bands.

As in other previous works (e.g. [129]) we will assume that each node has a
dedicated interface to enable cognitive sensing capabilities. By this mean, each
node is able to keep a record of the PUs’ activity on each licensed band. Besides,
this interface is used to collect air measurement data, which are used to estimate
the available capacity on each band, either licensed or unlicensed. In this part of
the thesis we shall call effective capacity to the maximum achievable throughput
in higher layers (i.e. network and transport layers), in the same way it was presen-
ted in chapter Chapter 3. This effective capacity depends on several factors such
as channel conditions and other SUs’ activity (devices from other networks that
are not under our control), but it can be estimated passively through measure-
ments [130] [131]. An example of how is it possible to infer the effective capacity
from physical layer measurements was shown in Chapter 3.

We consider a solution where the assignment is performed every T time units
and we will further assume that T is relatively small, so that an accurate estimation
of each band’s available capacity may be obtained using information from the
previous interval. In this work we suppose that such estimation is exact, so as to
focus only in the PUs’ dynamics. We will also assume that devices can fully exploit
the available spectrum (even disjoint available bands), using a PHY layer such as
OFDM. We also assume there is a MAC layer mechanism in order to share the
spectrum between nodes (e.g. 802.11 MAC layer).
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6.3.1. Single Collision Domain

In this section we will focus on a single-domain spectrum assignment, that is
to say, a network with a unique collision domain, corresponding to the case of just
one point to point link between two nodes. In the next section we will present
the model extension for a wireless mesh network (WMN) with multiple collision
domains. Let u = 1, ..., U , be the set of unlicensed frequency bands (i.e. no PUs,
as in ISM bands). Let b = 1, ..., Bt, be the set of licensed frequency bands (which
are assigned to a PU) available at time t (i.e. PUs are not present).

We will note as cb(t) the effective capacity available on licensed frequency band
b and cu(t) the effective capacity available on unlicensed frequency band u. This
values should be estimated at each link, in a similar way to what we have done
in Chapter 3, by means of the data collected at each node with the dedicated
interface for sensing purposes. We define as spectrum assignment variables αb(t)
and αu(t), which belong to [0, 1], assuming partial band assignment is possible
(e.g. via OFDMA or TDMA).

Now, we can define the total effective capacity assigned for the interval starting
at T as:

Ceff

(
αT
)

=

B∑
b=1

αb(T )cb(T )hb(T ) +

U∑
u=1

αu(T )cu(T ) (6.1)

where hb(T ) is a real number in [0, 1], according to how much time each licensed
band was actually available during the interval. We will model hb as a random
variable, whose distribution will be learned from the previously observed dynamics.
As we stated previously the objective is to provide a lower bound to the resulting
throughput, so we will set this bound as a problem constraint, and we shall note
it as d. This lower bound d is actually the minimum total capacity our system
should have considering all nodes. We further define a cost function:

C
(
αt
)

= Clic (α1(t), . . . , αB(t)) + Cunlic (α1(t), . . . , αU (t)) (6.2)

The cost functions Clic() and Cunlic() allow us to give different weights for each
band, depending on the desired spectrum allocation goal. For example, it is possible
to have different costs depending if the band corresponds to a higher or lower
frequency, which may imply different transmission power requirements.

After all the stated assumptions, definitions and goals, we can now define an
optimization problem which will lead us to the assignment algorithm for the single
domain case. This problem should be solved periodically, so we will omit the time
index from now on for a matter of clarity. That is to say, each time T we should
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strive at solving the following problem:

min
α

C(α),

s.t.
B∑
b=1

αbcbhb +
U∑
u=1

αucu ≥ d,

U∑
u=1

αucu ≥ w,

αb ∈ [0, 1], b = 1, . . . , B,

αu ∈ [0, 1], u = 1, . . . , U.

(6.3)

In Chapter 8 we will present different approaches to deal with this problem.
Our proposal, which we believe that fits best to the problem posed, is to use
a probabilistic constraint, and find a suitable deterministic equivalent, using the
technique presented in the next chapter. Thus it is possible to find a robust spec-
trum allocation, knowing only the mean and variance of the random data.

6.3.2. Model Extension for a Wireless Mesh Network
Now, we extend the previous model to the case of a wireless mesh network

(WMN) with L links, where in the general case we may have multiple overlapping
collision domains. We will consider for the spectrum allocation only the wireless
links in the core of the WMN, assuming that the last hop with end clients is in other
non interferent frequency bands. In this case, we can reuse the frequency bands in
different links, but to avoid interference, we have to constrain the assignment on
each collision domain. Thus, we want to ensure that if a certain frequency band
u or b is assigned to a certain link l, then the same band cannot be assigned
simultaneously by other links in the same collision domain.

In order to define the collision domains, we will consider interference between
links and not between nodes. The reason to do this is that normally when we have
communication between nodes, even when the data flows in only one direction, we
still have information flowing in the opposite direction (e.g. acknowledgements).
So, we will consider that two links interfere with each other if any node of one link
is in the same collision domain than any node of the other link. Thus, we first need
to know the conflict graph of the WMN, which is an undirected graph, where each
vertex represents a wireless link and we have an edge between every pair of links
that interfere with each other. Then, to list all the collision domains (noted with
q, from 1 to Q), we have to look for all the maximal cliques of the conflict graph.
Once we have all the Q collision domains in the WMN, we can properly define a
binary matrix A to reach the necessary additional constraint:

A ·αᵀ ≤ 1Q×(B+U) (6.4)

using the matrix notation for the spectrum assignment variables defined in Ta-
ble 6.1.
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αU ∈ [0, 1]U×L unlicensed spectrum allocation variables
αB ∈ [0, 1]B×L licensed spectrum allocation variables

CU ∈ R+U×L capacity for unlicensed spectrum bands

CB ∈ R+B×L capacity for licensed spectrum bands
HB ∈ [0, 1]B×L PUs’ activity on licensed bands

d ∈ R+L capacity required for data plane traffic

w ∈ R+L capacity required for control plane traffic
A ∈ {0, 1}Q×L link interference matrix (conflict graph)
α = [αB;αU ] all spectrum allocation variables
Clic(αB) ∈ R+ cost function for licensed spectrum
Cunlic(αU) ∈ R+ cost function for unlicensed spectrum
1M Column vector of ones of size M

Table 6.1: Matrix Notation

Figure 6.2: Wireless network with 3 links and 2 collision domains.

In Figure 6.2 we show an example topology with four nodes and three links,
which will be later considered in the simulations presented in Chapter 8. The
conflict graph of this network is given by the following adjacency matrix:

CG =

 0 1 0
1 0 1
0 1 0


The nonzero entry CG(1,2) indicates that the link number 1 and the link number
2 interfere with each other. The same happens between the link number 2 and
the link number 3, given by the other nonzero entry in CG(2,3). Notice that the
matrix is symmetric which should be the typical case (if link A interferes link B,
then is highly probable that link B also interferes link A). We have a total of two
collision domains in the network, which correspond to the two maximal cliques of
the conflict graph: {1,2} and {2,3}. Then, the two resulting constraints for this
example are: (

1 1 0
0 1 1

)
·

αᵀ
B1 α

ᵀ
U1

αᵀ
B2 α

ᵀ
U2

αᵀ
B3 α

ᵀ
U3

 ≤ (1B+U

1B+U

)
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We are now able to define an optimization problem similar to the previous
case of a single collision domain. We will omit again the time index for a matter of
clarity. This way, the spectrum assignment in the WMN can be performed solving
the following problem:

min
α

C (α) = Clic(αB) + Cunlic(αU ),

s.t. (αB �CB �HB) · 1B + (αU �CU ) · 1U ≥ d,

(αU �CU ) · 1U ≥ w,

A ·αᵀ ≤ 1Q×(B+U),

αB ∈ [0, 1]B×L,

αU ∈ [0, 1]U×L.

(6.5)

where · stands for the common vector and matrix product operation and � stands
for an element-wise matrix multiplication.

In the next chapter, after a brief review of chance-constrained programming,
we will present a distributionally robust approach, which we argue best fits our
needs to solve the stochastic optimization. Then, in Chapter 8 we will introduce
the robust solution and a suitable distributed algorithm implementation.
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Chapter 7

Chance Constrained Optimization

Many real-world engineering problems can be modeled as constrained optimi-
zation problems, where typically one or many of the constraints involve uncertain
parameters. This chapter provides a quick review on chance-constrained optimi-
zation, and finally introduces to the method that we will use in the next chapter
to develop the proposed robust spectrum allocation solution. The particular case
of interest is a single-stage decision where the unknown data is random, with an
uncertain probability distribution, but with known fixed values for the mean and
covariance.

7.1. Introduction
Stochastic constrained optimization have found applications in many diverse

contexts, such as network resource allocation problems (as our case of interest, for
robust spectrum assignment), QoS management in multimedia networks, financial
problems as portfolio optimization [132], electric power generation and optimal
control of storage levels, and even diet and animal feed problems (included in
Chapter 14 of [133]). In all cases, to find a suitable model, one should characterize
the random parameters involved with a certain probability distribution. Two main
approaches are generally available to address constrained optimization problems
in presence of uncertainty: robust optimization and chance-constrained optimiza-
tion. On the one hand, robust optimization is a deterministic paradigm where the
solution that one looks for must simultaneously satisfy all the possible constraint
sets corresponding to all the possible parameter realizations. For this reason, this
paradigm is also known as max-min/min-max or worst-case approach. On the ot-
her hand, we have the chance-constrained optimization, where the deterministic
equivalent corresponds to the computation of probabilistic constraints. In this case
one seeks a solution that enforces the constraints up to a pre-defined amount of
risk (ε) or security level (1-ε).

Unfortunately, there is no standard way to select one option or the other, and
both approaches may lead to a computationally intractable problem formulation.
Thus, one may choose the most appropriate method for the problem at hand,
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which for our needs is chance-constrained optimization, as we will justify further
in Chapter 8. In our case, the problem addressed is a single-stage decision problem,
so we will consider in all cases a single stochastic optimization problem. A single-
stage decision means that there is only one moment to make a decision from the
available data, which differs for example from a two-stage decision, where a second
stage with new information available enables to improve the previous decision. In
the rest of this chapter we will present a generic stochastic problem and apply
the classic chance-constrained programming approach introduced in [134]. We will
then review different alternatives available to find a solution. Finally, we will focus
the spotlight in a particular method which is robust to the underlying probability
distribution.

7.2. Problem Formulation and Probabilistic Constraints
We present below a generic stochastic optimization problem:

minimize
x

f(x)

subject to:

Ax ≤ b

(7.1)

where x ∈ Rn is the vector containing the decision variables, f(x) is a convex
function, while the elements of matrix A ∈ Rm × Rn and vector b ∈ Rm are
random variables with unknown probability distributions. The constraints of this
stochastic program are:

aᵀi x− bi ≤ 0, i = 1, ...,m (7.2)

We consider an uncertainty in the data of stochastic nature, what is to say that
the data vectors di

.
= [ai,−bi]ᵀ, for i = 1, ...,m, are independent random vectors

with dimension n+ 1.
A classical approach to deal with the optimization problem under random un-

certainty is to use the so-called chance-constrained approach [134]. In this method
we introduce the risk levels εi ∈ (0, 1), for i = 1, ...,m, associated with each cons-
traint. Now, assuming a certain probability distribution for vectors di, we seek to
enforce the constraints in probability, solving the following problem:

minimize
x

f(x)

subject to:

Prob{aᵀi x− bi ≤ 0} ≥ 1− εi, i = 1, ...,m

(7.3)

While there is a vast literature on such kind of problems, we will only present a
brief summary of the topic based on the work by Calafiore et al. [25]. For more
details please refer to [25] and the references therein.

We do not intend here to survey all the research done in chance-constrained
optimization, but only mention some of the fundamental keypoints. The first ques-
tion that arises is under which hypotheses on the distribution of the random data
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di, the optimization problem (7.3) is a convex program. The first answer to this
question, which is now a classical result, is for the case where di is Gaussian. In this
case, the corresponding chance constraint imposes a conic quadratic constraint on
x, so the problem is still convex. Similarly, it can be shown that, for the case where
the values of ai are fixed (just deterministic variables) and bi has a log-concave
probability density, then the corresponding chance constraint is also convex. A
more recent result, which is an extension of the previous one, corresponds to the
case when both ai and bi have joint log-concave and symmetric density, which was
also proved to result in a convex problem.

Once we know that the problem is convex, the next step is to convert expli-
citly the probability constraint into a deterministic one, which depends on the
particular probability distribution of the random data di. Again, this can be done
straightforward in the case of a Gaussian distribution, while no such simple met-
hod is available in the literature for the case of other distributions. In the next
section we will briefly look at the simpler Gaussian-distribution case, while in the
following section we will present a novel solution introduced in [25] which tackles
the case where the distribution of the random data d is unknown, but the first two
moments (mean and covariance) are available.

7.3. Random Data with Gaussian Distribution
In order to illustrate the procedure to obtain the corresponding deterministic

equivalent constraint, we first analyze the case where d is Gaussian. In the next
section we introduce the distributionally robust approach that we will use later on
this thesis. From now on, we will omit the subscript i, as the analysis is exactly
the same for each constraint i. Setting x̃

.
= [xᵀ, 1]ᵀ, the problem is to find a

deterministic constraint, which should be equivalent to:

Prob{dᵀx̃ ≤ 0} ≥ 1− ε, i = 1, ...,m (7.4)

If the random data d follows a Gaussian distribution, with mean d̂ and covariance
matrix Γ, then the corresponding deterministic equivalent is given by:

d̂ᵀx̃+ Φ−1(1− ε)
√
x̃ᵀΓx̃ ≤ 0, i = 1, ...,m (7.5)

where Φ() is the normal cumulative distribution function. The equivalence of both
constraints means that the values of x satisfying one constraint or the other are
exactly the same. This is a classical result which can be found as Theorem 10.4.1
in [133] and we reproduce the proof below.

Proof. We have that:

E(dᵀx̃) = d̂ᵀx̃

Var(dᵀx̃) = E[x̃ᵀ(d− d̂)(d− d̂)ᵀx̃)]

= x̃ᵀΓx̃
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If for some x̃ we have x̃ᵀΓx̃ = 0, then dᵀx̃ = d̂ᵀx̃ with probability 1, and
thus both constraints are equivalent. If, on the other hand, for some x̃ we have
x̃ᵀΓx̃ > 0, then:

(d− d̂)ᵀx̃√
x̃ᵀΓx̃

has a normal distribution, with mean 0 and variance 1. So, we can derive:

P (dᵀx̃ ≤ 0) = P ((x̃ᵀΓx̃)−1/2(d− d̂)ᵀx̃ ≤ −(x̃ᵀΓx̃)−1/2d̂ᵀx̃)

= Φ(−(x̃ᵀΓx̃)−1/2d̂ᵀx̃)
(7.6)

Thus, the probabilistic chance constraint is equivalent to:

Φ

(
−d̂ᵀx̃√
x̃ᵀΓx̃

)
≥ 1− ε (7.7)

and this is equivalent to the proposed deterministic constraint 7.5.

The corollary of this theorem (Corollary 10.4.2 in [133]) is that if the risk
level satisfies ε ≤ 1/2, then the corresponding set of values x which satisfies the
constraint is convex, and therefore so is the resulting optimization problem.

Proof. If ε ≤ 1/2, then Φ−1 (1− ε) ≥ 0 and then the result is directly derived
from 7.5, as Γ is a covariance matrix, which implies it is a positive semi-definite
matrix.

Thus, the resulting deterministic equivalent optimization problem is the follo-
wing:

minimize
x

f(x)

subject to:

d̂i
ᵀ
x̃+ Φ−1(1− εi)

√
x̃ᵀΓix̃ ≤ 0, i = 1, ...,m

(7.8)

Note that in this case the resulting constraint is no longer linear but a second
order cone constraint.

7.4. Distributionally Robust Approach
Now, we leave behind the Gaussian case, and we focus in a more general situa-

tion, which corresponds to the case where the distribution of the random data d is
unknown, but the first two moments (mean and covariance) are known. To tackle
this problem, a novel deterministic equivalent was proposed in [25], which leads us
to what they have called a distributionally robust approach. In this case we look
for a deterministic equivalent to the probabilistic constraint without knowledge of
the particular distribution of d, and therefore should be enforced for all the family
of distributions with given mean d̂ and covariance Γ.

We will omit the subscript i as before, for a matter of clarity. The problem
considered by Calafiore et al. is to enforce the probabilistic constraint with respect
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to the entire family D of probability distributions on the random data d, with
mean d̂ and covariance Γ. That is to say, we consider the problem of enforcing:

inf
d∼D

Prob{dᵀx ≤ 0} ≥ 1− ε (7.9)

which is called the distributionally robust chance constraint, where the notation
d ∼ D means that we are considering the set of all the possible d that follow a
probability distribution included in the family D.

The equivalent presented in [25], for any ε ∈ (0, 1) is the following second order
cone constraint:

d̂ᵀx̃+ κε
√
x̃ᵀΓx̃ ≤ 0 (7.10)

where κε =
√

(1− ε)/ε. The result corresponds to Theorem 3.1 in [25], and the
proof is reproduced below.

Proof. First, we consider the auxiliary random variable z, with E{z} = 0 and
Var{z} = I, and we express d as:

d = d̂+ Γfz (7.11)

where Γf ∈ Rn+1,v is a full-rank factor such that Γ = ΓfΓᵀ
f , with v ≤ n + 1 the

rank of Γ.

We consider initially the case (a) when Γᵀ
f x̃ 6= 0. Then, by means of a result

from probabilistic inequalities (see the one-sided Chebyshev inequality in [135]) we
have that:

sup
d∼D

Prob(dᵀx̃ > 0) = sup
z∼(0,I)

Prob(zᵀΓᵀ
f x̃ > −d̂

ᵀx̃)

=
1

1 + q2

(7.12)

where:

q = inf
zᵀΓᵀ

f x̃>−d̂ᵀx̃
‖z‖2 (7.13)

In the same way than before, the notation z ∼ (0, I) means that we are considering
the set of all the possible z that follow a probability distribution with mean 0 and
covariance I.

We determine a closed-form expression for q2 as follows. First, we notice that,
if d̂ᵀx̃ > 0, then we can just take z = 0 and obtain the infimum q2 = 0. Assume
then d̂ᵀx̃ ≤ 0. Then, the problem amounts to determining the squared distance

from the origin to the hyperplane
{
z : zᵀΓᵀ

f x̃ = −d̂ᵀx̃
}

, which results to be:

q2 = (d̂ᵀx̃)2/(x̃ᵀΓx̃) (7.14)

Summarizing we have:

q2 =

{
0 if d̂ᵀx̃ > 0,

(d̂ᵀx̃)2/(x̃ᵀΓx̃) if d̂ᵀx̃ ≤ 0;
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hence, the probabilistic constraint 7.9 is satisfied if and only if:

1

1 + q2
≤ ε (7.15)

i.e., if and only if:
d̂ᵀx̃ ≤ 0, (d̂ᵀx̃)2 ≥ x̃ᵀΓx̃(1− ε)/ε (7.16)

or equivalently if and only if:

κε
√
x̃ᵀΓx̃ ≤ −d̂ᵀx̃, κε =

√
(1− ε)/ε, (7.17)

which proves that, in case (a), both constraints (7.9 and 7.10) are equivalent. On
the other hand, in case (b), when Γᵀ

f x̃ = 0, we simply have that:

inf
d∼(d̂,Γ)

Prob{dᵀx̃ ≤ 0} = 1, if d̂ᵀx̃ ≤ 0 (7.18)

and it is zero otherwise. Therefore, since
√
x̃Γx̃ = 0, it follows that both constraints

are still equivalent, which concludes the proof.

The most important thing of this result is that, through this robust determinis-
tic equivalent, the problem raised in the previous chapter becomes convex. Thus,
this result enables to find a solution to the problem posed, by means of standard
convex optimization tools. In addition, we believe that this robust equivalent is an
adequate approach for our problem, as it will be justified in the next chapter.

Some other references can be found in [25] using this result in other contexts,
such as classification with kernel methods. The interested reader can also find
referenced therein an alternative proof based on Lagrangian duality. Finally, in
the same paper the result is extended to the particular case where not only the
mean and covariance are known, but it is also known that the distribution of d
is symmetric around the mean. That particular assumption is not true in general
for our application, so we will end up here with the theoretical background in the
area, but if the reader is interested it can go further on with [25] and the references
therein.
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Chapter 8

Robust Spectrum Allocation

In this chapter we return to the model developed in chapter 6 in order to present
the proposed solution. A novel method is introduced for spectrum allocation in a
cognitive radio multihop network, based on the distributionally robust approach
presented in the previous chapter. As we will see, the proposed method can be
implemented using a distributed algorithm, based on a primal-dual decomposition
of the optimization problem posed. For this purpose, as mentioned in Chapter 6,
we rely on the hypotheses validated in Chapter 2 and Chapter 3, assuming that
it is possible to estimate the traffic demand and predict the effective capacity of
each link from the physical layer measurements.

We believe that this approach is the most appropriate to solve the problem
posed. On the one hand, we argue in favor of chance-constrained programming
against robust optimization, because considering all the possible PUs’ dynamics
and optimizing for the worst-case will probably lead to a no solution problem in a
spectrum scarcity context. That is to say, under robust optimization, none of the
licensed bands in which there is some PU activity will be exploited, so this solution
is clearly not suitable for our purposes. On the other hand, the introduction of a
pre-defined risk ε allows to control the desired level of robustness of the spectrum
allocation. We argue that this is a better approach than a classical expectation-
based method, which only imposes to meet the requirements posed in average.
Later on in this chapter we will illustrate the advantages of the proposed method
through several simulation experiments.

8.1. Distributionally Robust Solution Proposed
In the last chapter we introduced a recent technique [25] to solve a stochas-

tic optimization problem using chance-constrained programming. This method is
focused on the particular case where the random data follows an unknown distri-
bution, and we are only aware of the mean and covariance of the data. We apply
this technique to our particular problem in order to reach a novel robust solution
to the spectrum allocation.
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8.1.1. Single Domain Spectrum Allocation
As we previously saw in Chapter 6, in order to address the spectrum allocation

in the single-domain case, we have to solve each time T the following stochastic
optimization problem:

min
α

C(α),

s.t.

B∑
b=1

αbcbhb +

U∑
u=1

αucu ≥ d,

U∑
u=1

αucu ≥ w,

αb ∈ [0, 1], b = 1, . . . , B,

αu ∈ [0, 1], u = 1, . . . , U.

(8.1)

The problem above is actually not well defined, as hb is a random variable. To take
into account this fact, the first and, as discussed in the introduction of chapter 6,
most common approach, is to use the expected capacity, which leads us to the
following equivalent deterministic constraint:

Ceff(α) =

B∑
b=1

αbcbE{hb}+

U∑
u=1

αucu ≥ d, (8.2)

where E{hb} can be estimated from the previously gathered PU’s activity measu-
rements. This way, we reach a convex optimization problem (assuming the defined
cost functions are convex) which can be solved with standard optimization tools.

The alternative we propose, which we argue is better to address the problem
at hand, is to change the expected effective capacity constraint for a probabilistic
one:

Prob

(
B∑
b=1

αbcbhb +
U∑
u=1

αucu ≥ d

)
≥ 1− ε, (8.3)

where ε is a fixed value (between 0 and 1), which leads us to a convex chance-
constrained optimization problem [134] (convexity is assured in the general case
only assuming hb has a log-concave distribution and a symmetric density [136]).
This approach is more difficult to solve in the general case and the deterministic
equivalent constraint depends on the distribution of hb. The solution we found
suitable for this case, assuming the distribution of hb is unknown, is to use the
distributionally robust deterministic equivalent problem from [25], presented in the
previous chapter. This solution is robust as it considers all the possible distributions
of hb with known mean and variance, which in our case can be estimated from the
previous records of the PU’s activity measurements.

Rewriting the constraint in terms of a and b (aᵀx ≤ b), according to the
nomenclature and the theorem presented in the previous chapter, we have the
deterministic equivalent in this case is given by:

âᵀx− b+ κε
√

[xᵀ, 1]ᵀΣ[xᵀ, 1] ≤ 0 (8.4)
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where â = E{a}, Σ is the covariance of vector [a,−b]ᵀ and κε =
√

(1− ε)/ε. In
our case, the corresponding values for a, b and x are:

a = −
[
{cbhb}b=1,...,B , {cu}u=1,...,U

]ᵀ
,

b = −d,

x =
[
{αb}b=1,...,B , {αu}u=1,...,U

]ᵀ
,

(8.5)

and the covariance matrix Σ is given by:

Σ =



c2
1Var{h1} 0 · · · · · · · · · 0 · · · 0

0 c2
2Var{h2} 0 · · · · · · 0 · · · 0

... 0
. . .

...
...

...
...

. . .
...

...
...

... c2
BVar{hB} 0 · · · 0

0 0 · · · · · · 0
...

...
...

...
...

...
...

0 0 · · · · · · 0 0 · · · 0


(8.6)

Note that all off-diagonal terms are zero because the cross terms correspond to the
covariance between the activity in two different bands (hi and hj , with i 6= j), which
we are assuming uncorrelated and therefore the covariance is zero (see below the
justification of this assumption). Likewise, the terms corresponding to unlicensed
bands and the corresponding term for the demand are zero, since in these cases
the values are deterministic.

This way, we reach again a convex optimization problem, but now with a
different deterministic equivalent constraint:

Ceff(α)− κε

√√√√ B∑
b=1

(αbcb)
2 Var{hb} ≥ d (8.7)

where κε =
√

(1− ε)/ε. By this equivalence the constraint is no longer linear but
a conic quadratic. Thus, the problem is still convex for convex cost functions, so
it can also be solved by standard optimization tools.

Something that is worth to note is that we are basing our model in the hypot-
hesis that the PUs’ activity in one band is independent from the PUs’ activity in
other bands. For instance, this condition is fulfilled when the spectrum in licensed
bands is assigned in amounts of at least the size of the channels used by PUs. For
example, in the case of TVWS [51], the basic frequency band unit should corres-
pond to at least the spectrum bandwidth of a single TV channel (6, 7 or 8 MHz,
depending on the regulatory domain). This assumption allows us to model hb as
independent random variables on each licensed band and simplifies the resultant
distributionally robust equivalent, as all the cross terms in the covariance matrix
are zeros.
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8.1.2. Extension for the Multiple Domain Case
Let us recall the extended model for the multiple domain case. In a generic

WMN, the spectrum assignment should be performed solving the following pro-
blem:

min
α

C (α) = Clic(αB) + Cunlic(αU ),

s.t. (αB �CB �HB) · 1B + (αU �CU ) · 1U ≥ d,

(αU �CU ) · 1U ≥ w,

A ·αᵀ ≤ 1Q×(B+U),

αB ∈ [0, 1]B×L,

αU ∈ [0, 1]U×L.

(8.8)

where · stands for the common vector and matrix product operation and � stands
for an element-wise matrix multiplication.

As in the previous case, we have to deal with the random variables HB. To do
this we will use the same deterministic equivalents as before, on the one hand based
on the expected value of HB and on the other hand considering the distributionally
robust approach. For the first one, the deterministic equivalent constraint is:

(αB �CB � E{HB}) · 1B + (αU �CU ) · 1U ≥ d (8.9)

where E{HB} is the element-wise expected value of HB.
Considering the robust approach and proceeding analogously to that shown

for the single domain case, we arrive at the following deterministic equivalent
constraint:

(αB �CB � E{HB}) · 1B + (αU �CU ) · 1U

− κε
∥∥∥αB �CB �

√
Var{HB}

∥∥∥ · 1B ≥ d (8.10)

where
√

Var{HB} corresponds to a matrix containing the standard deviation of
each element in HB. We have again that all the cross terms between different
bands or different links are zero, relying on the mild assumption that the covarian-
ce between the activity in different bands or different links is uncorrelated, and
therefore the covariance is zero.

Both resulting problems are again convex if the cost functions are convex,
and we have that, while in the first one the deterministic equivalent constraint is
linear, in the second one it is a conic quadratic, just as in the single domain case.
This ensures that both problems are convex for convex cost functions and can
be solved with standard optimization tools. Next, we will develop a decentralized
implementation of the algorithm, which is important in order to have a solution
that scales properly as the size of the WMN grows.

8.2. Distributed Algorithm Architecture
In this section we show how to solve the optimization problem defined in the

previous section in a distributed manner. Then, we propose a suitable architec-
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ture for the algorithm implementation. Finally, we conclude the section with a
discussion on some implementation issues.

8.2.1. Distributed Optimization

In order to find a distributed solution, we will use the dual decomposition of the
described problem. This procedure is called resource allocation via pricing [137],
because the Lagrange multipliers can be seen in a manner equivalent to the price of
the resources. This approach is similar to that presented in Part II of this thesis,
but in that case it was not necessary to use a dual decomposition to solve the
problem. In this case the resources correspond to the frequency bands, which are
then assigned to minimize the cost of the resulting allocation. The decomposition
involves the relaxation of the coupling constraint, which in this case is the one
imposed to avoid interference between links. Intuitively, it will be more expensive
to allocate frequency bands for those links included in a higher number of collision
domains. In turn, those collision domains with a larger number of links will have
higher prices for the frequency bands (i.e. the greater the demand, the higher the
prices).

For a matter of clarity, we will consider again the constraint with the random
variable HB, which should be replaced in each case by the equivalent deterministic
constraint corresponding to the previously presented approaches. In order to be
able to solve the problem, we have to assume that the available spectrum is enough
to cope with the demand, that is to say that the factible set is not empty. Then, the
first step of the dual decomposition procedure is to form the Lagrangian by relaxing
the coupling constraint. Thus, we shall consider the matrix λ of size Q× (B+U),
with {λqb, λqu} ∈ R+, to get the following relaxed problem:

min
α

C (α) + 1ᵀ
B+U ·

(
λᵀ �

(
A ·αᵀ − 1Q×(B+U)

))
· 1B+U

s.t. (αB �CB �HB) · 1B + (αU �CU ) · 1U ≥ d,

(αU �CU ) · 1U ≥ w,

αB ∈ [0, 1]B×L,

αU ∈ [0, 1]U×L.

(8.11)

In the relaxed problem we add to the cost function a term which corresponds
to the restriction (≤ 0) multiplied by the Lagrangian multipliers (≥ 0), so the
resulting solution is a lower bound of the original problem optimum. Then, we
have to maximize over λ in order to reach the optimum α∗ we are seeking, which
results in this two-level optimization problem:
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max
λ

min
α
C (α) + 1ᵀ

B+U ·
(
λᵀ �

(
A ·αᵀ − 1Q×(B+U)

))
· 1B+U

s.t. (αB �CB �HB) · 1B + (αU �CU ) · 1U ≥ d,

(αU �CU ) · 1U ≥ w,

αB ∈ [0, 1]B×L,

αU ∈ [0, 1]U×L.

s.t. λ ≥ 0

(8.12)

Through this relaxation, we can separate the optimization problem in two
levels. We shall call g (λ) the solution of the relaxed problem (8.11) for a given
value of λ. At a higher level, we have the master dual problem which corresponds
to the update of the Lagrange multipliers λ, variables of the dual problem:

max
λ

g (λ)

s.t. λ ≥ 0
(8.13)

Then, at a lower level, and assuming we have a separable cost function, we
can decompose the optimization in one sub-problem for each link l. We shall omit
from the cost function the constant term in α, so the sub-problem for link l takes
the form:

min
αl

Cl (αl) +
∑
q∈Ql

λqαl

s.t.
B∑
b=1

αblcblhbl +
U∑
u=1

αulcul ≥ dl,

U∑
u=1

αulcul ≥ wl,

αbl ∈ [0, 1], b = 1, . . . , B,

αul ∈ [0, 1], u = 1, . . . , U.

(8.14)

where Ql are the subset of the collision domains where the link l is included, λq is
the row q of the Lagrange multipliers matrix λ, and αl are the allocation variables
for link l. It is worth to note that given the value of λq this problem can be
solved locally by the link, as it has all the other necessary information. That is to
say, both the estimation of the hbl distribution parameters as well as the effective
capacity values (cul and cbl) are calculated locally, and they are directly used in
the optimization, without need to forward them to any other node.

With this approach we actually solve the dual problem, so it will only work
properly if we have strong duality, which holds if the original problem is convex and
with strictly feasible solutions (which is commonly known as the Slater’s condition,
see Section 5.2.3 in [110]). If the function g(λ) is differentiable, then the master
dual problem can be solved with a gradient method (see Section 9.3 in [110]).
Thus, the update of the Lagrange multipliers following this method is given by:
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λt+1
qb =

[
λtqb + σ ·

(
∂g

∂λqb

)
t

]+

(8.15)

where t is the iteration index, σ a positive suitable step-size (sufficiently small),
and the projection [·]+ ensures the new value to be non-negative. Substituting by
the corresponding gradient we reach the following:

λt+1
qb =

λtqb + σ ·

∑
l∈q

α∗bl
(
λt
)
− 1


t

+

(8.16)

which should be solved for each collision domain by some node in charge for all the
domain. We shall call these nodes domain referents in the proposed hierarchy for
the algorithm implementation, presented in the next section. Notice that α∗bl

(
λt
)

is the optimum of the sub-problem 8.14 for the previous value of the Lagrange
multipliers λt.

In summary, the relaxed problem g(λ), for λ ≥ 0, can be decomposed as:

g(λ) =
∑
l

gl(λ) + 1ᵀ
B+U · λ

ᵀ · 1Q (8.17)

where gl(λ) is the subpart of the dual problem corresponding to link l. The dual
decomposition results in each link l solving 8.14 for the given λ, to obtain the
optimum values α∗bl(λ

t) and α∗ul(λ
t), which are unique for strictly convex cost

functions [110]. The gradient method ensures the dual variable λt will converge
to the dual optimal λ∗ as t → ∞. Since the duality gap for the original problem
is zero (as Slater’s condition is satisfied) and the solution to the subproblems is
unique, the primal variables α∗bl(λ

t) and α∗ul(λ
t) will also converge to the primal

optimal variable α∗.

8.2.2. Proposed Algorithm Architecture
From the distributed optimization presented in the previous section we arrive

at a decentralized implementation of the algorithm, according to the architecture
described below. We say that it is a decentralized solution following the taxonomy
described in [119] where it is stated that the allocation is performed by more than
one but not all of the nodes within the network. In particular we work with a
cluster-based solution where each cluster corresponds to a collision domain in the
WMN. Each collision domain has a domain referent which is the head cluster in
the proposed algorithm architecture.

In Figure 8.1 we can see the proposed hierarchy, where the lower level co-
rrespond to links, and the next level to the head clusters, which are the collision
domain referents. It is worth to note that one link can belong to one or many colli-
sion domains as is shown in the example. In this case, the communication during
the optimization should be with all the domain referents corresponding to all the
collision domains where it belongs. This way it will receive all the updated prices
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Figure 8.1: Proposed architecture for the decentralized implementation.

for the several collision domains in which it is included. Summarizing, the dis-
tributed optimization with the proposed architecture is solved with the following
algorithm:

Dual decomposition algorithm for spectrum allocation

Parameters: each link l estimates the local effective capacities cbl and cul,
and local PUs’ activity statistics computing the mean and the variance
of hbl.

Inputs: each link l has its own capacity requirements for data and control
traffic, given by dl and wl respectively.

Hierarchy: each collision domain has a predefined domain referent.

Initialization: at t = 0 set α = 0 and λ = 0.

1. Each link locally solves the spectrum allocation by computing {α∗bl
(
λt
)
,

α∗ul
(
λt
)
}, the optimum of the corresponding lower level sub-problem

8.14, which is then communicated to each domain referent.

2. Each domain referent receives from each link the previously computed
allocation, updates the prices according to equation 8.15, and then, it
broadcasts the new prices λt+1 within the domain.

3. IF max

{
max
αbl

∣∣αtbl − αt−1
bl

∣∣ ,max
αul

∣∣αtul − αt−1
ul

∣∣} sufficiently small END,

ELSE go to step 1.

8.2.3. Implementation Issues
For the purpose of an actual implementation of the proposed method there

are some issues to solve in a real WMN. In this section we will discuss possible
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solutions to these issues. First, we must resolve the conflict graph construction in
order to find all the collision domains in the WMN. We envision several ways to do
this, ranging from a planned solution at the deployment phase up to a distributed
graph construction solution. Then, the next point which is related to the above,
is to define who is the referent node in each collision domain. Finally, we will
comment on the possibilities to implement the domain referent assignment, either
by one or several nodes in the network, or even without being a physical solution
but a distributed communication protocol. This is related to how the collision
domain referents communicate with each other.

Starting with the conflict graph construction, on one hand, it is possible to
pre-compute it during the network design stage. This graph can also be verified
with measurements during the links’ installation. This way, it is possible to know
a priori all the interference conflicts. On the other hand, we can leverage on the
sensing capabilities of the nodes in the network1 to detect interferent links and
communicate this information to a predefined central entity. With such information
from every link centralized in a fusion center, this entity is able to construct the
conflict graph.

The next step is to obtain the maximal cliques of the conflict graph, which
correspond to the collision domains we are looking for. To solve this problem,
which is commonly known as the maximal clique problem, we can use an efficient
implementation of the well-known Bron–Kerbosch algorithm [138]. Once we have
the complete list of collision domains, we have to proceed to select the referent
for each one. To do this we can use as the first selection criterion those nodes
that are in a higher number of collision domains, in order to simplify the system
architecture, as we will have fewer referents. Then we can simply use an arbitrary
criterion, e.g. the higher MAC address or just a pseudorandom selection, just to
keep a unique referent per collision domain. Finally, when all the collision domains
have the corresponding referent, we are able to carry out the periodic spectrum
allocation, following the distributed algorithm described before.

Concerning the selection of a referent for each domain, one possibility is that
a central entity (e.g a particular node or a set of redundant nodes) is in charge
of selecting the corresponding node acting as referent for each collision domain.
In any case, its role would only be important at the beginning of the network
operation. Then, it would only be necessary to recompute if changes in the network
topology occur, which depends strongly on whether the network nodes are fixed
or mobile. As the main case of interest for us is with fixed nodes, it is unlikely
that the central entity has much activity once the network is operative. At the
other extreme, we can think of a completely decentralized solution, starting from
a distributed mechanism for the conflict graph construction as presented in [139].
Then, after the conflict graph is known by every node in the network, each node
can obtain the domain referents following the same procedure described before.
This way, every node in the network will know who the referents are, including the
referents themselves, without need to be informed by a central entity.

1Recall we are assuming that each node has a dedicated interface for sensing purposes.
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8.3. Simulation Experiments
In order to test the proposed framework we consider three simulation experi-

ments. In the first case we evaluate the algorithm for a single point to point link,
so it is the case with only one collision domain presented in Section 8.3.1. Then,
we test the method for a simple network with four nodes and three links, now with
two collision domains (topology shown in Figure 6.2). Finally, the last experiment
corresponds to the topology of a real network which is part of the Plan Ceibal’s
rural Internet access deployment introduced in Chapter 2. In all the simulations
the number of frequency bands used seeks to reflect a real-world situation, taking
a quantity of unlicensed spectrum of similar order than the number of 5GHz U-
NII bands2, and on the other hand a considerable amount of licensed spectrum,
which might correspond to TV or cellular frequency bands. A total of 50 frequency
bands is considered for the first simulation, analyzing both the fixed case of 15 un-
licensed and 35 licensed bands, and also varying the proportion of bands of each
type. For the latter two experiments we sought to simulate a tighter situation with
fixed amounts of each kind of spectrum, with 25 licensed bands and 15 unlicensed,
totalizing 40 bands. The effective capacities for each band are all drawn from a
uniform distribution at the beginning of each experiment, and remain the same
during all the simulation.

For the experiments we set as goal to minimize the total assigned spectrum,
which might be a suitable objective for the SUs. Thus, if all SUs operate with
this objective, it ensures to have a friendly coexistence of multiple devices from
different networks, sharing all the available spectrum. This leads us to use the
following cost functions:

Clic (αB) =
L∑
l=1

B∑
b=1

αbl and Cunlic (αU ) =
L∑
l=1

U∑
u=1

αul (8.18)

Anyway, it is just an example to illustrate the algorithm operation and the propo-
sed framework is more general, enabling to consider other targets of interest that
would lead to different cost functions.

In order to model and simulate the PUs’ activity in licensed bands, we consi-
der a two-state On-Off discrete time markov chain (DTMC) spectrum occupancy
model (see Figure 8.2), which has been proved to be suitable [140, 141]. The pa-
rameters involved in the model are the transition probabilities pon and poff, which
will determine the average busy and non-busy time, πon = pon/(pon + poff) and
πoff = poff/(pon + poff), respectively. While it is not necessary for the implemen-
tation of the algorithms, as a measurement-based estimation is sufficient, it is
possible with this model to obtain closed-form expressions of E{hbl} and Var{hbl}
from the model parameters.

All bands are considered of equal spectrum bandwidth, each with a generic
value BW. Each simulation is performed for a total time period of 1000 T, where

2From 6 to 24 non-overlapping WiFi channels in the US, depending on the channel
bandwidth considered.
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ON OFF

pon

poff
1-pon1-poff

Figure 8.2: Two-state On-Off DTMC spectrum occupancy model.

FT: fortune teller (knows hbl realizations in advance)
EXP: expectation based approach
CONS: conservative (only uses unlicensed spectrum)
ROB-ε: robust approach (ε - value taken by the parameter)
IND-EXP: individual decision for each link using EXP
IND-ROB-ε: individual decision for each link using ROB-ε

Table 8.1: Algorithms considered for performance comparison.

T (also a generic value) is the time interval between spectrum allocations. Fi-
nally, we use the DTMC spectrum occupancy model to simulate the PUs’ activity,
completing a total of 20 transitions during each interval, a fixed value used for
all the experiments. The initial occupancy for each licensed band is drawn in all
cases from the corresponding stationary distribution πon, in order to start each
simulation already at steady state.

As reference results we consider the solution to the proposed problem when the
realizations of hbl are known in advance. We shall call this method the fortune teller
(FT). We also include as reference another simple approach to solve the problem,
which we shall note as CONS (for conservative), and consists of assigning only
unlicensed bands to meet the requirements. It is clear that this assignment is the
safer one concerning the PUs, but it has the disadvantage of missing out on using
all the available licensed bands. Furthermore, it cannot solve the problem when
the unlicensed spectrum is not enough to reach the throughput lower bound.

To reference the proposed algorithms, we shall call EXP the expectation based
approach with a mean value capacity constraint. On the other hand, we shall call
ROB-ε the one that takes the robust deterministic equivalent constraint, where ε
indicates the value taken by the parameter. Finally, for the cases with multiple
links, we also consider the possibility that each link takes a decision individually.
We will note those methods as IND-X, where X corresponds to the algorithm
that each link uses to perform the spectrum allocation (e.g. EXP or ROB-ε). A
summary of the aforementioned methods, which will be referenced throughout the
simulations, is presented in Table 8.1

For performance comparison we analyze in all cases the spectrum allocated
and the average effective capacity resulting from the assignment. We also study the
short-term effectiveness (indicated as STE in the results) of the proposed methods,
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Figure 8.3: Experiment example with d = 240 Mbps, pon = 0,01 and πon = 0,1.

which is the percentage of time intervals where the effective capacity assigned is
above or equal to the defined lower bound. Throughout the simulations we will see
that although the expected value approach meets the requirements in average, and
is the most efficient regarding spectrum usage, robust approaches perform much
better at short scales, with a reasonable extra cost in terms of spectrum bandwidth
allocated.

8.3.1. Single Domain Spectrum Allocation
The first example corresponds to the single domain case, which is the suitable

model for a single point-to-point link. In this experiment we consider 15 unlicensed
bands and 35 licensed ones, and we analyze the algorithm allocation for different
values of pon and πon. Then, we vary the proportion of bands of each type, and we
study the algorithm allocation for different values of d, now with fixed values of
pon and πon. The capacities are taken from a uniform distribution between 5 Mbps
and 25 Mbps for unlicensed bands, and values 50 % higher for licensed bands.
Typically unlicensed bands would be more crowded, so we try to reflect this fact
in the selected capacity values for each band.

In Figure 8.3 we show an example simulation with parameters pon = 0,01 and
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Figure 8.4: Effective capacity and spectrum allocated as a function of pon when πon = 0,1 and
d = 240 Mbps (total unlicensed capacity = 248 Mbps).

πon = 0,1, the same for all licensed bands. As we said before, each simulation
lasts 1000 T, while in the example figure we only show 40 T for a matter of
clarity. The throughput lower bound d is set at 240 Mbps, somewhat below the
total unlicensed bands’ capacity which is 248 Mbps. In all the simulated situations
for this single domain case, only using unlicensed spectrum is enough to meet
the requirements, which allows to get a solution with CONS. Notice that CONS
and FT are superimposed in the capacity plot, as they both solve a deterministic
optimization problem and reach the equality in the constraint, assigning exactly
the required demand d. Furthermore, it can be seen that ROB-0.3 allocates more
spectrum than ROB-0.5, since a smaller ε implies more robustness (and thus more
spectrum required), and both assign more spectrum than EXP, which is the least
robust one.

We first analyze the results for different values of pon (see Figures 8.4 and 8.5).
As we can see all the methods meet the throughput lower bound in average (they
are all above or equal to d = 240 Mbps), something we ensure by placing it as a
constraint in the problem formulation. Looking at the spectrum assignment, the
stochastic approaches clearly outperform CONS, with better spectral efficiency
and closer to the FT optimum solution as pon goes to 0. It is clear that for lower
values of pon is when these methods make better sense, as it indicates higher
possibilities of making profit from licensed bands. While robust approaches allocate
more spectrum than the expected value solution, in exchange they get much better
performance at short scale. The average success rate is between 90 % and 95 % for
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Figure 8.5: STE as a function of pon when πon = 0,1 and d = 240 Mbps (total unlicensed
capacity = 248 Mbps).

ROB-0.3 and between 83 % and 90 % for ROB-0.5, while EXP is always below
65 %. The extra spectrum assigned in average by robust approaches implies some
average capacity overallocation with respect to the stated throughput lower bound.
However, this mild conservatism, allocating not much more spectrum than FT, is
what enables a higher probability to meet the throughput lower bound also at the
short scale.

Now, we analyze the performance for different busy times (see Figures 8.6 and 8.7).
We have again a clear advantage of the stochastic methods against CONS, with
less spectrum allocated to meet the same requirements. Furthermore, the advan-
tage is higher for lower values of πon, which are the most interesting situations
to benefit from licensed spectrum. Robust approaches present again some average
capacity overallocation, which is higher for lower values of πon. In return, their
short term effectiveness stands out again, with an average success rate of 93 % and
86 %, for ROB-0.3 and ROB-0.5 respectively, against a poor 57 % for EXP. This
implies that, although the EXP solution meets the requirements in average, more
than 40 % of the time the effective capacity assigned is below the stated through-
put lower bound. Except for particular cases, where an expectation based solution
might be sufficient, we argue instead that a robust approach will be more suitable
in practice, with much higher short term performance at a reasonable cost in terms
of spectrum.

Lastly, we set as fixed values pon = 0,01 and πon = 0,1, and we vary the num-
ber of unlicensed bands (from 10 to 20), keeping the same total number of bands
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Figure 8.6: Effective capacity and spectrum allocated as a function of πon when pon = 0,01
and d = 240 Mbps (total unlicensed capacity = 248 Mbps).
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Figure 8.7: STE as a function of πon when pon = 0,01 and d = 240 Mbps (total unlicensed
capacity = 248 Mbps).
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Figure 8.8: STE for d = 0,9 ·
∑

u cu (pon = 0,01 and πon = 0,1).

(50) for all cases. This way, the total unlicensed bands’ capacity changes and we
consider for each case a throughput lower bound equal to 90 % of its value. In
Figures 8.9(a) and 8.9(b) we can see the spectrum and effective capacity overallo-
cation compared to the FT optimum. The stochastic methods clearly outperform
CONS, with higher advantage for lower minimum throughput requirements, which
is an expected result, as in this case it corresponds to a situation with more licen-
sed bands. As the proportion of unlicensed spectrum gets higher, the benefit from
using available licensed bands is lower, but it is still worth using it for reaching
greater spectral efficiency. When we look at the short scale performance (see Fi-
gure 8.8) we can see again that the proposed robust approach clearly outperforms
the expectation based solution. While ROB-0.3 achieves an average success of 92 %
and ROB-0.5 reaches 85 %, EXP only gets a poor 58 %. Furthermore, the price for
that better performance is only between 6 % to 15 % more spectrum assigned than
EXP, and between 10 % to 25 % more than the lower bound defined by the FT
solution. It is neither too much if we look at capacity overallocation, with only
between 8 % to 18 % more than the optimum FT solution.
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140 160 180 200 220 240 260 280 300

0

10

20

30

40

50

60

70

80

90

100

Throughput lower bound (Mbps)

S
p
e
c
tr

u
m

 o
v
e
ra

llo
c
a
ti
o
n
 w

.r
.t
. 
th

e
 o

p
ti
m

u
m

 (
%

)

 

 

FT

EXP

ROB−0.5

ROB−0.3

CONS

(b) Capacity overallocation with respect to the optimum.

Figure 8.9: Simulation results for d = 0,9 ·
∑

u cu (pon = 0,01 and πon = 0,1).
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Chapter 8. Robust Spectrum Allocation

8.3.2. Multi-Domain Case: 3-links Network Topology
The network considered for the second experiment is the example introduced in

Chapter 6, shown in Figure 6.2. In this case the link number 1 and the link number
2 interfere with each other, and the same happens between the links number 2 and
number 3. This gives us a total of two collision domains in the network, which
correspond to the two maximal cliques of the conflict graph: the sets {1,2} and
{2,3}.

In this experiment we consider less spectrum than before, with 15 unlicensed
bands and 25 licensed bands, totalizing 40 frequency bands. The capacities are all
drawn from the same uniform distribution but with independent values for each
link, and biased again with higher values for the licensed bands (∼ 60 % more
than unlicensed bands). In this case the throughput lower bound considered for
each link is beyond the total capacity of unlicensed bands, so there is no possible
solution using the conservative approach. We repeat the analysis from the previous
experiment, varying the activity of the primary users through the values of pon

and πon.

Now, an important thing to clarify is how to proceed with the evaluation of
the STE performance indicator for a WMN. As we now have several links in the
network, each of the them can independently reach or not the throughput lower
bound, so we will consider two different STE values. On the one hand we have the
average STE (A-STE), which is the average over all the links’ STE individual va-
lues. On the other hand we have the global STE (G-STE), which is the percentage
of time intervals where the effective capacity assigned is above or equal to the defi-
ned lower bound on all the links. The difference is that whereas in the former case
all the situations when the capacity constraint holds in each link independently
are counted as successful, in the latter we only are count as successful the cases
when the constraint is accomplished in all the links simultaneously. That said, we
can now comment on the results presented in Figures 8.10(a) and 8.10(b).

The first thing to notice is that we have again an increasing amount of spectrum
allocated as pon or πon rises. If we look at the results for the individual methods,
where each link makes a decision on its own, we can see that while the amount
of spectrum allocated is similar than the other methods, they have both a null
performance considering the STE. The reason for this fact is that no coordination
between links is done, so two links in the same collision domain can assign the same
frequency band ignoring the other, which results in less capacity than expected for
each of them. Thus, with this kind of assignment we are always below the required
capacities with a probability close to one.

Comparing the performance of the expected value approach and the pro-
posed robust schemes, it becomes clear again looking at the results in Figu-
res 8.11(a) and 8.11(b) the advantages of the latter. In one case, as pon rises,
we have a G-STE of 60 % and 80 % for ROB-0.5 and ROB-0.3 respectively, against
a 20 % for EXP. On the other hand, the extra spectrum required to reach this
robustness is only 20-30 % more than what EXP assigns, and 50-60 % more than
the optimum only reachable by a diviner. Similar results are obtained when we
analyze the case where πon varies, hence they are not included in the thesis. An
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Figure 8.10: Simulation results for the 3-links Network Topology.
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Figure 8.11: Short term performance for the 3-links Network Topology.
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Figure 8.12: Real-world network example topology.

important property to note in the algorithms’ comparison is the performance in-
variance with respect to the PUs activity parameters, which is noticed when we
look at the the flatness of the STE curves. This fact implies that when the PUs
dynamics statistics are well estimated, the algorithm performance does not depend
of it, which is a nice property of the spectrum allocation framework developed.

While the focus of our work is not centered in the particular optimization al-
gorithm used, some comments regarding its convergence are in order. The number
of iterations of each algorithm run depends on the accuracy desired for the assign-
ment variables. As on each iteration the updated values have to be sent to each
domain referent, this value will determine the control plane traffic load generated
in the network. Based on our simulation experiments, typically 200 iterations are
enough to reach an adequate precision in the allocation variables. We consider
that this number of iterations is completely reasonable, taking into account that
the algorithm is designed to run periodically at a medium to large timescale, and
would not overload the network in a real-world implementation.

8.3.3. Real World Network Topology
The last simulation experiment corresponds to a real-world network, which is

taken from a real deployment of rural Internet access for schools from Plan Ceibal
(see Chapter 2). In this case the network is composed by 13 nodes and 17 links.
In Figure 8.12 we can see the network topology, while Figure 8.13 illustrates the
corresponding conflict graph. In this case we have a total of 16 maximal cliques in
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Figure 8.13: Real-world network example conflict graph.

the conflict graph, which are all the collision domains in the WMN.
For this experiment we consider the same spectrum than for previous case,

with a total of 40 frequency bands, 15 unlicensed and 25 licensed. In this case
the parameters of the PUs’ activity are fixed, with pon = 0,01 and πon = 0,1.
We use again a uniform distribution for the capacities, from which independent
values were drawn for each link, and we also maintain the bias in favour of licensed
bands, but now two different situations are considered. In the first case licensed
bands have ∼ 60 % more capacity than unlicensed bands, while in the second case
the bias is larger, reaching ∼ 160 % extra capacity. As in the previous case the
total capacity of unlicensed bands is not enough to reach the throughput lower
bound considered for each link, so there is no possible spectrum allocation using
the conservative approach. In this experiment we also evaluate other values of ε,
the robust algorithm parameter, in order to gain knowledge on how one should
choose its value.

In Table 8.2 the results are summarized for both cases, the one with smaller and
the one with larger bias against unlicensed bands capacities. As we can see, in both
cases the performance increases as ε decreases, and the expected value approach
is even worse than all of them. We also note that the fall of G-STE is much higher
than that of A-STE, due to its exponential dependence on the number of links.
In Figure 8.14 the comparison is illustrated for the case of a smaller bias. Based
on these results one should choose the parameter ε according to the performance
required in the specific network operation.
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Figure 8.14: A-STE and G-STE for different values of the parameter ε.

Method
small bias large bias

A-STE G-STE A-STE G-STE
( %) ( %) ( %) ( %)

FT 100 100 100 100
ROB-0.05 99.988 99.8 99.96 99
ROB-0.1 99.6 93.5 99 92
ROB-0.2 97 61.5 96 50
ROB-0.3 94 32 92 26
ROB-0.5 87 10 85 6
EXP 74 1 64 0

Table 8.2: A-STE and G-STE comparison for the different methods.
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Figure 8.15: Proportion of licensed spectrum allocated for the different methods, when we have
a smaller bias against unlicensed band capacities.

Finally, it is worth to note that for a larger bias, and taking into account
the same value of ε, the performance is worse. This may seem counterintuitive
at first, but it becomes clear when we look at the percentage of licensed and
unlicensed spectrum assigned in each case. What happens is that when the bias is
larger, it is more convenient to assign a greater proportion of licensed spectrum,
but it also implies a higher risk, because these bands may become occupied. In
Figures 8.15 and 8.16 we can see the evolution (100 first T of the simulation) of
the licensed spectrum proportion assigned, which are clearly higher for the larger
bias case. There is a compromise between the increased use of licensed spectrum,
and the risk it takes to assign these bands. This is also clear when we look at the
variation of the licensed spectrum proportion assigned with respect to the different
values of ε. The more robust is the allocation, the lower the proportion of licensed
spectrum assigned, and therefore higher the proportion of unlicensed spectrum.
The latter cannot be occupied by a PU and hence the effective capacity is 100 %
available all the time. Remember that the effective capacity considered for each
unlicensed band, already takes into account the time sharing with other interferent
networks.
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Figure 8.16: Proportion of licensed spectrum allocated for the different methods, when we have
a larger bias against unlicensed band capacities.
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Conclusions of Part III

The spectrum allocation in a cognitive wireless mesh network (WMN) was
studied, considering a mixed scenario with both type of frequency bands, licensed
and non licensed. The problem was analyzed from the perspective of SUs, which
might use licensed bands whenever available and unlicensed bands all the time.
We developed a general stochastic formulation considering a periodically schedu-
led assignment. We proposed a novel robust approach to solve the problem and
analyzed the advantage against an expectation based solution, comparing their
performance by extensive simulations. We also presented a decentralized imple-
mentation of the proposed framework, allowing the algorithm to scale properly.
We believe the proposed solution is suitable for WMN Internet access solutions, as
the one aforementioned from Plan Ceibal’s schools, in order to meet the capacity
requirements they will face in the coming years.

The results show that the proposed solution presents much better performance
than the expectation based approach, with not much additional spectrum alloca-
ted. The robust approach guarantees the required throughput in each link with very
high probability, while with a mean value solution the requirements are not accom-
plished more than 40 % of the time. The algorithm performance was analyzed in
depth, for different situations of the PUs’ activity, and the simulation experiments
indicate that the extra spectrum required to guarantee the algorithm robustness,
is usually below 35 % of that required by an oracle that knows beforehand the
PUs’ activities. Finally, we simulated the proposed scheme in a real-world net-
work, analyzing the operation for different values of the algorithm parameter ε
and looking how it should be chosen to meet certain previously specified require-
ments.

In this part of the thesis we considered a spectrum allocation framework, with
fixed a priori requirements for each link in the WMN. In our future work, we would
like to extend this framework, considering a cross-layer approach, which integrates
this framework, with automatic selection of dynamic requirements on each link,
based on real-time network demand measurements. It would be also interesting
to compare the periodically scheduled allocation proposed with an event-driven
solution. We could analyze which is the threshold in the PUs’ dynamics when
signaling overhead of the latter becomes tolerable to get a more efficient spectrum
allocation. We believe that each approach may have advantages and disadvantages,
so it would be worth to do a thorough comparison of the two alternatives. Another
point that can be explored in depth is the choice of different cost functions for
specific requirements. We present a general framework, which is then simulated for



a particular case. It would be interesting to look for other possible cost functions,
according to different practical requirements, to analyze how the same framework
could be applied and what are the results we can obtain.

A couple of additional points that could also be analyzed in the future, one
more theoretical, the other more practical, are on the one hand the robust equi-
valence and on the other hand the optimization algorithm. While we considered
an approach which is robust with respect to the distribution of the PUs’ activity,
it could be possible to find better equivalences if we know more about it. Maybe
in a particular case, with an adequate statistical model of the PUs’ dynamics, it
is possible to take advantage of this information for a better solution. About the
optimization itself, this work was not focused on it and we just used a gradient des-
cent algorithm. Hence, it is possible to look for efficient alternatives, particularly
adapted to the proposed scheme.

Finally, the next stage in our line of research would be to implement the al-
gorithm in a real field deployment, for example using WiFi bands as unlicensed
spectrum and TV bands as licensed spectrum (e.g. TVWS technologies).



Chapter 9

General Conclusions and Perspectives

Throughout this thesis different topics were studied associated with the analy-
sis, design and optimization of wireless access networks with multiple hops. The
issues addressed are important challenges that should be solved for the next gene-
ration wireless access networks. In particular, the development and implementation
of standards under the novel cognitive radio networks paradigm, despite opening
a wide range of new possibilities, it also poses many problems still unsolved. The
proposed methods tackle some of these problems and we believe are a promising
approach to meet the requirements we will need from the future infrastructure.

We have seen that the volume of traffic we have to be able to manage conti-
nues to grow and this ever-increasing demand is inevitable, so the future access
networks will have to deal with it. As we saw in the introduction of this thesis,
one of the most important changes we are witnessing are in the area of educa-
tion, which has become an important vertical for the wireless networks industry.
The educational revolution is underway and there is no going back, with several
one-to-one programs already running around the planet. This massive adoption of
ICT initiatives need the deployment of an infrastructure that is able to support it,
which poses major technological challenges, particularly for those countries with
fewer resources. Something similar happens in other areas where the ICT initia-
tives have great impact, as the health care system or the development of digital
citizenship.

Another aspect which is common thread along this thesis is the incorporation
of statistical learning tools in the design and optimization of wireless networks. We
highlight the great utility of this kind of techniques, particularly today that we
are able to collect tons of data from measurements in real time, with the focus on
finding practical solutions adapted for real-world scenarios. Some of the use cases
in this thesis are the performance estimation of an 802.11-based wireless network
from physical layer measurements or the model inference for the queue of a 802.11
point to point link. These techniques enable to dynamically optimize the allocation
of the available resources.

In this thesis the focus was placed on access technologies for rural areas, where
wireless mesh networks have already shown to be a viable solution, as demons-
trated by several existing deployments. The problem is how to optimize these



networks to meet the increasing demands and be able to cope with the future
requirements. In this regard, two different aspects were addressed in our work. On
one hand, we worked on the development of traffic engineering tools to maximize
the exploitation of network resources, optimizing the packet routing considering
the origin-destination flows. On the other hand, based on the novel cognitive ra-
dio paradigm, we developed a framework to extend the available resources, taking
advantage of the idle licensed spectrum.

Concerning the traffic engineering in a wireless mesh network, a routing and
forwarding scheme was developed, based on a queue model for each link, inferred
from measurements collected from the network. The statistical model learned from
measurements guarantees that the resultant model is the one that best fits to the
real link queue behavior. A suitable convex optimization problem was formulated,
which enables a decentralized algorithm to reach the solution. This method opti-
mally distributes the end-to-end traffic load for each pair origin-destination over
all possible paths, and also allows to solve the gateway selection problem. The
advantages of the proposed technique in comparison with other classical dynamic
metric routing methods (like the one used by 802.11s) was illustrated by several
packet-level simulations. In all cases, we observed a quick adaptation of the method
to traffic changes and also an stable operation, avoiding the routing oscillations
dynamic metrics can cause.

With respect to the expansion of network resources, a new framework for spec-
trum allocation in wireless multihop networks was defined, based on the novel
cognitive radio paradigm. Taking advantage of the free spaces of licensed bands,
but also maintaining the use of unlicensed bands, a suitable stochastic optimization
problem was formulated to model the resource allocation issue. A novel solution
was introduced, which is robust to the primary users activity. Then, we presented a
dual decomposition of the problem, which enables a decentralized implementation
of the proposed method. Several simulation experiments were presented, where
we highlighted the advantages of the proposed spectrum assignment in compari-
son with other classical approaches, such as an expectation-based solution. The
algorithm performance was analyzed in depth for different PUs’ activity level and
the results obtained indicate that the amount of spectrum required to guarantee
the algorithm robustness is, at most, only 35 % more than the one required by an
oracle which knows beforehand the PUs’ dynamics.

An interesting analysis for future research, is how to combine the two proposed
mechanisms from Part II and Part III, to operate simultaneously in the network.
That is to say, we should study the interaction between both algorithms, the
timescales at which operation is performed and verify if the proposed distributed
implementations still conducts to the optimal allocations.

It is clear that there is still a long way to go to see massive deployments of
infrastructure based on the novel cognitive radio paradigm. Several challenges still
need to be solved, new standards must be approved and the wireless industry will
have to develop the necessary equipment. Anyway, the seed seems to be germina-
ting, and various efforts are ongoing in parallel today. A clear example is that lots
of research is being devoted to the subject, major technological advances in soft-



ware defined radio happen daily, and also many field tests are already underway,
such as TVWS trials in several places around the world [142,143].

Many years ago, the emergence of packet switched networks led to the pre-
diction of a convergent future, where all services (data, voice, video) would be
transmitted through a single network. It took quite time to become a reality, but
that reality we can say today is finally happening. This new paradigm left behind
the old networks based on circuit switching, which allowed much less flexibility to
manage resources, but certainly guaranteed the end-to-end requirements. Despite
the flexibility introduced by packet switched networks, even though it was success-
ful from the beginning for data services, many efforts were needed to implement
resource allocation mechanisms to achieve the necessary end-to-end requirements.

Today, with the new paradigm of cognitive networks, we evidence a kind of
analogy with the previously described situation. Clearly, this new approach enables
much more flexibility for the resource management task, adding the spectrum as a
new allocation variable. However, it is also clear that, to handle this new degree of
freedom, the necessary mechanisms should be developed in order to maintain the
QoS compliance, particularly for applications with the most demanding require-
ments. We believe that this thesis is a contribution in this direction, and probably,
even though the road may be tough, we envision that finally cognitive networks
will become a reality, as well as convergent networks are today.
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