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 A B S T R A C T

Quantitative measures of the interaction of polarized light with tissue have been established as a powerful tool 
for biomedical diagnosis in recent years. In this regard, we implemented a microscopy setup that incorporates 
a polarized sensor in the imaging plane to obtain Stokes parameters corresponding to a given Field of View 
(FoV) of a tissue sample. By illuminating with linearly independent States of Polarization in the input, Mueller 
matrix elements can also be retrieved from the same FoV of the sample. In order to achieve whole-slide imaging 
the FoV can be extended by stitching multiple images taken after XY displacement. We propose introducing 
polarimetric features, specifically the Mueller matrix norm for each pixel, into the stitching algorithm. This 
allows for FoV extension with minimal overlap between neighboring images, substantially reducing the total 
number of images required for the entire sample. This approach can significantly reduce acquisition time and 
data storage requirements for whole-slide MM imaging. Validation results for the retrieval of whole-slide MM 
of tissue samples show SSIM = 0.93± 0.04 and 100% stitching success from images with overlapping as low as 
35%.
1. Introduction

The interaction of polarized light with tissue (Tuchin, 2016; He 
et al., 2021) constitutes a powerful tool to provide information about 
the structure of this biological material. The degree of depolarization 
of initially polarized light, the change in polarization state of incident 
light, and the polarization component that might be found in the output 
can all serve as indicators of the structural state of tissue sample.

Mueller matrix (MM) polarimetry (He et al., 2019; Qi and Elson, 
2017; Shi et al., 2022) has recently been established as a valuable tech-
nique for the quantitative characterization of microstructural changes 
which represents an essential tool in diagnosis. Applications include, for 
example, cancer detection (Kupinski et al., 2018) or surgical imaging 
assistance (Qi et al., 2017).

The full, 4 × 4 MM provides a comprehensive description of the 
polarization properties of a sample, derived from measurements uti-
lizing both retarders and linear polarizers. However, reduced forms of 
the matrix (Chang et al., 2016; Novikova and Ramella-Roman, 2022) 
can still offer valuable information while reducing acquisition time 
and cost. For example, in the diagnosis of tissue pathology, relative 
changes in polarimetric parameters are often more significant than their 
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absolute values. In particular the 3 × 3 MM (Demczylo and Fernández, 
2024) can be obtained exclusively through linear measurements. Fur-
thermore, the polar decomposition of this matrix (Swami et al., 2006) 
yields polarization parameters that require only linearly polarized input 
along with measurements with only linear polarizers.

Recent advances in sensing technology have also made microgrid 
polarizers integrated onto camera chips commercially available making 
real-time characterization of the State of Polarization (SoP) possible 
in Division of Focal Plane (DoFP) approximations (Sun et al., 2020; 
Hsu et al., 2015; Fernández and Demczylo, 2023). This new sensing 
technology allows to obtain linear Stokes parameters from a single shot 
after calibration of the system by means of the system matrix that 
maps the intensity measures on the sensor to the SoP of the input. 
Furthermore, polarization demosaicking schemes (Jiang et al., 2019; 
Gao and Gruev, 2011) might be applied to compensate for the loss of 
spatial resolution in these sensors in comparison to full-resolution in 
division of aperture methods (Llaguno et al., 2022).

A microscopy setup incorporating DoFP polarimetric sensing can 
then allow to obtain Stokes parameters corresponding to a given Field 
of View (FoV) of a sample of interest. By illuminating with linearly 
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independent SoPs in the input, elements of the 3 × 3 MM for a certain 
FoV of tissue sample can then be obtained with few measures over 
different linear SoPs in the ouput.

In order to retrieve features of interest over the complete sample, 
FoV extension to whole-slide imaging can be achieved through image 
stitching (Szeliski, 2022; Muhlich et al., 2022) of multiple images 
obtained for different regions of the same sample.

Image stitching is the image processing technique of combining 
multiple images with overlapping FoV into a single, larger, and more 
complete image (Muhlich et al., 2022; Schapiro et al., 2022). It com-
bines several images, usually taken at high resolution, into a composite 
image with the images placed in the correct position, where the edges 
between images (seams) are imperceptible. This results in a final image 
that appears as a single capture, with a broader FoV and greater detail 
than its constituent parts (Madhusudana and Soundararajan, 2019).

Its most common applications are in photography and computer 
vision where it is used to create high-resolution panoramic images or 
to generate views with a wide FoV. However, with the study and devel-
opment of this technique, its use has been extended to multiple areas. 
Document mosaicing, camera stabilization, satellite image mapping, 
and medical imaging are examples of its versatility (Wang and Yang, 
2020).

In microscopy, stitching allows to join images from different areas 
of a sample provided certain conditions are met during capture, such as 
sufficient overlap. For example, the Fast and Robust Microscopic Image 
Stitching (FRMIS) (Mohammadi et al., 2024) algorithm presents a fast 
and robust method for stitching two overlapping images by considering 
only a subset of the features over the overlapping region. However, it 
relies solely on the intensity information of the sample, which may not 
always provide enough features to employ the stitching process.

In the present paper, a compact microscopy setup incorporating 
DoFP polarimetric sensing allows us to obtain 3 × 3 MM for a given 
FoV of the sample. Custom-built XY displacement allows for imaging 
over different regions of the sample with minimal mechanical error. 
Image stitching is performed following a novel technique in which 
we incorporate information derived from the MM for each pixel into 
the usual feature matching schemes. Comparison against state of the 
art techniques shows that our proposal allows for stitching with min-
imal overlapping between neighbor FoVs which in turn allows for 
whole-slide MM imaging with a minimal number of input images.

The paper is organized as follows. The basics of Stokes and Mueller 
calculus are introduced in Section 2. The optical setup is explained 
in Section 3.1, MM computation is devoted to Section 3.2 while FoV 
extension through image stitching is addressed in Section 3.3. Results 
and Discussion are presented in Section 4 while Conclusion can be 
found in Section 5.

2. Theory

Polarization is a fundamental property of light that describes the 
orientation of the electric field vector relative to its direction of propa-
gation. The linear Stokes parameters are a set of three independent real 
values calculated as follows (Goldstein, 2017): 

𝑆0 =
1
2

(

𝐼0
◦
+ 𝐼90

◦
+ 𝐼45

◦
+ 𝐼−45

◦
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,

(1)

where 𝐼0◦ , 𝐼45◦ , 𝐼90◦ , and 𝐼−45◦  represent the intensity of light obtained 
after linear polarizers at 0◦, 45◦, 90◦, and −45◦, respectively.

When a ray of light interacts with an object, its state of polarization 
undergoes a transformation that can be accounted for by means of a 
transfer function known as the Mueller matrix (MM). Using only linear 
input states of polarization and sensing with linear polarizers a 3 × 3 
matrix 𝐌 can be obtained. If 𝑆 =

(

𝑆 𝑆 𝑆
)𝑇  is a linear input 
𝑖𝑛 0 1 2

2 
Fig. 1. Overview of the optical system design. Top: Scheme of the optical 
setup. CO: Collector Lens, CL: Condenser Lens, MO: Microscope Objective, 
TL: Tube Lens. Bottom left: Rendering of the 3D model designed in Blender. 
Bottom right: a picture of the real device (3D-printed case for Raspberry Pi and 
its modules adapted from huczekdesign (2023), VincentM (2017), ShmilCat 
(2023), juh (2020)).
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Given a set of integers, 𝐽 = {1, 2,… , 𝑁} with 𝑁 ≥ 3, we define a 
sequence of 𝑁 distinct linear input states of polarization, denoted as 
{𝑆(𝑖)

𝑖𝑛 }𝑖∈𝐽 . Each element of the sequence is computed using the following 
equation: 

𝑆(𝑖)
𝑖𝑛 = 𝑆0(𝑖)

(

1 cos 2𝜃𝑖 sin 2𝜃𝑖
)𝑇 , (3)

where 𝜃𝑖 is the angle of polarization for the Stokes vector. The corre-
sponding set of output polarization states, {𝑆(𝑖)

𝑜𝑢𝑡}𝑖∈𝐽 , is then related to 
the input polarization states by the use of (2), leading to the following 
expression: 
[

𝑆(1)
𝑜𝑢𝑡 ⋯ 𝑆(𝑁)

𝑜𝑢𝑡

]

= 𝐌
[

𝑆(1)
𝑖𝑛 ⋯ 𝑆(𝑁)

𝑖𝑛

]

, (4)

where 𝐌 is the Mueller matrix. By pseudo-inversion of (4), the Mueller 
matrix can be retrieved as 

𝐌 =
[

𝑆(1)
𝑜𝑢𝑡 ⋯ 𝑆(𝑁)

𝑜𝑢𝑡

] [

𝑆(1)
𝑖𝑛 ⋯ 𝑆(𝑁)

𝑖𝑛

]†
, (5)

where † is the pseudo-inverse (Moore–Penrose inverse).
Matrix 𝐌 can be normalized by dividing each component by trans-

mittance of the sample 𝑚00: 

𝐌̂ = 1 𝐌. (6)

𝑚00
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Fig. 2. Results of Mueller matrix calculus over tissue sample. Top: Transmittance of tissue sample, 𝑚00. Bottom: Normalized Mueller matrix in the green channel, 
𝑀̂𝐺. Scale bar: 100 μm.
In order to proceed into FoV extension of the sample, matrix infor-
mation is then codified into a single scalar which we chose to be the 
infinity norm of 𝐌̂: 

‖𝐌̂‖∞ = max
0≤𝑖≤2

{ 2
∑

𝑗=0
|𝑚̂𝑖𝑗 |

}

. (7)

3. Materials and methods

3.1. Optical setup

A schematic of our phase retrieval microscopy setup is shown in Fig. 
1. The sample of interest (AmScope glass prepared dense connective 
tissue) is illuminated by a polarized white LED source. The sample 
is placed in front of a microscope objective (Olympus UPLFLN 10×, 
numerical aperture NA = 0.30, lateral resolution 1.1 μm, focal length 
3 
𝑓𝑀𝑂 = 18 mm, working distance WD = 10 mm) and at the conjugate im-
age plane of a polarized color sensor (Sony IMX250MYR, 2448 × 2048 
pixels resolution, 3.45 μm pixel pitch, quantum efficiency peaks for RGB 
pixels of 45%, 56% and 47% at 630, 525 and 470 nm, respectively) 
which allows for DoFP sensing. A color, four directional polarization 
image is then obtained in a single shot. Lateral magnification of the 
entire system, 𝑀 , was estimated using a high-resolution microscopy 
target (Technologie Manufaktur, chromium [OD > 6 @ 550 𝑛𝑚] on fused 
silica, 7.5 − 3300 𝐿𝑝∕𝑚𝑚), resulting in 𝑀 = 11.

Angle of polarization 𝜃 of SoP in the input can be modified by means 
of a rotating polarizer motorized with a stepper motor (5, 625◦ step 
angle). The sample can be displaced in the XY directions by means of 
a motorized stage with two stepper motors (1.8◦ step angle). A control 
module is employed to address the stepper motors the position defined 
by the 3-tuple (𝑋, 𝑌 , 𝜃). A PC drives in turn the controller and performs 
Mueller matrix calculation for each R, G, B channel and each (𝑋, 𝑌 )
position of the stage.
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Fig. 3. Stitching algorithm flow diagram.

Fig. 4. Scheme of the acquisition procedure. The gray rectangle represents the 
FoV of the sensor projected onto the sample.

3.2. Mueller matrix computation

The aforementioned polarized sensor captures each polarized inten-
sity image (𝐼0◦ , 𝐼45◦ , 𝐼90◦ , and 𝐼−45◦ ) in real time by the means of the 
aforementioned polarized sensor. To accurately reconstruct the inten-
sity for each corresponding color channel, a traditional demosaicing al-
gorithm is required for each polarization direction. This process results 
in a subsampling of the original sensor dimensions by a factor of two so 
information of interest is obtained on a 2 × 2 superpixel basis. Defining 
the intensity vector as 𝐼(𝑥, 𝑦, 𝜆) =

(

𝐼0◦ 𝐼45◦ 𝐼90◦ 𝐼−45◦
)𝑇 (𝑥, 𝑦, 𝜆)

the Stokes vector 𝑆(𝑥, 𝑦, 𝜆) =
(

𝑆0 𝑆1 𝑆2
)𝑇 (𝑥, 𝑦, 𝜆), can be obtained 

for each superpixel (𝑥, 𝑦) and each color channel 𝜆 = 𝑅,𝐺,𝐵 by 
pseudo-inverting the following equation: 

𝐼(𝑥, 𝑦, 𝜆) = 𝐀𝑆(𝑥, 𝑦, 𝜆), (8)

where transfer matrix 𝐀 incorporates effects due to non ideal trans-
mission and or orientation angles of the microgrid polarizers of the 
sensor as well as the pixel dark current. The in detail study of the 
polarized sensor employed in this work (see Lane et al. (2022)) shows 
that there is no significant spatial variation of the transfer matrix and 
dark current effect is negligible. Besides, given extinction ratios > 300
4 
for the microgrid polarizers, the transfer matrix can be approximated 
by its ideal form: 

𝐀 = 1
2
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A set of 𝑁 = 6 input polarization states with angle of polarization of 0◦, 
30◦, 60◦, 90◦, 120◦ and 150◦ was employed. The Mueller matrix over 
the field of view of the polarized sensor on each color channel can be 
computed by means of Eq. (5), leading to the following equation: 

𝐌(𝑥, 𝑦, 𝜆) =
[

𝑆(1)
𝑜𝑢𝑡 ⋯ 𝑆(𝑁)

𝑜𝑢𝑡

] [

𝑆(1)
𝑖𝑛 ⋯ 𝑆(𝑁)

𝑖𝑛

]†
(𝑥, 𝑦, 𝜆). (10)

The input Stokes vectors on the r.h.s. of Eq. (10) are obtained for 
the system in the absence of sample and their pseudo-inverse can be 
calculated one time and saved for Mueller matrix retrieval over any 
stage position assuming consistent rotational settings for the motorized 
polarizer. After the output Stokes vectors are acquired Mueller matrix 
can be efficiently calculated using the einsum algorithm provided by 
the NumPy library in Python. An example of a Mueller matrix calculus 
over a section of the tissue sample is shown in Fig.  2.

3.3. Field of view extension

Building a tile image by stitching several limited FoV images im-
poses challenges related to the variability that may exist from one 
image to another (perspective, exposure, rotation, etc.). Additionally, 
the limited information that may exist in a set of images is an obstacle, 
being the presence of overlapping between images one of the essential 
requirements to achieve tile images with good quality. Other important 
issues that need to be taken into account are the presence of parallax, 
lens distortion, and scene motion. The goal of a stitching algorithm is 
to produce a visually plausible mosaic with two desirable properties. 
First, the mosaic should be as close to the input images as possible 
both in terms of geometry and intensity distribution. Second, the seam 
between the assembled images should be imperceptible. In our case, a 
feature-based stitching method is implemented.

Typically, a feature-based stitching algorithm can be summarized 
in six major steps: preprocessing, feature detection, feature matching, 
homography estimation, warping, and blending (Adel et al., 2014). 
The novelty of our proposal lies in the use of polarimetric properties 
of the sample that enhance feature visibility. In particular, for each 
input image the infinite norm of the Mueller matrix is calculated and 
represented as a new image, resulting in a new set of characteristics. 
This set is then used for adjusting parameters of a state of the art 
stitching algorithm in order to finally stitch the transmittance input im-
age set. Using the open source library ‘Open Stitching’ (Weber, 2022), 
based on the OpenCV stitching module, we developed Python functions 
corresponding to each step of the stitching algorithm, enabling efficient 
handling of our samples. This process is illustrated in Fig.  3.

3.3.1. Image acquisition
The first step in a successful stitching process is obtaining a suitable 

set of images. A schematic procedure for image acquisition of a sample 
is shown in Fig.  4. The degree 𝛼 of overlap between neighbor images 
is useful in determining the number of images required to fully capture 
the entire tissue sample. A larger overlap parameter 𝛼 increases both 
the number of images and the time required to complete the acquisition 
of the entire sample.

The FoV of the system can be obtained in terms of the width (𝑊 ) 
and height (𝐻) of the sensor as seen on the object plane: 

𝐹𝑜𝑉 = 𝑊 ×𝐻, 𝑊 =
𝑁𝑥 × 𝑝
𝑀

, 𝐻 =
𝑁𝑦 × 𝑝
𝑀

, (11)

where 𝑁𝑥 = 2448 is the horizontal pixel resolution, 𝑁𝑦 = 2048 is the 
vertical pixel resolution, 𝑝 = 3.45 μm the pixel pitch of the sensor 
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Fig. 5. Set of transmittance images of tissue sample with 35% overlap (overlap area highlighted in gray in each image).

Fig. 6. Feature matching results for two adjacent fields of view with an overlap of 35%. Top: Feature matching on transmittance image set. Bottom: Feature 
matching on infinite norm Mueller matrix image set.
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Fig. 7. Top left: Stitched transmittance maps obtained using Fiji’s method. Top center: Stitched transmittance maps obtained using Python’s transmittance based 
method. Top right: Stitched transmittance maps obtained using the Mueller matrix based method. Bottom: Zoomed-in view of the area highlighted by the orange 
square.
Fig. 8. Example of transmittance from an image of the subset divided into 
overlapping sections (𝑛𝑆 = 9, 𝛼 = 0.35).
6 
and 𝑀 = 11 the lateral magnification of the system. To achieve the 
desired overlap, stage must be displaced in 𝑋 and 𝑌  directions by 
𝛿𝑥 = (1 − 𝛼)𝑊  and 𝛿𝑦 = (1 − 𝛼)𝐻 , respectively, as illustrated in Fig.  4. 
Hence, assuming that the tissue sample is completely enclosed within 
a rectangular bounding box of area 𝐴, the total number of images 
required to cover the entire sample can be calculated as: 

𝑁 =
⌈

𝐴
𝛿𝑥𝛿𝑦

⌉

=
⌈

𝐴
(1 − 𝛼)2 × 𝐹𝑜𝑉

⌉

, (12)

where ⌈𝑥⌉ represents the ceil function of 𝑥 (lowest integer greater than 
𝑥). For our proof of concept experiments where the tissue sample fits 
within an area 𝐴 ≈ 9 mm2, overlap parameter 𝛼 = 0.35 requires 𝑁 = 44
images to completely cover the sample area while 𝛼 = 0.5 increases the 
number of required images to 73.

An example of input images with overlap parameter 𝛼 = 0.35 is 
illustrated in Fig.  5.

3.3.2. Infinite norm computation
Instead of feature extraction based only on transmittance, 𝑚00(𝑥, 𝑦,

𝜆), we propose an alternative method based on feature extraction from 
the infinity norm of the Mueller matrix, 𝐌(𝑥, 𝑦, 𝜆), computed as follows: 
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Fig. 9. Boxplot of the SSIM over 𝑛 = 10 different stitched transmittance images and stitched infinite norm Mueller matrix images for each overlap 𝛼 across the 
tissue sample. The number inside each boxplot represents the ratio of sections that were successfully stitched.
Table 1
SSIM confidence interval for both methods and for each overlap 𝛼.
 𝛼 Transmittance method Mueller method
 Mean STD Success Mean STD Success 
 0.1 0.2691 0.2364 50% 0.5562 0.2711 40%  
 0.125 0.3967 0.2527 50% 0.6157 0.2996 40%  
 0.15 0.2070 0.1741 50% 0.7916 0.0915 30%  
 0.175 0.3353 0.2235 40% 0.7480 0.1562 60%  
 0.2 0.2530 0.2226 60% 0.7628 0.2296 70%  
 0.225 0.3289 0.2792 60% 0.8358 0.1377 80%  
 0.25 0.5149 0.1881 60% 0.8544 0.0887 70%  
 0.275 0.5829 0.2100 50% 0.9106 0.0428 100%  
 0.3 0.6834 0.1956 60% 0.9366 0.0451 90%  
 0.325 0.8213 0.0918 70% 0.9315 0.0376 100%  
 0.35 0.8465 0.0822 90% 0.9345 0.0373 100%  
 0.375 0.8036 0.1297 90% 0.9071 0.0660 100%  
 0.4 0.8232 0.1609 90% 0.9212 0.0485 100%  
‖𝐌‖∞(𝑥, 𝑦, 𝜆) = max
0≤𝑖≤2

{ 2
∑

𝑗=0
|𝑚𝑖𝑗 (𝑥, 𝑦, 𝜆)|

}

= 𝑚00(𝑥, 𝑦, 𝜆) ‖𝐌̂‖∞(𝑥, 𝑦, 𝜆).

(13)

Intuitively, the infinity norm of the normalized Mueller matrix, 
‖𝐌̂‖∞(𝑥, 𝑦, 𝜆), acts as a mask with bounded values that enhances the 
features of the transmittance map, 𝑚00(𝑥, 𝑦, 𝜆), making it easier to stitch. 
By applying the infinite norm of the Mueller matrix to each element in 
our dataset, we produce a set of images that can be directly fed into a 
state of the art stitching algorithm without any further modifications.

3.3.3. Feature detection
Interest points and descriptors (corners, edges, etc.) are identified 

in each image of the infinite norm Mueller matrix set. The SIFT (Scale-
Invariant Feature Transform) algorithm (Lowe, 1999) is often most 
effective at this stage. It describes the local appearance around each 
keypoint in a way that is ideally invariant to illumination, trans-
lation, scale, and rotation, producing a descriptor vector for each 
keypoint. Thus, detection can be divided into keypoint identification 
and description.

3.3.4. Feature matching
Features between pairs of images are compared to find correspon-

dences in overlapping areas. This can be achieved using algorithms like 
ORB (Oriented FAST and Rotated BRIEF) (Rublee et al., 2011), SIFT, 
or SURF (Speeded Up Robust Features) (Bay et al., 2008) for feature 
7 
detection and matching key points. Next, we determine which images 
are the best based on the matches using a confidence threshold for the 
matching score. This process results in a subset that contains only the 
relevant images. A display of the results for this step is shown in Fig.  6, 
which compares the results using the transmittance set of images with 
those obtained from the infinite norm Mueller matrix set of images. This 
comparison demonstrates how the Mueller matrix can improve feature 
matching.

3.3.5. Homography estimation and warping
Feature correspondences are used to calculate the homography that 

describes the geometric transformation (rotation, scaling, translation) 
needed to align the images. Before we can align images, we need to 
establish mathematical relationships that map the pixel coordinates 
of one image to another. Homography is a projective transformation 
that determines the correspondence between two planar geometric 
figures (Szeliski, 2006). This allows us to map points in one image to 
their corresponding points in another image. As a result, it becomes 
possible to align and register images taken from different perspectives 
or with different cameras by estimating a transformation that converts 
a region of one image into a region of another image. This is the last 
procedure to be applied on the infinite norm Mueller matrix image set. 
Subsequently, warping is performed on the images from the transmit-
tance image set, involving the application of the estimated homography 
to each image in order to map its pixels from their locations in the 
source image to their corresponding locations in the final panoramic 
image.
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Fig. 10. Results of Mueller matrix calculus over the entire tissue sample. Top: 
Transmittance of tissue sample, 𝑚00. Bottom: Normalized Mueller matrix in the 
green channel, 𝑀̂𝐺. Scale bar: 500 μm.

3.3.6. Calibration and blending
Image parameters are corrected to minimize differences (such as 

exposure variations or color inconsistencies), and aligned images are 
blended to create a single seamless panoramic image. The seam path 
is calculated to correspond to the optimal path to minimize overlap 
error (Efros and Freeman, 2023).

In order to compare our approach with a traditional stitching 
method, we applied Fiji’s ‘‘Grid/Collection stitching’’ plugin to the same 
8 
transmittance dataset. A comparison between Fiji’s results and those 
obtained with the other two Python-based methods — using either 
transmittance or the Mueller-matrix-derived feature — is presented in 
Fig.  7, where stitching seams are highlighted in red for illustration. 

4. Results and discussion

Fiji’s method completed the stitching in less than one minute, while 
the other two Python-based methods required approximately twenty 
minutes. However, as shown in Fig.  7, the blended seams in Fiji’s result 
are misaligned and some crops are missing. Python’s transmittance-
based method achieves better seam alignment, although it introduces 
some curvature and cannot stitch all patches. In contrast, our Mueller-
based method successfully stitches all the dataset, providing better 
global alignment and blending.

In order to assess the effectiveness of our approach we select a 
subset of 𝑛 = 10 images from our dataset which will serve as ground 
truth in the following. Each image of the subset is divided into 𝑛𝑆 = 9
overlapping sections with overlap 𝛼 ranging from 0.1 to 0.4 in incre-
ments of 0.025. An example of image cropping with 𝛼 = 0.35 is shown 
in Fig.  8. This sample corresponds to the tissue area captured within the 
camera’s field of view (FoV). The crops are artificially generated and 
used as ground truth for the experiment. Therefore, regions outside the 
field of view (FoV) are represented with a black color.

For every overlap value 𝛼 the 𝑛𝑆 sections of each image are stitched 
using both methods: the traditional approach based on the transmit-
tance of the sample and our method based on the infinite norm of 
the Mueller matrix. The mean and standard deviation (over 𝑛 = 10
realizations of the experiment) of the structural similarity index (SSIM) 
computed between the stitched image and the original image across 
the selected images for each value of 𝛼, are presented as boxplots in 
Fig.  9. Table  1 summarizes the numerical results of the experiments 
together with the stitching success rate, defined as the percentage of 
image crops that were successfully aligned into the panorama. Our 
approach clearly enhances the features of the images, improving the 
stitching process and overall performance. For 𝛼 = 0.35 the proposed 
method allows to obtain a resulting image with SSIM = 0.93 ± 0.04
and all the sections successfully stitching. Please note that for the same 
overlap the transmittance approach only allows for 70% success ratio 
and a significantly lower structural similarity SSIM = 0.84 ± 0.08.

The homography matrices obtained using the infinite norm of the 
Mueller matrix can be applied to stitch each normalized Mueller matrix 
component, along with the transmittance image of the sample, using 
the images captured over the entire tissue sample with the mechanical 
stage. Since both the transmittance and the Mueller matrix are com-
puted in parallel, they share the same spatial geometry and therefore 
the same homography transformations. Results for the whole-slide 
Mueller matrix, composed of 𝑁 = 44 images of a tissue sample in the 
green channel, as well as the corresponding whole-slide transmittance 
image, are presented in Fig.  10.

5. Conclusion

We have shown through a series of experiments that incorporating 
the infinite norm of the Mueller matrix of a sample allows for image 
stitching (both of the regular transmittance image and Mueller matrix 
components) from limited FoV images acquired with a compact polar-
ization microscope. The resulting images preserve the lateral resolution 
of the acquired ones and also allow to explore the sample at different 
scales.

Comparison against state of the art techniques by means of Struc-
tural Similarity Index Measure (SSIM) shows that our proposal allows 
for whole slide imaging with SSIM = 0.93 ± 0.04 and 100% stitching 
success from images with overlapping as low as 35%, outperforming 
approaches based solely in transmittance image of the sample.

As a future line of work we consider combining the obtained results 
with other techniques like auto-fluorescence imaging in order to allow 
for whole-slide multimodal microscopy.
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