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Resumen

Esta tesis aborda el problema de controlar un convertidor sincrónico tipo buck
genérico frente a perturbaciones impredecibles, y posiblemente discontinuas, pero
acotadas de la corriente de carga. El problema se plantea en forma canónica como
un conflicto dinámico entre el controlador automático encargado de la regulación
del voltaje de salida y un perturbador hipotético. En particular, el conflicto es visto
como un juego de persecusión-evasión en distancia. Aplicando métodos clásicos de
la teoría de juegos diferenciales, el juego es completamente resuelto identificando
tres casos cualitativamente distintos que pueden ocurrir dependiendo de si el valor
de un parámetro derivado positivo es menor, igual, o mayor que uno. La solución
del juego provee estrategias óptimas para el controlador y para el perturbador que
pueden ser utilizadas, respectivamente, para implementar control ante el peor caso
y para realizar pruebas de referencia (aplicables a cualquier método de control).
Además, de la topografía de la función valor del juego, se obtiene información
cualitativa y cuantitativa acerca de los límites físicos inherentes al control de con-
vertidores tipo buck, permitiendo la optimización del filtro LC con respecto al
desempeño de la regulación en las primeras etapas de diseño, aun antes de haber
finalmente elegido un método de control.
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Abstract

This thesis deals with the problem of controlling a generic synchronous buck
converter against unpredictable, and possibly discontinuous, but bounded load
disturbances. The problem is canonically framed as a dynamical conflict between
the automatic controller in charge of the output voltage regulation and an hypo-
thetical disturber. In particular, the conflict is regarded as a pursuit-evasion game
in distance. Applying classical methods of differential game theory, the game is
completely solved identifing three qualitative different cases that can take place
depending on how a positive derived parameter value compares to unity. The
game’s solution provides optimal strategies for the controller and the disturber
which can be used, respectively, for worst-case-aware control and benchmark test-
ing (of any control method). Furthermore, from the topography of the game’s
value function, qualitative and quantitative information about the physical limits
of buck converter control is gained, allowing for early design stage optimization of
the converter’s LC filter towards regulation performance, regardless of the control
method that might finally be selected.
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Chapter 1

Introduction

Power electronics is concerned with the process and control of electrical power
using electronic devices [1, 2]. It is a discipline of electrical engineering which is
expected to play an increasingly significant role in the 21st century, as motiva-
tions to improve energy efficiency become more prominent [3]. Rough estimations
indicate that 15–20 % of electrical power consumption can be saved by extensive
application of power electronics [4].

A typical goal of power electronics is to efficiently convert electrical power
from one form to another for convenient utilisation. Power converters are usually
classified as follows according to the type of input and output, either alternating
current (AC) or direct current (DC): DC-DC, DC-AC, AC-AC, and AC-DC.

DC to DC (DC-DC) converters can be classified into switched-mode or linear.
Switched-mode converters are more efficient than their linear counterparts because,
by design principle, their active components are not operated in linear regions. In
switched-mode DC-DC converters, ideally lossless voltage or current conversion is
achieved by controlled electronic connection and disconnection of the source to an
appropriate intermediate storage device, so that the energy is transferred from the
source to the load at the required voltage or current level.

Switched-mode DC-DC converters are widely used in modern electronic equip-
ments and the market for them is expanding [5]. They find application in powering
systems of: digital cameras, navigation systems, smart phones, tablets, notebooks,
personal computers, medical and telecommunications equipments, light-emitting
diode (LED) based lighting systems, industrial and military equipment, transport-
ation, etc.

The focus of this thesis is on exploring some of the theoretical limits of control of
a particular switched-mode DC-DC converter known as buck, also called step-down
because its primary function is to step-down an input voltage to properly power a
load at a lower output voltage. More specifically, the synchronous buck converter,
characterized by the fact that the connection and disconnection of the voltage
source is accomplished by a pair of electronic switches that operate synchronously.

Along with the boost and the buck-boost (the former used to step-up the
input voltage, the later used to flexibly either step-down or step-up the input
voltage as dynamically required) the buck converter topology is one of the most
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common in DC powering systems. For example, buck converters lie at the heart
of: motherboard-integrated voltage regulator modules (VRMs) designed to power
high-speed digital integrated circuits (ICs) such as central processing units (CPUs),
graphics processor units (GPUs) and memories, switched-mode power supplies
(SMPSs) for personal computers, and point of load (POL) converters found in
large distributed power systems (DPSs) such as those required by data centers
and telecommunications buildings.

To meet the voltage required by the load to work properly, almost always
a feedback controller becomes indispensable to regulate the converter’s output
voltage against input voltage and load current variations (i.e., disturbances), and
against excessive sensitivity with respect to the converter’s circuit element values.
Generally desired features of a regulated converter are: stability, fast transient
response with low overshoot to large signal disturbances, small steady-state error,
and robustness. Voltage regulation performance, if not the factor of highest con-
cern, is usually considered a crucial factor in buck converter design, among others
such as overall efficiency, cost, size, and weight. For instance, the industry of
VRM requires stringent regulation, because high-efficient modern microprocessors
demand to be powered at very low and accurate voltage levels, even during large
and fast transients of the supplied current [6].

Therefore, control theory is obviously relevant to buck converter design in
particular, and to power electronics in general. Simultaneously, the switching
character of power electronics poses interesting problems to control theory [7–9]
that sometimes transcend the academic world. In fact, the continuously broaden-
ing scope of power electronics applications that require accurate power conversion
to enhance efficiency under dynamic conditions, has stimulated the economically
justifiable adoption of non-linear control methods currently implemented in actual
commercial devices. In this scenario of rich interactions between the control and
power electronics communities, among others, new control methods and refine-
ments of old ones are frequently being proposed, often targeted to very specific
applications. The still evolving situation in the niche of buck converter control
is, in this respect, representative for the area of power electronics concerned with
DC-DC power conversion.

In this thesis, the control of the synchronous buck converter is approached
from the perspective of differential game theory in order to explore the theoretical
limits of disturbance rejection that any controller shall face if put in charge of
the output voltage regulation, specifically with respect to load current bounded
variations. As a by product, a control method, that infimizes the largest error that
a load current disturbance might cause, is proposed. The synchronous topology
is preferred over the asynchronous one for the simple reason that its switching
dynamics is more easily framed in the context of differential game theory, since it
is entirely externally driven by the controller. By contrast, in the asynchronous
topology, the autonomous switchings that take place due to the presence of free-
wheeling diode complicate the intended approach.

Without aiming to cover the vast literature on DC-DC converter control, the
following two sections are intended to briefly overview some common and some
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1.1. Common approaches to DC-DC converter control

novel approaches applicable to DC-DC converters in general, and buck converters
in particular. Next, the motivation for proposing the differential game theory
approach is presented, along with a description of the contributions of the present
work. The last section describes the organization of this thesis, chapter by chapter.

1.1. Common approaches to DC-DC converter control

1.1.1. Conventional constant frequency pulse width modulation

The most conventional approach to buck converter control is by means of
constant frequency (CF) pulse-width modulation (PWM) which is accomplished
as follows. At the input stage, the electronic switches of the converter are driven
so as to generate a rectangular voltage signal, of fixed period and adjustable duty
cycle, from the voltage source. At the output stage, the rectangular signal is low-
pass filtered by an inductor-capacitor (LC) filter to provide a regulated DC voltage
to the load. Regulation is achieved by varying the duty cycle of the square wave,
as necessary.

A well-established modelling tool known as averaging [1, 10] followed by con-
ventional small-signal linearization, allow to come up with a small-signal linear
model of the converter’s dynamics under PWM excitation. It is by virtue of this
modelling approach that buck converter control can be dealt with using classical
control design methods, being the loop-shaping in the frequency-domain the pre-
valent one [11]. In practice, usually an analogous proportional-integral-derivative
(PID) controller, or a close variant, [1] is used as the feedback controller to meet
the required steady-state and transient voltage-regulation performance with ac-
ceptable stability margins.

Two control schemes are commonly used: voltage-mode control (VMC) and
current-mode control (CMC), also called current-programmed control (CPC). The
former involves a single feedback loop directly from the converter’s output voltage
or from the sensing point of an output voltage divider. The later involves, in addi-
tion, a second feedback loop from the converter’s inductor current (usually sensed
indirectly). In the peak type of CMC, the compensator is placed in the voltage loop
to set the reference of the current loop, which generates the PWM signal by com-
parison between the current reference and the sensed current. Each scheme has its
advantages and disadvantages. The small-signal control-to-output transfer func-
tion for CMC has the advantage that it is of first order, while it is of second order
for VMC. CMC provides faster dynamic response at a given switching frequency
than VMC [12], but is more prompt to noise susceptibility and sub-harmonic os-
cillations instability [13]. Of particular importance in the implementation of the
basic peak type of CMC scheme is the addition of a ramp to the sensed current, in
order to avoid a well-known instability triggered by duty cycles greater than 0.5,
regardless the particular converter topology [1]. The average type of CMC solves
the instability problem but adds a compensator, complicating the overall design.

Even though conventional, the PWM-based control approach just sketched
has some well known limitations inherent to its conception geared towards the
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application of linear control theory.

Averaging poses an upper limit to the regulator bandwidth which is already
limited by the technological limits of switching efficiency [14]. That is to say,
the gain crossover frequency of the feedback loop should be as high as possible
to handle fast transients but must be kept sufficiently below the switching fre-
quency so as to allow confidence in the averaged model. In addition, the switching
frequency cannot be selected arbitrarily high because switching losses increase
proportionally to switching frequency. Rules of thumb recommend that the unit-
ary bandwidth feedback loop should not exceed one-tenth [2] to one-sixth of the
switching frequency. Pushing the converter frequency response beyond these up-
per bounds results in poor filtering of the intended DC output voltage, and excites
high-frequency unmodeled dynamics thereby compromising stability.

Small-signal analysis dismisses non-linear dynamics that in general persists
after averaging [15]. Thereby, the large-signal transient performance of the con-
trolled converter cannot be transparently handled during design. For example,
the common practice of making the ramp slope of the sawtooth carrier signal
(used to generate the PWM signal by comparison with the modulating signal)
proportional to the input voltage is a feed-forward technique intended to allevi-
ate one of the shortcomings of small-signal linearisation. Furthermore, and more
seriously, small-signal analysis cannot predict global instabilities that can actually
take place [16,17].

1.1.2. Hysteretic control

In its most simple form, hysteretic control, consists in driving the converter’s
switches by comparison of the error voltage (difference between reference and out-
put) against two symmetric hysteresis thresholds around zero. By contrast with a
PWM-based controller, an hysteretic (also called hysteresis or bang-bang) control-
ler does not require external timing and feedback compensation. As for CF-PWM
controllers, either the VMC or the CMC scheme may be adopted for hysteretic
controllers, however the former is more widely used.

The architectural simplicity of hysteretic control has long ago been appreciated,
motivating the use of non-linear analysis to study its associated steady-state and
transient characteristics [18–20].

Hysteretic control is the simplest form of rippple-based control, an approach
characterized by the fact that the switching action is more or less directly driven
by the amplitude of the converter’s output ripple voltage. Rippple-based con-
trollers are appreciated because of their fast response to large-signal transient
perturbations. However, their most simple forms lack a clearly defined switching
frequency, are noise-sensitive, perform mediocrely in DC regulation, and incline to
fast-scale instability [21]. Although improvements have been developed to over-
come these limitations, they all come at the cost of departing from the simplicity
of the original conception.
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1.2. Novel approaches to DC-DC converter control

1.2.1. Sliding mode control

Switched-mode DC-DC converters achieve power conversion by controlled switch-
ings that modify the topology of a linear network topology. Therefore, they belong
to the class of variable structure system (VSS) [22]. These systems are naturally
prompted to be controlled by a non-linear control method known as sliding mode
(SM) control that relies on a state-feedback discontinuous law to achieve the con-
trol goal. The feedback law is designed so that the system’s state is guided towards
a desired point in state-space from every possible initial state.

For systems with a single discrete two-valued variable σ ∈ {0, 1} as input and
a state-space representation of the form ẋ = f (x, σ), the design of a SM controller
involves the careful selection of a single switching surface {x : S (x) = 0} in the
system’s state-space R

n such that three fundamental conditions hold: hitting,
existence, and stability. The switching surface is used to define a state-feedback
discontinuous law as follows:

σ (x) =

{

1 if S (x) > 0,

0 if S (x) < 0.
(1.1)

The hitting condition requires that under the previous feedback law every state-
space trajectory t 7→ x (t) can be proved to hit the switching surface in finite time
regardless the initial state x (0). The existence condition requires that

lim
S→0

SṠ < 0 (1.2)

so that for x close to {x : S (x) = 0} the feedback law makes ẋ point to the
switching surface, either if x ∈ {x : S (x) < 0} or x ∈ {x : S (x) > 0}. Once
the state hits the switching surface, the existence condition allows to conceive an
ideal sliding motion of the state through the switching surface, caused by infinitely
fast switching between the two possible input values. The system is then said to
have entered into a sliding mode. The sliding motion must verify the invariance
condition Ṡ (t) = 〈∇S (x (t)) ,f (x (t) , σeq (t))〉 = 0, where σeq is though of as an
equivalent control for the infinitely fast switching action. Assuming that σeq (t) can
be solved out from the invariance condition, the stability condition requires that
the ideal sliding dynamics, expressed as ẋ = f (x, σeq (t)), has the desired point
in state-space as its unique asymptotically stable equilibrium point. For systems
with more than a scalar controllable input, the same idea is generalized defining a
switching surface per input, giving rise to multiple sliding modes.

An ideally infinite switching frequency required to sustain a sliding mode is
impracticable. Imperfections of the actual devices of the controlled system such as
small delays, dead zones and hysteresis, preclude a state-feedback discontinuous
law like (1.1) to sustain an ideal sliding motion. At most, a close approximation is
attained by means of a high-frequency switching, known as chattering, limited only
by the unmodelled limitations of the devices. Chattering is usually undesirable
from a practical point of view since may cause excessive switching losses, wear,
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and noise. For this reason, hysteresis is usually introduced in the implementation
of SM controllers. A state-feedback law such as (1.1) is actually implemented as

σ (x) =

{

1 if S (x) > δ,

0 if S (x) < −δ,
(1.3)

where δ is an arbitrarily small value. If S (x) ∈ [−δ, δ], the last value assigned to σ
by (1.3) is held constant. Usually, δ is selected so as to achieve an acceptable ap-
proximation of the sliding motion without incurring into excessively high-frequency
switching.

For switched-mode DC-DC power conversion applications, SM control is an at-
tractive approach that, exploiting the geometric aspects of the regulation problems,
provides an analysis and design methodology which is intuitively clear, mathem-
atically feasible, and devoid of approximations [23]. As substitutes of conventional
PWM controllers designed to perform satisfactorily only around a specific oper-
ating point, SM controllers are promising and therefore have stimulated a lot of
research [24].

However, despite their well known advantages such as stability, robustness
against parameter value variations, fast rejection of line and load disturbances,
flexibility in design and relatively easy implementation; SM controllers are seldom
used in the industry of power electronics [25]. There exists reluctance to adopt a
control method based on variable high-frequency switching, because of the power
losses and electromagnetic interference that it entails. Even though the variable
frequency problem can be alleviated by the introduction of a constant ramp or
timing function directly into the controller, or by including some forms of adapt-
ive hysteresis; in any case the resulting controller is relatively complex and the
switching frequency cannot be made absolutely constant [26].

In addition, it appears that there exists a lack of understanding of the design
principle of SM controllers by power-supply engineers who, chiefly, need strong
practical evidence to support the worthiness of applying the SM approach [27].

1.2.2. Boundary control

Boundary control may be thought of as a generalization of sliding mode con-
trol concepts [28], in the sense that a boundary in the system’s state-space does
not necessarily needs to exhibit sliding behaviour to be useful. It is a geometric-
based approach to analysis and control that relies on the acquaintance with the
phase-space picture of the system’s dynamics, for each of its constituent structures
in case of a VSS. Relevant design concerns, such as large-signal stability and dy-
namic response performance, can be addressed by this approach [29], often fairly
transparently since sate-space representations of prevalent DC-DC converters are
low-dimensional [23].

Boundary control has been successfully applied for actual buck converter con-
trol using either first or second order switching surfaces (SSs) [30], the later res-
ulting in faster dynamical response. Further efforts to enhance the transient beha-
viour of boundary control gave rise to more involved SS. For example, minimum-

6



1.2. Novel approaches to DC-DC converter control

time transient response SS, derived from open-form solutions obtained by applying
model-predictive minimum-time control (MTC), have been successfully implemen-
ted as digitalized raster images [31,32].

However, maybe the most notable feature of the geometric-based approach is
that it enhances the understanding of the dynamical behaviour of switched con-
verters. The geometric domain provides an inherently bounded representation
of the system’s dynamics, as opposed to the time and frequency domains, which
reveals the physical limits to large-signal stability and dynamic response perform-
ance, that any control strategy must face [33–35]. High-performance regulation
can be attained by pushing control towards these limits. For instance, in [36] a
natural unloaded SS was proposed to achieve time-optimal transient behaviour
and no overshoot during start-up for any buck converter, by means of normalized
analysis of natural trajectories in the state-space. The same approach has been ex-
tended to boost [37], and buck-boost converters [38], to discover the corresponding
natural switching surfaces (NSSs) that achieve the desired steady state regime in
only one switching action for start-up and large load disturbances, while exhibiting
no overshoot and time-optimal response.

Deeper understanding of the physical limits proves valuable even to conven-
tional CF-PWM operation, desirable in most noise-sensitive applications. In [39]
switching surfaces derived from the analysis of an averaged generic large-signal
model have been proved useful to enhance the dynamic response of CF-PWM-
driven buck, boost, and buck-boost converters, by means of a circular centric-based
controller. Similarly, in [40] the transient behaviour of a current-mode-controlled
buck converter is improved by the introduction of geometric-based control in the
voltage loop.

1.2.3. Digital control

In the past, medium to low power switched-mode DC-DC converters, were
usually controlled using analog techniques, because digital components were too
slow, expensive, and inefficient. However, recent advances in digital very-large-
scale integration (VLSI) technology have made of digital control a very attractive
option for power conversion regulation and management [41].

Digital control offers several advantages over analog control. Overall, it en-
hances regulation performance of the converter’s primary feedback loop by en-
abling the implementation of complex non-linear control methods and auto-tuning
mechanisms, while reducing the number of external passive components. There-
fore, it is an implementation methodology rather than an specific control method.
In fact, each control method already commented can be implemented digitally.
For example, in [42] two auto-tuning techniques are proposed for a PID-based CF
digital pulse-width modulation (DPWM) controller. In [43] hysteretic-based con-
trol is implemented digitally. In [44] the flexibility of digital control is explored in
connection with multi-phase VRM control.

Another advantage of digital control over analog control is that it is intrinsically
less sensitive to component and temperature variations. Furthermore, the digital
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technique naturally accommodates modular complex architectures that allow the
introduction of secondary functions such as programming, protection, monitoring,
data storage, and communication, all beyond the capabilities of analog systems
and central to intelligent power management.

The proposals for exploiting the advantages of digital control are numerous.
In particular, as pointed out in [45] digital control enables the implementation of
hybrid control. An hybrid controller is a switching control architecture in which
a supervisor runs the logic necessary to select a proper controller at every instant
of time from a bank of available controllers. Using this approach an hybrid digital
adaptive (HDA) controller is proposed in [45] that behaves as a conventional CF
DPWM controller in the vicinity of steady state, but during step-load transients it
turns into a linear SS-based controller whose slope is selected based on capacitor
and inductor current estimates, so that near-time-optimal transient responses can
be obtained.

The same idea of decoupling between large and small deviations was previously
used in [46] to propose a simple linear-non-linear control (LnLC) control method
that forces saturation of the duty cycle of a conventional CF-PWM controller
whenever the absolute voltage error exceeds certain threshold, thereby reducing
the recovery time from step-load transients in comparison with standard linear
control.

1.3. Motivation for a new approach

As it was briefly exposed before, DC-DC converter control is an intense area of
research where new control methods are regularly being proposed, being the buck
converter topology typically the first to be tested.

Often, new control methods are successfully validated on actual prototypes
against step-shaped disturbances departing from the desired point of operation
(see, for instance, [46,47]). However, this kind of analysis does not encompass the
full variety of possible arbitrarily-shaped large-signal disturbances and initial con-
ditions that may compromise regulation performance. In addition, the large-signal
stability analysis of a non-linearly-controlled converter is not easy. In [48], for ex-
ample, the stability issue in connection to the LnLC method proposed in [46] is ad-
dressed by means of the approximate describing function procedure. Nevertheless,
the question of whether a novel control method can fulfil the control requirement
for which is intended even in the worst case, in general remains unanswered.

If buck converter designers were empowered with analytic or numerical tools
to play the role of devil’s advocate, they would be able to rigorously proof their
designs against every possible disturbance and initial condition. These tools are
provided by differential game theory.
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1.4. Description of the present work

Much in the spirit of [34], this thesis aims at contributing to the understand-
ing of the physical limits of synchronous buck converter control, specifically with
respect to its ability to keeping within bounds the under-and overshoots caused by
large and infinitely fast load current transients. Close attention to this aspect of
the transient response is motivated by the VRM design target application, which
requires the regulated voltage error to be kept within the bounds of a very tight
tolerance band.

The selected approach to explore these limits was that of the worst-case ana-
lysis, for which differential game theory [49] provides an unbeatable framework,
since it allows to place the controller’s actions on equal footing with the uncon-
trollable disturbing actions, i.e., load and line variations.

A concrete result of this work is a formulation, under quite general assump-
tions, of a synchronous buck converter control problem with respect to a tolerance
band, framed as a canonical dynamical conflict between the controller (who acts
on the converter’s ideal switch) and the disturber (who acts on line voltage and
load current). This canonical form admits a geometrical interpretation as a planar
kinematic conflict, which contributes to the intuitive understanding of the dy-
namic behaviour of any buck converter under the influence of independent actions
performed by the controller and the disturber.

Two natural interpretations of the conflict are presented. One, in which both
decision making agents, i.e., players, struggle for the supremum of the absolute
regulation error over an infinite time horizon, the controller seeking to infimize it
and the disturber seeking the opposite. The other, in which both players struggle
for the time remaining before the absolute error exceeds the bounds stated by the
tolerance band, the controller seeking to supremize it and the disturber seeking the
opposite. Both interpretations are consolidated into canonical differential games,
the former named a game in distance, the later a game in time, following the
same taxonomy used in [50], with respect to Pierre Bernhard’s “second order
servomechanism problem”, from where the key concept of oriented distance was
borrowed.

The other concrete result of this work is the analytical solution of the aforemen-
tioned canonical game in distance. Regrettably, however, under the assumption
that the disturber acts only on the load current while leaving the line voltage
constant. This cut down in generality, introduced only to enable a way of fig-
uring out a solution, deserves further work to endow the proposed approach its
full potential. From the canonical solution of the game in distance, optimal state-
feedback strategies are derived for both players, thereby opening up the possibility
of carrying out not only optimal worst-case-based control, but also optimal worst-
case-based load disturb; the last alternative being useful to benchmark control
methods.

On the whole, what appears to be the most fruitful contribution of this work
is the qualitative and quantitative information that can be obtained from the
topography of the value function associated to the canonical game in distance. The
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general shape adopted by the family of nested sup-level sets of this function can
be associated with the suitability of the converter’s parameter values with respect
to the fulfilment of the voltage regulation requirement, given the bounds of load
current excursion, regardless of the control method. Furthermore, this suitability
can be quantified by finding the global maximum of this function, which is tied
to a worst-case absolute error over an infinite time horizon that is unavoidable
regardless of the merits of the controller in charge. Hence, the impact that the
selection of the LC filter’s component will have on the regulation performance can
be addressed visually with a contour plot, and quantitatively with a figure of merit,
in an early design stage, before having decided yet the ultimate control method.

In general, differential games are not easy to solve analytically, even if low-
dimensional. The planar “homicidal chaufeur game”, stated by Rufus Isaacs [49]
and completely analytically solved by Antony Merz [51], suffices as a convincing
example. However, numerical methods are being developed, which in particular for
the two-dimensional case provide a clear visual insight into the conflictive dynamics
in case (see, for instance, [52]). In this thesis the numerical approach was not
followed because the benefits of the classical analytical way [49] looked accessible,
at least leaving out the line disturbance, and because numerical methods intended
to solve differential games and the quite different underlying theories sustaining
them [53–55] are beyond the scope of this work. Nevertheless, we believe that
applied differential game theory, eased by numerical methods if necessary, can
shed a lot of light about the typically low-dimensional problems stated by DC-DC
converter control, specially if these are formulated in a canonical dimensionless
way. Hopefully, this work will contribute in this direction.

1.5. Thesis overview

This dissertation is organized as follows.

Chapter 1 presents the problem of buck converter control, its relevance, and
some of the approaches to tackle it. It also describes the approach proposed
in this thesis and the motivation behind it. Finally, the organization of the
whole document is sketched.

Chapter 2 introduces differential game theory. Its scope, key concepts, and
classical methods are overviewed to provide the rudiments necessary to deal
with the buck converter control problem.

Chapter 3 precisely models the buck converter control problem as a pursuit-
evasion conflict which accepts two natural interpretations: either as game in
distance or as game in time. A canonical form of the conflict is developed,
under quite general assumptions, by means of normalization of the defining
parameters and a carefully chosen state-space transformation. The resulting
canonical form allows to treat every buck converter control problem consist-
ently as a pursuit-evasion conflict and provides valuable insight about its
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dynamics because it can be geometrically interpreted as a simple kinematic
conflict in the plane.

Chapter 4 develops basic technical results about the canonical buck con-
verter conflict’s dynamics.

Chapter 5 solves the canonical buck converter game in distance, relying on
the results of Chapter 4. Three qualitatively different cases are discovered
in the parameter-space of the game, each case related to how a normalized
derived parameter compares to unity.

Chapter 6 proposes practical applications of the solution found in Chapter
5. Numerical simulations are reported to support the feasibility of the pro-
posals.

Chapter 7 enumerates the main conclusions of this thesis and suggested
future work.
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Chapter 2

Introduction to differential game theory

In this chapter, differential game theory is briefly introduced to provide a
minimal theoretical framework to address the buck converter control problem that
was qualitatively introduced in Chapter 1 and that will be precisely formulated in
Chapter 3.

An illuminating introduction to differential games is Rufus Isaacs’ pioneering
work [49], where main concepts are introduced and several low-dimensional, but
interesting, differential games are partially or completely solved. While solving
these games, Isaacs found the prominent role played by singular surfaces, which are
manifolds in the state space across which the backward solution procedure, derived
from Isaacs’ “tenet of transition”, fails because the value function is discontinuous
or not differentiable. The presence of these surfaces hamper what would otherwise
be a routine solution procedure. After Isaacs, other researchers continued studying
the variety richness of singular surfaces mainly by studying specific differential
games examples (see, for example, [56, 57]). These early developments of two-
player deterministic zero-sum differential game theory, consolidated into what is
now known as Isaacs-Breakwell theory.

In Subsection 2.2.7, some of the most up-to-date developments of differential
game theory are anecdotally cited, in connection with the difficulties that arise
in the area of existence theory, concerned with the refinements of the concepts of
strategy and value function. These developments allow to build differential game
theory on solid ground. However, in the following chapters, none of them is applied
to the application at hands. Indeed, the reformulation of the buck converter control
problem in the realm of one of these modern developments has been postponed for
future work. In the present work, the problem is addressed à la Isaacs-Breakwell.

What follows only introduces the most elementary concepts of Isaacs-Breakwell
theory, closely following [58, Ch. 1], [59, Ch. 1, 8], [60], and [49], with convenient
adaptations to fix vocabulary and notation. For a thorough coverage of this clas-
sical stage of differential game theory, refer to [60] and [61]. For a more recent
overview of dynamic non-cooperative game theory, which is a broader subject,
refer to [59].
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2.1. What is a pursuit-evasion differential game?

The theory of differential games was born in the early 1950s with the work
of its acknowledged father Rufus Isaacs in the United States of America (USA).
Contemporary scientists working in related problems were Bellman in the USA and
Pontryagin in the Soviet Union (for an historical survey see, for instance, [62]).
The main motivation at that time was the study of military problems, in particular
pursuit-evasion problems, i.e., the study of pursuit and evasion between two objects
moving according to simple kinematic laws. Indeed, most of the problems studied
by Isaacs in [49] are of this kind, e.g., “the homicidal chaufeur” game [49, 51] is
about a circle (a “car”) that moves in a plane, with constant magnitude of its linear
velocity and lower bounded radius of turn, pursuing a slower point (a “pedestrian”)
that steers in the same plane by choosing his direction of travel at each instant.

Pure pursuit-evasion problems can be viewed, from a more general modelling
perspective, as particular cases of dynamic struggles in which two players (a “pur-
suer” and an “evader”) have antagonist goals with respect to the state’s temporal
evolution of a deterministic system that is under their (partial) control. According
to this perspective, a pursuit-evasion differential game, as will be described soon,
not necessarily models actual pursuit and evasion.

In the late 1960s extensions to many-players (i.e., not just a pursuer and an
evader) nonzero-sum (i.e., non-antagonistic) differential (i.e., in continuous time)
games were subsumed in what is called dynamic non-cooperative game theory, so
nowadays differential game theory has a broader scope than it had when Isaacs
published his book titled “Differential Games: A Mathematical Theory with Ap-
plications to Warfare and Pursuit” [49]. The kind of problems studied by Isaacs
are referred to as pursuit-evasion games in [59], intending that they are differential
games of a special subclass. Following this terminology, we next give a description
of pursuit-evasion differential game that is suited for the application-oriented pur-
pose of this thesis. The reader is referred to [59] for a more general and rigorous
definition as a particular case of a dynamic non-cooperative game.

A pursuit-evasion differential game is given by a state equation, a target set,
and a pay-off functional. These three components, delineated in the following para-
graphs, comprise a (pursuit-evasion differential) game as it is understood in the
literature. Often, particular instances of the first two components will be referred
to as the defining components of a (pursuit-evasion differential) conflict, intention-
ally leaving unspecified the pay-off functional. This use of the term conflict is not
standard, but is adopted here for convenience to name the common underlying
structure of different but related games.

The state equation (SE) is an ordinary differential equation of the form

dx
dt

(t) = f (x (t) ,φ (t) ,ψ (t)) (2.1)

that describes a dynamical system. The evolution of the system’s state, x (t) ∈ R
n,

with respect to time, t ∈ R, is influenced by two players who control the system’s
inputs, φ and ψ. At each instant of time t, one player, called the pursuer (P),
chooses φ (t) ∈ Φ; and the other player, called the evader (E), chooses ψ (t) ∈ Ψ;
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where Φ and Ψ, the control sets, are non-empty compact and convex subsets
of R

mP and R
mE , respectively, being mP and mE positive integers. The SE is

characterized by: i) both control sets, and ii) its right-hand side (RHS) function,
f : Rn ×R

mP ×R
mE → R

n, which is assumed to be continuous, and continuously
differentiable with respect to its first argument. Under this assumption, for every
play (x0,φ,ψ), comprising an initial state x0 ∈ R

n and a pair of open loop control
functions (φ : [0,+∞)→ Φ,ψ : [0,+∞)→ Ψ); the state equation (2.1) has an
unique continuous solution1 x

f
x0,φ,ψ

: [0,+∞) → R
n through x0, i.e., verifying

x
f
x0,φ,ψ

(0) = x0, provided the open loop control functions, φ and ψ, are piecewise

continuous2. These solutions are also called (state-space) trajectories.
The target set (TS), T , is a non-empty closed subset of R

n such that its
boundary consists of a finite number of smooth (n-1)-dimensional surfaces. Its
complement, E = R

n \ T , is called the playing set (PS).
The pay-off functional (PF) is a function (x0,φ,ψ) 7→ Pf ,T (x0,φ,ψ) ∈ R

that encodes each player’s aim by assigning an element of R = [−∞,+∞], the
extended real number line3, to every possible play, since it is understood that
P aims to infimize it and E aims to supremize it (over a domain that will be
sketched in Section 2.2). In the following subsections some typical forms of the
PF are introduced.

2.1.1. Games of degree and games of kind

For a conflict, given by a SE of the form (2.1) (whose RHS is given by a function
f) and a TS denoted T , consider a PF defined by

Ptime
f ,T (x0,φ,ψ) ,

{

inf Jf ,T (x0,φ,ψ) if Jf ,T (x0,φ,ψ) 6= ∅,
+∞ otherwise,

for every play (x0,φ,ψ), where Jf ,T (x0,φ,ψ) is the following set of time in-
stants:

Jf ,T (x0,φ,ψ) ,
¶
t ≥ 0 : xfx0,φ,ψ

(t) ∈ T
©
.

The capture time (also called final time), Ptime
f ,T (x0,φ,ψ), is the first instant of

time for which xfx0,φ,ψ
(t) belongs to T if it ever reaches it, otherwise it is defined

as +∞. In case Ptime
f ,T (x0,φ,ψ) < +∞, it is said that P captures E (or that the

play terminates) at Ptime
f ,T (x0,φ,ψ); otherwise it is said that E escapes from P (or

that the play does not terminate). These terms are figurative, since the game may
not necessarily be the model of a struggle between an actual pursuer and evader.

The form of the functional Ptime
f ,T , as just defined, is natural in the formulation

of pursuit-evasion games. Indeed, this form of PF is the most commonly found in

1Solution in the extended sense of verifying (2.1) almost everywhere.
2A piecewise continuous function is continuous on every finite interval of time, except

possibly at finitely many points in each such finite interval where it has jump discontinu-
ities. A more general set-up would haver required Lebesgue measurable open loop control
functions.

3More precisely, the affinely extended real number system: R , {−∞} ∪ R ∪ {+∞}.
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the literature on pursuit-evasion games. However, other forms are possible. For
the same SE and TS, consider an alternative PF defined by

Pdisto
f ,T (x0,φ,ψ) ,

{

inf Df ,T (x0,φ,ψ) if Df ,T (x0,φ,ψ) has a lower bound,

−∞ otherwise.

for every play (x0,φ,ψ), where Df ,T (x0,φ,ψ) is the following set:

Df ,T (x0,φ,ψ) ,
¶

disto

Ä
x
f
x0,φ,ψ

(t) ,T
ä

: t ≥ 0
©
,

being disto : Rn × 2R
n \ {∅} → R, the oriented distance function defined by

disto (x,X ) ,

{

+dist (x,X ) if x ∈ X ∁,

−dist
Ä
x,X ∁

ä
if x ∈ X ,

where X ∁ , R
n \ X , and dist (x,X ) , infy∈X ||x− y|| for every x ∈ R

n and
every non-empty subset X of Rn.

Suppose that every play (x0,φ,ψ) is allowed to continue even beyond cap-
ture time (in case capture occurs), thereby letting the state go out from the PS
(E ) into the TS (T ). If Ptime

f ,T (x0,φ,ψ) < +∞, P captures E at capture time

Ptime
f ,T (x0,φ,ψ) and Pdisto

f ,T (x0,φ,ψ) ≤ 0. Complementary, if Ptime
f ,T (x0,φ,ψ) =

+∞, E escapes from P and Pdisto
f ,T (x0,φ,ψ) > 0. From E’s viewpoint, with Ptime

f ,T

as PF, the struggle is about the lapse of time available before being captured; while
with Pdisto

f ,T as PF, the struggle is about the worst state proximity (resp. incursion)
to (resp. into) the TS.

Following the terminology used in [50], a pursuit-evasion game is called a game
in time if its PF is of the form Ptime

f ,T , while it is called a game in distance if its

PF is of the form Pdisto
f ,T . Games in time and games in distance are instances of

what Isaacs called games of degree in which the range of the PF is continuum, to
distinguish them from what he called games of kind in which the range of the PF
is discrete. Narrowing this concept slightly, a pursuit-evasion game will be referred
to as a game of kind, only if its PF has the following form:

Pkind
f ,T (x0,φ,ψ) ,

{

−1 if Jf ,T (x0,φ,ψ) 6= ∅,
+1 otherwise.

Accordingly, from E’s viewpoint, in a game of kind the struggle is only about being
able to escape or not.

2.1.2. The standard form of the pay-off functional

Other forms of PF may be defined; the following standard form is typical in
the literature on differential games:

Pstd
f ,T (x0,φ,ψ) ,
{∫ tcap

0 G
Ä
x
f
x0,φ,ψ

(t) ,φ (t) ,ψ (t)
ä

dt+H
Ä
x
f
x0,φ,ψ

(tcap)
ä

if Jf ,T (x0,φ,ψ) 6= ∅,
+∞ otherwise.

(2.2)
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where tcap , Ptime
f ,T (x0,φ,ψ) is capture time (finite because Jf ,T (x0,φ,ψ) 6= ∅),

and the functions G : Rn×Φ×Ψ→ R (the running cost function) and H : Rn → R

(the terminal cost function), not both of them null, are smooth. If H ≡ 0 the game
is said to have integral pay-off, while if G ≡ 0 the game is said to have terminal
pay-off.

Note that, in the definition of Pstd
f ,T , preference for termination is arbitrarily

assigned to P, but it could be assigned to E defining Pstd
f ,T (x0,φ,ψ) , −∞ in case

Jf ,T (x0,φ,ψ) = ∅. The former option, is typically adopted so that if G ≡ 1 and
H ≡ 0, Pstd

f ,T = Ptime
f ,T , i.e., the game is a game in time (as defined before) in which P

considers any finite value of Ptime
f ,T (x0,φ,ψ) preferable to Ptime

f ,T (x0,φ,ψ) = +∞.

2.2. Basic concepts to build a theory

In this section some basic concepts involved in study of pursuit-evasion differ-
ential games are introduced. For this porpouse, references [58, Ch. 1] and [59] are
closely followed. The first one, to outline a purposely naive approximation to the
difficult endeavour of building a rigours pursuit-evasion differential game theory.
The second one, to evidence some essential results on non-cooperative two-player
zero-sum games, not necessarily pursuit-evasion differential games.

From now on, up to the end of this chapter, consider a fixed (but generic)
prototype pursuit-evasion game G, given by the following state equation (SE),
target set (TS), and pay-off functional (PF):

G







SE : dx
dt (t) = f (x (t) ,φ (t) ,ψ (t)) ,

TS : T ⊂ R
n,

PF : (x0,φ,ψ) 7→ Pf ,T (x0,φ,ψ) ,
(2.3)

This game acquires sense only if the available information on which each player
can base his instantaneous control decisions is declared explicitly, i.e., if the in-
formation structure [59] of the game is given. In connection with this, it is assumed
that at every instant of time, each player perfectly knows the current time t and
the current state x (t). Moreover, it is rational for a player not to underestimate
his opponent, and thus decide his current control action based solely on the cur-
rent time and the current state, i.e., not making ungrounded predictions about his
opponent current or future control actions (Isaacs discuss this point thoroughly in
the first chapters of [49]). If both players put in practice this rationality, the game
is said to have a feedback information structure [59].

2.2.1. Strategies

A strategy, or more precisely a feedback strategy, for P is a function

φ̃ : [0,+∞)× R
n → Φ (2.4)

that dictates P how to choose his control action φ (t) = φ̃ (t,x (t)), as a function
of the current time t and the current state x (t). Likewise, a strategy for E is a
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Chapter 2. Introduction to differential game theory

function ψ̃ : [0,+∞) × R
n → Ψ that dictates E how to choose his control action

ψ (t) = ψ̃ (t,x (t)), as a function of the current time t and the current state x (t).
Although, this is the strategy concept employed throughout this thesis, note

that it is quite naive. As pointed out in [58], given an initial state x0 ∈ R
n, and

two arbitrary strategies φ̃ : [0,+∞) × R
n → Φ and ψ̃ : [0,+∞) × R

n → Ψ; the
initial value problem

{
dx
dt (t) = f

Ä
x (t) , φ̃ (t,x (t)) , ψ̃ (t,x (t))

ä
, t ≥ 0,

x (0) = x0,
(2.5)

(that results from plugging the strategies into the SE) does not necessarily has
a solution, and if it has one it may not be unique. This difficulty asks for a
restriction4 on the sets of strategies that can be chosen by the players.

Literally following [58, Ch. 1] (where a first attempt to formalize an useful no-
tion of strategy is developed), a pair

Ä
Φ̃, Ψ̃

ä
of sets of strategies is called admissible

if the following conditions are satisfied.

All strategies of the form φ̃ (·,x) = φ (·), where x ∈ R
n and φ : [0,+∞)→ Φ

is a piecewise continuous open loop control functions for P, belong to Φ̃.
Analogously for E’s open loop control functions and Ψ̃.

For every
Ä
x0, φ̃, ψ̃

ä
, such that x0 ∈ R

n and
Ä
φ̃, ψ̃

ä
∈
Ä
Φ̃, Ψ̃

ä
, the initial

value problem (2.5) has an unique solution.

If φ̃1, φ̃2 ∈ Φ̃, then for every τ > 0, the strategy defined by

φ̃3 (t,x) ,

{

φ̃1 (t,x) if t ∈ [0, τ ]

φ̃2 (t,x) otherwise
∀x ∈ R

n,

also belongs Φ̃. Symmetrically for Ψ̃.

If φ̃ ∈ Φ̃, then for every τ > 0 the strategy defined by

φ̃1 (t,x) , φ̃ (t+ τ,x) ∀x ∈ R
n,

also belongs Φ̃. Symmetrically for Ψ̃.

From now on up to the end this chapter, consider a given admissible pair
Ä
Φ̃, Ψ̃

ä

of sets of strategies. For every triplet
Ä
x0, φ̃, ψ̃

ä
, such that x0 ∈ R

n, φ̃ ∈ Φ̃ and

ψ̃ ∈ Ψ̃, let xf
x0,φ̃,ψ̃

: [0,+∞)→ R
n be the unique solution of (2.5). The existence

and uniqueness of xf
x0,φ̃,ψ̃

allows to define the cost function of the (pursuit-evasion)

game in normal form [59] as the functional
Ä
x0, φ̃, ψ̃

ä
7→ P̃f ,T

Ä
x0, φ̃, ψ̃

ä
, Pf ,T (x0,φ,ψ) ,

4For example, feedback strategies could be required to be piecewise continuous in t and
Lipschitz-continuous in x. However, such a restriction appears to be unrealistic in pursuit-
evasion games. In [59], after discussing this issue, the authors conclude that “non-Lipschitz
strategies cannot easily be put into a rigorous mathematical framework”.
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where φ : [0,+∞) → Φ and ψ : [0,+∞) → Ψ are realizations [60] (also called
open-loop representations [59]) of strategies φ̃ and ψ̃, respectively, defined by

φ (t) , φ̃
(

t,xf
x0,φ̃,ψ̃

(t)
)

,

ψ (t) , ψ̃
(

t,xf
x0,φ̃,ψ̃

(t)
)

,

for every t ≥ 0. Notice that P̃f ,T : Φ̃×Ψ̃→ R is well defined, because the existence
and uniqueness of xf

x0,φ̃,ψ̃
(as a solution of (2.5)) permit the construction of the

realizations (i.e., open loop control functions derived from the strategies and the
SE) needed to evaluate Pf ,T .

The triplet (x0,φ,ψ), that results (as just described) from P’s adoption of
strategy φ̃ and E’s adoption of strategy ψ̃, is a play of the game, since the realiz-
ations φ and ψ are (actually) open-loop control functions. Overloading the use of
this word, sometimes the triplet

Ä
x0, φ̃, ψ̃

ä
will also be referred to as a play of the

game, understanding that the aforementioned procedure to synthesise realizations
of the adopted strategies is possible. Moreover, it will be said that P̃f ,T

Ä
x0, φ̃, ψ̃

ä

is the outcome that corresponds to the play
Ä
x0, φ̃, ψ̃

ä
.

2.2.2. Upper and lower value functions

Equipped with a cost function of the game in normal form, P̃f ,T , it is straight-
forward to define upper and lower value functions [58, Ch. 1]. The upper value
function V is defined as

x 7→ V (x) = inf
φ̃∈Φ̃

sup
ψ̃∈Ψ̃

P̃f ,T
Ä
x, φ̃, ψ̃

ä
(2.6)

for every x ∈ R
n, and the lower value function V is defined as

x 7→ V (x) = sup
ψ̃∈Ψ̃

inf
φ̃∈Φ̃
P̃f ,T

Ä
x, φ̃, ψ̃

ä
(2.7)

for every x ∈ R
n.

It is obvious that

inf
φ̃∈Φ̃
P̃f ,T

Ä
x, φ̃, ψ̃0

ä
≤ P̃f ,T

Ä
x, φ̃0, ψ̃0

ä
≤ sup
ψ̃∈Ψ̃

P̃f ,T
Ä
x, φ̃0, ψ̃

ä
,

for every x ∈ R
n, every φ̃0 ∈ Φ̃ and every ψ̃0 ∈ Ψ̃. So,

inf
φ̃∈Φ̃
P̃f ,T

Ä
x, φ̃, ψ̃0

ä
≤ sup
ψ̃∈Ψ̃

P̃f ,T
Ä
x, φ̃0, ψ̃

ä
∀x ∈ R

n, ∀φ̃0 ∈ Φ̃, ∀ψ̃0 ∈ Ψ̃.

Application of supψ̃0∈Ψ̃ and infφ̃0∈Φ̃, furnish:

V (x) = sup
ψ̃0∈Ψ̃

inf
φ̃∈Φ̃
P̃f ,T

Ä
x, φ̃, ψ̃0

ä
≤ inf
φ̃0∈Φ̃

sup
ψ̃∈Ψ̃

P̃f ,T
Ä
x, φ̃0, ψ̃

ä
= V (x) ∀x ∈ R

n.

Hence V ≤ V, in accordance with the names given to these two functions.
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2.2.3. Security strategies

Conceptually, a security strategy [59, Ch. 2] models a conservative mode of
play of a player against any (rational or irrational) behaviour of the other player.

A strategy φ̃∗ ∈ Φ̃ is called a security strategy for P if

sup
ψ̃∈Ψ̃

P̃f ,T
Ä
x, φ̃∗, ψ̃

ä
= V (x)

for every x ∈ R
n. In a like manner, a strategy ψ̃∗ ∈ Ψ̃ is called a security strategy

for E if

inf
φ̃∈Φ̃
P̃f ,T

Ä
x, φ̃, ψ̃∗

ä
= V (x)

for every x ∈ R
n.

Security is understood in the following worst-case sense. Fix a generic initial
state x ∈ R

n. For P (the infimizer), φ̃∗ is a security strategy because it renders
him an outcome P̃f ,T

Ä
x, φ̃∗, ψ̃

ä
that is at most V (x), depending on E’s strategy

ψ̃. For E (the supremizer), ψ̃∗ is a security strategy because it renders him a
outcome P̃f ,T

Ä
x, φ̃, ψ̃∗

ä
that is at least V (x), depending on P’s strategy φ̃.

2.2.4. Value function

If functions V and V are equal, i.e., if the inf and sup operations in (2.7)
or (2.6) commute, then the function V , V = V is called the value function
(VF), or just the value, of the (pursuit-evasion) game [58, Ch. 1]. In this case, ifÄ
φ̃∗, ψ̃∗

ä
∈ Φ̃ × Ψ̃ is a (somehow known) ordered security strategy pair (i.e., φ̃∗

and ψ̃∗ are security strategies for P and E, respectively); it follows (by definition
of security strategy) that

sup
ψ̃0∈Ψ̃

P̃f ,T
Ä
x, φ̃∗, ψ̃0

ä
= V (x) = V (x) = V (x) = inf

φ̃0∈Φ̃
P̃f ,T

Ä
x, φ̃0, ψ̃

∗
ä
, (2.8)

for every x ∈ R
n. In addition, since P̃f ,T

Ä
x, φ̃∗, ψ̃

ä
≤ supψ̃0∈Ψ̃ P̃f ,T

Ä
x, φ̃∗, ψ̃0

ä

for every ψ̃ ∈ Ψ̃ and infφ̃0∈Φ̃ P̃f ,T
Ä
x, φ̃0, ψ̃

∗
ä
≤ P̃f ,T

Ä
x, φ̃, ψ̃∗

ä
for every φ̃ ∈ Φ̃;

it must be

P̃f ,T
Ä
x, φ̃∗, ψ̃

ä
≤ V (x) ≤ P̃f ,T

Ä
x, φ̃, ψ̃∗

ä
∀x ∈ R

n, ∀φ̃ ∈ Φ̃, ∀ψ̃ ∈ Ψ̃. (2.9)

In particular, for φ̃ = φ̃∗ and ψ̃ = ψ̃∗, P̃f ,T
Ä
x, φ̃∗, ψ̃∗

ä
≤ V (x) ≤ P̃f ,T

Ä
x, φ̃∗, ψ̃∗

ä
,

and consequently (2.9) can be rewritten as

P̃f ,T
Ä
x, φ̃∗, ψ̃

ä
≤ P̃f ,T

Ä
x, φ̃∗, ψ̃∗

ä
≤ P̃f ,T

Ä
x, φ̃, ψ̃∗

ä
∀x ∈ R

n, ∀φ̃ ∈ Φ̃,∀ψ̃ ∈ Ψ̃,
(2.10)

where P̃f ,T
Ä
x, φ̃∗, ψ̃∗

ä
= V (x) = V (x) = V (x). This motivates the following

definition.
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2.2.5. Saddle-point equilibriums

A strategy pair
Ä
φ̃∗, ψ̃∗

ä
∈
Ä
Φ̃, Ψ̃

ä
is called a saddle-point equilibrium (and φ̃∗

and ψ̃∗ are called saddle-point strategies) if it verifies the saddle inequalities:

P̃f ,T
Ä
x, φ̃∗, ψ̃

ä
≤ P̃f ,T

Ä
x, φ̃∗, ψ̃∗

ä
≤ P̃f ,T

Ä
x, φ̃, ψ̃∗

ä
∀x ∈ R

n, ∀φ̃ ∈ Φ̃,∀ψ̃ ∈ Ψ̃.
(2.11)

Note that at the end of the previous subsection it was proved that if functions V
and V are equal, every ordered security startegy pair is a saddle-point equilibrium.

The next proposition, adapted from [59, Ch. 2], states that the set of saddle-
point equilibrium strategy pairs is not larger than the set of ordered security
strategy pairs.

Proposition 2.2.1. Every saddle-point equilibrium strategy pair is a security
strategy pair.

Proof. Let
Ä
φ̃∗, ψ̃∗

ä
be saddle-point equilibrium strategy pair. From (2.11), su-

premizing over ψ̃ ∈ Ψ̃ the leftmost expression and comparing to the rightmost
expression results:

sup
ψ̃∈Ψ̃

P̃f ,T
Ä
x, φ̃∗, ψ̃

ä
≤ P̃f ,T

Ä
x, φ̃, ψ̃∗

ä
≤ sup
ψ̃∈Ψ̃

P̃f ,T
Ä
x, φ̃, ψ̃

ä
∀x ∈ R

n, ∀φ̃ ∈ Φ̃,

where the introduced right inequality is trivial. Now, from these last inequalities,
infimizing the rightmost expression and comparing it to the leftmost expression,

sup
ψ̃∈Ψ̃

P̃f ,T
Ä
x, φ̃∗, ψ̃

ä
≤ inf
φ̃∈Φ̃

sup
ψ̃∈Ψ̃

P̃f ,T
Ä
x, φ̃, ψ̃

ä
= V (x) ∀x ∈ R

n.

Moreover, since V (x) = infφ̃∈Φ̃ supψ̃∈Ψ̃ P̃f ,T
Ä
x, φ̃, ψ̃

ä
≤ supψ̃∈Ψ̃ P̃f ,T

Ä
x, φ̃∗, ψ̃

ä
,

V (x) ≤ sup
ψ̃∈Ψ̃

P̃f ,T
Ä
x, φ̃∗, ψ̃

ä
≤ V (x) ∀x ∈ R

n,

proving that φ̃∗ is a security strategy for P. Analogously, it can be shown that ψ̃∗

is a security strategy for E.

The next proposition states that the existence of a saddle-point equilibrium
guarantees the existence of a VF.

Proposition 2.2.2. If
Ä
φ̃∗, ψ̃∗

ä
is a saddle-point equilibrium strategy pair, then

V (x) = P̃f ,T
Ä
x, φ̃∗, ψ̃∗

ä
= V (x) for every x ∈ R

n.

Proof. From (2.11), supremizing over ψ̃ ∈ Ψ̃ the leftmost expression:

sup
ψ̃∈Ψ̃

P̃f ,T
Ä
x, φ̃∗, ψ̃

ä
≤ P̃f ,T

Ä
x, φ̃∗, ψ̃∗

ä
∀x ∈ R

n. (2.12)

Similarly, from (2.11), infimizing over φ̃ ∈ Φ̃ the rightmost expression:

P̃f ,T
Ä
x, φ̃∗, ψ̃∗

ä
≤ inf
φ̃∈Φ̃
P̃f ,T

Ä
x, φ̃, ψ̃∗

ä
∀x ∈ R

n. (2.13)
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By Proposition 2.2.1, φ̃∗ is a security strategy for P, so the leftmost expression in
(2.12) equals V (x). Also by Proposition 2.2.1, ψ̃∗ is a security strategy for E, so
the rightmost expression in (2.13) equals V (x). These two facts imply that

V (x) ≤ P̃f ,T
Ä
x, φ̃∗, ψ̃∗

ä
≤ V (x) ∀x ∈ R

n, (2.14)

but, as it has been noticed before, V (x) ≤ V (x) must hold for every x ∈ R
n (by

definition of V and V); so consequently

V (x) = P̃f ,T
Ä
x, φ̃∗, ψ̃∗

ä
= V (x) ∀x ∈ R

n. (2.15)

The next proposition, adapted from [59, Ch. 2], states a feature of saddle-
point strategies known as their ordered interchangeability property. It means that
in case of multiple saddle-point equilibriums, each player does not have to guess the
particular saddle-point strategy his opponent will adopt, since all such strategies
are in equilibrium and yield the same outcome.

Proposition 2.2.3. If
Ä
φ̃∗

1, ψ̃
∗
1

ä
and

Ä
φ̃∗

2, ψ̃
∗
2

ä
are a saddle-point equilibriums,

then
Ä
φ̃∗

1, ψ̃
∗
2

ä
and

Ä
φ̃∗

2, ψ̃
∗
1

ä
are also saddle-point equilibriums and, for each x ∈

R
n, they all yield the same outcome V (x).

Proof. The pairs
Ä
φ̃∗

1, ψ̃
∗
1

ä
and

Ä
φ̃∗

2, ψ̃
∗
2

ä
are saddle-point equilibriums, so

P̃f ,T
Ä
x, φ̃∗

1, ψ̃
ä
≤ P̃f ,T

Ä
x, φ̃∗

1, ψ̃
∗
1

ä
≤ P̃f ,T

Ä
x, φ̃, ψ̃∗

1

ä
∀x ∈ R

n, ∀φ̃ ∈ Φ̃, ∀ψ̃ ∈ Ψ̃,
(2.16)

P̃f ,T
Ä
x, φ̃∗

2, ψ̃
ä
≤ P̃f ,T

Ä
x, φ̃∗

2, ψ̃
∗
2

ä
≤ P̃f ,T

Ä
x, φ̃, ψ̃∗

2

ä
∀x ∈ R

n, ∀φ̃ ∈ Φ̃, ∀ψ̃ ∈ Ψ̃.
(2.17)

Choosing ψ̃ = ψ̃∗
2 in (2.16) and φ̃ = φ̃∗

1 in (2.17),

P̃f ,T
Ä
x, φ̃∗

2, ψ̃
ä
≤ P̃f ,T

Ä
x, φ̃∗

2, ψ̃
∗
2

ä
≤ P̃f ,T

Ä
x, φ̃∗

1, ψ̃
∗
2

ä

≤ P̃f ,T
Ä
x, φ̃∗

1, ψ̃
∗
1

ä
≤ P̃f ,T

Ä
x, φ̃, ψ̃∗

1

ä
∀x ∈ R

n, ∀φ̃ ∈ Φ̃, ∀ψ̃ ∈ Ψ̃, (2.18)

where P̃f ,T
Ä
x, φ̃∗

1, ψ̃
∗
2

ä
= V (x), because, by Proposition 2.2.2, P̃f ,T

Ä
x, φ̃∗

1, ψ̃
∗
1

ä
=

V (x) and P̃f ,T
Ä
x, φ̃∗

2, ψ̃
∗
2

ä
= V (x).

Choosing φ̃ = φ̃∗
2 in (2.16) and ψ̃ = ψ̃∗

1 in (2.17),

P̃f ,T
Ä
x, φ̃∗

1, ψ̃
ä
≤ P̃f ,T

Ä
x, φ̃∗

1, ψ̃
∗
1

ä
≤ P̃f ,T

Ä
x, φ̃∗

2, ψ̃
∗
1

ä

≤ P̃f ,T
Ä
x, φ̃∗

2, ψ̃
∗
2

ä
≤ P̃f ,T

Ä
x, φ̃, ψ̃∗

2

ä
∀x ∈ R

n, ∀φ̃ ∈ Φ̃, ∀ψ̃ ∈ Ψ̃, (2.19)

where P̃f ,T
Ä
x, φ̃∗

2, ψ̃
∗
1

ä
= V (x), because, by Proposition 2.2.2, P̃f ,T

Ä
x, φ̃∗

1, ψ̃
∗
1

ä
=

V (x) and P̃f ,T
Ä
x, φ̃∗

2, ψ̃
∗
2

ä
= V (x).

Consequently, (2.18) and (2.19) can be rewritten as

P̃f ,T
Ä
x, φ̃∗

2, ψ̃
ä
≤ P̃f ,T

Ä
x, φ̃∗

2, ψ̃
∗
1

ä
≤ P̃f ,T

Ä
x, φ̃, ψ̃∗

1

ä
,

P̃f ,T
Ä
x, φ̃∗

1, ψ̃
ä
≤ P̃f ,T

Ä
x, φ̃∗

1, ψ̃
∗
2

ä
≤ P̃f ,T

Ä
x, φ̃, ψ̃∗

2

ä
,

respectively.
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Consequently, it makes sense for P to decide to adopt a saddle-point strategy, if
it exists. Firstly, because as a security strategy it guarantees him an outcome that
is at most equal to the evaluation of V at the initial state. Secondly, because the
saddle inequalities verified by his saddle-point strategy guarantee him that he will
not have reasons to regret his decision, once he knows the strategy adopted by his
opponent. An analogous argument for the rationality of adopting a saddle-point
strategy, applies for E.

For these reasons, the saddle-point strategies are also called optimal strategies.
In accordance, a trajectory in the state space xf

x0,φ̃
∗,ψ̃∗ : [0,+∞) → R

n, that

corresponds to a play
Ä
x0, φ̃

∗, ψ̃∗
ä

starting at x0 ∈ R
n for which optimal strategies

φ̃∗ ∈ Φ̃ and ψ̃∗ ∈ Ψ̃ have been adopted by both players, is called optimal trajectory
or optimal path.

2.2.6. ǫ-saddle-points

As stated by Proposition 2.2.2, the existence of a saddle-point equilibrium of
a game implies the existence of its VF. By contrast, the existence of the VF of a
game, does not necessarily imply the existence of a (pure) saddle-point equilibrium;
it, however, implies the existence of an ǫ-saddle-point defined as follows.

For a given ǫ ≥ 0, a pair
Ä
φ̃∗ǫ, ψ̃∗ǫ

ä
∈
Ä
Φ̃, Ψ̃

ä
is called an ǫ-saddle-point if

P̃f ,T
Ä
x, φ̃∗ǫ, ψ̃

ä
− ǫ ≤ P̃f ,T

Ä
x, φ̃∗ǫ, ψ̃∗ǫ

ä
≤ P̃f ,T

Ä
x, φ̃, ψ̃∗ǫ

ä
+ ǫ

∀x ∈ R
n,∀φ̃ ∈ Φ̃, ∀ψ̃ ∈ Ψ̃. (2.20)

For the particular case ǫ = 0, the pair
Ä
φ̃∗ǫ, ψ̃∗ǫ

ä
is said to be simply a saddle-point.

The following result, transcribed literally from [59, Ch. 2], holds in connection
with this relaxed version of the concept of equilibrium.

Theorem 2.2.1. A two-player zero-sum (infinite) game has a finite value if, and
only if, for every ǫ > 0, an ǫ-saddle-point exists.

Proof. See proof of Theorem 4.1 in [59, Ch. 4].

The word infinite between parentheses in the statement of Theorem 2.2.1 refers
to the fact that at least one of the players is allowed to choose among an infin-
ite number of strategies available to him. In the rare case in which both sets of
strategies Φ̃ and Ψ̃ were finite, the existence of a value would guarantee the exist-
ence of a pure saddle-point equilibrium, as it is shown in [59, Ch. 2] in the context
of matrix games.

2.2.7. Criticism of the outlined theory

The problem with the just delineated approach to the central concepts of
strategy and value is that “upper and lower value functions a priori depend on
the admissible sets of strategies”

Ä
Φ̃, Ψ̃

ä
, as pointed out by Cardaliaguet in [58].
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“In fact, with this definition of value function, the existence of a value is completely
open.” concludes Cardaliaguet before abandoning this approach.

Isaacs [49] already noticed this problem and heuristically dealt with it introdu-
cing K-strategies (the K due to Samuel Karlin for proposing them). The key point
of this notion of strategy is that, by definition, the realization of a K-strategy is a
piecewise constant function of time. For each player, the selection of the discon-
tinuity instants is part of the act of choosing a K-strategy. Thereby, when both
K-strategies are plugged into the SE, an obviously integrable differential equation
arises which has an unique solution. The definition of value function proceeds
by ranging the sup and inf operations over the player’s classes of K-strategies.
Isaacs explains, however, that “in general, the K-strategies will not yield optimal
strategies but only ǫ-optimal strategies, that is, strategies that will attain within
ǫ of the Value (this being done, it would seem, by increasing the fineness of the
temporal subdivision).” [49].

Diverse approaches to the concept of strategy and value have been proposed
since 1965, when Isaacs published [49]. For example, Friedman’s theory (in which
the game is approximated by a lower and an upper δ-approximation model) [63],
the theory of minimax solutions [64], the theory of viscosity solutions [65], and the
theory of viability [66]; are all possible, but quite different, approaches to build a
mathematically rigorous pursuit-evasion game theory.

Despite the diversity of theoretical frameworks currently available, in this thesis
just Isaacs’ classical methods are used to obtain immediate practical results for the
engineering problem at hands, postponing for future work a reformulation of the
same problem in a modern theoretical framework. For instance, in [50], Bernhard’s
“second order servomechanism problem” is precisely formulated in terms of VREK-
strategies 5 and the corresponding value function is obtained as a viscosity solution
of the corresponding Hamilton-Jacobi-Isaacs equation. An analogous formulation
of the power-electronics control problem that motivates this work in the same
theoretical framework, would clearly enrich the results presented here. However,
a pondered selection of one the aforementioned frameworks and its in-depth study
are still pending duties.

2.3. An assumption about the pay-off functional

From the next section on, up to the end of this chapter, it is assumed that the
PF of the prototype pursuit-evasion differential game (2.3) is of a particular form,
namely the standard form (2.2), i.e., Pf ,T = Pstd

f ,T .

Why are PFs of the form Pkind
f ,T , Ptime

f ,T , and Pdisto
f ,T , left out of consideration?

The reason for dropping games of kind is that they can always be turned into
games of degree by reformulating them as games in time (with Ptime

f ,T as the PF
instead of Pkind

f ,T ). All that has to be done to view the reformulated game as game
of kind is to make Ptime

f ,T (x0,φ,ψ) < +∞ correspond to Pkind
f ,T (x0,φ,ψ) = −1,

and make Ptime
f ,T (x0,φ,ψ) = +∞ correspond to Pkind

f ,T (x0,φ,ψ) = +1, for any

5VREK for Varaiya, Roxin, Elliott and Kalton.
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play (x0,φ,ψ). In turn, as already noted, every game in time can be put as a
game with standard PF (with unitary running cost and null terminal cost).

A different treatment is needed for a game in distance, since a PF of the
form Pdisto

f ,T can not in general be reduced to the standard form. In [67], the VF
of a generic game in distance (as defined in Subsection 2.1.1) is obtained as the
viscosity upper-envelope solution of a variational inequality, under quite general
assumptions. However, having avoided the theory of viscosity solutions, Isaacs’
hint [49, Ch. 2, Sec. 4] to deal with PFs of the form

inf
t≥0

K
Ä
x
f
x0,φ,ψ

(t)
ä

(where K : Rn → R is any smooth function) is resorted next.
Let E1 be that subset of Rn in which E can cause K (x) to increase whatever

P may do, i.e.,

E1 ,

®
x ∈ R

n : sup
ψ∈Ψ

inf
φ∈Φ
〈∇K (x) ,f (x,φ,ψ)〉 > 0

´

where 〈·, ·〉 is the standard inner product on R
n. Let T1 , R

n \ E1. It is clear
that if an infimum of K occurs at all during the course of a play, against optimal
opposition from E, it will occur on ∂T1. Thus, matters are reduced to a game with
(terminal) pay-off of the form (2.2) with G ≡ 0 and H ≡ K. Nevertheless, Isaacs
warns that in certain cases P can achieve the optimal outcome only by causing the
state to enter E1 and leave it again. In such cases the proposed reduction presents
some difficulties and must be handled with care.

A concrete exemplification of how to apply these ideas is deferred to Chapter 5,
where the game in distance associated to the buck converter control problem is
addressed. This game in distance is actually the main object of study of this thesis.

2.4. The solution concept

This and the following two sections of this chapter closely follow [60, Ch. 3-4].
The solution of the prototypical pursuit-evasion differential game G, specified

by (2.3), is a quintet
Ä
EC,EE, φ̃

∗, ψ̃∗,V
ä

characterized by the following properties.

1. The sets EC and EE, called the capture set (CS) and the escape set (ES),
respectively, are subsets of E , the playing set (PS); such that EC ∩ EE = ∅
and EC ∪ EE = E .

2. The strategy φ̃∗ ∈ Φ̃ is a strategy that, if adopted by P, guarantees him
capture of E for every play

Ä
x, φ̃∗, ψ̃

ä
with x ∈ EC and ψ̃ ∈ Ψ̃. The

strategy ψ̃∗ ∈ Ψ̃ is a strategy that, if adopted by E, guarantees him escape
from P for every play

Ä
x, φ̃, ψ̃∗

ä
with x ∈ EE and φ̃ ∈ Φ̃.
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3. The VF of the game V is required to verify

{

V (x) = P̃f ,T
Ä
x, φ̃∗, ψ̃∗

ä
,

P̃f ,T
Ä
x, φ̃∗, ψ̃

ä
≤ P̃f ,T

Ä
x, φ̃∗, ψ̃∗

ä
≤ P̃f ,T

Ä
x, φ̃, ψ̃∗

ä
∀φ̃ ∈ Φ̃, ∀ψ̃ ∈ Ψ̃,

(2.21)
for every x ∈ EC. In accordance with the general set-up delineated in
Section 2.2, the inequalities in (2.21) are called saddle inequalities.

2.5. Semipermeable surfaces

Let S = {x ∈ R
n : D (x) = 0} be a smooth surface given implicitly by a

scalar function D. Let n̂ (x) , ∇D(x)
||∇D(x)|| be the (unit) normal vector to S at

x ∈ S (a generic point of the surface). The point x can be approached from the
two sides of the surface S .

Without loss of generality, assume that E prefers the side of the surface that
corresponds to the positive sense of the normal n̂ (x) and, accordingly, call this
side the E-side. Similarly, assume that P prefers the side of the surface that
corresponds to the negative sense of the normal n̂ (x) and, accordingly, call this
side the P-side.

Suppose that, at x ∈ S , there exists a control ψ∗ ∈ Ψ such that

〈f (x,φ,ψ∗) , n̂ (x)〉 ≥ 0 ∀φ ∈ Φ.

Likewise, suppose that, at x ∈ S , there exists a control φ∗ ∈ Φ such that

〈f (x,φ∗,ψ) , n̂ (x)〉 ≤ 0 ∀ψ ∈ Ψ.

If both ψ∗ and φ∗ exist, then

〈f (x,φ∗,ψ) , n̂ (x)〉 ≤ 〈f (x,φ∗,ψ∗) , n̂ (x)〉 = 0 ≤ 〈f (x,φ,ψ∗) , n̂ (x)〉
∀φ ∈ Φ, ∀ψ ∈ Ψ (2.22)

which means that, obviating tangential penetrations of S , at x ∈ S , P can
prevent the state from crossing the surface S from the P-side to the E-side, and,
at the same time, E can prevent the state from crossing the surface S from the
E-side to the P-side. In this case, the surface S is said to be semi-permeable at x.

If, for every x ∈ S , controls ψ∗ and φ∗ exist (not necessarily unique) such
that (2.22) holds, the surface S is said to be a semipermeable surface. If, at each
x ∈ S one of such controls is picked out for each player, candidate strategies
x 7→ φ̃∗ (x) and x 7→ ψ̃∗ (x) can be constructed and plugged into the SE to yield

dx
dt

= f
Ä
x, φ̃∗ (x) , ψ̃∗ (x)

ä
. (2.23)

If, for every initial condition x0 ∈ S , an unique solution of (2.23) exists through
x0, then the trajectories initiating in S do not leave the surface for t > 0.
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2.6. Isaacs’ equation

Observe that if S is a semipermeable surface for a pursuit-evasion game, then
it is also a semipermeable surface for every other pursuit-evasion game with the
same SE, i.e., the property of semipermeability does not depend on the TS nor on
the PF.

Observe also that if the condition

inf
φ∈Φ

sup
ψ∈Ψ

〈p,f (x,φ,ψ)〉 = sup
ψ∈Ψ

inf
φ∈Φ
〈p,f (x,φ,ψ)〉 ∀ (x,p) ∈ R

n × R
n (2.24)

holds, then (2.22) is equivalent to

inf
φ∈Φ

sup
ψ∈Ψ

〈n̂ (x) ,f (x,φ,ψ)〉 = 0. (2.25)

Indeed, reasoning along the same lines as in Proposition 2.2.2, it can be proved
that the existence of φ∗ ∈ Φ and ψ∗ ∈ Ψ satisfying (2.22) implies

inf
φ∈Φ

sup
ψ∈Ψ

〈n̂ (x) ,f (x,φ,ψ)〉 = sup
ψ∈Ψ

inf
φ∈Φ
〈n̂ (x) ,f (x,φ,ψ)〉 = 0.

Reciprocally, if (2.24) holds, reasoning along the same lines as in Subsection 2.2.4,
the saddle inequalities (2.22) can be derived from (2.25). Note, however, that
the inf-sup problem in the left-hand side (LHS) of (2.25) is defined on a pair of
(non-empty compact and convex) control sets while the inf-sup problem involved
in Subsection 2.2.4 and Subsection 2.2.5 is defined on a pair of admissible sets of
strategies.

2.6. Isaacs’ equation

The concept of solution of a pursuit-evasion game, as introduced in Section 2.4
for the prototype game G (formulated by (2.3)) with standard PF, relies on global
objects like plays. For example, every play

Ä
x, φ̃∗, ψ̃

ä
with x ∈ R

n and ψ̃ ∈ Ψ̃,
must be considered to evaluate the cost function of the game in normal form P̃f ,T
and check if the leftmost of the saddle inequalities in (2.21) is satisfied or not.
These objects are not easy to work with in order to construct candidate solutions
for the game.

The VF, if it exists, may be continuously differentiable in some regions6 of
R
n. Such regions are called regular regions and the points belonging to them are

called regular points. The Isaacs’ equation, which can be regarded as an extension
of Hamilton–Jacobi–Bellman equation from the theory of optimal control to the
theory of pursuit-evasion games, is a necessary condition that the VF has to satisfy
at every regular point of the state space. Isaacs [49] introduces this equation in two
different ways: analytically invoking his “tenet of transition”7, and geometrically
heavily relaying on the concept of semipermeable surface.

Isaacs also devised a verification theorem that, under certain sufficient condi-
tions, allows to affirm that a certain candidate solution is actually a solution of the

6A region of Rn is a non-empty, connected, and open, subset of Rn

7Which turns out to be a two-player extension of Bellman’s “principle of optimality”.
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game in the global sense of section Section 2.4. The enunciation of this theorem
is stated Section 2.7.

2.6.1. The Hamiltonian function

The Hamiltonian function [60] of the game is a functionH : Rn×Rn×Φ×Ψ→
R defined by

H (x,p,φ,ψ) , 〈p,f (x,φ,ψ)〉+G (x,φ,ψ) ,

for every (x,p,φ,ψ) ∈ R
n × R

n × Φ × Ψ, where G : R
n × Φ × Ψ → R is the

running cost function as introduced in (2.2).

2.6.2. The Isaacs’ condition

The Isaacs’ condition [59] is said to hold if

inf
φ∈Φ

sup
ψ∈Ψ

H (x,p,φ,ψ) = sup
ψ∈Ψ

inf
φ∈Φ
H (x,p,φ,ψ) ∀ (x,p) ∈ R

n × R
n. (2.26)

From now on, it is assumed that the Isaacs’ condition hold for the prototype
pursuit-evasion differential game G formulated by (2.3).

2.6.3. Isaacs’ equation

If the value function V exists, it must satisfy Isaacs’ equation:

inf
φ∈Φ

sup
ψ∈Ψ

H (x,∇V (x) ,φ,ψ) = sup
ψ∈Ψ

inf
φ∈Φ
H (x,∇V (x) ,φ,ψ) = 0, (2.27)

in regular regions (i.e., where V is finite and continuously differentiable). In (2.27)
it is made explicit that the order of the inf and sup operations is irrelevant as
a consequence of the assumption that the Isaacs’ condition (2.26) holds8. Note,
however, that the order of the inf and sup may be crucial at points where V is not
continuously differentiable, as emphasized in [59]. An alternative formulation of
Isaacs’ equation in terms of local saddle inequalities is the following:

H (x,∇V (x) ,φ∗,ψ) ≤ H (x,∇V (x) ,φ∗,ψ∗) = 0 ≤ H (x,∇V (x) ,φ,ψ∗)

∀φ ∈ Φ, ∀ψ ∈ Ψ, (2.28)

which is equivalent to

inf
φ∈Φ

sup
ψ∈Ψ

H (x,∇V (x) ,φ,ψ) = 0, (2.29)

under the assumption that Isaac’s condition (2.26) holds.

8Sometimes the interchangeability of inf and sup operations as stated in (2.27) is also
referred to as Isaacs’ condition, even though (2.27) is a weaker condition than (2.26).
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2.6. Isaacs’ equation

Following Isaacs’ terminology, both (2.28) and (2.29) will be indistinctly re-
ferred to as Isaacs’ main equation in its first form (ME1). It may be regarded
as

inf
φ∈Φ

sup
ψ∈Ψ

H (x,p,φ,ψ) = 0, (2.30)

where p subsumes ∇V (x) as a particular case. If functions (x,p) 7→ φ∗ (x,p)
and (x,p) 7→ ψ∗ (x,p) can be judiciously defined such that (φ∗ (x,p) ,ψ∗ (x,p))
solves the (x,p)-parametrized family of inf-sup point-wise problems stated in the
LHS of (2.30), then (2.29) may be rewritten as Isaacs’ main equation in its second
form (ME2):

H (x,∇V (x) ,φ∗ (x,∇V (x)) ,ψ∗ (x,∇V (x))) = 0. (2.31)

The following two sub-subsections are intended to provide a geometric deriva-
tion of Isaacs’ equation.

2.6.3.1. Reduction to a game with terminal pay-off functional

The PF of the prototype pursuit-evasion differential game G, specified by (2.3),
was previously assumed to be of the standard form (2.2). However, if found con-
venient, it can be reduced to a game with terminal PF by means of a well known
state space augmentation technique.

The augmented game Gaug is conceived from G as follows:

Gaug







SE : dxaug

dt (t) = d
dt

ñ
x

xn+1

ô
(t) =

ñ
f (x (t) ,φ (t) ,ψ (t))
G (x (t) ,φ (t) ,ψ (t))

ô
,

TS : Taug , T × R ⊂ R
n+1,

PF :
Çñ
x0

0

ô
,φ,ψ

å
7→ Paug

f ,T

Çñ
x0

0

ô
,φ,ψ

å
,

(2.32)

where Paug
f ,T is a PF of the form (2.2), with Gaug and Haug in place of G and H,

respectively, being Gaug ≡ 0 and Haug defined such that

Haug

Çñ
x

xn+1

ôå
= H (x) + xn+1

for every
ñ
x

xn+1

ô
∈ R

n+1.

2.6.3.2. Geometrical derivation of Isaacs’ equation

Assume, without loss of generality, that G is such that it has terminal PF,
i.e., its running cost G is identically null. Accordingly, V (x) equals the out-
come H

(

x
f

x,φ̃∗,ψ̃∗ (tcap)
)

that results from optimal play by both players, for a
play whose initial state is x ∈ EC ⊂ E and that terminates at capture time
tcap = P̃time

f ,T

Ä
x0, φ̃

∗, ψ̃∗
ä

(finite because x ∈ EC).
Suppose that in a region of EC, the value function V is continuously differenti-

able and non-constant. Every level surface of V in such region must be necessarily
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semipermeable; otherwise, either P could not prevent the state from going into the
side of the surface with higher value of V, or E could not prevent the state from
going into the side of the surface with lower value of V. More precisely:

〈f (x,φ∗,ψ) ,∇V (x)〉 ≤ 〈f (x,φ∗,ψ∗) ,∇V (x)〉 = 0 ≤ 〈f (x,φ,ψ∗) ,∇V (x)〉
∀φ ∈ Φ, ∀ψ ∈ Ψ.

Assuming that (2.24) holds, which is Isaacs’ condition (2.26) for the (current)
G ≡ 0 case, the above semipermeability condition can be equivalently stated as

inf
φ∈Φ

sup
ψ∈Ψ

〈∇V (x) ,f (x,φ,ψ)〉 = 0. (2.33)

as it was argued at the end of (2.5). This last expression is Isaacs’ main equation
in its first form for the the terminal PF case.

If it was the case that the terminal PF considered here had resulted from
augmenting the state space of a n-dimensional game with a standard PF given by
(2.2), then (2.33) could be rewritten as

inf
φ∈Φ

sup
ψ∈Ψ

{〈∇V (x) ,f (x,φ,ψ)〉+G (x,φ,ψ)} = 0. (2.34)

in terms of the functions V and f related to the original game, because the distinct
functions V and f related to the augmented game would satisfy ∂V

∂xn+1
= 1 and

〈ên+1,f (x,φ,ψ)〉 = G (x,φ,ψ), where ên+1 is the (n+ 1)-th canonical unit
vector of Rn+1. The equation (2.34) is Isaacs’ main equation in its first form for
the standard PF case.

2.7. The verification theorem

The following verification theorem (VT) (adapted from [59, Ch. 8]) states suf-
ficient conditions for the existence of a VF and a pair of saddle-point strategies.
It links the solution of a pursuit-evasion differential game with the solution of a
partial differential equation (Isaacs’ equation) with appropriate boundary condi-
tions.

Theorem 2.7.1 (Verification theorem). Consider the pursuit-evasion differential
game G, specified in (2.3) by means of a SE, a TS, and a PF, Pf ,T = Pstd

f ,T , of
the standard form (2.2) with running cost G and terminal cost H. Assume that
the Isaacs’ condition (2.26) holds for G.

If a candidate solution
Ä
EC,EE, φ̃

∗, ψ̃∗,V
ä

for G is known to satisfy only the
first two properties that a valid solution must verify (see Section 2.4), and

1. V is continuously differentiable and satisfies (2.28) in EC,

2. V (x) = H (x) on ∂T , and
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2.7. The verification theorem

3. φ̃∗ and ψ̃∗ are of the form (t,x) 7→ φ̃∗ (t,x) = φ∗ (x,∇V (x)) and (t,x) 7→
ψ̃∗ (t,x) = ψ∗ (x,∇V (x)), respectively, where (x,p) 7→ φ∗ (x,p) and (x,p) 7→
ψ∗ (x,p) are two (not necessarily unique functions) such that (φ∗ (x,p) ,ψ∗ (x,p))
solves the LHS of (2.30);

then,
Ä
EC,EE, φ̃

∗, ψ̃∗,V
ä

is a valid solution of G.

Proof. The third and last property of a valid solution of G needs to be proved, i.e.,
{

V (x0) = P̃f ,T
Ä
x0, φ̃

∗, ψ̃∗
ä
,

P̃f ,T
Ä
x0, φ̃

∗, ψ̃
ä
≤ P̃f ,T

Ä
x0, φ̃

∗, ψ̃∗
ä
≤ P̃f ,T

Ä
x0, φ̃, ψ̃

∗
ä
∀φ̃ ∈ Φ̃, ∀ψ̃ ∈ Ψ̃,

(2.35)
for every x0 ∈ EC.

Consider a play
Ä
x0, φ̃

∗, ψ̃
ä

whose initial state x0 belongs to EC. Such a a play
must necessary terminate at some tcap > 0. Integrating the Hamiltonian function
along the play’s trajectory t 7→ x (t) = x

f

x0,φ̃
∗,ψ̃

(t):

∫ tcap

0
H
Ä
x (t) ,∇V (x (t)) , φ̃∗ (t,x (t)) , ψ̃ (t,x (t))

ä
dt

=
∫ tcap

0

¨
∇V (x (t)) ,f

Ä
x (t) , φ̃∗ (t,x (t)) , ψ̃ (t,x (t))

ä∂
dt

+
∫ tcap

0
G
Ä
x (t) , φ̃∗ (t,x (t)) , ψ̃ (t,x (t))

ä
dt

=
∫ tcap

0

≠
∇V (x (t)) ,

d
dt
x (t)

∑
dt+

∫ tcap

0
G
Ä
x (t) , φ̃∗ (t,x (t)) , ψ̃ (t,x (t))

ä
dt

= V (x (tcap))
︸ ︷︷ ︸

H(x(tcap))

−V (x0) +
∫ tcap

0
G
Ä
x (t) , φ̃∗ (t,x (t)) , ψ̃ (t,x (t))

ä
dt

= P̃f ,T
Ä
x0, φ̃

∗, ψ̃
ä
− V (x0) ≤ 0 (2.36)

where the last inequality results from recognizing that
∫ tcap

0
H
Ä
x (t) ,∇V (x (t)) , φ̃∗ (t,x (t)) , ψ̃ (t,x (t))

ä
dt ≤ 0

because H

Ü

x (t) ,∇V (x (t)) , φ̃∗ (t,x (t))
︸ ︷︷ ︸

φ∗(x(t),∇V(x(t)))

, ψ̃ (t,x (t))

ê

≤ 0 for t ∈ (0, tcap).

Now consider a play
Ä
x0, φ̃, ψ̃

∗
ä

whose initial state x0 belongs to EC. Similarly,

if
Ä
x0, φ̃, ψ̃

∗
ä

terminates at some (other) tcap > 0:

∫ tcap

0
H
Ä
x (t) ,∇V (x (t)) , φ̃ (t,x (t)) , ψ̃∗ (t,x (t))

ä
dt

= P̃f ,T
Ä
x0, φ̃, ψ̃

∗
ä
− V (x0) ≥ 0. (2.37)

From inequalities (2.36) and (2.37), follows (2.35). For plays
Ä
x0, φ̃, ψ̃

∗
ä

that

do not terminate, (2.35) still holds because P̃f ,T
Ä
x0, φ̃, ψ̃

∗
ä

= +∞.
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2.8. The retrograde path equations

The Theorem 2.7.1 presupposes that V is known. However, such function is
not known right at the outset. All that is known is that, in regular regions, it must
satisfy Isaacs’ equation, which reads as ME2, i.e.,

H (x,∇V (x) ,φ∗ (x,∇V (x)) ,ψ∗ (x,∇V (x))) = 0, (2.38)

after a concrete selection of functions (x,p) 7→ φ∗ (x,p) and (x,p) 7→ ψ∗ (x,p),
such that (φ∗ (x,p) ,ψ∗ (x,p)) solves the LHS of (2.30), has been done. Recalling
the definition of the Hamiltonian function, the partial differential equation (2.38),
which has V as unknown, can be rewritten as

〈∇V (x) ,f (x,φ∗ (x,∇V (x)) ,ψ∗ (x,∇V (x)))〉
+G (x,φ∗ (x,∇V (x)) ,ψ∗ (x,∇V (x))) = 0,

or equivalently, alleviating notation, as 〈∇V,f〉 + G = 0. Developing the inner
product:

n∑

i=1

∂V
∂xi

fi +G = 0. (2.39)

Suppose that V is twice continuously differentiable. Differentiation of (2.39) with
respect to xk, i.e., the k-th component of x, yields

n∑

i=1

∂V
∂xk∂xi

fi +
n∑

i=1

∂V
∂xi

Ñ
∂fi
∂xk

+
mP∑

j=1

∂fi
∂φj

∂φ∗j
∂xk

+
mE∑

j=1

∂fi
∂ψj

∂ψ∗j
∂xk

é

+
∂G

∂xk
+

mP∑

j=1

∂G

∂φj

∂φ∗j
∂xk

+
mE∑

j=1

∂G

∂ψj

∂ψ∗j
∂xk

= 0,

where ∂V
∂xk∂xi

= ∂V
∂xi∂xk

. Rearranging terms:

n∑

i=1

∂V
∂xi∂xk

fi +
n∑

i=1

∂V
∂xi

∂fi
∂xk

+
∂G

∂xk

+
mP∑

j=1

∂

∂φj

(
n∑

i=1

∂V
∂xi

fi +G

)

∂φ∗j
∂xk

+
mE∑

j=1

∂

∂ψj

(
n∑

i=1

∂V
∂xi

fi +G

)

∂ψ∗j
∂xk

= 0.

Each φj is bounded. The infimizing φ∗j occurs either in the interior of the bounding
interval or at one of its endpoints. In the former case, the factor ∂

∂φj

Ä∑n
i=1

∂V
∂xi
fi +G

ä

is zero; in the later case, the factor
∂φ∗

j

∂xk
is zero. In any case, the product of

these two factors is zero, and, accordingly,
∑mP
j=1

∂
∂φj

Ä∑n
i=1

∂V
∂xi
fi +G

ä ∂φ∗
j

∂xk
= 0.

Analogously,
∑mE
j=1

∂
∂ψj

Ä∑n
i=1

∂V
∂xi
fi +G

ä ∂ψ∗
j

∂xk
= 0. Moreover,

∑n
i=1

∂V
∂xi∂xk

fi =
∂
∂xi

Ä
∂V
∂xk

ä
ẋ∗i = d

dt

Ä
∂V
∂xk

ä
, being t 7→ x∗ (t) the state space trajectory that res-

ults from P and E playing strategies (t,x) 7→ φ̃∗ (t,x) = φ∗ (x,∇V (x)) and
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(t,x) 7→ ψ̃∗ (t,x) = ψ∗ (x,∇V (x)), respectively. Hence, for each k ∈ {1, . . . , n}:

d
dt

Å
∂V
∂xk

ã
= −

(
n∑

i=1

∂V
∂xi

∂fi
∂xk

+
∂G

∂xk

)

,

where the opposite of the formal derivative of the Hamiltonian function with
respect to xk is recognized in the RHS. Accordingly, introducing the co-state
p (t) , ∇V (x∗ (t)), the n scalar equations (2.8) can be expressed in a single
vectorial equation as:

dp
dt

(t) = −∂H
∂x

(x∗ (t) ,p (t) ,φ∗ (x∗ (t) ,p (t)) ,ψ∗ (x∗ (t) ,p (t))) . (2.40)

In addition, x∗ must satisfy the vectorial SE

dx∗

dt
(t) = f (x∗ (t) ,φ∗ (x∗ (t) ,p (t)) ,ψ∗ (x∗ (t) ,p (t))) ,

which can be written as

dx∗

dt
(t) =

∂H
∂p

(x∗ (t) ,p (t) ,φ∗ (x∗ (t) ,p (t)) ,ψ∗ (x∗ (t) ,p (t))) . (2.41)

The Hamiltonian system
{

dx∗

dt (t) = ∂H
∂p

(x∗ (t) ,p (t) ,φ∗ (x∗ (t) ,p (t)) ,ψ∗ (x∗ (t) ,p (t)))
dp
dt (t) = −∂H

∂x
(x∗ (t) ,p (t) ,φ∗ (x∗ (t) ,p (t)) ,ψ∗ (x∗ (t) ,p (t)))

, (2.42)

that results from collecting (2.40) and (2.41), is a system of 2n scalar ordinary
differential equations, also called characteristic equations of ME2. Solutions of
ME2 can be built from the integral curves of (2.42). This solution method, which
reduces the solution of a partial differential equation to the solution of a system
of ordinary differential equations is known as the method of characteristics.

The solutions of the Hamiltonian system are usually found integrating (2.42)
backwards in time from ∂T into E , because all that is known at the outset of the
game problem in connection with the boundary conditions of ME2 is that every
terminating optimal play must terminate on ∂T where V = H. For this reason, it
is convenient to introduce retrogressive time τ such that dτ

dt = −1, and to rewrite
(2.42) as
{

dx∗

dτ (τ) = −∂H
∂p

(x∗ (τ) ,p (τ) ,φ∗ (x∗ (τ) ,p (τ)) ,ψ∗ (x∗ (τ) ,p (τ)))
dp
dτ (τ) = ∂H

∂x
(x∗ (τ) ,p (τ) ,φ∗ (x∗ (τ) ,p (τ)) ,ψ∗ (x∗ (τ) ,p (τ)))

. (2.43)

The 2n scalar ordinary differential equations subsumed in (2.43) are called ret-
rograde path equations (RPE) by Isaacs. Each a priori feasible initial condition
(x|τ=0 , p|τ=0) (in retrogressive sense) needed for carrying out an integration of
(2.43) is obtained from






x∗|τ=0 ∈ UP ,
p|τ=0 = ∇V (x∗|τ=0) ,

V (x) = H (x) and H (x,∇V (x) ,φ∗ (x,∇V (x)) ,ψ∗ (x,∇V (x))) = 0 if x ∈ ∂T ,
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where UP , the usable part (UP) of ∂T , is the set defined as

UP ,

®
x ∈ ∂T : inf

φ∈Φ
sup
ψ∈Ψ

〈n̂ (x) ,f (x,φ,ψ)〉 ≤ 0
´
,

being n̂ (x) the normal vector to ∂T , at x ∈ ∂T . Observe that at points of E
very near ∂T \UP , E can prevent immediate termination, because he can force
the state velocity vector to point back into E , regardless P’s control action. For
this reason, only UP ⊂ ∂T is usable to fix initial conditions (in the retrogressive
sense) to integrate the RPE.

2.9. Singular surfaces

When solving pursuit-evasion games it is almost always assumed that the PS is
divided into a number of mutually disjoint regions, where the VF is continuously
differentiable. The boundaries of these regions are called singular surfaces. In [59]
a slightly more general definition is adopted: a singular surface is a manifold on
which

1. the values taken by the equilibrium strategies are not uniquely determined
from Isaacs’ equation, or

2. the VF is not continuously differentiable, or

3. the VF function is discontinuous.

Unfortunately, the integration of the RPE fails when reaching a singular surface
and, trickily, in most cases the failure is not evident. An exception, is the switching
surface (also called transition surface) which clearly manifests itself during the
integration of the RPE by occurrence of the first condition enumerated above.
Other known singular surfaces across which the VF is continuous are: the dispersal,
equivocal, universal, focal, and switching envelope surfaces. A singular surface
across which the VF is discontinuous is the barrier. If the ES is not empty, the
semipermeable surface that separates the CS from the ES, in the PS, is a barrier.

Optimal trajectories, do not cross barriers but may cross or follow, other sin-
gular surfaces. In this respect, it must be noted that, the initial conditions for
the integration of the RPE may be specified at any other surface other than the
UP of the boundary of the TS, if an appropriate junction condition for the VF
can be established therein. Accordingly, even if the state space is partitioned by
singular surfaces, the method of characteristics is still the fundamental tool for
solving the game in the regular regions. Generalized characteristics of first or-
der partial differential equations were developed by Melikyan [68] to extend the
method of characteristics so as to overcome the presence of singular surfaces, but
the investigation of this generalization is much beyond the scope of this work.

“In conclusion, the crucial problem in the construction of the value
function is to locate the singular surfaces, but hitherto this problem

34



2.10. Concluding remarks

has not been solved in a systematic way. On the other hand, once a
particular V has been constructed, which is continuously differentiable
in each of a finite number of mutually disjoint regions of the state
space, some conditions (known as “junction conditions”) exist to check
whether the V(x) obtained is really the value function or not. Since
these conditions are not yet very well understood, we do not treat
them here; but for some discussion on this topic the reader is referred
to Bernhard (1977).” (T. Başar and G. J. Olsder 1999, 447–448 [59])

The reference cited by Başar and Olsder is reference [61].

2.10. Concluding remarks

Pursuit-evasion differential games are models of common dynamic conflicts
between two players that evolve in continuous time, such as actual pursuit of an
evader by a pursuer. Within these conflicts, each player would ask himself how
to make the best possible decisions taking into account that his opponent is doing
the same. Although quite natural, these questions are not trivial. The theory of
differential games was born out of trying to answer these questions, motivated by
military combat problems.

Fusing game theory and optimal control theory, Rufus Isaacs, the acknowledged
father of differential game theory, setted up the basis of a new theory which tran-
scends both, with applications in many areas including engineering, economics,
military, biology, and social science.

Differential game theory is actually subsumed in what is mainly called theory
of dynamic games. Nevertheless, it is still a subject of active research often carried
out within involved mathematical frameworks which differ significantly among each
other, both in origin and nature.

In this chapter, just the most fundamental concepts of the classical part of dif-
ferential game theory, known as Isaacs-Breakwell theory, have been introduced.
These early theoretical developments are highly problem-solving oriented, and
therefore, both accessible and appropriate for the practical goal of this thesis,
which is devoted to a concrete game problem.

However, the treatment of singular surfaces, a major part or Isaacs-Breakwell
theory which is far from trivial and fundamental to the solution method, has not
been presented here. Instead, the emphasis of this chapter was put on making
precise, as far as possible, what is meant by solving a pursuit-evasion game, a
notion without with the rest of this work would be meaningless.
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Chapter 3

Model of the buck converter controller’s

struggle against disturbances

In this chapter the buck converter control problem, introduced in Chapter 1,
is precisely formulated in the realm of differential game theory.

In Section 3.1 the selected model for the buck converter is presented and the
requirements on its controller are stated. The control problem is next framed, in
Section 3.2, as a pursuit-evasion differential conflict, in the technical sense given
to the word in Chapter 2, i.e., as the common structure underneath two related
pursuit-evasion games that may be naturally considered in connection with the
control problem: a game in distance and a game in time. All the assumptions
made about the conflict are listed throughout Sections 3.1–3.3.

The rest of the chapter is devoted to the canonization of the conflict and to
the furnishing of a geometric interpretation of it.

3.1. The buck converter control problem

Consider the circuit diagram depicted in Figure 3.1. It is a simplified model of
a DC-DC buck converter, also called step-down converter. A series arrangement
of an ideal inductor L and an ideal resistance RL, and a series arrangement of

+−vI

1

0

L

iL

S RL

C
+
vC
−

RC

iO

+

vO

−

Figure 3.1: Circuit diagram of the buck converter model.
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+−vIσ

L

iL

RL

C
+
vC
−

RC

iO

+

vO

−

Figure 3.2: Equivalent circuit diagram of the buck converter model.

an ideal capacitor C and an ideal resistance RC , model the converter’s inductor
and capacitor, respectively. Resistances RL and RC , are usually referred to as
the parasitic equivalent series resistance (ESR) of the converter’s inductor and
capacitor, respectively. Naturally, it is assumed that

L,RL, C,RC > 0. (A1)

An input voltage vI is supplied to the converter in order to step it down to a
lower voltage, suitable to feed a load which is modelled by an ideal current source
iO.

A switch S is driven by the automatic controller in charge of the converter’s
output voltage control. Let σ be a switching action variable such that: σ = 0 if
the switch is in position 0, while σ = 1 if the switch is in position 1 (see labelled
positions in Figure 3.1). Despite its discrete nature, for convenience of analysis, σ
is allowed to take values in a continuum between its only two realistic values, i.e.,

σ ∈ [0, 1] . (3.1)

As will be seen, this carries no loss of applicability of the results reported in the
following chapters. In Figure 3.2, an equivalent circuit diagram is shown, where
the joint effect of the input voltage and the switching action is modelled by a an
ideal voltage source vIσ.

The input signals iO and vI are considered as unpredictable disturbances such
that

IOmin ≤ iO ≤ IOmax, (3.2)

VImin ≤ vI ≤ VImax, (3.3)

where the constant bounds, IOmin, IOmax, VImin and VImax, are supposed to satisfy

0 ≤ IOmin < IOmax, (A2)

0 < VImin ≤ VImax. (A3)

Let iL be the current through the inductor and let vC be the voltage across the
capacitor. Applying circuit element laws and Kirchhoff’s circuit laws, it readily
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follows that the dynamics of the converter is ruled by

L
diL
dt

= σvI −RLiL − vC −RC (iL − iO) , (3.4)

C
dvC
dt

= iL − iO, (3.5)

where t denotes time. The output voltage of the converter vO, supplied to the
load, is

vO , RC (iL − iO) + vC . (3.6)

Let ê1 ,
î
1 0

ó⊤
and ê2 ,

î
0 1

ó⊤
denote the canonical unit vectors of R

2.
Choosing y , iLê1 + vC ê2 as the state variable, σ and v , iOê1 + vI ê2 as the
input variables, and vO as the output variable, Equations (3.4), (3.5) and (3.6) can
be rewritten as the following state space representation for the converter’s model:

dy
dt

= A′y +B′S (σ)v, (3.7)

vO = l⊤y + (ê2 − l)⊤v,

where

A′ ,

ñ
−RL+RC

L
− 1
L

1
C

0

ô
, B′ ,

ñ
RC

L
1
L

− 1
C

0

ô
, and l ,

ñ
RC
1

ô
(3.8)

are constant matrices, while

S (σ) =
ñ
1 0
0 σ

ô

depends on σ.
The output voltage is required to closely track a reference voltage vR defined

by
vR , VLL0 −RLLiO, (3.9)

where VLL0 and RLL are constant parameters of a given load line specification
such that

VLL0 > 0, RLL ≥ 0. (A4)

The (tracking) error e is defined as

e , vR − vO = VLL0 − l⊤y + (RC −RLL) iO.

The maximum permissible departure from perfect tracking is established by a
given error tolerance E, such that

E > 0, (A5)

by means of the following requirement: |e| < E, which is equivalent to

vR − E < vO < vR + E. (3.10)

In (3.10), the left inequality prevents against under-voltage across the load, whereas
the right inequality prevents against over-voltage across the load. Accordingly, the
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iO

vO

VLL0 vO = VLL0 −RLLiO E

E

VLL0 + E OVC: vO < VLL0 + E −RLLiO

VLL0 − E UVC: vO > VLL0 − E −RLLiO
VLL0 − E −RLLIOmax

IOmax

0
0 IOmin

Figure 3.3: The output voltage of the converter vO, is required to remain within a±E-tolerance
band of a reference load line specification (given by parameters VLL0 > 0 and RLL ≥ 0)
for every load current iO, in the loading range (0 ≤ IOmin ≤ iO ≤ IOmax > 0). The up-
per boundary of the tolerance band corresponds to an over-voltage constraint (OVC) and
its lower boundary corresponds to an under-voltage constraint (UVC). It is assumed that
VLL0 − E −RLLIOmax > 0.

left one will be referred to as the under-voltage constraint (UVC) and the right
one will be referred to as the over-voltage constraint (OVC). In terms of y and iO,
the requirement (3.10) can be restated as

− E <
OVC

VLL0 − l⊤y + (RC −RLL) iO
︸ ︷︷ ︸

e

<
UVC

E, (3.11)

for every instant of time. Loosely stated, the control problem consists of finding
a control law for σ capable of fulfilling (3.11) for every t ≥ 0, under arbitrary
changes in iO and vI , constrained by (3.2) and (3.3). In the following section, this
statement is made precise by describing the control problem as a pursuit-evasion
conflict in the realm of differential game theory.

It is assumed that
VLL0 − E −RLLIOmax > 0, (A6)

so that, even at maximum load current, the lower bound for the required output
voltage is still positive (see Figure 3.3). Note that if the requirement (3.10) is
fulfilled, the electrical power flows from the converter to the load (because vOiO ≥
0) and becomes zero if and only if iO = 0 (because vO > 0).

3.2. The buck converter control problem as a pursuit-

evasion conflict

The buck converter is supposed to be operated by two players: a “malicious”
agent, which will be referred to as the pursuer (P), who controls input v; and a
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“benevolent” automatic controller, which will be referred to as the evader (E), who
controls input σ.

Both control signals, v and σ, are assumed to be bounded (as already stated by
(3.1), (3.2) and (3.3)) but not necessarily continuous; in fact, they are assumed to
be piecewise continuous functions of time. In this set up, for every y0 ∈ R

2, every
piecewise continuous function v : [0,+∞) → [IOmin, IOmax] × [VImin, VImax] and
every piecewise continuous function σ : [0,+∞)→ [0, 1]; the non-homogeneous lin-
ear ordinary differential equation (3.7), has an unique continuous solution yy0,v,σ

:
[0,+∞)→ R

2, such that yy0,v,σ
(0) = y0, given by

yy0,v,σ
(t) = eA

′ty0 +
∫ t

0
eA

′(t−s)B′S (σ (s))v (s) ds

(see, for instance, [69]). Therefore, in (3.11), the term l⊤y is a continuous function
of time, while the term (RC −RLL) iO may be a discontinuous function of time if
RC 6= RLL. The point is that whereas l⊤y can not change instantaneously, the
error e can, if the resistance mismatch RM defined as

RM , RC −RLL,

is not equal to zero. It makes sense, then, to define the (instantaneous) worst-case
error at state y ∈ R

2 as

ewc (y) , VLL0 − l⊤y +RM iwc
O (y) (3.12)

where iwc
O (y), is a not necessarily unique (instantaneous) worst-case load at state

y, such that

iwc
O (y) ∈ arg max

iO∈[IOmin,IOmax]

∣
∣
∣VLL0 − l⊤y +RM iO

∣
∣
∣ . (3.13)

In accordance, the (instantaneous) worst-case output voltage at state y is defined
as:

vwc
O (y) , vR − ewc (y) . (3.14)

Since E wants to ensure (3.11) for every t ≥ 0, whatever P does, he must keep
the state in the set

E
′ ,
ß
y ∈ R

2 : −E <
ROVC

ewc (y) <
RUVC

E

™
,

where ROVC and RUVC are acronym labels for robust over-voltage constraint and
robust under-voltage constraint, respectively. The set E ′ is called the playing set
(PS). It is the set where E wants the state to remain in. Its complement,

T
′ , R

2 \ E ′, (3.15)

is called the target set (TS). It is the set where P wants the state to reach.
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3.2.1. Geometric characterization of the playing set

Define V and D by

V , VLL0 +RM
IOmin + IOmax

2
, D , E − |RM |

IOmax − IOmin

2
,

and let sgn+ : R→ {−1, 1} be a variation of the sign function defined by

sgn+ (x) ,
®

1 if x ≥ 0,
−1 if x < 0.

Proposition 3.2.1. For every state y ∈ R
2, the worst-case error at y is

ewc (y) =
Å∣
∣
∣V − l⊤y

∣
∣
∣+ |RM |

IOmax − IOmin

2

ã
sgn+

Ä
V − l⊤y

ä
, (3.16)

and a worst-case load at y, that can instantaneously attain it, is

iwc
O (y) =

IOmin + IOmax

2
+ sgn+ (RM ) sgn+

Ä
V − l⊤y

ä IOmax − IOmin

2
. (3.17)

Proof. For every y ∈ R
2, iwc

O (y) ∈ arg maxiO∈[IOmin,IOmax]

∣
∣
∣VLL0 − l⊤y +RM iO

∣
∣
∣ .

Parametrizing all possible arguments of this optimization problem as

iO =
IOmin + IOmax

2
+ φ

IOmax − IOmin

2
with φ ∈ [−1, 1] ,

it can be stated that

iwc
O (y) =

IOmin + IOmax

2
+ φ∗

IOmax − IOmin

2
, (3.18)

where φ∗ ∈ arg maxφ∈[−1,1]

∣
∣
∣RM

IOmax−IOmin
2 φ+ VLL0 +RM

IOmin+IOmax
2 − l⊤y

∣
∣
∣ . Re-

call that, by definition, V = VLL0 + RM
IOmin+IOmax

2 , and, to simplify notation,
define: P , RM

IOmax−IOmin
2 and Q , V − l⊤y. With the introduced notation,

φ∗ ∈ arg max
φ∈[−1,1]

|Pφ+Q| .

For every m,n ∈ R, check that

arg max
φ∈[−1,1]

|mφ+ n| =







{1} if mn > 0,
{−1} if mn < 0,
{−1, 1} if m 6= 0 and n = 0,
[−1, 1] if m = 0;

and note that sgn+ (m) sgn+ (n) ∈ arg maxφ∈[−1,1] |mφ+ n|. Hence, in particular,
setting m = P and n = Q,

φ∗ = sgn+ (P ) sgn+ (Q) = sgn+ (RM ) sgn+
Ä
V − l⊤y

ä
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turns out to be an admissible maximizer to substitute in (3.18), in order to choose
a value for iwc

O (y). The resulting value is

iwc
O (y) =

IOmin + IOmax

2
+ sgn+ (RM ) sgn+

Ä
V − l⊤y

ä IOmax − IOmin

2
. (3.19)

By definition, ewc (y) = VLL0− l⊤y+RM iwc
O (y). Substitution of (3.19) yields

ewc (y) =

VLL0−l⊤y+RM
Å
IOmin + IOmax

2
+ sgn+ (RM ) sgn+

Ä
V − l⊤y

ä IOmax − IOmin

2

ã
=

V − l⊤y +RM

Å
sgn+ (RM ) sgn+

Ä
V − l⊤y

ä IOmax − IOmin

2

ã
=

Å∣
∣
∣V − l⊤y

∣
∣
∣+ |RM |

IOmax − IOmin

2

ã
sgn+

Ä
V − l⊤y

ä
.

Corollary 3.2.1.

E
′ =
ß
y ∈ R

2 : V −D <
RUVC

l⊤y <
ROVC

V +D

™
=
{

y ∈ R
2 :

∣
∣
∣l⊤y − V

∣
∣
∣ < D

}

Proof. For every y ∈ R
2, y ∈ E ′ if and only if −E <

ROVC
ewc (y) <

RUVC
E, being

ewc (y) =
(∣
∣
∣V − l⊤y

∣
∣
∣+ |RM | IOmax−IOmin

2

)

sgn+
Ä
V − l⊤y

ä
as proved in the previ-

ous proposition.
If V − l⊤y ≥ 0, ROVC is automatically satisfied, whereas RUVC requires:

V − l⊤y < E − |RM | IOmax−IOmin
2 = D. If V − l⊤y < 0, RUVC is automatically

satisfied, whereas ROVC requires: −D = −
Ä
E − |RM | IOmax−IOmin

2

ä
< V − l⊤y.

Consequently, y ∈ E ′ if and only if
∣
∣
∣l⊤y − V

∣
∣
∣ < D.

From the previous corollary, it is clear that in order to avoid the case in which
E ′ = ∅ (extremely unfortunate for E), it must be assumed that

D = E − |RC −RLL|
IOmax − IOmin

2
> 0. (A7)

Recalling the definitions of V , D, and RM , it can be easily checked that

V −D −RCIOmax =







VLL0 − E −RLLIOmax if RM > 0,

VLL0 − E −RLLIOmin +RC (IOmin − IOmax) if RM < 0,

VLL0 − E −RCIOmax if RM = 0,

=







VLL0 − E −RLLIOmax if RM > 0,

VLL0 − E −RLLIOmax −RM (IOmax − IOmin) if RM < 0,

VLL0 − E −RLLIOmax if RM = 0,

consequently, by assumptions (A6), (A1), (A2), and (A4), the following inequality
must hold:

V −D −RCIOmax > 0. (3.20)
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iL

vC

V
vC = V −RC iL D

D

V + D
ROVC: vC < V + D −RC iL

V −D
RUVC: vC > V −D −RC iL

0
0

l̂E ′

T ′

T ′

Figure 3.4: The playing set (PS) E ′ is an unbounded open band in the state space, delimited
by two straight lines: RCiL +vC = V +D (the ROVC) and RCiL +vC = V −D (the RUVC),

where V > D > 0. This band is perpendicular to the unit vector l̂ = 1√
RC

2+1

î
RC 1

ó⊤
.

The target set (TS) is T ′ = R
2 \ E ′.

In addition,
V > D > 0, (3.21)

since RCIOmax > 0 by (A1)–(A2), and D > 0 by (A7).
Geometrically, E ′, the PS, is an unbounded open band delimited by two

straight lines:
®
y ∈ R

2 :
¨
y, l̂
∂

=
V

||l|| +
D

||l||

´
,

®
y ∈ R

2 :
¨
y, l̂
∂

=
V

||l|| −
D

||l||

´
;

where l̂ , l
||l|| = 1√

RC
2+1

î
RC 1

ó⊤
is a unit vector perpendicular to the band, and

〈·, ·〉 is the standard inner product on R
2, defined by 〈y1,y2〉 , y1

⊤y2 for every
y1,y2 ∈ R

2. This band is illustrated in Figure 3.4. Observe that 0 /∈ E ′, because
(3.21) holds.

3.2.2. The relation between the worst-case error and the oriented

distance to the target set

Recall, from Chapter 2, that the oriented distance function disto : R2 × 2R
2 \

{∅} → R between a point and a non-empty subset of R2 is defined by

disto (x,X ) ,

{

+dist (x,X ) if x ∈ X ∁,

−dist
Ä
x,X ∁

ä
if x ∈ X ,
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3.2. The buck converter control problem as a pursuit-evasion conflict

for every x ∈ R
2 and every X such that ∅ 6= X ⊂ R

2. Having characterized the
PS geometrically, it is a simple matter to find the oriented distance function to its
complement (the TS):

disto
(
y,T ′) =

D

||l|| −
∣
∣
∣
∣
∣

Æ
y − V

||l|| l̂, l̂
∏∣
∣
∣
∣
∣

=
1
||l||

(

D −
∣
∣
∣V − l⊤y

∣
∣
∣

)

. (3.22)

Note that, the term
∣
∣
∣V − l⊤y

∣
∣
∣ in (3.22) is given by proposition 3.2.1 (after

taking absolute value of ewc (y)):

∣
∣
∣V − l⊤y

∣
∣
∣ = |ewc (y)| − |RM |

IOmax − IOmin

2
. (3.23)

Hence, disto (y,T ′) = 1
||l||
Ä
D − |ewc (y)|+ |RM | IOmax−IOmin

2

ä
, where, by defini-

tion, D = E − |RM | IOmax−IOmin
2 . Cancellation of |RM | IOmax−IOmin

2 yields

disto
(
y,T ′) =

1
||l|| (E − |e

wc (y)|) . (3.24)

This last equality endows the concept of oriented distance to T ′ with phys-
ical significance in terms of the (state-dependent) worst-case error (as defined by
(3.12)–(3.13)), the error tolerance E, and the factor ||l|| =

»
R2
C + 1. Moreover,

it makes clear that maximization of disto (·,T ′) is equivalent to minimization of
|ewc (·)|.

Observe, however, that even for points y on the line
¶
y ∈ R

2 : l⊤y = V
©

(where the oriented distance to T ′ is maximum), the quantity |ewc (y)| is not
equal to zero in general. Actually, it follows from (3.23) that

|ewc (y)| = |RM |
IOmax − IOmin

2
if l⊤y = V. (3.25)

Therefore, the absolute value of the worst-case error is uniform and positive (except
if RM = 0) along the axis

¶
y ∈ R

2 : l⊤y = V
©

of the band E ′ (see Figure 3.4).
The distance D

||l|| = D√
R2

C
+1

between this axis and T ′, is 1√
R2

C
+1

times the difference

D = E − |RM | IOmax−IOmin
2 (which was assumed to be positive by (A7)).

In summary, the difference E − |ewc (y)|, between the error tolerance and the
(instantaneous) absolute worst-case error at state y =

î
iL vC

ó
∈ R

2 is propor-
tional to the oriented distance disto (y,T ′) between the state y and the target set
T ′, being

»
R2
C + 1 the coefficient of proportionality, i.e.,

E − |ewc (y)| =
»
R2
C + 1 disto

(
y,T ′) . (3.26)

The (instantaneous) absolute worst-case error function

y 7→ |ewc (y)| =
∣
∣
∣
∣VLL0 +RM

IOmin + IOmax

2
−RCiL − vC

∣
∣
∣
∣+ |RM |

IOmax − IOmin

2
,

(3.27)
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has a minimum positive value equal to |RM | IOmax−IOmin
2 , along the line

ßî
iL, vC

ó⊤ ∈ R
2 : RCiL + vC = VLL0 +RM

IOmin + IOmax

2

™
(3.28)

(which vanishes only if the mismatch RM = RC − RLL is zero), and is constant
along straight lines parallel to (3.28). Assumption (A7) prevents the playing set
E ′ =

{
y ∈ R

2 : E − |ewc (y)| > 0
}

from being empty.

3.2.3. The conflict and its two related games

So far, a pursuit-evasion differential game has not been properly formulated
yet, but the two components needed to pose a pursuit-evasion conflict have already
been introduced, namely a state equation (SE) (differential equation (3.7)) and a
target set (TS) (set definition (3.15)). Let C′ denote this (realistic) buck converter
(pursuit-evasion) conflict:

C′

®
SE : dy

dt = f ′ (y,v, σ) , A′y +B′S (σ)v,
TS : T ′ =

¶
y ∈ R

2 : |l⊤y − V | ≥ D
©
,

(3.29)

where f ′ is introduced just to denote the right-hand side the SE, being its first
argument the state, its second argument P’s control, and its third argument E’s
control. This conflict formulation will be referred to as realistic to distinguish it
from the canonical formulation that will be derived in Section 3.4.

In order to formulate a pursuit-evasion differential game, as defined in Chapter 2,
a pay-off functional (PF) must be introduced to make precise both players’ (ant-
agonistic) aims. Two alternative PFs may be naturally considered to accompany
(3.29); one gives rise to a game in distance Gdist

′ and the other one gives rise to a
game in time Gtime

′. With the notation introduced in Chapter 2, these two games
are unambiguously given by:

Gdist
′

{
C′,

PF : (y0,v, σ) 7→ Pdisto

f ′,T ′ (y0,v, σ) = inf
{

disto

(

y
f ′

y0,v,σ (t) ,T ′
)

: t ≥ 0
}

,

Gtime
′

{
C′,

PF : (y0,v, σ) 7→ Ptime
f ′,T ′ (y0,v, σ) = inf

{

t ≥ 0 : yf
′

y0,v,σ (t) ∈ T ′
}

;

where it is understood that Pdisto

f ′,T ′ (y0,v, σ) = −∞ if
{

disto

(

y
f ′

y0,v,σ (t) ,T ′
)

: t ≥ 0
}

is not bounded below, and Ptime
f ′,T ′ (y0,v, σ) = +∞ if

{

t ≥ 0 : yf
′

y0,v,σ (t) ∈ T ′
}

is
empty.
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3.2. The buck converter control problem as a pursuit-evasion conflict

3.2.4. Physical interpretation of the game in distance

Note that, by virtue of (3.26) which relates the functions disto (·,T ′) and
|ewc (·)|, the game Gdist

′ may be also expressed as

Gdist
′







C′,

PF : (y0,v, σ) 7→ Pdisto

f ′,T ′ (y0,v, σ) = inf







E−
∣
∣
∣ewc
Ä
y

f′

y0,v,σ(t)
ä∣
∣
∣√

R2
C

+1
: t ≥ 0






,

(3.30)

which is equivalent to

G−|ewc|
′

{
C′,

PF : (y0,v, σ) 7→ P−|e
wc|

f ′,T ′ (y0,v, σ) = inf
{

−
∣
∣
∣ewc

(

y
f ′

y0,v,σ (t)
)∣
∣
∣ : t ≥ 0

}

,

because their PFs are related by
»
R2
C + 1 Pdisto

f ′,T ′ (y0,v, σ) = E + P−|e
wc|

f ′,T ′ (y0,v, σ) (3.31)

for every play (y0,v, σ), where
»
R2
C + 1 is clearly positive. Accordingly, the games

Gdist
′ and G−|ewc|

′ share the same optimal strategies, and their VFs (let them be
Vdisto and V−|ewc|, respectively) relate as their respective PFs, i.e.,

»
R2
C + 1 Vdisto (y0) = E + V−|ewc| (y0) , (3.32)

for every y0 ∈ R
2.

Observe that while both in (3.31) and (3.32) the two factors involved in the
left-hand side lack a physical meaning, the sum of the right-hand side has a clear
physical meaning, namely: for every initial state y0, the signed difference (in a
voltage unit such as volts) between the error tolerance and the absolute value of
the worst-case error along a whole play (y0,v, σ) in case of (3.31), and along the
whole play that results from P and E putting into practice their optimal strategies
in case of (3.32).

Just to emphasise the above interpretation in a slightly different (more natural)
way, suppose we abandon the until now respected criterion that assigns P the
role of the infimizer and E the role of the supremizer. Suppouse P becomes the
supremizer and E the infimizer in a new game defined as

G|ewc|
′

{
C′,

PF : (y0,v, σ) 7→ P |e
wc|

f ′,T ′ (y0,v, σ) = inf
{∣
∣
∣ewc

(

y
f ′

y0,v,σ (t)
)∣
∣
∣ : t ≥ 0

}

.

(3.33)

whose VF is named V|ewc|. In agreement with the above statements, V|ewc| relates
to Vdisto by »

R2
C + 1 Vdisto (y0) = E − V|ewc| (y0) , (3.34)

for every y0 ∈ R
2. This last expression, makes clear the significance that Vdisto

(the VF of Gdist
′) has, by relating it to V|ewc| which is the VF of the game G|ewc|

′

in which E struggles to infimize the worst-case error (which depends only on the
system’s state) over an infinite time horizon, while P struggles to supremize it.
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Parameter Description Unit

L inductance of the converter’s inductor H
RL parasitic ESR of the converter’s inductor Ω
C capacitance of the converter’s capacitor F
RC parasitic ESR of the converter’s capacitor Ω
IOmin minimum load current A
IOmax maximum load current A
VImin minimum input voltage V
VImax maximum input voltage V
VLL0 reference voltage for open circuit load V
RLL characteristic load line resistance Ω
E error tolerance V

Table 3.1: List of (realistic) parameters that define a buck converter conflict.

3.3. Further assumptions

The pursuit-evasion conflict just described is completely characterized by el-
even independent parameters listed in Table 3.1. In order to limit the analysis
scope of this thesis to the region of interest in the parameter space, the follow-
ing non-trivial assumptions on time constants are introduced, in addition to the
natural general assumptions (A1)–(A7):

√
LC

2
<

L

RL +RC
, (A8)

RCC <
√
LC. (A9)

Assumption (A8) is equivalent to require that the L-C filter is designed to be
under-damped, which is the usual case. Assumption (A9) states that the parasite
time constant RCC is lower than the L-C filter time constant, which is also the
usual case.

Note that assumption (A9) could have been equivalently stated as an inequality
for impedances, RC <

»
L
C

, or as an inequality for other time constants, RCC <
L
RC

, since

RCC <
√
LC ⇐⇒ RC <

 
L

C
⇐⇒ RC

2 <
L

C
⇐⇒ RCC <

L

RC
. (A9’)

3.4. A canonical formulation of the conflict

In this section it is shown that, under assumptions (A1)–(A9), the buck con-
verter conflict can be put in a canonical form, characterized by seven dimensionless
real parameters, in which the SE and the PS turn out to acquire quite simple forms.
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3.4. A canonical formulation of the conflict

The canonical form results from following Hirsch and Smale’s [70] approach
to ordinary differential equations. In particular, by transforming the state space
by means of a suitably chosen affine transformation (interpreted geometrically in
Appendix A) and by normalizing time and P’s control.

3.4.1. State space transformation

Let ωn, ζ, R and λ be defined as follows:

ωn ,
1√
LC

, ζ ,
1

2ωn

Å
RL +RC

L

ã
, R ,

 
L

C
, λ ,

RC
R
. (3.35)

Assumptions (A1) and (A8) imply that

0 < ζ < 1. (3.36)

Likewise, assumptions (A1) and (A9) imply that

0 < λ < 1. (3.37)

Since RL = (2ζ − λ)R, assumption (A1) requires that

λ < 2ζ. (3.38)

Matrices A′ and B′, defined in (3.8), can be expressed as A′ =
ñ
−2ζωn −ωn

R

Rωn 0

ô

and B′ =
ñ
λωn

ωn

R

−Rωn 0

ô
. The eigenvalues of A′ are the roots of the characteristic

polynomial
pA′(s) , s2 + 2ζωns+ ω2

n,

whose roots are −ζωn ± jωd, being

ωd ,
»

1− ζ2ωn.

Let h : R2 → R
2 such that

h (·) , P (D ·+V ê2) , (3.39)

where P ,
√

1−ζ2

(ζ−λ)2+1−ζ2
1
R





1 − ζ−λ√
1−ζ2

−λR (1−ζλ)√
1−ζ2

R



. P is invertible because detP =

√
1−ζ2

(ζ−λ)2+1−ζ2
1
R
> 0. Therefore, h is invertible and

x , h−1 (y) =
1
D

Ä
P−1y − V ê2

ä
(3.40)

can be introduced as a new state variable. Substitution of

y = h (x) = P (Dx+ V ê2) (3.41)
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in the SE of (3.29) followed by left-multiplication by matrix P−1 yields

d (Dx)
dt

= J (Dx) + P−1B′S (σ)v + V Jê2. (3.42)

where J = P−1A′P = ωd





− ζ√
1−ζ2

−1

1 − ζ√
1−ζ2



, P−1B′ = ωd




− ζ(1+λ2)−2λ

1−ζ2 R 1−ζλ
1−ζ2

− 1−λ2√
1−ζ2

R λ√
1−ζ2



.

Observe that the ordinary differential equation (3.42) rules the temporal evolution
of Dx, whose two components have the dimension of voltage, but the components
of x = h−1 (y) are dimensionless.

To find out how the PS, E ′, is transformed through h−1 observe that

y ∈ E ′ ⇐⇒
∣
∣
∣l⊤y − V

∣
∣
∣ < D ⇐⇒

∣
∣
∣l⊤P (Dx+ V ê2)− V

∣
∣
∣ < D

⇐⇒
∣
∣
∣ê2
⊤ (Dx+ V ê2)− V

∣
∣
∣ < D ⇐⇒

∣
∣
∣Dê2

⊤x
∣
∣
∣ < D ⇐⇒

∣
∣
∣ê2
⊤x
∣
∣
∣ < 1, (3.43)

where it was used that l⊤ =
î
RC 1

ó
=
î
λR 1

ó
and l⊤P = ê2

⊤ as can be easily
checked. Defining

E ,
¶
x ∈ R

2 : |〈ê2,x〉| < 1
©
,

the chain of double implications (3.43) proves that h−1 (E ′) = E . Likewise,
h−1 (T ′) = T , where

T , R
2 \ E =

¶
x ∈ R

2 : |〈ê2,x〉| ≥ 1
©
.

Note that J = P−1A′P is the real Jordan form [70] of A′, obtained by the
similarity transformation matrix P . The first and second columns of P are, re-
spectively, the imaginary part and the real part of an eigenvector w+ of A′ that
corresponds to the eigenvalue ζωn+jωd. Every eigenvector w+

z = zw+ of the same
eigenspace, such that z ∈ C \ {0}, would have yielded the same real Jordan form
J through a similarity transformation matrix P z defined as P z =

î
ℑw+

z ℜw+
z

ó
;

but, only for z = 1, the property l⊤P z = ê2
⊤ used in 3.43, would have been

preserved.
The only “other” real Jordan form ofA′ that could have been considered is J⊤.

It could have been obtained by any similarity transformation matrix constructed
as just described, but derived from the other eigenspace (the one that corresponds
to the eigenvalue ζωn− jωd). The inconvenience of these similarity transformation
matrices is that, unlike matrices P z, they all have negative determinant; so, if
they were used in place of P in (3.39), they would define orientation reversing
transformations y 7→ x , h−1 (y) of R2. From the two alternatives, the orientation
preserving one was selected.

3.4.2. Pursuer’s control normalization

Defining

N ,

ñ
IOmax 0

0 VImax

ô
, i▽o , IOmin / IOmax, v▽i , VImin / VImax,
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and a new control variable for the pursuer,

u ,

ñ
io
vi

ô
= N−1v =

ñ
iO/IOmax

vI/VImax

ô
,

(3.42) becomes

d (Dx)
dt

= J (Dx) + P−1B′NS (σ)u+ V Jê2, (3.44)

because v = Nu and S (σ)N = NS (σ). The new parameters i▽o and v▽i satisfy

0 ≤ i▽o < 1, (3.45)

0 < v▽i ≤ 1, (3.46)

because of assumptions (A2) and (A3).
Dividing by VImax, (3.44) becomes

d (δx)
dt

= J (δx) +
1

VImax
P−1B′NS (σ)u+ νJê2, (3.47)

where

ν ,
V

VImax
, δ ,

D

VImax
,

being VImax > 0 by (A3). Note, for future reference, that

δ > 0 (3.48)

because of (A7).

3.4.3. Time normalization

Introducing normalized time as

t , ωdt,

and dividing both sides of (3.47) by ωdδ, it turns to

dx
dt

=
1
ωd
J

︸ ︷︷ ︸

A

x+
1

ωdδVImax
P−1B′N

︸ ︷︷ ︸

B

S (σ)u+
ν

δ

1
ωd
Jê2

︸ ︷︷ ︸

c

,

where new matrices A, B, and a new vector c were introduced. Denoting

ρ ,
IOmax

VImax
R,

matrixB can be expressed asB = 1
ωdδVI max

P−1B′N = 1
δ




− ζ(1+λ2)−2λ

1−ζ2 ρ 1−ζλ
1−ζ2

− 1−λ2√
1−ζ2

ρ λ√
1−ζ2



.

Clearly, from assumptions (A1)–(A3):

ρ > 0. (3.49)

Notice also that
ν − δ − λρ > 0 (3.50)

because (ν − δ − λρ)VImax = V −D −RCIOmax > 0 by (3.20).
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3.4.4. The proposed canonical form

In conclusion, every buck converter conflict (3.29) can be put in the following
canonical form:

C

®
SE : dx

dt = f (x,u, σ) , Ax+BS (σ)u+ c,
TS : T =

{
x ∈ R

2 : |〈ê2,x〉| ≥ 1
}

;
(3.51)

where

A ,





− ζ√
1−ζ2

−1

1 − ζ√
1−ζ2



 , B ,
1
δ




−1+λ2

1−ζ2

Ä
ζ − 2λ

1+λ2

ä
ρ 1−ζλ

1−ζ2

− 1−λ2√
1−ζ2

ρ λ√
1−ζ2



 , c ,
ν

δ

[ −1
− ζ√

1−ζ2

]

,

S (σ) =
ñ
1 0
0 σ

ô
, u =

ñ
io
vi

ô
, i▽o ≤ io ≤ 1, v▽i ≤ vi ≤ 1, 0 ≤ σ ≤ 1.

The new function f , introduced in (3.51), denotes the right-hand side the SE,
being its first argument the state, its second argument P’s control, and its third
argument E’s control.

The canonical form is given by seven dimensionless real parameters, derived
from the eleven realistic parameters listed in Table 3.1, as it is detailed in Table 3.2.
The seven parameters that characterize the canonical form will be referred to as
canonical parameters and they must satisfy the following necessary conditions

0 < ζ, λ < 1, λ < 2ζ, (3.52)

0 ≤ i▽o < 1, 0 < v▽i ≤ 1, (3.53)

δ, ρ > 0, ν > δ + λρ, (3.54)

derived from assumptions (A1)–(A9), as already noted in (3.36), (3.37), (3.38),
(3.45), (3.46), (3.48), (3.49), and (3.50). According to (3.52)–(3.54), the canonical
form parameter space is strictly included in the half-space ν > 0. This parameter
space, is not bounded, however its intersection with every hyperplane of constant ν
is bounded. Moreover, recalling that ν = VImax

−1
Ä
VLL0 +RM

IOmin+IOmax
2

ä
, it is

clear that a reasonable upper bound for ν can be established if it were necessary to
explore a bounded parameter space under assumptions (A1)–(A9). This would be
the case if, for example, optimal parameters (in some sense) were being searched.

It must be emphasised that this canonical form is proposed just as a convention
to parametrize the collection of all possible instances of buck converter conflicts.
However, other conventions may be used. In a deep sense, what only deserves to
be called canonical is the real Jordan form, J , of A′.

Just for completeness, notice that as a result of the conflict canonization C′
;

C, the accompanying games, Gdist
′ and Gtime

′, need consistent canonizations,
Gdist

′
; Gdist and Gtime

′
; Gtime, into natural reformulations:

Gdist

®
C,

PF : (x0,u, σ) 7→ Pdisto
f ,T (x0,u, σ) = inf

¶
disto

Ä
x
f
x0,u,σ (t) ,T

ä
: t ≥ 0

©
,

Gtime

®
C,

PF : (x0,u, σ) 7→ Ptime
f ,T (x0,u, σ) = inf

¶
t ≥ 0 : xfx0,u,σ (t) ∈ T

©
.
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Parameter Definition Range

ζ 1
2

(RL + RC)
¿»

L
C

λ
2

< ζ < 1

λ RC

¿»
L
C

0 < λ < min {1, 2ζ}
ρ

»
L
C

¿ (
VI max

IOmax

)

0 < ρ < ν−δ
λ

ν
Ä
VLL0 + (RC −RLL) IOmin+IOmax

2

ä ¿
VImax ν > δ + λρ

δ
Ä
E − |RC −RLL| IOmax−IOmin

2

ä ¿
VImax 0 < δ < ν − λρ

i▽o IOmin

¿
IOmax 0 ≤ i▽o < 1

v▽
i VImin

¿
VImax 0 < v▽

i ≤ 1

Table 3.2: If assumptions (A1)–(A9) hold for a (realistic) buck converter conflict, then it can
be reduced to a canonical form characterized by the seven dimensionless canonical parameters
defined in this table.

3.4.5. From the canonical form back to a realistic form

Given known values for the seven canonical parameters (ζ, λ, ρ, ν, δ, i▽o , and
v▽i ) that verify the necessary conditions (3.52)–(3.54), there is no unique way of
obtaining values for the eleven realistic parameters (L, RL, C, RC , IOmin, IOmax,
VImin, VImax, VLL0, RLL and E). A way to do so, is to choose values for

IOmax, VImax, ωn =
1√
LC

, and RM = RC −RLL;

such that

IOmax, VImax, ωn > 0, (3.55)

νVImax −RM
1 + i▽o

2
IOmax > 0, (3.56)

λρ
VImax

IOmax
−RM ≥ 0, (3.57)

(ν − δ − λρ)VImax +RM
(
1− i▽o

)
IOmax > 0 if RM < 0; (3.58)

and calculate each realistic parameter as dictated by Table 3.3. The inequalities
(3.56) and (3.57) must hold in order to obtain VLL0 > 0 and RLL ≥ 0, respectively,
as required by assumption (A4). If RM is chosen negative, the inequality (3.58)
must also hold in order to guarantee VLL0 − E − RLLIOmax > 0, as required by
assumption (A6); but if RM > 0, the necessary condition ν−δ−λρ > 0 is sufficient
to guarantee VLL0 − E −RLLIOmax > 0, since (according to Table 3.3):

VLL0 − E −RLLIOmax = (ν − δ − λρ)VImax − (|RM | −RM )
1− i▽o

2
IOmax.

The necessary conditions (3.52)–(3.54) in conjunction with (3.55)–(3.58) are
sufficient conditions to comply with assumptions (A1)–(A9), as can be easily
checked.

Observe that if the necessary conditions (3.52)–(3.54) hold and (3.55) hold,
then (3.56)–(3.58) also hold for RM sufficiently small.
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Realistic parameter Synthesised as

L (ρ/ωn) (VImax/IOmax)
RL (2ζ − λ) ρ (VImax/IOmax)

C (ωnρ)−1 (IOmax/VImax)
RC λρ (VImax/IOmax)

IOmin i▽o IOmax

IOmax IOmax

VImin v▽
i VImax

VImax VImax

VLL0 νVImax −RMIOmax (1 + i▽o ) /2
RLL λρ (VImax/IOmax)−RM

E δVImax + |RM | IOmax (1− i▽o ) /2

Table 3.3: Synthesis of a 11-tuple of realistic parameters values from a given 7-tuple of
canonical parameters values (ζ, λ, ρ, ν, δ, i▽o , v

▽
i ) and a choice of values for IOmax, VI max,

ωn = 1/
√
LC and RM = RC −RLL.

3.4.6. Geometric parameters

To end this section about the canonical formulation of the buck converter
conflict, a new set of derived parameters is introduced.

Let α and β be defined by

α , Arctan
Ç

ζ
√

1− ζ2

å
, β , Arctan

Ç
ζ − λ
√

1− ζ2

å
, (3.59)

where Arctan is the principal value function of the arctangent relation, so that
α, β ∈ (−π

2 ,
π
2

)
. These two angles depend only on L, RL, C and RC as it is shown

in figure Figure 3.5. Let also δ0, δ1 and δ2 be defined by

δ0 ,
ν

δ
,

δ1 ,
ρ

δ

1− ζ2 + (ζ − λ)2

√

1− ζ2
=
ρ

δ

cosα
cos2 β

,

δ2 ,
1
δ

»
1− ζ2 + (ζ − λ)2

√

1− ζ2
=

1
δ

1
cosβ

.

The previous five definitions define a map

(
ζ, λ, ρ, ν, δ, i▽o , v

▽
i

) 7→ (
α, β, δ0, δ1, δ2, i

▽
o , v

▽
i

)
(3.60)

on the parameter space of the canonical form. The parameters defined by this
map will be referred to as the geometric parameters of the conflict (for reasons
that will become apparent soon) and are summarized in Table 3.4. Since this map
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1 ζ = 1
2

(RC + RL)
¿»

L
C

√
1− ζ2

α

»
1− ζ2 + (ζ − λ)

2

ζ − λ = 1
2

(RL −RC)
¿»

L
C

√
1− ζ2

β

Figure 3.5: Geometric definition of angles α and β.

Geometrical parameter Definition

α Arctan

Ç
ζ√

1−ζ2

å

β Arctan

Ç
ζ−λ√
1−ζ2

å

δ0 ν/δ

δ1 (ρ/δ) 1−ζ2+(ζ−λ)2√
1−ζ2

δ2 (1/δ)

√
1−ζ2+(ζ−λ)2√

1−ζ2

i▽o i▽o
v▽
i v▽

i

Table 3.4: Definitions of the geometrical parameters of a buck conflict. The function Arctan
that appears in the table is the principal value function of the arctangent relation.

is invertible (see Table 3.5), it is clear that any realistic buck converter conflict, once
reduced to its canonical from, can be characterized equally well by its canonical
parameters or by its geometrical parameters. The only geometric parameter that
can take a non-positive value is β, in case RL ≤ RC . The rest of the geometric
parameters are positive by definition.

As the canonical parameters, the geometric parameters are not all independent.
Indeed, they must satisfy

0 < α <
π

2
, −α < β < α, tanα− tan β < secα, (3.61)

δ1, δ2 > 0, δ0 > 1 + (tanα− tan β) δ1 cos2 β, (3.62)

0 ≤ i▽o < 1, 0 < v▽i ≤ 1. (3.63)

so that if they are converted into canonical parameters (as detailed in Table 3.5),
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Canonical parameter Expression in terms of geometrical parameters

ζ sin α
λ cos α (tan α− tan β)

ρ (δ1/δ2)
Ä

cosβ
cosα

ä

ν (δ0/δ2)
(

1
cosβ

)

δ (1/δ2)
(

1
cosβ

)

i▽o i▽o
v▽
i v▽

i

Table 3.5: Conversion from geometric parameters to canonical parameters.

the necessary conditions (3.52)–(3.54) are fulfilled. In particular, the inequalities
(3.61) are consequence of (3.52) and definitions (3.59) for α and β (see Figure 3.5);
and in (3.62) the inequality δ0 > 1+(tanα− tan β) δ1 cos2 β results from requiring
ν
δ
> 1 + λρ

δ
as imposed by (3.54). Accordingly, observe that δ0 = ν

δ
> 1.

3.5. Geometric interpretation of the canonical conflict

The canonical form derived in the previous section not only reduces the dimen-
sion of the original parameter space, but it also formulates the conflict in a way
amenable to geometric reasoning. In order to exploit this, using a succinct math-
ematical language, the standard representation of complex numbers as points of
the Euclidean plane will be employed. However, we take Ahlfors’ [71] point of view
that conclusions in analysis should be derived from the properties of real numbers,
and not from the axioms of geometry, thereby relieving us from the exigencies of
rigor in connection with geometric considerations.

To follow this approach to plane geometry, described by Zwikker [72] as “the
geometrical interpretation of identities in complex numbers”, in this section the
canonical conflict is reformulated in the complex plane. Before doing this, some
basic facts about complex analysis are recalled to fix notation.

3.5.1. Identification of the Euclidean plane with the set of complex

numbers

Throughout this thesis, almost standard notation of complex analysis is used
(see, for instance, [71] for a thorough treatment of this branch of mathematical
analysis). The set of all complex numbers, the complex plane, is denoted C. For
every element z = ξ + jη in C (where ξ, η ∈ R and where j is the imaginary unit)
the real part of z, ξ, is denoted ℜz; the imaginary part of z, η, is denoted ℑz;
and the complex conjugate of z, ξ − jη, is denoted z. The absolute value of z is
|z| ,

√
zz =

√

ξ2 + η2 (it is understood that all square roots of positive numbers
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are taken with the positive sign).

The exponential function z 7→ e z can be characterized in a variety of equivalent
ways. Typically, it is defined in C by e z ,

∑∞
n=0

zn

n! , after having proved the
convergence of the series for every z ∈ C. Equipped with the exponential function,
the trigonometric functions are defined by cos z , e jz+e−jz

2 and sin z , e jz−e−jz

2 ,
and Euler’s formula, e jz = cos z + j sin z, can be inferred.

For every z ∈ C \ {0}, a logarithm of z, denoted log z, is any complex number
of the set {w ∈ C : ew = z}. The principal logarithm of z, denoted Log z, is the
unique element of the set whose imaginary part lies in the interval (−π, π]. The
principal argument of z, denoted Arg z, is the imaginary part of Log z, and an
argument of z, denoted arg z, is the imaginary part of any logarithm of z.

To go back and forth between R
2 and C, consider the function cplx : R2 → C

defined by cplx (x) , 〈x, ê1〉+j 〈x, ê2〉 for every x ∈ R
2. It has an inverse function

cplx−1 : C → R
2 given by cplx−1 (z) = (ℜz) ê1 + (ℑz) ê2 for every z ∈ C. Note

that

∀x1,x2 ∈ R
2 cplx (x1 + x2) = cplx (x1) + cplx (x2) , (3.64)

∀x ∈ R
2,∀µ ∈ R cplx (µx) = µ cplx (x) , (3.65)

∀x1,x2 ∈ R
2 〈x1,x2〉 = ℜ〈cplx (x1) , cplx (x2)〉c, (3.66)

where 〈·, ·〉c is the standard inner product on the complex vector space C, defined
by 〈z1, z2〉c , z1z2 for every z1, z2 ∈ C.

The properties (3.64)–(3.66) show that the bijection cplx, is an isomorphism
of Euclidean spaces [73], since it is an isomorphism of the underlying vector spaces
(the real vector space R

2 endowed with the standard inner product 〈·, ·〉 and the
real vector space C endowed with the inner product ℜ〈·, ·〉c) that preserves the
inner product.

The identification R
2 ≃ C, provided by cplx, is the standard one used in

applications of complex analysis to analytic plane geometry (see, for instance, [74],
[75], [72]). Concretely, given a plane endowed with a Cartesian coordinate system,
each complex number z ∈ C is interpreted geometrically as the point of coordinates
(ℜz,ℑz). In addition, z may also be interpreted as the (geometric) vector pointing
from the origin of the Cartesian coordinate system to the aforementioned point. As
usual, all geometric vectors which can be obtained from each other by translations
are identified.

We adopt the convention that whenever the geometric interpretation of a com-
plex number needs to be appealed, both its point representation and its vector
representation are denoted by the same lower-case Latin letter that denotes the
complex number. Greek letters are reserved to denote real numbers, exclusively.

The reason for preferring complex numbers over elements of R2 to do analytic
geometry, lies in the fact that multiplication is well defined for complex numbers
while it is not for pairs of real numbers. Actually, C is a field, while R

2 is not.
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x Aξ,ηx

z (ξ + jη) z

T ξ,η (·)

cplx (·) cplx (·)

(ξ + jη) ·

Figure 3.6: The linear planar transformation T ξ,η : R2 → R
2, whose matrix in the canonical

basis of R2 is Aξ,η, corresponds to multiplication by ξ + jη, under the identification R
2 ≃ C

established by the isomorphism cplx : R2 → C between both real vector spaces.

3.5.1.1. Roto-homothety transformations

As will be soon recognized, it is relevant to our application to consider a linear
planar operator T ξ,η : R2 → R

2 defined by T ξ,η (x) = Aξ,ηx, for every x ∈ R
2,

such that

Aξ,η =
ñ
ξ −η
η ξ

ô
(3.67)

where ξ, η ∈ R and η 6= 0. Under the identification R
2 ≃ C, established by

cplx, the application of the operator T ξ,η to each element x of R
2, corresponds

to multiplication of z , cplx (x) by ξ + jη in C (as pointed out in [70, Ch. 3]),
because

cplx (Aξ,ηx) = ξ 〈x, ê1〉 − η 〈x, ê2〉+ j (η 〈x, ê1〉+ ξ 〈x, ê2〉)
= (ξ + jη) (〈x, ê1〉+ j 〈x, ê2〉) = (ξ + jη) cplx (x)

= (ξ + jη) z,

for every x ∈ R
2. This is illustrated by the commutative diagram shown in Fig-

ure 3.6.
Reminding the geometrical interpretation of complex multiplication (see, for

instance, [71]) and identifying it with the action of T ξ,η on R
2, it follows that T ξ,η

can be interpreted as a rotation of angle Arg (ξ + jη) around the origin followed
or preceded by an homothety of ratio |ξ + jη| with centre at origin.

3.5.1.2. Dot and cross product of complex numbers

For every z1, z2 ∈ C, let

z1 ⊙ z2 ,
z1z2 + z1z2

2
=ℜ〈z1, z2〉c=ℜ (z1z2)=|z1| |z2| cos (Arg z2 −Arg z1) ,

z1 ⊗ z2 ,
z1z2 − z1z2

2j
=ℑ〈z1, z2〉c=ℑ (z1z2)=|z1| |z2| sin (Arg z2 −Arg z1) .

The products z1 ⊙ z2 and z1 ⊗ z2 will be referred to as the dot product and cross
product, respectively, of z1 and z2.
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Observe that if x1,x2 ∈ R
2 and z1 = cplx (x1) , z2 = cplx (x2); then

z1 ⊙ z2 = 〈x1,x2〉 = x1
⊤x2,

z1 ⊗ z2 = det
î
x1 x2

ó
= det

ñ
〈x1, ê1〉 〈x2, ê1〉
〈x1, ê2〉 〈x2, ê2〉

ô
;

i.e., ⊙ codifies the standard inner product (also called dot product) in R
2, and ⊗

resembles the cross product (also called vector product) in R
3.

3.5.2. Reformulation of the canonical conflict in the complex plane

3.5.2.1. The target set

Recall that the TS of the buck converter conflict in its canonical form (3.51) is
T =

{
x ∈ R

2 : |〈ê2,x〉| ≥ 1
}
. Clearly, if R2 ≃ C, by means of the isomorphism

cplx : R2 → C, it is natural to define

T , cplx (T ) = {z ∈ C : |ℑz| ≥ 1}

as the TS in a complex plane reformulation of the conflict, and its complement

E , cplx (E ) = {z ∈ C : |ℑz| < 1}

as the PS.

3.5.2.2. The state equation

According to (3.51), the SE of the buck converter conflict in its canonical form
is

dx
dt

= f (x,u, σ) = Ax+BS (σ)u+ c. (3.68)

Defining q : ([i▽o , 1]× [v▽i , 1])× [0, 1]→ R
2 such that

q (u, σ) , −A−1 (BS (σ)u+ c) , (3.69)

the differential equation (3.68) can be rewritten as

dx
dt

= f (x,u, σ) = A (x− q (u, σ)) . (3.70)

Let b1 , Bê1 and b2 , Bê2 be the first and second columns of matrix B,
respectively. For every u = [io, vi]

⊤ ∈ [i▽o , 1] × [v▽i , 1] and every σ ∈ [0, 1], (3.69)
can be expressed as

q(u, σ) = −A−1c−A−1BS (σ)u = −A−1c−A−1B

ñ
1 0
0 σ

ô ñ
io
vi

ô
=

= −A−1c−A−1b1io −A−1b2viσ,
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where

−A−1c = −δ0ê2,

−A−1b1 = δ1 (cos 2βê1 − sin 2βê2) ,

−A−1b2 = δ2 (sin βê1 + cosβê2) ,

as can be checked retrieving the definitions of Subsection 3.4.6.
Define sets

U ,
[
i▽o , 1

]
+ j

[
v▽i , 1

]
=
{
io + jvi ∈ C : i▽o ≤ io ≤ 1, v▽i ≤ vi ≤ 1

}
,

Σ , [0, 1] = {σ ∈ R : 0 ≤ σ ≤ 1} ;

and functions q : U ×Σ→ C, f : C× U ×Σ→ C, such that

q (u, σ) , −jδ0 + δ1e−j2βℜu+ δ2e j( π
2
−β)σℑu,

f (z, u, σ) , k (z − q (u, σ)) .

Note that A =
ñ
−κ −1
1 −κ

ô
, where

κ ,
ζ

√

1− ζ2
= tanα,

so A has the form (3.67) (with ξ = −κ and η = 1). Identifying the action of
x 7→ Ax on R

2 with multiplication by

k , −κ+ j

in C, the state equation (3.70) can be treated as a single scalar equation

ż = f (z, u, σ) = k (z − q (u, σ)) , (3.71)

where z = cplx (x) and Newton’s dot notation denotes derivation with respect to
normalized time t.

The control signals t 7→ v = iOê1 + vI ê2 and t 7→ σ were assumed to be
piecewise continuous in Section 3.2, so t 7→ u = iO

IOmax
+ j vI

VI max
= io + jvi and

t 7→ σ are piecewise continuous in (3.71). This guarantees, for every z0 ∈ C, the
existence of an unique continuous solution

zfz0,u,σ
(t) = ektz0 − k

∫ t

0
ek(t−s)q (u (s) , σ (s)) ds (3.72)

of (3.71), such that zz0,u,σ (0) = z0.
Observe that if u and σ are constant, then q (u, σ) is constant and (3.72) is the

parametrization of a logarithmic spiral [72] with centre at q , q (u, σ):

zfz0,u,σ
(t) = q + ekt (z0 − q) = q + e−κte jt (z0 − q) .

The angle Arg ż
z−q = Arg k = π

2 +α, between the spiral’s tangent, ż, at any of
its points, z, and the radius vector, z−q; is constant (as it can be directly inferred
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from the differential equation (3.71)). For this reason, this kind of spiral is also
called equiangular spiral. Since ℜk = −κ < 0, a point moving along the spiral
approaches its centre as time increases, and since ℑk = 1 > 0 it does so spinning
counter-clockwise.

Of course, q (u, σ) needs not be constant, however, instantaneously, players P
and E can be thought as disputing the position of the centre of an α-equiangular
spiral, that drives the state evolution (see Figures 3.7 and 3.8). The possible
instantaneous centres are confined to the set

q (U,Σ) = {q (u, σ) : u ∈ U, σ ∈ Σ}
=
{

−jδ0 + δ1e−j2βio + δ2e j( π
2
−β)σvi : i▽o ≤ io ≤ 1, v▽i ≤ vi ≤ 1, 0 ≤ σ ≤ 1

}

.

This set is a parallelogram in the complex plane (see Figures 3.7 and 3.8) with sides
of lengths δ1 and δ2, parallel to e−j2β and e j( π

2
−α), respectively, whose vertices are:

a , −jδ0 + i▽o δ1e−j2β ,

b , −jδ0 + δ1e−j2β ,

c′ , −jδ0 + δ1e−j2β + δ2e j( π
2
−β),

d′ , −jδ0 + i▽o δ1e−j2β + δ2e j( π
2
−β).

If vi is held constant at vi = v▽i , the possible instantaneous centres are confined to
a (smaller) parallelogram

q
([
i▽o , 1

]
+ jv▽i ,Σ

)
=
{
q (u, σ) : u ∈ [i▽o , 1

]
+ jv▽i , σ ∈ [0, 1]

}

=
{

−jδ0 + δ1e−j2βio + δ2e j( π
2
−β)σv▽i : i▽o ≤ io ≤ 1, 0 ≤ σ ≤ 1

}

,

included in q (U,Σ), whose vertices are:

a = −jδ0 + i▽o δ1e−j2β ,

b = −jδ0 + δ1e−j2β ,

c , −jδ0 + δ1e−j2β + v▽i δ2e j( π
2
−β),

d , −jδ0 + i▽o δ1e−j2β + v▽i δ2e j( π
2
−β).

Both parallel parallelograms, q (U,Σ) and q ([i▽o , 1] + jv▽i ,Σ), have a side in com-
mon (the one joining vertices a and b) and coincidence if and only if v▽i = 1 (i.e.,
VImin = VImax in the realistic formulation of the conflict).

The points just defined (listed in Table 3.6 for future reference), will be referred
to as anchor points. Together with angle α, they represent just another way of char-
acterizing a buck converter conflict, once it has been reduced to its canonical form,
however not as minimal as a 7-tuple of canonical parameters (Subsection 3.4.4) or
a 7-tuple of geometric parameters (Subsection 3.4.6). Observe that

µ1 , |b− a| = |c− d| =
∣
∣c′ − d′

∣
∣ =

(
1− i▽o

)
δ1

µ2 , |d− a| = |c− b| = v▽i δ2
∣
∣d′ − d

∣
∣ =

∣
∣c′ − c

∣
∣ = δ2

(
1− v▽i

)
,
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Anchor point Definition

a −jδ0 + i▽o δ1e
−j2β

b −jδ0 + δ1e
−j2β

c −jδ0 + δ1e
−j2β + v▽

i δ2e
j(π

2
−β)

d −jδ0 + i▽o δ1e
−j2β + v▽

i δ2e
j(π

2
−β)

c′ −jδ0 + δ1e
−j2β + δ2e

j(π
2
−β)

d′ −jδ0 + i▽o δ1e
−j2β + δ2e

j(π
2
−β)

Table 3.6: Anchor points of the canonical conflict in terms of its geometric parameters.

where µ1 and µ2 are defined as the side lengths of the parallelogram q ([i▽o , 1] + jv▽i ,Σ)
(see Figures 3.7 and 3.8).

3.5.2.3. The conflict in the complex plane

In conclusion, under assumptions (A1)–(A9), every buck converter conflict C′

(3.29), can be put in the following simple form

C
®

SE : dz
dt = f (z, u, σ) = k (z − q (u, σ)) ,

TS : T = {z ∈ C : |ℑz| ≥ 1} ;
(3.73)

where [0,+∞) ∋ t 7→ u (t) ∈ U = {io + jvi ∈ C : i▽o ≤ io ≤ 1, v▽i ≤ vi ≤ 1} and
[0,+∞) ∋ t 7→ σ (t) ∈ Σ = {σ ∈ R : 0 ≤ σ ≤ 1} are P’s and E’s control functions,
respectively, k = −κ+ j, κ > 0, and q : U ×Σ→ C is such that

q (u, σ) = −jδ0 + δ1e−j2βℜu+ δ2e j( π
2
−β)σℑu.

The conflict C is just the translation of the canonical formulation C (see (3.51))
from R

2 to C, by means of the standard identification R
2 ≃ C. The sets U and Σ,

are P’s and E’s control sets, respectively.
The conflict reformulation process C′

; C ; C, demands consistent refor-
mulation processes, Gdist

′
; Gdist ; Gdist and Gtime

′
; Gtime ; Gtime, of the

accompanying games, to end with:

Gdist

® C,
PF : (z0, u, σ) 7→ Pdisto

f,T (z0, u, σ) , inf
¶

do

Ä
zfz0,u,σ

(t) ,T
ä

: t ≥ 0
©
,

(3.74)

Gtime

® C,
PF : (z0, u, σ) 7→ Ptime

f,T (z0, u, σ) , inf
¶
t ≥ 0 : zfz0,u,σ

(t) ∈ T
©
.

The function do : C× 2C \ {∅} → R is an oriented distance function that takes the
place of disto : R2 × 2R

2 \ {∅} → R as a consequence of the reformulation of the
game in distance from R

2 to C. It is naturally defined by

do (z,W ) ,

{

+d (z,W ) if z ∈ W ∁,

−d
Ä
z,W ∁

ä
if z ∈ W ;
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where W ∁ = C \ W , and d (z,W ) , infw∈W |z − w| for every z ∈ C and every
non-empty subset W of C.

It is understood that Pdisto
f,T (z0, u, σ) = −∞ if

¶
do

Ä
zfz0,u,σ

(t) ,T
ä

: t ≥ 0
©

is not bounded below, and Ptime
f,T (z0, u, σ) = +∞ if

¶
t ≥ 0 : zfz0,u,σ

(t) ∈ T
©

is
empty; as has been understood for the analogous previous forms of the PFs.

Finally, notice that the oriented distance (in R
2) to the target set T ′ (of the

original conflict (3.29)) relates to the oriented distance (in C) to the target set T
(of the canonical conflict (3.73)), as follows:

»
R2
C + 1 disto

(
y,T ′) = D do (z,T ) (3.75)

where z =
î
1 j
ó
x = 〈x, ê1〉 + j 〈x, ê2〉 and x = h−1 (y) = 1

D

Ä
P−1y − V ê2

ä
, for

every y ∈ R
2. To prove (3.75), substitute y = h (x) = P (Dx+ V ê2) into (3.22)

to obtain

disto
(
y,T ′) =

1
||l||

(

D −
∣
∣
∣V − l⊤P (Dx+ V ê2)

∣
∣
∣

)

=
1
||l||

(

D −
∣
∣
∣V − ê2

⊤ (Dx+ V ê2)
∣
∣
∣

)

=
D

||l|| (1− |〈x, ê2〉|) =
D

||l|| (1− |ℑz|)

=
D»

R2
C + 1

do (z,T ) ,

where l⊤ =
î
RC 1

ó
=
î
λR 1

ó
, l⊤P = ê2

⊤, and do (z,T ) = 1− |ℑz| were used.
The VF of the original game in distance Gdist

′ (formulated in (3.30)) has been
already denoted Vdisto . Let Vdo be the VF of the canonical game in distance Gdist

(formulated in the complex plane by (3.74)). According to (3.75), Vdisto and Vdo

must be related by
»
R2
C + 1 Vdisto (y) = D Vdo (z) (3.76)

where z =
î
1 j
ó
x = 〈x, ê1〉 + j 〈x, ê2〉 and x = h−1 (y) = 1

D

Ä
P−1y − V ê2

ä
, for

every y ∈ R
2. In addition, from (3.34) and (3.76), Vdo can be expressed as

D Vdo (z) = E − V|ewc| (y) (3.77)

where V|ewc| is the VF of the the game G|ewc|
′, formulated in (3.33) with P as the

supremizer and E as the infimizer. Similarly, from (3.26) and (3.75),

D do (z,T ) = E − |ewc (y)| . (3.78)

3.6. Concluding remarks

Under quite general assumptions, every buck converter control problem, as
formulated in this chapter, can be framed in a canonical way as a dynamical
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Figure 3.7: Geometric interpretation of the canonical conflict. The conflict is given by seven
geometrical parameters: three distances (δ0, δ1, δ2), two less-than-one scaling factors (i▽o , v▽i )
and two angles (α and β). All these parameters, except for α, determine the fixed anchor
points: a, b, c, d, c′, d′ ∈ C. The playing set is E = {z ∈ C : |ℑz| < 1}. The target set is
T = C \ E . Instantaneously, the state z moves in the state space following an α-equiangular

spiral with centre at q = q (io + jvi, σ) = −jδ0 + ioδ1e−j2β + σviδ2e j( π

2
−α) in the convex

hull of {a, b, c′, d′}. The pursuer’s control variable is: u = io + jvi, with io ∈ [i▽o , 1] and
vi ∈ [v▽i , 1]. The evader’s control variable is σ ∈ [0, 1]. For the case represented in the figure,
sgn β > 0. Recall that sgn β = sgn 2β = sgn (RL −RC) and β = Arg j

d−a
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conflict between the converter’s controller and an hypothetical disturber that acts
on the load current and the line voltage.

The canonization, achieved by normalization of the realistic parameters and by
transformation of the original state-space, allows to deal with the buck converter
problem in a general and consistent way in the realm of differential game theory.

The resulting canonical formulation admits a simple geometric interpretation
as a kinematic conflict in the complex plane.
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Chapter 4

The conflict’s dynamics

4.1. Introduction

The main purpose of this chapter is to prove a few facts about the dynamics
of the buck converter conflict, presented in Chapter 3. These facts will be used,
in the following chapter, to solve the game in distance associated to the conflict.
Hopefully, the concentration of rather technical results herein, will ease the reading
of the following chapter which is the main matter of this thesis.

Another purpose of this chapter is to introduce the notation that will be freely
used in the following chapter to communicate geometrical ideas sustained by the
algebra of complex numbers.

4.2. Definitions and notation

In this section the formulation of the conflict is very briefly reviewed and some
notation needed for this and the following chapter is introduced.

4.2.1. Recapitulation of the conflict’s formulation

For ease of reference, recall from Chapter 3, that every buck converter conflict
can be formulated as a state equation (SE) and a target set (TS) in the complex
plane, as follows:

C
®

SE : dz
dt = f (z, u, σ) ,

TS : T , {z ∈ C : |ℑz| ≥ 1} ;
(4.1)

where f : C× U ×Σ→ C is defined by

f (z, u, σ) , F (z, q (u, σ)) ,
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being F : C× C→ C such that F (z, q) , k (z − q) and q : U ×Σ→ C such that
q (u, σ) , −jδ0 + δ1e−j2βℜu+ δ2e j( π

2
−β)σℑu, where

U ,
{
io + jvi ∈ C : i▽o ≤ io ≤ 1, v▽i ≤ vi ≤ 1

}
,

Σ , {σ ∈ R : 0 ≤ σ ≤ 1} ,
k , −κ+ j, κ , tanα.

Seven real parameters, introduced in Subsection 3.4.6 as geometric parameters,
characterize the conflict C, namely: α, β, δ0, δ1, δ2, i▽o , and v▽i . They must satisfy
the following inequalities which are derived from modelling assumptions:

0 < α <
π

2
, −α < β < α, tanα− tan β < secα, (4.2)

δ1, δ2 > 0, δ0 > 1 + (tanα− tan β) δ1 cos2 β, (4.3)

0 ≤ i▽o < 1, 0 < v▽i ≤ 1. (4.4)

In (4.1), the SE specifies the dynamics of C. It models a buck converter system
whose inputs are: a disturbance action, u = io + jvi, controlled by the pursuer
(P); and a switching action, σ, controlled by the evader (E). The real part of
the disturbance action, ℜu = io, is the normalized load current drained from
the converter, while its imaginary part, ℑu = vi, is the normalized input voltage
supplied to the converter. The SE rules the temporal evolution of the system’s
state, z ∈ C, with respect to normalized time t. The other object, present in
the formulation of the conflict C, is the TS, which is an essential component of
the game to be treated in the following chapter but irrelevant for this chapter
concerned solely with the conflict’s dynamics.

Since it will not be necessary to further refer to the canonical parameters
(defined in Subsection 3.4.4), hereafter the symbols ζ, λ, ρ, ν, and δ are released
from the meaning they had in Chapter 3. By contrast, the symbols i▽o and v▽i
(which are canonical parameters, but also geometrical parameters) retain their
meaning.

The anchor points a, b, c, d, c′, and d′, introduced in Subsection 3.5.2 in terms
of the geometric parameters, also retain their meaning (see Table 3.6).

4.2.2. Introducing notation to describe subsets of C

For every subset W of C, the complement of W , which is C\W , is denoted W ∁.
The union of W and its boundary ∂W , is the closure of W which is denoted cl (W ).

The interior of W , which is
Ä
cl
Ä
W ∁
ää∁

, is denoted int (W ). The convex hull of
W , i.e., the intersection of all convex sets that include W , is denoted conv (W ). If
W 6= ∅, its diameter, denoted diam (W ), is sup {|w1 − w2| : w1, w2 ∈ Q} (possibly
infinite), and the distance from a point z ∈ C to the set W , denoted d (z,W ), is
infw∈W |z − w|. If in addition W ′ 6= ∅, the distance from W to W ′, denoted
d (W ,W ′), is infw∈W ,w′∈W ′ |w − w′|.

For example, conv ({a, b, c′, d′}) can be checked to be a parallelogram in the
complex plane that coincides with the image of the function q : U × Σ → C,
denoted q (U,Σ).
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Given an ordered pair (z1, z2) ∈ C× C such that z1 6= z2, the (oriented) half-
plane, line, ray, and line segment determined by the pair (z1, z2) are respectively
defined as:

Hz1,z2 , {z ∈ C : (z2 − z1)⊗ (z − z1) > 0} ,
z1z2←−→ ,

ß
z ∈ C :

z − z1

z2 − z1
∈ R

™
,

z1z2−−→ ,
ß
z ∈ C :

z − z1

z2 − z1
∈ [0,+∞)

™
,

z1z1 ,
ß
z ∈ C :

z − z1

z2 − z1
∈ [0, 1]

™
= conv ({z1, z2}) .

If θ ∈ (−π
2 ,

π
2

)
and o, z0 ∈ C, such that o 6= z0, the set
¶
z − o = e (− tan θ+j)λ (z0 − o) : λ ∈ R

©

is a θ-equiangular spiral centred at o ∈ C through z0. If θ ∈ (−π
2 , 0

)
, it expands

in the counter-clockwise direction; if θ ∈ (0, π2
)
, it shirnks in the counter-clockwise

direction; and if θ = 0, it is a circumference through z0 centred at o.
The remaining part of this subsection is devoted to introduce the notation that

will be used hereafter to describe subsets of the complex plane intimately related
to the dynamics of the conflict.

As it was already mentioned at the end of the previous chapter, while both
players keep their control actions constant, the state traverses an arc of an α-
equiangular spiral in the state-space, so this kind of curve and the possible sets
delimited by it play a central role in the conflict’s dynamics. To efficiently describe
these subsets of the complex plane, a level set method is introduced next which is
supported by a pair of parameter-dependent real-valued complex-variable functions
closely related to the pair (|·| ,Arg (·)). Before defining each of these two functions,
a calculation technique that will be used to calculate their real gradients is briefly
introduced next.

4.2.2.1. Wirtinger calculus

Consider a non-constant purely real-valued function U : R → R defined in a
region R of the complex plane (i.e., in an open connected non-empty subset of C).
Let z = ξ + jη ∈ R, such that ξ, η ∈ R, be the independent variable of U .

Such a function U does not satisfy the Cauchy-Riemann equations in R. If it
did, it would be true that

∀z ∈ R,
∂

∂ξ
ℜU =

∂

∂η
ℑU , ∂

∂η
ℜU = − ∂

∂ξ
ℑU ;

but this is false because ℑU (z) = 0 and ℜU (z) = U (z), for every z ∈ R.
Consequently, U is not complex-differentiable at every z ∈ R. However, if U is
real-differentiable [76] at every z ∈ R, partial derivatives ∂U

∂ξ
(z) and ∂U

∂η
(z) exist

∀z ∈ R; and borrowing from Wirtinger calculus [76] the formal equalities

∂

∂z
=

1
2

Å
∂

∂ξ
− j

∂

∂η

ã
,

∂

∂z
=

1
2

Å
∂

∂ξ
+ j

∂

∂η

ã
,
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between operators, the real gradient information can be obtained directly within
the complex variables framework [77]. Concretely, introducing the notation,

∂ ,
∂

∂z
, ∂ ,

∂

∂z
,

to derive with respect to z and z, as if they were independent variables; the gradient

of the (underlying) function
î
ξ η

ó⊤ 7→ U (ξ + jη), can be computed, at
î
ξ0 η0

ó⊤
,

as ñ
ℜ (2∂U (z0))
−ℑ (2∂U (z0))

ô
=

[

ℜ
Ä
2∂U (z0)

ä

ℑ
Ä
2∂U (z0)

ä
]

,

where z0 = ξ0 + jη0, for every
î
ξ0 η0

ó⊤ ∈
{î
ξ η

ó⊤ ∈ R
2 : ξ + jη ∈ R

}

. To
facilitate the identification with the vector calculus notation used in Chapter 2, let

∇ , 2∂.

Note, however, that ∇ (bold type) is reserved to be applied to real-valued functions
defined on R

n instead of C.
With the above notation, if U : R → R is a real-valued complex variable

function that is real-differentiable in R, its real gradient at z0 = ξ0 + jη0 ∈ R is
defined as

∇U (z0) .

4.2.2.2. A customized argument function

Given o, v ∈ C, such that v 6= 0, define Avo : C \ {o} → (−π, π] such that

Avo (z) , Arg
z − o
v

= ℑLog
z − o
v

=
1
2j

Ç
Log

z − o
v
− Log

z − o
v

å
,

=







1
2j

Ä
Log z−o

v
− Log z−o

v

ä
, if z /∈ {o− ρv : ρ > 0} ,

1
2j

Ä
Log z−o

v
− Log z−o

v
+ j2π

ä
if z ∈ {o− ρv : ρ > 0} ;

(4.5)

where Arg : C \ {0} → (−π, π] is the principal argument function, and Log :
C \ {0} → {z ∈ C : −π < ℑz ≤ π} is the principal logarithm function. Observe
that Avo is discontinuous in {o− ρv : ρ > 0}, but it is continuous in the following
region of C:

Rv
o , C \ {o− ρv : ρ ≥ 0} .

The distinction between two different cases becomes necessary after the last equal-
ity in (4.5) because for every w ∈ C such that Argw = π, the equality Logw =
Logw does not hold. Indeed, if Argw = π, then Logw = ln |w|+ jπ = ln |w|−jπ =
ln |w|+ jπ − j2π = Logw − j2π 6= Logw.

SinceAvo (z) has been purposely expressed in terms of z and z in (4.5), Wirtinger
calculus can be applied to readily obtain

∇Avo (z) = 2∂Avo (z) =
1
j

Å
− v

z − o

ã
1
v

= j
z − o
|z − o|2

, (4.6)
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for every z ∈ Rv
o .

For every θ ∈ (−π, π], verify that {z ∈ C \ {o} : Avo (z) = θ} coincides with
{

o+ ρe jθ v
|v| : ρ > 0

}

, i.e., every θ-level set of Avo is a ray with endpoint at o and

orientation given by e jθ v
|v| .

For every subset I of (−π, π], let

A v
o,I , {z ∈ C \ {o} : Avo (z) ∈ I} .

Clearly, if I is a subinterval of (−π, π], the set A v
o,I is just the sector of the complex

plane, of amplitude sup {|θ1 − θ2| : θ1, θ2 ∈ I} and vertex at o, that is obtained
by union of the rays

{

o+ ρe jθ v
|v| : ρ > 0

}

such that θ ∈ I, i.e.,

A v
o,I =

®
o+ ρe jθ v

|v| : ρ > 0 ∧ θ ∈ I
´
.

4.2.2.3. A customized modulus function

Given o, v ∈ C, such that v 6= 0, another non-constant purely real-valued
function, derived from Avo, that will be proved to be useful is Mv

o : C → [0,∞),
defined by

Mv
o (z) ,







∣
∣
∣e−kA

v
o(z) (z − o)

∣
∣
∣ = eκA

v
o(z)
»

(z − o) (z − o) if z 6= o,

0 otherwise,

where
√· is the principal value of the square root, and k = −κ+j being κ = tanα.

Notice that Mv
o (z) > 0, for every z ∈ C \ {o}, and Mv

o (z) = 0 if and only
if z = o. Furthermore, Mv

o is continuous and real-differentiable in the region
Rv
o = C \ {o− ρv : ρ ≥ 0}.

Again, taking advantage of Wirtinger calculus,

∇Mv
o (z) = 2∂Mv

o (z)

= 2eκA
v
o(z)

Ñ
κ∂Avo (z)

»
(z − o) (z − o) +

z − o
2
»

(z − o) (z − o)

é

= 2eκA
v
o(z)

Ñ
κ

j
2
z − o
|z − o|2

»
(z − o) (z − o) +

z − o
2
»

(z − o) (z − o)

é

= eκA
v
o(z) (1 + jκ)

z − o
|z − o| = eκA

v
o(z) (−jk)

z − o
|z − o| (4.7)

for every z ∈ Rv
o .

For every ρ ∈ [0,∞), verify that the set

L v
o (ρ) , {z ∈ C : Mv

o (z) = ρ}

coincides with
{

o+ ρ v
|v|e

(− tanα+j)θ : θ ∈ (−π, π]
}

, i.e., every ρ-level set ofMv
o is

an arc, of amplitude 2π, of an α-equiangular spiral centred at o, except for the
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Figure 4.1: Contour diagrams of the functionsMv
o : C→ R (continuous level curves: L v

o (1),
L v

o (2) , and L v
o (3)) and Av

o : C→ R (dashed level curves). For every ρ > 0, let zρ , o+ρ v
|v|

and L v
o (ρ) , {z ∈ C : Mv

o (z) = ρ}. The level curves L v
o (1), L v

o (2), and L v
o (3), shown

in the figure, are arcs of α-equiangular spirals which correspond to the functional values 1, 2,
and 3, respectively.

case ρ = 0 in which the ρ-level set of Mv
o degenerates into the singleton {o} (see

Figure 4.1).

In addition, for every subset I of (−π, π] let

S v
o,I (ρ) , L v

o (ρ) ∩A v
o,I = {z : Mv

o (z) = ρ ∧ Avo (z) ∈ I}

=
®
o+ ρ

v

|v|e
(− tanα+j)θ : θ ∈ I

´
.

Clearly, S v
o,I (ρ) is an arc of spiral, of amplitude sup {|θ2 − θ1| : θ2, θ1 ∈ I}, in-

cluded in L v
o (ρ).
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4.3. Some observations on the system’s dynamics

4.3.1. The state equation interpreted geometrically

Coming back to the actual subject of this chapter, reconsider the conflict’s
formulation as detailed in Subsection 4.2.1. In particular, after scrutinizing the
definitions of functions q : U ×Σ → C and F : C × C → C, it is readily realized
that the SE in (4.1) has the following form:

ż = f (z, u, σ) = k (z − q (z, u, σ)) ,

where k = −κ + j (being κ = tanα > 0) and q (u, σ) , −jδ0 + δ1e−j2βℜu +

δ2e j( π
2
−β)σℑu. The players’ control functions, u : [0,+∞) → U for P and σ :

[0,+∞)→ Σ for E, take values in

U =
{
io + jvi ∈ C : i▽o ≤ io ≤ 1, v▽i ≤ vi ≤ 1

}
and Σ = [0, 1] ,

respectively.
The function q : U × Σ → C blends together both system’s inputs, u and

σ, into a single compound input q , q (u, σ). The instantaneous value q (t), at
current time t, may be interpreted as the instantaneous centre (introduced in
Subsubsection 3.5.2.3) of the α-equiangular spiral, through the current state z (t),
that would be traversed by the system’s state thereupon, if both players decided
to keep their controls constant in their current values, u (t) and σ (t), for all future
instants. Otherwise stated, the SE

ż = F (z, q) = k (z − q) =
√

1 + κ2e j( π
2

+α) (z − q) =
e j( π

2
+α)

cosα
(z − q)

may be regarded point-wisely, and consequently, for every state z ∈ C and every
compound control action q ∈ q (U,Σ), the velocity vector F (z, q) = k (z − q) ∈ C

acquires a clear geometrical interpretation (see Figures 3.7 and 3.8).

4.3.1.1. A notational issue

The aforementioned point-wise interpretation of the SE, which is in natural
accordance with its functional interpretation, is freely exploited throughout this
text, whenever necessary, at the cost of notational abuse, i.e., u, σ, q = q (u, σ) and
z may be either functions of time or function values, depending on the context.

However, when (for the sake of clarity) it is found convenient to distinguish
the compound control function q from the compound control action q at a certain
instant, the upper-case letter Q will be used to denote the former.

4.3.1.2. Generalization of the possible compound control actions to an arbitrary

set Q

Sometimes, to examine all the possible state’s velocity vectors F (z, q) at a fixed
state z ∈ C, it is convenient to imagine the compound control action q restricted
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to belong to a certain non-empty compact subset Q of the complex plane, not
necessarily equal to the parallelogram q (U,Σ) = conv ({a, b, c′, d′}). The flexibility
of considering an arbitrary set Q ⊂ C, instead of q (U,Σ), as the set of all possible
compound control actions q, simplifies the exposition that follows. This is the
reason why, in Subsection 4.2.1, the function F was defined on C× C and not on
C×q (U,Σ). However, it must be remarked, that in any actual case (which respects
the conflict’s model), it must necessarily be true that q ∈ Q ⊆ q (U,Σ) ⊂ C, as
exemplified in Figures 3.7 and 3.8.

4.3.1.3. Vectograms

Given z ∈ C and Q ⊂ C, a Q-vectogram at z is defined as the set F (z,Q).
Note that the q (u0,Σ)-vectogram at z is the set F (z, q (u0,Σ)) of all the al-

ternative velocity vectors allowed to be chosen by E, with the system’s state at
z, once P has irrevocably decided to apply u0 ∈ U as his control action. Sym-
metrically, the q (U, σ0)-vectogram at z is the set F (z, q (U, σ0)) of all alternative
velocity vectors allowed to be chosen by P , with the system’s state at z, once E
has irrevocably decided to apply σ0 ∈ Σ as his control action.

4.3.2. State-space trajectories in closed form

With the above considerations in mind, conceive the following initial value
problem ®

dz
dt = F (z,Q) ,
z (0) = z0,

(4.8)

where z0 ∈ C is a given initial value, Q : [0,+∞) → Q is a prescribed piecewise
continuous function, and Q is a non-empty compact subset of C.

The solution zFz0,Q
: [0,+∞)→ C of this initial value problem, is given by

zFz0,Q
(t) = ektz0 − k

∫ t

0
ek(t−s)Q (s) ds. (4.9)

If Q ⊆ q (U,Σ), the conflict’s model formulation (detailed in Subsection 4.2.1)
is respected and, consequently, the expression (4.9) gives, in closed form, the state-
space trajectory ruled by the SE in (4.1), through z (0) = z0, in the particular case
in which the control functions u : [0,+∞) → U and σ : [0,+∞) → Σ are such
that q (u (t) , σ (t)) = Q (t) for every t ≥ 0.

Note that setting the initial time equal to zero in (4.8) carries no loss of gen-
erality, due to the system’s obvious time invariance.

4.3.3. The distant vector field approximation

As a first example of the insight provided by the geometrical interpretation of
the SE, the distant vector field is commented next. Consider a non-empty compact
set Q ⊂ C, a fixed point q0 ∈ Q, and an arbitrary point z such that |z − q0| ≫
diam (Q) (see Figure 4.2). For every such z which belongs to the exterior of a
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q0

z0

Q

ẑ (t)

z
F

(z
, q

0
)

α

zFz0,Q
(t)

Figure 4.2: For z ≫ diam (Q), the dynamics of the conflict can be approximated by ż ≈
k (z − q0), where q0 is an arbitrary fixed point of Q. Consequently, for z0 ≫ diam (Q) and
t ∈ [0, t1], the approximation zF

z0,Q (t) ≈ ẑ (t) , q0 + ekt (z0 − q0) holds if t1 is sufficiently
small.

sufficiently large circle centred at q0, the velocity vector can be approximated as
follows:

F (z, q) = k (z − q) = k (z − q0 + q0 − q) ≈ k (z − q0) .

This means that the influence of the players’ control actions u and σ, blended into
q, on the velocity vector f (z, u, σ) = F (z, q) is negligibly small if the current state
z is sufficiently far away from Q. Accordingly, the solution of (4.8), through an
initial state z0 sufficiently distant from Q, may be approximated by

zFz0,Q
(t) ≈ ẑ (t) , q0 + ekt (z0 − q0) ,

at least for t ∈ [0, t1] being t1 sufficiently small, whatever input function Q is
consolidated as the result of both players’ continuum decision making process (see
Figure 4.2).

4.3.4. The angular transmission property

As a second example of the intuition that can be gained from the geometrical
interpretation of the SE, consider three points z, q, q′ ∈ C such that z /∈ {q, q′}. It
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is immediate that

Arg
F (z, q′)
F (z, q)

= Arg
k (z − q′)
k (z − q) = Arg

z − q′
z − q = Arg

q′ − z
q − z ,

which can be interpreted as follows: the relative orientation between the velocity
vectors F (z, q′) and F (z, q) is the same as the relative orientation between the
vectors q′−z and q−z and (see Figure 4.3). Otherwise stated, the angular change
Arg z−q′

z−q caused by moving q to q′ is “transmitted” to the velocity vector, based at
z, that changes from F (z, q) to F (z, q′).

Now let z, q, q′ ∈ C without restrictions. Note that

F (z, q)⊗ F (z, q′) = ℑ
Ä
k (z − q)k (z − q′)

ä
= ℑ

Ä
|k|2(z − q) (z − q′)

ä

= |k|2ℑ
Ä
(q − z) (q′ − z)

ä

= |k|2 (q − z)⊗ (q′ − z)

and that the projection of F (z, q′) along jF (z, q) is positive if and only if q′ belongs
to the half-plane {w ∈ C : (q − z)⊗ (w − z) > 0}, because

(jF (z, q))⊙ F (z, q′) = F (z, q)⊗ F (z, q′) = |k|2 (q − z)⊗ (q′ − z) . (4.10)

The leftmost equality in this last expression holds because

(jw1)⊙ w2 = ℜ (jw1w2
)

=
−jw1w2 + jw1w2

2
=
w1w2 − w1w2

2j
= ℑ (w1w2)

= w1 ⊗ w2, (4.11)

for every w1, w2 ∈ C.

4.3.5. Four special supporting half-planes of Q

In general, the sign of the real part of the state velocity vector F (z, q) =
k (z − q), at z ∈ C, depends on the compound control action q ∈ Q. However,
there are certain regions in C \Q where the sign of ℜF (z, q) is independent of q
and thereby independent of both player’s control actions. In a like manner, there
exist analogous regions in connection with the the sign of ℑF (z, q). It is next
shown that these regions are four supporting half-planes of Q whose boundaries
are directed along k and jk.

Let Q be a non-empty compact subset of C, such as the one represented by
the curved shape in Figure 4.4. Consider the following sets:

R+ , {z ∈ C : ℜF (z, q) > 0 ∀q ∈ Q} = {z ∈ C : +1⊙ F (z, q) > 0 ∀q ∈ Q} ,
R− , {z ∈ C : ℜF (z, q) < 0 ∀q ∈ Q} = {z ∈ C : −1⊙ F (z, q) > 0 ∀q ∈ Q} ,
I+ , {z ∈ C : ℑF (z, q) > 0 ∀q ∈ Q} = {z ∈ C : +j⊙ F (z, q) > 0 ∀q ∈ Q} ,
I− , {z ∈ C : ℑF (z, q) < 0 ∀q ∈ Q} = {z ∈ C : −j⊙ F (z, q) > 0 ∀q ∈ Q} .
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q

z

q′

F (z, q) =
k (z −

q)

F (z, q′ ) = k (z − q′ )

Arg q′−z
q−z

Arg q′−z
q−z

Figure 4.3: Let z, q, q′ ∈ C such that z /∈ {q, q′}. The relative orientation between vectors
F (z, q) and F (z, q′) is the same as the relative orientation between vectors q′ − z and q− z.

The above four sets may be expressed alternatively as

R+ =
¶
z ∈ C :

Ä
jk
ä
⊗ (z − q) < 0 ∀q ∈ Q

©
,

R− =
¶
z ∈ C :

Ä
jk
ä
⊗ (z − q) > 0 ∀q ∈ Q

©
,

I+ =
¶
z ∈ C : k ⊗ (z − q) > 0 ∀q ∈ Q

©
,

I− =
¶
z ∈ C : k ⊗ (z − q) < 0 ∀q ∈ Q

©
;

since ±1 ⊙ F (z, q) = ∓j2 ⊙ (k (z − q)) = ∓
Ä
j
Ä
jk
ää
⊙ (z − q) = ∓

Ä
jk
ä
⊗ (z − q)

and ±j⊙ F (z, q) = ±j⊙ (k (z − q)) = ±
Ä
jk
ä
⊙ (z − q) = ±k ⊗ (z − q).

The last expressions for the sets R+ and R− make apparent that they are dis-
joint supporting half-planes of the bounded set Q. Moreover, the parallel bound-
aries of these two half-planes are directed along jk. Analogous observations apply
for I+ an I−.

In Figure 4.4, the sets R+, R−, I+, and I− are represented by the overlapping
shaded half-planes that lie in Q∁. Each of these four half-planes is a supporting
half-plane of Q. The boundaries of R+ and R− are directed along jk while the
boundaries of I+ and I− are directed along k. For the example of the figure: α = π

6
(recall that k = −κ+ j where κ = tanα).

4.3.6. A relevant particular case: Q is a line segment

This whole subsection focus on the particular case in which the compound
system’s input q is restricted to take values in an arbitrary fixed closed segment of
the complex plane. The relevance of this particular case is justified next. However,
the reader must be aware that the results presented in this subsection will only
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I
−

R +

I
+

R −

Q

jk

k

e −jα
e

j (
π 2
−α

)

Figure 4.4: The sets R+, R−, I+, and I− are open supporting half-planes of Q.

become meaningful within the context of solving the conflict’s game in distance
(Chapter 5).

4.3.6.1. Justification

As it was already mentioned, the compound input q depends on each player’s
input, u and σ, as prescribed by q : U ×Σ→ C, which is defined by

q (u, σ) , −jδ0 + δ1e−j2βℜu+ δ2e j( π
2
−β)σℑu,

being U , {io + jvi ∈ C : i▽o ≤ io ≤ 1, v▽i ≤ vi ≤ 1} and Σ , [0, 1] (see Fig-
ures 3.7 and 3.8).

Observe that if P decides to keep u constant with a value u0 = io0 + jvi0 ∈ U ,
he forces q to take values in the line segment

q (u0,Σ) =
{

−jδ0 + δ1e−j2βio0 + δ2e j( π
2
−β)σvi0 : σ ∈ [0, 1]

}

.

If E decides to keep σ constant with a value σ0 ∈ Σ, the set

q (U, σ0) =
{

−jδ0 + δ1e−j2βio + δ2e j( π
2
−β)σ0vi : io ∈

[
i▽o , 1

]
, vi ∈

[
v▽i , 1

]}

.

where he forces q to take values, is a parallelogram in general (included in the
larger parallelogram q (U,Σ)), but it reduces to a line segment if σ0 = 0 or v▽i = 1.
Accordingly, it is not completely devoid of interest the analysis of the conflict’s
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q1

q2

z0

∂Hq1,q2

Q

Q (t)

F
Ä
zFz0,Q (t) , Q (t)

ä
α

zFz0,Q
(t)

Hq1,q2

C \Hq1,q2

Figure 4.5: Given two fixed points q1, q2 ∈ C, such that q1 6= q2, consider the initial value
problem, with initial value z0 ∈ Hq1,q2

= {z ∈ C : (q2 − q1)⊗ (z − q1) > 0}, under the
assumption that the piecewise-continuous compound input function Q : [0,+∞)→ Q is such
that Q = conv ({q1, q2}).

dynamics in the particular case in which the possible values of the compound
input q are restricted to vary piecewise-continuously in a fixed line segment of the
complex plane. In fact, the understanding of this particular case will allow to
explain (in the following chapter) why, for certain region in the parameter space
of the conflict, the value function (VF) of the game in distance is constant over
some subset of the state space.

Because of the reasons just given, the rest of this subsection is devoted to
analyse the initial value problem (4.8) under the following two assumptions: i) the
set Q (the non-empty compact co-domain of the piecewise continuous compound
input function Q) is a closed line segment, i.e., Q = q1q2, being q1, q2 ∈ C two
fixed points such that q1 6= q2; ii) the initial condition of (4.8) is assumed to lie
in the oriented half-plane Hq1,q2 = {z ∈ C : (q2 − q1)⊗ (z − q1) > 0} (see figure
Figure 4.5). Under these assumptions, it will be shown that the solution zFz0,Q

, of
(4.8), is such that zFz0,Q

(t) must come arbitrarily close to the line ∂Hq1,q2 = q1q2←→,

in finite time. In addition, sufficient conditions on z0, for assuring that there exists
a finite time t1 > 0, such that zFz0,Q

(t1) ∈ ∂Hq1,q2 , will be further investigated.

4.3.6.2. Some possible state-space trajectories when Q is a line segment

Let q1, q2 ∈ C, such that q1 6= q2, be the endpoints points of a fixed line
segment Q = q1q2. For an initial state z0 ∈ Hq1,q2 sufficiently distant from Q, it
is foreseeable that there must exist some finite t1 such that zFz0,Q

(t1) ∈ ∂Hq1,q2 ,
because the trajectory emanating from z0 approximately spirals around Q (see
Figure 4.2), which in this case coincides with the segment q1q2. However, for an
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q1

q2

q̃ (z)

z0

z

∂Hq1,q2

Q
k

(z
−

q̃
(z

))

π
2
− α

Hq1,q2

C \Hq1,q2

Figure 4.6: Given q1 and z0 ∈ C \ {q1}, the feedback law q̃ : C → C such that q̃ (z) ,
q1 +

(
1 + k−1

)
(z − q1), achieves F (z, q̃ (z)) = −k (z − q̃ (z)) = − (z − q1) for every z ∈ C.

In addition, the particular definition q2 , q̃ (z0), makes q̃ (z) belong to Q , conv ({q1, q2})
for every z ∈ conv ({q1, z0}), and z0 belong to Hq1,q2

= {z ∈ C : (q2 − q1)⊗ (z − q1) > 0}.
If q̃ is put into practice, the resulting state-space trajectory, from z0, tends to q1 ∈ ∂Hq1,q2

as
t→ +∞, but it never intersects ∂Hq1,q2

.

initial state z0 close to Q, such t1 may not exist.
For example, let q1 be a fixed point of the complex plane and suppose that

both players agree to implement a state feedback law q̃ : C→ C, given by

q̃ (z) = q1 +
Ä
1 + k−1

ä
(z − q1) , (4.12)

for the compound input q. Accordingly, the SE of the feedback system is

ż = F (z, q̃ (z)) = k (z − q̃ (z)) = − (z − q1) ,

and the resulting trajectory that departs from a given initial state z0 ∈ C \ {q1} is
z (t) = q1 +e−t (z0 − q1), for every t ≥ 0. Let q2 , q̃ (z0) = q1 +

(
1 + k−1

)
(z0 − q1).

Note that, for every t ≥ 0,

q̃ (z (t)) = q1 +
Ä
1 + k−1

ä
e−t (z0 − q1)

= q1 + e−t (q2 − q1) ∈ q1q2 = conv ({q1, q2}) ,
(q2 − q1)⊗ (z (t)− q1) = (q2 − q1)⊗ e−t (z0 − q1)

= e−tℑ
Ä
(1 + k−1)(z0 − q1) (z0 − q1)

ä

= e−t|z0 − q1|2ℑ
Å

1− κ+ j
1 + κ2

ã
> 0,

i.e., for every t ≥ 0, the action q̃ (z (t)) belongs to the segment Q , q1q2 and the
state z (t) belongs a the half-plane Hq1,q2 = {w ∈ C : (q2 − q1)⊗ (w − q1) > 0}.
Hence, if q̃ (z (·)) is now used to synthesise an open loop compound input function
Q : [0,∞) → Q, defined by Q (t) = q1 + e−t (q2 − q1), the resulting trajectory
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q1

q2

z0

z0
′

∂Hq1,q2

Q

Hq1,q2

C \Hq1,q2

Figure 4.7: An example in which the distance from the state to the boundary of Hq1,q2
does

not decrease monotonously.

zFz0,Q
([0,∞)) is an example of a state temporal evolution, from z0 ∈ Hq1,q2 , that

does not reach ∂Hq1,q2 . Indeed, d
Ä
zFz0,Q

(t) , ∂Hq1,q2

ä
= q2−q1

|q2−q1| ⊗ (z (t)− q1) >
0, for every t > 0. The geometrical interpretation of this example, in which
d
Ä
zFz0,Q

(·) , ∂Hq1,q2

ä
is monotonously decreasing, is facilitated by Figure 4.6. How-

ever, in general, d
Ä
zFz0,Q

(·) , ∂Hq1,q2

ä
is not necessarily monotonously decreasing.

For example, keeping z0, Q = q1q2, and Q : [0,∞) → Q as before, let Θ ,
9
10 Arg

Ä
1

1+k−1

ä
= 9

10 Arg
Ä
z0−q1

q2−q1

ä
, z0
′ , q1 + (z0 − q1) e−kΘ and Q′ : [0,+∞)→ Q

such that

Q′ (t) =

{

q1 if t ∈ [0,Θ) ,

Q (t−Θ) if t ∈ [Θ,+∞) .

The trajectory zFz0
′,Q′ ([0,+∞)), from z0

′, that results from applying input Q′ is

represented graphically in figure Figure 4.7. Clearly, in this case, d
Ä
zFz0

′,Q′ (·) , ∂Hq1,q2

ä

is not monotonously decreasing.

4.3.6.3. The state must approach the line that includes segment Q

The previous examples have in common that sooner or later the state comes
arbitrarily close to the straight line ∂Hq1,q2 that includes the segment q1q1where
the compound input (instantaneous centre of the guiding α-equiangular spiral)
is allowed to vary. This rather intuitive result is stated rigorously by the first
proposition that follows. Before, a lemma that will be useful to conceive Lyapunov-
like functions defined in Hq1,q2 is presented next.

Lemma 4.3.1. Let o, v, q ∈ C such that v 6= 0.
For every z ∈ Rv

o = C \ {o− ρv : ρ ≥ 0},

∇Mv
o (z)⊙ F (z, q) = −

(
1 + κ2

)
eκA

v
o(z)

|z − o| (o− z)⊗ (q − z) .
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Proof. The real gradient of Mv
o : C → [0,∞) at z ∈ Rv

o = C \ {o− ρv : ρ ≥ 0}
was already calculated in (4.7) as

∇Mv
o (z) =

eκA
v
o(z)

|z − o| (−j) k (z − o) . (4.13)

Since F : C×C→ C was defined such that F (z1, z2) , k (z1 − z2), the expression
(4.13) may be rewritten as

∇Mv
o (z) =

eκA
v
o(z)

|z − o| (−j)F (z, o) . (4.14)

Accordingly,

∇Mv
o (z)⊙ F (z, q) = −eκA

v
o(z)

|z − o| (jF (z, o))⊙ F (z, q)

= −eκA
v
o(z)

|z − o| |k|
2 (o− z)⊗ (q − z) , (4.15)

where the last equality results from the application of (4.10) with o in place of q
and q in place of q′. Since |k|2 = 1 + κ2, there is nothing else to prove.

In Figure 4.8, the previous lemma is interpreted geometrically for the particular
case in which q ∈ {w = o+ ρv : ρ ∈ R}. Observe that the {o+ ρv : ρ < 0}-
vectogram (resp. {o+ ρv : ρ > 0}-vectogram) at z is such thatMv

o (z) is lead to
decrease (resp. increase), for every z ∈ {w : (w − o)⊗ v > 0}. This observation
is exploited in the proofs of two propositions that follow.

Proposition 4.3.1. Let q1, q2 ∈ C such that q1 6= q2 and

Hq1,q2 = {z ∈ C : (q2 − q1)⊗ (z − q1) > 0} .

Consider the initial value problem (4.8), with z0 ∈Hq1,q2 and Q : [0,+∞)→ Q
piecewise continuous, being Q = q1q2 =

¶
z ∈ C : z−q1

q2−q1
∈ [0, 1]

©
. If its solution,

zFz0,Q
: [0,+∞)→ C, is such that zFz0,Q

(t) ∈Hq1,q2 for every t ≥ 0; then, for every
ǫ > 0, there exists a finite t1 > 0 such that

d
Ä
zFz0,Q

(t1) , ∂Hq1,q2

ä
< ǫ. (4.16)

Proof. Let δ be an arbitrary real positive constant. Define v , q1−q2

|q1−q2| and o ,
q1 + δv (see Figure 4.9). Observe that

v ⊗ (o− z) = v ⊗ (q1 + δv − z) = v ⊗ (q1 − z) = (−v)⊗ (z − q1)

=
q2 − q1

|q2 − q1|
⊗ (z − q1) = d (z, ∂Hq1,q2) > 0. (4.17)

for every z ∈Hq1,q2 {z ∈ C : (q2 − q1)⊗ (z − q1) > 0}.
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o
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∇Mv
o (z)
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q′
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v
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α

F (z, o)

F
(z

, q
)

F (z, q ′)

{w ∈ C : Mv
o (w) =Mv

o (z)}

Figure 4.8: Geometrical interpretation of Lemma 4.3.1 for the particular case in which q ∈
{w = o+ ρv : ρ ∈ R}. Let o, v ∈ C such that v 6= 0; for every z ∈ {w : (w − o)⊗ v > 0}
the velocity vector F (z, q), based at z, points to a direction such that Mv

o (z) =
∣
∣e−kAv

o
(z) (z − o)

∣
∣ is lead to decrease (resp. increase), whatever point q ∈ {o+ ρv : ρ < 0}

(resp. q′ ∈ {o+ ρv : ρ > 0}) is selected as the instantaneous centre of the α-equiangular
guiding spiral.

Let q ∈ Q = q1q2 =
¶
z ∈ C : z−q1

q2−q1
∈ [0, 1]

©
. By Lemma 4.3.1,

∇Mv
o (z)⊙ F (z, q) = −

(
1 + κ2

)
eκA

v
o(z)

|z − o| (o− z)⊗ (q − z) ,

for every z ∈ Rv
o = C \ {o− ρv : ρ ≥ 0}, where the factor (q − z) is

q − z = q1 +
q − q1

q2 − q1
(q2 − q1)− z = o− δv − q − q1

q2 − q1
(q1 − q2)− z

= o− δv − q − q1

q2 − q1
|q1 − q2| v − z =

= (o− z)−
Å
δ +

q − q1

q2 − q1
|q1 − q2|

ã
v. (4.18)

Hence,

∇Mv
o (z)⊙ F (z, q) =

(
1 + κ2

)
eκA

v
o(z)

|z − o|

Å
δ +

q − q1

q2 − q1
|q1 − q2|

ã
(o− z)⊗ v

= −
(
1 + κ2

)
eκA

v
o(z)

|z − o|

Å
δ +

q − q1

q2 − q1
|q1 − q2|

ã
v ⊗ (o− z) .

In this last expression q−q1

q2−q1
∈ [0, 1] (because q ∈ Q) and v⊗ (o− z) > 0 for every

z ∈Hq1,q2 (as already noted in (4.17)). Consequently,

∀z ∈Hq1,q2 , ∀q ∈ Q, ∇Mv
o (z)⊙ F (z, q) < 0. (4.19)
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Q

q1

q2

∂Hq1,q2

Hq1,q2

C \Hq1,q2

o
v = q1−q2

|q1−q2|δ

z0

{z : Mv
o (z) =Mv

o (z0)}

{z : (z −
q1)
⊗ v = ǫ

′ }

ǫ ′

M

Figure 4.9: The set M , {z ∈H : Mv
o (z) ≤Mv

o (z0) ∧ (z − q1)⊗ v ≥ ǫ′} referred to in
the proof of Proposition 4.3.1.

Fix the initial value z0 ∈ Hq1,q2 , of the initial value problem (4.8). Given any
ǫ > 0, let ǫ′ be a real positive number, such that ǫ′ < min {ǫ, (z0 − q1)⊗ v}, and
consider the compact set

M ,
{
z ∈Hq1,q2 : Mv

o (z) ≤Mv
o (z0) ∧ (z − q1)⊗ v ≥ ǫ′} ⊂Hq1,q2 .

Check that z0 ∈M (see Figure 4.9). Let

m , −max {∇Mv
o (z)⊙ F (z, q) : z ∈M ∧ q ∈ Q} .

The real number m is positive, because of (4.19).
Consider the (unique) continuous solution zFz0,Q

: [0,∞) → C of the initial
value problem (4.8). By hypothesis, zFz0,Q

(t) ∈ Hq1,q2 , for every t ≥ 0. Define
H ,Mv

o ◦ zFz0,Q
, which is a continuous function, whose time derivative is

Ḣ (t) = ∇Mv
o

Ä
zFz0,Q

(t)
ä
⊙ F

Ä
zFz0,Q

(t) , Q (t)
ä

at every instant of time t > 0 at which Q is continuous. By (4.19), it can be stated
that

∀t > 0, Ḣ (t) < 0,

which means that H is a monotonously decreasing function of time. Therefore

∀t > 0, H (t) =Mv
o

Ä
zFz0,Q

(t)
ä
<Mv

o (z0) . (4.20)

Suppose, by absurd, that zFz0,Q
(t) ∈M for every t > 0. Since

∀t > 0, Ḣ (t) ≤ −m < 0,
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integration between 0 and t ≥ 0 leads to

∀t ≥ 0, H (t)−H (0) ≤ −mt,

or equivalently

∀t ≥ 0, Mv
o

Ä
zFz0,Q

(t)
ä

= H (t) ≤ H (0)−mt, (4.21)

from where it can be inferred that limt→+∞Mv
o

Ä
zFz0,Q

(t)
ä

= −∞; but, this is
absurd because Mv

o (z) > 0 for every z ∈Hq1,q2 ⊃M . In conclusion, there exists
an instant t1 > 0, such that zFz0,Q

(t1) /∈M ; but since (4.20) must hold, it must be

Ä
zFz0,Q

(t1)− q1

ä
⊗ v < ǫ′. (4.22)

Recalling from (4.17) that d (z, ∂Hq1,q2) = (z − q1)⊗ v, for every z ∈ Hq1,q2 , and
remembering that ǫ′ < ǫ; the thesis of the proposition follows immediately.

4.3.6.4. The state bounded by the level sets of two Lyapunov-like functions

The just preceding proposition states that the state must approach the straight
line ∂Hq1,q2 that includes the segment Q = q1q2 where the compound input takes
values, but it does not inform about how does the approach take place. The
following proposition bounds the possible state-space trajectories by two arcs of
α-equiangular spirals through the initial condition z0 ∈ Hq1,q2 : one whose centre
is at q1 and another whose centre is at q2. The former is a subset of a level-
set of a Lyapunov-like function which is monotonically decreasing along state-
space trajectories included in cl (Hq1,q2), and the later is a subset of a level-set
of a Lyapunov-like function which is monotonically increasing along state-space
trajectories included cl (Hq1,q2).

Proposition 4.3.2. Let q1, q2 ∈ C such that q1 6= q2 and

Hq1,q2 = {z ∈ C : (q2 − q1)⊗ (z − q1) > 0} . (4.23)

Consider the solution zFz0,Q
: [0,+∞) → C of initial value problem (4.8), with

z0 ∈ Hq1,q2 and Q : [0,+∞) → Q piecewise continuous, being Q = q1q2 =¶
z ∈ C : z−q1

q2−q1
∈ [0, 1]

©
.

If t1 = sup
¶
t ∈ [0,+∞) : zFz0,Q

(t) ∈ cl (Hq1,q2)
©

(possibly infinite), the func-

tions t 7→ Mq1−q2
q1

Ä
zFz0,Q

(t)
ä

and t 7→ Mq1−q2
q2

Ä
zFz0,Q

(t)
ä

are monotonously decreas-
ing and monotonously increasing, respectively, in the interval (0, t1). Accordingly,

zFz0,Q
(t) ∈ Dq1,q2 (z0) , ∀t ∈ [0, t1] ,

where,

Dq1,q2 (z0) =
¶
z ∈ C : Mq1−q2

q1
(z) ≤Mq1−q2

q1
(z0) ∧ Mq1−q2

q2
(z) ≥Mq1−q2

q2
(z0)
©
.

Proof. To prove the proposition, it suffices to prove that
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(i) ∇Mv
q1

(z)⊙ F (z, q) ≤ 0 for every q ∈ Q and every z ∈ cl (Hq1,q2),

(ii) ∇Mv
q2

(z)⊙ F (z, q) ≥ 0 for every q ∈ Q and every z ∈ cl (Hq1,q2),

where v = q1 − q2. Let

z ∈ cl (Hq1,q2) = {z ∈ C : (q1 − z)⊗ (q2 − q1) ≥ 0}
= {z ∈ C : (q2 − z)⊗ (q1 − q2) ≤ 0} ,

and

q ∈ Q = q1q2 =
ß
z ∈ C :

z − q1

q2 − q1
∈ [0, 1]

™

=
ß
z ∈ C :

z − q2

q1 − q2
∈ [0, 1]

™
.

By Lemma 4.3.1,

∇Mv
o (z)⊙ F (z, q) = −

(
1 + κ2

)
eκA

v
o(z)

|z − o| (o− z)⊗ (q − z) ,

for every z ∈ Rv
o = C\{o− ρv : ρ ≥ 0}, where o may stand for q1 or q2 as needed.

For the case o = q1, the factor (q − z) may be expanded as

q − z = (q1 − z) +
q − q1

q2 − q1
(q2 − q1) , (4.24)

and consequently

∇Mv
q1

(z)⊙ F (z, q) = −
(
1 + κ2

)
eκA

v
q1

(z)

|z − q1|
(q1 − z)⊗

Å
q − q1

q2 − q1
(q2 − q1)

ã

= −
(
1 + κ2

)
eκA

v
q1

(z)

|z − q1|

Å
q − q1

q2 − q1

ã
(q1 − z)⊗ (q2 − q1) ,

where q−q1

q2−q1
∈ [0, 1] (because q ∈ Q) and (q1 − z) ⊗ (q2 − q1) ≥ 0 (because z ∈

cl (Hq1,q2)). Hence, ∇Mv
q1

(z)⊙ F (z, q) ≤ 0.
For the case o = q2, the factor (q − z) may be expanded as

q − z = (q2 − z) +
q − q2

q1 − q2
(q1 − q2) , (4.25)

and consequently

∇Mv
q2

(z)⊙ F (z, q) = −
(
1 + κ2

)
eκA

v
q2

(z)

|z − q2|
(q2 − z)⊗

Å
q − q2

q1 − q2
(q1 − q2)

ã

= −
(
1 + κ2

)
eκA

v
q2

(z)

|z − q2|

Å
q − q2

q1 − q2

ã
(q2 − z)⊗ (q1 − q2) ,

where q−q2

q1−q2
∈ [0, 1] (because q ∈ Q) and (q2 − z) ⊗ (q1 − q2) ≤ 0 (because z ∈

cl (Hq1,q2)). Hence, ∇Mv
q2

(z)⊙ F (z, q) ≥ 0.
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©

¶
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q2
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©
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Figure 4.10: Geometric interpretation of Propositions 4.3.1 and 4.3.2. By Proposition 4.3.1,
the state must come closer than an arbitrary ǫ > 0 to ∂Hq1,q2

, in finite time. By
Proposition 4.3.2, as long as the state remains in cl (Hq1,q2

), it must belong to the set
Dq1,q2

(z0) =
{
z ∈ C : Mq1−q2

q1
(z) ≤Mq1−q2

q1
(z0) ∧ Mq1−q2

q2
(z) ≥Mq1−q2

q2
(z0)

}
.

Remark 1. The above proposition states that as long as the state remains in
cl (Hq1,q2), it must belong to the set

Dq1,q2 (z0) ,
¶
z ∈ C : Mq1−q2

q1
(z) ≤Mq1−q2

q1
(z0) ∧ Mq1−q2

q2
(z) ≥Mq1−q2

q2
(z0)
©
.

where z0 ∈ Hq1,q2 is the initial condition. In addition, by Proposition 4.3.1 it is
already known that the state must come closer to ∂Hq1,q2 than an arbitrary ǫ > 0,
in finite time. Both facts are graphically represented in Figure 4.10.

4.3.6.5. Escape form compact sets

It was already commented that for regions in space very distant from the
bounded set Q (where the compound input takes values) the state approximately
spirals around Q in the counter-clockwise direction. The following propositions
examines, for the case in which Q is a line segment, how close to Q can the state
still be considered to be approximately spiralling around Q.

Proposition 4.3.3. Let q1, q2 ∈ C such that q1 6= q2. Let also:

Hq1,q2 = {z ∈ C : (q2 − q1)⊗ (z − q1) > 0} ,
Cq1,q2 = {z ∈ C : |z − o| ≤ |l|} ,
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Figure 4.11: Auxiliary figure for Proposition 4.3.3.

where l , −jk q2−q1

2 and o , q2 − l (see Figure 4.11).
Suppose K is a non-empty compact connected subset of C, included in the

region Rq1−q2
q2

= C \ {q2 − ρ (q1 − q2) : ρ ≥ 0}, such that K ∩ Cq1,q2 = ∅ (see
Figure 4.11).

Consider the initial value problem (4.8), with z0 ∈Hq1,q2 and Q : [0,+∞)→ Q
piecewise continuous, being Q = q1q2 =

¶
z ∈ C : z−q1

q2−q1
∈ [0, 1]

©
. Its solution,

zFz0,Q
: [0,+∞)→ C, is such that zFz0,Q

(t) escapes from K in finite time:

t1 = sup
¶
t ∈ [0,+∞) : zFz0,Q

(t) ∈ K
©
< +∞.

Moreover, t 7→ Aq1−q2
q2

Ä
zFz0,Q

(t)
ä

is strictly monotonously increasing in (0, t2),

where t2 = sup
¶
t ∈ [0,+∞) : zFz0,Q

(t) ∈ Rq1−q2
q2

\ Cq1,q2

©
is greater than t1.

Before delving into the proof of this proposition, observe that, by construction
of circle Cq1,q2 (as defined in the statement of the proposition), the arc ∂Cq1,q2 ∩
Hq1,q2 is the set of points in Hq1,q2 from where the segment q1q2 “is seen” with
an angle equal to π

2 + α (see Figure 4.11). Furthermore, for every z ∈ Rq1−q2
q2

\
Cq1,q2 , the velocity vector F (z, q), based at z, points to a direction such that
Aq1−q2
q2

(z) = Arg z−q2

q1−q2
is lead to increase, whatever point q ∈ q1q2 is selected as

the instantaneous centre of the α-equiangular guiding spiral (see Figure 4.12). The
algebraic version of this geometrical observation is a key point for the following
proof.

Proof. For each z ∈ Rq1−q2
q2

= C \ {q2 − ρ (q1 − q2) : ρ ≥ 0} and each ξ ∈ [0, 1],
consider the scalar product

∇Aq1−q2
q2

(z)⊙ F (z, q (ξ)) = ℜ
(

∇Aq1−q2
q2 (z)k (z − q (ξ))

)

, (4.26)
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Figure 4.12: Key point for the proof of Proposition 4.3.3: for every z ∈ Rq1−q2

q2
\ Cq1,q2

, the

velocity vector F (z, q), based at z, points to a direction such that Aq1−q2

q2
(z) = Arg z−q2

q1−q2

is lead to increase, whatever point q ∈ conv ({q1, q2}) is selected as the instantaneous
centre of the α-equiangular guiding spiral. The set Rq1−q2

q2
\ Cq1,q2

is just the region
C\(Cq1,q2

∪ {q2 − ρ (q1 − q2) : ρ ≥ 0}), i.e., the whole complex plane except for circle Cq1,q2

and the ray where Aq1−q2

q2
is discontinuous.
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where q : [0, 1] → Q is defined such that q (ξ) , q1 + ξ (q2 − q1). Recall of (4.6)

furnish the following expression for the factor ∇Aq1−q2
q2 (z)k in (4.26)

∇Aq1−q2
q2 (z)k = −j

z − q2

|z − q2|2
k = −jk

1
z − q2

. (4.27)

The remaining factor in (4.26) is

(z − q (ξ)) = z − q1 − ξ (q2 − q1) = z − q2 + q2 − q1 − ξ (q2 − q1)

= z − q2 + (1− ξ) (q2 − q1) . (4.28)

Making use of (4.27) and (4.28), the scalar product (4.26) may be written as

∇Aq1−q2
q2

(z)⊙ F (z, q (ξ)) = ℜ
Å
−jk
Å

1 + (1− ξ) q2 − q1

z − q2

ãã

= ℜ
Å
−jk − jk (1− ξ) q2 − q1

z − q2

ã

= ℜ (−jk) + ℜ
Å
−jk (1− ξ) q2 − q1

z − q2

ã
.

Since ℜ (−jk) = ℜ (1 + jκ) = 1,

∇Aq1−q2
q2

(z)⊙ F (z, q (ξ)) = 1 + (1− ξ)ℜ
Å
−jk

q2 − q1

z − q2

ã
.

Define C ′ as the following set:

C ′ ,
¶
z ∈ Rq1−q2

q2
: ∃ξ ∈ [0, 1] , ∇Aq1−q2

q2
(z)⊙ F (z, q (ξ)) ≤ 0

©
.

A point z ∈ Rq1−q2
q2

belongs to C ′, if and only if there exists an ξ ∈ [0, 1] such that

1 + (1− ξ)ℜ
Å
−jk

q2 − q1

z − q2

ã
≤ 0.

For ξ = 1, the inequality (4.3.6.5) does not hold for every z ∈ Rq1−q2
q2

. Therefore,
a point z ∈ Rq1−q2

q2
belongs to C ′, if and only if there exists an ξ ∈ [0, 1) such that

ℜ
Å
−jk

q2 − q1

z − q2

ã
≤ − 1

1− ξ ,

i.e., if and only if

ℜ
Å
−jk

q2 − q1

z − q2

ã
≤ max

ß
− 1

1− ξ : ξ ∈ [0, 1)
™

= −1.

So, C ′ =
¶
z ∈ Rq1−q2

q2
: ℜ
Ä
−jk q2−q1

z−q2

ä
≤ −1

©
. Note that

ℜ
Å
−jk

q2 − q1

z − q2

ã
=

1
2

Ç
−jk

q2 − q1

z − q2
+ jk

q2 − q1

z − q2

å

=
−jk q2−q1

2 (z − q2) + jk q2−q1

2 (z − q2)

|z − q2|2

=
l (z − q2) + l (z − q2)

|z − q2|2
,
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where l = −jk q2−q1

2 as defined in the statement of the proposition. Rearranging
the condition of belonging to the set C ′, it can be stated that

C ′ =
¶
z ∈ Rq1−q2

q2
: (z − q2) (z − q2) + l (z − q2) + l (z − q2) ≤ 0

©
.

Check that

(z − q2) (z − q2) + l (z − q2) + l (z − q2) = zz − oz − oz + q2q2 − q2l − q2l,

where o = q2 − l as defined in the statement of the proposition. The RHS of this
last equality can be rewritten as

zz − oz − oz + q2q2 − q2l − q2l + ll − ll = zz − oz − oz + (q2 − l)
Ä
q2 − l

ä
− ll,

= zz − oz − oz + oo− ll
= (z − o) (z − o)− ll
= |z − o|2 − |l|2 .

Thus,

C ′ =
¶
z ∈ Rq1−q2

q2
: |z − o| ≤ |l|

©
= Cq1,q2 \ {q2 − ρ (q1 − q2) : ρ ≥ 0} ,

i.e., C ′ coincides with the circle defined in the enunciation of the proposition,
except for the ray {q2 − ρ (q1 − q2) : ρ ≥ 0} where Aq1−q2

q2
is discontinuous. Check

that Cq1,q2 ∩{q2 − ρ (q1 − q2) : ρ ≥ 0} = {q2}, to conclude that C ′ = Cq1,q2 \{q2},
and therefore

C ′ ,
¶
z ∈ Rq1−q2

q2
: ∃ξ ∈ [0, 1] , ∇Aq1−q2

q2
(z)⊙ F (z, q (ξ)) ≤ 0

©
= Cq1,q2 \ {q2} .

Consequently,

∀z ∈ Rq1−q2
q2

\ (Cq1,q2 \ {q2}) , ∀ξ ∈ [0, 1] , ∇Aq1−q2
q2

(z)⊙ F (z, q (ξ)) > 0,

and, since q2 /∈ Rq1−q2
q2

= C \ {q2 − ρ (q1 − q2) : ρ ≥ 0},

∀z ∈ Rq1−q2
q2

\ Cq1,q2 , ∀ξ ∈ [0, 1] , ∇Aq1−q2
q2

(z)⊙ F (z, q (ξ)) > 0. (4.29)

Let

M , max
¶
Aq1−q2
q2

(z) : z ∈ K
©
,

m , min
¶
∇Aq1−q2

q2
(z)⊙ F (z, q (ξ)) : z ∈ K ∧ ξ ∈ [0, 1]

©
.

By hypothesis, K ⊂ Rq1−q2
q2

\ Cq1,q2 , so (4.29) guarantees that m > 0.
Consider the unique and continuous solution zFz0,Q

: [0,∞) → C of the initial
value problem (4.8). Suppose, by absurd, that zFz0,Q

(t) ∈ K , for every t > 0, i.e.,¶
t ∈ [0,+∞) : zFz0,Q

(t) ∈ K
©

is unbounded above. Define H , Aq1−q2
q2

◦ zFz0,Q
,

which is a continuous function, whose time derivative satisfies

Ḣ (t) = ∇Aq1−q2
q2

Ä
zFz0,Q

(t)
ä
⊙ F

Ä
zFz0,Q

(t) , Q (t)
ä
≥ m > 0. (4.30)
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at every instant of time t > 0 at which Q : [0,+∞)→ Q is continuous. Integration
between 0 and t ≥ 0 leads to

∀t ≥ 0, H (t)−H (0) ≥ mt,

or equivalently

∀t ≥ 0, Aq1−q2
q2

Ä
zFz0,Q

(t)
ä

= H (t) ≥ H (0) +mt, (4.31)

from where it can be inferred that limt→+∞Aq1−q2
q2

Ä
zFz0,Q

(t)
ä

= +∞; but, this is

absurd because, since zFz0,Q
(t) ∈ K for every t ≥ 0, it must be Aq1−q2

q2

Ä
zFz0,Q

(t)
ä
≤

M for every t ≥ 0.
In conclusion,

¶
t ∈ [0,+∞) : zFz0,Q

(t) ∈ K
©

must be bounded above. Ac-

cordingly, there exists t1 = sup
¶
t ∈ [0,+∞) : zFz0,Q

(t) ∈ K
©
< +∞.

Observe that as long as zFz0,Q
(t) ∈ Rq1−q2

q2
\ Cq1,q2 , if Q is continuous at t, the

proposition (4.29) guarantees that

Ḣ (t) = ∇Aq1−q2
q2

Ä
zFz0,Q

(t)
ä
⊙ F

Ä
zFz0,Q

(t) , Q (t)
ä
> 0.

Therefore, H = Aq1−q2
q2

◦ zFz0,Q
is strictly monotonously increasing in (0, t2), where

t2 = sup
¶
t ∈ [0,+∞) : zFz0,Q

(t) ∈ Rq1−q2
q2

\ Cq1,q2

©
is necessarily greater than t1

because K and Cq1,q2 are two disconnected non-empty compact sets and zFz0,Q
is

continuous.

4.3.6.6. Sufficient conditions to reach a ray

The following corollary provides sufficient conditions on the initial state in
Hq1,q2 , for assuring that the state finally reaches a ray, with endpoint at q2, in finite
time. It follows from a particular choice for the compact set K of Proposition 4.3.3.

Corollary 4.3.1. Let q1, q2 ∈ C such that q1 6= q2. Let also:

Hq1,q2 = {z ∈ C : (q2 − q1)⊗ (z − q1) > 0} ,
Cq1,q2 =

ß
z ∈ C :

∣
∣
∣
∣z −

Å
q2 + jk

q2 − q1

2

ã∣
∣
∣
∣ ≤

∣
∣
∣
∣k
q2 − q1

2

∣
∣
∣
∣

™
.

Consider the initial value problem (4.8), with z0 ∈Hq1,q2 and Q : [0,+∞)→ Q
piecewise continuous, being Q = q1q2 =

¶
z ∈ C : z−q1

q2−q1
∈ [0, 1]

©
. Let zFz0,Q

:
[0,+∞)→ C be its solution. Fix θ ∈

î
0,−Aq1−q2

q2
(z0)
ä

and let:

Rq1−q2
q2

= C \ {q2 − ρ (q1 − q2) : ρ ≥ 0}
Dq1,q2 (z0) =

¶
z ∈ C : Mq1−q2

q1
(z) ≤Mq1−q2

q1
(z0) ∧ Mq1−q2

q2
(z) ≥Mq1−q2

q2
(z0)
©
,

K θ
q1,q2

(z0) = Dq1,q2 (z0) ∩
¶
z ∈ Rq1−q2

q2
: −π < Aq1−q2

q2
(z) ≤ −θ

©
,

as represented in Figure 4.13.
If K θ

q1,q2
(z0)∩Cq1,q2 = ∅, the solution zFz0,Q

: [0,+∞)→ C is such that zFz0,Q
(t)

escapes from K θ
q1,q2

(z0) in finite time:

t1 = sup
¶
t ∈ [0,+∞) : zFz0,Q

(t) ∈ K θ
q1,q2

©
< +∞.

Moreover,
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Figure 4.13: Auxiliary figure for .

1. zFz0,Q
(t) ∈ K θ

q1,q2
(z0) , ∀t ∈ [0, t1];

2. Aq1−q2
q2

Ä
zFz0,Q

(t1)
ä

= −θ;

3. K θ
q1,q2

(z0) \ {z0} ⊂ {z ∈ C : (z0 − q2)⊗ (z − q2) > 0}.

Proof. By Proposition 4.3.3, there exists

t1 = sup
¶
t ∈ [0,+∞) : zFz0,Q

(t) ∈ K θ
q1,q2

(z0)
©
< +∞.

Also, by Proposition 4.3.3, t 7→ Aq1−q2
q2

Ä
zFz0,Q

(t)
ä

is strictly monotonously in-

creasing in (0, t2), where t2 = sup
¶
t ∈ [0,+∞) : zFz0,Q

(t) ∈ Rq1−q2
q2

\ Cq1,q2

©
is

greater than t1. Use Proposition 4.3.2 to conclude that the continuous trajectory
t 7→ zFz0,Q

(t) is such that zFz0,Q
(t) remains in K θ

q1,q2
(z0) while t ∈ [0, t1] and it

leaves K θ
q1,q2

(z0), at t = t1, by crossing

Dq1,q2 (z0) ∩
¶
z ∈ Rq1−q2

q2
: Aq1−q2

q2
(z) = −θ

©
⊂ ∂K θ

q1,q2
(z0) .

The last statement, K θ
q1,q2

(z0) \ {z0} ⊂ {z ∈ C : (z0 − q2)⊗ (z − q2) > 0},
follows directly from the fact that t 7→ Aq1−q2

q2

Ä
zFz0,Q

(t)
ä

is strictly monotonously
increasing in (0, t2).

Remark 2. Note that for the case θ = 0, the Corollary 4.3.1 gives sufficient condi-
tions on the initial state in Hq1,q2 for assuring that the state finally reaches ∂Hq1,q2

at some finite time.

Remark 3. Check that if z0 ∈ Hq1,q2 , θ ∈
î
0,−Aq1−q2

q2
(z0)
ä

and Mq1−q2
q2

(z0) >
|q1 − q2|; the condition K θ

q1,q2
(z0) ∩ Cq1,q2 = ∅, required by Corollary 4.3.1, neces-

sarily holds.
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4.3.6.7. Switching dwell time

The next proposition may be a applied to examine a situation in which E’s
control set Σ = [0, 1] is replaced by the discrete set {0, 1} and a dwell time tdw > 0
must elapse between every two consecutive discontinuities of every E’s control
function t 7→ σ (t) ∈ {0, 1}. Under such hypothesises, consider for example a case
such that P selects a constant control action u0 ∈ U for which q (u0, 0) = q1

and q (u0, 1) = q2. For such a case, it is a fact that E cannot prevent the state
from getting into C \Hq1,q2 whatever the initial state in Hq1,q2 is, and it follows
logically from the next proposition. This contrasts with the state-space trajectories
represented in Figures 4.6 and 4.7 included in Hq1,q2 which never reach ∂Hq1,q2 .
Actually, the next proposition shows that if in Figures 4.6 and 4.7 was E the only
player in control of the compound input taking values in {q1, q2}, the represented
trajectories would have been possible only at the cost of infinitely fast switching
between both endpoints of q1q2, if Σ = [0, 1] is replaced by the discrete set {0, 1}.
Proposition 4.3.4. Let q1, q2 ∈ C such that q1 6= q2 and

Hq1,q2 = {z ∈ C : (q2 − q1)⊗ (z − q1) > 0} .
Consider the solution, zFz0,Q

: [0,+∞) → C, of the initial value problem (4.8),
with z0 ∈Hq1,q2 and Q : [0,+∞)→ Q piecewise continuous, being Q = {q1, q2}.

If there exists a tdw > 0 such that ti+1 − ti > tdw for every pair (ti, ti+1) of
consecutive time instants at which Q is discontinuous, then there exists a finite
time tf > 0 such that zFz0,Q

(tf ) ∈ C \Hq1,q2.

Proof. Let

Rq1−q2
q2

= C \ {q2 − ρ (q1 − q2) : ρ ≥ 0} ,
Dq1,q2 (z0) =

¶
z ∈ C : Mq1−q2

q1
(z) ≤Mq1−q2

q1
(z0) ∧ Mq1−q2

q2
(z) ≥Mq1−q2

q2
(z0)
©
,

and q ∈ {q1, q2}. By Lemma 4.3.1,

∇Mq1−q2
q2

(z)⊙ F (z, q) = −
(
1 + κ2

)
eκA

q1−q2
q2

(z)

|z − q2|
(q2 − z)⊗ (q − z) ,

for every z ∈ K θ
q1,q2
⊂ Rq1−q2

q2
= C\{q2 − ρ (q1 − q2) : ρ ≥ 0}. Expanding (q − z)

as

q − z = (q2 − z) +
q − q2

q1 − q2
(q1 − q2) ,

the previous dot product can be rewritten as

∇Mq1−q2
q2

(z)⊙ F (z, q) = −
(
1 + κ2

)
eκA

q1−q2
q2

(z)

|z − q2|

Å
q − q2

q1 − q2

ã
(q2 − z)⊗ (q1 − q2) ,

where q−q2

q1−q2
∈ {0, 1} (because q ∈ {q1, q2}) and (q2 − z) ⊗ (q1 − q2) < 0 if z ∈

Hq1,q2 . Hence:

∀z ∈Hq1,q2 , ∇Mq1−q2
q2

(z)⊙ F (z, q)

{

> 0 if q = q1,

= 0 if q = q2;
(4.32)
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4.3. Some observations on the system’s dynamics

∀z ∈Hq1,q2 , ∇Mq1−q2
q2

(z)⊙ F (z, q1)→ 0 ⇐⇒ Aq1−q2
q2

(z)→ 0. (4.33)

The function t 7→ Q (t) is piecewise constant and takes only two possible values:
q1 and q2. The function t 7→ zFz0,Q

(t) is continuous. During the time intervals in
which Q (t) = q1 (resp. Q (t) = q2), the state zFz0,Q

(t) spirals counter-clockwise
around q1 (resp. q2) with unitary angular speed. Therefore, tdw must be less than
π and Q (t) cannot remain constant for intervals of length larger or equal than π,
if there is any chance for zFz0,Q

(t) to remain in Hq1,q2 for every t ≥ 0. Suppose this
is the case, i.e., tdw < π and in every time interval of length π there is at least one
discontinuity of Q. If not, the state would cross ∂Hq1,q2 while spiralling around q1

or q2, and there would be nothing else to prove.
Suppose, by absurd, that zFz0,Q

(t) ∈ Hq1,q2 for every t ≥ 0. By Proposi-
tion 4.3.2, zFz0,Q

(t) ∈ Dq1,q2 (z0) for every t ≥ 0. Let H ,Mq1−q2
q2

◦ zFz0,Q
, which is

a continuous function, whose time derivative is

Ḣ (t) = ∇Mq1−q2
q2

Ä
zFz0,Q

(t)
ä
⊙ F

Ä
zFz0,Q

(t) , Q (t)
ä

at every instant of time t > 0 at which Q is continuous. By (4.32), Ḣ (t) > 0 during
the time intervals in which Q (t) = q1 and Ḣ (t) = 0 during the time intervals in
which Q (t) = q2. Accordingly, H is monotonously increasing. There are two
possible cases: {H (t) : t ≥ 0} is bounded above or not.

If {H (t) : t ≥ 0} is bounded above, there exists a finite limit

lim
t→+∞

H (t) = H (0) + lim
t→+∞

∫ t

0
Ḣ (t) dt < +∞,

that asks for

lim
t→+∞

Ḣ (t) = lim
t→+∞

∇Mq1−q2
q2

Ä
zFz0,Q

(t)
ä
⊙ F

Ä
zFz0,Q

(t) , Q (t)
ä

= 0. (4.34)

Since Q is obliged to take the value q1 at least once in every time interval of length
π, and keep this value constant for at least tdw > 0; the requirement (4.34) at the
light of (4.32)–(4.33) allow to infer that

Aq1−q2
q2

Ä
zFz0,Q

(t)
ä
→ 0

which means that zFz0,Q
(t) → {q2 + ρ (q1 − q2) : ρ > 0} ∩ Dq1,q2 (z0) ⊂ ∂Hq1,q2 .

Once zFz0,Q
(t) is sufficiently close to this line segment (whose distance to q2 is

positive), the obliged value q2 that Q must take, for an interval of time of length
greater than the given tdw > 0, sweeps the state into

¶
z ∈ C : Aq1−q2

q2
(z) ≥ 0

©
⊂

C \ Hq1,q2 by making it spiral counter-clock-wisely around q2. This is absurd,
because it was supposed that zFz0,Q

(t) ∈Hq1,q2 for every t ≥ 0.
If {H (t) : t ≥ 0} is not bounded above, at some instant of time t1, it must be

H (t1) = Mq1−q2
q2

Ä
zFz0,Q

(t1)
ä
≫ Mq1−q2

q2
(q1). Actually, since H is monotonously

increasing, H (t) =Mq1−q2
q2

Ä
zFz0,Q

(t)
ä
≫Mq1−q2

q2
(q1) for every t ≥ t1. In addition,

by Proposition 4.3.1, a t1
′ > t1 can be found such that d

Ä
zFz0,Q

(t1′) , ∂Hq1,q2

ä
< ǫ

for an ǫ > 0 as small as desired. In conclusion, there exists a t1
′ such that zFz0,Q

(t1′)
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Chapter 4. The conflict’s dynamics

is as far away from q1 as desired and as close to the ray q2q1−−→ as desired. From

such point in state-space either q1 or q2 acting as the centre of a state-guiding
α-equiangular spiral (maintained over a time interval greater than tdw) sweeps the
state away from Hq1,q2 into C\Hq1,q2 . This is also absurd, because it was supposed
that zFz0,Q

(t) ∈Hq1,q2 for every t ≥ 0.

4.4. The underlying point-wise inf-sup problem

In contrast with the previous section, that was about global state temporal
evolutions, this section is about local control action selection by each player.

It will become apparent soon the central role played by the family of point-wise
inf-sup problems of the form

inf
u∈U

sup
σ∈Σ

{p⊙ f (z, u, σ)} , (4.35)

parametrized by (z, p) ∈ C× C.
Once a (z, p) ∈ C × C has been fixed, the resulting problem (4.35) is said to

be solved by a pair (û, σ̂) ∈ U ×Σ, if

p⊙ f (z, û, σ̂) = inf
u∈U

sup
σ∈Σ

{p⊙ f (z, u, σ)} .

The following proposition summarizes essential facts, in connection with (4.35),
that will be recurred to, in the following section and the following chapter.

Proposition 4.4.1.

1. The inf and sup operations commute in (4.35), i.e.,

∀ (z, p) ∈ C× C, inf
u∈U

sup
σ∈Σ

{p⊙ f (z, u, σ)} = sup
σ∈Σ

inf
u∈U
{p⊙ f (z, u, σ)} .

(4.36)

2. Let u∗ : C→ U and σ∗ : C→ Σ, such that

u∗ (p) ,
Ç

1 + i▽o
2
− sg

Ä
−kp, e−j2β

ä 1− i▽o
2

å

+ j
Ç

1 + v▽i
2
− sg

(

−kp, e j( π
2
−β)

) 1− v▽i
2

å
, (4.37)

σ∗ (p) ,
Å

1
2

+ sg
(

−kp, e j( π
2
−β)

) 1
2

ã
. (4.38)

where sg : C× C→ {−1, 1} is defined by

sg (w1, w2) ,

{

sgn (w1 ⊙ w2) if w1 ⊙ w2 6= 0,

sgn (w1 ⊗ w2) if w1 ⊙ w2 = 0,
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4.4. The underlying point-wise inf-sup problem

and sgn : R→ {−1, 0, 1} is defined by

sgn (ξ) ,







1 if ξ > 0,
0 if ξ = 0,
−1 if ξ < 0.

For every (z, p) ∈ C× C, the pair (u∗ (p) , σ∗ (p)) ∈ U ×Σ solves (4.35).

3. Given (z, p) ∈ C × C, such that kp ⊙ e−j2β 6= 0 and kp ⊙ e j( π
2
−β) 6= 0, let

(û, σ̂) ∈ U ×Σ be any pair that solves (4.35); then,

q (û, σ̂) = q (u∗ (p) , σ∗ (p)) .

Moreover,

q (u∗ (p) , σ∗ (p)) =







a if
Ä
−kp

ä
⊙ e−j2β > 0 and

Ä
−kp

ä
⊙ e j( π

2
−β) < 0,

b if
Ä
−kp

ä
⊙ e−j2β < 0 and

Ä
−kp

ä
⊙ e j( π

2
−β) < 0,

c if
Ä
−kp

ä
⊙ e−j2β < 0 and

Ä
−kp

ä
⊙ e j( π

2
−β) > 0,

d if
Ä
−kp

ä
⊙ e−j2β > 0 and

Ä
−kp

ä
⊙ e j( π

2
−β) > 0.

Proof. Let (z, p) be an arbitrary element of C× C.
Recall that f (z, u, σ) = k (z − q (u, σ)), so

p⊙f (z, u, σ) = p⊙(k (z − q (u, σ))) =
Ä
pk
ä
⊙(z − q (u, σ)) =

Ä
−kp

ä
⊙q (u, σ)−

Ä
−kp

ä
⊙z,

for every (u, σ) ∈ U ×Σ. To simplify notation, let r = −kp. Accordingly,

inf
u∈U

sup
σ∈Σ

{p⊙ f (z, u, σ)} = inf
u∈U

sup
σ∈Σ

{r ⊙ q (u, σ)− r ⊙ z}

= inf
u∈U

sup
σ∈Σ

{r ⊙ q (u, σ)} − r ⊙ z.

Recall that q (u, σ) = −jδ0 + δ1e−j2βℜu + δ2e j( π
2
−β)σℑu, thus r ⊙ q (u, σ) =

−δ0 (r ⊙ j) + δ1

Ä
r ⊙ e−j2β

ä
ℜu + δ2

(

r ⊙ e j( π
2
−β)

)

σℑu. In addition, Σ = [0, 1]
and U = {io + jvi : io ∈ [i▽o , 1] , vi ∈ [v▽i , 1]}. Therefore,

inf
u∈U

sup
σ∈Σ

{p⊙ f (z, u, σ)} = −δ0 (r ⊙ j)− r ⊙ z

+ inf
io∈[i▽o ,1]

¶
δ1

Ä
r ⊙ e−j2β

ä
io
©

+ inf
vi∈[v▽i ,1]

sup
σ∈[0,1]

{

δ2

(

r ⊙ e j( π
2
−β)

)

σvi
}

. (4.39)

It is clear that if the inf and sup operations commute in the last term of the
RHS of the last equality, the above expansion can be reversed, with inf and sup
interchanged, to conclude that

inf
u∈U

sup
σ∈Σ

{p⊙ f (z, u, σ)} = sup
σ∈Σ

inf
u∈U
{p⊙ f (z, u, σ)} .
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Indeed,

inf
vi∈[v▽i ,1]

sup
σ∈[0,1]

{

δ2

(

r ⊙ e j( π
2
−β)

)

viσ
}

= sup
σ∈[0,1]

inf
vi∈[v▽i ,1]

{

δ2

(

r ⊙ e j( π
2
−β)

)

viσ
}

,

because, recalling that δ2 and v▽i are positive real numbers, direct execution of
each alternative calculation leads to

inf
vi∈[v▽i ,1]

sup
σ∈[0,1]

{

δ2

(

r ⊙ e j( π
2
−β)

)

viσ
}

=







(

r ⊙ e j( π
2
−β)

)

v▽i if r ⊙ e j( π
2
−β) ≥ 0,

0 otherwise;

sup
σ∈[0,1]

inf
vi∈[v▽i ,1]

{

δ2

(

r ⊙ e j( π
2
−β)

)

viσ
}

=







(

r ⊙ e j( π
2
−β)

)

v▽i if r ⊙ e j( π
2
−β) ≥ 0,

0 otherwise.

This completes the proof of statement 1.
From (4.39) it is evident that problem (4.35) reduces to the following two

problems:

inf
io∈[i▽o ,1]

¶
δ1

Ä
r ⊙ e−j2β

ä
io
©
, (4.40)

inf
vi∈[v▽i ,1]

sup
σ∈[0,1]

{

δ2

(

r ⊙ e j( π
2
−β)

)

viσ
}

. (4.41)

Using the expansion (4.39) and recalling that δ1, δ2, v
▽
i > 0 and i▽o ≥ 0, it can

be easily checked that the pair (u∗ (p) , σ∗ (p)), as defined by (4.37)–(4.38), solves
(4.35), as stated by statement 2.

Even though (u∗ (p) , σ∗ (p)) may not be the unique solution of (4.35), note,
however, that if r ⊙ e−j2β 6= 0 and r ⊙ e j( π

2
−β) 6= 0, any solution (û, σ̂) ∈ U ×Σ

of (4.35), must verify q (û, σ̂) = q (u∗ (p) , σ∗ (p)). Indeed, if (û, σ̂) solves (4.35),
according to the problem reduction (4.40)–(4.41) , (û, σ̂) must verify

ℜû =

{

i▽o if r ⊙ e−j2β > 0

1 if r ⊙ e−j2β < 0

}

= ℜ (u∗ (p)) ,

σ̂ℑû =







v▽i if r ⊙ e j( π
2
−β) > 0,

0 if r ⊙ e j( π
2
−β) < 0






= σ∗ (p)ℑ (u∗ (p)) .

Since q (u1, σ1) = q (u2, σ2), for every (u1, u2, σ1, σ2) ∈ U × U × Σ × Σ such
that ℜu1 = ℜu2 and σ1ℑu1 = σ2ℑu2; it follows that q (û, σ̂) = q (u∗ (p) , σ∗ (p)),
as stated by the first assertion of statement 3. The second one, follows from
direct application of statement 2, under the hypothesis that r ⊙ e−j2β 6= 0 and
r ⊙ e j( π

2
−β) 6= 0.

Remark 4. The pair (u∗ (p) , σ∗ (p)), prescribed by (4.37)–(4.38) to solve (4.35),
depends on p but not on z. In fact, it depends only on the argument of p, or
equivalently, on the argument of r = −kp = (secα) e j( π

2
−α)p (see Figure 4.14).

Only four values are possible for q (u∗ (p) , σ∗ (p)), namely, a, b, c and d (as defined
in Table 3.6) which are the vertices of the parallelogram q ([i▽o , 1] + jv▽i , [0, 1]) (see
Figures 3.7 and 3.8).
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e−j2β

e j(π
2
−β)

r4

r4 = −kp4

r4 ⊙ e−j2β > 0

r4 ⊙ ej(π
2
−β) > 0

q (u∗ (p4) , σ∗ (p4)) = d

r3

r3 = −kp3

r3 ⊙ e−j2β < 0

r3 ⊙ ej(π
2
−β) > 0

q (u∗ (p3) , σ∗ (p3)) = c

r2

r2 = −kp2

r2 ⊙ e−j2β < 0

r2 ⊙ ej(π
2
−β) < 0

q (u∗ (p2) , σ∗ (p2)) = b r1

r1 = −kp1

r1 ⊙ e−j2β > 0

r1 ⊙ ej(π
2
−β) < 0

q (u∗ (p1) , σ∗ (p1)) = a

Figure 4.14: The pair (u∗ (p) , σ∗ (p)) prescribed by the functions u∗ : C → U and
σ∗ : C → Σ (defined in statement 2 of Proposition 4.4.1) to solve the inf-sup
problem infu∈U supσ∈Σ {p⊙ f (z, u, σ)} depends only on the argument of r , −kp =

(secα) e j( π

2
−α)p; it does not depend on z.

Remark 5. Observe that (u∗ (p) , σ∗ (p)) is not necessarily the only possible solution

of (4.35), even if
Ä
−kp

ä
⊙ e−j2β 6= 0 and

Ä
−kp

ä
⊙ e j( π

2
−β) 6= 0. For example,

if
Ä
−kp

ä
⊙ e−j2β > 0 and

Ä
−kp

ä
⊙ e j( π

2
−β) < 0, every pair (i▽o + jvi, 0), with

vi ∈ [v▽i , 1], also solves (4.35) for every z ∈ C. This is because every (vi, σ) ∈
[v▽i , 1]×{0} solves (4.41), if

Ä
−kp

ä
⊙ e j( π

2
−β) < 0. However, non-unique solutions

are not possible for the modified problem

inf
u∈U

sup
σ▽≤σ≤1

{p⊙ f (z, u, σ)} , (4.42)

where σ▽ > 0, if
Ä
−kp

ä
⊙ e−j2β 6= 0 and

Ä
−kp

ä
⊙ e j( π

2
−β) 6= 0. The prescription

p 7→ v∗i = ℑ (u∗ (p)), implicit in (4.37), is preferred over others that also solve
(4.41) because it is somehow robust, i.e., it is the same that would result from
solving (4.42) with arbitrarily small σ▽ > 0, instead of (4.35).
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Remark 6. As a by-product of the proof, the following expansion is obtained

inf
u∈U

sup
σ∈Σ

{p⊙ f (z, u, σ)} = sup
σ∈Σ

inf
u∈U
{p⊙ f (z, u, σ)}

= −δ0 (r ⊙ j)− r ⊙ z
+ inf

io∈[i▽o ,1]

¶
δ1

Ä
r ⊙ e−j2β

ä
io
©

+ inf
vi∈[v▽i ,1]

sup
σ∈[0,1]

{

δ2

(

r ⊙ e j( π
2
−β)

)

viσ
}

, (4.43)

where r = −kp.
Remark 7. For the game in time, the running cost function (see section Subsec-
tion 2.1.2) is constant and equal to one, so the Hamiltonian function (see Subsec-
tion 2.6.1) adopts the form (z, p, u, σ) 7→ H (z, p, u, σ) = p⊙ f (z, u, σ) + 1. For the
game in distance, the running cost function is constant and equal to zero, so the
Hamiltonian function adopts the form (z, p, u, σ) 7→ H (z, p, u, σ) = p⊙ f (z, u, σ).
For both games, statement 1 of Proposition 4.4.1 implies that that the Isaacs’
condition (see Subsection 2.6.2) holds, i.e.,

inf
u∈U

sup
σ∈Σ

H (z, p, u, σ) = sup
σ∈Σ

inf
u∈U
H (z, p, u, σ) .

The functions u∗ : C→ U and σ∗ : C→ Σ, defined in statement 2 of the above
proposition, will be used to build optimal strategies of the game in distance which
is the matter of the following chapter. In particular, u∗ and σ∗ will be required to
be evaluated at p = ±j. The following lemma paves the way for such evaluations.

Lemma 4.4.1. If r± = −k (±j), then

r± ⊙ e−j2β ≶ 0, (4.44)

r± ⊙ e j( π
2
−β) ≷ 0. (4.45)

Proof. Evaluation of the dot products yields:

r± ⊙ e−j2β = ∓
Ä
jk
ä
⊙ e−j2β = ∓k ⊗ e−j2β = ∓ℑ

Ä
ke−j2β

ä
,

r± ⊙ e j( π
2
−β) = ∓

Ä
jk
ä
⊙ e j( π

2
−β) = ∓k ⊗ e j( π

2
−β) = ∓ℑ

(

ke j( π
2
−β)

)

.

Since k = −κ + j =
√

1 + κ2e j( π
2

+α) = e
j( π

2 +α)
cosα = (secα) e j( π

2
+α), the above

expressions become

r± ⊙ e−j2β = (∓ secα)ℑ
(

e j( π
2

+α−2β)
)

= (∓ secα) sin
Å
π

2
+ α− 2β

ã
,

r± ⊙ e j( π
2
−β) = (∓ secα)ℑ

Ä
e j(π+α−β)

ä
= (∓ secα) sin (π + α− β) ;

or equivalently

r± ⊙ e−j2β = ∓ secα cos (α− 2β) ,

r± ⊙ e j( π
2
−β) = ± secα sin (α− β) .
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4.4. The underlying point-wise inf-sup problem

To prove the lemma it is enough to prove the following inequalities:

secα > 0,

cos (α− 2β) > 0,

sin (α− β) > 0.

Recall that the seven real parameters, which make up function f , must verify
(4.2), (4.3) and (4.4). In particular, (4.2) is the logical conjunction of:

α ∈
Å

0,
π

2

ã
, (4.46)

|β| < α, (4.47)

tanα− tan β < secα. (4.48)

From (4.46)–(4.47), it is clear that secα > 0 and sin (α− β) > 0. To prove
that cos (α− 2β) > 0, the inequality (4.48) is needed as it is shown next.

Note that

cos (α− 2β) = cos (2β − α) = cos (2β) cosα+ sin (2β) sinα

=
1− tan2 β

1 + tan2 β
cosα+

2 tan β
1 + tan2 β

sinα

=
1

1 + tan2 β

ÄÄ
1− tan2 β

ä
cosα+ 2 tan β sinα

ä

= cos2 β
ÄÄ

1− tan2 β
ä

cosα+ 2 tan β sinα
ä

= cos2 β

ÅÄ
1− tan2 β

ä»
1− sin2 α+ 2 sinα tan β

ã
.

Let ζ , sinα and λ , cosα (tanα− tan β). From above,

cos (α− 2β) = cos2 β
(Ä

1− tan2 β
ä»

1− ζ2 + 2ζ tan β
)

(4.49)

The difference between ζ and λ is

ζ − λ = sinα− cosα (tanα− tan β) = cosα tan β

=
»

1− ζ2 tan β,

Solve for tan β in this last equation and substitute into (4.49) to obtain

cos (α− 2β) = cos2 β

ÇÇ
1− (ζ − λ)2

1− ζ2

å»
1− ζ2 + 2ζ

ζ − λ
√

1− ζ2

å

=
cos2 β
√

1− ζ2

Ä
1− ζ2 − (ζ − λ)2 + 2ζ (ζ − λ)

ä

=
cos2 β
√

1− ζ2

Ä
1− λ2

ä

=
cos2 β

cosα
(1 + λ) (1− λ)

=
cos2 β

cosα
(1 + cosα (tanα− tan β)) (1− cosα (tanα− tan β))

= cos2 β (1 + cosα (tanα− tan β)) (secα− (tanα− tan β))
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Chapter 4. The conflict’s dynamics

Observe that, since α ∈ (0, π2
)

and |β| < α, the following inequalities hold: cosα >
0 and tanα − tan β > 0. In addition, by (4.48), secα − (tanα− tan β) > 0.
Consequently,

cos (α− 2β) > 0.

Note 1. In the course of the proof of the previous lemma, ζ and λ were defined in
terms of α and β in such a way that they happen to coincide with the canonical
parameters ζ and λ of Subsection 3.4.4. Notice, however, that is was not necessary
to recall their physical meaning to complete the proof, which follows exclusively
from (4.2).

The following corollary, which follows logically from Proposition 4.4.1 and the
previous lemma, characterizes the initial (in retrogressive sense) compound control
actions for the retrogressive integration technique which is used, in the following
chapter, to obtain candidate optimal trajectories of the game in distance.

Corollary 4.4.1. For every z ∈ C:

inf
u∈U

sup
σ∈Σ

{+j⊙ f (z, u, σ)} = +k ⊗ (z − c) , (4.50)

inf
u∈U

sup
σ∈Σ

{−j⊙ f (z, u, σ)} = −k ⊗ (z − a) . (4.51)

Furthermore:

1. if (û, σ̂) solves the inf-sup problem in the LHS of (4.50), then

q (û, σ̂) = q (u∗ (+j) , σ∗ (+j)) = c;

2. if (û, σ̂) solves the inf-sup problem in the LHS of (4.51), then

q (û, σ̂) = q (u∗ (−j) , σ∗ (−j)) = a.

Proof. Consider the family (4.35) of point-wise inf-sup problems parametrized by
(z, p) ∈ C × C. Suppose p is either +j or −j. To consider both alternatives
simultaneously let p± = ±j and r± = −kp± = −k (±j). According to Lemma 4.4.1,

r± ⊙ e−j2β ≶ 0, (4.52)

r± ⊙ e j( π
2
−β) ≷ 0. (4.53)

Recalling statement 3 of Proposition 4.4.1, the inequalities (4.52) and (4.53)
imply that

inf
u∈U

sup
σ∈Σ

{p⊙ f (z, u, σ)} =

{

p⊙ (k (z − c)) if p = +j,

p⊙ (k (z − a)) if p = −j;
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4.5. Semi-permeable curves

or equivalently

inf
u∈U

sup
σ∈Σ

{p⊙ f (z, u, σ)} =

{Ä
+jk
ä
⊙ (z − c) = +k ⊗ (z − c) if p = +j,Ä

−jk
ä
⊙ (z − a) = −k ⊗ (z − a) if p = −j.

It follows, from this last expression, that

inf
u∈U

sup
σ∈Σ

{+j⊙ f (z, u, σ)} = +k ⊗ (z − c) , (4.54)

inf
u∈U

sup
σ∈Σ

{−j⊙ f (z, u, σ)} = −k ⊗ (z − a) . (4.55)

In addition, by the same statement of Proposition 4.4.1, if (û, σ̂) ∈ U ×Σ solves
the LHS of (4.54), the following equality must hold

q (û, σ̂) = q (u∗ (+j) , σ∗ (+j)) = c.

Similarly, if (û, σ̂) ∈ U ×Σ solves the LHS of (4.55), the following equality must
hold

q (û, σ̂) = q (u∗ (−j) , σ∗ (−j)) = a.

4.5. Semi-permeable curves

This section is devoted to the systematic search of semi-permeable surfaces
(defined in Section 2.5) associated to the SE in (4.1). Since the state space, in this
case, is the two dimensional real vector space C, these subsets of the state space
will be referred to as semi-permeable curves.

4.5.1. The unknowns

Consider a smooth curve S ⊂ C given implicitly by S = {w : U (w) = 0},
where U : R → R is a real valued function defined on a region R of C. Without
loss of generality, assume that, from both sides of the surface, E prefers the side
{w : U (w) > 0} and P prefers the side {w : U (w) < 0}.

Let z ∈ S and p = ∇U (z). Since S is smooth, p 6= 0 is normal to S at z,
and ±jp are tangents to S at z. Let

r = −kp = −(−κ+ j)p = (κ+ j) p =
√

1 + κ2e j( π
2
−α)p =

e j( π
2
−α)

cosα
p.

The objects just introduced will be referred to in the next three propositions.
Keep in mind that p reflects the players’ opposite preferences with respect to both
sides of S .
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Chapter 4. The conflict’s dynamics

4.5.2. Characterization of semi-permeable curves

Proposition 4.5.1. The curve S is semi-permeable at z, if and only if

inf
u∈U

sup
σ∈Σ

{p⊙ f (z, u, σ)} = 0.

Proof. By definition of semi-permeability, the curve S is semi-permeable at z, if
there exist controls û ∈ U and σ̂ ∈ Σ such that

∀u ∈ U, ∀σ ∈ Σ, p⊙ f (z, û, σ) ≤ p⊙ f (z, û, σ̂) = 0 ≤ p⊙ f (z, u, σ̂) . (4.56)

The interchangeability of the inf and sup operations in any problem of the
form (4.35) (guaranteed by statement 1 of Proposition 4.4.1) allow for expressing
the semi-permeability condition (4.56) simply as

inf
u∈U

sup
σ∈Σ

{p⊙ f (z, u, σ)} = 0,

as it was pointed out in Section 2.5 (within the R
n set-up of Chapter 2 instead of

C).

Proposition 4.5.2. Assume that r ⊙ e−j2β 6= 0 and r ⊙ e j( π
2
−β) 6= 0 and let

q = q (u∗ (p) , σ∗ (p)) ∈ {a, b, c, d} (see statements 2 and 3 of Proposition 4.4.1).
Under these assumptions, the curve S is semi-permeable at z if and only if

p⊙ (k (z − q)) = 0,

or, equivalently, if and only if

r ⊙ (z − q) = 0.

Proof. The statement 2 of Proposition 4.4.1, by means of functions u∗ and σ∗,
provides a pair (u∗ (p) , σ∗ (p)) ∈ U ×Σ, such that

p⊙ f (z, u∗ (p) , σ∗ (p)) = inf
u∈U

sup
σ∈Σ

{p⊙ f (z, u, σ)} .

Even though, there could be other pairs (û, σ̂) ∈ U × Σ, possibly different from
(u∗ (p) , σ∗ (p)), such that

p⊙ f (z, û, σ̂) = inf
u∈U

sup
σ∈Σ

{p⊙ f (z, u, σ)} ;

statement 3 of Proposition 4.4.1 states that, if r⊙ e−j2β 6= 0 and r⊙ e j( π
2
−β) 6= 0,

the functional value q (û, σ̂) must coincide with q (u∗ (p) , σ∗ (p)), which in turn
must belong to the finite set {a, b, c, d}. This means that, if r ⊙ e−j2β 6= 0 and

r⊙ e j( π
2
−β) 6= 0, the complex number q , q (u∗ (p) , σ∗ (p)) ∈ {a, b, c, d} is the only

one that satisfies

p⊙ (k (z − q)) = inf
u∈U

sup
σ∈Σ

{p⊙ f (z, u, σ)} , (4.57)
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4.5. Semi-permeable curves

where it was used that, by definition, f (z, u, σ) = k (z − q (u, σ)) for every (z, u, σ) ∈
C× U ×Σ.

Consequently, assuming r ⊙ e−j2β 6= 0 and r ⊙ e j( π
2
−β) 6= 0, it follows, from

Proposition 4.5.1 and (4.57), that S is semi-permeable at z if and only if

p⊙ (k (z − q)) = 0,

or, equivalently, if and only if

r ⊙ (z − q) = 0,

because p⊙ (k (z − q)) =
Ä
kp
ä
⊙ (z − q) = −r ⊙ (z − q).

Proposition 4.5.3. Define eight sectors of the complex plane as follows:

A +
a , A a−b

a,(0,π
2

+β) =
{

w : (w − a)⊗ e−j2β > 0 ∧ (w − a)⊗ e j( π
2
−β) < 0

}

,

A −a , A b−a
a,(0,π

2
+β) =

{

w : (w − a)⊗ e−j2β < 0 ∧ (w − a)⊗ e j( π
2
−β) > 0

}

,

A +
b , A c−b

b,(0,π
2
−β) =

{

w : (w − b)⊗ e−j2β < 0 ∧ (w − b)⊗ e j( π
2
−β) < 0

}

,

A −b , A b−c
b,(0,π

2
−β) =

{

w : (w − b)⊗ e−j2β > 0 ∧ (w − b)⊗ e j( π
2
−β) > 0

}

,

A +
c , A c−d

c,(0,π
2

+β) =
{

w : (w − c)⊗ e−j2β < 0 ∧ (w − c)⊗ e j( π
2
−β) > 0

}

,

A −c , A d−c
c,(0,π

2
+β) =

{

w : (w − c)⊗ e−j2β > 0 ∧ (w − c)⊗ e j( π
2
−β) < 0

}

,

A +
d , A a−d

d,(0,π
2
−β) =

{

w : (w − d)⊗ e−j2β > 0 ∧ (w − d)⊗ e j( π
2
−β) > 0

}

,

A −d , A d−a
d,(0,π

2
−β) =

{

w : (w − d)⊗ e−j2β < 0 ∧ (w − d)⊗ e j( π
2
−β) < 0

}

.

Assume that

r /∈
{

w : w ⊙ e−j2β = 0 ∨ w ⊙ e j( π
2
−β) = 0

}

,

so that q , q (u∗ (p) , σ∗ (p)) belongs {a, b, c, d} (as detailed by statement 3 of Pro-
position 4.4.1), and suppose that

z /∈ {a, b, c, d} .

If the curve S is semi-permeable at z, then either z ∈ A +
q or z ∈ A −q .

Moreover,

p =







−j |p| k(z−q)
|k(z−q)| if z ∈ A +

q ,

+j |p| k(z−q)
|k(z−q)| if z ∈ A −q ,

r =







+j (z−q)
|z−q| |kp| if z ∈ A +

q ,

−j (z−q)
|z−q| |kp| if z ∈ A −q .
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z+

p

r = −kp

k
(z

+
−

q)

π
2
− α

α

z−

q
p

r = −kp

k
(z
−
−

q)

π
2
− α

α

Figure 4.15: Let z be point of an unknown smooth curve S whose known normal at z is p 6= 0.

If z /∈ {a, b, c, d} and r , −kp /∈
{

w : w ⊙ e−j2β = 0 ∨ w ⊙ e j( π

2
−β) = 0

}

, S is semi-

permeable at z if and only if p ⊙ (k (z − q)) = 0 where q = q (u∗ (p) , σ∗ (p)) ∈ {a, b, c, d},
being u∗ and σ∗ the functions defined in statement 2 of Proposition 4.4.1. These conditions

restrict z to belong to either A +
q (if k(z−q)

|z−q| = +j p
|p| ), or A −

q (if k(z−q)
|z−q| = −j p

|p| ). These two

alternatives are exemplified in the figure by the points z+ ∈ A +
q and z− ∈ A −

q .

Proof. By hypothesis, r /∈
{

w : w ⊙ e−j2β = 0 ∨ w ⊙ e j( π
2
−β) = 0

}

and the curve
S is semi-permeable at z. Hence, by Proposition 4.5.2,

p⊙ (k (z − q)) = 0 (4.58)

and
r ⊙ (z − q) = 0,

where q , q (u∗ (p) , σ∗ (p)) ∈ {a, b, c, d} (recall statement 3 of Proposition 4.4.1).
By hypothesis, z /∈ {a, b, c, d}, so z − q 6= 0. Since p 6= 0, from (4.58) it follows

that either k(z−q)
|k(z−q)| = +j p|p| or k(z−q)

|k(z−q)| = −j p|p| if , i.e., the direction of k (z − q)
must be one of the only two directions tangent to S at z (see Figure 4.15). Hence,
p adopts different expressions, in terms of (z − q), depending on the case:

p =







−j |p| k(z−q)
|k(z−q)| if k(z−q)

|k(z−q)| = +j p|p| ,

+j |p| k(z−q)
|k(z−q)| if k(z−q)

|k(z−q)| = −j p|p| .

Accordingly, r = −kp also adopts different expressions, in terms of (z − q), de-
pending on the case:

r =







+j (z−q)
|z−q| |kp| if k(z−q)

|k(z−q)| = +j p|p| ,

−j (z−q)
|z−q| |kp| if k(z−q)

|k(z−q)| = −j p|p| .
(4.59)
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4.5. Semi-permeable curves

The point q = q (u∗ (p) , σ∗ (p)) belongs to {a, b, c, d}. Specifically, as detailed
by statement 3 of Proposition 4.4.1:

q =







a if r ⊙ e−j2β > 0 and r ⊙ e j( π
2
−β) < 0,

b if r ⊙ e−j2β < 0 and r ⊙ e j( π
2
−β) < 0,

c if r ⊙ e−j2β < 0 and r ⊙ e j( π
2
−β) > 0,

d if r ⊙ e−j2β > 0 and r ⊙ e j( π
2
−β) > 0.

(4.60)

Suppose r is such that the first case of the RHS of (4.60) holds, then un-
doubtedly q = a. Moreover, in view of (4.59), z must satisfy either (j (z − a)) ⊙
e−j2β > 0 and (j (z − a))⊙ e j( π

2
−β) < 0, or (j (z − a))⊙ e−j2β < 0 and (j (z − a))⊙

e j( π
2
−β) > 0. Consequently, z must belong to either

A +
a , A a−b

a,(0,π
2

+β) =
{

w : (w − a)⊗ e−j2β > 0 ∧ (w − a)⊗ e j( π
2
−β) < 0

}

,

or

A −a , A b−a
a,(0,π

2
+β) =

{

w : (w − a)⊗ e−j2β < 0 ∧ (w − a)⊗ e j( π
2
−β) > 0

}

;

because (jw1)⊙ w2 = w1 ⊗ w2, for every w1, w2 ∈ C (as already shown in (4.11)).
Put differently, z must lie in a pair of opposite disjoint sectors with common vertex
at a. Which of the two sectors does z actually belong to? If k(z−q)

|k(z−q)| = +j p|p| , then

z ∈ A +
a ; while if k(z−q)

|k(z−q)| = −j p|p| , then z ∈ A −a (see Figure 4.15).
Carrying on with the discussion for the remaining three cases in the RHS of

(4.60), the thesis of the proposition follows.

4.5.3. Families of semi-permeable curves

Recall that S was introduced, at the beginning of this section, just as a
smooth curve with normal p, at one of its points z, that points to the side of
the curve preferred by E (being implicit that the opposite side is the one pre-
ferred by P). The above proposition states necessary conditions on z for S to
be semi-permeable at z, under the assumption that z /∈ {a, b, c, d} and that

r = −kp /∈
{

w : w ⊙ e−j2β = 0 ∨ w ⊙ e j( π
2
−β) = 0

}

. These conditions, which
can be interpreted geometrically with the aid of Figure 4.15, suggest that arcs
of α-equiangular spirals, with common centre at q = q (u∗ (p) , σ∗ (p)), are good
candidates to be semi-permeable curves. Indeed, if z is now a moving point along
one of these curves, the normal pz at z varies continuously and so rz = −kpz also
varies continuously while the centre of the spiral q = q (u∗ (pz) , σ∗ (pz)) remains
constant, at least as long as rz does not reach the set

{

w : w ⊙ e−j2β = 0 ∨ w ⊙ e j( π
2
−β) = 0

}

.

Note that rz reaches this last set exactly when z reaches the following set
{

w : w ⊗ e−j2β = 0 ∨ w ⊗ e j( π
2
−β) = 0

}

,
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because (from Proposition 4.5.3) during the approach

rz =







+j (z−q)
|z−q| |kp| if k(z−q)

|k(z−q)| = +j p|p| ,

−j (z−q)
|z−q| |kp| if k(z−q)

|k(z−q)| = −j p|p| ,
(4.61)

must hold and (jw1)⊙ w2 = w1 ⊗ w2, for every w1, w2 ∈ C.
Following this insight, eight families of curves arise as indicated by the following

bijection, which assigns a family to each sector defined within Proposition 4.5.3:

A +
a 7→ F +

a , F a−b
a,(0,π

2
+β) =

ß
S a−b
a,(0,π

2
+β) (ρ) : ρ > 0

™
,

A −a 7→ F−a , F b−a
a,(0,π

2
+β) =

ß
S b−a
a,(0,π

2
+β) (ρ) : ρ > 0

™
,

A +
b 7→ F +

b , F c−b
b,(0,π

2
−β) =

ß
S c−b
b,(0,π

2
−β) (ρ) : ρ > 0

™
,

A −b 7→ F−b , F b−c
b,(0,π

2
−β) =

ß
S b−c
b,(0,π

2
−β) (ρ) : ρ > 0

™
,

A +
c 7→ F +

c , F c−d
c,(0,π

2
+β) =

ß
S c−d
c,(0,π

2
+β) (ρ) : ρ > 0

™
,

A −c 7→ F−c , F d−c
c,(0,π

2
+β) =

ß
S d−c
c,(0,π

2
+β) (ρ) : ρ > 0

™
,

A +
d 7→ F +

d , F a−d
d,(0,π

2
−β) =

ß
S a−d
d,(0,π

2
−β) (ρ) : ρ > 0

™
,

A −d 7→ F−d , F d−a
d,(0,π

2
−β) =

ß
S d−a
d,(0,π

2
−β) (ρ) : ρ > 0

™
.

Each family is a set of arcs of α-equiangular spirals with common centre and
angular amplitude, which are, respectively: the vertex and the angular amplitude
of the sector that corresponds to the family (see Figure 4.16). So, each sector
coincides with the union of the arcs included within it, e.g.,

A +
a =

⋃

F +
a =

⋃

ρ

ß
S a−b
a,(0,π

2
+β) (ρ) : ρ > 0

™
.

Note, however, that the eight sectors involved are not all pairwise disjoint, e.g.,
A −a ∩A +

c 6= ∅ and A +
b ∩A +

d 6= ∅, among other examples (see Figure 4.16).
The arcs of spirals that belong to these families are actually semi-permeable

curves. For example, fix ρ > 0 and consider S a−b
a,(0,π

2
+β) (ρ) which is a member of

F +
a . By definition,

S a−b
a,(0,π

2
+β) (ρ) =

®
a+ ρ

a− b
|a− b|e

(− tanα+j)θ : θ ∈
Å

0,
π

2
+ β

ã´

=
ß
w : Ma−b

a (w) = ρ ∧ Aa−ba (w) ∈
Å

0,
π

2
+ β

ã™
.

Using (4.7), the two normal directions of S a−b
a,(0,π

2
+β) (ρ) at z ∈ S a−b

a,(0,π
2

+β) (ρ) ⊂
A +
a can be represented by the vectors

±∇Ma−b
a (z) = ±eκA

a−b
a (z) (1 + jκ)

z − a
|z − a| = ±eκA

a−b
a (z) (−jk)

z − a
|z − a| ,
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which can both be checked to verify






Ä
−k∇Ma−b

a (z)
ä
⊙ e−j2β 6= 0 and

Ä
−k∇Ma−b

a (z)
ä
⊙ e j( π

2
−β) 6= 0,

∇Ma−b
a (z)⊙ (k (z − a)) = 0,

as required by Proposition 4.5.2 to prove that S a−b
a,(0,π

2
+β) (ρ) is semi-permeable

at z. However, only +∇Ma−b
a (z) complies with Proposition 4.5.3, that is to say,

that the selected normal (denoted p in the proposition) divided by k (z − a) has to
be a positive real multiple of −j, as z ∈ A +

a . This normal direction, represented
by +∇Ma−b

a (z), is the one preferred by E. For the remaining families similar
conclusions can be arrived.

In Figure 4.16, normal directions preferred by E, represented by

pz±
q
, ±∇M±v(q)

q

Ä
z±q
ä

= ±eκA
±v(q)
q (z±

q ) (−jk)
z±q − q
∣
∣
∣z±q − q

∣
∣
∣

, (4.62)

and velocity vectors
k
Ä
z±q − q

ä
,

are shown for z±q ∈ A ±q and q ∈ {a, b, c, d}, being v : {a, b, c, d} → C such that

v (q) ,







+ (a− b) if q = a,

− (b− c) if q = b,

+ (c− d) if q = c,

− (d− a) if q = d.

For a certain q ∈ {a, b, c, d}, and a certain z±0 ∈ A ±q =
⋃

F±q a semi-
permeable curve contained in the family F±q is actually traversed by the system’s
state if the players adopt a pair of semi-permeable strategies (ũ∗, σ̃∗) such that
q (ũ∗ (z) , σ̃∗ (z)) = q. This can be checked by solving ż = F (z, q (ũ∗ (z) , σ̃∗ (z))) =
k (z − q) with initial state z0.

For each q ∈ {a, b, c, d}, the family F +
q is classified as positively oriented while

F−q is classified as negatively oriented, for the reason that follows. Observe that

sgn
(

pz±
q
⊗
Ä
k
Ä
z±q − q

ää)
= ±1 for z±q ∈ A ±q , because

pz±
q
⊗
Ä
k
Ä
z±q − q

ää
=
(

jpz±
q

)

⊙
Ä
k
Ä
z±q − q

ää

=

Ñ
±eκA

±v(q)
q (z±

q )k
z±q − q
∣
∣
∣z±q − q

∣
∣
∣

é
⊙
Ä
k
Ä
z±q − q

ää

= ±eκA
±v(q)
q (z±

q ) |k|2
∣
∣
∣z±q − q

∣
∣
∣ .

This means that, along an arc of spiral that belongs to a positively oriented family,
the direction of the velocity vector is obtained by an anticlockwise rotation of
angle π

2 of the normal preferred by E; while along an arc of spiral that belongs to
a negatively oriented family, the direction of the velocity vector is obtained by a
clockwise rotation of angle π

2 of the normal preferred by E (see Figure 4.16).
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a

b

d

c

c′

d′

z+
a

k (z+
a − a)

pz+
a

z−a

k (z−a − a)

pz−
a

z+
c

k (z+
c − c)

pz+
c

z−c

k (z−c − c)

pz−
c

z+
b

k
Ä
z+
b − b

ä

pz+
b

z−b

k
Ä
z−b − b

äpz−
b

z+
d k
Ä
z+
d − d

ä

pz+
d

z−d

k
Ä
z−d − d

äpz−
d

F−
a

F−
c

F +
b

F +
d

F +
a

F +
c

F−
b

F−
d

Figure 4.16: Families of semi-permeable curves: F +
a , F −

a , F +
b , F −

b , F +
c , F −

c , F +
d , F −

d .
Each family is a collection of arcs α-equiangular spirals with common centre and angular
amplitude.
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4.5.4. Composite semi-permeable curves

Once all possible smooth semi-permeable curves have been characterized, it
is natural to ask if two or more of such curves can be concatenated to from a
new (possibly non-smooth) composite semi-permeable curve. Let the analysis be
started by discarding false composite semi-permeable curves.

4.5.4.1. False composite semi-permeable curves

First, notice that a concatenation between a member of a positively oriented
family and a member of a negatively oriented family does not make sense, because
it would give rise to a composite curve that if it was to be traversed by the system’s
state along the direction dictated by the velocity vector, the preferred sides of the
players would be reversed at the concatenation point. Imagine, for example, in
Figure 4.16 an arc of F +

b that intersects with an arc of F−a and examine E’s
preferred normal direction at a moving point that follows the velocity vector along
both curves switching from the first one to the second one at the intersection point.

Second, observe that some pairs of families of semi-permeable curves do not
even have a boundary in common, e.g., d

(⋃
F +
a ,
⋃

F +
c

)
> 0 and d

Ä⋃
F +
a ,
⋃

F−b
ä
>

0, so no candidate point of concatenation exists to try to concatenate a member
of F +

a with a member of F +
c , or a member of F +

a with a member of F−b (see
Figure 4.16).

Third, in some cases, the concatenation of two semi-permeable curves taken
from equally oriented families “leaks” at the concatenation point.

As an example of this third kind of misleading concatenation of semi-permeable
curves, consider the following arcs of spirals represented in Figure 4.17: Sa ∈ F−a ,
Sc ∈ F−c , Sb ∈ F +

b , and Sd ∈ F +
d . These arcs of spirals are taken in such a way

that Sa and Sc intersect at two points inside conv ({a, b, c, d}) and likewise Sb

and Sd. Let z1, . . . , z4 ∈ conv ({a, b, c, d}) be the intersection points as represented
in Figure 4.17. Define the sets

UE ,
¶
z : Mb−a

a (z) ≤Mb−a
a (z1) ∧ Md−c

c (z) ≤Md−c
c (z1)

©
,

UP ,
¶
z : Mc−b

b (z) ≤Mc−b
b (z3) ∧ Ma−d

d (z) ≤Ma−d
d (z3)

©
,

represented as shaded areas in Figure 4.17.
Since both Sa and Sc belong to negatively oriented families, the non-empty

set UE delimited between them may be thought to be a set where E can keep the
state in forever, since his preferred normal directions (represented generically by
pz−

a
and pz−

c
in Figure 4.16) point into UE at every point of ∂UE where ∂UE is

smooth. However, this is false because if, for example, P decides to apply a constant
control action u = i▽o + jvi0 where vi0 ∈ [v▽i , 1], he forces the compound input q

to belong to the segment
{

a+ δ2e j( π
2
−β)σvi0 : σ ∈ [0, 1]

}

⊂ conv ({a, d′}), and,
by Proposition 4.3.1, the state must come, in finite time, arbitrarily close to the
straight line through a and d′, which lies in the exterior of UE .

Similarly, the set UP , delimited by Sb and Sd (both semi-permeable curves
of positively oriented families), may be thought to be a set where P can keep
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a

b

d

c

c′

d′

z1

z2

Sa ∈ F−
a

Sc ∈ F−
c

UE

z3

z4

Sd ∈ F +
d

Sb ∈ F +
b

UP

Figure 4.17: False semi-permeable composite closed curves ∂UE and ∂UP , due to leaking
corners at concatenation points: z1, . . . , z4.
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4.5. Semi-permeable curves

the state in forever, since his opponent’s preferred normal directions (represented
generically by pz+

b
and pz+

d
in Figure 4.16) point out of UP at every point of ∂UP

where ∂UP is smooth. However, this is also false because if, for example, E decides
to apply a constant control action σ = 0, he forces the compound input q to belong
to the segment conv ({a, b}), and, by Proposition 4.3.1, the state must come, in
finite time, arbitrarily close to the straight line through a and b, which lies in the
exterior of UP .

The reason for this third kind of failure to concatenate two smooth semi-
permeable surfaces is that the concatenation points z1, . . . , z4 are leaking corners
[60]. To examine this “leaking” issue, consider for example the point z1. From
(4.62), the normal direction to Sa ∈ F−a , at z1, preferred by E is

p−a , −∇Mb−a
a (z1) = −eκA

b−a
a (z1) (−jk)

z1 − a
|z1 − a|

,

and the normal direction to Sc ∈ F−c , at z1, preferred by E is

p−c , −∇Md−c
c (z1) = −eκA

d−c
c (z1) (−jk)

z1 − c
|z1 − c|

.

Let ξ ∈ [0, 1] and consider the scalar product
Ä
(1− ξ) p−a + ξp−c

ä
⊙ k (z1 − q) , (4.63)

where q ∈ conv ({a, b, c′, d′}) is unknown. It is just an algebraic exercise to prove
that (4.63) is equal to

|k|2
Ç

eκA
b−a
a (z1) (1− ξ) a− z1

|a− z1|
+ eκA

d−c
c (z1)ξ

c− z1

|c− z1|

å
⊗ (q − z1) ,

from where it follows that (4.63) is non-negative for all ξ ∈ [0, 1], if and only if
(a− z1) ⊗ (q − z1) ≥ 0 and (c− z1) ⊗ (q − z1) ≥ 0. Since q ∈ conv ({a, b, c′, d′}),
the compound input q must belong to the set

{w : (a− z1)⊗ (w − z1) ≥ 0 ∧ (c− z1)⊗ (w − z1) ≥ 0} ∩ conv
({
a, b, c′, d′

})

(4.64)
to make (4.63) positive. The set (4.64) is represented graphically in Figure 4.18.
The problem for E is that for every q in (4.64) which makes the velocity vector
k (z − q) based at z1 point into UE , there exists a q′ ∈ conv (a, d′) (eligible by
P simply by choosing io = i▽o ) which makes the velocity vector based at z point
into C \ UE . Consequently, E lacks a semi-permeable control at z = z1 for the
composite curve ∂UE . If such semi-permeable control existed, it would make the
velocity vector based at z1 point into UE regardless of what P does.

4.5.4.2. True composite semi-permeable curves

Having discarded most of the potential concatenations, observe however that
there are some concatenations that give rise to true composite semi-permeable
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z1

UE

a

b

d

c

c′

d′

q

q′

k (z
1 −

q)

k
(z

1
− q
′ )

Figure 4.18: The point z1 in the figure is an example of a leaking corner. If the state reaches
the state z1, E can not prevent the state from leaving UE against certain control actions of P.
For every q in the darkest shaded area that makes the velocity vector k (z − q), based at z1,
point into UE , there exists a q′ ∈ conv (a, d′) that can be imposed by P simply by choosing
io = i▽o that makes the velocity vector, based at z, point into C \UE . Consequently, E lacks
a semi-permeable control at z = z1 for the composite curve ∂UE .
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curves. For example, curves of the family F−a can be successfully concatenated
with curves of the family F−b .

To justify this, consider the common boundary between
⋃

F−a and
⋃

F−b which
is the ray

{

z = b+ ρ b−a
|b−a| : ρ > 0

}

. Let ρ1 > 0 and z1 = b+ ρ1
b−a
|b−a| . The normal

direction to Sa ∈ F−a , at z1, preferred by E can be defined taking a natural limit
in (4.62)

p−a , lim
A −

a ∋z→z1

−∇Mb−a
a (z) = −eκA

b−a
a (z1) (−jk)

z1 − a
|z1 − a|

= eκA
b−a
a (z1)

Ç
1 +

ρ1

|b− a|

å
jk (b− a) .

Analogously, the normal direction to Sb ∈ F−b , at z1, preferred by E is can be
defined as

p−b , lim
A −

b
∋z→z1

−∇Mb−c
b (z) = −eκA

b−c
b

(z1) (−jk)
z1 − b
|z1 − b|

= eκA
b−c
b

(z1) 1
|b− a| jk (b− a) .

Consequently, p−a and p−b are oriented along the same direction p , jk (b− a).
This direction should be the one preferred by E at the concatenation point. But,
does the semi-permeability condition actually holds at z1? If it does, it must be

inf
u∈U

sup
σ∈Σ

{p⊙ f (z, u, σ)} = 0. (4.65)

as required by (4.5.1). The expansion of the LHS of (4.65) as suggested by Re-
mark 6 yields

inf
u∈U

sup
σ∈Σ

{p⊙ f (z, u, σ)} = sup
σ∈Σ

inf
u∈U
{p⊙ f (z, u, σ)}

= −δ0 (r ⊙ j)− r ⊙ z
+ inf

io∈[i▽o ,1]

¶
δ1

Ä
r ⊙ e−j2β

ä
io
©

+ inf
vi∈[v▽i ,1]

sup
σ∈[0,1]

{

δ2

(

r ⊙ e j( π
2
−β)

)

viσ
}

, (4.66)

where io = ℜu and vi = ℑu. Since r , −kp = − |k|2 j (b− a) = − |k|2 j |b− a| e−j2β ,
the dot product r⊙ e−j2β vanishes causing an indeterminacy in the solution of the
inf-sup problem (4.66), in particular in the selection of io = ℜu. But the dot
product that rules the selection of vi and σ, i.e.,

r ⊙ e j( π
2
−β) = − |k|2 |b− a|

Ä
je−j2β

ä
⊙ e j( π

2
−β)

= − |k|2 |b− a| e−j2β ⊗ e j( π
2
−β)

= − |k|2 |b− a| ℑ
(

e j2βe j( π
2
−β)

)

= − |k|2 |b− a| sin
Å
π

2
+ β

ã
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is negative (because, from (4.2), |β| < π
2 ). Accordingly, vi = v∗i = 1 and σ = σ∗ = 0

render the same inf-sup value in (4.66) for every io ∈ [0, 1]. Otherwise stated,

inf
u∈U

sup
σ∈Σ

{p⊙ f (z, u, σ)} = (jk (b− a))⊙ k (z1 − q∗)

= |k|2 (b− a)⊗ (z1 − q∗) , (4.67)

for every q∗ = q (io + jv∗i , σ
∗) = q (io + j, 0) ∈ ab =

¶
z ∈ C : z−a

b−a ∈ [0, 1]
©

. Since
z1 = b+ρ1

b−a
|b−a| , the cross product in (4.67) is zero. This confirms that the proposed

concatenation is semi-permeable at z1.
Likewise, at every point of the ray

{

b+ ρ b−c
|b−c| : ρ > 0

}

a curve of the family

F−b can be successfully concatenated with a curve of the family F−c , at every

point of the ray
{

c+ ρ d−c
|d−c| : ρ > 0

}

a curve of the family F−c can be success-

fully concatenated with a curve of the family F−d , and at every point of the ray
{

d+ ρ d−a
|d−a| : ρ > 0

}

a curve of the family F−d can be successfully concatenated

with a curve of the family F−a (see Figure 4.16). Analogous concatenations can
be devised among members of the positively oriented families (F +

a , F +
b , F +

d , and
F +
d ).

In the following chapter, the negatively oriented families of semi-permeable
curves and their successful concatenations will appear naturally giving form to the
VF of the game in distance.
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Chapter 5

The game in distance

5.1. Road map for the chapter

This chapter deals with the game in distance induced by the buck converter
conflict introduced in Chapter 3. The final goal of this chapter is to find a mean-
ingful solution for this pursuit-evasion game.

In Section 5.2 the precise formulation of the game in distance is reviewed and
restricted to the particular case in which the input voltage to the buck converter
remains constant. This restriction is postulated rather lately in this thesis because
it is only aimed at simplifying the problem of solving the game, at the cost of
sacrificing generality, though. The concept of solution to the game in distance is
reviewed in this section to make clear what a meaningful solution of the game is.

The particular form of the target set that defines of the game in distance
makes the game intrinsically bilateral. In Section 5.3, a decomposition into two
unilateral games (an upward game and a downward game) is proposed to approach
the problem of solving the bilateral game. In addition, the meaning of solving
each of the two unilateral games is made clear and some preliminary properties in
connection with the unilateral games are examined.

When the players engage in the play of one of the two unilateral games, some-
how the outcome of the play finally turns out to be determined. The discussion
of Section 5.4 is intended to figure out how such outcome takes place when both
players play optimally, and to motivate the formulation of an ansatz to approach
the problem of solving the upward unilateral game.

The ansatz, proposed in Section 5.5, has the form of a partial differential equa-
tion with a rather loosely defined boundary condition, which justifiably deserves
to be called Isaacs’ equation for the upward game. This equation is solved in
Section 5.6 by the classical method of characteristics, which reduces the problem
of solving a partial differential equation to the problem of solving a system of
ordinary differential equations.

Inconveniently, the solution of Isaacs’ equation, as obtained by the method of
characteristics, does not provide a solution of the upward game in a clean manner.
Instead, an artisanal construction, derived from the solution of Isaacs’ equation,
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has to be done in order to successfully validate it as the solution of the upward
game. This is the subject of Sections 5.7 to 5.9. Each of these sections deals with
a qualitatively different case that is determined by the game’s concrete instance
in its parameter space. In each case, a solution of the upward game is constructed
and explained how to be validated. In particular, in Section 5.7 the validation
process is carried out thoroughly in order to describe meticulously (at least for
one of the three cases) the kind of arguments involved in the validation process.

Thanks to the sacrifice in generality paid by restricting the input voltage ap-
plied to the converter to be constant, the two unilateral games relate geometrically
by a central inversion. This fact is exploited in Section 5.10 to argue that the solu-
tion of an unilateral game can be obtained from the solution of the other.

Finally, enriched with the knowledge obtained from having previously rigor-
ously solved both unilateral games, in Section 5.11 the original bilateral game is
attacked. The same three qualitatively different cases, that need to be distin-
guished when solving any of the two unilateral games, need to be distinguished
when solving the bilateral game. For each case, a solution of the bilateral game is
constructed and commented on how to validate it.

5.2. Formulation of the game in distance

5.2.1. The three main defining objects

Next, the formulation of the buck converter game in distance is briefly recalled.
The game is formulated by the following state equation (SE), target set (TS),

and pay-off functional (PF).

Gdist







SE : dz
dt = f (z, u, σ) , k (z − q (u, σ)) ,

TS : T , {z ∈ C : |ℑz| ≥ 1} ,
PF : Pdo

f,T (z0, u (·) , σ (·)) , inf
{

do

(

zf
z0,u(·),σ(·) (t) ,T

)

: t ≥ 0
}

;

where f : C× U ×Σ→ C is defined by

f (z, u, σ) , F (z, q (u, σ)) ,

being F : C× C→ C such that F (z, q) , k (z − q) and q : U ×Σ→ C such that
q (u, σ) , −jδ0 + δ1e−j2βℜu+ δ2e j( π

2
−β)σℑu, where

U ,
{
io + jvi ∈ C : i▽o ≤ io ≤ 1, v▽i ≤ vi ≤ 1

}
,

Σ , {σ ∈ R : 0 ≤ σ ≤ 1} ,
k , −κ+ j, κ , tanα.

The function do : C× 2C \ {∅} → R is defined by

do (z,W ) ,

{

+d (z,W ) if z ∈ W ∁,

−d
Ä
z,W ∁

ä
if z ∈ W ;
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where W ∁ = C \ W and d (z,W ) = inf {|z − w| : w ∈ W } for every z ∈ C and
every non-empty subset W of C. The unique state-space trajectory (solution of the
SE) through an arbitrary initial state z|t=0 = z0 ∈ C due to arbitrary piecewise
continuous control functions u : [0,+∞) → U and σ : [0,+∞) → Σ, is denoted
zf
z0,u(·),σ(·) : [0,+∞)→ C in the above formulation.

5.2.2. The game’s original parameter-space

In Chapter 3, the physical assumptions (A1)–(A9) were introduced and ar-
gued to be reasonable for the buck converter control problem. Subsequently, the
problem was stated as a pursuit-evasion conflict which can always be expressed
in a canonical form in terms of seven real parameters introduced as geometric
parameters: α, β, δ0, δ1, δ2, i▽o , and v▽i . These parameters must satisfy

0 < α <
π

2
, −α < β < α, tanα− tan β < secα, (5.1)

δ1, δ2 > 0, δ0 > 1 + (tanα− tan β) δ1 cos2 β, (5.2)

0 ≤ i▽o < 1, 0 < v▽i ≤ 1, (5.3)

in order to comply with the original assumptions (A1)–(A9) as it was explained
in Subsection 3.4.6. The conditions (5.1)–(5.3) were the conditions assumed to
hold in Chapter 4, where basic facts about the canonized conflict’s dynamics were
evidenced, in particular all its families of semi-permeable curves.

5.2.3. A simplifying restriction on the game’s parameter-space

The natural way to proceed from now on would be to maintain (5.1)–(5.3) as
the valid set of assumptions to approach the game in distance formulated above
in Subsection 5.2.1. However, a sacrifice of generality will be introduced next to
simplify the game.

Concretely, the assumption

0 < VImin ≤ VImax (A3)

introduced in Chapter 3, is transformed into

0 < VImin = VImax. (A3!)

Accordingly, the condition
0 < v▽i ≤ 1 (5.4)

in (5.3) becomes
0 < v▽i = 1. (5.5)

The introduced modification on the set of assumptions leaves P with the
load current drained from the converter (iO, or io in its normalized form) as its
single scalar control action, impeding him from acting on the converter’s input
voltage (vI , or vi in its normalized form). Otherwise stated, in the SE of the

119



Chapter 5. The game in distance

conflict, P’s control u = io + jvi becomes u = io + j and its control set U =
{io + jvi ∈ C : i▽o ≤ io ≤ 1, v▽i ≤ vi ≤ 1} becomes U = {io + j ∈ C : i▽o ≤ io ≤ 1}.
In practice, this means that, within the control problem, the voltage supplied to
the buck converter is assumed constant, i.e., vI = VImax = VImin.

Clearly, (A3!) is not a minor deviation from the original assumption (A3) and
it is introduced here solely because of the pragmatic reason that it introduces
certain symmetry in the SE of Gdist which facilitates the process of solving it.

From now on the parameter-space (5.1)–(5.3) restricted by (5.5) will be referred
to as the restricted parameter-space.

5.2.4. Geometric reinterpretation of the canonical conflict

The anchor points, introduced in Subsection 3.5.2, are fixed points of the com-
plex plane defined as follows in terms of the geometric parameters:

a , −jδ0 + i▽o δ1e−j2β ,

b , −jδ0 + δ1e−j2β ,

c , −jδ0 + δ1e−j2β + v▽i δ2e j( π
2
−β),

c′ , −jδ0 + δ1e−j2β + δ2e j( π
2
−β),

d , −jδ0 + i▽o δ1e−j2β + v▽i δ2e j( π
2
−β),

d′ , −jδ0 + i▽o δ1e−j2β + δ2e j( π
2
−β).

Observe that the depart from (5.4) in favour of (5.5) causes that c = c′ and
d = d′ in Figures 3.7 and 3.8, reducing the parallelogram where the compound
control action

q = q (u, σ) = q (io + jvi, σ) = −jδ0 + ioδ1e−j2β + σviδ2e j( π
2
−α)

takes values to the parallelogram conv ({a, b, c, d}), whose side lengths are:

µ1 , |b− a| = |c− d| = (
1− i▽o

)
δ1,

µ2 , |c− b| = |d− a| = v▽i δ2 = δ2.

Recall that instantaneously, players P and E can be thought as disputing the
position of the centre q = q (u, σ) of an α-equiangular spiral, that drives the state
evolution. In Figure 5.1 the canonical conflict between P and E is geometric-
ally reinterpreted for the restricted parameter-space. Notice that, because of the
restriction on vi, the compound input

q = q (u, σ) = q (io + jvi, σ) = a+
(
io − i▽o

)
δ1e−j2β + σviδ2e j( π

2
−α)

becomes

q = q (u, σ) = q (io + j, σ) = a+
(
io − i▽o

)
δ1e−j2β + σδ2e j( π

2
−α), (5.6)

i.e., P loses his influence along e j( π
2
−α).
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Figure 5.1: Geometric reinterpretation of the canonical conflict (for a case in which β > 0)
after restricting its parameter-space to 0 < v▽i = 1 (compare with Figures 3.7 and 3.8). The
TS is T = T + ∪ T −, where T + = {z ∈ C : ℑz ≥ +1} and T − = {z ∈ C : ℑz ≤ −1}.
The PS is E = C \ T . The SE is ż = k (z − q), where q = q (u, σ) = q (io + j, σ) =

−jδ0 + ioδ1e−j2β + σδ2e j( π

2
−α).
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Chapter 5. The game in distance

Disregard temporarily the fact that u ∈ U and σ ∈ Σ were taken (because of
their physical meaning) as P’s and E’s controls, respectively, in the formulation of
Gdist. Since (5.6) can be rewritten as

q = a+
(
io − i▽o

)
δ1
b− a
|b− a|+ σδ2

d− a
|d− a| (5.7)

= c+ (1− io) δ1
d− c
|d− c|+(1− σ) δ2

b− c
|b− c| , (5.8)

P’s and E’s controls may be alternatively taken as: either io − i▽o ∈ [0, 1− i▽o ]
and σ ∈ [0, 1],respectively; or 1 − io ∈ [0, 1− i▽o ] and 1 − σ ∈ [0, 1], respectively.
Note how the vertices of the parallelogram conv ({a, b, c, d}) interchange their roles
between (5.7) and (5.8).

The interplay a↔ c, b↔ d between these two conceptions of how P’s and E’s
controls could have alternatively been defined, is the aimed property behind the
odd parameter-space restriction introduced in Subsection 5.2.3.

5.2.5. The solution concept

In this subsection the meaning of what is meant by a solution of the above for-
mulated game is reviewed because the general solution concept given in Section 2.4
is not directly applicable due to the special form of the game’s PF.

In an informal manner, the game in distance Gdist is just about how close
to (resp. deep into) the TS does the system’s state zf

z0,u(·),σ(·) (t), ruled by the
SE, approaches (resp. penetrates), along the course of an infinitely long play
(z0, u (·) , σ (·)), initiated at a given arbitrary initial state z (0) = z0 ∈ C and
guided by control functions: u : [0,+∞)→ U and σ : [0,+∞)→ Σ. The pursuer
(P), who controls u, wants the state to get deep into the TS while the evader (E),
who controls σ, wants the state to remain as far away as possible from the TS.
The closest proximity of the sate to the TS is quantified by the PF which assigns a
value Pdo

f,T (z0, u (·) , σ (·)) = inf
{

do

(

zf
z0,u(·),σ(·) (t) ,T

)

: t ≥ 0
}

to every possible
play (z0, u (·) , σ (·)).

Recall, however, that a feedback information structure is implicitly assumed
underlying the formulation of Gdist, so, actually, the control functions u and σ must
be considered the result of P’s and E’s decisions of applying feedback strategies ũ
and σ̃, respectively. Overloading the use of the word play, it can be said: for every
play (z0, ũ, σ̃) corresponds an outcome P̃do

f,T (z0, ũ, σ̃) , Pdo
f,T (z0, u (·) , σ (·)) where

the realizations u (·) and σ (·) of ũ and σ̃, respectively, are obtained by solving the
SE with controls functions u and σ substituted by strategies ũ and σ̃, respectively.

In principle, the goal of this chapter is to find saddle-point strategies (also
called optimal strategies) for Gdist, i.e., strategies ũ∗ and σ̃∗ such that they verify
the saddle-inequalities:

P̃do
f,T (z, ũ∗, σ̃) ≤ P̃do

f,T (z, ũ∗, σ̃∗)
︸ ︷︷ ︸

Vdo (z)

≤ P̃do
f,T (z, ũ, σ̃∗) ∀z, ũ, σ̃.
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5.3. Decomposition of the game into two unilateral games

If a pair (ũ∗, σ̃∗) of such strategies is found, the game Gdist can be considered solved,
being Vdo as defined above its value function (VF) (remember Proposition 2.2.2).
In such case, the pair (ũ∗, σ̃∗) is called an saddle-point equilibrium for Gdist.

Unfortunately, such pair of strategies could not be found, not even for a reduced
version of the game in distance (to be presented in Section 5.3) which considers just
one of the connected components of the target set. Although discouraging, this
failure to find optimal feedback strategies, can be circumvent if a small error in the
fulfilment of the saddle-inequalities is tolerated. For example, it may be considered
that it is sufficient to find an ǫ-saddle-point (as introduced in Subsection 2.2.6),
instead of a pure saddle-point equilibrium.

For a given ǫ ≥ 0, a pair (ũ∗ǫ, σ̃∗ǫ) is called an ǫ-saddle-point for the game Gdist

and its two components are called ǫ-saddle-point strategies if

P̃do
f,T (z, ũ∗ǫ, σ̃)− ǫ ≤ P̃do

f,T (z, ũ∗ǫ, σ̃∗ǫ) ≤ P̃do
f,T (z, ũ, σ̃∗ǫ) + ǫ ∀z, ũ, σ̃. (5.9)

Observe that if a saddle-point equilibrium for Gdist could be found, it would also
be an ǫ-saddle point for the same game. In addition, as granted by Theorem 2.2.1,
if for every ǫ > 0 there exists an ǫ-saddle-point for Gdist, then Gdist has a VF, and
conversely.

Clearly, from a practical viewpoint, the distinction between an ǫ-saddle-point
and a pure saddle-point is irrelevant for ǫ sufficiently small.

Hopefully, at the end of this chapter in Section 5.11, it will become intuitively
clear how for every ǫ > 0 an ǫ-saddle-point strategy can be conceived for each
player of Gdist. To reach this level of understating of Gdist, a decomposition of it
into two auxiliary games will be heavily relied on.

5.3. Decomposition of the game into two unilateral games

The TS, T = {z ∈ C : |ℑz| ≥ 1}, is the union of a pair of disjoint half-planes:
T + , {z ∈ C : ℑz ≥ +1} and T − , {z ∈ C : ℑz ≤ −1}. The simplicity of
form of the target set manifests in the function value

do (z,T ) = min
¶

do

Ä
z,T +

ä
,do

Ä
z,T −

ä©
= min {1−ℑz, 1 + ℑz} (5.10)

assigned, by the oriented distance function z 7→ do (z,T ), to each z ∈ C. Clearly,
do (z,T ) > 0 if z /∈ T , while do (z,T ) ≤ 0 if z ∈ T .

The expression (5.10) suggests a way of decomposing the problem of solving
the game Gdist. Consider the following two unilateral games: an upward game

G+
dist







SE : dz
dt = f (z, u, σ) = k (z − q (u, σ)) ,

TS : T + , {z ∈ C : 1−ℑz ≤ 0} ,
PF : Pdo

f,T + (z0, u (·) , σ (·)) , inf
{

do

(

zf
z0,u(·),σ(·) (t) ,T +

)

: t ≥ 0
}

,

associated with T +; and a downward game

G−dist







SE : dz
dt = f (z, u, σ) = k (z − q (u, σ)) ,

TS : T − , {z ∈ C : 1 + ℑz ≤ 0} ,
PF : Pdo

f,T − (z0, u (·) , σ (·)) , inf
{

do

(

zf
z0,u(·),σ(·) (t) ,T −

)

: t ≥ 0
}

,
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Chapter 5. The game in distance

associated with T −. They both share the same SE as the original bilateral game
Gdist, but their TSs and PFs are each defined in relation to only one of the two
connected components of the original target set T .

The justification of why the decomposition just introduced will actually lead to
the solution of the original (bilateral) game in distance is postponed to Section 5.11.
For the moment, observe that (because of having replaced 0 < v▽i ≤ 1 by 0 < v▽i =
1) there is no deep difference between G+

dist and G−dist (see Figure 5.1). Actually, from
a geometric standpoint, at the light of (5.7)–(5.8), it is visible that both unilateral
games are different instances of the same essential game, the only difference due
to the fact that in general do

(
a,T +

) 6= do (c,T −).

5.3.1. The solution concept for the unilateral games

For every play (z0, u (·) , σ (·)), the pay-offs Pdo

f,T + (z0, u (·) , σ (·)) (in the con-

text of G+
dist) and Pdo

f,T − (z0, u (·) , σ (·)) (in the context of G−dist) are both finite

because the state-space trajectory
{

zf
z0,u(·),σ(·) (t) : t ≥ 0

}

is bounded. Actually,

an unbounded behaviour of t 7→ zf
z0,u(·),σ(·) (t) for t→ +∞ does not match the dis-

tant vector field approximation of the SE (see Subsection 4.3.3) which generates
shrinking solutions

[0,+∞) ∋ t→ q0 + ekt (z0 − q0) ∈ C,

where ℜk = −κ < 0 and q0 ∈ conv ({a, b, c′, d′}), for every z0 such that |z0 − q0| ≫
diam (conv ({a, b, c′, d′})).

Using in a natural way the notation already introduced for Gdist, each game
G±dist could be considered to be solved if optimal strategies, ũ∗± and σ̃∗±, i.e., such
that

P̃do

f,T ±

(
z, ũ∗±, σ̃

) ≤ P̃do

f,T ±

(
z, ũ∗±, σ̃

∗
±
)

︸ ︷︷ ︸

V±
do

(z)

≤ P̃do

f,T ±

(
z, ũ, σ̃∗±

) ∀z, ũ, σ̃, (5.11)

were found, being V±do
(as the defined above) the corresponding VF of the game.

However, as anticipated before, for certain instances of G+
dist or G−dist in the restricted

parameter-space, such optimal strategies could not be found for both players.
Instead, the resulting conclusion from the following sections up to Section 5.9

inclusive will be that, regardless of the selected instance of G+
dist in the restricted

parameter-space, for every ǫ > 0, there exists a pair
(
ũ∗ǫ+ , σ̃

∗ǫ
+

)
such that

P̃do

f,T +

(
z, ũ∗ǫ+ , σ̃

)− ǫ ≤ P̃do

f,T +

(
z, ũ∗ǫ+ , σ̃

∗ǫ
+

) ≤ P̃do

f,T +

(
z, ũ, σ̃∗ǫ+

)
+ ǫ ∀z, ũ, σ̃. (5.12)

This conclusion will be rigorously and constructively proved. The existence of
analogous pairs

(
ũ∗ǫ− , σ̃

∗ǫ
−
)

of ǫ-saddle-point strategies for G−dist will follow from the
existence of the former ones, as it will be argued in Section 5.10.

As a consequence of the existence of such ǫ-saddle-point strategy pairs, by
Theorem 2.2.1, the existence of a VF for G+

dist and a VF for G−dist can be inferred.
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5.3. Decomposition of the game into two unilateral games

5.3.2. Semiplanes of dominance

The two unilateral games, G+
dist and G−dist, even though simpler than the original

game Gdist, still have the problem that their PFs are not in the standard form
(see Subsection 2.1.2), which is the prevalent form assumed in the literature on
differential games. To overcome this difficulty, Isaacs’ hint [49, Sec. 2.4] to treat the
type of PF shared by G+

dist and G−dist is followed in this section to guide the approach
to solve G+

dist and G−dist. It consists in determining the regions of dominance of each
player in connection with the sign of the time derivative of the oriented distance
to the target set, as explained next.

As it is customary, name the directions +1, −1, +j, and −j in the complex
plane as “right”, “left”, “up”, and “down”, respectively. The unilateral games G+

dist

and G−dist are about how much up and how much down, respectively, can P force the
state to go against E’s resistance. Accordingly, it is pertinent to ask if there exists
any subset of the state space where a player dominates the sign of the “vertical”
component of the state’s velocity.

Four combinations need to be considered. Define P↑, P↓, E↑, and E↓ by:

P↑ ,

®
z ∈ C : inf

u∈U
sup
σ∈Σ

{−j⊙ f (z, u, σ)} < 0
´
,

E↓ ,

®
z ∈ C : inf

u∈U
sup
σ∈Σ

{−j⊙ f (z, u, σ)} > 0
´
,

P↓ ,

®
z ∈ C : inf

u∈U
sup
σ∈Σ

{+j⊙ f (z, u, σ)} < 0
´
,

E↑ ,

®
z ∈ C : inf

u∈U
sup
σ∈Σ

{+j⊙ f (z, u, σ)} > 0
´
.

Recall that, by virtue of statement 1 of Proposition 4.4.1, the order of the inf and
sup operations in the above definitions does not matter. Note that the mnemo-
technical names given to the sets reflect the following facts:

P can force ℑz to increase for every z ∈ P↑,

E can force ℑz to decrease for every z ∈ E↓,

P can force ℑz to decrease for every z ∈ P↓,

E can force ℑz to increase for every z ∈ E↑.

A direct consequence of Corollary 4.4.1 is that the sets P↑, E↓, P↓, and E↑ are
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Figure 5.2: Semi-planes of vertical motion dominance of each player, for two qualitatively
different cases: (a) k ⊗ (c− a) > 0 and (b) k ⊗ (c− a) < 0. For example, E can force ℑz to
increase for every z in the semi-plane E↑ =

{
z ∈ C : k ⊗ (z − c) > 0

}
, while P can force ℑz

to decrease for every z in the semi-plane P↓ =
{
z ∈ C : k ⊗ (z − c) < 0

}
. Likewise, E can

force ℑz to decrease for every z in the semi-plane E↓ =
{
z ∈ C : −k ⊗ (z − a) > 0

}
, while

P can force ℑz to increase for every z in the semi-plane P↑ =
{
z ∈ C : −k ⊗ (z − a) < 0

}
.
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5.4. The infimum oriented distance to the target set

the following half-planes of the complex plane (see Figure 5.2):

P↑ ,

®
z ∈ C : inf

u∈U
sup
σ∈Σ

{−j⊙ f (z, u, σ)} < 0
´

=
¶
z ∈ C : −k ⊗ (z − a) < 0

©
,

E↓ ,

®
z ∈ C : inf

u∈U
sup
σ∈Σ

{−j⊙ f (z, u, σ)} > 0
´

=
¶
z ∈ C : −k ⊗ (z − a) > 0

©
,

P↓ ,

®
z ∈ C : inf

u∈U
sup
σ∈Σ

{+j⊙ f (z, u, σ)} < 0
´

=
¶
z ∈ C : +k ⊗ (z − c) < 0

©
,

E↑ ,

®
z ∈ C : inf

u∈U
sup
σ∈Σ

{+j⊙ f (z, u, σ)} > 0
´

=
¶
z ∈ C : +k ⊗ (z − c) > 0

©
.

Note that the line ∂P↑ = ∂E↓ is parallel to the line ∂P↓ = ∂E↑, since they both
share a common direction: k. It may happen that k ⊗ (c− a) = 0, in which case
both lines coincide; the two other possible cases are represented in Figure 5.2. The
case k⊗ (c− a) > 0, endows P with a subset P↑ ∩P↓ 6= ∅ where he has full control
of the sign of the vertical component of the state’s velocity, while E↑ ∩ E↓ = ∅.
Symmetrically, the case k⊗(c− a) < 0, endows E with a subset E↑∩E↓ 6= ∅ where
he has full control of the sign of the vertical component of the state’s velocity, while
P↑ ∩ P↓ = ∅.

5.4. The infimum oriented distance to the target set

5.4.1. Where can it be attained?

To fix ideas, from both games G+
dist and G−dist, consider just G+

dist for the moment.
Consider also a generic play: (z0, u (·) , σ (·)) of G+

dist. Assume that u (·) and σ (·) are
piecewise continuous realizations of feedback strategies. Therefore, the trajectory
t 7→ zf

z0,u(·),σ(·) (t), described by the sate in C, is continuous and piecewise differ-

entiable. It was already argued that, since
{

do

(

zf
z0,u(·),σ(·) (t) ,T +

)

: t ≥ 0
}

is

bounded, Pdo

f,T + (z0, u (·) , σ (·)) = inf
{

do

(

zf
z0,u(·),σ(·) (t) ,T +

)

: t ≥ 0
}

is finite.
Now suppose u∗ (·) and σ∗ (·) are piecewise continuous realizations that res-

ult from an optimal strategy pair (ũ∗, σ̃∗) of G+
dist. Accordingly, the finite value

Pdo

f,T + (z0, u
∗ (·) , σ∗ (·)) equals the VF of G+

dist at z0, i.e., Pdo

f,T + (z0, u
∗ (·) , σ∗ (·)) =

P̃do

f,T + (z, ũ∗, σ̃∗) = V+
do

(z0). This finite value is a global infimum of the function

z 7→ do
(
z,T +

)
evaluated along the trajectory t 7→ zf

z0,u∗(·),σ∗(·) (t) which is either
attained in finite time or approximated as t→ +∞. Suppose that it does not take
place at the initial time t = 0. If neither P nor E squander their dominant power
(P in P↑ and E in E↓) the aforementioned infimum occurs (resp. is approximated)
when the state reaches (resp. as the state approaches) the line

∂P↑ = ∂E↓ =
¶
z ∈ C : −k ⊗ (z − a) = 0

©
,

from the half-plane P↑. Recall that do
(
z,T +

)
= 1− ℑz, for every z ∈ C. So, by

definition of P↑, for every z ∈ P↑, P can cause do
(
z,T +

)
to decrease, whatever
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E may do. Symmetrically, by definition of E↓, for every z ∈ E↓, E can cause
do
(
z,T +

)
to increase, whatever P may do.

Similarly, if u∗ (·) and σ∗ (·) are the realizations that result from an optimal
strategy pair (ũ∗, σ̃∗) of G−dist, observing that do (z,T −) = 1 + ℑz for every z ∈
C and recalling the definitions of P↓ and E↑, it can be argued that the global

infimum of t 7→ do

(

zf
z0,u∗(·),σ∗(·) (t) ,T −

)

occurs (resp. is approximated) when

zf
z0,u∗(·),σ∗(·) (t) reaches (resp. as the state approaches) the line

∂P↓ = ∂E↑ =
¶
z ∈ C : +k ⊗ (z − c) = 0

©
,

from P↓, if it supposed that it does not take place at the initial time t = 0.

5.4.2. Characterization of the infimums that are not attained at

the initial state

Let G+
dist be the main focus of attention again and let z∗ ∈ ∂P↑ = ∂E↓ be

the point reached or approached from P↑ by zf
z0,u∗(·),σ∗(·) (t) that corresponds to

the global infimum of t 7→ do

(

zf
z0,u∗(·),σ∗(·) (t) ,T +

)

, which is assumed not to take
place at t = 0. Consider a generic point z in an arbitrarily small neighbourhood of
z∗. The second point of the final statement of Corollary 4.4.1 can be interpreted as
follows: when P and E are doing their most to respectively increase ℑz and decrease
ℑz, their control actions, û and σ̂ respectively, must be such that q (û, σ̂) = a. So,
the state velocity vector ż = f (z, û, σ̂) = k (z − q (û, σ̂)) = k (z − a), based at z,
must have the following orthogonal components

ℜż = ℜ (k (z − a)) = k ⊙ (z − a) , (5.13)

ℑż = ℑ (k (z − a)) = k ⊗ (z − a) . (5.14)

This is the vector field, defined in an arbitrarily small neighbourhood of z∗, that
must be followed by zf

z0,u∗(·),σ∗(·) (t) along its way to z∗.
Nearby optimal trajectories that attain the infimum at points close to z∗ in

∂P↑ = ∂E↓ must follow the same local vector field. Observe that the flux, induced
by this vector field, is made up of arcs of α-equiangular spirals centred at a, each
of which is included in a member of either F +

a or F−a (see Figures 4.16 and 5.2).
If z0 6= a, the only stationary point (z = a) of the local vector field (5.13)–(5.14)
cannot be the global infimum of t 7→ do

(

zf
z0,u∗(·),σ∗(·) (t) ,T −

)

, because states close
to a in P↑ are guided by the vector filed towards a point in ∂P↑ = ∂E↓ with larger
imaginary part than a. It could only be z∗ = a, if z0 = a and zf

z0,u∗(·),σ∗(·) (t) = z∗

for every t ≥ 0. But then, the global infimum of z 7→ do
(
z,T +

)
evaluated along

the trajectory t 7→ zf
z0,u∗(·),σ∗(·) (t) would take place at the initial time t = 0, which

is a case that has been deliberatively ruled out.
For z = z∗ 6= a, the local vector field (5.13)–(5.14) asks for ℑż = 0 and

ℜż = k ⊙ (z − a); since z∗ must be reached or approached from P↑ (i.e., from
the right), it must be k ⊙ (z∗ − a) < 0 (see Figure 5.2). Therefore, only the
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5.4. The infimum oriented distance to the target set

family F−a provides a pertinent local description of how the global infimum of
t 7→ do

(

zf
z0,u∗(·),σ∗(·) (t) ,T +

)

is attained at ∂P↑ = ∂E↓ (see Figure 4.16), if it is
attained in finite time. It is clear that the local vector field (5.13)–(5.14), rules out
the a priori possible situation in which z∗ ∈ ∂P↑ = ∂E↓ is approached but never
reached by zf

z0,u∗(·),σ∗(·) (t), except in case z∗ is approached by zf
z0,u∗(·),σ∗(·) (t) as

the result of an infinite sequence of crossings of ∂P↑ = ∂E↓. If this exceptional
case is purposely disregarded for the moment, we conclude that the state is obliged
to follow an arc of spiral in P↑ with unitary angular speed before reaching z∗ in

¶
z ∈ C : k ⊗ (z − a) = 0 ∧ k ⊙ (z − a) < 0

©
=
®
a− ρ k|k| : ρ > 0

´
. (5.15)

Let Sa (z∗) be the unique semi-permeable curve of the family F−a that passes
through z∗. The arc of spiral mentioned above is included in Sa (z∗). From (4.62),
the normal direction to Sa (z∗) preferred by E, at z∗, is represented by

p−z∗ = −∇Mb−a
a (z∗) = −eκA

b−a
a (z∗) (−jk)

z∗ − a
|z∗ − a| .

In this last expression z∗−a
|z∗−a| = − k

|k| because z∗ ∈
{

a− ρ k
|k| : ρ > 0

}

. Hence,

p−z∗ = eκA
b−a
a (z∗) |k| (−j) ,

i.e., the normal direction to Sa (z∗) preferred by E, at z∗, points “downwards”.
This is not surprise since z∗ belongs to

∂P↑ = ∂E↓ =
®
z ∈ C : inf

u∈U
sup
σ∈Σ

{−j⊙ f (z, u, σ)} = 0
´

and infu∈U supσ∈Σ {−j⊙ f (z, u, σ)} = 0 is, by Proposition 4.5.1, the condition for
a curve (with normal −j preferred by E at z) to be semi-permeable at z.

In an analogous manner, similar conclusions can be derived for G−dist which are
stated next.

5.4.3. Conclusions

In the context of G+
dist, the global infimum of t 7→ do

(

zf
z0,u∗(·),σ∗(·) (t) ,T +

)

, i.e.,

the value V+
do

(z0), is attained either: i) at t = 0, or ii) in infinite time as the limit of

a sequence of crossings of ∂P↑ = ∂E↓ by the trajectory [0,∞) t 7→ zf
z0,u∗(·),σ∗(·) (t),

or iii) in finite time as the result of zf
z0,u∗(·),σ∗(·) (t) reaching a point z∗ in the ray

(5.15), from P↑, through an arc of spiral included in Sa (z∗), being Sa (z∗) the
unique semi-permeable curve of the family F−a that passes through z∗ (being −j
the normal direction to Sa (z∗) preferred by E at z∗).

In the context of G−dist, the global infimum of t 7→ do

(

zf
z0,u∗(·),σ∗(·) (t) ,T −

)

, i.e.,

the value V−do
(z0), is attained either: i) at t = 0, ii) in infinite time as the limit of
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Figure 5.3: The sets
¶
z = a− ρ k

|k| : ρ ≥ 0
©
⊂ ∂P↑ = ∂E↓ and

¶
z = c+ ρ k

|k| : ρ ≥ 0
©
⊂

∂P↓ = ∂E↑ are represented in the figure by thick rays with endpoints at a and c, respectively,
for two qualitatively different cases: (a) k ⊗ (c− a) > 0 and (b) k ⊗ (c− a) < 0.

a sequence of crossings of ∂P↓ = ∂E↑ by the trajectory [0,∞) t 7→ zf
z0,u∗(·),σ∗(·) (t),

or iii) in finite time as the result of zf
z0,u∗(·),σ∗(·) (t) reaching a point z∗ in the ray

¶
z ∈ C : k ⊗ (z − c) = 0 ∧ k ⊙ (z − c) > 0

©
=
®
c+ ρ

k

|k| : ρ > 0
´
, (5.16)

from P↓, through an arc of spiral included in Sc (z∗), being Sc (z∗) the unique
semi-permeable curve of the family F−c that passes through z∗ (being +j the
normal direction to Sc (z∗) preferred by E at z∗).

The rays (5.15) and (5.16), the first included in
⋃

F−a and the second included
in
⋃

F−c , are represented in Figure 5.3 for the two qualitatively different cases com-
mented at the end of Subsection 5.3.2. The families F−a and F−c are represented

130



5.5. An ansatz to approach the upward game problem

in Figure 4.16.

5.5. An ansatz to approach the upward game problem

From now on the analysis will proceed exclusively focused on G+
dist, since a

parallel analysis for G−dist can be developed analogously.
The conclusions of the previous section describe locally how an optimal tra-

jectory t 7→ zf
z,u∗(·),σ∗(·) (t) of G+

dist that departs from z ∈ C (previously denoted

z0) attains or approximates V+
do

(z), i.e., the global infimum of the function t 7→
do

(

zf
z,u∗(·),σ∗(·) (t) ,T +

)

, if it is not attained right at t = 0, i.e., if V+
do

(z) <

do
(
z,T +

)
= 1 − ℑz. Suppose that t 7→ zf

z,u∗(·),σ∗(·) (t) attains V+
do

(z) at some
positive finite time.

Recalling: in P↑ and close to
{

a− ρ k
|k| : ρ > 0

}

, the optimal trajectory coin-

cides with an arc of spiral of the family F−a as it approaches and finally reaches
the point in

{

a− ρ k
|k| : ρ > 0

}

⊂ ∂P↑ = ∂E↓ where the infimum V+
do

(z) is at-

tained. Let zρ = a − ρ k
|k| be this point (which is different from the initial state

z) and let Sa (zρ) be the unique member of F−a through zρ. It is clear that it
must be V+

do
(z) = 1 − ℑzρ < 1 − ℑz. Moreover, as it was concluded before, the

normal direction to Sa (zρ) preferred by E at zρ is represented by −j. Notice that
∇ (1−ℑz) = −j for every z ∈ C.

The previous observations suggest that V+
do

verifies the partial differential equa-
tion

inf
u∈U

sup
σ∈Σ

∇V (z)⊙ f (z, u, σ) = 0, (5.17)

with the boundary conditions

{

V (z) = 1−ℑz
∇V (z) = −j

z ∈
®
a− ρ k|k| : ρ > 0

´
, (5.18)

at least in a domain of the form

P↑ ∩ {w : |w − z∗| < ǫ} , (5.19)

for some z∗ ∈
{

a− ρ k
|k| : ρ > 0

}

and some ǫ > 0, i.e., locally at the intersection
of the half-plane P↑ with some neighbourhood of some unknown point z∗ on the

ray
{

a− ρ k
|k| : ρ > 0

}

included in the line ∂P↑ = ∂E↓.
Note that from the conclusions arrived at the previous section it can not be

inferred that necessarily every point of the ray
{

a− ρ k
|k| : ρ > 0

}

is actually a

point of closest approach to T + of some optimal state-space trajectory.
By Proposition 4.5.1, the equation (5.17) expresses a semi-permeability con-

dition for the level sets of V which must coincide with the members of F−a , at
least in the unknown local domain (5.19) where the boundary conditions (5.18)
are imposed.
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5.5.1. Isaacs’ equation

The partial differential equation (5.17) happens to coincide with Isaacs’ equa-
tion for a pursuit-evasion differential game with the same SE as G+

dist, a TS included

in
{

a− ρ k
|k| : ρ > 0

}

, and a PF with identically null running cost G ≡ 0 that as-
signs a terminal cost H (z) = 1 − ℑz to each play that terminates in the TS.
Indeed, (5.17) may be written as Isaacs’ main equation in its first form (ME1) for
such terminal game:

inf
u∈U

sup
σ∈Σ

H (z,∇V (z) , u, σ) = 0, (5.20)

where H : C× C× U ×Σ→ R is a Hamiltonian function defined by

H (z, p, u, σ) = p⊙ f (z, u, σ) +G (z, u, σ)
︸ ︷︷ ︸

=0

=
pk (z − q (u, σ)) + pk (z − q (u, σ))

2
.

Notice that Isaacs’ condition holds in (5.17), i.e., the order of the inf and sup in
(5.17) does not matter by virtue of the statement 1 of Proposition 4.4.1.

Although suggestive, the aforementioned coincidence will not be exploited fur-
ther except for referring to (5.17) (or equivalently (5.20)) as Isaacs’ equation for
G+

dist, or just Isaacs’ equation, since it expresses the same semi-permeability con-
dition that would be required if G−dist was being treated instead of G+

dist.
It must be empathised that the problem (5.17)–(5.18) proposed above will be

used merely to try to figure out how ũ∗+ and σ̃∗+ should be defined in order to verify
(5.11) at least approximately for the case of the upward game G+

dist. Accordingly,
(5.17)–(5.18) should be conceived at this stage simply as an ansatz to approach
the problem of solving G+

dist.

5.6. Solving Isaacs’ equation for the upward game

The condition (5.17), or equivalently (5.20), is a semi-permeability condition
for the level curves of V through z, at the point z, for every z such that ∇V (z) is
well defined and ∇V (z) 6= 0. The E’s preferred side of the level curve is the one
pointed by the vector ∇V (z) based at z. The opposite side is the one preferred
by P.

Recall that, in Section 4.5, eight families of semi-permeable curves for the
conflict’s SE have been discovered and the possible concatenations among them
have been discussed. If an arrangement of (possibly composite) semi-permeable
curves can be envisaged, each one with an assigned real value and an endpoint in
the ray

{

a− ρ k
|k| : ρ > 0

}

, such that they jointly define a real valued function V
(in some subset of the complex plane) that verifies the boundary condition (5.18);
then V is a solution of (5.17)–(5.18). This arrangement of semi-permeable curves
could be built ad hoc making use only of the results of Chapter 4, however, it will
be obtained by the more classical method of characteristics as follows.
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Recall the functions u∗ : C → U and σ∗ : C → Σ, introduced in statement 2
of Proposition 4.4.1. By the same proposition’s statement, the pair

(u∗ (∇V (z)) , σ∗ (∇V (z))) (5.21)

is a solution of the point-wise inf-sup problem defined in the LHS of (5.20), for
each z ∈ C.

Substituting (5.21) into (5.20), Isaacs’ main equation in its second form (ME2)
is obtained:

H (z,∇V (z) , u∗ (∇V (z)) , σ∗ (∇V (z))) = 0. (5.22)

This is a partial differential equation whose unknown is the function V. Next, the
classical method of characteristics is applied to solve (5.22) with the boundary
condition (5.18), in order to figure out an explicit expression for V+

do
in closed form

that matches its role of VF of G+
dist.

5.6.1. The retrograde path equations

The retrograde path equations (RPE) or characteristic equations of (5.22) are

z̊ = −2
∂

∂p
H (z, p, u∗ (p) , σ∗ (p)) = −f (z, u∗ (p) , σ∗ (p))

= −k (z − q (u∗ (p) , σ∗ (p))) , (5.23)

p̊ = +2
∂

∂z
H (z, p, u∗ (p) , σ∗ (p)) = kp. (5.24)

where˚denotes differentiation with respect to retrogressive time τ . Note that
Wirtinger calculus has been used to adapt the formulation of the RPE, as presented
in Section 2.8, to its complex counterpart for the case in which the state-space R

2

is identified with C. The explicit dependence of z and p on τ has been omitted
for clarity. Each solution of this system of ordinary differential equations supplies
a characteristic state-space trajectory τ 7→ z (τ) and its corresponding co-state
trajectory τ 7→ p (τ). The meaning of the co-state p (τ) is: p (τ) = ∇V (z (τ)). It
must be noted however, that this presupposes that V is twice continuously real
differentiable in the region covered by the characteristic trajectories.

5.6.2. Integration of the retrograde path equations

5.6.2.1. Generic initial conditions

It is remarkable that for H, as defined before, the co-state retrograde path
equation (5.24) can be solved independently of the state retrograde path equation
(5.23). Indeed, the solution of (5.24) is readily found to be

τ 7→ p (τ) = ekτp0 = e−κτe−jτp0. (5.25)

where p0 , p|τ=0 ∈ C is the initial (in retrogressive sense) co-state. Admit, for the
moment, that p0 6= 0. Observe that p (τ) is a roto-homothety of p0, for every τ ≥ 0.
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Let r (τ) , −kp (τ) = (secα) e j( π
2
−α)p (τ), for every τ ≥ 0. Not surprisingly,

r (τ) = e−κτe−jτr0 is a roto-homothety of r0 , r|τ=0, for every τ ≥ 0.
In the state retrograde path equation (5.23), q (u∗ (p (τ)) , σ∗ (p (τ))) remains

constant and equal to q0 , q (u∗ (p0) , σ∗ (p0)) as long as sg
Ä
r (τ) , e−j2β

ä
and

sg
(

r (τ) , e j( π
2
−β)

)

do not change (recall the definitions of u∗ and σ∗ in statement
2 of Proposition 4.4.1). As long as this happens (5.23) reads

z̊ = −k (z − q0) ,

whose solution

τ 7→ z (τ) = q0 + e−kτ (z0 − q0) = q0 + eκτe−jτ (z0 − q0) ,

through z0 , z|τ=0 ∈ C, is valid as long as sg
Ä
r (τ) , e−j2β

ä
= sg

Ä
r0, e−j2β

ä
and

sg
(

r (τ) , e j( π
2
−β)

)

= sg
(

r0, e j( π
2
−β)

)

. Clearly, τ 7→ z (τ) is the parametrization
of an α-equiangular spiral, through z0, centred at q0 (parametrized by increasing
values of τ along the un-shrinking direction of motion).

The retro-instants of time at which q (u∗ (p (τ)) , σ∗ (p (τ))) changes or switches
are exactly the instants at which the vector r (τ) = e−κτe−jτr0, based at the
origin of the complex plane, crosses one of the following straight lines which in-
tersect at the origin:

¶
w ∈ C : w ⊙ e−j2β = 0

©
and

{

w ∈ C : w ⊙ e j( π
2
−β) = 0

}

(see Figure 4.14). Note that the argument of r (τ) is all that matters for this
switching mechanism, not its magnitude. Note also that at each of such in-
stants, switching is mandatory because r(τ)

|r(τ)| = e−jτ r0
|r0| is a unit vector that ro-

tates clock-wisely with unitary angular velocity. Therefore, q (u∗ (p (τ)) , σ∗ (p (τ)))
periodically visits the points a, b, c, and d following a precisely timed switch-
ing sequence. Recall that these four points are the vertices of the parallelo-
gram {q (io + j, σ) : io ∈ [i▽o , 1] ∧ σ ∈ [0, 1]} (see Figure 5.1), being q (u, σ) =

−jδ0 + ioδ1e−j2β + σδ2e j( π
2
−β).

5.6.2.2. Particular initial conditions

The initial conditions z0 and p0 used above are generic. To solve (5.22) with
(5.18) as boundary conditions, the particular initial conditions that ought to be
used are

zρ|τ=0 = zρ,0 = a− ρ k|k| , ρ > 0, (5.26)

p|τ=0 = p0 = −j, (5.27)

where every ρ > 0 is considered a priori. In accordance with (5.27),

r|τ=0 = r0 = −kp0 = e−jα secα,

as represented in Figure 5.4.
For each ρ > 0, using (5.26) and (5.27) as the initial conditions for the integ-

ration of the RPE, a characteristic trajectory τ 7→ zρ (τ) and its corresponding
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e j(π
2
−β)

e−j2β

e j(π
2
−β)

r (τ) = −kp (τ)
r (τ)⊙ e−j2β > 0

r (τ)⊙ ej(π
2
−β) > 0

q (u∗ (p (τ)) , σ∗ (p (τ))) = d

r (τ) = −kp (τ)
r (τ)⊙ e−j2β < 0

r (τ)⊙ ej(π
2
−β) > 0

q (u∗ (p (τ)) , σ∗ (p (τ))) = c

r (τ) = −kp (τ)
r (τ)⊙ e−j2β < 0

r (τ)⊙ ej(π
2
−β) < 0

q (u∗ (p (τ)) , σ∗ (p (τ))) = b r (τ) = −kp (τ)
r (τ)⊙ e−j2β > 0

r (τ)⊙ ej(π
2
−β) < 0

q (u∗ (p (τ)) , σ∗ (p (τ))) = a

r (τ)

π
2

+ 2β − α

π
2
− β

π
2

+ β

π
2
− β

α− β

e−jα

r0

Figure 5.4: The r-trajectory τ 7→ r (τ), defined as the −k (·) = (secα) e j( π

2
−α) (·) roto-

homothety of the co-state trajectory [0, 2π) ∋ τ 7→ p (τ) = e−κτ e−jτ (−j), rules the switching
instants of the piecewise constant function τ 7→ q (u∗ (p (τ)) , σ∗ (p (τ))). The arrows on the
r-trajectory indicate the direction of motion along which retrogressive time τ decreases.

co-state trajectory τ 7→ p (τ) can be constructed as it was explained before with
generic initial conditions.

The method of characteristics provides a way of determining the solution of
(5.22)–(5.18), by setting

V (zρ (τ)) = V (zρ|τ=0

)
= 1−ℑ

Ç
a− ρ k|k|

å
(5.28)

at every point zρ (τ) reached by integration of the RPE, but it relies on the as-
sumption that V is twice continuously real differentiable in the region covered by
the characteristic trajectories.

5.6.2.3. The characteristic trajectories of Isaacs’ equation

Since p0 = −j, the co-state trajectory (5.25) takes the form

τ 7→ p (τ) = ekτ (−j) = e−κτe−jτ (−j) . (5.29)

Accordingly,

τ 7→ r (τ) = −kp (τ) = (secα) e j( π
2
−α)e−κτe−jτ (−j) = e−κτe−jτr0. (5.30)
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+ β

π
2
− β

π
2
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Figure 5.5: The geometric parameters α and β (recall Figures 3.7 and 3.8) reinterpreted at
the light of the integration of the retrograde path equations.

Letting this r-trajectory blindly determine the retro-time instants at which
q (u∗ (p (τ)) , σ∗ (p (τ))) must switch (as represented in Figure 5.4), the following
ρ-parametrized family of characteristic trajectories is obtained over a retro-time
interval of length 2π:

τ 7→ zρ (τ) =







a+ e (κ−j)(τ−τ0) (zρ,0 − a) if τ ∈ [0, τ1] ,

b+ e (κ−j)(τ−τ1) (zρ (τ1)− b) if τ ∈ (τ1, τ2] ,

c+ e (κ−j)(τ−τ2) (zρ (τ2)− c) if τ ∈ (τ2, τ3] ,

d+ e (κ−j)(τ−τ3) (zρ (τ3)− d) if τ ∈ (τ3, τ4] ,

a+ e (κ−j)(τ−τ4) (zρ (τ4)− a) if τ ∈ (τ4, 2π) ,

(5.31)

where τ1 = γ1 , π
2 + 2β − α, τ2 − τ1 = γ2 , π

2 − β, τ3 − τ2 = γ3 , π
2 + β,

τ4− τ3 = γ4 , π
2 −β, 2π− τ4 = γ5 , α−β. Of course, γ1 +γ2 +γ3 +γ4 +γ5 = 2π.

The fact that the retro-time interval lengths γ1, . . . , γ5 are all positive follows
logically from the conditions (5.1). To prove that γ2, . . . , γ5 > 0, it is enough to
recall the condition |β| < α < π

2 . However, to prove that γ1 > 0, this is not
enough. Since |β| < α < π

2 , it must be γ1 = π
2 + 2β−α ∈ (−π, π). Hence, to prove
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that γ1 > 0, it suffices to prove that sin γ1 = sin
(
π
2 + 2β − α) = cos(2β − α) is

positive, which was already incidentally proved in the proof of Lemma 4.4.1, using
the condition tanα− tan β < secα also required by (5.1).

In Figure 5.4 the r-trajectory {r (τ) : τ ∈ [0, 2π)} is represented by a thickly
traced arc of spiral, for a case in which β > 0. The r-trajectory is just the p-
trajectory (co-state trajectory) transformed by the roto-homothety (secα) e j( π

2
−α) (·).

The arrows on the r-trajectory indicate the direction of motion along which retro-
gressive time τ decreases, i.e., along which progressive time t increases. Note that
r0 = −k(−j) verifies the inequalities

r0 ⊙ e−j2β > 0,

r0 ⊙ e j( π
2
−β) < 0,

which are guaranteed to hold by Lemma 4.4.1, even if β ≤ 0. Consequently,
q (u∗ (p0) , σ∗ (p0)) = q (u∗ (−j) , σ∗ (−j)) = a, as already established by the second
point of the final statement of Corollary 4.4.1. Observe the perfect accordance
between angular sweeps of zρ (τ) and r (τ) (see Figures 5.4 and 5.5), which also
holds even if β ≤ 0. As a consequence of this accordance, at the switching retro-
time instants τ1, τ2, τ3, and τ4, the state zρ (τ) belongs to the straight line ab←→, cb←→,
cd←→, and ad←→, respectively.

5.6.3. A return map for the flow of characteristic trajectories

Although parametrized by ρ > 0, the family of characteristic trajectories (5.31)
may be considered from a slightly more general viewpoint by letting ρ be any real
number in the initial condition (5.26), where − k

|k| = e j( π
2
−α).

For example, let ρ′ be a real number that takes the place of ρ in (5.31). For
each retro-time τ ∈ [0, 2π), the point zρ′ (τ) is reached from zρ′,0 = zρ′ (0) by
moving backwards in time through the characteristic trajectory that passes through
zρ′,0. Consider, in particular, the limit as τ → (2π)−. It can be verified that

limτ→(2π)− zρ′ (τ) ∈
{

a+ ξe j( π
2
−α) : ξ ∈ R

}

for every ρ′ ∈ R, as it is done in
Appendix B.1.

Hence, for every ρ′ ∈ R there exists an unique ρ ∈ R such that

lim
τ→(2π)−

zρ′ (τ) = zρ (0) . (5.32)

From this limit point a characteristic trajectory [0, 2π) ∋ τ 7→ zρ (τ) (in general
different from [0, 2π) ∋ τ 7→ zρ′ (τ)) emanates retrogressively in time as represented
in Figure 5.6. Therefore the well defined real-valued function

(
zρ′ (0)− a)⊙ e j( π

2
−α) = ρ′ 7→ ρ ,

â

lim
τ→(2π)−

zρ′ (τ)

︸ ︷︷ ︸

zρ(0)

−a

ì

⊙ e j( π
2
−α) (5.33)
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c
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e j(π
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−β)
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−

ξ
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|

:
ξ

>
0
}

P↑E↓

k = − tan α− je j(π
2
−α)

zρ′ (0)

ρ
′

ρ

zρ (0) = limτ→(2π)− zρ′ (τ)

zρ (τ)
zρ′ (τ)

Figure 5.6: The function z 7→ a + P
(

(z − a)⊙ e j( π

2
−α)

)

e j( π

2
−α) assigns to every point

zρ (0) ∈
{

a+ ξe j( π

2
−α) : ξ ∈ R

}

its succeeding point zρ′ (0) ∈
{

a+ ξe j( π

2
−α) : ξ ∈ R

}

,

in the sense of (5.32). The underlying function P : R→ R is just its coordinate expression.

may be used to assign to every point zρ′ (0) ∈
{

a+ ξe j( π
2
−α) : ξ ∈ R

}

its preceding

point zρ (0) ∈
{

a+ ξe j( π
2
−α) : ξ ∈ R

}

, in the limit sense of (5.32).

The function (5.33) is invertible and its inverse P : R → R (calculated in
Appendix B.1) is

ρ 7→ ρ′ = P (ρ) = η1ρ+ η0, (5.34)
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where:

η1 , e−2πκ, η0 ,
Å

2e−κπ cosh
κπ

2

ã (
µ1e−κ(2β−α) − µ2e−κ(

π
2
−(α−β))

)

.

The function P : R→ R just introduced may be used to assign to every point zρ (0)
in
{

a+ ξe j( π
2
−α) : ξ ∈ R

}

its succeeding point zρ′ (0) ∈
{

a+ ξe j( π
2
−α) : ξ ∈ R

}

,
in the limit sense of (5.32), as follows:

z 7→ a+ P
(

(z − a)⊙ e j( π
2
−α)

)

e j( π
2
−α). (5.35)

Accordingly, (5.35) may be viewed as a return map, in the limit sense of (5.32), for
the progressive time flow of characteristic state-space trajectories and P : R→ R

as its coordinate expression along the line
{

a+ ξe j( π
2
−α) : ξ ∈ R

}

, i.e., if a point

z that belongs to
{

a+ ξe j( π
2
−α) : ξ ∈ R

}

is such that (z − a)⊙ e j( π
2
−α) = ρ and

z′ is the image of z by (5.35), then (z′ − a)⊙ e j( π
2
−α) = P (ρ).

It is easy to check that the function P : R→ R verifies the following properties
(see Appendix B.1):

dP
dρ

(ρ) = η1 < 1, (5.36)

P (ρlim) = ρlim, (5.37)

P (ρ) < ρ ⇐⇒ ρ > ρlim, (5.38)

P (ρ) > ρ ⇐⇒ ρ < ρlim, (5.39)

P−1 (ρ) > ρ ⇐⇒ ρ > ρlim, (5.40)

P−1 (ρ) < ρ ⇐⇒ ρ < ρlim, (5.41)

ρ < ρlim ⇐⇒ P (ρ) < ρlim, (5.42)

ρ > ρlim ⇐⇒ P (ρ) > ρlim, (5.43)

lim
n→+∞

Ñ
P ◦ . . . ◦ P
︸ ︷︷ ︸

n

é
(ρ) = lim

n→+∞
Pn (ρ) = ρlim ∀ρ ∈ R, (5.44)

where:

ρlim ,
η0

1− η1
=
µ1e−κ(2β−α) − µ2e−κ(

π
2
−(α−β))

2 sinh κπ
2

. (5.45)

The above properties tell us that in the family of characteristic trajectories
(5.31), parametrized by ρ ∈ R, there exists a special one, namely [0, 2π) ∋ τ 7→
zρlim

(τ), which verifies

lim
τ→(2π)−

zρlim
(τ) = zρlim

(0) , (5.46)

while each other characteristic trajectory [0, 2π) ∋ τ 7→ zρ (τ) verifies either

lim
τ→(2π)−

zρ (τ) > zρ (0) if ρ > ρlim, (5.47)
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ρ

P (ρ)

0
0

η0

P (ρlim)

ρlim

id
(ρ

) =
ρ

P (ρ) = η1ρ
+ η0

Figure 5.7: The properties (5.36)–(5.44) of the function P : R→ R exposed graphically.

or

lim
τ→(2π)−

zρ (τ) < zρ (0) if ρ < ρlim. (5.48)

Now, for each ρ ∈ R, instead of looking backwards to the preceding point of
zρ (0) = a+ρe j( π

2
+α), look forward to its succeeding point, and the succeeding point

of its succeeding point, and so on (always in the limit sense of (5.32)), by looking
at the coordinate expressions given by the successive iterates of ρ by P . Observe
in Figure 5.7 that on the one hand if ρ < ρlim, the sequence {Pn (ρ)}n∈N tends
strictly monotonically increasingly to ρlim as n → ∞, while on the other hand, if

140



5.6. Solving Isaacs’ equation for the upward game

ρ > ρlim, the sequence {Pn (ρ)}n∈N tends strictly monotonically decreasingly to
ρlim as n→∞. By contrast, the sequence {Pn (ρlim)}n∈N takes the constant value
ρlim.

5.6.4. Three qualitatively different cases

Let

µ ,
µ2

µ1
eκ(

π
2

+β) (5.49)

Recall that µ1 = |b− a| = |d− c| and µ2 = |c− b| = |a− d| are the side lengths of
the parallelogram conv ({a, b, c, d}) and κ = tanα.

In Sections 5.7 to 5.9, it will become clear that the restriction of (5.35) to
{

a− ξ k
|k| : ξ > P−1 (ρmin)

}

, where the positive real number ρmin is defined as

ρmin ,







µ1e−κ(
π
2

+2β−α) if µ > 1,

((1− µ) exp−κπ +1)µ1 exp−κ(
π
2

+2β−α) if µ ≤ 1,
(5.50)

is actually a first return map (in the limit sense of (5.32)) for the progressive time
flow of characteristic state-space trajectories, such that for each ρ > ρmin the curve
{zρ (τ) : τ ∈ [0.2π)} is semi-permeable and free of corners. Accept these facts for
the moment and consider the following cases.

If ρmin < ρlim, by (5.41), P−1 (ρmin) < ρmin. Hence, P−1 (ρmin) < ρlim, which
means that the point zρlim

(0) = a−ρlim
k
|k| belongs to the domain of the aforemen-

tioned first return map. In this case, (5.35) restricted to
{

a− ξ k
|k| : ξ > P−1 (ρmin)

}

acts like a Poincaré map for the trajectory through zρlim
(0) (which verifies (5.46))

on the Poincaré section
{

a− ξ k
|k| : ξ > P−1 (ρmin)

}

.

If ρmin > ρlim, by (5.40), P−1 (ρmin) > ρmin. Hence, ρlim < P−1 (ρmin), which
means that the point zρlim

(0) = a − ρlim
k
|k| does not belong to the domain of the

aforementioned first return map. In this case, even though (5.46) still holds, the
characteristic trajectory through zρlim

(0) loses its significance.
In connection with the above discussion, in Appendix B.1, the following double

implications are proved:

µ > 1 ⇐⇒ ρmin > ρlim, (5.51)

µ < 1 ⇐⇒ ρmin < ρlim. (5.52)

Therefore, obviously

µ = 1 ⇐⇒ ρmin = ρlim. (5.53)

If ρmin = ρlim, the curve {zρmin (τ) : τ ∈ [0.2π)} can be checked to be semi-
permeable, though not free of corners.
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Chapter 5. The game in distance

5.6.5. Geometric characterization of each case

A careful examination of the family of integral curves (5.31) (obtained by blind
integration of the RPE), requires discriminating among the three cases (5.51)–
(5.53). This is the matter of Sections 5.7 to 5.9. However, before delving into
such examination, let us first characterize geometrically each of the three cases:
µ > 1, µ < 1, and µ = 1. The following sub-subsections, specially the last one, are
devoted to this characterization.

In Figure 5.8 a geometric construction is built for each of the three cases. The
points and curves indicated in the figure are introduced next.

5.6.5.1. Semi-permeable curves with a common endpoint at b

Let

ba , a+ e (−κ+j)( π
2

+β) (b− a) , (5.54)

bc , c+ e (+κ−j)( π
2

+β) (b− c) . (5.55)

as represented in Figure 5.8. Observe that

ba − b = a− b+ e (−κ+j)( π
2

+β) (b− a)=
(

e (−κ+j)( π
2

+β) − 1
)

(b− a) ,

bc − b = c− b+ e (+κ−j)( π
2

+β) (b− c) =
(

e (+κ−j)( π
2

+β) − 1
)

(b− c) .

Hence, bc−b
ba−b = e

(+κ−j)( π
2 +β)−1

e
(−κ+j)( π

2 +β)−1

b−c
b−a = −e (κ−j)( π

2
+β) b−c

b−a , but since

b− c
b− a =

µ2e j( 3π
2
−β)

µ1e−j2β
= −µ2

µ1
e j( π

2
+β), (5.56)

after operating, the former quotient can be rewritten as

bc − b
ba − b

=
µ2

µ1
eκ(

π
2

+β) = µ. (5.57)

Therefore, the quotient bc−b
ba−b is real and equal to the quantity µ which has to be

compared against unity to determine which of the three cases applies. Notice that
since bc−b

ba−b is real, the points b, ba and bc are aligned. As it is apparent in Figure 5.8,
the line through b, ba and bc separates the following arcs of α-equiangular spirals:

b̄, ba ,
ß
a+ e (−κ+j)t (b− a) : t ∈

Å
0,
π

2
+ β

ã™
, (5.58)

b̄, bc ,
ß
c+ e (+κ−j)t (b− c) : t ∈

Å
0,
π

2
+ β

ã™
. (5.59)

The curves b̄, ba and b̄, bc are semi-permeable curves which belong to the families
F−a and F−c , respectively. The endpoints of b̄, ba are b and ba, while the endpoints
of b̄, bc are b and bc.
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5.6. Solving Isaacs’ equation for the upward game

5.6.5.2. Semi-permeable curves with a common endpoint at d

If a is interchanged with c and b is interchanged with d in (5.58)–(5.59), the
resulting curves

d̄, dc ,
ß
c+ e (−κ+j)t (d− c) : t ∈

Å
0,
π

2
+ β

ã™
, (5.60)

d̆, da ,
ß
a+ e (+κ−j)t (d− a) : t ∈

Å
0,
π

2
+ β

ã™
. (5.61)

are also semi-permeable curves, the former belongs to the family F−c and the latter
to the family F−a . The endpoints of d̄, dc are d and dc, while the endpoints of d̆, da
are d and da; being dc and da the points that result from interchanging a with c and
b with d in the definitions (5.54)–(5.55). Clearly, by construction, d̄, dc and b̄, ba
are symmetric about the centre a+c

2 = b+d
2 of the parallelogram conv ({a, b, c, d}).

Similarly, d̆, da and b̄, bc are symmetric about the same parallelogram’s centre.

5.6.5.3. The three qualitative different cases of an homothetic transformation

The two arcs b̄, ba and d̆, da belong to the same family F−a of arcs of α-
equiangular spirals centred at a. Hence, d̆, da and b̄, ba are related by an homothecy
with centre at a and scaling factor

d− a
ba − a

=
µ2e j( π

2
−β)

e (−κ+j)( π
2

+β) (b− a)
=

µ2e j( π
2
−β)

e (−κ+j)( π
2

+β)µ1e−j2β
=
µ2

µ1
eκ(

π
2

+β) = µ

equal to (5.57). Accordingly, the homothecy, with centre at a, that transforms
b̄, ba into d̆, da is a dilation if µ > 1, is a contraction µ < 1, and is an identity
transformation if µ = 1 (see Figure 5.8).

5.6.5.4. Six special horizontal tangents

Recall that k = −κ+ j and let

b∗a , b̄, ba ∩
®
a− ρ k|k| : ρ > 0

´
= a+ ek(

π
2

+2β−α) (b− a) ,

d∗a , d̆, da ∩
®
a− ρ k|k| : ρ > 0

´
= a+ ek(

π
2

+2β−α) (da − a) ,

d∗c , d̄, dc ∩
®
c+ ρ

k

|k| : ρ > 0
´

= c+ ek(
π
2

+2β−α) (d− c) ,

b∗c , b̄, bc ∩
®
c+ ρ

k

|k| : ρ > 0
´

= c+ ek(
π
2

+2β−α) (bc − c) ,

b∗ , d̆a, dc ∩
®
b− ρ k|k| : ρ > 0

´
= b+ e−k(α−β) (dc − b) ,

d∗ , b̆c, ba ∩
®
d+ ρ

k

|k| : ρ > 0
´

= d+ e−k(α−β) (ba − d) .
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Chapter 5. The game in distance

These points are special, because the tangents k (b∗a − a), k (d∗a − a), k (d∗c − c),
k (b∗c − c), k (b∗ − b), and k (d∗ − d) to the arcs b̄, ba, d̆, da, d̄, dc, b̄, bc, d̆a, dc, and
b̆c, ba at b∗a, d

∗
a, d

∗
c , b
∗
c , b
∗, and d∗, respectively, have zero imaginary part, as it is

manifest in Figure 5.8.

5.6.5.5. Each case represented by the shape of a single closed curve

From ba and bc definitions it follows that

ba − d = a− d+ e (−κ+j)( π
2

+β) (b− a) ,

bc − d = c− d+ e (+κ−j)( π
2

+β) (b− c) ;

where, by (5.56), b − a = −µ1

µ2
e−j( π

2
+β) (b− c) and b − c = −µ2

µ1
e j( π

2
+β) (b− a).

Hence,

ba − d = a− d− e−κ(
π
2

+β)µ1

µ2
(b− c)=

Å
1− µ1

µ2
e−κ(

π
2

+β)
ã

(b− c) , (5.62)

bc − d = c− d− e+κ( π
2

+β)µ2

µ1
(b− a)=

Å
1− µ2

µ1
e+κ( π

2
+β)
ã

(b− a) ; (5.63)

where it was used that a− d = b− c and c− d = b− a. Accordingly,

ba − d
bc − d

= −µ1

µ2
e−κ(

π
2

+β) b− c
b− a,

where b−c
b−a = −µ2

µ1
e j( π

2
+β) by (5.56). So, ba−d

bc−d = e (−κ+j)( π
2

+β), or equivalently

ba = d+ e (−κ+j)( π
2

+β) (bc − d) ,

i.e., the points bc and ba are the endpoints of the α-equiangular spiral

b̆c, ba ,
ß
d+ e (−κ+j)t (bc − d) : t ∈

Å
0,
π

2
+ β

ã™
.

Analogously, it can be shown that the points da and dc are the endpoints of the
α-equiangular spiral

d̆a, dc ,
ß
b+ e (−κ+j)t (da − b) : t ∈

Å
0,
π

2
+ β

ã™
.

Both b̆c, ba and d̆a, dc are represented by dashed lines in Figure 5.8 to point out
that they are not semi-permeable curves.

The union
#

b , b̄, ba ∪ {b} ∪ b̄, bc ∪ {bc} ∪ b̆c, ba ∪ {ba} is a closed curve in
the complex plane whose shape changes qualitatively according to the sign of
µ2

µ1
eκ(

π
2

+β) − 1. The same may be stated about the closed curve
#

d , d̄, dc ∪ {d} ∪

d̆, da ∪ {da} ∪ d̆a, dc ∪ {dc} which, by construction, is symmetric to
#

b about the

centre of the parallelogram conv ({a, b, c, d}). Note that if µ2

µ1
eκ(

π
2

+β) = 1,
#

b =
#

d.
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(a) µ2

µ1
eκ(

π
2

+β) > 1:

d∗

b∗

ba

bc

b

a

d

dc

da

b∗a

d∗a

d∗c

b∗c

µ1 c

µ
2

k

π
2 +

β

π
2 +

β

α− β

α− β

(b) µ2

µ1
eκ(

π
2

+β) < 1:

d∗

b∗

ba

bc

b

a

d

dc

da

b∗a

d∗a

d∗c

b∗c

cµ1

µ
2

k

π
2 +

β

π
2 +

β

α− β

α− β

(c) µ2

µ1
eκ(

π
2

+β) = 1:
b∗a = d∗a

d∗c = b∗c

b = dc = da = b∗

a

d = ba = bc = d∗

µ1 c

µ
2

k

π
2 +

β

π
2 +

β

α− β

α− β

Figure 5.8: Three qualitatively different cases interpreted geometrically.
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Chapter 5. The game in distance

Accordingly, either
#

b or
#

d may be regarded as an icon which characterizes which
of the three cases applies: either µ2

µ1
eκ(

π
2

+β) > 1, µ2

µ1
eκ(

π
2

+β) < 1, or µ2

µ1
eκ(

π
2

+β) = 1
(see Figure 5.8).

This geometric characterization of the sign of µ− 1 is independent of the sign
of β. In Figure 5.8, β is positive for the three illustrated cases, but the qualitative

shape of
#

b and
#

d does not depend on the sign β but only on the sign of µ− 1.

It will become patent in Sections 5.7 to 5.9 that either
#

b or
#

d lies at the
geometrical core of the solution of the upward game G+

dist, depending on the sign of
µ−1. The same may be stated if the game under consideration was the downward

game G−dist; however, with the roles of
#

b and
#

d interchanged. Actually, the rather
artificial assumption (5.5) was introduced in this chapter to achieve this desirable
reciprocity between G+

dist and G−dist.

5.7. Solution of the upward game for the case µ > 1

Next, the solution of G+
dist is worked out for the case µ > 1. This case is

elaborated further than the other two cases (µ < 1, µ = 1) with the intent of
serving as an in detail example of the construction methods and arguments that
will be recurred in a less detailed manner in Sections 5.8 and 5.9 when dealing
with the remaining cases of G+

dist, and even in Section 5.11 when dealing with the
bilateral game Gdist.

5.7.1. The semi-permeable domain

Reconsider the family (5.31) of characteristic state-space trajectories, now
parametrized by ρ > 0 as formulated by the initial condition (5.26) derived
from the ansatz proposed in Section 5.5. In Figure 5.9, twelve characteristic
trajectories of the family, which emanate retrogressively in time from the ray
{

a− ρ k
|k| : ρ > 0

}

, are depicted for a case in which µ = µ2

µ1
eκ(

π
2

+β) is greater
than one. Nine of them are represented by dashed lines and the other three are
represented by continuous lines, for a reason that will be soon explained. The
arrows indicate the direction of motion in which retrogressive time τ decreases,
i.e., progressive time t increases.

For every ρ = |zρ (0)− a| > 0, the curve (0, 2π) ∋ τ 7→ zρ (τ) consists of
the concatenation, in order as τ increases, of arcs of spirals with centres at a, b,
c, d, and a. Each of these arcs belong to one of the eight families of possible
semi-permeable curves: either F +

a , F−a , F +
b , F−b , F +

c , F−c , F +
d , or F−d (see

Figure 4.16). However, not every concatenation is valid for the goal of ending up
with a semi-permeable curve.

To examine the failure of some of the integral curves to be semi-permeable, con-
sider the first (in retrogressive sense) concatenation which occurs when τ = γ1 =
π
2 +2β−α. At this retro-instant, zρ(γ1) = a+e (κ−j)γ1 (zρ (0)− a) = a+ρeκγ1 b−a

|b−a| =

a+ ρeκγ1

µ1
(b− a). If ρeκγ1

µ1
< 1, blind integration of the RPE asks for concatenating
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b
a

d

c

{ a
−

ρ
k |k
|

:
ρ

>
0
}

P↑E↓

k

e−j2β

e j(π
2
−β)

µ1 = |b− a| = |c− d|
µ2 = |c− b| = |a− d|
k = −κ + j
κ = tan α

Figure 5.9: Characteristic trajectories of G+
dist, which emanate retrogressively in time from¶

z = a− ρ k
|k| : ρ > 0

©
, as obtained by routine integration of the RPE for the case

µ2

µ1
eκ( π

2
+β) > 1. Every characteristic trajectory that lies in the interior of set represented

by the shaded area fails to be semi-permeable at least at one of its points.
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Chapter 5. The game in distance

a member of F−a with a member of F +
b (see Figure 4.16). As was commented in

Subsection 4.5.4, the concatenation of a member of a negatively oriented family
(named with a superscript −) with a member of a positively oriented family (named
with a superscript +) fails to be semi-permeable at the concatenation point. This
is the reason why every characteristic trajectory τ 7→ zρ (τ) such that ρ < µ1e−κγ1

must be discarded.
The special curve {zρmin (τ) : τ ∈ [0, 2π)}, where ρmin = µ1e−κγ1 (as defined

by (5.50)), has no definite tangent direction at the point b. It includes the semi-

permeable arcs b̄, ba and b̄, bc of the closed curve
#

b = b̄, ba∪{b}∪ b̄, bc∪{bc}∪ b̆c, ba∪
{ba} (introduced in Subsubsection 5.6.5.5 and represented by the dot-dashed line
in Figure 5.10). The moving point zρmin (τ) belongs to b̄, ba (which is a member
of F−a ) for τ ∈ (0, γ1), while it belongs to b̄, bc (which is a member of F−c ) for
τ ∈ (γ3, γ4). Curiously, however, zρmin (τ) remains stationary at the point b for
τ ∈ (γ1, γ2). This is clearly suspicious for a time-invariant system, so zρmin ([0, 2π))
will be left out of the analysis for the moment. Its role will become clear after
studying what happens at both sides of it.

Consider the collection {zρ ([0, 2π)) : ρ > ρmin} of corner-free curves that cov-
ers the set

S + ,
⋃

ρ>ρmin

zρ ([0, 2π)) .

Each curve (0, 2π) ∋ τ 7→ zρ (τ) is unquestionably semi-permeable at each of its
points and it consists of concatenations among members of the negatively oriented
families: F−a , F−b , F−c , and F−d . For this reason, S + will be referred to as the
semi-permeable domain of G+

dist.
Notice in Figure 5.10 that each curve {zρ (τ) : τ ∈ ([0, 2π))} such that ρ >

ρmin encloses the closed curve
#

b . This fact prevents the members of the family
{zρ ([0, 2π)) : ρ > ρmin} from intersecting themselves.

Observe that if the selected integration interval had been selected as [0, τmax]
with τmax ≥ 2π, each member of the collection {zρ ([0, τmax]) : ρ > ρmin} would
have intersected another member of the same collection after a full rotation around
the origin of its corresponding co-state because, by (5.40), P−1 (ρ) > ρ ⇐⇒ ρ >
ρlim and ρmin > ρlim for the case µ > 1 as stated in (5.51).

5.7.2. The solution of Isaacs’ equation in the semi-permeable do-

main

The collection {zρ ([0, 2π)) : ρ > ρmin} provides a solution V of (5.17)–(5.18)
defined on S + which will be next given in close form after a verbal explanation
of how to compute V (z) for each z ∈ S +.

Consider, for example, the point z represented in Figure 5.10. Imagine a
moving point that follows the characteristic trajectory through z, along decreas-
ing retro-time τ . The moving point spirals around a, then around d, c, b, and
finally around a again, to end at a point z′ in

{

a− ρ k
|k| : ρ > 0

}

. Actually, z
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is first transformed by a + ek(
π
2

+β−Arg ·−a
b−a ) (· − a) to reach the ray ad−→, then by

d + ek(
π
2
−β) (· − d) to reach cd−→, then by c + ek(

π
2

+β) (· − c) to reach cb−→, then by

b + ek(
π
2
−β) (· − b) to reach ab−→, and finally by a + ek(

π
2

+2β−α) (· − a) to reach
{

a− ρ k
|k| : ρ > 0

}

at z′. The assigned value to V (z) is 1 − ℑ (z′). Notice that
for other points, different from the starting point z of the example, the chain
of roto-homotheties may be shorter. It is apparent that the level sets of V are
semi-permeable curves, each of them with an endpoint in

{

a− ρ k
|k| : ρ > ρmin

}

.
Each of the roto-homotheties mentioned in the previous example is associated

with one the following sets:

A1 ,
¶
w ∈ C : Mb−a

a (w) > µ1 ∧ Ab−aa (w) ∈ [0, γ1]
©
,

A2 ,
¶
w ∈ C : Mb−c

b (w) > 0 ∧ Ab−cb (w) ∈ [0, γ2)
©
,

A3 ,
¶
w ∈ C : Md−c

c (w) > µ2eκγ3 ∧ Ad−cc (w) ∈ [0, γ3)
©
,

A4 ,
¶
w ∈ C : Md−a

d (w) > (µ2eκγ3 − µ1) eκγ4 ∧ Ad−ad (w) ∈ [0, γ4)
©
,

A5 ,
¶
w ∈ C : Mb−a

a (w) > ((µ2eκγ3 − µ1) eκγ4 + µ2) eκγ3 ∧ Ab−aa (w) ∈ (γ1, γ3)
©

;

where the angles γ1, . . . , γ4 are defined, in terms of α and β, as indicated in Fig-
ure 5.5, and the functions Avo : C\{o} → (−π, π] andMv

o : C→ [0,∞), parametric
on o, v ∈ C such that v 6= 0, are the ones introduced in Subsubsections 4.2.2.2
and 4.2.2.3. The collection {A1, . . . ,A5} is a partition of S +, because:

S + =
⋃

i∈{1,...,5}
Ai and Ai ∩Aj = ∅ for i 6= j.

For every z ∈ S +, the functional value of V at z is given by

V (z) ,







1−ℑ
Å
Rγ1−Ab−a

a (z)
a (z)

ã
if z ∈ A1,

1−ℑ
Å
Rγ1
a ◦ R

γ2−Ab−c
b

(z)

b (z)
ã

if z ∈ A2,

1−ℑ
Å
Rγ1
a ◦ Rγ2

b ◦ R
γ3−Ad−c

c (z)
c (z)

ã
if z ∈ A3,

1−ℑ
Å
Rγ1
a ◦ Rγ2

b ◦ Rγ3
c ◦ R

γ4−Ad−a
d

(z)

d (z)
ã

if z ∈ A4,

1−ℑ
Å
Rγ1
a ◦ Rγ2

b ◦ Rγ3
c ◦ Rγ4

d ◦ R
γ3−Ab−a

a (z)
a (z)

ã
if z ∈ A5,

where Rθq : C→ C is a roto-homothety, of centre q ∈ C and angle θ ∈ R, given by

Rθq (z) , q + ekθ (z − q) ,

where k = −κ+ j, being κ = tanα.
The function V : S + → R just described is real differentiable in S +, so it

conveys recommended strategies defined in S + for both players, namely:

z 7→ ũ∗V (z) , u∗ (∇V (z)) , (5.64)

z 7→ σ̃∗V (z) , σ∗ (∇V (z)) , (5.65)
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ba

d

c

ba

bc

b∗a

=

zρmin (0)

#

b

{ a
−

ρ
k |k
|

:
ρ

>
ρ m

in

}

P↑E↓

k

e−j2β

e j(π
2
−β)

µ1 = |b− a| = |c− d|
µ2 = |c− b| = |a− d|
k = −κ + j
κ = tan α

z′

z

A1

A2

A3

A4

A5

σ
=

0

σ
=

1

io = 1

io = i▽o

σ
=

0

σ
=

1

io = 1

io = i▽o

Figure 5.10: Semi-permeable characteristic trajectories of G+
dist for the case µ2

µ1
eκ( π

2
+β) > 1.

The shape of the closed curve indicated by the dot-dashed line characterizes this case. The
dashed rays are switching curves.
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5.7. Solution of the upward game for the case µ > 1

provided that it is understood that ∇V (zρ (0)) , limτ→0+ ∇V (zρ (τ)), for every
ρ > ρmin (notice that V is discontinuous at zρ (0) for every ρ > ρmin). Recall that
the functions u∗ : C → U and σ∗ : C → Σ evaluated in (5.64)–(5.65) are the
functions introduced in statement 2 of Proposition 4.4.1.

Note that, by the essence of the method of characteristics, the recommended
strategies ũ∗V and σ̃∗V could have been defined in an equivalent way to (5.64)–(5.65)
as follows: for each z ∈ S +, find ρ and τ such that z = zρ (τ) and let

z 7→ ũ∗V (z) , u∗ (p (τ)) ,

z 7→ σ̃∗V (z) , σ∗ (p (τ)) .

The dashed rays in Figure 5.10 indicate the switching rays that result from
(5.64)–(5.65). Each of these switching rays lies in one of the following common
boundaries: either (∂A1)∩(∂A2), (∂A2)∩(∂A3), (∂A3)∩(∂A4), or (∂A4)∩(∂A5).

5.7.3. The pursuer’s counter-clockwise circulation power in the

semi-permeable domain

It will be argued next that for every initial state in S + the strategy ũ∗V re-
commended for P as specified before, generates state-space motions such that the
state remains in S + until (sooner or later) it reaches

{

a− ρ k
|k| : ρ > ρmin

}

from
half-plane P↑, regardless of the strategy adopted by E. The argument relies on
the repeated application of Corollary 4.3.1, followed by the application of Propos-
itions 4.3.1 and 4.3.2.

Take an arbitrary initial state z5 in A5 (see Figure 5.11). As long as the
state remains in A5, P’s strategy (5.64) mandates u (t) = i▽o + j. Hence, the
compound control Q (t) = q (u (t) , σ (t)) = q (i▽o + j, σ (t)) belongs to the segment
da. Applying Corollary 4.3.1, with z0 = z5, q1 = d, q2 = a, and θ = 0, it can be
inferred that the state must reach the line da←→ in finite time and E can do nothing
to prevent this from happening. Moreover, as the state approaches the line da←→, it
remains in the set K 0

d,a (z5) (as defined in Corollary 4.3.1) represented by the thin
shaded area that emanates from z5 in Figure 5.11. This assures that the state does
not abandon S + during its approach to da←→, whatever E does. Furthermore, since
Corollary 4.3.1 also states that K 0

d,a (z5)\{z5} ⊂ {z ∈ C : (z5 − a)⊗ (z − a) > 0},
the state must remain in the half-plane {z ∈ C : (z5 − a)⊗ (z − a) > 0} during
its approach to da←→; thus, E cannot direct the state towards

{

a− ρ k
|k| : ρ > ρmin

}

as it moves in A5. The condition K 0
d,a (z5)∩Cd,a = ∅, required by Corollary 4.3.1,

can be checked to be fulfilled. In fact, it follows from Remark 3, after verifying
that Md−a

a (z5) > |d− a| for every z5 ∈ A5.
While the state moves in K 0

d,a (z5) towards da←→, E is recommended to apply
σ (t) = 0 in order to prevent the state from crossing the semi-permeable charac-
teristic trajectories in the outward direction. Once the state reaches a point z5

′ in
da←→∩K 0

d,a (z5), E is recommended to switch from σ = 0 to σ = 1. Regardless of
whether he follows this recommendation or not, at z5

′, he must select a velocity vec-
tor from the set {k (z5

′ − q) : q ∈ ad}. All of these vectors, based at z5
′ point into
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b∗a

ba

d

c
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A1
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σ
=

0

σ
=

1

io = 1

io = i▽o

σ
=

0

σ
=

1

io = 1

io = i▽o

Cd,a Ca,d

Cb,c
Cc,b

z1

Dd,a (z1) ∩ cl (Hd,a)

z2

K
π
2

+β

c,b (z2)

z3

K 0
b,c (z3)

z4

K
π
2

+β

a,d (z4)

z5

K 0
d,a (z5)

Figure 5.11: The pursuer’s counter-clockwise circulation power in the semi-permeable domain
S + =

⋃

ρ>ρmin
zρ ([0, 2π)) =

⋃

i∈{1,...,5} Ai.
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5.7. Solution of the upward game for the case µ > 1

A4, so E cannot prevent the state from continuing into A4. This last statement re-

lies on the fact that z5
′ ∈
ß
R−( π

2
−β)

d (bc) + ξe j( π
2
−β) : ξ > 0

™
andR−( π

2
−β)

d (bc) =

d+ e−k(
π
2
−β) (bc − d) necessarily belongs to the ray

{

d+ ξe j( π
2
−β) : ξ > 0

}

, be-

cause bc lies in
¶
d− ξe j2β : ξ > 0

©
(as can be verified looking at (5.63) and re-

calling that b− a = − (d− c) and µ2

µ1
eκ(

π
2

+β) > 1).
For an initial state z4 in A4, which could be a visited state of a play initiated

in A5 ∪ ((∂A5) ∩ (∂A4)) or the starting point of another play, P’s strategy still
mandates the same control u (t) = i▽o + j, as in A5. Hence, the compound control
Q (t) = q (u (t) , σ (t)) = q (i▽o + j, σ (t)) still belongs to the segment ad. Applying
Corollary 4.3.1 again, but now with z0 = z4, q1 = a, q2 = d, and θ = π

2 + β, it
can be inferred that the state must reach the line cd←→ in finite time and E can do
nothing to prevent this from happening. Moreover, as the state approaches the line

cd←→, it remains in the set K
π
2

+β

a,d (z4) (as defined in Corollary 4.3.1) represented by
the shaded area that emanates from z4 in Figure 5.11. This assures that that the
state does not abandon S + during its approach to cd←→. Furthermore, since Corol-

lary 4.3.1 also states that K
π
2

+β

a,d (z4) \ {z4} ⊂ {z ∈ C : (z4 − d)⊗ (z − d) > 0},
the state must remain in the half-plane {z ∈ C : (z4 − d)⊗ (z − d) > 0} during
its approach to cd←→; thus, E cannot direct the state to (∂A4) ∩ (∂A5) as it moves

in A4. The condition K
π
2

+β

a,d (z4) ∩ Ca,d = ∅, required by Corollary 4.3.1, can be

checked to be fulfilled recalling Remark 3 and verifying that Ma−d
d (z4) > |a− d|

for every z4 ∈ A4.
Take an initial state z3 that belongs to ((∂A4) ∩ (∂A3)) ∪A3. As before, this

state may be the starting point of a play, or a visited state of a play initiated
somewhere in A5 ∪ ((∂A5) ∩ (∂A4)) ∪ A4 ∪ ((∂A4) ∩ (∂A3)). Applying Corol-
lary 4.3.1, with z0 = z3, q1 = b, q2 = c, and θ = 0, it can be inferred that the
state must reach the line bc←→ in finite time and E can do nothing to prevent this
from happening. Moreover, as the state approaches the line bc←→, it remains in the
set K 0

b,c (z3) (as defined in Corollary 4.3.1) represented by the shaded area that
emanates from z3 in Figure 5.11. This assures that the state does not abandon S +

during its approach to bc←→, whatever E does. Furthermore, since Corollary 4.3.1
also states that K 0

b,c (z3)\{z3} ⊂ {z ∈ C : (z3 − c)⊗ (z − c) > 0}, the state must
remain in the half-plane {z ∈ C : (z3 − c)⊗ (z − c) > 0} during its approach to
bc←→; thus, E cannot direct the state back into A4 as it moves in A3. Once again,
the condition K 0

b,c (z3) ∩ Cb,c = ∅, required by Corollary 4.3.1, can be checked to
be fulfilled recalling Remark 3 and verifying that Mb−c

c (z3) > |b− c| for every
z3 ∈ ((∂A4) ∩ (∂A3)) ∪A3.

While the state moves in K 0
b,c (z3) towards bc←→, E is recommended to apply

σ (t) = 1 in order to prevent the state from crossing the semi-permeable charac-
teristic trajectories in the outward direction. Once the state reaches a point z3

′ in
bc←→ ∩K 0

b,c (z3), E is recommended to switch from σ = 1 to σ = 0. Regardless of
whether he follows this recommendation or not, at z3

′, he must select a velocity
vector from the set {k (z3

′ − q) : q ∈ bc}. Clearly, all of these vectors, based at
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z3
′ point into A2, so E cannot prevent the state from continuing into A2.

An argumentation along similar lines as the ones applied to the initial state in
A4 may be applied to an initial state z2 ∈ A2, to infer that the state must move

in K
π
2

+β

c,b (z2) while it approaches and finally reaches the line ab←→.

At last, take an initial state z1 ∈ ((∂A2) ∩ (∂A1)) ∪ A1. If z1 ∈ (∂A2) ∩
(∂A1), Corollary 4.3.1 can be applied, as it was applied for the initial state z3,
but now only to show that the state cannot move back into A2, and to do so
θ must be taken as θ = π

2 + β − ǫ, with ǫ > 0 sufficiently small, in order to
comply with the condition K θ

d,a (z1) ∩ Cd,a = ∅. For z1 ∈ ((∂A2) ∩ (∂A1)) ∪ A1,
Corollary 4.3.1 cannot be applied as it was applied for the initial condition z5,
because with θ = 0 the condition K θ

d,a (z1) ∩ Cd,a = ∅ does not hold for every
z1 ∈ ((∂A2) ∩ (∂A1))∪A1. However, Propositions 4.3.1 and 4.3.2 can be applied.
Applying Proposition 4.3.1 with z0 = z1, q1 = d, and q2 = a, it can be proved that
the state must come arbitrarily close to the line ad←→ in finite time (not necessarily
reaching it). In addition, by Proposition 4.3.2, as long as the state remains in
cl (Hd,a), it must remain in the set Dd,a (z1) (as defined in Proposition 4.3.2). The
set Dd,a (z1) ∩ cl (Hd,a) is represented by the shaded area that emanates from z1

in Figure 5.11. Thus, the state, along its way to ad←→, must necessarily reach the

ray
{

a− ρ k
|k| : ρ > ρmin

}

in finite time.

Observe that, along the motions previously described the state can only cross
the semi-permeable curves of the collection {zρ ([0, 2π)) : ρ > ρmin} in the direc-
tion preferred by P, i.e., in the outward direction that results in higher imaginary
part of the state when it inevitably reaches the ray

{

a− ρ k
|k| : ρ > ρmin

}

from P↑.
This is because P sticks to the strategy (5.64) recommended for him, derived from
the semi-permeable characteristic trajectories. The best that E can do in order to
minimize the imaginary part of the state when it reaches

{

a− ρ k
|k| : ρ > ρmin

}

is
to stick to the strategy (5.65) recommended for him, also derived from the semi-
permeable characteristic trajectories. Only if P temporary abandons the strategy
(5.64), can E force the state to cross the semi-permeable characteristic trajectories
in the inward direction preferred by him.

In conclusion, for every initial state z0 in S +, P can force the state to circulate
counter-clock-wisely in S + while preventing it from crossing the semi-permeable
curves in the inward direction, so as to make it reach the ray

{

a− ρ k
|k| : ρ > ρmin

}

,

from half-plane P↑, at an oriented distance to T + that is equal or less than V (z0).
If do

(
z0,T +

)
> V (z0) the use of such circulation power will clearly benefit him,

while if do
(
z0,T +

) ≤ V (z0) he will not reduce the initial oriented distance to T +

by making use of such power.
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5.7. Solution of the upward game for the case µ > 1

5.7.4. The island not covered by semi-permeable corner-free char-

acteristic state-space trajectories

The set S + =
⋃

ρ>ρmin
zρ ([0, 2π)) covered by semi-permeable characteristic

trajectories has a non-empty complement

I + , C \S +

which will be referred to as the island of G+
dist. In Figure 5.10, the set I + corres-

ponds to the union of the interior of the shaded area and the curve zρmin ([0, 2π))
which is included in the boundary of S +. In fact, I + can be partitioned as:

I + = int
Ä
I +
ä
∪ zρmin ([0, 2π)) being int

Ä
I +
ä
∩ zρmin ([0, 2π)) = ∅.

Observe that the special point b is the unique corner of {zρmin (τ) : τ ∈ (0, 2π)}.
Moreover, by construction of S +, the point b does not belong to S +. However,
every other point of the line bc←→, that belongs to a sufficiently small neighbourhood
of b, is a member of S +. This may be checked comparing the directions of the
lateral tangents k (b− a) = − limτ→τ−

1
zρmin (τ) and −k (b− c) = limτ→τ+

2
zρmin (τ)

with respect to the direction e j( π
2
−β) of the line bc←→ as follows:

e j( π
2
−β) ⊗ (k (b− a)) = µ1 secα sin (α− β) > 0,

e j( π
2
−β) ⊗ (−k (b− c)) = µ2 secα cosα > 0,

where the inequalities result from 0 < α < π
2 and |β| < α, as assured by (5.1).

5.7.5. The pursuer’s pull-back manoeuvre

Recall that at b∗a = zρmin (0), the direction of the lateral tangent k (b∗a − a) =
− limτ→0+ zρmin (τ) is horizontal because k (b∗a − a) = 0.

Consider an arbitrary initial state z ∈ int
(
I +

)
such that ℑz ≤ ℑb∗a (as repres-

ented in Figure 5.12) and suppose that P maintains u (t) = io + j constant, where
io = 1. This insistence by P, forces the compound input Q (t) = q (u (t) , σ (t)) to
belong to the segment bc. Otherwise stated, E is forced to select the instantaneous
centre of the α-equiangular state-guiding spiral through the current state from the
set of points that lie in the segment bc. It follows logically from Proposition 4.3.1
(taking q1 = b, q2 = c, and z0 = z) that the state must come arbitrarily close
to the line bc←→ in finite time. Therefore, if E manages to prevent the state from
entering into {w : ℑw > ℑb∗a} ∪ cl

(
S +

)
, the state must necessarily come arbit-

rarily close to b in finite time. This is true without any kind of limitation imposed
on E. If E happens to be limited by a positive dwell time between consecutive
switchings, as explained in Subsubsection 4.3.6.7 where E’s control set Σ = [0, 1]
was temporarily supposed to be replaced by {0, 1}, he cannot prevent the state
from reaching the line bc←→ in finite time (as it follows from the application of Pro-
position 4.3.4 taking q1 = b, q2 = c, and z0 = z) and therefore reaching either
cl
(
S +

)
or {w : ℑw > ℑb∗a}.
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Figure 5.12: The set called island is defined as I + = S +∁
, i.e., as the complement of

the semi-permeable domain S + =
⋃

ρ>ρmin
zρ ([0, 2π)) =

⋃

i∈{1,...,5} Ai. The point b∗
a =

zρmin
(0) has an oriented distance to T + equal to 1−ℑb∗

a. For plays that initiate in int (I +)∩
{w : ℑw ≤ ℑz∗

b }, if E manages to prevent the state from reaching {w : ℑw > ℑz∗
b } ∪

cl (S +), given any ǫ > 0, P can force the state to come as close as it is necessary to b ∈ ∂S +

in order to guarantee himself a future attainable oriented distance to T + that is at most
1−ℑ (b∗

a) + ǫ.
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5.7. Solution of the upward game for the case µ > 1

The above observation sheds light on the reason why the integration of the
RPE failed to cover the island I + with semi-permeable trajectories. For plays
that initiate in int

(
I +

) ∩ {w : ℑw ≤ ℑz∗b}, if E manages to prevent the state
from entering {w : ℑw > ℑz∗b}∪cl

(
S +

)
, P can take the state as close as he wants

to b, in finite time. This ability possessed by P will be referred to as P’s pull-back
manoeuvre against E’s resistance to let the state into {w : ℑw > ℑb∗a}∪ cl

(
S +

)
.

Once P is satisfied with the proximity achieved to b, loosely speaking lets say
for example when the state is at the point z0 indicated in Figure 5.12, P can switch
to u (t) = i▽o + j (the same control action recommended in A1 by (5.64)) and keep
it constant. Under this new condition, application of Proposition 4.3.1 once again
(but now with q1 = d, q2 = a and z0 as represented in Figure 5.12) allows to infer
that the state must come arbitrarily close to the line da←→, in finite time. Moreover,
Proposition 4.3.2, states that as long as the state remains in cl (Hd,a) the state
must move in set Dd,a (z0) along its way to da←→. The set Dd,a (z0) ∩ cl (Hd,a)
is represented in Figure 5.12 by the shaded area that emanates from z0 (both
Dd,a (·) and Hd,a are defined as in Proposition 4.3.2 with q1 = d and q2 = a).

Consequently, the state must reach the ray
{

a− ρ k
|k| : ρ > 0

}

from half-plane

P↑ in finite time, at a point whose oriented distance to T + is at most equal
to 1 − ℑ (b∗a) + ǫ, where ǫ = ℑ (b∗a − z∗0) is the imaginary part of the difference
between b∗a = zρmin (0) and the point z∗0 of minimal imaginary part in the segment

Dd,a ∩ cl (Hd,a) ∩
{

a− ρ k
|k| : ρ > 0

}

, as represented in Figure 5.12. It is clear
that P could have made the positive difference ǫ as small as he wanted, provided
he had led the state approximate b as much as it was necessary in the previous
pull-back stage. Note, however, that during this previous stage, P must also take
care that that the approximation to b becomes sufficient so that the arguments
just given invoking Propositions 4.3.1 and 4.3.2 for the next stage are actually
valid. In Subsection 5.7.8 this issue will be treated more precisely.

For plays that initiate at states which belong to the curve zρmin ([0, 2π)) =

I + ∩ ∂I +, P can force the state to reach
{

a− ρ k
|k| : ρ > 0

}

at a point where

the oriented distance to T + is at most equal to 1−ℑb∗a by extending continuously
the strategy (5.64), defined in S +, to the curve zρmin ([0, 2π)) (similar arguments
to the ones used in Subsection 5.7.3 may be invoked). However, some care must be
taken to define P’s strategy at the point b where the continuous extension is not well
defined. At this point, the extension must be taken from A1, so that the arguments
given in Subsection 5.7.3 for the case of an initial state z1 ∈ ((∂A2) ∩ (∂A1))∪A1

remain valid for the particular case z1 = b (see Figure 5.11).

The above facts, suggest that a reasonable extension for V in I + is to define
it constant and equal to 1 − ℑb∗a = 1 − ℑ

(

a− ρmin
k
|k|

)

= 1 − ℑa − ρmin cosα, at

least for those states in I + such that their oriented distance to T + is greater or
equal than 1−ℑb∗a, as it will be done in Subsection 5.7.6.
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5.7.6. A candidate solution

At first glance, the function V introduced in Subsection 5.7.2 looks promising
for verifying the saddle inequalities (5.11) that correspond to V+

do
, at least for initial

states z ∈ S + such that 1 − ℑz ≥ V (z), i.e., such that their oriented distance
do
(
z,T +

)
= 1−ℑz to T + is greater or equal than the oriented distance V (z) to

T + that P can guarantee for himself as an upper bound of the final outcome. On
the one hand, as was shown in Subsection 5.7.3, from every z ∈ S +, P can force
a counter-clockwise state motion in S + towards

{

a− ρ k
|k| : ρ > ρmin

}

(reached

from P↑) that attains a minimum oriented distance to T + that is at most equal to
V (z). On the other hand, E can guarantee for himself that this oriented distance
to T + will be at at least equal to V (z), by not allowing the state to cross the
semi-permeable characteristic trajectories in the outward direction, as the state
motion progress counter-clock-wisely towards

{

a− ρ k
|k| : ρ > ρmin

}

.

However, to put under test the saddle inequalities (5.11) that correspond G+
dist,

the following objects, globally defined in the complex plane, are needed first: i) a
candidate value function V+

do
; and ii) candidate strategies ũ∗+ and σ̃∗+ for P and E,

respectively. These objects are synthesized next from V, by a two-step constructive
method devised taking into account the facts discussed not only in Subsection 5.7.3
but also in Subsections 5.7.4 and 5.7.5. The resulting synthesised objects will be
proved to be meaningful in Subsection 5.7.8, where a relaxed version of (5.11) will
be proved.

1. Extension – Define Vaux : C → R and p̃∗aux : C → C as the following
extensions of V and ∇V, respectively, to the whole complex plane:

Vaux (z) ,







V (z) if z ∈ S +,

1−ℑ (zρmin (0)) if z = zρmin (0) ,

lim
S +∋w→z

V (w) = 1−ℑ (zρmin (0)) if z ∈ zρmin ((0, 2π)) ,

lim
S +∋w→b

V (w) = 1−ℑ (zρmin (0)) otherwise, i.e., z ∈ int
(
I +

)
;

p̃∗aux (z) ,







∇V (z) if z ∈ S +,

−j if z = zρmin (0) ,

lim
S +∋w→z

∇V (w) if z ∈ zρmin ((0, 2π)) \ {b} ,
lim

A1∋w→b
∇V (w) if z = b,

e
1
2 ( π

2
−β)k lim

A1∋w→b
∇V (w) otherwise, i.e., z ∈ int

(
I +

)
.

2. Comparison – Use Vaux and p̃∗aux as defined above, to define V+
do

: C → R

and p̃∗+ : C→ C as follows:

V+
do

(z) , min {Vaux (z) , 1−ℑz} ; (5.66)

p̃∗+ (z) ,

{

p̃∗aux (z) if Vaux (z) ≤ 1−ℑz,
−j otherwise.

(5.67)
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Finally, use p̃∗+ to define ũ∗+ : C→ U and σ̃∗+ : C→ Σ as follows:

ũ∗+ (z) , u∗
(
p̃∗+ (z)

)
, (5.68)

σ̃∗+ (z) , σ∗
(
p̃∗+ (z)

)
; (5.69)

where u∗ : C→ U and σ∗ : C→ Σ are the functions defined in statement 2
of Proposition 4.4.1.

Observe that the candidate value function V+
do

is defined in terms of Vaux

which in turn is defined in terms of V. The function Vaux is continuous in C \
{

a− ρ k
|k| : ρ > ρmin

}

. In S + the function Vaux coincides with V, but in I +

(where V is not defined) it takes the constant value

do

Ä
b∗a,T

+
ä

= 1−ℑb∗a = 1−ℑzρmin (0) = 1−ℑa− ρmin cosα,

which equals supz∈S + V (z) = limS +∋z→b V (z) = maxz∈C Vaux (z).
Notice also that the newly defined strategies ũ∗+ and σ̃∗+ provide control action

recommendations to both players not only in S +, but also in I + = C \ S +.
In fact, for every z ∈ C, the upward game’s pseudo-gradient p̃∗+ (z) provides well
defined control actions for both players if it used as the argument of ũ∗+ and σ̃∗+,
even if∇V+

do
(z) = 0 or V+

do
is not real-differentiable at z. If V+

do
is real differentiable

at z and V+
do

(z) 6= 0, the pseudo-gradient p̃∗+ (z) equals ∇V+
do

(z).
For points z ∈ int

(
I +

)
such that Vaux (z) ≤ 1−ℑz, the strategies ũ∗+ and σ̃∗+

are defined in such a way that they provide the same control actions recommended
by the original strategies (5.64) and (5.65) in A2. This is done by defining p̃∗aux (z)
as an intermediate value between lim

A1∋w→b
∇V (w) and lim

A3∋w→b
∇V (w) (recall that

p (τ) evolves according to (5.29) as τ varies in [0, 2π); see also Figure 4.14). The
purpose of doing this is just to endow P with a strategy that forces the state
to approach b ∈ cl

(
S +

)
in case E offers resistance against the state entering

{w : ℑw > ℑb∗a} ∪ cl
(
S +

)
as explained in Subsection 5.7.5. In other words, P’s

pull-back manoeuvre is encoded in the definition of ũ∗+. However, E’s resistance
against this pull-back is not encoded in σ̃∗+, because it is futile (except for an ǫ > 0
in the final outcome in favour of E which P can make arbitrarily small).

For points z ∈ zρmin ([0, 2π)) such that Vaux (z) ≤ 1−ℑz, the strategies ũ∗+ and
σ̃∗+ are defined by extension of (5.64) and (5.65), taking care at z = b where the
extension fails to be well defined. This way, the control actions recommended by
ũ∗+ and σ̃∗+ for each z in the curve zρmin ([0, 2π)) ∩ {w : V (w) ≤ 1−ℑw} are in
fact semi-permeable controls for the same curve.

5.7.6.1. Pruning of the semi-permeable trajectories

The candidate value function (VF), V+
do

, is defined from Vaux in (5.104) by
taking the minimum between 1 − ℑz and Vaux (z), for each z ∈ S +. This is
nothing else than a comparison between the current oriented distance to T + (i.e.,
1− ℑz = do

(
z,T +

)
) and the best future potentially attainable oriented distance

to T + that P can assure for himself against optimal opposition from E (i.e.,
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Chapter 5. The game in distance

Vaux (z) = V (z), except possibly for an arbitrarily small difference in favour of E,
which is under P’s control, in case z ∈ int

(
I +

) ∩ {w : ℑw < ℑb∗a}).
Next, the effect that the comparison just described has on each curve [0, 2π) ∋

τ 7→ zρ (τ) included in S + ∪ zρmin ([0, 2π)) =
⋃

ρ≥ρmin
zρ ([0, 2π)) is examined.

Fix ρ such that ρ ≥ ρmin and imagine a moving point zρ (τ) as retrogressive time
τ increases (see Figure 5.13). Recall that τ1 = γ1 = π

2 +2β−α, τ2−τ1 = γ2 = π
2−β,

τ3 − τ2 = γ3 = π
2 + β, τ4 − τ3 = γ4 = π

2 − β, 2π− τ4 = γ5 = α− β and accordingly
γ1 + γ2 + γ3 + γ4 + γ5 = 2π (see Figure 5.5).

On the one hand, the future potentiality attainable oriented distance to T +

that P can assure for himself, departing from zρ (τ), against optimal opposition
from E is

Vaux (zρ (τ)) = V (zρ (τ)) = V (zρ (0)) = 1−ℑzρ (0) = 1−ℑa− ρ cosα, (5.70)

which remains constant as τ increases.
On the other hand, the current oriented distance to T +, at zρ (τ), is

do

Ä
zρ (τ) ,T +

ä
= 1−ℑzρ (τ) , (5.71)

which varies continuously as τ increases. Actually, τ 7→ 1 − ℑzρ (τ) is strictly
monotonously increasing in the interval (0, γ1 + γ2 + γ5) and strictly monoton-
ously decreasing in the interval (γ1 + γ2 + γ5, 2π). At τ = 0, (5.71) equals (5.70).
At τ = γ1 + γ2 + γ5, (5.71) attains its maximum value in the interval [0, 2π).
The point zρ (γ1 + γ2 + γ5) where the maximum is attained belongs to the ray
{

c+ ξ k
|k| : ξ > 0

}

as it is patent in Figure 5.13. As τ → (2π)−, the oriented
distance (5.71) tends to

lim
τ→(2π)−

do

Ä
zρ (τ) ,T +

ä
= lim

τ→(2π)−
(1−ℑzρ (τ)) = 1−ℑ

Ç
a− P−1 (ρ)

k

|k|

å

= 1−ℑa− P−1 (ρ) cosα (5.72)

where P : R→ R is given by (5.34).
Hence, (5.71) increases from a value given by (5.70) to a maximum value

given by 1− ℑzρ (γ1 + γ2 + γ5) and then decreases and tends to a value given by
(5.72) as τ → (2π)−. Compare (5.72) with (5.70). From (5.40), P−1 (ρ) > ρ
for ρ > ρlim, and in fact ρ > ρlim (because ρ ≥ ρmin and ρmin > ρlim for the
case µ > 1 as stated by (5.51)). Since (5.71) varies continuously in [0, 2π), there
exists a τmax = τmax (ρ) ∈ (0, 2π) such that 1 − ℑzρ (τmax) = 1 − ℑzρ (0), i.e.,
ℑzρ (τmax) = ℑzρ (0) (see Figure 5.13). Otherwise stated, as retrogressive time τ
increases in the interval [0, 2π), the imaginary part of zρ (τ) varies from ℑzρ (0) to
the minimum value ℑzρ (γ1 + γ2 + γ5) and then increases again until it necessarily
attains the value ℑzρ (0) for a second time at τ = τmax (ρ) ∈ (0, 2π).

This means that for every ρ ≥ ρmin, there exists a retro-time instant τmax =
τmax (ρ) such that ℑzρ (τmax (ρ)) = ℑzρ (0). Accordingly, for each ρ ≥ ρmin the
characteristic trajectory zρ ([0, 2π)) is pruned by the comparison (5.104) which
defines V+

do
. The resulting pruning curve of G+

dist

PC+ = {zρ (τmax (ρ)) : ρ ≥ ρmin} (5.73)
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d∗ ba

bc

b∗a

=

zρmin (0)

zρmin (γ1 + γ2 + γ3)
a− P−1 (ρmin) k

|k|

b
a

d

c

{ a
−

ρ
k |k
|

:
ρ
≥

ρ m
in

}

P↑E↓

k = −e j(π
2
−α) sec α

e j(π
2
−α)e j(π

2
−β)

e−j2β

a− P−1 (ρ) k
|k|

zρ (τmax (ρ))
zρ (0)

zρ (γ1 + γ2 + γ5)

zρ (τ)

zρ (τd)

A1

A2

A3

A4

A5

σ
=

0

σ
=

1

io = 1

io = i▽o
σ

=
0

σ
=

1

io = 1

io = i▽o

Figure 5.13: Construction of the pruning curve PC+ = {zρ (τmax (ρ)) : ρ ≥ ρmin}. For every
ρ ≥ ρmin, there exists a retro-time instant τmax = τmax (ρ) such that ℑzρ (τmax (ρ)) = ℑzρ (0).
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Chapter 5. The game in distance

certainly impacts on the topography of the candidate value function V+
do

defined
from Vaux. In Figure 5.14 some semi-permeable characteristic trajectories are
pruned as just explained to manifest graphically the origin of the pruning curve.
From the figure it may be thought that the pruning curve must lie in A3, however
this is false in general. An example of a pruning curve that crosses from A3 to A4

is shown in Figure 5.15.
What is clear is that each of the pruning points which conform the pruning

curve (5.73) must be of the form zρ (τmax) with τmax ∈ (τ2, 2π), because τ 7→
ℑzρ (τ) is monotonously decreasing in [0, τ2], In fact, at τ = τ2, the imaginary part
of zρ (τ) has not attained its minimum yet (as τ increases) which is attained at
τ = τ2 + γ5 = γ1 + γ2 + γ5 > τ2. Hence, the pruning points belong to

(A5 ∪ zρmin ((τ4, 2π))) ∪ (A4 ∪ zρmin ((τ3, τ4])) ∪ (A3 ∪ zρmin ((τ2, τ3])) .

However, more than this can be stated. The points in (A3 ∪ zρmin ((τ2, τ3])) that
lie in the half-plane {z ∈ C : (z − d)⊗ (d∗ − d) ≤ 0} cannot be pruning points as
it is justified next.

Fix ρ ≥ ρmin and let τd be the first retrogressive time instant at which τ 7→
zρ (τ) crosses the straight line dd∗←→ = {z ∈ C : (z − d)⊗ (d∗ − d) = 0} as τ in-
creases in the interval [0, 2π) (see Figure 5.13). At the retro-time instant τ = τd,
still

ℑzρ (τd) < ℑd∗ < ℑb∗a < ℑzρ (0) , (5.74)

so ℑzρ (τ) has to keep on increasing to attain the value ℑzρ (0) at some τmax > τd
and thus zρ (τ) has to get into the half-plane {z ∈ C : (z − d)⊗ (d∗ − d) > 0}.
This argument is sustained by the fact that ℑb∗a−ℑd∗ = ℑ (b∗a − d∗) > 0 and that
for every ρ ≥ ρmin the point zρ (τ) rotates clockwisely around the closed curve
#

b , b̄, ba ∪ {b} ∪ b̄, bc ∪ {bc} ∪ b̆c, ba ∪ {ba} as τ increases in the interval [0, 2π).
In Appendix B.2 it is proved that ℑ (b∗a − d∗) > 0 and ℜ (b∗a − d∗) > 0, as it is
visualized in Figures 5.13 to 5.15.

In conclusion, the pruning curve (5.73) is included in the set

(A5 ∪ zρmin ((τ4, 2π))) ∪
(A4 ∪ zρmin ((τ3, τ4])) ∪
((A3 ∪ zρmin ((τ2, τ3])) ∩ {z ∈ C : (z − d)⊗ (d∗ − d) > 0}) .

This fact will be invoked in Subsection 5.7.8 along the validation of the proposed
candidate solution.

5.7.7. The topography of the candidate value function

The comparison that transforms Vaux into V+
do

takes effect in the set

R+ , {z ∈ C : 1−ℑz < Vaux (z)} .

This set, included in E↓, will be referred to as the ramp of G+
dist because of the

form of the graph of V+
do

therein. In Figure 5.14 part of the set R+ is represented
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d∗ ba
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}
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Figure 5.14: The pruning curve of the upward game (PC+) arises by comparison between the
current oriented distance to the target set T + and P’s potentially attainable oriented distance
to T + against optimal opposition from E.
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d∗ ba

bc

zρmin (γ1 + γ2 + γ3)

b∗a

=

zρmin (0) b

a

d

c

{ a
−

ρ
k |k
|

:
ρ
≥

ρ m
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}

P↑E↓

10e−j2β

10e j(π
2
−β)

10e j(π
2
−α) = −10 k
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σ
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σ
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Figure 5.15: In this example, the pruning curve of the upward game (PC+) crosses one of the
two switching rays for io (the one that lies on the boundary between A3 and A4).
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by the area filled by the dot-dashed segments that equalize the imaginary part of
the endpoints of each depicted pruned semi-permeable characteristic trajectory.

Since R+ ⊂ E↓, E can instantaneously force ℑz to decrease for every z ∈ R+.
Moreover, in R+, P cannot foresee a future oriented distance to T + lower than
the “current” one 1−ℑz. Accordingly, for z ∈ R+, is sensible for both players to
select control actions û ∈ U and σ̂ ∈ Σ such that

−j⊙ f (z, û, σ̂) = inf
u∈U

sup
σ∈Σ

{−j⊙ f (z, u, σ)} ,

i.e., with the focus on the current rate of change of the oriented distance to T +,
rather than the minimum oriented distance to the T + on an infinite time horizon.
For this reason, ũ∗+ (z) and σ̃∗+ (z) are defined as u∗ (−j) and σ∗ (−j), respectively,
for each z ∈ R+ (recall definitions (5.105)–(5.107)).

Coming back to Figure 5.14, notice that the union of each of the dot-dashed
segments with its corresponding pruned semi-permeable characteristic trajectory
constitutes a level curve of V+

do
included in S + ∪R+. Actually, the set S + ∪R+

may be expressed in terms of level sets of V+
do

as

S + ∪R+ =
⋃

λ<1−ℑzρmin (0)

¶
z : V+

do
(z) = λ

©
.

It is important to notice that, by the way in which V+
do

was constructed, it
follows immediately that for each λ ∈ R its λ-sup-level set V+

do
, defined as

LV+
do

(λ) ,
¶
z : V+

do
(z) ≥ λ

©
,

is a convex set. This fact, makes of V+
do

a quasi-concave function. This property
of V+

do
will be exploited in Section 5.11 to deal with the (bilateral) game Gdist.

The set
P+ , arg max

w∈C
V+

do
(w)

will be referred to as the plateau of G+
dist because the function V+

do
takes the constant

value maxz∈C V+
do

(z) = 1−ℑzρmin (0) in this closed subset of C. It can be checked
that, by the way in which function V+

do
was constructed,

P+ = I + \R+.

For points z ∈P+\zρmin ([0, 2π)), the strategies ũ∗+ and σ̃∗+ are defined in such
a way that they recommend the same control actions prescribed by the original
strategies (5.64) and (5.65) in A2. This is just to endow P with a strategy that
forces the state to approach zρmin ([0, τmax (ρmin)]) ⊂ cl

(
S +

)
, in case E manages

to keep the state in P+ \ zρmin ([0, 2π)) (recall P’s pull-back manoeuvre).
For points z ∈ P+ ∩ zρmin ([0, 2π)) = zρmin ([0, τmax (ρmin)]), the strategies ũ∗+

and σ̃∗+ are defined by extension of (5.64) and (5.65), taking care at z = b, as it was
already explained. This way, P’s counter-clockwise circulation power is extended
from S + to the curve zρmin ([0, τmax (ρmin)]) ⊂ ∂S +
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Finally, observe in (5.105) that p̃∗+ (z) is defined as p̃∗aux (z) in the limit case
Vaux (z) = 1 − ℑz (instead of being defined as −j as it done in case Vaux (z) >
1−ℑz). This implies that at every point z ∈ PC+, which verifies Vaux (z) = 1−ℑz,
P activates its counter-clockwise circulation power, even if he cannot foresee a
future oriented distance to the target set lower than the current one 1−ℑz. P loses
nothing with this unnecessary exercise, while it completes a consistent definition
of P’s counter-clockwise circulation power in whole closed set cl

(
S + \R+

)
.

The whole complex plane may be expressed as

C = S + ∪S +∁ = S + ∪I +

=
îÄ

S + \R+
ä
∪
Ä
S + ∩R+

äó
∪
îÄ

I + \R+
ä
∪
Ä
I + ∩R+

äó

=
Ä
S + \R+

ä
∪
Ä
I + \R+

ä
︸ ︷︷ ︸

P+

∪
Ä
S + ∩R+

ä
∪
Ä
I + ∩R+

ä
︸ ︷︷ ︸

(S +∪I +)∩R+=C∩R+=R+

=
Ä
S + \R+

ä
∪P+ ∪R+,

where
(
S + \R+

)∩P+ = ∅, P+∩R+ = ∅, and obviously
(
S + \R+

)∩R+ = ∅.
Hence,

{
S + \R+,P+,R+

}
is a partition of C.

5.7.8. Validation of the candidate solution

To assert that the proposal
Ä
V+

do
, ũ∗+, σ̃

∗
+

ä
constructed before actually solves

the upward game G+
dist for the case µ > 1, the following saddle inequalities should

be proved:

P̃do

f,T +

(
z, ũ∗+, σ̃

) ≤ V+
do

(z) ≤ P̃do

f,T +

(
z, ũ, σ̃∗+

) ∀z, ũ, σ̃. (5.75)

However, strictly speaking, the leftmost inequality of (5.75) is false. The prob-
lem arises because in the interior of P+ (represented by the light-shaded area
in Figures 5.14 and 5.15), the strategy ũ∗+ mandates io = 1 forcing E to choose
instantaneous centres q, for the state-guiding α-equiangular spiral, from the set
of points that belong to the segment bc. The porpouse of P behind this man-
date is to pull the state towards the line bc←→ and thereby force it to either: i)
reach the boundary ∂P+ \ cl

(
S +

) ⊂ {w : ℑw = ℑzρmin (0)}, or ii) approach
zρmin ([0, τmax (ρmin)]) = ∂P+ ∩ cl

(
S +

)
, as explained in Subsection 5.7.4 relaying

on Proposition 4.3.1. If the state reaches zρmin ([0, τmax (ρmin)]) in finite time, P
can make use of its counter-clockwise circulation power and assure for himself an
outcome which is at most do

(
zρmin (0) ,T +

)
= 1−ℑzρmin (0). This is why, V+

do
was

constructed such that it takes the constant value 1−ℑzρmin (0) in P+. Neverthe-
less, E may manage to avoid the state from reaching zρmin ([0, τmax (ρmin)]) in finite
time, for example if he is able to select instantaneous centres q ∈ bc such that the
velocity vector F (z, q) = k (z − q), based at the current state z ∈ int

(
P+

)
, points

directly to b. The resulting dynamics of the situation just described is exactly the
one analysed in Subsubsection 4.3.6.2 and depicted graphically in Figure 4.6, if
q1 is taken as b and q2 is taken as c. Recall however that, as analysed in Sub-
subsection 4.3.6.7, this defensive manoeuvre can be performed by E only at the
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cost of infinitely fast switching in case E’s control set Σ = [0, 1] is replaced by the
more realistic control set {0, 1}, making E’s control action function non-piecewise
continuous. At this point of the discussion, if we adopt P’s perspective, we cannot
disregard the possibility that E might exhibit such defensive resistance precluding
the leftmost inequality of (5.75).

For the reason just explained, sometimes it is preferable for P to resign a small
departure from the optimal value promised by V+

do
and bring the play to an end

in finite time, than continuing struggling in a never ending play. This issue calls
for a slight modification of the strategy ũ∗+, which has to be made attending the
tolerance ǫ > 0 admitted by P with respect to the aimed value 1−ℑzρmin (0).

More precisely, define an ǫ-modification of ũ∗+ : C→ U for the case µ > 1 as a
function ũ∗ǫ+ : C→ U such that

ũ∗ǫ+ (z) ,

{

i▽o + j if z ∈ Bǫ′ ,

ũ∗+ (z) otherwise,
(5.76)

where

Bǫ′ , P+∩
®
w ∈ C : Md−a

a (w) ≥
Ç
ρmin −

ǫ′

cosα

å
e−κ(α−β) ∧ Ad−aa (w) ≤ − (α− β)

´
,

(5.77)

and ǫ′ ∈ (0, ǫ) is sufficiently small to guarantee the existence of a unique transverse
intersection point in half-plane

¶
w : k ⊗ (w − a) > 0

©
between the a-centred arc

of α-equiangular spiral
®
w ∈ C : Md−a

a (w) =
Ç
ρmin −

ǫ′

cosα

å
e−κ(α−β) ∧ Ad−aa (w) ≤ 0

´
(5.78)

and the c-centred arc α-equiangular spiral b̄, bc (see Figure 5.16 where the former
arc of spiral is indicated by the dash-dot-dotted curve and the intersection point
is labelled i).

The conditions involved in the above definition are sufficient to guarantee a
geometric configuration (as the one depicted in Figure 5.16) such that Propos-
itions 4.3.1 and 4.3.2 can be applied successfully to each initial state in Bǫ′ in
order to prove that the state must cross the ray

{

a− ρ k
|k| : ρ > 0

}

in finite time
(along its way to the line da←→) at a point whose imaginary part is not less than
ℑzρmin (0)− ǫ.

Now, the following result can be stated as an approximate alternative to (5.75).

Proposition 5.7.1. In case the parameters of G+
dist are such that µ > 1, for every

ǫ > 0, there exists an ǫ-modification of ũ∗+ : C → U for the case µ > 1, denoted
ũ∗ǫ+ : C→ U , such that

P̃do

f,T +

(
z, ũ∗ǫ+ , σ̃

)− ǫ ≤ V+
do

(z) ≤ P̃do

f,T +

(
z, ũ, σ̃∗+

) ∀z, ũ, σ̃, (5.79)

where V+
do

: C → R, ũ∗+ : C → U and σ̃∗+ : C → Σ are the functions defined in
Subsection 5.7.6.
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Figure 5.16: If µ > 1, the band Bǫ′ (represented by the darkest shaded area) is defined so as
to extend P’s circulation power from A1 slightly into P+. Accordingly, in the darkest-shaded
area P’s modified strategy is defined as i▽o + j.
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Figure 5.17: Illustration of how P can achieve an outcome which is at most equal to 1 −
ℑzρmin

(0) + ǫ′ = Vdo
(z) + ǫ′ from each initial state z ∈ Bǫ′ .
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Proof. Let z ∈ C be an arbitrary initial state for P and E to play G+
dist.

The proof will be divided into two parts to be enumerated next. From the first
one, the leftmost inequality of (5.100) will be derived, while from the second one,
the rightmost.

1. P’s candidate optimal strategy
Given ǫ > 0, choose ǫ′ ∈ (0, ǫ) to use in (5.76)–(5.77) such that
®
w ∈ C : Md−a

a (w) =
Ç
ρmin −

ǫ′

cosα

å
e−κ(α−β) ∧ Ad−aa (w) ≤ 0

´
∩ b̄, bc,

is a transverse intersection with an unique member point i that lies on¶
w : k ⊗ (w − a) > 0

©
, as represented in Figure 5.16. To recognize that

such ǫ′ exists, note that i can be chosen arbitrarily close to b, by taking ǫ′

sufficiently small.

Having chosen ǫ′, assume that P sticks to the strategy ũ∗ǫ+ : C → U , con-
structed from ũ∗+ : C→ U as specified by (5.76)–(5.77).

It was already noted that
{
S + \R+,P+,R+

}
is a partition of C. In

addition, P+ may be partitioned as P+ = Bǫ′∪
(
P+ \Bǫ′

)
. Consequently,

the initial state z belongs to only one of the following four sets: either
S + \R+, Bǫ′ , P+ \Bǫ′ , or R+. Next, each case is considered separately.

a) z ∈ S +\R+ – The union set of pruned semi-permeable characteristics.
By applying ũ∗ǫ+ , which coincides with ũ∗+ in S + \ R+, P can force

the state to reach
{

a− ρ k
|k| : ρ > ρmin

}

, from the half-plane P↑, at

a point where the minimum oriented distance to T + is equal or less
than V+

do
(z) = V (z), whatever E does (recall Subsection 5.7.3). This

proves that P̃do
f,T

(
z, ũ∗ǫ+ , σ̃

) ≤ Vdo (z) for every strategy σ̃ of E. Thus,

trivially, P̃do
f,T

(
z, ũ∗ǫ+ , σ̃

) ≤ Vdo (z) + ǫ for every σ̃.

b) z ∈ Bǫ′ – P’s ǫ′-tolerance band.
While the state remains in Bǫ′ , the strategy ũ∗ǫ+ prescribes i▽o + j (as
ũ∗+ does in A1), forcing E to pick up centres q, for the state-guiding α-
equiangular spiral, in the segment da. Reasoning along the same lines
already exposed in Subsection 5.7.5, Proposition 4.3.1 can be applied
(with q1 = d, q2 = a) to acknowledge that the state is pulled towards
the line da←→, whatever E may do. Moreover, Proposition 4.3.2 states
that as long as the state remains in closed half-plane cl (Hd,a), the state
must move in Dd,a (z) along its way to da←→ (being Hd,a and Dd,a (·) as
defined in Proposition 4.3.2 with q1 = d and q2 = a). In Figure 5.17
the situation is represented graphically with the set Dd,a (·)∩ cl (Hd,a)
represented by the curved shaded area with a vertex at z. While the
state moves in Dd,a ∩ P↑ it may enter S + \R+, but it cannot cross
®
w ∈ C : Md−a

a (w) =
Ç
ρmin −

ǫ′

cosα

å
e−κ(α−β) ∧ Ad−aa (w) ≤ 0

´
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because that would mean that it escapes from Dd,a. Consequently, the

state must reach the ray
{

a− ρ k
|k| : ρ ≥ ρmin − ǫ′

cosα

}

from half-plane

P↑ in finite time, at a point whose oriented distance to T + is at most

equal to 1−ℑzρmin (0)+ǫ′, i.e., P̃do
f,T

(
z, ũ∗ǫ+ , σ̃

) ≤ Vdo (z)+ǫ′ regardless

of E’s strategy σ̃. Consequently, P̃do
f,T

(
z, ũ∗ǫ+ , σ̃

) ≤ Vdo (z) + ǫ for every
σ̃, because ǫ′ < ǫ.

c) z ∈P+ \Bǫ′ – The set where P pulls the state towards the line bc←→.

While the state remains in P+ \ Bǫ′ , the strategy ũ∗ǫ+ (which coin-
cides with ũ∗+ in P+ \Bǫ′) dictates 1 + j, forcing E to pick up centres
q, for the state-guiding α-equiangular spiral, in the segment bc. Pro-
position 4.3.1, with q1 = b, q2 = c, assures that the state must come
arbitrarily close to the line bc←→ in finite time (see Figure 5.16). There-
fore, the state must either enter: i) the union set of pruned semi-
permeable characteristics S + \ R+, or ii) P’s ǫ′-tolerance band Bǫ′ ,
or iii) the ramp R+. For cases i) and ii), P can guarantee for himself
a final outcome such that P̃do

f,T

(
z, ũ∗ǫ+ , σ̃

) ≤ Vdo (z) + ǫ for every σ̃, as
it was already explained in Items 1a and 1b, respectively. In fact, for
case i), P̃do

f,T

(
z, ũ∗ǫ+ , σ̃

)
< Vdo (z) = 1 − ℑzρmin (0), because the state

enters the semi-permeable domain. For case iii), since the state enters
R+, it reaches a set where the oriented distance to T + is lower than
Vdo (z) = 1 − ℑzρmin (0). Thus, necessarily P̃do

f,T

(
z, ũ∗ǫ+ , σ̃

)
< Vdo (z).

Trivially, P̃do
f,T

(
z, ũ∗ǫ+ , σ̃

) ≤ Vdo (z) + ǫ for every σ̃.

d) z ∈ R+ – The set of indifference for P.
While the state is in R+, P has no way of guaranteeing himself a future
oriented distance to T + lower than the current one. Consequently, any
control action is valid for him in this set. The selected one by ũ∗ǫ+ , which
coincides with the one given by ũ∗+ in R+, is the one that results from
solving inf-sup problem infu∈U supσ∈Σ {−j⊙ f (w, u, σ)}, in order to
slow down, as much as possible, the current rate of increase of the
oriented distance to T + (a rate of increase that can be imposed to be
positive by E because R+ ⊂ E↓). Whatever happens in the future, it
will be true that P̃do

f,T +

(
z, ũ∗ǫ+ , σ̃

) ≤ 1−ℑz = V+
do

(z), regardless of E’s

strategy σ̃. Hence, P̃do

f,T +

(
z, ũ∗ǫ+ , σ̃

) ≤ V+
do

(z) + ǫ for each σ̃.

2. E’s candidate optimal strategy
Assume that E sticks to the strategy σ∗+. Recall that z is a generic but
already fixed initial state.

Consider the sup-level set

N (z) , LV+
do

Ä
V+

do
(z)
ä

=
¶
w ∈ C : V+

do
(w) ≥ V+

do
(z)
©
.

Its boundary ∂N (z) =
¶
w ∈ C : V+

do
(w) = V+

do
(z)
©

, which is a level curve
of V+

do
, is a closed curve in the complex plane, comprised by the disjoint
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union of an open curve Ccurve (ρ) and a straight line segment Cstraight (ρ)
that joins its endpoints:

∂N (z) = zρ ([0, τmax (ρ)])
︸ ︷︷ ︸

Ccurve(ρ)

∪
®
w ∈ C :

w − zρ (0)
zρ (τmax (ρ))− zρ (0)

∈ (0, 1)
´

︸ ︷︷ ︸

Cstraight

,

for some ρ ≥ ρmin which depends on z. If V+
do

(z) < 1−ℑzρmin (0), the curve
∂N (z) encloses P+ and ρ > ρmin, while if V+

do
(z) = 1−ℑzρmin (0) the curve

∂N (z) coincides with ∂P+ and ρ = ρmin. In Figure 5.13, the dot-dashed
segment with endpoints at zρ (τmax (ρ)) and zρ (0) represents Cstraight (ρ),
and the solid curve that joins the same two endpoints represents Ccurve (ρ).

Every point in N (z) has an oriented distance to T + equal or greater than
V+

do
(z) (see Figure 5.13). So, to prove that V+

do
(z) ≤ P̃do

f,T +

(
z, ũ, σ̃∗+

)
for

every strategy ũ eligible by P, it is enough to prove that the state remains
in the sup-level set N (z).

For each state w ∈ Ccurve (ρ), E applies a control action σ∗+ (w), derived
from the semi-permeability of Ccurve (ρ) ⊂ cl

(
S +

)
, which prevents the state

velocity vector, based at w, from pointing into
⋃

λ>ρ zλ [0, 2π) ⊂ C \N (z).

For each point w ∈ Cstraight (ρ) ⊂ E↓, E applies a control action σ∗+ (w) = 0,
which prevents the imaginary part of the state from increasing.

A hasty conclusion of the previous two paragraphs may be the following:
at every point w ∈ ∂N (z), the state velocity vector, based at w, does not
point into C \N (z), whatever P does. Thus,

V+
do

(z) ≤ P̃do

f,T +

(
z, ũ, σ̃∗+

) ∀ũ (5.80)

as required to prove the rightmost inequality of (5.100). However, to defin-
itely prove this claim, the corner points of ∂N (z) must be examined closer.

If V+
do

(z) ≥ 1−ℑzρmin (0) the level curve ∂N (z) coincides with ∂P+ which
has two corner points: b and zρ (τmax (ρ)) where ρ = ρmin. If V+

do
(z) <

1−ℑzρmin (0), the level curve ∂N (z) has a single corner point: zρ (τmax (ρ))
where ρ > ρmin. It can be easily checked that the strategy σ̃∗+ (which was
carefully defined to take the value 0 at the point b) prevents the velocity
vector f

(
b, u, σ̃∗+ (b)

)
, based at b, from pointing into C \ N (z) for every

u ∈ U ; so let the focus be on the corner point zρ (τmax (ρ)) where ρ may be
greater than or equal to ρmin (see Figure 5.13).

At zρ (τmax (ρ)), E applies a control action σ̃∗+ (zρ (τmax (ρ))) that guarantees
him that the state does not cross ∂N (z) into

⋃

λ>ρ zλ [0, 2π). But, can E be
sure that the same control action prevents the state from crossing ∂N (z)
into the set {w : ℑw > ℑzρ (0)}? This could only happen if the imaginary
part of the velocity vector f

(
zρ (τmax (ρ)) , u, σ̃∗+ (zρ (τmax (ρ)))

)
results to be

positive for some control action u ∈ U eligible by P. However, making use of
the results of Subsection 4.3.5, it will be argued next that this hypothetical
possibility can be ruled out.
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As it was shown in Subsubsection 5.7.6.1, zρ (τmax (ρ)) ∈ PC+ must belong
to

(A5 ∪ zρmin ((τ4, 2π))) ∪
(A4 ∪ zρmin ((τ3, τ4])) ∪
((A3 ∪ zρmin ((τ2, τ3])) ∩ {w ∈ C : (w − d)⊗ (d∗ − d) > 0}) .

Firstly, if zρ (τmax (ρ)) ∈ (A5 ∪ zρmin ((τ4, 2π))), the control action prescribed
to E is σ̃∗+ (zρ (τmax (ρ))) = 0. Therefore, the state velocity vector, based at
zρ (τmax (ρ)), is

f
(
zρ (τmax (ρ)) , u, σ̃∗+ (zρ (τmax (ρ)))

)
= F (zρ (τmax (ρ)) , q)

with q ∈ ab =
¶
w ∈ C : w−a

b−a ∈ [0, 1]
©

. Assimilate, ab as the set Q of Sub-

section 4.3.5; the corresponding set I− , {w ∈ C : ℑF (w, q) < 0 ∀q ∈ Q}
was proved to coincide with

¶
w ∈ C : k ⊗ (w − q) < 0 ∀q ∈ Q

©
in Subsec-

tion 4.3.5, i.e., I− is the following supporting half-plane of the set Q:

I− =
¶
w ∈ C : k ⊗ (w − q) < 0 ∀q ∈ Q

©
. (5.81)

In the current context, this supporting half-plane takes the form of

{w ∈ C : (w − b∗a)⊗ (a− b∗a) > 0}

which includes the set (A5 ∪ zρmin ((τ4, 2π))) where the point zρ (τmax (ρ))
lies. Consequently, ℑf (zρ (τmax (ρ)) , u, σ̃∗+ (zρ (τmax (ρ)))

)
< 0 for every u ∈

U .

Secondly, if zρ (τmax (ρ)) belongs to

(A4 ∪ zρmin ((τ3, τ4])) ∪
((A3 ∪ zρmin ((τ2, τ3])) ∩ {w ∈ C : (w − d)⊗ (d∗ − d) > 0}) , (5.82)

an analogous argument based on the assimilation of the segment dc =¶
w ∈ C : w−d

c−d ∈ [0, 1]
©

as the set Q of Subsection 4.3.5, allows to conclude
that ℑf (zρ (τmax (ρ)) , u, σ̃∗+ (zρ (τmax (ρ)))

)
< 0 for every u ∈ U . In this

case, the supporting half-plane (5.81) of Q = dc takes the form of

{w ∈ C : (w − d)⊗ (d∗ − d) > 0}

which includes the set (5.82) where zρ (τmax (ρ)) lies.

Therefore, at every point (corner or not) of ∂N (z), the strategy σ̃∗+ adop-
ted by E prevents the state velocity vector, based at the same point, from
pointing into C \N (z). In conclusion, (5.80) holds.

The previous proposition paves the way for the two following important results.
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Corollary 5.7.1. In case the parameters of G+
dist are such that µ > 1, for every ǫ >

0, there exists an ǫ
2 -modification of ũ∗+, denoted ũ

∗ ǫ
2

+ , such that the pair
(

ũ
∗ ǫ

2
+ , σ̃∗+

)

is an ǫ-saddle point for G+
dist.

Proof. The following proof follows very closely the proof of the sufficiency part of
Theorem 4.1 found in [59, Ch. 4], whose statement was transcribed literally as the
statement of Theorem 2.2.1 in Subsection 2.2.6.

Given an ǫ > 0, use ǫ
2 to invoke Proposition 5.7.1 which asserts that there

exists ũ
∗ ǫ

2
+ such that

P̃do

f,T +

(

z, ũ
∗ ǫ

2
+ , σ̃

)

− ǫ

2
≤ V+

do
(z) ≤ P̃do

f,T +

(
z, ũ, σ̃∗+

) ∀z, ũ, σ̃. (5.83)

Rewrite (5.83) as

P̃do

f,T +

(

z, ũ
∗ ǫ

2
+ , σ̃

)

≤ V+
do

(z) +
ǫ

2
∀z, σ̃, (5.84)

P̃do

f,T +

(
z, ũ, σ̃∗+

) ≥ V+
do

(z) ∀z, ũ. (5.85)

Since ǫ > 0, from (5.85) trivially follows that

P̃do

f,T +

(
z, ũ, σ̃∗+

) ≥ V+
do

(z)− ǫ

2
∀z, ũ. (5.86)

Adding ǫ to both sides of (5.86) yields

P̃do

f,T +

(
z, ũ, σ̃∗+

)
+ ǫ ≥ V+

do
(z) +

ǫ

2
≥ P̃do

f,T +

(

z, ũ
∗ ǫ

2
+ , σ̃∗+

)

∀z, ũ, (5.87)

where the rightmost inequality follows from (5.84) by letting σ̃ = σ̃∗+. Analogously,
adding −ǫ to (5.84)

P̃do

f,T +

(

z, ũ
∗ ǫ

2
+ , σ̃

)

− ǫ ≤ V+
do

(z)− ǫ

2
≤ P̃do

f,T +

(

z, ũ
∗ ǫ

2
+ , σ̃∗+

)

∀z, σ̃, (5.88)

where the rightmost inequality follows from (5.86) by letting ũ = ũ
∗ ǫ

2
+ .

From (5.87) and (5.88):

P̃do

f,T +

(

z, ũ
∗ ǫ

2
+ , σ̃

)

− ǫ ≤ P̃do

f,T +

(

z, ũ
∗ ǫ

2
+ , σ̃∗+

)

≤ P̃do

f,T +

(
z, ũ, σ̃∗+

)
+ ǫ ∀z, ũ, σ̃.

Consequently, the pair
(

ũ
∗ ǫ

2
+ , σ̃∗+

)

is an ǫ-saddle point for G+
dist.

By means of Theorem 2.2.1, the previous corollary implies that G+
dist has a

value function. Its explicit form is given by the next corollary.

Corollary 5.7.2. In case the parameters of G+
dist are such that µ > 1, the function

V+
do

: C→ R, as defined in Subsection 5.7.6, is the value function of G+
dist.
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Proof. From Proposition 5.7.1 we have that for every ǫ > 0, there exists ũ∗ǫ+ such
that

P̃do

f,T +

(
z, ũ∗ǫ+ , σ̃

)− ǫ ≤ V+
do

(z) ≤ P̃do

f,T +

(
z, ũ, σ̃∗+

) ∀z, ũ, σ̃. (5.89)

Firstly, supremizing the leftmost expression in (5.89) we obtain

sup
σ̃
P̃do

f,T +

(
z, ũ∗ǫ+ , σ̃

)− ǫ ≤ V+
do

(z) ≤ P̃do

f,T +

(
z, ũ, σ̃∗+

) ≤ sup
σ̃
P̃do

f,T + (z, ũ, σ̃) ∀z, ũ,

where the introduced right inequality is trivial. Now, infimizing the rightmost
expression we obtain

inf
ũ

sup
σ̃
P̃do

f,T + (z, ũ, σ̃)− ǫ ≤ sup
σ̃
P̃do

f,T +

(
z, ũ∗ǫ+ , σ̃

)− ǫ ≤ V+
do

(z) ≤ inf
ũ

sup
σ̃
P̃do

f,T + (z, ũ, σ̃)

for every z ∈ C, where the introduced leftmost inequality is trivial. By definition
of upper value function, V+

do
(z) = inf ũ supσ̃ P̃do

f,T + (z, ũ, σ̃). Hence, for every ǫ > 0,

V+
do

(z)− ǫ ≤ V+
do

(z) ≤ V+
do

(z) ∀z ∈ C.

Consequently, V+
do
≡ V+

do
.

Secondly, infimizing the rightmost expression in (5.89), we obtain

inf
ũ
P̃do

f,T + (z, ũ, σ̃)− ǫ ≤ P̃do

f,T +

(
z, ũ∗ǫ+ , σ̃

)− ǫ ≤ V+
do

(z) ≤ inf
ũ
P̃do

f,T +

(
z, ũ, σ̃∗+

) ∀z, σ̃,

where the introduced leftmost inequality is trivial. Now, supremizing the leftmost
expression we obtain

sup
σ̃

inf
ũ
P̃do

f,T + (z, ũ, σ̃)− ǫ ≤ V+
do

(z) ≤ inf
ũ
P̃do

f,T +

(
z, ũ, σ̃∗+

) ≤ sup
σ̃

inf
ũ
P̃do

f,T +

(
z, ũ, σ̃∗+

)

for every z ∈ C, where the introduced rightmost inequality is trivial. By definition
of lower value function, V+

do
(z) = supσ̃ inf ũ P̃do

f,T + (z, ũ, σ̃). Hence, for every ǫ > 0,

V+
do

(z)− ǫ ≤ V+
do

(z) ≤ V+
do

(z) ∀z ∈ C.

Consequently, V+
do
≡ V+

do
.

Since, V+
do
≡ V+

do
≡ V+

do
, the function V+

do
is the VF of G+

dist.

5.8. Solution of the upward game for the case µ < 1

In this section, the solution of G+
dist is worked out for the case µ < 1, relaying

on similar methods and arguments as the ones already used for the case µ > 1.
Interestingly, the solution for the case µ < 1 differs qualitatively from the

solution obtained for the case µ > 1. Therefore, the focus of this section is on
emphasizing the differences, not only between the solutions themselves, but also
between the argumentations that validate them.
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5.8.0.1. The semi-permeable domain

As in the previous section, reconsider the family (5.31) of characteristic state-
space trajectories, parametrized by ρ > 0 as formulated by the initial condition
(5.26) derived from the ansatz proposed in Section 5.5. In Figure 5.18, nine charac-
teristic trajectories of the sub-family {[0, 2π) ∋ τ 7→ zρ (τ) : ρ > ρmin} are depic-
ted for a case in which µ < 1, being ρmin the µ-dependent positive real defined by
(5.50). They emanate retrogressively in time from the ray

{

a− ρ k
|k| : ρ > ρmin

}

.
The arrows indicate the direction of motion in which retrogressive time τ decreases,
i.e., progressive time t increases.

For each ρ > ρmin, the curve {zρ (τ) : τ ∈ (0, 2π)} can be checked to be free
of corners and semi-permeable at each of its points. In fact, each of these curves
consists of concatenations among members of the negatively oriented families: F−a ,
F−b , F−c , and F−d (see Figure 4.16). In accordance with the nomenclature of the
previous section, the set

S + ,
⋃

ρ>ρmin

zρ ([0, 2π)) , (5.90)

covered by such curves, will be referred to as the semi-permeable domain of G+
dist.

Note that the definition (5.90) adapts to each case automatically, because ρmin

depends on µ.
This definition does not include the special curve {zρmin (τ) : τ ∈ [0, 2π)} ⊂

∂S +, which passes through zρmin (0), d, and tends to d∗a = a−P−1 (ρmin) k
|k| as τ →

(2π)−, because even though zρmin ((0, 2π)) can be checked to be semi-permeable at
each of its points, it is not free of corners: at d it has no definite tangent direction
(see Figure 5.18). The special characteristic trajectory {zρmin (τ) : τ ∈ [0, 2π)} is

included in the closed curve
#

d = d̄, dc∪{d}∪ d̆, da∪{da}∪ d̆a, dc∪{dc}, introduced
in Subsubsection 5.6.5.5 and represented by the dot-dashed line in Figure 5.18.
Notice the difference with respect to the case µ > 1 in which zρmin ([0, 2π)) is

included in the characteristic closed curve
#

b (compare Figures 5.10 and 5.18 and
recall the geometric characterization exhibited in Figure 5.8).

The curves of the collection {zρ ((0, 2π)) : ρ < ρmin} are also left out the defin-
ition of S +, because they fail to be semi-permeable. For example, in Figure 5.19
seven of such curves are indicated by the dashed curves that lie in the shaded areas.
They all require of the concatenation of a member of F−c with a member of F +

d

(recall Figure 4.16). As every concatenation between members of opposite oriented
families, such concatenations fail to be semi-permeable at the concatenation point.

Recall the properties of the function P consolidated into Figure 5.7 and (5.46)–
(5.47)–(5.48) rewritten here for ease of use:

lim
τ→(2π)−

zρlim
(τ) = zρlim

(0) , (5.91)

lim
τ→(2π)−

zρ (τ) > zρ (0) if ρ > ρlim, (5.92)

lim
τ→(2π)−

zρ (τ) < zρ (0) if ρ < ρlim. (5.93)
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b

a

d

c

d∗a
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ρ
k |k
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:
ρ
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}
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k
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Figure 5.18: Nine representative semi-permeable corner-free characteristic curves of G+
dist that

belong to the collection {zρ ([0, 2π)) : ρ > ρmin}, for the case µ2

µ1
eκ( π

2
+β) < 1. The shape

of the closed curve indicated by the dot-dashed line characterizes this case. The dashed rays
are switching curves.
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Figure 5.19: The integral curves (0, 2π) ∋ τ 7→ zρ (τ) such that ρ < ρmin, fail to be semi-
permeable over the whole integration interval (0, 2π) selected for integration of the RPE. The
seven dashed curves are examples of such curves. The four dashed rays are switching curves.
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Since µ < 1, from (5.52), ρmin < ρlim. Hence, zρlim
([0, 2π)) ⊂ S + as opposed to

the case µ > 1 in which zρlim
([0, 2π)) ⊂ C \S + because ρlim < ρmin. To clearly

differentiate among the behaviours (5.91)–(5.92)–(5.93) of the trajectories included
in S +, it is convenient to introduce the following partition of S +:

S + = S +
E ∪ zρlim

([0, 2π)) ∪S +
C ,

where

S +
E ,

⋃

ρmin<ρ<ρlim

zρ ([0, 2π)) and S +
C ,

⋃

ρlim<ρ

zρ ([0, 2π)) .

Interpreting (5.91)–(5.92)–(5.93) as progressive time t increases (i.e., as retrogress-
ive time τ decreases), the set S +

C may be associated with a contractive behaviour
in the sense of (5.92), while the set S +

E may be associated with an expansive
behaviour in the sense of (5.93). The set zρlim

([0, 2π)) lies at the common bound-
ary between S +

C and S +
E . In Figures 5.18 and 5.19, S +

E is indicated by the
light-shaded area, while the (non-bounded) non-shaded area corresponds to S +

C .
Note that for ρ ≥ ρlim the length 2π selected for the integration interval of the

RPE, was correct. If it had been selected as [0, τmax] with τmax ≥ 2π, each member
of the collection {zρ ([0, τmax]) : ρ > ρlim} would have intersected another member
of the same collection after a full rotation around the origin of its corresponding
co-state. But for ρ < ρlim, the integration of the RPE could have been carried out
over a retro-time interval of length larger than 2π. Since all that matters about the
co-state (for the integration of the state retrograde path equation) is its direction,
but not its magnitude, the integration could have been continued seamlessly con-
catenating (backwards in time): zρ ([0, 2π)), zP−1(ρ) ([0, 2π)), . . . , zP−n(ρ) ([0, 2π))
into a single trajectory for every n ∈ N. However, since limn→∞ P−n (ρ) = −∞ for
ρ < ρlim, there exists a N = N (ρ) ∈ N such that P−N (ρ) < ρmin. Consequently,
the concatenated trajectory

⋃N
n=0 zP−n(ρ) ([0, 2π)) fails to be semi-permeable at

some point of zP−N (ρ) ([0, 2π)). However, for ρ > P−1 (ρmin), the concatena-
tion (now, forward in time) of the trajectories zρ ([0, 2π)), zP (ρ) ([0, 2π)), . . . ,
zPn(ρ) ([0, 2π)), . . . , is not limited by loss of semi-permeability. The resulting
concatenated trajectory

⋃∞
n=0 zPn(ρ) ([0, 2π)) has zρlim

([0, 2π)) as its limit cycle,
represented by the thick curve labelled LC in Figures 5.18 and 5.19.

The existence of this one-sided limit cycle (from the inside) in the semi-
permeable domain S + is the most salient difference of the case µ > 1 with respect
to the case µ < 1.

5.8.1. The solution of the Isaacs’ equation in the semi-permeable

domain

From the collection {zρ ([0, 2π)) : ρ > ρmin} a solution V of (5.17)–(5.18),
defined on S +, can be constructed for the case µ < 1 analogously to case µ > 1
redefining, however, the sets A1, . . . ,A5 introduced in Subsection 5.7.2 as follows:
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A1 ,
{

w ∈ C : Mb−a
a (w) >

(

µ1e−κ(
π
2

+β) − µ2

)

e−κ(
π
2
−β) + µ1 ∧ Ab−aa (w) ∈ [0, γ1]

}

,

A2 ,
{

w ∈ C : Mb−c
b (w) > µ1e−κ(

π
2

+β) − µ2 ∧ Ab−cb (w) ∈ [0, γ2)
}

,

A3 ,
¶
w ∈ C : Md−c

c (w) > µ1 ∧ Ad−cc (w) ∈ [0, γ3)
©
,

A4 ,
¶
w ∈ C : Md−a

d (w) > 0 ∧ Ad−ad (w) ∈ [0, γ4)
©
,

A5 ,
¶
w ∈ C : Mb−a

a (w) > µ2eκγ3 ∧ Ab−aa (w) ∈ (γ1, γ3)
©

;

where the angles γ1, . . . , γ4 are defined, in terms of α and β, as indicated in Fig-
ure 5.5, and the functions Avo : C\{o} → (−π, π] andMv

o : C→ [0,∞), parametric
on o, v ∈ C such that v 6= 0, are the ones introduced in Subsubsections 4.2.2.2
and 4.2.2.3. The collection {A1, . . . ,A5}, as just specified, is a partition of S +

for the case µ < 1.
Having redefined, for µ < 1, the sets A1, . . . ,A5, the construction of the func-

tions V : S + → R, ũ∗V : S + → U , and σ̃∗V : S + → Σ follows the same formulation
detailed in Subsection 5.7.2.

Observe in Figure 5.18 the switching rays that result from the recommended
strategies ũ∗V and σ̃∗V derived from V. Each of these switching rays lies in one of the
following common boundaries: either (∂A1)∩(∂A2), (∂A2)∩(∂A3), (∂A3)∩(∂A4),
or (∂A4) ∩ (∂A5).

5.8.2. A candidate solution

In accordance with the nomenclature of the previous section, the island

I + , C \S +

(represented in Figure 5.18 by the dark-shaded area) seems, a priori, somehow
mysterious. However, considering analogous arguments to the ones used in Sub-
sections 5.7.3 and 5.7.4, its nature is readily revealed also for the case µ < 1.

Recall P’s counter-clockwise circulation power in the semi-permeable domain
discussed in Subsection 5.7.3. This power can be checked to be at P’s disposal for
every state in S + = S +

E ∪ zρlim
([0, 2π)) ∪S +

C . In addition, it can be extended
naturally form S + to zρmin ([0, 2π)) ⊂ cl

(
S +

)
, taking care to extend P’s strategy

at the corner point d ∈ zρmin ([0, 2π)) from A3 (not from A4 or A5). Note that for
the case µ < 1, the point d /∈ S + plays the roll point b plays for the case µ > 1,
i.e., d is the unique corner of {zρmin (τ) : τ ∈ (0, 2π)}.

Consider a play that starts at a point z ∈ int
(
I +

)
. The following are obser-

vations in connection with the possible progressive time evolutions of the play.
First, if E manages to prevent the state from entering into cl

(
S +

)
, P can pull

the state to come arbitrarily close to d in finite time by applying the constant
control action i▽o + j. Proposition 4.3.1 provides the logical support for this claim
(if it is invoked taking q1 = d, q2 = a, and z0 = z).1 This manoeuvre will be

1If E happens to be limited by a discrete control set of the form {0, 1} and a positive
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Figure 5.20: Illustration of how P’s counter-clockwise circulation power can be extended from
A3 slightly into I +.
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referred as P’s pull-back manoeuvre as in Subsection 5.7.5, although now, for the
case µ < 1, P pulls the state towards the line da←→ (instead of the line bc←→). Assume
that E effectively manages to prevent the state from entering cl

(
S +

)
.

Second, once the state is sufficiently close to d, such that P’s circulation power
can be extended, from A3, A2, and A1, slightly into I + (loosely speaking for
example when the state is at the point z0 in Figure 5.20); P can force the state
to circulate counter-clock-wisely (as it would do in S +). In Figure 5.20, the first
of the three stages of the aforementioned state circulation takes place in the set
K 0
b,d (z0) (as defined in Corollary 4.3.1) represented by the curved shaded area with

a vertex at z0 which does not fit entirely into the figure. After the state circulates
close to A3, A2, and A1 (perhaps entering one of these sets if E plays unwisely), P
achieves an oriented distance to T + which is at most an approximation from above
of do

(
zρmin (0) ,T +

)
= 1 − ℑzρmin (0). If E prevents the state from entering S +,

P can still obtain arbitrarily good approximations (from above) of 1 − ℑzρmin (0)
by first letting the state approach the point d sufficiently. If this is the case, by
contrast with the case µ > 1, when P attains such approximation he does not
content himself. Instead, he continues the play forcing the state into S +

E (the
light-shaded area in Figure 5.18).

Third, once the state is in S +
E , by unlimited use of its circulation power over

an infinite time horizon, P can guarantee for himself an outcome which is at most
do
(
zρlim

(0) ,T +
)

= 1− ℑzρlim
(0). If E continues playing optimally this outcome

is only approximated (not attained) as t → ∞, because the state follows and
expanding trajectory in S +

E towards the limit cycle zρlim
([0, 2π)).

Summing up, for each initial state in I +, P can take the state into S +
E in finite

time and from there guarantee for himself an outcome which is at most 1−ℑzρlim
(0)

by unlimited use of its counter-clockwise circulation power. This asks for defining
1−ℑzρlim

(0) as the value of the game in the set C\S +
C = I +∪S +

E ∪zρlim
([0, 2π))

which has the limit cycle zρlim
([0, 2π)) as its boundary.

For an initial state z ∈ S +
C , the value V (z) promised by V to P, provided he

makes use of its circulation power, looks reasonable if V (z) ≤ 1−ℑz. However, if
1 − ℑz < V (z) the value V (z) is misleading because the state is “already” at an
oriented distance to T + which is less than the value promised by V. This asks for
the pruning of the semi-permeable characteristic trajectories of S +

C , in analogous
manner as the trajectories of (the whole of) S + must be pruned for the case µ > 1,
as explained in Subsubsection 5.7.6.1.

Taking into account the above considerations, next the formulation of the a
candidate solution for the case µ < 1 is provided. As for the case µ > 1, the
construction involves the two steps: extension and comparison.

1. Extension – Define Vaux : C → R and p̃∗aux : C → C as the following

dwell time between consecutive switchings, he cannot prevent the state from reaching the
line ad←→ in finite time (as granted by Proposition 4.3.4, taking q1 = d, q2 = a, and z0 = z)
and therefore reaching cl (S +).
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5.8. Solution of the upward game for the case µ < 1

extensions of V and ∇V, respectively, to the whole complex plane:

Vaux (z) ,

{

V (z) if z ∈ S +
C ,

1−ℑ (zρlim
(0)) otherwise, i.e., z ∈ I + ∪S +

E ∪ zρlim
([0, 2π)) ;

p̃∗aux (z) ,







∇V (z) if z ∈ S +,

−j if z = zρmin (0) ,

lim
S +∋w→z

∇V (w) if z ∈ zρmin ((0, 2π)) \ {d} ,
lim

A3∋w→d
∇V (w) if z = d,

e
1
2 ( π

2
−β)k lim

A3∋w→d
∇V (w) otherwise, i.e.,z ∈ cl

(
I +

) \ zρmin ([0, 2π)) .

2. Comparison – Use Vaux and p̃∗aux as defined above, to define V+
do

: C → R

and p̃∗+ : C→ C as follows:

V+
do

(z) , min {Vaux (z) , 1−ℑz} ; (5.94)

p̃∗+ (z) ,

{

p̃∗aux (z) if Vaux (z) ≤ 1−ℑz,
−j otherwise.

(5.95)

Finally, use p̃∗+ to define ũ∗+ : C→ U and σ̃∗+ : C→ Σ as follows:

ũ∗+ (z) , u∗
(
p̃∗+ (z)

)
, (5.96)

σ̃∗+ (z) , σ∗
(
p̃∗+ (z)

)
; (5.97)

where u∗ : C→ U and σ∗ : C→ Σ are the functions defined in statement 2
of Proposition 4.4.1.

From the comparison step the set

R+ , {z ∈ C : 1−ℑz < Vaux (z)} ,

called the ramp arises, in accordance with the nomenclature of the previous section.
In Figure 5.21 part of the set R+ is represented by the area filled by the dot-dashed
segments that equalize the imaginary part of the endpoints of each depicted pruned
semi-permeable characteristic trajectory.

As explained in Subsection 5.7.7, when the state is in R+, the focus of both
players turns to the current rate of change of the oriented distance to T +, rather
than the minimum oriented distance to the T + on an infinite time horizon. For
this reason, ũ∗+ (z) and σ̃∗+ (z) are defined (also for the case µ < 1) as u∗ (−j) and
σ∗ (−j), respectively.

In accordance with the nomenclature of the previous section, the set

P+ , arg max
w∈C

V+
do

(w)

will be referred to as the plateau of G+
dist because the function V+

do
(as defined

in above) takes the constant value maxz∈C V+
do

(z) = 1 − ℑzρlim
(0) in this closed
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Figure 5.21: The pruning curve (PC+) arises by comparison of the current oriented distance
to the target set and P’s potentially attainable oriented distance to the target set against
optimal opposition from E, regardless of the sign of µ− 1. However, if µ < 1, as for the case
illustrated, it has an endpoint at the point zρlim

(0) which belongs to the limit cycle (LC).
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subset of C. For the case µ > 1 it was mentioned that P+ = I + \ R+. By
contrast for the case µ < 1 it can be verified that

P+ = C \S +
C = I + ∪ zρmin ([0, 2π)) ∪S +

E . (5.98)

Observe that the topography of V+
do

for the case µ > 1 is clearly differentiable
from the case µ < 1 by the shape of P+ (compare Figures 5.14 and 5.21). For
the former case, ∂P+ is a curve with two corner points, while for the later is
corner-free curve (in fact it is the curve zρlim

([0, 2π))). In both cases, V+
do

results
to be a quasi-concave function, since all its sup-level sets are convex.

5.8.3. Validation of the candidate solution

The candidate solution proposed in Subsection 5.8.2 for the case µ < 1 can be
validated following an analogous approach to the one described in Subsection 5.7.8
for the case µ > 1.

The first step of such approach is to define a slight modification of P’s strategy
in order to endow P with a way of forcing the state into S +

E from initial states in
I +. More precisely, define an ǫ-modification of ũ∗+ : C→ U for the case µ < 1 as
a function ũ∗ǫ+ : C→ U such that

ũ∗ǫ+ (z) ,

{

i▽o + j if z ∈ Bǫ′ ,

ũ∗+ (z) otherwise,
(5.99)

where

Bǫ′ , I + ∩
(®

w ∈ C : Mb−a
a (w) ≥

Ç
ρmin −

ǫ′

cosα

å
eκγ1 ∧ Ab−aa (w) ∈ [0, γ1]

´

∪
®
w ∈ C : Mb−c

b (w) ≥
ÇÇ

ρmin −
ǫ′

cosα

å
eκγ1 − µ1

å
eκγ2 ∧ Ab−cb (w) ∈ [0, γ2)

´

∪
®
w ∈ C : Mb−c

c (w) ≥
ÇÇ

ρmin −
ǫ′

cosα

å
eκγ1 − µ1

å
eκγ2 + µ2 ∧ Ab−cc < 0

´)

and ǫ′ ∈ (0, ǫ) is such that:
Ä
ρmin − ǫ′

cosα

ä
eκγ1 > µ1, i.e., such that the auxiliary point

e , b+ e−kγ2

Ç
a+ e−kγ1

Ç
zρmin (0) +

ǫ′

cosα
k

|k| − a
å
− b
å

lies between b and dc in segment bdc (see Figure 5.16);

there exists an unique transverse intersection point between the c-centred
arc of α-equiangular spiral
®
w ∈ C : Mb−c

c (w) =
ÇÇ

ρmin −
ǫ′

cosα

å
eκγ1 − µ1

å
eκγ2 + µ2 ∧ Ab−cc (w) < 0

´
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Figure 5.22: If µ < 1, the band Bǫ′ (represented by the union of the two shaded areas)
is defined so as to extend P’s circulation power from A1, A2, and A3, slightly into I +.
Accordingly, in the light-shaded area P’s modified strategy is defined as i▽o + j, while in the
dark-shaded area it is defined as 1 + j.
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and the a-centred arc α-equiangular spiral d̆, d∗a (see Figure 5.16 where the
former arc of spiral is indicated by the dash-dot-dotted curve and the inter-
section point is labelled i).

The conditions involved in the above definition of ũ∗ǫ+ are sufficient to guarantee
a geometric configuration (as the one depicted in Figure 5.22) such that P can
exploit his circulation power in Bǫ′ in order to force the state to cross the ray
{

a− ρ k
|k| : ρ > 0

}

(from P↑ to E↓) in finite time (along its way to the line da←→)
at a point whose imaginary part is not less than ℑzρmin (0) − ǫ′. Corollary 4.3.1
and Propositions 4.3.1 and 4.3.2 used analogously as in Subsection 5.7.3 justify this
loose statement more rigorously. Hereby, P can force the state out of Bǫ′ into S +

E ,
from where he can obtain an outcome which is at most equal to do

(
zρlim

(0) ,T +
)

=
1− zρlim

(0), by unlimited use of its circulation power.
If the state is originally in I +, P can force it into either into Bǫ′ or S +

E in
finite time just by applying u = i▽o + j while the state remains in I + \Bǫ′ , as
prescribed by ũ∗+.

Now, the following proposition can be stated to validate the proposed candidate
solution.

Proposition 5.8.1. In case the parameters of G+
dist are such that µ < 1, there

exists an ǫ-modification of ũ∗+ : C → U for the case µ < 1, denoted ũ∗ǫ+ : C → U ,
such that

P̃do

f,T +

(
z, ũ∗ǫ+ , σ̃

) ≤ V+
do

(z) ≤ P̃do

f,T +

(
z, ũ, σ̃∗+

) ∀z, ũ, σ̃, (5.100)

where V+
do

: C → R, ũ∗+ : C → U and σ̃∗+ : C → Σ are the functions defined in
Subsection 5.8.2 .

Proof. The proof goes along the same line of the proof of Proposition 5.7.1. How-
ever, certain particularities should be mentioned.

First, the construction of an ǫ-modification of ũ∗+ : C → U for the case µ < 1
(clearly defined differently from the case µ > 1) is needed to guarantee that P
can take the state away from I + into S +

E . For such construction any ǫ > 0 is
useful, because the relevant existence conditions are imposed on ǫ′ ∈ (0, ǫ) within
the definition of ũ∗ǫ+ . However, once the state is in S +

E , P can force the state to
circulate closer and closer to the limit cycle zρlim

([0, 2π)) in case E manages to
keep the state in S +

E . For this reason P̃do

f,T +

(
z, ũ∗ǫ+ , σ̃

) ≤ V+
do

(z) = 1 − ℑzρlim
(0)

for every z ∈ I + ∪ S +
E ∪ zρlim

([0, 2π)) without the presence of an ǫ quantity
disfavouring P in the leftmost inequality (as it is the case if µ > 1 according to
Proposition 5.7.1).

Second, as in the proof of Proposition 5.7.1, special attention must be given
to the corner points of the boundary of each sup-level set of V+

do
. The possibility

that E might be unable to prevent the leakage of the state through one of such
corner points from one level set into a lower sup-level set must be proved to be
impossible. To this end, consider the following argument which, although similar,
is simpler than for the case µ > 1.
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Now, for the case µ < 1, every corner point of a sup-level set of V+
do

is necessarily
a point that belongs to the pruning curve (see Figure 5.21) which by construction
lies in S +

C ∩{w : ℑw > ℑzρlim
(0)}. In addition, as for the case µ > 1, the pruning

curve must necessarily have each of its points in

(A5 ∪ zρmin ((τ4, 2π))) ∪ (A4 ∪ zρmin ((τ3, τ4])) ∪ (A3 ∪ zρmin ((τ2, τ3])) . (5.101)

Fix z ∈ S +
C and let

N (z) , LV+
do

Ä
V+

do
(z)
ä

=
¶
w ∈ C : V+

do
(w) ≥ V+

do
(z)
©

be its corresponding sup-level set. Let ρ > ρlim be the real number in terms of
which the boundary of N (z) may be expressed as

∂N (z) = zρ ([0, τmax (ρ)])
︸ ︷︷ ︸

Ccurve(ρ)

∪
®
w ∈ C :

w − zρ (0)
zρ (τmax (ρ))− zρ (0)

∈ (0, 1)
´

︸ ︷︷ ︸

Cstraight

,

where the pruning point zρ (τmax (ρ)), which belongs to (5.101), is the a-priori
possibly leaking corner for E.

At zρ (τmax (ρ)), E applies a control action σ̃∗+ (zρ (τmax (ρ))) that guarantees
him that the state does not cross ∂N (z) into

⋃

λ>ρ zλ [0, 2π). But, can E be sure
that the same control action prevents the state from crossing ∂N (z) into the set
{w : ℑw > ℑzρ (0)}? This could only happen if the imaginary part of the velocity
vector f

(
zρ (τmax (ρ)) , u, σ̃∗+ (zρ (τmax (ρ)))

)
results to be positive for some control

action u ∈ U eligible by P. However, making use of the results of Subsection 4.3.5,
it will be argued next that this hypothetical possibility can be ruled out. Consider
the following cases:

zρ (τmax (ρ)) ∈ (A5 ∪ zρmin ((τ4, 2π))).
E’s strategy σ̃∗+ prescribes σ̃∗+ (zρ (τmax (ρ))) = 0. Therefore, the state velo-
city vector, based at zρ (τmax (ρ)), is

f
(
zρ (τmax (ρ)) , u, σ̃∗+ (zρ (τmax (ρ)))

)
= F (zρ (τmax (ρ)) , q)

with q ∈ ab =
¶
w ∈ C : w−a

b−a ∈ [0, 1]
©

. Assimilate, ab as the set Q of Sub-

section 4.3.5; the corresponding set I− , {w ∈ C : ℑF (w, q) < 0 ∀q ∈ Q}
was proved to coincide with

¶
w ∈ C : k ⊗ (w − q) < 0 ∀q ∈ Q

©
in Sub-

section 4.3.5. In the current context, this supporting half-plane takes the
form ¶

w ∈ C : (w − a)⊗ k > 0
©

which includes the set (A5 ∪ zρmin ((τ4, 2π))) where the point zρ (τmax (ρ))
lies. Thus, ℑf (zρ (τmax (ρ)) , u, σ̃∗+ (zρ (τmax (ρ)))

)
< 0 for every u ∈ U .

zρ (τmax (ρ)) ∈ (A4 ∪ zρmin ((τ3, τ4])) ∪ (A3 ∪ zρmin ((τ2, τ3])).
E’s strategy σ̃∗+ prescribes σ̃∗+ (zρ (τmax (ρ))) = 1. Therefore, the state velo-
city vector, based at zρ (τmax (ρ)), is

f
(
zρ (τmax (ρ)) , u, σ̃∗+ (zρ (τmax (ρ)))

)
= F (zρ (τmax (ρ)) , q)
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5.9. Solution of the upward game for the case µ = 1

with q ∈ dc =
¶
w ∈ C : w−d

c−d ∈ [0, 1]
©

. Assimilate, dc as the set Q of Sub-

section 4.3.5; the corresponding set I− , {w ∈ C : ℑF (w, q) < 0 ∀q ∈ Q}
takes the form ¶

w ∈ C : (w − d)⊗ k > 0
©
. (5.102)

The pruning point zρ (τmax (ρ)) ∈ (A4 ∪ zρmin ((τ3, τ4]))∪ (A3 ∪ zρmin ((τ2, τ3]))
belongs to (5.102) because: i) by construction of the pruning curve for the
case µ < 1, each of its points has an imaginary part greater than zρlim

(0),

and ii) ℑzρlim
(0) > ℑzρmin (0) > ℑa − P−1 (ρmin) k

|k| = d∗a > ℑd (see Fig-
ure 5.18). Thus, ℑf (zρ (τmax (ρ)) , u, σ̃∗+ (zρ (τmax (ρ)))

)
< 0 for every u ∈ U .

Proposition 5.8.1 tell us that, for the case µ < 1, at least a pair of saddle-point
strategies, denoted

(
ũ∗ǫ+ , σ̃

∗
+

)
, exists for G+

dist, i.e., a pair of strategies such that

P̃do

f,T +

(
z, ũ∗ǫ+ , σ̃

) ≤ P̃do

f,T +

(
z, ũ∗ǫ+ , σ̃

∗
+

) ≤ P̃do

f,T +

(
z, ũ, σ̃∗+

) ∀z, ũ, σ̃.
From this fact, by application of Proposition 2.2.2, it can be concluded that
V+

do
(·) = P̃do

f,T +

(·, ũ∗ǫ+ , σ̃
∗
+

)
is the VF of G+

dist for the case µ < 1.

5.9. Solution of the upward game for the case µ = 1

This short section deals with the border case µ = 1.
As before, the semi-permeable domain of G+

dist is defined as

S + ,
⋃

ρ>ρmin

zρ ([0, 2π)) , (5.103)

because for each ρ < ρmin, the characteristic trajectory {zρ (τ) : τ ∈ (0, 2π)} fails
to be semi-permeable. The special curve zρmin ([0, 2π)) clearly differentiates the
case µ = 1 from the other two because it presents two corner points, namely b and
d. Recall that zρmin ([0, 2π)) has b as its single corner point if µ > 1, while it has d
as its single corner point if µ < 1. Even though semi-permeable, zρmin ([0, 2π)) is
not free of corners, as the semi-permeable characteristic curves included in S +.

Since µ = 1, by (5.53), ρmin = ρlim. On one hand, by contrast with the case
µ < 1, in this case S +, lacks an expansive subset in the sense of (5.93). On the
other hand, by contrast with the case µ > 1, the special trajectory zρlim

([0, 2π)),
that verifies (5.91), is included in ∂S +. In fact, zρlim

([0, 2π)) = zρmin ([0, 2π)) =
∂S + if µ = 1.

Although zρlim
([0, 2π)) verifies (5.91), it is not a limit cycle as in the case µ < 1.

Now, the maximal interval over which the RPE can be integrated without self-
overlapping of the family of semi permeable state-space characteristics is [0, 2π),
for every member of the family.

The case µ = 1 is the only case in which the closed curves
#

b = b̄, ba ∪ {b} ∪
b̄, bc ∪ {bc} ∪ b̆c, ba ∪ {ba} and

#

d = d̄, dc ∪ {d} ∪ d̆, da ∪ {da} ∪ d̆a, dc ∪ {dc} coincide

(see Figure 5.8). Actually, zρlim
([0, 2π)) = zρmin ([0, 2π)) =

#

b =
#

d if µ = 1.
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Chapter 5. The game in distance

The island
I + , C \S +

not covered by semi-permeable corner-free characteristic state-space trajectories is
comprised by the curve zρlim

([0, 2π)) and the area enclosed by it.
As for the case µ > 1, for initial states in I +, P must choose between either

an outcome that is at most an arbitrarily good approximation (from above) of
do
(
zρmin (0) ,T +

)
, or the possibility of engaging himself in a never ending play

while struggling to achieve an outcome that is at most equal to do
(
zρmin (0) ,T +

)
.

For this reason, the construction of a candidate solution of G+
dist and its validation

for the case µ = 1, has more in common with the case µ > 1 than with the case
µ < 1. For completeness, this natural construction is formulated next.

For the case µ = 1, define A1, . . . , A5, V : S + → R, ũ∗V : S + → U , and
σ̃∗V : S + → Σ as in Subsection 5.7.2, and follow the next two steps.

1. Extension – Define Vaux : C → R and p̃∗aux : C → C as the following
extensions of V and ∇V, respectively, to the whole complex plane:

Vaux (z) ,







V (z) if z ∈ S +,

1−ℑ (zρmin (0)) if z = zρmin (0) ,

lim
S +∋w→z

V (w) = 1−ℑ (zρmin (0)) if z ∈ zρmin ((0, 2π)) ,

lim
S +∋w→b

V (w) = 1−ℑ (zρmin (0)) otherwise, i.e., z ∈ int
(
I +

)
;

p̃∗aux (z) ,







∇V (z) if z ∈ S +,

−j if z = zρmin (0) ,

lim
S +∋w→z

∇V (w) if z ∈ zρmin ((0, 2π)) \ {b, d} ,
lim

A1∋w→b
∇V (w) if z = b,

lim
A3∋w→d

∇V (w) if z = d,

e
1
2 ( π

2
−β)k lim

A1∋w→b
∇V (w) otherwise, i.e., z ∈ int

(
I +

)
.

2. Comparison – Use Vaux and p̃∗aux as defined above, to define V+
do

: C → R

and p̃∗+ : C→ C as follows:

V+
do

(z) , min {Vaux (z) , 1−ℑz} ; (5.104)

p̃∗+ (z) ,

{

p̃∗aux (z) if Vaux (z) ≤ 1−ℑz,
−j otherwise.

(5.105)

Finally, use p̃∗+ to define ũ∗+ : C→ U and σ̃∗+ : C→ Σ as follows:

ũ∗+ (z) , u∗
(
p̃∗+ (z)

)
, (5.106)

σ̃∗+ (z) , σ∗
(
p̃∗+ (z)

)
; (5.107)

where u∗ : C→ U and σ∗ : C→ Σ are the functions defined in statement 2
of Proposition 4.4.1.
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b

a

d

c

{ a
−

ρ
k |k
|

:
ρ
≥

ρ li
m
}

P↑E↓

k

k

zρlim
(0)

µ1 = |b− a| = |c− d|
µ2 = |c− b| = |a− d|
k = −κ + j
κ = tan α

e−j2β

e j(π
2
−β)

A1

A2A3

A4

A5

PC+
R+

σ
=

0

σ
=

1

io = 1

io = i▽o

σ
=

0

σ
=

1
io = 1

io = i▽o

I + = P+

Figure 5.23: The topography of the VF of G+
dist for a case such that µ2

µ1
eκ( π

2
+β) = 1.

In Figure 5.23, the topography of the above constructed function V+
do

: C→ R

is shown. Notice, that for µ = 1, the plateau, defined as

P+ , arg max
w∈C

V+
do

(w)

coincides with I + = C \ S +. In addition, as for the case µ < 1, the pruning
curve lies in {w : ℑw > ℑzρlim

(0)}, having zρlim
(0) as its limiting endpoint.

The validation of the above construction is analogous to the case µ > 1. De-
fining an ǫ-modification of ũ∗+ : C → U for the case µ = 1 exactly as for the
case µ > 1, natural analogous versions of Proposition 5.7.1 and Corollaries 5.7.1
and 5.7.2 for the case µ = 1 can be stated and similarly proved. However, in the
proof of the counterpart Proposition 5.7.1, to show that σ̃∗+ prevents the leakage
of the state from each sup-level to set of V+

do
, even at the corner points of its
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Chapter 5. The game in distance

boundary, the argument goes simpler as in the proof of Proposition 5.8.1 (which
deals with the case µ < 1), relaying on the fact that every point of the pruning
curve has an imaginary part greater than ℑzρlim

(0) if µ ≤ 1.

5.10. The downward game

As it was mentioned before, the downward game G−dist can be treated analog-
ously to the upward game G+

dist. The whole process by which a solution for G+
dist

was first devised and finally validated, can be recreated step by step for G−dist.
However, making use of the geometric considerations exposed at the end of

Subsection 5.2.4, this process may be spiked recognizing that both unilateral games
are different instances of the same (coordinate-free) underlying game, being the
only difference due to the fact that in general do

(
a,T +

) 6= do (c,T −), that is to
say: ℑa+ ℑc 6= 0 in general. In the particular case that do

(
a,T +

)
= do (c,T −),

i.e., in case the centre a+c
2 = b+d

2 of the parallelogram conv ({a, b, c, d}) lies on the
real axis, each unilateral game is a central inversion version of the other, being
a+c

2 = b+d
2 the inversion point.

Whatever may be the path selected to approach the downward game, the
counterparts V−do

, ũ∗−, and σ̃∗− (within G−dist) of V+
do

, ũ∗+, and σ̃∗+ (within G+
dist),

respectively, can be checked to verify

V−do
(z) = V+

do
(a+ c− z)− (1−ℑa) + (1 + ℑc) , (5.108)

ũ∗− (z) = u∗
(
p̃∗+ (a+ c− z)) , (5.109)

σ̃∗− (z) = σ∗
(
p̃∗+ (a+ c− z)) , (5.110)

for every z ∈ C, where V+
do

: C→ R and p̃∗+ : C→ C are constructed as explained
in Sections 5.7 to 5.9 (the specific section depending on the sign of µ − 1). In
agreement with the notation used throughout these three sections, the functions
u∗ : C → U and σ∗ : C → Σ involved in (5.109) and (5.110) are the functions
defined in statement 2 of Proposition 4.4.1.

The central inversion z 7→ a + c − z = a + e jπ (z − c) = a+c
2 −

(
z − a+c

2

)
in

(5.109)–(5.110) express algebraically how G−dist must be though “up-side down”
in order to conceive it as an instance of G+

dist. With the mismatch 1 − ℑa =
do
(
a,T +

) 6= do (c,T −) = 1 + ℑc corrected in (5.108), though.
Thus, presented this way, the problem of solving G−dist reduces to solving G+

dist.
Relying on the previous arguments, define the downward game’s pseudo-gradient

function p̃∗− : C→ C as
p̃∗− (z) , p̃∗+ (a+ c− z)

for every z ∈ C, in order to conveniently express the strategies (5.109)–(5.110) as

ũ∗− (z) = u∗
(
p̃∗− (z)

)
,

σ̃∗− (z) = σ∗
(
p̃∗− (z)

)
.

Finally, observe that V−do
(given by (5.108) in terms of V+

do
) shares with V+

do
the

following important properties that may be checked reviewing the construction of
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V+
do

. First, V+
do

is continuous, upper bounded, lower unbounded, quasi-concave and
globally defined on C. Second, the family of sup-level sets of V+

do
is a family of

nested compact subsets of C that cover the whole complex plane. The arguments
of the next section make use of these properties.

5.11. The bilateral game

In this section the original game in distance Gdist is finally approached. After
all, its solution is the main goal of this chapter.

The bilateral nature of Gdist, due to the fact that its target set T + is split up
into to connected components, was used to focus first on its two related unilateral
games, namely G+

dist and G−dist. Having solved these two games, the way is paved
for proposing a solution of Gdist.

As for the unilateral games, the distinction of whether µ > 1 or µ ≤ 1 is
required to formulate a candidate solution.

5.11.1. Solution of the game in distance for the case µ > 1

This case is treated first because it presents certain peculiarities that require
a more careful analysis than the case µ ≤ 1.

5.11.1.1. A first attempt in proposing a solution

From the knowledge acquired while solving G+
dist recall the following facts.

Consider a play that starts at an arbitrary initial state z ∈ C. On the one hand,
for z ∈ R+∁ =

(
S + \R+

) ∪P+, is P the player who actively forces matters so
that the outcome of the play turns out to be (in the future) less or equal than
V+

do
(z) + ǫ, being ǫ > 0 an arbitrarily small number selected by P. In particular, if

z ∈ cl
(
S + \R+

)
, P can force the final outcome to be at most V+

do
(z) by making

use of its counter-clockwise circulation power. For z ∈P+\cl
(
S + \R+

)
, P needs

to perform a sufficiently long pull-back manoeuvre before applying its counter-
clockwise circulation power to finally achieve an outcome bounded from above by
V+

do
(z) + ǫ, being ǫ > 0 as small as he wants. Against this, E may battle for a

vanishing quantity ǫ, or simply defend himself so that the final outcome does not
fall below V+

do
(z) materializing this defence by simply preventing the state from

crossing the closed level curve of V+
do

that corresponds to the value V+
do

(z) in the
outward direction. On the other hand, for z ∈ R+, P cannot enforce a future
oriented distance to T + lower than the current one do

(
z,T +

)
(which obviously

has already been attained). While the state remains in R+, E can impose a
positive rate of change of the oriented distance to T +, but this does not alter the
infimum oriented distance to T + already attained by P (in the past).

Thinking about the four possibly non-empty intersections R+∁ ∩R−∁, R+ ∩
R−∁, R+∁ ∩R−, and R+ ∩R− that might occur between the sets R+∁ and R+

of G+
dist, and the counterpart sets R−∁ and R− of G−dist, it seems reasonable that if
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Chapter 5. The game in distance

faced with problem of having to choose between G+
dist and G−dist at z, P will choose

to play the game whose value function evaluated at z renders him the lower value
(either already attained or to be attained in the future).

Note however that this argument implicitly assumes that if the outcome of the
game has not already been attained at z, once P decides to play either G+

dist or
G−dist, he will not doubt again an he will continue to play the selected game until
its corresponding outcome is finally attained. Moreover, the possibility that P
might continuously threaten E against both unilateral games is disregarded in the
previous argument.

Even so, carrying along with the initiated line of reasoning let Vmin : C → R,
defined as

Vmin (z) , min
¶
V+

do
(z) ,V−do

(z)
©
, (5.111)

be proposed as a first attempt in the synthesis of a VF for Gdist. In accordance,
the player’s candidate optimal strategies should be defined as

ũ∗min (z) , u∗ (p̃∗min (z)) , (5.112)

σ̃∗min (z) , σ∗ (p̃∗min (z)) , (5.113)

where u∗ : C → U and σ∗ : C → Σ are the functions defined in statement 2 of
Proposition 4.4.1, and p̃∗min : C→ C is defined as

p̃∗min (z) ,







p̃∗+ (z) if V+
do

(z) < V−do
(z) ,

p̃∗− (z) if V−do
(z) < V+

do
(z) ,

p̃∗− (z) if V+
do

(z) = V−do
(z) ∧ p̃∗+ (z)⊗ p̃∗− (z) > 0,

p̃∗+ (z) if V+
do

(z) = V−do
(z) ∧ p̃∗+ (z)⊗ p̃∗− (z) < 0,

p̃∗+ (z) if V+
do

(z) = V−do
(z) ∧ p̃∗+ (z)⊗ p̃∗− (z) = 0.

(5.114)

The thorough definition of p̃∗min is done so as to preserve P’s counter-clockwise
circulation power even at the points where the functional values of V+

do
and V−do

coincide, as it will be explained soon.
Observe that Vmin is continuous because it is defined as the minimum of two

continuous functions. In Figure 5.24, a game Gdist such that µ < 1 is taken as an
example to illustrate how iso-valued level curves taken from V+

do
and V−do

engender
the level curves of Vmin (indicated by the thick closed curves). Each of these level
curves obviously encloses a sup-level set of Vmin. Recalling the notation

Lg (λ) , {z ∈ C : g (z) ≥ λ}

for the λ-sup level set of a function g : C→ R, note that

LVmin (λ) = LV+
do

(λ) ∩LV−
do

(λ) ,

as it can be easily proved.
In the particular example of Figure 5.24, the highest-valued sup-level set of Vmin

inherits its value 0.704 from the plateau of G−dist, i.e., P− = arg maxz∈C V−do
(z),
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ℜ

ℑ

1

j

k
|k|

a
b

cd

0

-0.4
-0.2

0.0
0.2

0.4
0.6

0.704

Level curves of V+
do

-0.4
-0.2

0.0
0.2

0.4
0.6

0.704

Level curves of V−do

Level curves
of min

¶
V+

do
,V−do

©

Figure 5.24: The level curves of Vmin = min
{
V+

do
,V−

do

}
(indicated by the thick closed curves)

are engendered by iso-valued level curves of V+
do

and V−
do

. The quasi-concavity of Vmin inherited

from the quasi-concavity of V+
do

and V−
do

, guarantees the convexity of each sup-level set of Vmin.

which has d as a corner point of its boundary. However, in general, the highest-
valued sup-level set of Vmin can be inherited form either P+, P−, or neither of
them.

Since both V+
do

and V−do
are quasi-concave functions, Vmin = min

¶
V+

do
,V−do

©

must also be quasi-concave function. Accordingly, the sup-level sets of Vmin are
convex sets, i.e., LVmin (λ) is a convex set for each λ ∈ R.

As the family of sup-level sets of V+
do

and the family of sup-level sets of V−do
, the

family {LVmin (λ) : λ ∈ R} of sup-level sets of Vmin is a nested family of compact
subsets of C that covers the whole complex plane.

As V+
do

and V−do
, Vmin is bounded above and, by the Bolzano–Weierstrass ex-

treme value theorem, attains its supremum at some point of C. However, the point
where the maximum is attained is not necessarily unique. Quite obviously, in the
example of Figure 5.24 the maximum of Vmin is attained at every point of the
set LVmin (0.704), represented in the figure by the area enclosed by the innermost
thick closed curve.

In Figure 5.25 the particular 0.65-level curve of Vmin (represented by the thick
closed curve) is taken as an example to illustrate why p̃∗min was defined so carefully
at the points where both unilateral VFs take the same functional value. The points
z1 and z2 represented in the figure are the only two points that solve V+

do
(z) =

V−do
(z) = 0.65. If P wants to extend consistently his counter-clockwise circulation

power (described in Subsection 5.7.3) from the curved parts of the level curve
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ℜ

ℑ

1

j k
|k|

a

b

cd

0

0.65

Level curve of V+
do

0.65

Level curve of V−do

z1

z2p̃∗+ (z1)

p̃∗− (z1)

p̃∗+ (z2)

p̃∗− (z2)

Figure 5.25: The thick closed curve is the 0.65-level curve of the function Vmin =
min

{
V+

do
,V−

do

}
. It has two corner points: z1 and z2 where the functional values of V+

do

and V−
do

coincide at 0.65. At z1, P must choose to play G−
dist to make use of its counter-

clockwise circulation power consistently along (or around) the lower arc between z1 and z2.
At z2 he must choose to play G+

dist to make use of its counter-clockwise circulation power
consistently along (or around) the upper arc between z2 and z1. For each i ∈ {1, 2}, at the
corner point zi, P must choose G−

dist if p̃∗
+ (zi) ⊗ p̃∗

− (zi) > 0 while he must choose G+
dist if

p̃∗
+ (zi)⊗ p̃∗

− (zi) < 0.

{z : Vmin (z) = 0.65} to its corner points z1 and z2, the vector p̃∗min (z1) must be
taken as p̃∗− (z1) and the vector p̃∗min (z2) must be taken as p̃∗+ (z2), as ruled by the
sign of the the cross product involved in the definition (5.114). If V+

do
(z) = V−do

(z)
and p̃∗+ (z)⊗ p̃∗− (z) = 0 for some z ∈ C, either p̃∗+ (z) or p̃∗− (z) can be selected as
p̃∗min (z); in definition (5.114), for definiteness, p̃∗+ (z) is selected.

5.11.1.2. Criticism of the proposed solution

The example of Figure 5.24 evidences a serious flaw in the attempted solution
of Gdist. If the level curves of Vmin (indicated by the thick closed curves in the
figure) were the true level curves of the VF of Gdist, then E would be always able
to prevent the sate from crossing each of them in the outward direction. However,
this turns out to be false.

Consider for example the sup-level set LVmin (0.6) = LV+
do

(0.6) ∩ LV−
do

(0.6).

For each z ∈ ∂LV+
do

(0.6), E can force the state velocity vector ż, based at z, to

point into LV+
do

(0.6). Similarly, for each z ∈ ∂LV−
do

(0.6), E can force ż, based at
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z, to point into LV−
do

(0.6). However, he might be unable to force ż, based at z,

to point into LVmin (0.6) = LV+
do

(0.6) ∩LV−
do

(0.6). Therefore, the corner points

of the level curves of Vmin constitute a serious challenge for E, since they may be
leaking corners.

In fact, the leftmost corner point of LVmin (0.6) is a leaking corner. An en-
lightening way of proving it is to invoke Proposition 4.3.1 with z0 taken as the
this corner point, q1 taken as d, and q2 taken as a. The result of the invocation
is that the state must abandon LV−

do

(0.6) because it must come arbitrarily close

to the line da←→ in finite time (see Figure 5.24). All that P has to do to develop
this arbitrarily proximity to the line da←→ is to keep io = i▽o constant during a suf-
ficiently large (but finite) interval of time. By means of this bilateral pull-back
manoeuvre (which clearly resembles P’s pull-back manoeuvre in the context of any
of the unilateral games), P is able to bring the state to a level curve of Vmin (lower
than ∂LVmin (0.6)) that is as close as he wishes to the line da←→; let say for example
∂LVmin (0.4). From this new level curve he can make full use of its counter-clock-
wise circulation power (in the context of G−dist). Thereby, preventing the state from
crossing ∂LVmin (0.4) in the inward direction, while simultaneously reducing the
current oriented distance to T − along its way to the ray

{

w : c+ ρ k
|k|

}

where P

finally attains an outcome (in the context of G−dist and Gdist) that is at most 0.4.

5.11.1.3. A candidate solution

The discussion of the previous example, suggests a way of fixing the detected
flaw in the proposal (5.111)–(5.114). Let

λ̂ = max {Vmin (z) : z ∈ C} = max {λ : LVmin (λ) 6= ∅} , (5.115)

Hence, LVmin

Ä
λ̂
ä

is the highest sup-level set of Vmin. Suppose that (as in the

previous example) LVmin

Ä
λ̂
ä

does not intersect both lines da←→ and bc←→. Being¶
LVmin (λ) : λ ≤ λ̂

©
a family of nested compact subsets of C that covers the whole

complex plane, we can search in this family for the largest λ∗ such that LVmin (λ)
intersects both da←→ and bc←→. The nature of the nested family

¶
LVmin (λ) : λ ≤ λ̂

©

not only guarantees that the searched number

λ∗ , max
¶
λ : λ ≤ λ̂ ∧ LVmin (λ) ∩ da←→ 6= ∅ ∧ LVmin (λ) ∩ bc←→ 6= ∅

©
(5.116)

exists, but also, that at least one of the two intersections involved above is a
singleton. The singleton one, indicates P which of the two lines he must select to
carry out his bilateral pull back manoeuvre. If both are singletons, any of the two
selections serves for P’s purpose.

Recognizing these facts, let Vdo : C→ R, defined as

Vdo (z) , min {Vmin (z) , λ∗} , (5.117)

be a candidate VF of Gdist for the case µ > 1, and let the set

M , arg max
z∈C

Vdo (z) = LVmin (λ∗) (5.118)
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Figure 5.26: The function Vdo
: C → R is defined in terms of Vmin = min

{
V+

do
,V−

do

}
as

Vdo
= min {Vmin, λ

∗}, where λ∗ is the largest real number λ such that the λ-sup-level set
LVmin

(λ) intersects both of the following two straight lines: the one through points b and c,
and the one through points d and a. Consequently, the function Vdo

is a truncated version
of Vmin and attains its maximum in the set M = LVmin

(λ∗), called the summit of G+
dist

(represented in the figure by the light-shaded area and its border). In this example, the
maximum of Vdo

is 0.352.

be referred to a as the summit of Gdist in order to remember that Vdo takes its
maximum therein. The corresponding candidate strategies ũ∗ : C → U and σ̃∗ :
C→ Σ are defined by

ũ∗ (z) , u∗ (p̃∗ (z)) , (5.119)

σ̃∗ (z) , σ∗ (p̃∗ (z)) , (5.120)

where u∗ : C → U and σ∗ : C → Σ are the already known functions defined
in statement 2 of Proposition 4.4.1, and p̃∗ : C → C is defined, in terms of the
function p̃∗min : C→ C, as

p̃∗ (z) ,







p̃∗min (z) if z /∈ int (M ) ,

p̃∗+ (b) if z ∈ int (M ) and LVmin (λ∗) ∩ bc←→ is a singleton,

p̃∗− (d) if z ∈ int (M ) and LVmin (λ∗) ∩ bc←→ is not a singleton,

(5.121)

The strategies defined above materialize P’s bilateral pull back manoeuvre in
int (M ) as explained before. For E, the definition of his strategy in int (M ) is not
important because he cannot prevent the state from being pulled towards da←→ or
bc←→ once P has taken a decision in this respect. However, both player’s strategies
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Figure 5.27: For µ > 1, an instance of G+
dist such that some level curves of Vdo

coincide with
the level curves of V−

do
. In this case, M = P−, i.e., the highest sup-level set of Vdo

coincides

with the highest sup-level set of V−
do

.

are defined in int (M ) in such a way that P and E behave in int (M ) either as they
would do in P+ \cl

(
S + \R+

)
in case M ∩ bc←→ is a singleton, or as they would do

in P− \cl (S − \R−) in case M ∩ bc←→ is not singleton (i.e., in case LVmin (λ∗)∩ da←→
is a singleton).

In Figure 5.26 the same example of Figure 5.24 is reconsidered to show the
topography of the function Vdo , defined in terms of Vmin as explained before.
Consider the sets:

EQ ,
¶
z ∈ C : V+

do
(z) = V−do

(z)
©

and SC , EQ \M .

For the example being considered, the set SC is the union of two curves that
emanate from M as represented in Figure 5.26 by the dot-dashed curves. Each of
these curves is a separation curve in the sense that it separates the upward game
from the downward game in the context of the bilateral game.

In Figure 5.27 another example of G+
dist for the case µ > 1 is considered to

illustrate that not necessarily SC splits into two curves as in Figure 5.26. In
Figure 5.27, the set SC is a single separation curve that bypasses M . In this case,
in fact, M = P−, i.e., the highest sup-level set of Vdo coincides with the highest
sup-level set of V−do

. Note also that in the example of Figure 5.27, the corner points
of the level curves of Vdo may be either points of SC or points of PC− (the pruning
curve of G−dist). By contrast, in Figure 5.26 every corner point of a level curve of
Vdo is a point of SC.
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5.11.1.4. Validation of the candidate solution

The validation of the candidate solution of Gdist proposed above for the case
µ > 1 can be carried out using the same approach used for the unilateral game
G+

dist, particularly explained in detail for the case µ > 1 in Subsection 5.7.8. Similar
issues 2 as the ones discussed therein arise in connection with P having to appeal
for ǫ-saddle strategies, if faced with E’s stubbornness for fighting for a vanishing
quantity under P’s control. The detailed validation is not carried out here for
brevity, since the arguments are similar.

Nevertheless, there is a significant difference in connection with E’s ability to
prevent the state from crossing the level sets of Vdo in the outward (i.e., decreasing)
direction. This difference deserves the following comments.

When the unilateral game G+
dist was dealt with, special attention was given to

the corner points of the level sets of V+
do

, which except for b (in case µ ≥ 1) are the
points of the pruning curve PC+. Whether µ > 1 or µ ≤ 1 a different argument
was given in each case to show that the points of PC+ are not leaking corners for
E. This, of course, also holds for the points of PC− by the reduction of G+

dist to
G−dist.

By contrast, in Gdist the arising of SC poses a new source of corner points for
the level curves of Vdo . Observe in Figures 5.26 and 5.27 how SC may interact, or
not, with the pruning curves of the unilateral games to conform the corner points
of the level sets of Vdo . In particular, observe in Figure 5.26 that every point of
the left branch of SC is a corner point of a level set of Vdo and that some of them
belong to the angular sector

¶
z ∈ C : (z − d)⊗ (a− d) ≥ 0 ∧ (z − d)⊗ k ≤ 0

©
,

whose vertex is at d. The corner points of Vdo which belong to this sector need
special attention in order to successfully validate E’s strategy (5.120), because the
arguments used at the corner points originated by the pruning curves do not hold
for the corner points in this sector. Similarly, by symmetry between the upper and
the lower game, special attention deserve the corner points of Vdo that belong to
the angular sector

¶
z ∈ C : (z − b)⊗ (c− b) ≥ 0 ∧ (z − b)⊗

Ä
−k
ä
≤ 0
©

whose
vertex is at b. Next, by means of analysing a representative example, it is argued
that even at the presence of this new kind of corner points in the level curves of
the proposed candidate VF, E is still able to prevent the state from crossing them
in the outward (i.e., decreasing) direction.

Reconsider the game instance used to generate Figures 5.24 and 5.26. This ex-
ample was used before to show that Vmin = min

¶
V+

do
,V−do

©
is not a good candidate

VF for Gdist. As an alternative, the function Vdo , defined as the truncation of Vmin

above its λ∗-sup-level set, was proposed as a candidate VF for Gdist. In Figure 5.28
some level curves of Vmin are magnified. Clearly, for each λ ≤ λ∗ = 0.352, the λ-
level-curve of Vmin coincides with the λ-level-curve of Vdo . The λ∗-level-curve of
Vmin (not shown in the figure) is the only level curve of Vmin that intersects the

2For plays that initiate in int (M ), P needs to perform a bilateral pull-back manoeuvre,
whose bilateral aspect is related to the fact that he continuously threatens E against both
unilateral games while he pulls the state towards: either bc←→ or da←→.
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line da←→ at exactly one single point, namely the intersection of

EQ ,
¶
z ∈ C : V+

do
(z) = V−do

(z)
©

(5.122)

and da←→. The set M , defined by (5.118), is precisely the set enclosed by the λ∗-
level-curve of Vmin.

The porpouse of the remaining paragraphs of this subsection is to validate
E’s strategy (5.120) in C \ int (M ). In int (M ), as it was explained before, E
cannot prevent P from making use of its bilateral pull-back manoeuvre. Since
the emended strategy (5.120) coincides with the first attempted strategy (5.113)
in C \ int (M ), it can be assumed without inconvenience that E sticks to (5.113)
instead of (5.120). This substitution of strategies will not affect the validation of
(5.120) in C\int (M ) and, as a by-product, will make evident why the first attempt
(5.113) fails in int (M ). Notice that Vdo coincides with Vmin in C \ int (M ).

Let

EQ+ ,
¶
z ∈ C : V+

do
(z) < V−do

(z)
©
, (5.123)

EQ− ,
¶
z ∈ C : V−do

(z) < V+
do

(z)
©
. (5.124)

Consider the points of EQ represented in Figure 5.28 by the dot-dashed curve.
According to (5.113), on the dot-dashed line and below it (i.e., in EQ−) E is
mandated to play σ = 1, whereas above the dot-dashed line (i.e., in EQ+) E is
mandated to play σ = 0. As it was assumed, E sticks to this mandate.

The point z1 is a corner point of the level curve ∂LVmin (0.05) that lies in half-
plane

¶
z ∈ C : (z − d)⊗ k > 0

©
. At z1, E plays σ = 1. Therefore P is forced to

select a centre q (of the instantaneous α-equiangular state-guiding spiral through
z1) from the segment dc. If P selects q = c, as mandated by (5.112), the state
departs from z1 tangentially to the level curve ∂LVmin (0.05) along the counter-
clock-wise direction. If P selects any other point q of the segment dc, the state
velocity vector F (z1, q), based at z1, points towards higher sup-level sets of Vmin.
Even in the extreme case q = d, the velocity vector F (z1, d) still has a negative
imaginary part, because z1 lies in the half-plane

¶
z ∈ C : (z − d)⊗ k > 0

©
which

coincides with the supporting half-plane I− = {z ∈ C : ℑF (z, q) < 0 ∀q ∈ Q}
for the case Q = cd (recall Subsection 4.3.5). Therefore, z1 is similar in nature to
the corner points of the level curves V+

do
engendered by the pruning curve PC+ in

the following sense: E has at z1 a control action that prevents the velocity vector,
based at z1, from pointing into a higher sup-level set of the candidate VF, whatever
P’s control may be (see Figure 5.28).

Different is the case for z2 which is a corner point of the level curve ∂LVmin (0.30)
that lies in half-plane

¶
z ∈ C : (z − d)⊗ k < 0

©
. As before, E plays σ = 1 at z2

and P is forced to select a centre q from the segment dc. However, since z2 lies
in
¶
z ∈ C : (z − d)⊗ k < 0

©
, now P can select a control action that enforces the

velocity vector to have a positive imaginary part. For example, if P plays q = d,
the velocity vector F (z2, d), based at z2, points to a lower sup-level set of Vmin (see
Figure 5.28). This means that a new kind of argumentation (radically different
from the one used in the context of the uppward unilateral game) is needed to
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Figure 5.28: The points z1, z2, and z3 are corner points of the level curves of Vmin with
associated values 0.05, 0.30 and 0.55, respectively. For each i ∈ {1, 2, 3}, the vectogram
{F (zi, q) = k (zi − q) : q ∈ conv ({c, d})} available for P at zi is represented by the shaded
area with a vertex at zi, under the assumption that E sticks to strategy (5.113) which forces
q to belong to the segment conv ({c, d}) for states on EQ =

{
z ∈ C : V+

do
(z) = V−

do
(z)
}

.
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validate E’s proposed strategy if there is any chance to validate it at all. Further-
more, why would (5.113) be fruitful for E at a corner point like z2 ∈ C \ int (M )
but not at a corner point like z3 ∈M , as represented in Figure 5.28? The answer
is derived from the following observations.

Notice in Figure 5.28 that at each corner point zi, where i ∈ {1, 2, 3}, P is
able to make the velocity vector F (zi, q), based at zi, point into the set EQ+.
At z1 he obtains no benefit from this ability because he cannot direct F (z1, q),
based at z1, into C \ LVmin (0.05). However, at z2 he can direct F (z2, q), based
at z2, into C \LVmin (0.30). Similarly, at z3 he can direct F (z3, q), based at z3,
into C \LVmin (0.55). Therefore, P might be tempted to play q = d at z2 and z3

(instead of playing q = c which only leads the state to a tangential counter-clock-
wise circulation along a level curve).

If P plays q = d at z2 or z3, as soon as the state enters EQ+, E reacts switch-
ing from σ = 1 to σ = 0, forcing P to select a new centre q from the segment
ab. Recognizing that z2, z3 lie in

¶
z ∈ C : (z − a)⊗ k > 0

©
which coincides with

{z ∈ C : ℑF (z, q) < 0 ∀q ∈ ab}, it follows (recalling Subsection 4.3.5) that E’s
reaction leads the state downwards towards EQ again.

Once the state is back on EQ, P might repeat his opportunistic behaviour, so
E might be forced to be continuously switching between σ = 1 (on EQ) and σ = 0
(in EQ+, above and close to EQ). If this happens, a sliding trajectory along EQ
arises. The key point here is determining in which direction along EQ does the
state z slides as time increases: either the direction in which the Vmin decreases
(which is desirable for P), or the direction in which the Vmin increases (which is
desirable for E). As it will be seen, the direction depends on the sign of the cross
product (a− z)⊗(d− z) which is positive for z = z2 while it is negative for z = z3.

Recall that

if the state z is on EQ, or in EQ− close to EQ, P must select a velocity
vector F (z, q) = k (z − q) with q ∈ cd, while

if the state z is in EQ+ close to EQ, P must select a velocity vector F (z, q) =
k (z − q) with q ∈ ab;

because E sticks to (5.113).
First, consider the representative corner point z2 ∈ C\int (M ). When the state

z is in a sufficiently small neighbourhood of z2, the velocity vector ż must arbitrar-
ily approximate a vector of the vectogram V2 , {F (z2, q) : q ∈ conv ({a, b, c, d})}.
The most extreme directions of {z2 − q : q ∈ conv ({a, b, c, d})} are z2 − a and
z2 − d. Accordingly, the most extreme directions of V2 are F (z2, a) = k (z2 − a)
and F (z2, d) = k (z2 − d). All the possible directions represented by the vectors of
V2 are equally well represented by the set of vectors {F (z2, q) ∈ C : q ∈ ad} indic-
ated by the shaded area with a vertex at z2 in Figure 5.29. By definition of EQ and
the level curves of Vmin, there exists an unique vector vs ∈ {F (z2, q) ∈ C : q ∈ ad}
tangent to EQ at z2. The direction represented by vs is the direction that should
reasonably be associated with the sliding trajectory possibly induced by P. Since
F (z2, a)⊗F (z2, d) = |k|2 (a− z2)⊗(d− z2) > 0, vs must point towards increasing
values of Vmin (see Figure 5.29). Hence, inducing E into a sliding trajectory from
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Figure 5.29: The same level curves and corner points of Figure 5.28 are represented in the
figure. Also, as in Figure 5.28, E is assumed to stick to strategy (5.113), whatever P may do.
From points on EQ such as z1, z2, P can (unwisely) induce E into a sliding trajectory such
that Vmin increases as the state slides through EQ. From points on EQ such as z3 P can
put into practice his bilateral pull-back manoeuvre just by keeping io = i▽o constant, thereby
pulling the state towards the line through points a and d. Against this pull-back, E’s strategy
(5.113) is futile because the state slides through EQ in the direction that Vmin decreases.
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z2 is not a wise option for P. Nevertheless, the point that is worthy of notice here
is that the argument just given validates E’s strategy even against such unwise
opposition from P. Generalizing the conclusion just arrived at this example, it can
be stated that the strategy (5.120) (which coincides with (5.113) in C \ int (M )),
prevents Vdo (which coincides with Vmin in C\ int (M )) from decreasing as long as
the state remains in C \ int (M ). Since every corner point of a level curve of Vdo

is either b ∈M , d ∈M , a point of PC+, a point of PC−, or a point of SC ⊂ EQ,
and argument is known for each corner point case, the conclusion generalized from
the concrete example is valid.

Second, consider the representative corner point z3 ∈ int (M ). As before E is
supposed to stick to (5.113), but now suppose that P applies his bilateral pull-back
manoeuvre as dictated by (5.119) for states in int (M ), which (for the example be-
ing considered) consists in keeping u = i▽o +j constant so as to pull the state towards
the line ad←→. E is consequently forced to pick up centres q from the segment ad.
When the state z is in a sufficiently small neighbourhood of z3, the velocity vector ż
must arbitrarily approximate a vector of the vectogram V3 , {F (z3, q) : q ∈ ad}.
The most extreme directions of {z3 − q : q ∈ ad} are z3 − a and z3 − d. Accord-
ingly, the most extreme directions of V3 are F (z3, a) = k (z3 − a) and F (z3, d) =
k (z3 − d). All the possible directions represented by the vectors of V3 are equally
well represented by the set of vectors {F (z3, q) ∈ C : q ∈ ad} indicated by the
shaded area with a vertex at z3 in Figure 5.29. By definition of EQ and the level
curves of Vmin, there exists an unique vector vs ∈ {F (z3, q) ∈ C : q ∈ ad} tan-
gent to EQ at z3. The direction represented by vs is the direction that should
reasonably be associated with the sliding behaviour that results from E trying to
defend himself from P’s bilateral pull-back manoeuvre. Since F (z3, a)⊗F (z3, d) =
|k|2 (a− z3)⊗ (d− z3) < 0, vs must point towards decreasing values of Vmin. This
shows vividly the leakage of the state through the corner point z3 ∈ int (M ) of
the sup-level set LVmin (0.55), and confirms the already known fact that (5.113) is
futile for E in int (M ).

5.11.2. Solution of the game in distance for the case µ ≤ 1

In the context of the bilateral game Gdist, there is as important difference
between the case µ > 1 and the case µ ≤ 1 that has to do with how the sets P+

and P− relate to each other.

Regardless the case (whether µ > 1 or µ ≤ 1), P− is the image of P+ through
the central inversion z 7→ a+c

2 −
(
z − a+c

2

)
(recall Section 5.10). As it is almost

evident from Figure 5.24, the sets P− = arg maxz∈C V−do
(z) (with a corner point

at d) and P+ = arg maxz∈C V+
do

(z) (with a corner point at b) do not coincide for
the case µ > 1. However, if µ ≤ 1, P+ has point symmetry with respect to the
point a+c

2 (see Figure 5.21 for the case µ < 1 and Figure 5.23 for the case µ = 1).
Therefore, for the case µ ≤ 1, the set P− coincides with P+. This fact simplifies
the topography of the candidate VF to be proposed next for the case µ ≤ 1.
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5.11.2.1. A candidate solution

Reasoning along the same lines as in Subsubsection 5.11.1.1 for the case µ > 1,
the first natural candidate VF for Gdist that can be thought of for the case µ ≤ 1 is
min

¶
V+

do
,V−do

©
. Fortunately, by contrast with the case µ > 1, taking the minimum

between V+
do

and V−do
turns out to be fruitful for the case µ ≤ 1.

For the sake of explicitness, consider the following formulation. Let Vdo : C→
R, defined as

Vdo (z) , min
¶
V+

do
(z) ,V−do

(z)
©
, (5.125)

be proposed as a candidate VF for Gdist for the case µ ≤ 1. In accordance, the
player’s candidate optimal strategies should be defined as

ũ∗ (z) , u∗ (p̃∗ (z)) , (5.126)

σ̃∗ (z) , σ∗ (p̃∗ (z)) , (5.127)

where u∗ : C → U and σ∗ : C → Σ are the functions defined in statement 2 of
Proposition 4.4.1, and p̃∗ : C→ C is defined as

p̃∗ (z) ,







p̃∗+ (z) if V+
do

(z) < V−do
(z) ,

p̃∗− (z) if V−do
(z) < V+

do
(z) ,

p̃∗− (z) if V+
do

(z) = V−do
(z) ∧ p̃∗+ (z)⊗ p̃∗− (z) > 0,

p̃∗+ (z) if V+
do

(z) = V−do
(z) ∧ p̃∗+ (z)⊗ p̃∗− (z) < 0,

p̃∗+ (z) if V+
do

(z) = V−do
(z) ∧ p̃∗+ (z)⊗ p̃∗− (z) = 0.

(5.128)

Notice, that this formulation of a candidate solution for Gdist for the case
µ ≤ 1 coincides exactly with the first attempted candidate solution for the case
µ > 1 (formulated in Subsubsection 5.11.1.1), which was proved to be defective (as
demonstrated in Subsubsection 5.11.1.2). For the case µ ≤ 1, however, the above
formulation does constitute a valid solution of Gdist for the case µ ≤ 1 as it argued
next.

5.11.2.2. Validation of the candidate solution

Before focusing on the validation of the candidate VF, recall first the acquired
knowledge about the solution of G+

dist for the case µ < 1. Remember that, the
interior of P+ (represented by the interior of the shaded area in Figure 5.21) is
the union of the island I + (represented by the dark-shaded area and its border
in Figure 5.18) and the expansive semi-permeable domain S +

E (represented by
interior of the light-shaded area in Figure 5.18). In int

(
I +

)
, P activates his

pull-back manoeuvre which pulls the state towards the line da←→ thereby taking the

state to the proximities of S +
E , from where P can make use of its counter-clock-

wise expansive circulation power to make the state spiral outwards towards the
limit cycle LC = ∂P+ assuming E exhibits optimal opposition. In the border
case µ = 1, the expansive semi-permeable domain S +

E reduces to the empty set
and P’s pull-back manoeuvre takes over the whole interior of P+. An analogous
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description of the action in int (P)− holds for G−dist, with the difference that P’s
pull-back manoeuvre pulls the state towards the line bc←→ (instead of the line da←→)

Now, consider the context of the bilateral game Gdist for initial states in
int
(
P+

)
. As was commented before, P+ = P− for the case µ ≤ 1. Hence,

being by definition P+ = arg maxw∈C V+
do

(w) and P− = arg maxw∈C V−do
(w), it

must be necessarily the case that both V+
do

and V−do
are constant in P+ = P−.

If V+
do

is less than V−do
in P+, the action in int (P) is as recalled above for the

unilateral game G+
dist, because P chooses it as the most convenient unilateral game

to play, while if V−do
is less than V+

do
in P+, the action in int (P) is as for the uni-

lateral game G−dist because of an analogous reason. If V+
do

equals V−do
, P may choose

any of the two unilateral games in int (P), for definiteness assume P chooses G+
dist

in this particular case.
As for the case µ > 1, define

M , arg max
z∈C

Vdo (z)

The description just recalled of what happens in the interior of P+ which coincides
with P− and M , corresponds to what is mathematically encoded in (5.126)–
(5.128), and shows the validity of Vdo = min

¶
V+

do
,V−do

©
as the value function of

G+
dist in int (M ). In fact, in int (M ) both players are playing either G+

dist or G−dist,
without switching from one unilateral game to the other. So, the validation of
the candidate value function (5.125) and the strategies (5.126)–(5.127) in int (M )
reduces to the validation in the context of one of the two unilateral games.

In C \M , however, switching between both unilateral games may occur. In
Figure 5.30 the arising of the level curves of Vdo = min

¶
V+

do
,V−do

©
from the corres-

ponding iso-level curves of V+
do

and V−do
is illustrated for an instance of Gdist such

that µ < 1. As for the case µ > 1, let

EQ ,
¶
z ∈ C : V+

do
(z) = V−do

(z)
©

and SC , EQ \M .

For µ < 1, in general, the set EQ coincides with SC and is a curve that
separates the domains of both unilateral games in the context of the bilateral
game. In Figure 5.30, the players play G+

dist above SC and play G−dist below SC.
The only case in which EQ 6= SC is the case such that max

¶
V+

do
(z) : z ∈ C

©
=

max
¶
V−do

(z) : z ∈ C

©
, because in this case EQ degenerates from a curve into a

set that includes M = P+ = P−. This singular case occurs when a+c
2 is a real

number, i.e., when the parallelogram conv ({a, b, c, d}) half of its area at either side
of the real axis. If ℑa+c

2 > 0, the separation curve SC avoids M by passing below
it (as it is the case in Figure 5.30). If ℑa+c

2 < 0, the separation curve SC avoids
M by passing above it.

The validation of the candidate value function (5.125) and strategies (5.126)–
(5.127) in C\int (M ) presents no new challenges. Analogous arguments to the ones
used for the unilateral game G+

dist for the case µ ≤ 1 can be successfully applied
because, by contrast with the case µ > 1, the corner points of Vdo that belong to
SC cannot take place in neither of the following two problematic angular sectors:
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Figure 5.30: The thick closed lines represent the level curves of min
{
V+

do
,V−

do

}
that result

from the corresponding iso-valued level curves of V+
do

and V−
do

(represented by the thin closed
curves). By contrast with the case µ > 1, for the case µ ≤ 1 (exemplified in the figure) taking
Vdo

= min
{
V+

do
,V−

do

}
as a candidate VF for Gdist, actually renders the true VF of Gdist.

¶
z ∈ C : (z − d)⊗ (a− d) ≥ 0 ∧ (z − d)⊗ k ≤ 0

©
and¶

z ∈ C : (z − b)⊗ (c− b) ≥ 0 ∧ (z − b)⊗
Ä
−k
ä
≤ 0
©

(see Figure 5.30).

5.11.3. The maximum of the value function

It is worth noting that regardless of the case (whether µ > 1 or µ ≥ 1),
the summit M = arg maxz∈C Vdo (z), where the value function of Gdist attains it
maximum value, has a shape such that its oriented distance to T is necessarily
less than one, i.e.,

min {do (z,T ) : z ∈M } < 1, (5.129)

as it can be verified observing that M is not included in the line {z ∈ C : ℑz = 0},
regardless of the case. In addition, the functional value of Vdo : C → R in M
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coincides with left-hand value of the inequality (5.129) regardless of the case, as it
can be checked recalling the construction of Vdo . Therefore,

max {Vdo (z) : z ∈ C} < 1. (5.130)

This last equality, has a remarkable consequence: even if a play starts on
the line {z ∈ C : ℑz = 0}, i.e., at maximum oriented distance from T , E cannot
prevent P from taking the state away from this line into a place where the oriented
distance to T is less than one.

5.12. Concluding remarks

In Chapter 3, a buck converter control problem of practical interest was shown
to be properly modelled by a pursuit-evasion conflict, in which the controller takes
the role of the evader (E) and the disturbances on the input voltage and the load
current take the role of the pursuer (P). From such conflict, two natural pursuit-
evasion games may be considered: a game in distance and a game in time.

This chapter was initially intended to solve a canonized version of the former
one, which is the most relevant from the controller designer’s perspective. The
pursuit-evasion game in distance models the struggle between the controller and
the disturbances for the control of the converter-system’s state. In particular, in
connection with its distance to an unsafe (from E’s viewpoint) subset of the state-
space where the control requirements can not be assured to be fulfilled, i.e., P’s
target set. The concept of oriented distance used in the formulation of the game
in distance allows to study in an unified way, to which degree the controller either
succeeds or fails in preventing the state from entering the unsafe subset.

Regrettably, to be able to solve the game in distance, it was necessary to
assume that P’s does not command the converter’s input voltage, thereby reducing
considerably the aimed scope of this work. Nevertheless, interesting results were
found considering that P acts only on the load current, which is usually the most
significant disturbance in most buck converter applications.

Working with two unilateral auxiliary games derived from the original bilat-
eral game in distance, the parameter-space of the game (restricted to the case in
which the input voltage of the converter is constant) was found to be partitioned
into three sub-spaces that give rise to qualitatively different families of optimal
trajectories.

This knowledge was exploited to construct a candidate solution and validate
it as a true solution of the original bilateral game. Since the construction was
performed with an eye on implementation, it can be easily translated into program
code in order to: i) generate optimal strategies for both players, and ii) evaluate
the value function of the game at a given arbitrary initial state.

Accordingly, knowing the values of the parameters of the game, for a given
initial state, the relevant problem of kind of determining if there exists a controller
able to guarantee the fulfilment of the control problem requirements, reduces to
an algorithmic evaluation of the sign of the value function of the game at the
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Chapter 5. The game in distance

initial state. If it is positive, such a controller exists; for example, the controller
that results from programming the strategy given by the solution of the game for
E. In fact, this special controller, is the best one from the family of succeeding
controllers, in the sense that it is the one which keeps the state as much far away
as possible from the unsafe set (i.e., to the largest degree). If the sign of value
function evaluation is not positive, no such controller exists, and every defiant
controller claimed to be able to prevent the state from entering the unsafe set, can
be proved to disappoint its designers by letting it play against the strategy given
by the solution of the game for P.
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Chapter 6

Simulations

This chapter is organized around different application aspects of the solution
of the buck converter game in distance. In connection with each of these aspects,
numerical simulations, performed in Matlab-Simulink, are reported.

Before delving into the discussion of each aspect, in the following section, the
physically meaningful concepts that will be required are recalled, highlighted, and
linked to the solution (obtained in Chapter 5) for the canonical form of the game.

6.1. The absolute worst-case error function and the ab-

solute worst-case error value function

In Section 3.2 the (instantaneous) worst-case error ewc (y) at state y ∈ R
2 was

introduced, by (3.12), as the error (between the reference voltage vR = VLL0 −
RLLiO and the converter’s output voltage vO) whose absolute value is maximized
by the selection of an (instantaneous) worst-case load current (3.13) when the

buck’s converter state is y =
î
iL vC

ó⊤
. Recall that in these expressions l =

î
RC 1

ó⊤
and the resistance mismatch RM = RC −RLL is the difference between

the capacitor’s parasitic ESR and the characteristic load line resistance. Therefore,
for each y ∈ R

2, the real number ewc (y) condenses a worst-case instantaneous
concept.

The significance of the (original) game in distance

Gdist
′







SE : dy
dt = f ′ (y,v, σ) = A′y +B′S (σ)v,

TS : T ′ =
¶
y ∈ R

2 : |l⊤y − V | ≥ D
©
,

PF : (y0,v, σ) 7→ Pdisto

f ′,T ′ (y0,v, σ) = inf
{

disto

(

y
f ′

y0,v,σ (t) ,T ′
)

: t ≥ 0
}

,

(formulated in Subsection 3.2.3) was established by the relation
»
R2
C + 1 disto

(
y,T ′) = E − |ewc (y)|

that exists between the absolute worst-case error |ewc (y)| and the oriented distance
disto (y,T ′) to T ′, for every y ∈ R

2, where E is the error tolerance specification.
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Actually, as argued in Subsection 3.2.4, to solve Gdist
′ is equivalent to solve

G|ewc|
′







SE : dy
dt = f ′ (y,v, σ) = A′y +B′S (σ)v,

TS : T ′ =
¶
y ∈ R

2 : |l⊤y − V | ≥ D
©
,

PF : (y0,v, σ) 7→ P |e
wc|

f ′,T ′ (y0,v, σ) = inf
{∣
∣
∣ewc

(

y
f ′

y0,v,σ (t)
)∣
∣
∣ : t ≥ 0

}

.

if the roles of P and E are interchanged letting P become the supremizer and letting
E become the infimizer. The absolute worst-case error value function V|ewc| : R2 →
R, i.e., the value function of the game G|ewc|

′, gives, for every initial state y ∈ R
2,

the worst-case error V|ewc| (y) along an infinite time horizon assuming P and E
play optimally. Therefore, for every y ∈ R

2, the real number V|ewc| (y) condenses
a worst-case looking ahead concept.

Consequently, it is worth noting that: the (instantaneous) absolute worst-case
error function y 7→ |ewc (y)| and the absolute worst-case error value function y 7→
V|ewc| (y) provide an instantaneous and looking ahead worst-case description of the
buck converter’s state-space, respectively.

As it was noted in Subsection 3.2.2, in general, the worst-case error cannot be
nullified even at states that lie at maximum oriented distance from T ′, because in

|ewc (y)| =

∣
∣
∣
∣
∣
∣
∣
∣

VLL0 +RM
IOmin + IOmax

2
︸ ︷︷ ︸

V

−l⊤y

∣
∣
∣
∣
∣
∣
∣
∣

+ |RM |
IOmax − IOmin

2
. (6.1)

the last term is zero only if RM = 0 (because assumption (A2) states that
IOmax is strictly greater than IOmin). Only if the mismatch RM = RC − RLL
is zero, the instantaneous worst-case error is equal to zero for states lying on the
line

¶
y ∈ R

2 : l⊤y = V
©

, at maximum oriented distance D√
R2

C
+1

from T ′. The

voltage difference

D = E − |RC −RLL|
IOmax − IOmin

2
(6.2)

is assumed positive by assumption (A7) in order to prevent the case of an empty
playing set (PS):

E
′ =
¶
y ∈ R

2 : |ewc (y)| < E
©
.

The case E ′ = ∅ is ruled out, because it leaves E without any chance of fulfilling
the control requirement: |e (t)| < E for every t ≥ 0, being e = vR − vO the error
signal.

In Chapter 5, the canonical game in distance

Gdist







SE : dz
dt = f (z, u, σ) = k (z − q (u, σ)) ,

TS : T = {z ∈ C : |ℑz| ≥ 1} ,
PF : (z0, u, σ) 7→ Pdisto

f,T (z0, u, σ) , inf
¶

do

Ä
zfz0,u,σ

(t) ,T
ä

: t ≥ 0
©
,

was solved, which is just a canonical for Gdist
′ formulated in the complex plane. As

explained at the end of Subsubsection 3.5.2.3, the value function of Gdist, denoted
Vdo : C→ R, relates to V|ewc| : R2 → R (the value function of G|ewc|

′) by

D Vdo (z) = E − V|ewc| (y) , (6.3)
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value function

where z =
î
1 j
ó
x = 〈x, ê1〉 + j 〈x, ê2〉 and x = h−1 (y) = 1

D

Ä
P−1y − V ê2

ä
, for

every y ∈ R
2, being h : R2 → R

2 the state-space transformation introduced in
Subsection 3.4.1 that transforms the realistic state-space into the canonical state
space. In particular, from (6.3),

D max
z∈C
Vdo (z) = E − min

y∈R2
V|ewc| (y) . (6.4)

Similarly, the oriented distance function z 7→ do(z,T ) to the target set T in the
canonical state-space relates to the worst-case error in the realistic state-space
y 7→ ewc (y) by

D do (z) = E − |ewc (y)| . (6.5)

Unfortunately (from E’s perspective), even in the case of exact resistance
matching, i.e., RC = RLL, a zero worst-case error, ewc (y0) = 0, associated with an
initial state y0 lying on the line

¶
y ∈ R

2 : l⊤y = V
©

at t = 0, cannot be granted
for every t ≥ 0. This is because

min
y∈R2

V|ewc| (y) > |RM |
IOmax − IOmin

2
(6.6)

as it results from (5.130), (6.4), and (6.2). However, if miny∈R2 V|ewc| (y) < E, E
can still fulfil the control requirement by using the feedback strategy

y 7→ σ̃∗
Ä¨
h−1 (y) , ê1

∂
+ j
¨
h−1 (y) , ê2

∂ä
(6.7)

where σ̃∗ : C → Σ is E’s optimal strategy for Gdist as constructed in Chapter 5.
If miny∈R2 V|ewc| (y) ≥ E, P can break completely E’s expectancy for fulfilling the
control requirement by using the feedback strategy

y 7→
[

IOmax ℜũ∗
Ä¨
h−1 (y) , ê1

∂
+ j
¨
h−1 (y) , ê2

∂ä

VImax ℑũ∗
Ä¨
h−1 (y) , ê1

∂
+ j
¨
h−1 (y) , ê2

∂ä
]

(6.8)

where ũ∗ : C → U is P’s optimal strategy for Gdist as constructed in Chapter 5,
or some ǫ-modification of it (as explained in Chapter 5) in case E is not limited
by a positive switching dwell time. In this more practically oriented chapter,
it is assumed that E is actually limited by a positive switching dwell time and
that its control set is the discrete set {0, 1}, so no modification of the strategy
ũ∗ : C → U will be needed by P. Instead, a relaxation of E’s optimal strategy
(6.7) will be introduced in Subsection 6.3.3 in order to prevent P from inducing E
into excessive chattering, even under the realistic limitation of a switching dwell
time tdw > 0 of the order of nanoseconds. Recall that in Chapter 5 the contrived
assumption of constant input voltage was introduced in order to solve the game,
so in (6.8) only the first (load current) component is actually relevant, because the
other component is equal to the constant VI , VImin = VImax.

As the state variable y =
î
iL vC

ó⊤
will be preferred, along this chapter, over

the dimensionless complex state variable z because of its physical meaning, so will
be the case of the real time t over the normalized time t = ωdt (introduced in
Subsection 3.4.3 while developing the canonical form of the conflict).
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6.2. A first guiding example

Parameter Description Value Unit

L Inductor’s inductance 310 nH
RL Inductor’s parasitic ESR 10 mΩ
C Capacitor’s capacitance 1.1 mF
RC Capacitor’s parasitic ESR 1.6 mΩ
IOmin Minimum load current 1 A
IOmax Maximum load current 50 A
VI = VImin = VImax Input voltage 5 V
VLL0 Open-circ. load ref. voltage 1.5 V
RLL Load line resistance 1.25 mΩ
E Error tolerance 80 mV

Table 6.1: Parameter values of a buck converter control problem example.

As an example, take the case of the control problem specified by the parameter
values detailed in Table 6.1. The absolute worst-case error value function y 7→
V|ewc| (y) and the instantaneous absolute worst-case error function y 7→ |ewc (y)|
for this example are represented graphically by their contour plots at the bottom of
Figure 6.1. At the upper part of the same figure the corresponding functions z 7→
Vdo (z) and z 7→ do (z), related to the former ones by (6.3) and (6.5), respectively,
are represented by their contour plots.

Observe in the contour plot of y 7→ |ewc (y)| that the minimum instantan-
eous absolute worst-case error is approximately 8.6 mV, which corresponds to the
evaluation of the second term in the RHS of (6.1).

The error tolerance for this example is E = 80 mV. The control requirement,
i.e., |e (t)| < E for every t ≥ 0, can be expected to be fulfilled by E, if he plays
optimally, for every initial state lying in the escape set (ES)

EE =
¶
y ∈ R

2 : V|ewc| (y) < E
©
. (6.9)

As it is visualized in Figure 6.1, obviously EE ⊂ E ′ =
{
y ∈ R

2 : |ewc (y)| < E
}
,

i.e., the ES (which is non-empty for this example) must be necessarily included in
the PS. The name escape set given to EE follows from the metaphorical reference
to the event of the control requirement being violated as the event of P “capturing”
E.
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Figure 6.1: Four related contour maps for the example of Table 6.1. Above: for z ∈ C,
contours of z 7→ Vdo

(z) (coloured closed curves) and contours of z 7→ do(z,T ) = 1 − |ℑz|
(dashed lines). Below: for y = iLê1 +vC ê2 ∈ R

2, contours of y 7→ V|ewc| (y) (coloured closed
curves) and contours of y 7→ |ewc (y)| (dashed lines). The lines vC = VLL0 − RLLiL (dot-
dashed), and iL = IOmin, iL = IOmax (densely dotted) in the iL–vC plane (at the bottom),
and their counterparts in the canonical state-space (at the top) are just helping lines.
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6.3. The solution as a control method

This is probably the most straightforward application of the solution of the
game in distance. Any optimal strategy for E is a natural feedback law to be
considered, at least theoretically, as a possible control law for a real buck converter
control problem.

6.3.1. The evader’s optimal strategy as it was proposed

To actually escape form P for every play starting in EE, E has to apply, for
example, the optimal strategy (6.7) (in the context of Gdist

′ or equivalently G|ewc|
′)

that results from the solution proposed in Chapter 5 for the canonical game Gdist.
E’s optimal strategy (6.7) for the current example is described graphically

in the upper part of Figure 6.2 by the coloured areas that cover the converter’s
realistic state-space taken as the plane iL–vC . For each point of this plane a well
defined control action is prescribed for E: either σ = 1 (switch ON), or σ = 0
(switch OFF).

To test this strategy, consider a play, starting at y (0) = [iL (0) , vC (0)]⊤ =
[40 A, 1.4 V]⊤, such that P keeps the load current iO (t) constant at its maximum
possible value IOmax = 50 A for every t ≥ 0, and E puts into practice the strategy
(6.7), as described by the coloured areas in Figure 6.2, except for the fact that his
switching action is limited by a dwell time constant tdw = 50 ns which prevents
successive switchings separated by an interval of time of length equal or less than
tdw.

The state-space trajectory of the numerically simulated play is represented in
Figure 6.2 by the black curve with an endpoint at the initial condition [40 A, 1.4 V]⊤.
Observe that when the state reaches the boundary of the (convex) valley of G|ewc|

′,
defined as the set

V =
®
y ∈ R

2 : V|ewc| (y) = min
y′∈R2

V|ewc|
(
y′
)
´

(6.10)

where the function y 7→ V|ewc| (y) attains its minimum

min
y∈R2

V|ewc| (y) ≈ 64.7 mV, (6.11)

E’s strategy (6.7) leads him into undesirable high frequency chattering (of the
order of megahertz), as it is appreciated in the plot of |ewc (t)| versus t at the
bottom of Figure 6.2. In fact, if E had not been limited by a positive dwell time
tdw, the situation would have been even worst because the converter’s state would
have incurred into a sliding motion along the boundary of V towards the line
iL = IOmax.
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Figure 6.2: For the example of Table 6.1, simulation of a play that starts at y (0) =
[iL (0) , vC (0)]⊤ = [40 A, 1.4 V]⊤. For each t ≥ 0, P applies a constant load current
iO (t) = IOmax = 50 A, and E selects the switching action σ (t) dictated by the strategy
derived for him from the proposed solution of the game in distance (indicated by the coloured
areas in the iL–vC state-space). Even though this strategy is optimal for E, it is not free
from sliding trajectories. To limit the converter’s switching frequency, the switch is purposely
limited by a 50 ns dwell time which gives rise to the observed chattering at 7.5 MHz.
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6.3.2. An equivalent optimal strategy for the evader

The observed chattering is unnecessary and is due to the arbitrary way in
which E’s strategy was defined in the valley V of G|ewc|

′ (or more properly in the
summit M of Gdist in Chapter 5). In fact, all that is required from an optimal
strategy for E to be such, is that it can prevent the state from crossing the level
curves of V|ewc| in the increasing direction. Since V|ewc| is constant in the valley V ,
E’s optimal strategy is not uniquely defined in V .

Recognizing these facts, an emendation of (6.7) is proposed as described graph-
ically by the coloured and non-coloured area of the iL–vC plane represented in
Figure 6.3. The proposal relies on the simple idea of not requiring E to act un-
less the state y reaches the boundary of the valley (6.10) where V|ewc| (y) is at
risk of increasing. The introduced hysteresis in E’s optimal strategy transforms it
into a control method that cannot be properly referred to as a feedback strategy.
However, it is still an optimal strategy for G|ewc|

′.
The proposed alternative for E’s original optimal strategy, as described graph-

ically in Figure 6.3, is tested in a simulated play with the same conditions that were
used before, that is to say: initial state at y (0) = [iL (0) , vC (0)]⊤ = [40 A, 1.4 V]⊤,
constant maximum load current iO (t) = IOmax = 50 A applied by P for every
t ≥ 0, and a switching action limitation imposed on E by a dwell time constant
tdw = 50 ns. The resulting state-space trajectory is illustrated in the iL–vC plane
represented in Figure 6.3 by the black curve with an endpoint at the initial state.
The state clearly “bounces” between the two smooth pieces of the boundary of
V as the state approaches the line iL = IOmax. Even though this state-space
trajectory is free from sliding motions, it presents an undesirable Zeno behaviour
which is only limited by the purposely imposed 50 ns dwell time on the switching
action. The resulting steady-state switching frequency, of the order of megahertz,
still precludes the proposed control method from being convenient from a practical
standpoint.

Note in Figure 6.3 that E cannot prevent the state from slightly abandoning V
in an small neighbourhood of the intersection point of V and the line iL = IOmax,
because of the positive dwell time limitation imposed on its switching action. This
fact (which confirms the practical implications of Proposition 4.3.4), allows P to
do without ǫ-saddle-point strategies in case he pretends to play optimally against
a dwell-time-limited evader.
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Figure 6.3: For the example of Table 6.1, simulation of a play starting at y (0) =
[iL (0) , vC (0)]⊤ = [40 A, 1.4 V]⊤. For each t ≥ 0, P applies a constant load current
iO (t) = IOmax = 50 A, and E selects the switching action σ (t) dictated by the strategy
derived for him from the proposed solution of the game in distance if V|ewc| (y (t)) >
min

{
V|ewc| (y) : y ∈ R

2
}
≈ 64.7 mV (see the coloured areas in the iL–vC state-space),

otherwise E leaves σ (t) = lims→t− σ (s) unchanged (see the non-coloured area in the iL–vC

state-space). It is assumed that lims→0− σ (s) = 0. This strategy is not properly a feedback
strategy, but still is optimal for E. However, it may produce Zeno behaviour as in this example;
limited, though, by the switch’s 50 ns dwell time which causes chattering at 7.5 MHz.
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6.3.3. A relaxation of the evader’s strategy

From the observation of the two previous simulation results, the remedy to
undesired sliding motions and Zeno behaviours appears to be clear. It comes at
the cost of sacrificing performance, in an administrable manner, though.

Suppose that for plays that start at y (0) in V , E resigns his ambition of
keeping the state y (t) in V for every t ≥ 0. For example, let λ > 0 quantify
E’s permissibility in this respect assuming that he does not act on the converter’s
switch unless the state escapes from

¶
y ∈ R

2 : V|ewc| (y) ≤ λ
©

, in which case he
applies the switching action dictated by his optimal strategy (6.7). As long as λ
can be chosen such that

min
y∈R2

V|ewc| (y) < λ < E,

the just proposed relaxed evader’s strategy (RES) of permissibility λ does not put
at risk the control requirement for plays that initiate in (6.9) while it extends the
remedial hysteresis outside from V .

In Figure 6.4 a RES of permissibility λ = 0.95E = 76 mV is described graph-
ically (by the coloured areas and the non-coloured area of the represented iL–vC
plane) for the example of Table 6.1 being considered. This is the maximum re-
laxation that can be introduced while still letting a 5 % guard band of E’s active
control against control requirement violations.

As before, a play starting at y (0) = [iL (0) , vC (0)]⊤ = [40 A, 1.4 V]⊤, such
that P applies iO (t) = IOmax = 50 A for every t ≥ 0, is simulated to test the
proposed relaxation of E’s optimal strategy, as described in Figure 6.4, except for
the realistic imposed limitation of a 50 ns dwell time constant on the switching
action.

By contrast with the previous simulation results, the resulting trajectory is
free from the (7.5 MHz)-frequency chattering that resulted from potential sliding
motions and Zeno behaviours that pushed the switching action to the limit of the
dwell time constant. Observe at the bottom of Figure 6.4 how |ewc (y (t))| remains
below E = 80 mV for every t ≥ 0, exhibiting an almost steady-state frequency
approximately equal to 700 kHz.

Having already addressed the problems related to sliding motions and Zeno
behaviours, consider the block diagram depicted in Figure 6.5. It describes how
a RES controller is proposed to control a buck converter. The access to the

converter’s state y (t) =
î
iL (t) , vC (t)

ó⊤
allows the RES controller to act on the

converter’s switch so as to prevent V|ewc| (y (t)) from increasing. However this pre-
supposes, from the RES controller, an exact knowledge of the parameters present
in Table 6.1, in particular of the parameters L, RL, C, and RC which characterize
the plant (i.e., the converter) under control. Such is the confidence on the con-
verter’s model encoded in the RES controller that error feedback information is
done away with, as graphically emphasised in the block diagram of Figure 6.5.
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Figure 6.4: For the example of Table 6.1, simulation of a play that starts at y (0) =
[iL (0) , vC (0)]⊤ = [40 A, 1.4 V]⊤. For each t ≥ 0, P applies a constant load current
iO (t) = IOmax = 50 A, and E selects the switching action σ (t) dictated by the strategy derived
for him from the proposed solution of the game in distance if V|ewc| (y (t)) > 0.95E = 76 mV
(see the coloured areas), otherwise E leaves σ (t) = lims→t− σ (s) unchanged (see the non-
coloured area in the iL–vC state-space). It is assumed that lims→0− σ (s) = 0. This relaxed
version of E’s optimal strategy is free from the 7.5 MHz chattering observed in Figures 6.2
and 6.3 (related to the 50 ns dwell time of the converter’s switch), at least for y (0) such that
V|ewc| (y (0)) ≤ 76 mV. The almost steady-state 694.4 kHz frequency observed in the figure is
much lower than 7.5 MHz.
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Figure 6.5: Block diagram of the RES-controlled buck converter, under the assumption of
constant input voltage.

6.3.4. Some common methods of buck converter control

To explore the RES (proposed in Subsection 6.3.3) as a control method for
the example of Table 6.1, its disturbance rejection performance was evaluated and
compared to other few common control methods, as will be reported in Subsec-
tion 6.3.5, by simulating the controlled converter response to an extreme load
current pulse driving signal.

The selected controllers against which the RES controller was compared are
the following: a) PID controller, b) hysteresis (H) controller, and c) SM controller.
This subsection is devoted to briefly explain how each controller was virtually
implemented and tuned.

The ideal of a fair comparison among the considered controllers influences each
tuning method, particularly in connection with the maximum demanded switching
frequency. Nonetheless, since the information required by each controller varies
from case to case, the comparison among them is just illustrative and not claimed
to be completely fair.

6.3.4.1. The PID controller

The PID controller is by far the most common control algorithm used in in-
dustry and buck converter control is not an exception in this respect.

Recall the simplified buck converter model described by the circuit diagram
of Figure 3.2. The equations (3.4)–(3.6) that rule the dynamics of this model are
rewritten next for ease of use:

L
diL
dt

= σVI −RLiL − vC −RC (iL − iO) , (6.12)

C
dvC
dt

= iL − iO, (6.13)

vO = RC (iL − iO) + vC , (6.14)
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where vI was substituted by VI to remind that the input voltage is assumed con-
stant. Actually, for the example of Table 6.1 being considered, and for all the ex-
amples of this chapter the symbol VI is used to denote the constant VImin = VImax.

Under synchronous operation of the buck converter, the switching action t 7→
σ (t), which appears in (6.12), results from a PWM technique that encodes a
control signal t 7→ d (t) as the duty cycle of t 7→ σ (t). The technique is modelled
as follows. A periodic sawtooth signal of period Ts > 0 and unitary amplitude
defined as

t 7→ w (t) =
t− iTs

Ts
if t ∈ [iTs, (i+ 1)Ts) ,

for every i ∈ Z, is compared to a control signal t 7→ d (t) ∈ [0, 1] to generate

t 7→ σ (t) =

{

1 if t ∈ [iTs, (i+ 1)Ts) and d (t′) ≥ w (t′) for every t′ ∈ [iTs, t] ,

0 otherwise,

for every i ∈ Z. Notice that for each i ∈ Z, the idealised converter’s switch is
compulsorily turned on at the beginning of the period interval [iTs, (i+ 1)Ts), and
the comparison between both signals (that eventually turns off the switch during
the same period interval) remains active only if the switch has not already been
turned off during the same period interval. Once the switch has been turned off
during the period interval [iTs, (i+ 1)Ts), it cannot be turned on again until the
beginning of the next period interval [(i+ 1)Ts, (i+ 2)Ts). This latched PWM
prevents multiple switchings during the same period interval in case the control
signal t 7→ d (t) varies too quickly with respect to t 7→ w (t).

Averaging the equations (6.12)–(6.14) over a moving-average-window of length
Ts, the following averaged model is obtained for the buck converter under syn-
chronous operation:

L
d 〈iL〉

dt
= VId−RL 〈iL〉 − 〈vC〉 −RC (〈iL〉 − 〈iO〉) , (6.15)

C
d 〈vC〉

dt
= 〈iL〉 − 〈iO〉 , (6.16)

〈vO〉 = RC (〈iL〉 − 〈iO〉) + 〈vC〉 , (6.17)

where 〈x〉 stands for the averaged signal

t 7→ 〈x〉 (t) , 1
Ts

∫ t

t−Ts

x (t) dt

of the generic signal t 7→ x (t). Observe that d = 〈σ〉 in (6.15).
Taking Laplace transforms (assuming zero initial conditions) in the above equa-

tions and isolating 〈vO〉 (s) in terms of 〈d〉 (s) and 〈iO〉 (s), we get

〈vO〉 (s) = VI
RCCs+ 1

LCs2 + (RL +RC)Cs+ 1
︸ ︷︷ ︸

Hd
BUCK(s)

d (s)− (Ls+RL) (RCCs+ 1)
LCs2 + (RL +RC)Cs+ 1
︸ ︷︷ ︸

H
iO
BUCK(s)

〈iO〉 (s)

(6.18)
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where, abusing notation, s 7→ 〈vO〉 (s), s 7→ d (s), and s 7→ iO (s) stand for the
Laplace transforms of t 7→ 〈vO〉 (t), t 7→ d (t), and t 7→ 〈iO〉 (t), respectively.
The transfer functions, Hd

BUCK and H iO
BUCK, introduced above provide an input-

output description of the synchronous buck converter averaged model, under the
assumption of constant input voltage. Recalling definitions (3.35) this second order
model may be expressed as

〈vO〉 (s) = VI
ω2
n (RCCs+ 1)

s2 + 2ζωns+ ω2
n

︸ ︷︷ ︸

Hd
BUCK(s)

d (s)− ω2
n (Ls+RL) (RCCs+ 1)

s2 + 2ζωns+ ω2
n

︸ ︷︷ ︸

H
iO
BUCK(s)

〈iO〉 (s) (6.19)

where ωn = 1√
LC

and ζ = RL+RC

2ωnL
are its natural frequency and its damping ratio,

respectively. Observe that ζ < 1 and ωn < 1
RCC

because of assumptions (A8) and
(A9), respectively

The PID controller is compelled to act on d so as to keep the error e =
VLL0 − RLLiO − vO as close to zero as possible. Therefore, it has to compensate,
to the best of its ability, the disturbing effect that iO has on the error e (see
the block diagram of Figure 6.6). A signal t 7→ dPID (t) is computed by the PID
controller such that its Laplace transform s 7→ dPID (s) is given (assuming zero
initial conditions) by

dPID (s) = KP

Ñ
1 +

1
TIs

+
TDs

TD

ND
s+ 1

é

︸ ︷︷ ︸

HPID(s)

e (s) , (6.20)

where s 7→ e (s) is the Laplace transform of the error signal t 7→ e (t), and HPID is
the transfer function of the PID controller. The factor TD

ND
s+1 is deliberatively in-

troduced into the otherwise pure PID transfer function, i.e., KP

Ä
1 + 1

TIs
+ TDs

ä
,

so that high-frequency measurement noise is amplified at most by a factor KPND.
However, the signal that is actually used as input for the latched PWM is neces-
sarily of the saturated form

d (t) =







1 if dPID (t) > 1,

0 if dPID (t) < 0,

dPID (t) otherwise.

(6.21)

To prevent integral windup, i.e., to prevent the integral action from becom-
ing too large when saturation of d (t) takes place (either towards 1 or 0), an
anti-windup mechanism is incorporated in the simulated PID controller. The se-
lected mechanism, which consists in stopping integration if dPID (t) 6= d (t) and
e (t) dPID (t) > 0, is reported in [78] to be the best scheme among other variants
of the conditional integration approach to avoid integral windup.

Let a , TITD
Ä
1 + 1

ND

ä
, b , TI + TD

ND
, and c , TD

ND
, so that the open-loop

transfer function can be expressed as

HOL (s) , Hd
BUCK (s)HPID (s) =

KPVI
TIs

ω2
na

(

s2 + b
a
s+ 1

a

s2 + 2ζωns+ ω2
n

)

RCCs+ 1
cs+ 1

.
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Figure 6.6: Block diagram of the PID-controlled synchronous buck converter, under the as-
sumption of constant input voltage.

To tune the PID controller parameters a classical loop-shaping methodology
is followed, based on the following criteria which seeks an uniform −20 dB

dec slope
of the straight-line magnitude Bode approximation of HOL without recourse to
non-real zero-pole cancellations, and an open-loop unit gain bandwidth as high
as possible but not so high as to risk the validity of the averaged model thereby
incurring excessive ripple on the output voltage.

PID controller tuning criteria:

1. Medium frequency real zeros at the converter’s natural frequency.
The zeros of HPID are demanded to be real and to have an angular
frequency equal to ωn.

2. High-frequency pole placed so as to achieve zero-pole cancellation.
The high-frequency pole of HPID must cancel the zero of Hd

BUCK.

3. Compromise selection of the open-loop unit gain bandwidth.
The gain crossover frequency of HOL must be equal to one sixth of the
PWM frequency.

PID controller tuning methodology:
Firstly, from criterion 1: a = 1

ω2
n

and b = 2
ωn

, so that s2 + b
a
s + 1

a
=

s2 + 2ωns+ ω2
n = (s+ ωn)2. Secondly, from criterion 2: c = RCC. Thirdly,

having determined the values of a, b, and c, the values of TI , TD and ND

are obtained as follows:

TI = b− c,
TD =

a

b− c − c,

ND =
a

c (b− c) − 1.
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Figure 6.7: For the control problem example of Table 6.1, Bode plots of the frequency response
of: the buck converter subsystem Hd

BUCK, the tuned PID-controller HPID, and the resulting
open-loop HOL = Hd

BUCKHPID.

Finally, from 3:
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∣
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Choosing a PWM switching frequency fs , T−1
s of 700 kHz and following the

just described tuning methodology for the example of Table 6.1, the following
parameter values were obtained for the PID controller: KP = 5.107 V−1, TI =
35.17 µs, TD = 7.935 µs, ND = 4.509. The corresponding Bode plots of Hd

BUCK,
HPID, and HOL are illustrated in Figure 6.7.

Aiming fairness between the PID controller and the RES controller, the PWM
switching frequency was chosen close to the steady-state switching frequency ex-
hibited by the RES of permissibility λ = 76 mV under maximum constant load
current (as observed in Figure 6.4). This is the constant load condition found to
demand the highest switching frequency from the RES-controller for the current
example. A fact that can be intuitively attributable to the proximity of the the
line {(iL, vC) : iL = IOmax} to “rightmost” corner point of

¶
y : V|ewc| (y) ≤ λ

©

(see Figure 6.4).
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6.3.4.2. Tuning of the hysteresis controller

The hysteresis (H) controller acts on the converter’s idealised switch according
the following simple error-dependent law:

σ (t) =







1 if e (t) ≥ EH ,
0 if e (t) ≤ −EH ,
limt′→t− σ (t′) otherwise,

(6.22)

where e (t) = vR (t) − vO (t) = VLL0 − RLLiO (t) − vO (t) is the voltage error (see
Figure 6.8). The amplitude EH > 0 of the hysteresis band is the only parameter
that needs to be set a value in order to tune the H controller.

With the aim of achieving comparable maximum switching frequencies, among
the different controllers being tested on the example of Table 6.1, the parameter
EH was selected by iterative trial-and-error simulations until the observed steady-
state switching frequency of the H-controlled converter was close to 700 kHz, while
being driven by maximum constant load current. The resulting value was EH =
0.05E = 4 mV.

VLL0

RLL

H
controller

Buck
conv.

vO

iO

−
vO

vR e σ−−

Figure 6.8: Block diagram of the H-controlled buck converter, under the assumption of con-
stant input voltage.

6.3.4.3. Tuning of the sliding mode controller

As a third and last alternative to the RES controller (described in Subsec-
tion 6.3.3), a sliding mode (SM) controller proposed in [25] was simulated in charge
of the control problem of Table 6.1.

In [25] the load of the converter is modelled by a resistance. However, in our
set-up the load of the converter is modelled a by an independent current source
(see Figure 3.2). To adapt the SM controller proposal described in [25] to our set-
up, the following converter’s nominal parameters are defined: nominal load current
IOnom , 1

2 (IOmin + IOmax), nominal output voltage VOnom , VLL0 − RLLIOnom,
and nominal output resistance Rload

nom , VOnom
IOnom

.
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Figure 6.9: Block diagram of the SM-controlled buck converter, under the assumption of
constant input voltage.

The SM controller (as proposed in [25]) acts on the converter’s switch according
to

σ (t) =







1 if S (e (t) , iC (t)) ≥ κ,
0 if S (e (t) , iC (t)) ≤ −κ,
limt′→t− σ (t′) otherwise.

(6.23)

where

κ =
VOnom

Ä
1− VOnom

VI

ä

2fSdL
(6.24)

is the amplitude of an hysteresis band deliberately introduced to avoid sliding-
mode chattering. The desired nominal switching frequency fSd determines the
amplitude of the hysteresis band. The switching function

(e , iC) 7→ S (e , iC) =
1

Rload
nom

e − iC , (6.25)

where e = vR − vO = VLL0 − RLLiO − vO is the voltage error (see Figure 6.9)
and iC = C dvC

dt is the current through the converter’s capacitor (see Figure 3.2),
defines a switching line {(e , iC) : S (e , iC) = 0} towards which the moving point
(e (t) , iC (t)) is directed to by the SM controller’s action. Once (e (t) , iC (t))
reaches the switching line, if (e (t) , iC (t)) starts tracking the sliding line towards
(0, 0), the controlled system is said to enter into sliding mode. In [25], the pre-
cise sliding mode existence regions in the e–iC plane are studied. The controller
formulated above is proposed by the authors as a practical and systematic way of
approaching buck converter control with a SM control methodology.

Having introduced IOnom, VOnom, and Rload
nom in terms of the parameters of

Table 6.1 as just detailed, the only parameter value that needs to be set in order
to tune the simulated SM controller is the desired switching frequency fSd. Aiming
a fair as possible comparison among the tested controllers, this parameter value
was set to fSd = 700 kHz.
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6.3.5. Disturbance rejection performance

The four controllers (RES, PID, H, and SM), tuned as explained before, were
virtually put in charge of the buck converter control problem of Table 6.1. In par-
ticular, the performance of each of them was evaluated in response to a disturbing
driving pulse of maximum amplitude (IOmax − IOmin = 49 A) in the load current,
departing from the controlled steady-state regime that corresponds to constant
minimum load current (IOmin = 1 A). The pulse’s 120 µs length was selected so as
to let each response reach an almost steady-state regime.

In Figure 6.10 the simulated disturbance and resulting output voltage signal
for each case are plotted. Alongside each output voltage (continuous line), the
reference voltage (dot-dashed line) and the ±E-tolerance band (dashed lines) are
also plotted to ease the checking of the control requirement.

Notice that, as it was intended, the maximum switching frequencies are com-
parable among the different cases. However, the switching frequency range exhib-
ited by the RES-controlled buck is much more wider than for the rest of the cases.
Depending on the application, this may be an issue or not. The RES controller,
as it was defined, requires a minimal switching effort in the sense that it acts only
when the control requirement fulfilment is put at risk. This property is desirable
if a variable-frequency output voltage ripple is of no concern. However, if the fre-
quency range of the output voltage ripple is required to be narrow, the RES does
not seem to be an attractive control method.

On the other hand, the RES controller is clearly the only one which actually
fulfils the control requirement. This is achieved, however, at the cost of a much
more complicated control algorithm, specifically designed to verify the control
requirement (if it is possible at all), based on: i) exact knowledge of each of the
control problem parameters, and ii) perfect full-state feedback.

Observe that, interestingly, while the controllers PID, H, and SM actively seek
to reduce the steady-state error, the RES controller maintains it at a quite high
level (close to the tolerance E) in order to “cover himself” against future load
current transients. This salient difference is explained by the fact that the RES
focuses in keeping low the future potentially attainable absolute worst-case error
V|ewc| (y (t)), while all the other tested controllers focus on keeping low the current
absolute error |e (t)|.

In Figure 6.11 the time interval [110 µs, 190 µs], during which the load current
steps down at the instant 120 µs, is examined closely for each tested controller.
At the left side of the figure the absolute error |e (t)| and the absolute worst-case
error |ewc (t)| are plotted versus time t. At the right side of the figure the state-

space trajectory [110 µs, 190 µs] ∋ t 7→ y (t) =
î
iL (t) vC (t)

ó⊤
is plotted on the

iL–vC plane enhanced with the contour maps of y 7→ V|ewc| (y) (coloured closed
lines) and y 7→ |ewc (y)| (dashed straight lines). The dot-dashed line in the iL–
vC plane represents the line {(iL, vC) : vC = VLL0 −RLLiL} where the average
steady-state error is zero (because, from (6.16), it must be 〈iL〉 = 〈iO〉 in steady-
state, and consequently, from (6.17), 〈vO〉 = 〈vC〉)1.

1Averaging is understood here over a moving-average window whose length is equal to
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Figure 6.10: For the example of Table 6.1, a pulse in the load current (iO), of amplitude
IOmax − IOmin = 49 A and duration 120 µs, is used as the driving disturbance to simulate
the response of the converter controlled by different controllers: (a) Proportional-Integral-
Derivative (PID) controller, (b) Hysteresis (H) controller, (c) Sliding Mode (SM) controller,
(d) Relaxed Evader’s Strategy (RES) controller. In each case, the input voltage (vI) is kept
constant at VI = 5 V and the converter’s switch is limited by a 50 ns dwell time. The
synchronous PID-controlled buck is operated at 700 kHz which is approximately the same
steady-state frequency exhibited by the RES-controlled buck at maximum load current. The H
controller and the SM controller are tuned so as to exhibit comparable switching frequencies.
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Figure 6.11: For each controller case and for t ∈ [110 µs, 190 µs], the absolute error t 7→ |e (t)|
and the absolute worst-case error t 7→ |ewc (y (t))| (at the left), and the state-space trajectory

t 7→ y (t) = [iL (t) , vC (t)]⊤ (at the right), that corresponds to same case in Figure 6.10.
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Observe that every tested controller, except the RES controller, seeks the zero
steady-state error condition. If the buck converter is not controlled by the RES
controller, before the load current falling edge the state fluctuates around the right
endpoint of the segment {(iL, vC) : vC = VLL0 −RLLiL ∧ iL ∈ [IOmin, IOmax]},
while after the load current falling edge the state tends to fluctuate around the left
endpoint of the same segment. Quite differently, the RES controller disregards the
relative position of the state to the line {(iL, vC) : vC = VLL0 −RLLiL}. Instead,
the RES controller continuously monitors the current-state evaluation of the abso-
lute worst-case error value function, i.e., V|ewc| (y (t)), and takes a corrective action
only when it reaches a risky level, namely the permissibility level λ = 76 mV. This
causes the RES-controlled buck’s state to fluctuate around a point on the line
{(iL, vC) : iL = IOmax}, before the load current falling edge, that is distant from
the zero average steady-state error line {(iL, vC) : vC = VLL0 −RLLiL}. Simil-
arly, after the load current falling edge, the state tends to steady-state fluctu-
ation around a point on the line {(iL, vC) : iL = IOmin} that is distant from
{(iL, vC) : vC = VLL0 −RLLiL}. As it is appreciated at the left side of Fig-
ure 6.11, this particular behaviour of the RES controller exchanges steady-state
performance for worst-case transient disturbance rejection performance.

6.3.6. Robustness of performance to model parametric uncertainty

The superior disturbance rejection performance exhibited by the RES control-
ler over the other tested controllers, is worthy of attention only if it is at least
minimally robust against uncertainty in the converter’s model. This is an issue
of practical importance that, although deserves deep analysis, has been left out
of the scope of this thesis. However, just in order to get a better overall look of
the simulation results reported before, a simple sensitivity analysis with respect
to variations in the converter’s model parameters is exposed next.

Consider the values detailed in Table 6.1 for the parameters L, RL, C, and RC
as nominal values. There are sixteen ways of simultaneously varying ±10 % each
of these nominal values. Each way is identified by a value setting identification
number between 1 and 16 in Table 6.2, where “+” denotes a 10 % increment
of the nominal value, “−” denotes a 10 % decrement of the nominal value, and
“·” denotes no deviation from the nominal value. The identification number 0 in
Table 6.2 corresponds to parameters L, RL, C, and RC set to nominal values.

For each value-setting of the converter’s parameters L, RL, C, and RC , the
quantity

min
y∈R2

V|ewc| (y) , (6.26)

is given in Table 6.2 at the left of the double vertical line. The absolute worst-
case error value function V|ewc| attains its minimum (6.26) in the convex set (6.10)
introduced before as the valley of G|ewc|

′. For nominal values, this set is represented

the steady-state period, which varies from case to case. For the PID case the steady-state
period is known beforehand because it must equal the PWM period Ts; for each other
case, it can be determined from the simulation results.
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6.3. The solution as a control method

by the area delimited by the innermost level curve at the bottom of Figure 6.1.
The minimum (6.26) and the valley where it is attained by V|ewc| depend on all
the parameter values present in Table 6.1 (which define an instance of G|ewc|

′), but
since the only values that vary along the rows of Table 6.2 are the values of L, RL,
C, and RC , the quantity (6.26) may be regarded (as used in the current context) as
a theoretical minimum error figure of merit of the converter’s parameters selection
with regard to the control requirement, regardless of the applied control method.
The higher this figure, the more difficult it is for a controller (any) to fulfil the
control requirement; because the higher (6.26), the smaller the escape set (6.9).

The remaining values reported in Table 6.2 were obtained as follows. For each
value-setting of the converter’s parameters L, RL, C, and RC , the four controllers
under test (PID, H, SM, and RES) were put in charge of the converter’s control,
without modifying their originally tuned parameter values (intended for nominal
values of L, RL, C, and RC). The performance exhibited by each controller against
the same disturbing load current driving pulse used in Subsection 6.3.5, was quan-
tified by evaluating the performance index

max
t∈[−10 µs,190 µs]

|e (t)| , (6.27)

reported in Table 6.2, at the right of the double vertical line, for each value-setting
of the converter’s parameters. Accordingly, the last four columns of Table 6.2
express how the performance of each controller improves or deteriorates as the
converter’s parameter values deviate from the nominal ones.

In the bar chart of Figure 6.12 the controller’s performances are compared
graphically among each other and to the minimum of V|ewc|, for each value-setting
identification number. Notice that the (6.27) fluctuations roughly follow the (6.26)
fluctuations regardless the control method, corroborating the role of (6.26) as a
theoretical minimum error figure of merit for the converter’s parameters with re-
spect to the control requirement. Moreover, observe that the RES controller out-
performs each of the other three controllers, for every value setting. Even for the
RES controller’s worst performance, which takes place for the value setting identi-
fied by number 10, the RES controller achieves the best performance (118.7 mV),
followed by the SM controller (143.1 mV). The simulated signals for this particular
value setting are plotted in Figure 6.13.

Assuming the control problem given by Table 6.1 is a truly representative
example, it may concluded from the previous simulation results that the RES
controller performs quite satisfactorily, and that it has an acceptable robustness
against moderate parametric uncertainty in the converter’s model. That being
said, it is clear that further (simulated and real) experiments need to be carried
out in order to evaluate the performance and robustness of the proposed control
method with broader generality. Besides, even if the previous simulations were
conceded general value, it may well be considered that a 112.7 mV − 76.0 mV =
36.7 mV performance increase for the nominal converter (which deteriorates to
143.1 mV− 118.7 mV = 24.4 mV in case of 10 % simultaneous deviations from the
nominal one) is not worth the cost of implementing a much more complicated
control method than the SM control.

233



Chapter 6. Simulations

min
y∈R2

V|ewc| (y) max
t∈[−10 µs,190 µs]

|e (t)|
(mV) (mV)

Id. L RL C RC PID H SM RES
0 · · · · 64.7 128.4 131.1 112.7 76.0
1 - - - - 65.8 139.1 115.6 131.8 75.6
2 - - - + 66.9 129.2 142.2 109.2 78.7
3 - - + - 49.5 108.0 107.1 94.7 75.6
4 - - + + 51.0 99.1 102.3 90.3 78.4
5 - + - - 62.6 133.1 136.1 128.0 75.6
6 - + - + 63.7 122.4 129.6 107.0 79.2
7 - + + - 46.9 103.4 92.8 94.0 75.6
8 - + + + 48.5 93.8 102.4 80.9 78.4
9 + - - - 85.9 178.3 152.9 166.2 118.3
10 + - - + 86.6 168.6 154.4 143.1 118.7
11 + - + - 65.8 140.5 139.2 120.5 78.5
12 + - + + 66.9 131.8 138.2 120.7 80.5
13 + + - - 82.0 171.0 143.2 153.7 92.7
14 + + - + 82.8 161.6 168.5 153.7 102.3
15 + + + - 62.6 134.2 135.8 125.8 75.6
16 + + + + 63.7 126.0 111.6 112.2 79.4

Table 6.2: For the control problem example of Table 6.1, results of a comparative disturbance
rejection performance sensitivity analysis with respect to 10 % simultaneous deviations from
nominal values (as indicated in Table 6.1) of the converter’s parameters: L, RL, C, and RC .
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Figure 6.12: Graphical representation of the values of Table 6.2. The value setting identification
numbers are ordered from left to right according to increasing values of miny∈R2 V|ewc| (y).
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Figure 6.13: Pulse response simulations analogous to the ones of Figure 6.10 except for the
fact that the parameters L and RC are set 10 % higher than their nominal values, and the
parameters RL and C are set 10 % lower than their nominal values, while the controllers are
left tuned for nominal values of L, RL, C, and RC .
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6.4. The solution as a benchmark for control methods

Within the differential game theory framework, in which the buck converter
control problem was formulated, both players (P and E) compete on equal terms.
They both have access to perfect full state feedback and they both have exact
knowledge of the converter’s dynamics. Therefore, P’s optimal strategy, obtained
as part of the solution of the game in distance, can be considered as a benchmark
test for any buck converter controller candidate. This benchmarking aspect of the
game’s solution is explored in this section by numerical simulations in which the
previously introduced controllers are embodied in E to play against P’s optimal
strategy.

Reconsider the control problem specified by the parameters of Table 6.1 as a
concrete instance of the game in distance Gdist

′ with P as the infimizer and E as
the supremizer (or equivalently the game G|ewc|

′ with P as the supremizer and E
as the infimizer) in which VI = VImin = VImax. In this context, P’s load current
optimal strategy (given by the first component of (6.8)) is represented graphically
in Figure 6.14. P can play optimally against E without recurring to ǫ-modifications
of this strategy because (as throughout this chapter) it is assumed that E is limited
by a 50 ns dwell time between consecutive switchings.

In the same context, consider E adopting different strategies to play against P.
In particular, consider E playing like: a) a proportional-integral-derivative (PID)
controller, b) an hysteresis (H) controller, c) a sliding mode (SM) controller, and d)
a relaxed evader’s strategy (RES) controller of permissibility λ = 0.95E = 76 mV.
In each case, with the controller tuned as explained in the previous section. Sup-
pose that for t < 0, P plays a constant nominal load current IOnom = IOmin+IOmax

2 =
25.5 A, but at t = 0 he starts playing according to his optimal strategy (as de-
scribed by Figure 6.14). Let the time origin be defined such that at t = 0, the
controlled buck has already reached a steady-state regime, regardless of the par-
ticular controller role adopted by E.

The load current t 7→ iO (t) and output voltage t 7→ vO (t) that results from
each of the just conceived simulated plays are plotted in Figure 6.15. Along with
each output voltage signal, the reference voltage t 7→ vR (t) and its ±E tolerance
band are also plotted. The corresponding absolute errors t 7→ |e (t)|, absolute
worst-case errors t 7→ |ewc (y (t))|, and the state-space trajectories t 7→ y (t) =
[iL (t) , vC (t)]⊤, restricted to t ∈ [−20 µs, 200 µs] are plotted in Figure 6.16.

Notice that the performance of each controller incarnated in E is quite good,
except for the H controller which is mislead by P into a limit cycle with points
that lie significantly beyond the boundary of

{
y ∈ R

2 : |ewc (y)| < E = 80 mV
}
.

These simulation results look deceptive at first glance. As a benchmark for the
control problem, P’s optimal strategy does not seem sufficiently harmful to the
PID, SM, and RES controllers. However, nothing is wrong behind these results.
For each initial state y ∈ R

2 at t = 0, P’s optimal strategy (6.8) must secure P
an absolute worst-case error, to be attained at some t > 0, greater or equal than
V|ewc| (y). At the right side of Figure 6.16 it can be confirmed that this is indeed
the case, regardless the particular type of opposition faced from E. Of course, P
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Figure 6.14: For the example of Table 6.1, P’s optimal strategy (indicated by the coloured
areas in the figure) for the game in distance Gdist

′ or, equivalently, G|ewc|
′.

could do more to increase the outcome of the play played, for example, against
E in its role of PID controller. However, doing so would not be optimal for P,
because he would be risking to end up with an outcome lower than V|ewc| (y) in
case E decides not to play as a PID controller, but as an optimal opponent instead.

Notice in Figure 6.16 that, for the previous simulations, the initial condition
lies in the valley (6.10), regardless the control method adopted by E. This is due
to the benevolent choice (from E’s viewpoint) of having set the load current to
its constant nominal value, before transferring the control of the load current to
P’s optimal strategy at t = 0. If analogous plays to ones previously simulated
are started from the steady-state regime that corresponds to constant maximum
load current (instead of nominal load current), the harmfulness of P’s optimal
strategy becomes more evident as it can be appreciated in Figures 6.17 and 6.18.
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Figure 6.15: For the example of Table 6.1, E plays against P’s optimal strategy as different
controllers. The controllers are: (a) Proportional-Integral-Derivative (PID) controller, (b)
Hysteresis (H) controller, (c) Sliding Mode (SM) controller, (d) Relaxed Evader’s Strategy
(RES) controller. For t ≥ 0, P applies his optimal strategy, but for t < 0, the load current is
held constant at its nominal value IOnom = 25.5 A. At t = 0, the controlled buck has already
reached a steady-state regime, regardless the particular controller role adopted by E.
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Figure 6.16: For each controller case and for t ∈ [−20 µs, 200 µs], the absolute error t 7→ |e (t)|
and the absolute worst-case error t 7→ |ewc (y (t))| (at the left), and the state-space trajectory

t 7→ y (t) = [iL (t) , vC (t)]⊤ (at the right), that corresponds to same case in Figure 6.15.
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Figure 6.17: For the example of Table 6.1, E plays against P’s optimal strategy as different
controllers. The controllers are: (a) Proportional-Integral-Derivative (PID) controller, (b)
Hysteresis (H) controller, (c) Sliding Mode (SM) controller, (d) Relaxed Evader’s Strategy
(RES) controller. For t ≥ 0, P applies his optimal strategy, but for t < 0, the load current is
held constant at its maximum value IOmax = 50 A. At t = 0, the controlled buck has already
reached a steady-state regime, regardless the particular controller role adopted by E.
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Figure 6.18: For each controller case and for t ∈ [−20 µs, 200 µs], the absolute error t 7→ |e (t)|
and the absolute worst-case error t 7→ |ewc (y (t))| (at the left), and the state-space trajectory

t 7→ y (t) = [iL (t) , vC (t)]⊤ (at the right), that corresponds to same case in Figure 6.17.
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Before P starts applying its optimal strategy, i.e., for t < 0, every tested control-
ler, except RES, achieves a steady-state regime with the state of the converter
fluctuating closely around the point (iL, vC) = (IOmax, VLL0 −RLLIOmax) where
the function V|ewc| takes a value close to 120 mV. The RES controller instead,
achieves a steady-state regime such that the state fluctuates around a point on the
line {(iL, vC) : iL = IOmax} without crossing the 76 mV-level curve of the func-
tion V|ewc| in the increasing direction. Therefore, when the control of the load
current is transferred to P’s optimal strategy, the RES controller is in a much
better initial condition to start facing his optimal opponent than the rest of the
tested controllers. However, this is at the cost of tolerating higher error peaks at
the steady-state regime attained before t = 0 than the other controllers.

The atypical treatment given by the RES controller to the steady-state initial
regime driven by maximum load current, makes the difference after the control
of the load current is taken by P’s optimal strategy. While the RES controller
can fulfil the requirement of keeping the error below 80 mV for every t ≥ 0, the
other controllers cannot prevent the error voltage from climbing up to more than
120 mV, as it can be observed in Figure 6.18.

6.5. The solution as a design tool

The aspect to be discussed in this section, was already introduced in Sub-
section 6.3.6 where the minimum of the absolute worst-case error value function
was proposed to quantify how the difficulty of the buck converter control problem
changes, as the values set for the converter’s parameters L, RL, C, and RC deviate
from the nominal ones.

The family
¶¶
y ∈ R

2 : V|ewc| (y) ≤ λ
©

: λ ≥ 0
©

of inf-level sets of the func-
tion V|ewc| is a family of nested convex compact subsets of R

2 that covers the
whole state-space. Therefore, the value taken by V|ewc| at its lowest inf-level set,
i.e., the valley V =

¶
y ∈ R

2 : V|ewc| (y) = miny′∈R2 V|ewc| (y′)
©

, appears to be an
appropriate theoretical minimum error figure of merit to quantify (globally) the
suitability of the converter’s parameters with regard to the control problem; the
higher this figure, the more difficult the control problem. The brief numerical
analysis reported in this section supports this idea.

Suppose that within the buck converter control problem detailed in Table 6.1
the values Ln = 310 nH and Cn = 1.1 mF given for parameters L and C, re-
spectively, are just preliminary nominal values chosen during a first design phase
of the buck converter, which can still be varied ±50 % before selecting the final
values. Leaving aside every design issue other than the control requirement, the
designer could ask himself how to select these two values so as to achieve the best
performance from the control system. For example, the designer might tempor-
arily disregard cost, current ripple, output voltage ripple, heat dissipation, and
physical dimensions, among other specific design issues, to focus solely on how the
selection of the converter’s inductor and capacitor affects the control problem’s
difficulty. Of course, the selection of these two components impacts on the values
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Figure 6.19: For the example of Table 6.1, deformation of the set V (i.e., the valley of
G|ewc|

′) as L and C deviate independently from the nominal preliminary values Ln = 310 nH
and Cn = 1.1 mF. Above: L varies from 0.5L to 1.5L while C = Cn is held constant. Below:
C varies from 0.5C to 1.5C while L = Ln is held constant.
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of the four converter’s parameters L, RL, C, and RC . However, for simplicity, it
is assumed here that the values indicated in Table 6.1 for the ESRs RL and RC ,
remain unchanged even if the values of L and C vary. If, for example, RL and
RC where known functions of L and C, respectively, such dependencies could be
easily included in the numerical analysis presented next.

In Figure 6.19 different instances of the valley V are represented by its bound-
ary as the values set to L and C vary independently. At the upper part of the
figure, L varies from 0.5Ln to 1.5Ln while C = Cn remains constant. A the lower
part of the figure, C varies from 0.5Cn to 1.5Cn while L = Ln remains constant.
The colour-map indicates the value miny∈R2 V|ewc| (y) attained by V|ewc| at each of
the represented particular instances of V . Observe how the shape of V adapts
better to the level curves of y 7→ |ewc (y)| (which are pairs of straight lines) as L

decreases or as C increases. In particular, it adapts better to the pair of straight
lines (represented by dashed black lines) which delimit the safe band in state-
space where P cannot violate the 80 mV control requirement by an instantaneous
selection of an appropriate extreme load current value.

The observed trends suggest that, making use of the stipulated restricted free-
dom of choice for the values of L and C, the buck converter’s designer should set
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Figure 6.20: For preliminary nominal values for L and C selected as Ln = 310 nH and
Ln = 1.1 mF, respectively, the contour map of (L,C) 7→ miny∈R2 V|ewc| (y) defined with
every parameter other than L and C set as indicated in Table 6.1. The figure of merit
miny∈R2 V|ewc| (y) is minimized, in the restricted domain [0.5Ln, 1.5Ln]× [0.5Cn, 1.5Cn], by
selecting L = 0.5Ln = 155 nH and C = 1.5Cn = 1.65 mF.
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Figure 6.21: Four related contour maps for the example of Table 6.1 after decreasing 50 % the
value specified for L and after increasing 50 % the value specified for C. Above: for z ∈ C,
contours of z 7→ Vdo

(z) (coloured closed curves) and contours of z 7→ do(z,T ) = 1 − |ℑz|
(dashed lines). Below: for y = iLê1 +vC ê2 ∈ R

2, contours of y 7→ V|ewc| (y) (coloured closed
curves) and contours of y 7→ |ewc (y)| (dashed lines). The lines vC = VLL0 − RLLiL (dot-
dashed), and iL = IOmin, iL = IOmax (densely dotted) in the iL–vC plane (at the bottom),
and their counterparts in the canonical state-space (at the top) are just helping lines.
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L = 0.5Ln = 155 nH and C = 1.5Cn = 1.65 mF, in order to prioritize the pro-
spect of the converter to fulfil the control requirement above every other design
issue. These suggestion is confirmed by the contour map illustrated in Figure 6.20
which corresponds to the function (L,C) 7→ miny∈R2 V|ewc| (y) defined such that
every parameter other than L and C is set as indicated in Table 6.1. The con-
tour map shows that the figure of merit min

¶
V|ewc| (y) : y ∈ R

2
©

is minimized,
in the restricted domain [0.5Ln, 1.5Ln] × [0.5Cn, 1.5Cn], by selecting L = 0.5Ln
and C = 1.5Cn.

At the bottom of Figure 6.21 the absolute worst-case error value function y 7→
V|ewc| (y) and the instantaneous absolute worst-case error function y 7→ |ewc (y)| for
the finally selected values (L = 155 nH and C = 1.65 mF) are represented graphic-
ally by their contour plots. At the upper part of the same figure the corresponding
functions z 7→ Vdo (z) and z 7→ do (z), related to the former ones by (6.3) and
(6.5), respectively, are represented by their contour plots. Compare the contour
plots of Figure 6.21, which correspond to the optimized converter’s design, with
the contour plots of Figure 6.1, which correspond to the non-optimized preliminary
converter’s design. Qualitatively, the level curves of V|ewc| adapt much better to
the level curves of |ewc| for the optimized design than for the non-optimized one.
Quantitatively, miny∈R2 V|ewc| (y) is reduced from 64.7 mV to 11.8 mV by the op-
timized selection of values for L and C. Each of these two values is the expression
of an error that the converter’s controller cannot avoid in a worst-case scenario,
regardless its virtues, even if the converter’s initial state conveniently lies in V . For
this reason, miny∈R2 V|ewc| (y) was introduced in Subsection 6.3.6 as a theoretical
minimum error figure of merit. Notice that an approximate 82 % reduction (i.e.,
improvement) of this figure was achieved by two simultaneous ±50 % deviations
from preliminary nominal values.

To test the optimized design, simulations analogous to the ones disused in
Section 6.4 were carried out and are reported next. The controllers previously
embodied in E to play against P’s optimal strategy for the nominal parameters
of Table 6.1, were retuned for the optimized converter’s design (i.e., taking into
account the new values 155 nH and 1.65 mF set to L and C, respectively) fol-
lowing the same tuning criteria described in Subsection 6.3.4. In particular, the
RES controller was retuned to a permissibility of 23 mV which yields a switching
frequency of 671.7 kHz at maximum load current, and the amplitude of the hyster-
esis band of the H controller was set to 9 mV which yields a switching frequency
of 681.3 kHz at maximum load current. The PID controller was retuned acknow-
ledging the new values for L and C, but its switching frequency was maintained
at 700 kHz. Accordingly, the SM controller needed not be re-tuned, because its
desired switching frequency was consistently set to equal the switching frequency
of the PID-controlled converter.

For each simulated play, the control of the load current is transferred to P’s
optimal strategy at t = 0, after a controlled steady-state regime has already been
reached. The simulation results are graphically shown in Figures 6.22 and 6.23.
Compare these figures with Figures 6.17 and 6.18, which correspond to analogous
simulations for the non-optimized converter. It is evident that the optimization
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Figure 6.22: For the example of Table 6.1, with the values of L and C changed so as to
minimize miny∈R2 V|ewc| (y), E plays against P’s optimal strategy as different controllers: (a)
Proportional-Integral-Derivative (PID) controller, (b) Hysteresis (H) controller, (c) Sliding
Mode (SM) controller, (d) Relaxed Evader’s Strategy (RES) controller. For t ≥ 0, P applies
his optimal strategy, but for t < 0, the load current is held constant at its maximum value
IOmax = 50 A. At t = 0, the controlled buck has already reached a steady-state regime.
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Figure 6.23: For each controller case the absolute error t 7→ |e (t)| and the absolute worst-case

error t 7→ |ewc (y (t))| (at the left), and the state-space trajectory t 7→ y (t) = [iL (t) , vC (t)]⊤

(at the right), that corresponds to same case in Figure 6.22.

248



6.6. The solution as a design verification tool

of the figure of merit miny∈R2 V|ewc| (y), with respect to L and C in the stipulated
restricted domain of optimization, has eased the job of each tested controller.

Even though, the RES controller is still the one that exhibits the best perform-
ance (evaluated by the performance index maxt∈[−5 µs,30 µs] |e (t)|) in rejecting the
disturbance synthesised by P, the other controllers also perform quite satisfact-
orily. Indeed, none of them fails to fulfil the control requirement which requires
|e (t)| < E = 80 mV for every t ≥ 0. In case of the PID and SM controllers, with-
sout incurring into high frequency chattering as is the case for the H controller.

These results show that the RES controller may not be as desirable as it may
seem at first glance, at least if there is some room for optimization of some of the
parameters that pose the control problem (i.e., some of the parameters present
in Table 6.1). Any reasonable designer would not abandon the well established
PID-control method, if there was no good reason for doing it.

In real-world buck converter designs, several factor are considered. One of
them is the performance of the control system. The solution of the buck converter
game in distance contributes qualitatively and quantitatively to address the design
of the converter with an eye on the control problem.

6.6. The solution as a design verification tool

This last aspect of the solution of the game in distance arises from the obser-
vation that it embeds the solution of the game of kind associated to the under-
lying pursuit-evasion (buck converter) conflict, which is common to both games.
Although a seemingly trivial observation, it is worth noting because of the the-
oretical and practical relevance of functional verification in electronic design. By
contrast with the game in distance, the game of kind is concerned only with the
determination of whether the control requirement can be fulfilled or not, but not
to which extent. Accordingly, the solution of the game of kind answers some of
the “yes” or “no” type of questions that a buck converter design verification tool
should raise.

6.6.1. Negative verification of the control requirement

Take as an example the buck converter control problem given by the parameter
values listed in Table 6.3. Suppose that an hypothetical novel control method is
claimed to fulfil the requirement |e (t)| < E for every t ≥ 0, for every initial state
in the non-empty set X ⊂ R

2, regardless the load current disturbance signal. This
claim can be true only if

{

EE 6= ∅,
X ⊂ EE,

(6.28)

where EE =
¶
y ∈ R

2 : V|ewc| (y) < E
©

is the escape set (for E).
The claim about the hypothetical controller’s competence can be promptly

proved to be false by noticing that the evaluation of the converter’s theoretical
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Parameter Description Value Unit

L Inductor’s inductance 800 nH
RL Inductor’s parasitic ESR 10 mΩ
C Capacitor’s capacitance 1 mF
RC Capacitor’s parasitic ESR 1.65 mΩ
IOmin Minimum load current 5 A
IOmax Maximum load current 100 A
VI = VImin = VImax Input voltage 12 V
VLL0 Open-circ. load ref. voltage 1 V
RLL Load line resistance 1.25 mΩ
E Error tolerance 80 mV

Table 6.3: Parameter values of an unsolvable buck converter control problem example.

minimum error figure of merit

min
y∈R2

V|ewc| (y) (6.29)

exceeds the error tolerance, i.e., miny∈R2 V|ewc| (y) ≈ 965 mV > E = 80 mV. Hence,
EE =

¶
y ∈ R

2 : V|ewc| (y) < E
©

= ∅ violating the first condition in (6.28).
In the context of the canonical buck converter game of kind, the escape set

is EE = {z ∈ C : Vdo (z) > 0}. Besides, since (6.29) is related to the normalized
maximum oriented distance figure of merit

max
z∈C
Vdo (z) (6.30)

by (6.4), determining whether EE (or EE) is empty or not is equivalent to determin-
ing whether (6.30) is positive or not. For the example, maxz∈C Vdo (z) ≈ −14.5 <

0, which confirms that the hypothetical control method is actually a fiasco.
Examining Figure 6.24, where the contour maps of Vdo and V|ewc| are illus-

trated, the same conclusion may be arrived recognizing that the highest sup-level
set of Vdo is not included in E = {z ∈ C : |ℑz| < 1} (the canonical PS), or
equivalently recognizing that the lowest inf-level set of V|ewc| is not included in
E ′ =

{
y ∈ R

2 : |ewc (y)| < E
}

(the realistic PS). However, it is worth noticing
that for proving the infeasibility of the hypothetical controller, all that is actually
needed is to evaluate the sign of (6.30).

In conclusion, the evaluation of the sign of (6.30) may be used as a negat-
ive verification of a converter’s design (meaning values selected for L, RL, C, RC ,
IOmin, IOmax, and VI) with respect to a control requirement (meaning values selec-
ted for VLL0, RLL, and E). If (6.30) is negative, there exists no controller capable
of fulfilling the control requirement in a worst-case scenario. If (6.30) is positive,
(6.30) quantifies, in the normalized range (0, 1), the available room for designing
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Figure 6.24: Four related contour maps for the example of Table 6.3. Above: for z ∈ C,
contours of z 7→ Vdo

(z) (coloured closed curves) and contours of z 7→ do(z,T ) = 1 − |ℑz|
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2, and their counterparts in C are just helping lines.
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a controller with better performance than the strictly necessary. In voltage units,
the available room can be expressed as (recall (6.4)):

D max
z∈C
Vdo (z) = E − min

y∈R2
V|ewc| (y) . (6.31)

Observe that the evaluation of (6.30) involves solving an unrestricted maxim-
ization problem, which is amenable to numerical treatment because its objective
function is quasi-concave and defined solely in terms of normalized dimensionless
parameter values.

If a vivid proof of the infeasibility of the hypothetical controller is demanded, a
simulation of a play of E, playing as the controller, against P, applying his optimal
strategy, can be performed as it is exemplified next. For the control problem being
considered, the four controllers (PID, H, SM, and RES), already introduced, were
taken as examples of the hypothetical overestimated controller imagined before.
Each of them was tuned following the same tuning methodology already used,
though tailored to the parameters of Table 6.3. The PWM switching frequency fs,
of the PID-controlled buck, was selected as 250 kHz. The SM-controller’s desired
frequency fSd was set equal to fs. The parameters EH and λ (of the H and
RES controllers, respectively) were set (by trial and error) to 6.5 mV and 1 V,
respectively, so as to achieve closed-loop switching frequencies, at maximum load
current, comparable to fs. Each simulated play, during which E plays as one of
the four controllers, starts at t = 0 from a steady-state regime, driven by constant
maximum load current (IOmax = 100 A). For t ≥ 0, the control of the load current
is assigned to P’s optimal strategy.

The results of these simulations are represented graphically in Figures 6.25
and 6.26. Plainly evident, every tested controller fails to keep e (t) < E for every
t ≥ 0.

In each of the four simulations carried out, the initial steady-state regime was
selected to be driven by the maximum load current (IOmax = 100 A), so that the
initial condition for every controlled buck, other than the RES-controlled one, lies
as far away as possible from the valley

V =
®
y ∈ R

2 : V|ewc| (y) = min
y′∈R2

V|ewc|
(
y′
)
´
,

where miny′∈R2 V|ewc| (y′) ≈ 965 mV. In this way, the superior performance of the
RES controller, over the other three ones, is clearly appreciated, even for this
unsolvable control problem. Nevertheless, a more benevolent initial steady-state
regime driven by, for example nominal current (IOnom = IOmin+IOmax

2 = 52.5 A),
could have been equally chosen to prove the controllers infeasibility. Even though
V|ewc| is constant in V , P’s optimal strategy, as it was defined, is able to pull the
state towards the boundary of V and subsequently force matters so that a worst
case error greater or equal than miny∈R2 V|ewc| (y) ≈ 965 mV is attained at last.

6.6.2. Negative verification of the claimed performance

The buck converter design example of Table 6.3 did not pass the negative veri-
fication, proposed above, with respect to the fulfilment of the control requirement.
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If it had passed it, the ultimate fulfilment or not of the control requirement would
have obviously depended on the selection of the controller.

In general, once a controller has been selected, it can be verified against false
performance claims as follows. Let η ∈ (0, 1), and suppose the selected controller
is claimed to be able to keep |e (t)| < ηE for every t ≥ 0, for every initial state
in the non-empty set X ⊂ R

2. In this hypothetical context, in addition to (6.28),
the following condition must also hold

ηE ≥ min
y∈R2

V|ewc| (y) . (6.32)

Otherwise, the claim is false. Hence, the inequality (6.32) may be used as negative
verification of the selected controller’s claimed performance (quantified by η) with
respect to the control problem (posed by the values given to L, RL, C, RC , IOmin,
IOmax, VI , VLL0, RLL, and E). Notice that, by virtue of (6.31), the verification
(6.32) does not require to solve a new optimization problem if (6.30) has already
been solved.

Again, if a vivid proof of the claim’s falsehood is demanded, a simulation can
be carried out. As an example, reconsider the problem posed by Table 6.1 and
the simulations of Figures 6.15 and 6.16. These simulations are the vivid proof
that neither PID, H, SM, nor, RES can fulfil |e (t)| < ηE, for every t ≥ 0, if

η <
min

y∈R2 V|ewc|(y)

E
≈ 64.7 mV

80 mV ≈ 0.809.
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Figure 6.25: For the example of Table 6.3, E plays against P’s optimal strategy as different
controllers. The controllers are: (a) Proportional-Integral-Derivative (PID) controller, (b)
Hysteresis (H) controller, (c) Sliding Mode (SM) controller, (d) Relaxed Evader’s Strategy
(RES) controller. For t ≥ 0, P applies his optimal strategy, but for t < 0, the load current is
held constant at its maximum value IOmax = 100 A. At t = 0, the controlled buck has already
reached a steady-state regime, regardless the particular controller role adopted by E.
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Figure 6.26: For each controller case, the absolute error t 7→ |e (t)| and the absolute worst-case

error t 7→ |ewc (y (t))| (at the left), and the state-space trajectory t 7→ y (t) = [iL (t) , vC (t)]⊤

(at the right), that corresponds to same case in Figure 6.25.
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Chapter 6. Simulations

6.7. Concluding remarks

Different application aspects of the solution of the buck converter game in
distance were explored in this chapter.

A relaxed version of the evader’s optimal strategy was proposed as a buck
converter’s control method and was tested in numerical simulations. Not surpris-
ingly, being a computationally expensive control method that requires full-state
feedback, it exhibited quite good disturbance rejection performance, without in-
curring into high frequency chattering as the non-relaxed (pure) optimal strategy
does. However, it was observed that steady-state performance is exchanged for
transient performance, and that the switching frequency varies significantly from
a steady-state regime to another. More significant is the finding that, by contrast
to what was expected, the proposed control method showed an acceptable degree
of robustness against moderate model parameter uncertainty, at least for the case
studied. Nevertheless, this desirable property, needs further confirmation.

The counterpart of the evader’s optimal strategy is the pursuer’s optimal
strategy, which was shown to be an appropriate disturbance synthesiser in sim-
ulated benchmark tests, set up for buck converter controller candidates. As the
evader’s optimal strategy, its implementation requires full-state feedback and ex-
act knowledge of the converter’s parameters, to continuously evaluate the current
value of the game’s value function. Such level of complexity, which may be imprac-
tical for a converter’s controller, may be justifiable for an automated benchmarking
platform. Yet, the selection of the initial state, from where each benchmark test
is initiated, must be selected with some care in order to actually reproduce the
intended worst case scenario. This selection is easily guided by the examination
of the contour plot of the game’s value function.

Actually, it is the exploitation of the game’s value function, rather than its
optimal strategies, what appears to be more fruitful from a practical standpoint.
In particular, it was argued and supported by simulations that the global finite
extremum of the game’s value function quantifies the suitability of the converter
with respect to the control requirement. Accordingly, this quantity was proposed as
figure of merit of each possible converter–requirement pair instance that may result
from a particular assignment of vales to the game’s parameters. The proposed
figure of merit can be evaluated to perform negative verifications on finished buck
converter designs, or partially optimized (with respect to one or more parameters
under given restrictions) during the design process itself to ease as much as possible
the controller’s job.
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Chapter 7

Conclusions and future work

7.1. Conclusions

The buck converter control problem, was precisely formulated in the realm
of differential game theory as a pursuit-evasion conflict where the controller
acts as the evader (E) and the disturbances on the load current and the input
voltage act as the pursuer (P). The conflict gives rise to at least two nat-
ural pursuit-evasion games of degree: a game in distance (actually oriented
distance) and a game in time. Roughly stated, for each possible converter’s
initial condition, the value function of the former game quantifies to which
extent the control requirement can be fulfilled or not, while the value func-
tion of the second game, quantifies how long the violation of the control
requirement can be delayed, always considering a worst-case scenario from
E’s viewpoint. The related game of kind, which is concerned only with the
determination of whether the control requirement can be fulfilled or not (but
not to which extent), is plainly embedded in both games of degree. However,
for the buck controller’s designer, the solution of the game in distance is,
from both games of degree, the one that renders more valuable information.
In addition, the game in distance, as it turned out to be the case, has the
numerically desirable virtue of having a continuous value function, which
is not the case for the game in time if the escape set is not empty, i.e., if
there exists at least one initial condition from where the control requirement
can be fulfilled. As pointed out in [50], the boundary of the escape set, i.e.,
the barrier of the game may be conveniently computed in an intrinsically
numerically robust manner as the zero level set of the value function of the
game in distance (because its gradient does not vanishes and is finite there).
For these reasons, the game in distance derived from the buck converter
conflict was taken as the central object of study of this thesis.

The real Jordan form underlying the autonomous converter’s dynamics was
used along a non-dimensionalisation process of the original conflict formu-
lation to propose a canonical form for the buck converter conflict, and its
related games, under quite general assumptions. Accordingly, every buck
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converter conflict originally posed in a 11-dimensional parameter-space can
be reduced to its canonical form in a 7-dimensional parameter-space of di-
mensionless parameters. This reduction allows to systematically and con-
sistently analyse the general buck converter control problem in the realm of
differential game theory. Moreover, the proposed canonical form can be eas-
ily interpreted geometrically as a kinematic conflict in the plane, enhancing
thereby intuition about the converter’s switched model dynamics.

The Isaacs’ condition was proved to hold for both the game in distance
and the game in time, even though the related Hamiltonians are not separ-
able due to the multiplicative interaction between the input voltage and the
switching action.

Every semi-permeable curve associated to the dynamics of canonical buck
converter conflict was found to belong to one of the eight possible families
of such curves characterized in Section 4.5. The four negatively oriented
families were shown to be the elementary building blocks underlying the
solution of the game in distance.

The game in distance was solved under quite general natural assumptions,
except for one: the assumption that the converter’s input voltage is con-
stant. The sacrifice in generality introduced by this contrived assumption
is compensated by the presence of central symmetry in the game, making it
reducible to two unilateral (simpler) games.

Three qualitative different cases, associated with how a positive dimension-
less derived parameter compares to unity, were identified in the parameter-
space of the game in distance. From the two non-limiting cases, one is
distinguished by the existence of a limit cycle in the field of optimal traject-
ories.

Different application aspects of the solution of the game in distance were
suggested and supported by numerical simulations. Among these, the one
that appears to contribute more to the real problem of buck converter con-
trol, is the aspect related with the possibility of quantifying the suitableness
of the converter to the control problem by a figure of merit, computable by
finding the finite extremum of the game’s value function. The awareness of
this figure allows for its optimization whenever it is possible, and expounds
the inevitable theoretical limits to what can be expected from any control
method.

7.2. Future work

Determine whether the value function of the canonical game in distance
(under the assumptions it was solved) is concave in general, or not. It is
quasi-concave, and no evidence of non-concavity was found in the examples
considered. However, a proof of generic concavity is still pending. Such proof
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would endow the figure of merit mentioned before with an additional virtue,
since concave maximization is particularly suited for numerical treatment.

Solve the game in distance as it was formulated in Chapter 3, i.e., without
assuming that the converter’s input voltage is constant. Removing this
assumption would make the solution of the game in distance much more
relevant, since it would allow the model to take account of the fact that in
real applications buck converters are usually fed by poorly regulated voltage
sources.

Develop the generic solution of the game in distance in a mathematically rig-
orous state-of-the-art theoretical framework. In this thesis Isaacs-Breakwell
classical approach was followed to address the buck converter game in dis-
tance. This problem-solution oriented approach was proved adequate to
yield immediate practical results. Nevertheless, a modern approach to the
same problem would serve to corroborate the results reported here, and
maybe, hopefully, would also shed light about the two previously enumer-
ated items. The most reasonable theoretical framework to carry out this
plan seems to be the widespread theory of viscosity solutions [65]. A rare
example in which this theory is applied to a game in distance, instead of
a game of time, is found in [50], where the “second order servomechanism
problem” (a problem that has a lot in common with the buck converter
conflict) is addressed. Another possible approach could be the theory of
minimax solutions [64]. Attending the exactness of a purely numerical ap-
proach, even viability theory [66], which relies on set-valued analysis, should
be invoked, as suggested in [50]. Closer investigation of these theories con-
stitutes another further work in itself.

Explore further the application aspects of the solution of the game in dis-
tance briefly discussed in Chapter 6. In particular, the benchmarking aspect
of the solution of the game in distance, could be exploited to perform a broad
comparison of an up-to-date set of the numerous control methods proposed
in the literature for buck converter control. Another aspect that deserves a
more realistic discussion than the one presented here, is the one related to
the benefit of optimizing (at least to a certain degree) the proposed figure
of merit.
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Appendix A

Geometric interpretation of the

state-space transformation

A.1. Some basic planar affine transformations

A function T : Rn → R
n is called a an affine transformation if

T ((1− s)x+ sy) = (1− s) T (x) + sT (y) for any x,y ∈ R
n and s ∈ R. So, by

definition, affine transformations preserve collinearity and proportions on lines.
Given an affine transformation T : R

2 → R
2, there exists a unique linear

transformation L (called the linear part of T) and a unique vector y ∈ R
2, such

that T (·) = L (·) + y. If det (L) > 0, T is orientation-preserving; if det (L) < 0,
T it is orientation-reversing.

The following functions are examples of affine planar transformations. In each
definition, θ, k ∈ R and y ∈ R

2.

1. Rotation of angle θ: x 7→ Rθ (x) ,
ñ
cos θ − sin θ
sin θ cos θ

ô
x.

2. Positive right-angle rotation: x 7→ x⊥ , R π
2

(x) .

3. Shear of factor k along ê1 : x 7→ Shê1,k (x) ,
ñ
1 k
0 1

ô
x.

4. Shear of factor k along ê2: x 7→ Shê2,k (x) ,
ñ
1 0
k 1

ô
x.

5. Scaling of factor k along ê1: x 7→ Scê1,k (x) ,
ñ
k 0
0 1

ô
x.

6. Scaling of factor k along ê2: x 7→ Scê2,k (x) ,
ñ
1 0
0 k

ô
x.

7. Translation by y: x 7→ Try (x) , x+ y.

Except for the translation, all these transformations are linear transformations.
Note that x⊥

⊥
= −x and Rθ (x) = x cos θ + x⊥ sin θ.



Appendix A. Geometric interpretation of the state-space transformation

A.2. Decomposition of the state space transformation

In Subsection 3.4.1 a function h : R2 → R
2 is defined as

h (x) , P (Dx+ V ê2) ,

where P ,
√

1−ζ2

(ζ−λ)2+1−ζ2
1
R





1 − ζ−λ√
1−ζ2

−λR (1−ζλ)√
1−ζ2

R



, V , VLL0 + RM
IOmin+IOmax

2 ,D ,

E − |RM | IOmax−IOmin
2 , RM , RC −RLL, ωn , 1√

LC
, ζ , 1

2ωn

Ä
RL+RC

L

ä
, R ,

»
L
C

,

and λ , RC

R
. What is more, its inverse h−1 : R

2 → R
2 defines a state-space

transformation

y = [iL, vC ]⊤ 7→ [x1, x2]⊤ = x = h−1 (y) =
1
D

Ä
P−1y − V ê2

ä
. (A.1)

which allows for canonization of the buck converter conflict presented.
The state-space transformation (A.1) admits a simple geometric interpretation

in terms of affine transformations that follows from the following matrix decom-
position:

P−1 =

[ 1−ζλ√
1−ζ2

R ζ−λ√
1−ζ2

λR 1

]

=
ñ
s1 0
0 1

ô ñ
1 k1

0 1

ô ñ
1 0
k2 1

ô
, (A.2)

where s1 = (ζ−λ)2+1−ζ2√
1−ζ2

R > 0, k1 = ζ−λ
(ζ−λ)2+1−ζ2R

−1 and k2 = λR > 0. Sub-

stitution of (A.2) in (A.1) makes explicit the fact that h−1 is a shear along ê2,
followed by a shear along ê1, followed by scalings (along ê1 and ê2), followed by
a translation along ê2:

x = h−1 (y) =
1
D
P−1y − V

D
ê2

=
1
D

ñ
s1 0
0 1

ô ñ
1 k1

0 1

ô ñ
1 0
k2 1

ô
y − V

D
ê2

=
ñ
s1
D

0
0 1

ô ñ
1 0
0 1

D

ô ñ
1 k1

0 1

ô ñ
1 0
k2 1

ô
y − V

D
ê2

=
(

Tr− V
D
ê2
◦ Scê1,

s1
D
◦ Scê2,

1
D
◦ Shê1,k1 ◦ Shê2,k2

)

(y) .

Similarly,

P =

√

1− ζ2

(ζ − λ)2 + 1− ζ2

1
R





1 − ζ−λ√
1−ζ2

−λR 1−ζλ√
1−ζ2

R



 =
ñ

1 0
−k2 1

ô ñ
1 −k1

0 1

ô ñ
1
s1

0
0 1

ô
,

(A.3)
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y x− y

y − y0 x

1
D
P−1 · = Scê1,

s1
D
◦ Scê2,

1
D
◦ Shê1,k1 ◦ Shê2,k2

h−1

Trx0

DP · = Shê2,−k2 ◦ Shê1,−k1 ◦ Scê2,D ◦ Scê1,
D
s1

Try0

Figure A.1: Decomposition of the state space transformation h−1 : R2 → R
2 and its inverse.

and therefore

y = h (x) = DPx+ V P ê2

= D

ñ
1 0
−k2 1

ô ñ
1 −k1

0 1

ô ñ
1
s1

0
0 1

ô
x+ V P ê2

=
ñ

1 0
−k2 1

ô ñ
1 −k1

0 1

ô ñ
1 0
0 D

ô ñ
D
s1

0
0 1

ô
x+ V P ê2

=
Å

Tr+V P ê2
◦ Shê2,−k2 ◦ Shê1,−k1 ◦ Scê2,D ◦ Scê1,

D
s1

ã
(x) .

Naming

y0 , h (0) = V P ê2 =

√

1− ζ2

(ζ − λ)2 + 1− ζ2

V

R





− ζ−λ√
1−ζ2

1−ζλ√
1−ζ2

R



 ,

x0 , h−1 (0) = −V
D
ê2 = −V

D

ñ
0
1

ô
,

the commutative diagram of Figure A.1 summarizes this active plane-deformation
interpretation of h−1 and its inverse.

Observe that h−1 is a composition of orientation preserving transformations,
so it must preserve orientation. This can be verified by noting that its Jacobian
det

(
∂h−1

∂y
(y)
)

= 1
D2 (detP )−1 is positive.

Another way of looking at h−1, results from introducing

y1 , h (ê1)− y0 = DP ê1 =

√

1− ζ2

(ζ − λ)2 + 1− ζ2

D

R

ñ
1
−λR

ô
,

y2 , h (ê2)− y0 = DP ê2 =

√

1− ζ2

(ζ − λ)2 + 1− ζ2

D

R





− ζ−λ√
1−ζ2

1−ζλ√
1−ζ2

R



 .

Vectors y1 and y2 are, respectively, the first and second columns of matrix DP .
They are linearly independent because det (DP ) = D2 detP > 0, so {y1,y2} is
an ordered base of R

2. The normalized state was introduced as x , h−1 (y) =
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1
D

Ä
P−1y − V ê2

ä
, but this is equivalent to define x as the coordinate vector of

y − y0 relative to {y1,y2}, i.e.,

x =
ñ
x1

x2

ô
, [y − y0]{y1,y2}, (A.4)

because x = 1
D

Ä
P−1y − V ê2

ä
if and only if y − y0 = DPx = x1y1 + x2y2.

Likewise, introducing

x1 , h−1 (ê1)− x0 =
1
D
P−1ê1 =

1
D

[ 1−ζλ√
1−ζ2

R

λR

]

,

x2 , h−1 (ê2)− x0 =
1
D
P−1ê2 =

1
D

[ ζ−λ√
1−ζ2

1

]

,

y can be recovered back from x as

y =
ñ
z1

z2

ô
= [x− x0]{x1,x2}, (A.5)

because y = DPx+ V P ê2 if and only if x− x0 = 1
D
P−1y = z1x1 + z2x2.

In this passive interpretation of h−1, the components of x = h−1 (y) are the
coordinates of vector y with respect to the referential {y0, {y1,y2}}. Note that
this is a very special referential; the line through y0 oriented along y1 is the middle
axis of the band E ′ =

{
y ∈ R

2 : |〈l,y〉 − V | < D
}
, because |〈l,y0〉 − V | = 0 and

〈l,y1〉 = 0. Also, the point y0 + y2 lays on the boundary of E ′ that corresponds
to the ROVC, because 〈l,y2〉 − V = D.

Regarded with the usual inner product of R2, the basis {y1,y2} is not ortho-
gonal, but if each of its elements is mapped by the linear part of h−1, the standard
basis of R2 is obtained, i.e.,

¶
1
D
P−1y1,

1
D
P−1y2

©
= {ê1, ê2}. In addition, 1

D
P−1·,

the unique linear transformation that relate both ordered bases, has positive de-
terminant det

Ä
1
D
P−1

ä
= 1

D2 (detP )−1, so (by definition of the orientation of a
basis in a vector space) the basis {y1,y2} has the same orientation as {ê1, ê2}.
This last one is usually conventionally declared as positively oriented.

Since {y1,y2} is a basis of R
2, the original state space can be parametrized

as the plane {y0 + x1y1 + x2y2 : x1, x2 ∈ R}. The function h−1 takes any point
y = y0 + x1y1 + x2y2 of this plane to

h−1 (y) =
1
D
P−1 (y0 + x1y1 + x2y2)− V

D
ê2

=
1
D
P−1 (V P ê2) + x1

1
D
P−1y1 + x2

1
D
P−1y2 −

V

D
ê2

= x1ê1 + x2ê2.

These equalities, show explicitly that y0 is mapped to the origin, lines oriented
along y1 are mapped to lines oriented along ê1, and lines oriented along y2 are
mapped to lines oriented along ê2.
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Miscellaneous calculations

B.1. The derivation of the return map

In Section 5.6, the ρ-parametrized family of state-space characteristic traject-
ories that results form integrating the RPE given by (5.23)–(5.24) with initial
conditions

zρ|τ=0 = zρ,0 = a− ρ
k

|k| , (B.1)

p|τ=0 = p0 = −j, (B.2)

over a retro-time interval of length 2π was found to be

τ 7→ zρ (τ) =







a+ e (κ−j)(τ−τ0) (zρ,0 − a) if τ ∈ [0, τ1] ,

b+ e (κ−j)(τ−τ1) (zρ (τ1)− b) if τ ∈ (τ1, τ2] ,

c+ e (κ−j)(τ−τ2) (zρ (τ2)− c) if τ ∈ (τ2, τ3] ,

d+ e (κ−j)(τ−τ3) (zρ (τ3)− d) if τ ∈ (τ3, τ4] ,

a+ e (κ−j)(τ−τ4) (zρ (τ4)− a) if τ ∈ (τ4, 2π) ,

(B.3)

where τ1 = γ1 , π
2 + 2β−α, τ2− τ1 = γ2 , π

2 − β, τ3− τ2 = γ3 , π
2 + β, τ4− τ3 =

γ4 , π
2 −β, and 2π− τ4 = γ5 , α−β are positive; and γ1 +γ2 +γ3 +γ4 +γ5 = 2π.

The parameter ρ was assumed to be positive in (B.1) (because of the analysis
carried out in Section 5.4), but it may well be allowed to be any real number.
In that case, the ρ-parametrized family (B.3) is still the family of state-space
characteristic trajectories that results from integrating blindly the RPE. Here,
this broader conception of the initial condition (B.1) is assumed.

For notational convenience, let ρ′ ∈ R take the place of ρ in (B.1) and (B.3)
so that the symbol ρ is free to be used next, i.e.,

zρ′

∣
∣
τ=0 = zρ′,0 = a+ ρ′e j( π

2
−α), ρ′ ∈ R, (B.4)
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τ 7→ zρ′ (τ) =







a + e−k(τ−τ0)
(
zρ′,0 − a

)
if τ ∈ [0, τ1] ,

b+ e−k(τ−τ1)
(
zρ′ (τ1)− b) if τ ∈ (τ1, τ2] ,

c+ e−k(τ−τ2)
(
zρ′ (τ2)− c) if τ ∈ (τ2, τ3] ,

d+ e−k(τ−τ3)
(
zρ′ (τ3)− d) if τ ∈ (τ3, τ4] ,

a+ e−k(τ−τ4)
(
zρ′ (τ4)− a) if τ ∈ (τ4, 2π) ,

(B.5)

where − k
|k| was replaced by e j( π

2
−α) in (B.4) and κ− j was replaced by −k in (B.5).

Also for notational convenience, let

zρ′

Ä
(2π)−

ä
, lim

τ→(2π)−
zρ′ (τ) . (B.6)

Proposition B.1.1. For every ρ′ ∈ R, the point zρ′

Ä
(2π)−

ä
lies on the line

{

a+ ξe j( π
2
−α) : ξ ∈ R

}

. Moreover,

zρ′

Ä
(2π)−

ä
= a+ ρe j( π

2
−α)

where

ρ = e2πκ
(

ρ′ − µ1

(

e−κ(
π
2

+2β−α) + e−κ(
3π
2

+2β−α)
)

+ µ2

Ä
e−κ(π+β−α) + e−κ(2π+β−α)

ä)
.

Proof. Taking the limit (B.6) in (B.5) to isolate zρ′ (τ4) in terms of zρ′

Ä
(2π)−

ä
,

yields

zρ′ (τ4) = a+ ekγ5
Ä
zρ′

Ä
(2π)−

ä
− a
ä
. (B.7)

Similarly, in (B.5), we may isolate zρ′ (τ3) in terms of zρ′ (τ4) as

zρ′ (τ3) = d+ ekγ4
(
zρ′ (τ4)− d) , (B.8)

Analogously,

zρ′ (τ2) = c+ ekγ3
(
zρ′ (τ3)− c) , (B.9)

zρ′ (τ1) = b+ ekγ2
(
zρ′ (τ2)− b) , (B.10)

zρ′ (0) = zρ′,0 = a+ ekγ1
(
zρ′ (τ1)− a) . (B.11)

Now, from (B.7)–(B.11):

zρ′ (0) = a+ ekγ1
Ä
b+ ekγ2

(
zρ′ (τ2)− b)− a

ä

= a+ ekγ1 (b− a) + ek(γ1+γ2) (zρ′ (τ2)− b)

= a+ ekγ1 (b− a) + ek(γ1+γ2)
Ä
c+ ekγ3

(
zρ′ (τ3)− c)− b

ä

= a+ ekγ1 (b− a) + ek(γ1+γ2) (c− b) + ek(γ1+γ2+γ3) (zρ′ (τ3)− c)

= a+ ekγ1 (b− a) + ek(γ1+γ2) (c− b) + ek(γ1+γ2+γ3)
Ä
d+ ekγ4

(
zρ′ (τ4)− d)− c

ä

= a+
Ä
ekγ1 − ek(γ1+γ2+γ3)

ä
(b− a) + ek(γ1+γ2) (c− b) + ek(γ1+γ2+γ3+γ4) (zρ′ (τ4)− d)

= a+
Ä
ekγ1 − ek(γ1+γ2+γ3)

ä
(b− a) + ek(γ1+γ2) (c− b)

+ ek(γ1+γ2+γ3+γ4)
Ä
a+ ekγ5

Ä
zρ′

Ä
(2π)−

ä
− a
ä
− d
ä

= a+
Ä
ekγ1 − ek(γ1+γ2+γ3)

ä
(b− a) +

Ä
ek(γ1+γ2) − ek(γ1+γ2+γ3+γ4)

ä
(c− b)

+ ek(γ1+γ2+γ3+γ4+γ5)
Ä
zρ′

Ä
(2π)−

ä
− a
ä
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where it was used that d− c = − (b− a) and a− d = − (c− b). Accordingly,

zρ′ (0)− a =
Ä
e (−κ+j)γ1 − e (−κ+j)(γ1+γ2+γ3)

ä
(b− a)

+
Ä
e (−κ+j)(γ1+γ2) − e (−κ+j)(γ1+γ2+γ3+γ4)

ä
(c− b)

+ e (−κ+j)(γ1+γ2+γ3+γ4+γ5)
Ä
zρ′

Ä
(2π)−

ä
− a
ä

=
(

e (−κ+j)( π
2

+2β−α) − e (−κ+j)( 3π
2

+2β−α)
)

µ1e−j2β

+
Ä
e (−κ+j)(π+β−α) − e (−κ+j)(2π+β−α)

ä
µ2e j( π

2
−β)

+ e (−κ+j)(2π)
Ä
zρ′

Ä
(2π)−

ä
− a
ä

=
(

e−κ(
π
2

+2β−α) + e−κ(
3π
2

+2β−α)
)

µ1e j( π
2
−α)

+
Ä
−e−κ(π+β−α) − e−κ(2π+β−α)

ä
µ2e j( π

2
−α)

+ e−κ(2π)
Ä
zρ′

Ä
(2π)−

ä
− a
ä

where it was used that k = −κ + j, b − a = µ1e−j2β, c − b = µ2e j( π
2
−β), γ1 =

π
2 + 2β − α, γ2 = π

2 − β, γ3 = π
2 + β, γ4 = π

2 − β, and γ5 = α− β.
Consequently, zρ′

Ä
(2π)−

ä
− a relates to zρ′ (0)− a as follows:

e−2πκ
Ä
zρ′

Ä
(2π)−

ä
− a
ä

= zρ′ (0)− a

−
(

e−κ(
π
2

+2β−α) + e−κ(
3π
2

+2β−α)
)

µ1e j( π
2
−α)

+
Ä
e−κ(π+β−α) + e−κ(2π+β−α)

ä
µ2e j( π

2
−α)

where zρ′ (0)− a = ρ′e j( π
2
−α) because of the initial condition (B.4). Hence,

e−2πκ
Ä
zρ′

Ä
(2π)−

ä
− a
ä

= ρ′e j( π
2
−α)

−
(

e−κ(
π
2

+2β−α) + e−κ(
3π
2

+2β−α)
)

µ1e j( π
2
−α)

+
Ä
e−κ(π+β−α) + e−κ(2π+β−α)

ä
µ2e j( π

2
−α)

which evidences that zρ′

Ä
(2π)−

ä
lies on the straight line

{

a + ξe j( π
2
−α) : ξ ∈ R

}

.
More explicitly,

zρ′

Ä
(2π)−

ä
= a + ρe j( π

2
−α)

where

ρ = e2πκ
(

ρ′ − µ1

(

e−κ(
π
2

+2β−α) + e−κ(
3π
2

+2β−α)
)

+ µ2

Ä
e−κ(π+β−α) + e−κ(2π+β−α)

ä)
.

The previous proposition, asserts that for every ρ′ ∈ R, the characteristic tra-
jectory [0, 2π) ∋ τ 7→ zρ′ (τ) through the point zρ′ (0) = a + ρ′e j( π

2
−α) which

lies on the line
{

a+ ξe j( π
2
−α) : ξ ∈ R

}

, is such that the limit zρ′

Ä
(2π)−

ä
=

limτ→(2π)− zρ′ (τ) also lies on the line
{

a+ ξe j( π
2
−α) : ξ ∈ R

}

. In addition, it
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establishes how to compute ρ =
Ä
zρ′

Ä
(2π)−

ä
− a
ä
⊙ e j( π

2
−α) in terms of ρ′ =

(
zρ′ (0)− a

)⊙ e j( π
2
−α). Inverting the map ρ′ 7→ ρ, we obtain the map

ρ 7→ ρ′ = P (ρ) = η1ρ + η0

where

η0 ,
(

e−κ(
π
2

+2β−α) + e−κ(
3π
2

+2β−α)
)

µ1 −
Ä
e−κ(π+β−α) + e−κ(2π+β−α)

ä
µ2

=
Ä
1 + e−κπ

ä (
e−κ(

π
2

+2β−α)µ1 − e−κ(π+β−α)µ2

)

=
Ä
eκ

π
2 + e−κ

π
2

ä
e−κ

π
2

(

e−κ(
π
2

+2β−α)µ1 − e−κ(π+β−α)µ2

)

=
Å

2e−κ
π
2 cosh

κπ

2

ã (
e−κ(

π
2

+2β−α)µ1 − e−κ(π+β−α)µ2

)

=
Å

2e−κπ cosh
κπ

2

ã (
µ1e−κ(2β−α) − µ2e−κ(

π
2
−(α−β))

)

,

η1 , e−2πκ.

In Subsection 5.6.3, some properties of P : R→ R were stated in (5.36)–(5.44)
and exposed graphically in Figure 5.7. In particular (5.44), which states that for
every ρ ∈ R the sequence of iterates {Pn (ρ)}n∈N converges to

ρlim , lim
n→∞

Pn (ρ) = lim
n→∞

(

ρηn1 + η0

n∑

i=0

ηi1

)

= ρ lim
n→∞

ηn1 + η0

∞∑

i=0

ηi1 = 0 + η0
1

1− η1

=
η0

1− η1
= η0

1
1− e−2πκ

= η0
eκπ

eκπ − e−κπ

=
η0eκπ

2 sinh (κπ)
=

cosh κπ
2

sinh (κπ)

(

µ1e−κ(2β−α) − µ2e−κ(
π
2
−(α−β))

)

=
cosh κπ

2

2 sinh κπ
2 cosh κπ

2

(

µ1e−κ(2β−α) − µ2e−κ(
π
2
−(α−β))

)

=
µ1e−κ(2β−α) − µ2e−κ(

π
2
−(α−β))

2 sinh κπ
2

.

The remaining properties (5.36)–(5.43) are trivial. For example, consider (5.38):

P (ρ) < ρ ⇐⇒ η1ρ+ η0 < ρ ⇐⇒ ρ >
η0

1− η1
= ρlim.

The next proposition states that the sign of µ2

µ1
eκ(

π
2

+β) − 1 coincides with the
sign of ρmin − ρlim, being ρmin the positive real number defined in (5.50).

Proposition B.1.2.

µ2

µ1
eκ(

π
2

+β) > 1 ⇐⇒ ρmin > ρlim,

µ2

µ1
eκ(

π
2

+β) < 1 ⇐⇒ ρmin < ρlim,
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Proof. To prove the proposition, it is enough to prove that

µ2

µ1
eκ(

π
2

+β) > 1⇒ ρmin > ρlim, (B.12)

µ2

µ1
eκ(

π
2

+β) < 1⇒ ρmin < ρlim, (B.13)

µ2

µ1
eκ(

π
2

+β) = 1⇒ ρmin = ρlim, (B.14)

The positive real number ρmin is defined by

ρmin ,







µ1e−κ(
π
2

+2β−α) if µ2

µ1
eκ(

π
2

+β) > 1,
((

1− µ2

µ1
expκ(

π
2

+β)
)

exp−κπ +1
)

µ1 exp−κ(
π
2

+2β−α) if µ2

µ1
eκ(

π
2

+β) ≤ 1,

and the real number ρlim is given by

ρlim =
1 + e−κπ

1− e−2κπ

(

µ1e−κ(
π
2

+2β−α) − µ2e−κ(π+β−α)
)

.

Defining µ , µ2

µ1
eκ(

π
2

+β), µ̂ , (1− µ) exp−κπ +1, and ρ̄ , µ1e−κ(
π
2

+2β−α),
both ρmin and ρlim may be expressed more succinctly as follows:

ρmin =

{

ρ̄ if µ > 1,

µ̂ρ̄ if µ ≤ 1;
ρlim =

1 + e−κπ

1− e−2κπ

Ä
ρ̄− µ2e−κ(π+β−α)

ä
.

First, suppose that µ > 1. To prove that ρmin > ρlim we must show that

ρ̄ >
1 + e−κπ

1− e−2κπ

Ä
ρ̄− µ2e−κ(π+β−α)

ä
,

which is logically equivalent to
(
1− e−2κπ

)
ρ̄ > (1 + e−κπ)

Ä
ρ̄− µ2e−κ(π+β−α)

ä
.

Expanding terms at both sides of the inequality we get

ρ̄− ρ̄e−2κπ > ρ̄− µ2e−κ(π+β−α) + ρ̄e−κπ − µ2e−κ(2π+β−α).

Cancelling and rearranging terms we obtain
Ä
1 + e−κπ

ä
µ2e−κ(π+β−α) >

Ä
1 + e−κπ

ä
ρ̄e−κπ,

or equivalently (1 + e−κπ) e−κπµ2eκ(α−β) > (1 + e−κπ) e−κπρ̄. Simplifying,

µ2eκ(α−β) > ρ̄.

Substitution of ρ̄ renders µ2eκ(α−β) > µ1e−κ(
π
2

+2β−α). This last inequality is
logically equivalent to

µ2

µ1
eκ(

π
2

+β) > 1,

which certainly holds because µ was supposed to be greater than unity. This
proves (B.12).
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Now, suppose that µ ≤ 1. To prove that ρmin ≤ ρlim we must show that

µ̂ρ̄ ≤ 1 + e−κπ

1− e−2κπ

Ä
ρ̄− µ2e−κ(π+β−α)

ä

which is logically equivalent to
Ä

1+e−κπ

1−e−2κπ − µ̂
ä

ρ̄ ≥ 1+e−κπ

1−e−2κπ e−κ(π+β−α)µ2. Simpli-
fying, Ä

1 + e−κπ −
Ä
1− e−2κπ

ä
µ̂
ä

ρ̄ ≥
Ä
1 + e−κπ

ä
e−κ(π+β−α)µ2.

Substitution of ρ̄ yields

Ä
1 + e−κπ −

Ä
1− e−2κπ

ä
µ̂
ä

µ1e−κ(
π
2

+2β−α) ≥
Ä
1 + e−κπ

ä
e−κ(π+β−α)µ2,

or equivalently

1 + e−κπ −
Ä
1− e−2κπ

ä
µ̂ ≥

Ä
1 + e−κπ

ä µ2

µ1
eκ(β−

π
2 ).

In the last inequality, expressing µ2

µ1
eκ(β−

π
2 ) as µe−κπ and substituting µ̂ by

(1− µ) exp−κπ +1 renders

1 + e−κπ −
Ä
1− e−2κπ

ä Ä
(1− µ) exp−κπ +1

ä
≥
Ä
1 + e−κπ

ä
µe−κπ.

Expanding terms at both sides of the last inequality we get

1 + e−κπ − e−κπ + µe−κπ − 1 + e−3κπ − µe−3κπ + e−2κπ ≥ µe−κπ + µe−2κπ.

After cancelling terms and re-factorizing, the following inequality shows up

(1− µ)
Ä
1 + e−κπ

ä
e−2κπ ≥ 0,

which certainly holds because it was supposed that µ ≤ 1. Moreover, the inequality
is strict unless µ = 1. This proves (B.13)–(B.14).

B.2. Both rectangular components of b∗a−d∗ are positive

The purpose of this section is to prove that both the real part and the imaginary
part of the difference b∗a − d∗ are positive.

Proposition B.2.1.

ℜ (b∗a − d∗) > 0,

ℑ (b∗a − d∗) > 0.

Proof. The points b∗a and d∗ are defined as

b∗a , a+ ek(
π
2

+2β−α) (b− a) ,

d∗ , d+ e−k(α−β) (ba − d) .
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Hence, b∗a − d∗ = a + ek(
π
2

+2β−α) (b− a)−
Ä
d + e−k(α−β) (ba − d)

ä
. The definition

of ba is

ba , a + ek(
π
2

+β) (b− a) .

Substitution of ba in the former expression for the difference b∗a − d∗ yields

b∗a − d∗ = a + ek(
π
2

+2β−α) (b− a)−
(

d + e−k(α−β)
(

a + ek(
π
2

+β) (b− a)− d
))

,

= (d− a)
Ä
e−k(α−β) − 1

ä
+ (b− a)

(

ek(
π
2

+2β−α) − e−k(α−β)ek(
π
2

+β)
)

= (d− a)
Ä
e−k(α−β) − 1

ä
= µ2e j( π

2
−β) Äe−k(α−β) − 1

ä
, (B.15)

where d− a = µ2e j( π
2
−β) because the anchor points a and d are defined by

a , −jδ0 + i▽o δ1e−j2β ,

d , −jδ0 + i▽o δ1e−j2β + v▽i δ2e j( π
2
−β),

and µ2 , |d− a|.
Recalling that k , −κ+ j and taking real and imaginary part in (B.15):

ℜ (b∗a − d∗) = µ2

Ä
eκ(α−β) sinα− sin β

ä
,

ℑ (b∗a − d∗) = µ2

Ä
eκ(α−β) cosα− cosβ

ä
.

By (5.2)–(5.3), µ2 = v▽i δ2 > 0. Moreover, by (5.1), |β| < α < π
2 .

It is clear that sinα > 0, sinα > sin β, and 0 < cosα < cosβ. In addition,
eκ(α−β) > 1 because α− β > 0 and κ , tanα > 0.

Consequently, ℜ (b∗a − d∗) = µ2

Ä
eκ(α−β) sinα− sin β

ä
> µ2 (sinα− sin β) > 0,

which completes part of the proof.
It is clear now that the proof of ℑ (b∗a − d∗) > 0 reduces to the proof of

e (α−β) tanα cosα > cosβ.

Since cos θ = 1√
1+tan2 θ

for every θ ∈ (−π
2 ,

π
2

)
, the last inequality can be rewritten

as e (α−β) tan α√
1+tan2 α

> 1√
1+tan2 β

, or equivalently as

eα tanα

√
1 + tan2 α

>
eβ tanα

»
1 + tan2 β

. (B.16)

Since −π
2 < −α < β < α < π

2 , to show that (B.16) holds, it suffices to prove

that the function θ 7→ eθ tan α√
1+tan2 θ

is strictly monotonously increasing in (−α, α).

Let g :
(−π

2 ,
π
2

) → R be defined by g (θ) = eθ tan α√
1+tan2 θ

. The derivative function

of g is given by

g′ (θ) =
e θ tanα

√
1 + tan2 θ

(tanα− tan θ) .

Since, g′ (θ) > 0 for every θ ∈ (−α, α), the function g is strictly monotonously
increasing in (−α, α), and consequently (B.16) holds, proving that ℑ (b∗a − d∗) is
positive.
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List of symbols related to the realistic

buck converter control problem

C capacitance of the converter’s capacitor 38, 48
E error tolerance 39, 48
e error, i.e., vR − vO 39
iL current through the converter’s inductor 38
iO load current (output current of the converter) 38
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IOmin minimum load current 38, 48
L inductance of the converter’s inductor 37, 48
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VLL0 reference voltage for open circuit load 39, 48
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