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Jorge Merlino

jmerlino@fing.edu.uy

Palabras clave: Compresión, Codificación aritmética, Modelos árbol, Árboles
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Resumen

En este trabajo se propone una nueva variante del algoritmo context [28] usando
codificación semi-predictiva y se desarrolla una implementación eficiente del
mismo.

Para manejar los problemas relacionados con la gran cantidad de parámetros
t́ıpicos de los archivos de texto y ejecutables y mejorar el nivel de compresión
del algoritmo, se adaptaron algunas técnicas principalmente de algoritmos tipo
PPM [8]. El procedimiento de podado y el estimador de probabilidad fueron
adaptados para tener en cuenta estos cambios.

Además se usó una versión modificada del algoritmo wotd [11] para podar
el árbol durante su construcción reduciendo aśı los requerimientos de memoria
durante la fase de codificación del algoritmo.

Finalmente se realizó una comparación experimental entre el algoritmo desa-
rrollado aqúı y algunas de las mejores implementaciones de otros algoritmos de
codificación conocidos.
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Abstract

In this work, a new context algorithm [28] using the semi-predictive approach is proposed and an
efficient implementation of the algorithm is developed.

In order to deal with issues related to the large number of parameters typical of text and executable
files and improve the compression rate of the algorithm, some techniques, mainly from PPM -like
algorithms [8], were adopted. The prunning procedure and probability estimator were adapted to
account for these modifications.

Also, a modified version of the wotd algorithm [11] is used to prune the tree during its construction
reducing the memory footprint of the encoding phase of the algorithm.

Finally, an experimental comparison was performed between the algorithm developed here and
some of the best implementations known of other compression algorithms.



Chapter 1

Introduction

Data compression or source coding is the process of representing information using fewer bits than
would be needed by an uncompressed representation. Lossless compression algorithms exploit the
statistical redundancy in the data to find a more concise representation without losing information.

The data to compress is usually modeled as coming from a data source which generates symbols
from a countable (usually finite) alphabet. As part of the compression process a statistical model
will be developed and assigned to the data source. This model will be derived from the data with the
objective of assigning probabilities to the symbols generated by the source. The symbols that occur
more frequently should have greater probabilities than those that occur less. It has been proved [34]
that the entropy (see 1.3) of the probability distribution of the symbols imposes a fundamental limit
in the code length per symbol that can be achieved for a given data source.

In this context, the research and development of compression algorithms with proven theoretical
and practical properties is important. On the theoretical side the key is to have algorithms whose
compression rate is bounded by known formulas and that this compression rate converges asymptot-
ically to the entropy of the source. There are codes that achieve this and there are others that have
optimal compression rate bounds not only for a single probability model but for a whole class of them.
These are called universal codes (see 1.6) and they can asymptotically achieve a compression rate as
good as any code especially designed for a particular model in the class. The rate of convergence to
the entropy is also important as, within universal codes, there is a proved bound by Rissanen for the
rate of this convergence for certain models which depends on the number of free parameters of the
model [30].

On the practical side the fundamental trade-off is established between processing speed, resource
consumption and compression ratio. A practical algorithm should be capable of compressing large
files with a modest consumption of memory and time and, at the same time, obtain reasonable
compressed file sizes.

There is a plethora of compression algorithms available but only a few of them have both proved
theoretical properties and good practical performance. The work developed here is based on the linear
time context algorithm presented in [20]. This algorithm is proved to have linear time complexity and
is also optimal in a double universality framework (see 1.8) with respect to the already mentioned
Rissanen’s lower bound [30].

We survey some of the best known compression algorithms and their implementations. The four
different paradigms studied are CTW [39, 40], BWT [7], PPM [8] and finally the class of context
mixing algorithms [18]. We survey both the theoretical and practical properties of each one using the
most efficient implementations that have been proposed.

The first three of these algorithms and also the context algorithm, are based on context models
which use a number of the previously emitted symbols by the source as the basis for the estimation
of the probability of the next one. These are in fact Markov models (see 1.7.2) of order k where k
is the number of the previously emitted symbols considered by the model. Except for BWT they
all use tree models (see 1.7.3) to represent contexts of variable length on different locations. Tree
models reduce drastically the number of free parameters as compared with a Markov model for the
same source.

We also present a new algorithm based on the one in [20] and an implementation of this new
algorithm. The compression rate of our implementation was second best below PPMd [35] in most

1



CHAPTER 1. INTRODUCTION 2

tests. One key property of this implementation is the use of the wotd algorithm presented in [11] to
prune the context tree during its construction instead of building the complete tree and prune it in
a second phase as was suggested in the original algorithm. This reduces the memory needs of the
compression process (although it does not have linear execution time) and in practice reduces the
total time needed to compress most files.

Another improvement of the new algorithm is the use of several techniques found in other PPM
based algorithms. These include the possibility of coding a symbol in a different state than the
one originally selected by the algorithm if the symbol to code has not occurred before in that state
instead of assigning the same probability to all unknown symbols. Some additional modifications to
the algorithm were needed to enable this, including the definition of a new cost function and a new
recursive procedure for pruning the tree that takes into account this new behavior.

Finally we studied the PPMd algorithm presented in [35] and give a complete description of the
algorithm tree construction and updating. This information was not present in the literature.

The remainder of this thesis is organized as follows. The rest of this section introduces some
fundamental mathematical and algorithmic concepts used throughout this paper. Next, chapter 2
describes the Context Tree Weighting (CTW) compression algorithm and the particular implemen-
tation of this algorithm used for comparison in this work. In a similar way chapter 3 describes the
Prediction by Partial Matching (PPM) algorithm and the implementation surveyed in this work.
Furthermore, in chapter 4, section 4.1 introduces the Burrows-Wheeler Transformation (BWT) and
a popular compression algorithm (Bzip) that uses this transformation that was also used for compar-
ison and section 4.2 describes the class of context mixing algorithms. Finally, chapter 5 defines the
Context compression algorithm and describes the new implementation of this algorithm and chap-
ter 6 presents experimental analysis of the behavior of this implementation and comparisons to the
previously described algorithms.

1.1 Notation

Let A be an alphabet of α ≥ 2 symbols and let λ denote the empty string. Let also the string
a1, a2 . . . an, ai ∈ A be denoted by an1 . More generally, the notation akj is used as a shorthand for

aj , aj+1 . . . ak, ai ∈ A, j ≤ i ≤ k. Also the subscript is omitted when j = 1 i.e., ak = ak1 . For a = ak

we let |a| = k denote the length of a, ā = akak−1 . . . a1 its reverse string and head(a) its first symbol
a1 or λ if k = 0. For strings u, v the concatenation of u and v is denoted as uv.

1.2 Communication systems and coding

Information theory is concerned with the study of communication systems which are generally rep-
resented by the following diagram:

Noise

��
Source // Encoder // Channel // Decoder // Destination

The source generates data that need to be communicated to the destination. The encoder trans-
forms data into messages suitable for transmission over the channel. The channel is the medium over
which the coded message is transmitted; it can be affected by noise that alters the transmitted mes-
sage. Then, the decoder receives the output of the channel and tries to recover the original message
for delivery to the destination.

The encoder can be seen as two different processes: one that removes redundancy from the
message in order to create a smaller message to be transmitted through the channel (source encoder)
and another one that adds redundancy to the message with the purpose of making the message
resilient to alterations caused by noise in the transmission channel (channel encoder). The decoder
is symmetrical and has a channel decoder to remove the redundancy and possibly correct the errors
introduced by the noise in the channel and a source decoder that retrieves the original message.

This work will be focused on source coding and decoding. The channel of communication and the
possible noise added therein will not be considered.
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1.3 Entropy

The entropy of a random variable is defined by Shannon in [34] as a measure of the uncertainty of
such variable. Let X be a discrete random variable with alphabet A and probability mass function
p(a) = Pr{X = a}, a ∈ A. The entropy H(X) of X is defined as:

H(X) = −
∑

a∈A

p(a) log p(a).

The entropy of X can also be interpreted as the expected value of the random variable log 1
p(X) :

H(X) = E

(

log
1

p(X)

)

.

The entropy is considered as measuring the self-information of X based on this interpretation.
As shown before, to calculate the entropy we need a probability distribution. When we have a

given string xn and the true distribution of the source that generated that particular sequence is
unknown we define an empirical distribution of the symbols of xn and calculate the entropy using
this distribution. The empirical probability for a symbol a in a particular sequence xn is defined as:

p̂xn(a) =
1

n

n∑

i=1

1a(xi), a ∈ A,

where 1a is the indicator function for {a} (the set whose only member is a). The indicator function
for a set A and an iid model is defined as:

1A(x) =

{

1 if x ∈ A

0 if x /∈ A
.

In this case the probabilities are estimated using the data in xn and assuming that the process
that generated xn is ergodic and stationary (this implies asymptotic convergence of the empirical
distribution to the distribution of the source). When the entropy is calculated over an empirical
distribution it is called the empirical entropy of the string.

1.4 Source codes

A source code C for a random variable X with alphabet A is a mapping C : A → D∗ where D is a
finite coding alphabet and D∗ is the set of finite strings over D.

We will also define C(a) as the codeword corresponding to a, a ∈ A and l(a) = |C(a)| will be the
length of such codeword. Thus, the expected length of C(X) for X ∼ p(a) is defined as:

L(C) = Ep[l(a)] =
∑

a∈A

p(a)l(a). (1.1)

When coding strings of symbols we can do it symbol by symbol and define the extension C∗ of a
code C as the mapping from A∗ to D∗. C∗ is defined as the concatenation of the codewords for each
symbol of the string i.e:

C∗(x1x2 . . . xn) = C(x1)C(x2) . . . C(xn).

We want to be able to decode each symbol of C∗ without reference to future codewords so we
require that no codeword of C is a prefix of any other codeword. A code that achieves this property
is called prefix free or instantaneous code.

It has been proved by Shannon in [34] that any prefix free code for a set of symbols with distribution
X ∼ p(a) has H(X) as a lower bound on its expected code length and that we can build a code that
satisfies

H(X) ≤ L(C) ≤ H(X) + 1.

It can be easily deduced from (1.1) (assuming a finite alphabet and a finite string) that a symbol which
occurs with probability p(a) is best represented by a code where l(a) = − log p(a). This ideal code



CHAPTER 1. INTRODUCTION 4

length cannot be achieved in general because − log p(a) is not necessarily an integer. The challenge is
to build practical codes that achieve a number of bits per symbol as close to the entropy as possible.

When dealing with a sequence of symbols, instead of using the extension code C∗ we can use an
alphabet extension

An = {(a1, a2, . . . , an) | ai ∈ A}
and define a new code Cn for blocks of symbols Xn = (X1, X2, . . . , Xn). It is also shown in [34] that
a code exists that satisfies

H(Xn)

n
≤ L(Cn)

n
≤ H(Xn)

n
+

1

n
which is better per symbol than what can be achieved by a symbol by symbol extension code.

A related notion is the so called pointwise redundancy of a code that is defined as the difference
between the codeword length for a string an and the ideal code length given by − log p(an). Thus we
define the pointwise redundancy for an given a code C and probability distribution p assigned by a
model for the data source as:

RC,p(a
n) = l(an) + log p(an).

We can also define the expected redundancy as the expectation of RC,p(X
n) with respect to p as:

RC,p = Ep[RC,p(X
n)] = L(C)−H(Xn).

In practice, when we are encoding a string of symbols we are not given a probability distribution
of such symbols. To be able to exploit the statistical regularities of the data in order to compress the
string it is assumed that the symbols are generated by a process that follows a probability model.
There are different types of models that can be used, and depending on the model some parameters
have to be determined to fit the model to the data to compress. These estimated parameters should
maximize the probability of the string according to the model in order to achieve the shortest code
length.

When we are coding a string of symbols of length n we need the model to assign a probability to
each of the an possible strings. Since an is sequentially read the empirical probability distribution of
the symbols read up to aj change when reading the symbol aj+1. Thus we need to assign probabilities
sequentially like:

{

Pr(λ) = 1

Pr(ua) = Pr(u)Pr(a|u), a ∈ A, u ∈ A∗
. (1.2)

This definition implies a sequential algorithm to assign probabilities. As a consequence we need
efficient ways to adaptively change this empirical distribution while scanning an. The final distribution
that has been estimated for an within the model will be used for compressing it. This is called adaptive

coding [3].

1.5 Arithmetic coding

Arithmetic coding allows the computation of a codeword for a source sequence in an efficient and
sequential way with an expected code length very close to the ideal (H(X) bits per symbol) up to an
additive constant. Arithmetic codes are based on the Elias algorithm (unpublished but described in
[1, 13]) but only became feasible after Rissanen [27] and Pasco [26] solved the issues of arithmetical
precision involved in the initial algorithm.

The Elias algorithm (also known as Shannon-Fano-Elias code) is based on the notion of the cumu-
lative distribution function. Let us suppose the alphabet is ordered (for example in lexicographical
order). Then, the cumulative distribution function for the symbol ai is defined as:

F (ai) =
∑

x<ai

p(x)

that is, the sum of the probabilities of all symbols less that ai in this order. A variation of this
formula is also used in practice:

F̄ (ai) =
∑

x<ai

p(x) +
1

2
p(ai).
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Assuming that the probabilities of all symbols are positive (symbols with probability 0 could be
excluded) F̄ (ai) is a strictly increasing function which represents the middle point between F (ai) and
F (ai+1). Then, ai can be uniquely determined if we know F̄ (ai). Thus the value F̄ (ai) can be used
as a code for ai.

The code F̄ (ai) is a real number between 0 and 1. F̄ (a) is always less than unity because the
maximum value of F̄ (a) is F̄ (aα) and:

1 =
∑

x∈{a1,...,aα}

p(x) =
∑

x<aα

p(x) + p(aα) > F̄ (aα).

The decimal part of F̄ (ai) can be expressed in binary notation as a binary string.
In general F̄ (ai) could be a real number only expressible by an infinite number of binary digits, so

the value is truncated to ⌈− log p(ai)⌉ + 1 digits (bits). Let us represent this truncation for number
y as ⌊y⌋. It can be shown that the value of ⌊F̄ (ai)⌋ is still between F (ai) and F (ai+1). To see this,
first it has to be noticed that the difference between F̄ (ai) and ⌊F̄ (ai)⌋ is less than 1

2⌈− log p(ai)⌉+1 , so
we have:

1

2⌈− log p(ai)⌉+1
<

1

2− log p(ai)2
=

p(ai)

2
= F̄ (ai)− F (ai)

so ⌊F̄ (ai)⌋ is an adequate code for ai.
We next need to show that this code is prefix free. If we consider an unlimited number of bits

the codewords will eventually be prefix free because the real numbers representing F̄ (ai) are all
different. However, we need to show that the truncation to ⌈− log p(ai)⌉+ 1 preserves this property.
To prove this we can consider that, after the truncation, each codeword represents an interval of
length 1

2⌈− log p(ai)⌉+1 which contains the middle point of the interval [F (ai), F (ai+1)]. This interval I
is defined such as:

⌊x⌋ = ⌊y⌋ ∀ x, y ∈ I.

This is to say that all numbers within this interval have the same truncated value. By the last result
we know this codeword interval is fully contained in the [F (ai), F (ai+1)] interval so all the codeword
intervals are disjoint and the code is prefix free considering the first ⌈− log p(ai)⌉ + 1 bits. Notice
that all digits are part of the code even the last non-significant zeroes.

Since we are using a code with length ⌈− log p(a)⌉+ 1 to represent a the expected code length of
this code is:

L(C) =
∑

a∈A

p(a)l(a)

=
∑

a∈A

p(a) (⌈− log p(a)⌉+ 1)

<
∑

a∈A

p(a) (− log p(a) + 2)

=
∑

a∈A

(p(a)− log p(a)) +
∑

a∈A

2 p(a)

= H(X) + 2

so this is within two bits of entropy (the ideal).
This method can be used to code strings of symbols using the cumulative distribution for the

sequence defined as:

F (an) =
∑

xn<an

P (xn)

where we assume an order on the strings based on the order of the individual symbols. In this case
we can code a string using a point in the particular interval (one of the αn intervals) that corresponds
to the string being coded. This interval, for a string an, is defined as:

I(an) = [F (an), F (an) + P (an)) .

The problem is that, as n gets larger, we need to calculate and add an exponential number of
probabilities with very precise arithmetic as the intervals for each string are incrementally smaller.
This problem is solved by arithmetic coding.
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Before describing the algorithm for arithmetic coding it is important to remark that when coding
with intervals as shown before it is possible to compute these intervals sequentially transforming the
initial interval [0, 1) into a series of nested intervals I(a1), I(a2), . . . , I(an) using the following chain
of identities:

F (an) =
∑

xn<an

P (xn)

=
∑

xn−1<an−1

P (xn−1) +
∑

x<an

P (an−1x) (1.3)

= F (an−1) + P (an−1)
∑

x<an

P (x | an−1).

Therefore the encoder and the decoder can sequentially find I(an) after having determined I(an−1)
if it is easy to determine the conditional probabilities P (x|an−1). As mentioned before a model of
the data is needed to obtain these probabilities.

For example lets define a static binary model with P (0) = 0.75 and P (1) = 0.25. A symbol 0 can
be represented by any number in the interval [0, 0.75].

0 0.75 1

If then a 1 is received the interval will now be [0.5625, 0.75] (one fourth of the previous interval).

0 0.5625 0.75 1

A following 0 will then result in [0.5625, 0.703125]

0 0.5625 0.703125 1

The probability for this string of three symbols is:

P (010) =

(
3

4

)2
1

4
= 0.140625

and the ideal code length will be:

⌈− log p(010)⌉ = ⌈− log 0.140625⌉ = 3 bits

which could be achieved by the binary number 0.101 which equals to the number 0.625 in base 10
which falls into the final interval. In this simple example the code has the same length as the original
string but as more symbols are processed the code will be shorter than the input string.

Next we show the pseudo-code for the arithmetic encoder (algorithm 1). The algorithm uses two
values low and high to keep track of the bounds of the current interval and needs to receive F (ai)
and F (ai−1) for every symbol to encode. These values will change for every symbol if some kind of
adaptive encoding is used.

During the decoding of the message, the decoder will receive the value determined by the encoder
and then, based on the F (ai) and F (ai−1) will be able to obtain the encoded symbol. After finding
out the symbol the interval can be rescaled using the same operations used by the encoder and then
a new symbol can be decoded. If adaptive coding is being used the past decoded symbol will update
the values of F (ai) ∀ai ∈ A so that these values are synchronized with the ones used by the encoder
for the next symbol. See algorithm 2.

In practice this algorithm could require infinite precision computations as the interval is mono-
tonically decreasing in size. This problem can be solved by noticing that, as the left bound and
right bound of the interval get closer their first bits start to coincide [26, 27]. For example, look-
ing at the last interval from the past example [0.5625, 0.703125] if we express it in binary we get:
[0.1001, 0.101101]. We can see that the first two bits of the interval’s limits are the same so we are
sure that all the numbers in the final interval will start with 0.10.
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Algorithm 1: Arithmetic encoder

input : String xn to compress
output: A point in the last interval

1 low = 0
2 high = 1
3 for xi = x1 to xn do

4 range = high− low
5 j = SymbolIndex (xi)
6 low = low + (rangeF (aj−1))
7 high = low + (rangeF (aj))

8 end

9 return A point in the interval [low, high)

Algorithm 2: Arithmetic decoder

input : Encoded number value
output: Each symbol ai

1 low = 0
2 high = 1
3 for i = 1 to n do

4 Find symbol aj so that F (aj) >= (value− low)/(high− low) > F (aj−1)
5 return aj
6 range = high− low
7 low = low + (rangeF (aj−1))
8 high = low + (rangeF (aj))

9 end

In this case, the encoder keeps a buffer for each of the two boundaries and, instead of generating
a point in the interval for each encoded symbol, just outputs bits as they are removed from both
buffers when they coincide. Usually 16 bits are enough for this buffer unless there are many symbols
or some symbols with very low probability. In case these assumptions are false the product in lines
lines 6 and 7 of algorithm 1 can be less than 2−16 and thus the interval would become empty as
both boundaries will be equal. As will be shown in section 5.3 our algorithm halves the number of
occurrences of symbols when they reach a determined threshold, this prevents that symbols reach
very low probabilities and thus a 16 bit arithmetic coder can be used.

When the first bits in both buffers are the same these bits can be outputted by the encoder
and the intervals can be shifted and rescaled so that the computations can be achieved with finite
precision. Continuing with the example we can output the two known bits and rescale the interval
into [0.01, 0.1101] which in decimal is [0.25, 0.8125]

There is a possible problem when the interval’s bounds are very close but their first bits do
not agree. For example the interval in binary could be something like this: [0.0111111, 0.10000000].
Here the interval is very small but no digits can be outputted. If this situation continues we might
need arbitrarily precise arithmetic to calculate the interval boundaries. This is called the carryover

problem [27].
This situation can be avoided if the algorithm checks when the most significant digits of the two

bounds do not match and the second most significant digit is one on the left bound and zero on
the right bound (ie. if the interval looks like [0.01 . . . , 0.10 . . .]). In this case the two second most
significant bits are deleted (the bold digits in the example) and the most significant bits are left
untouched. As these two deleted bits are lost a count is taken of the bits that where deleted on
account of this carryover problem.

The algorithm carries on in this way by processing more symbols and increasing the count in case
this problem persists and more symbols are removed. When the two interval’s bounds first digits
agree, depending on the value of the most significant bit, it is decided that all of the deleted carryover
bits are now zeroes or ones and then they are all outputted together and the count of deleted bits is
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set to zero. If the most significant bit of the two bounds is one when the problem is solved all the
carryover bits are determined to be zero and they are one otherwise.

Continuing with the example in the interval [0.01 . . . , 0.10 . . .] suppose we remove the two bold
bits and after processing some more symbols we end up with an interval looking like [0.10 . . . , 0.11 . . .].
We then know that the value the arithmetic encoder will output in fact starts with 0.1, so the value
of the numbers we removed equals to the value they had in the right bound of the interval. Including
these numbers the interval should be [0.100 . . . , 0.101 . . .]. If, on the other hand, the final interval
is like [0.00 . . . , 0.01 . . .] then the real interval should be [0.010 . . . , 0.011 . . .]. In either case the first
two symbols can be sent to the output and the interval can be rescaled.

The decoder keeps an extra buffer besides the low and high ones that saves the bits received from
the encoder (it represents the value in algorithm 2). It starts working as soon as it can fill this buffer
and then, as its intervals are synchronized with the encoder’s, it can infer when more symbols need
to be shifted in as the most significant digits are shifted out from the buffer.

It can be shown ([26]) that the code length for a sequence an assigned by a properly designed
arithmetic coder satisfies:

l(an) < log
1

P (an)
+ 2

so the coder is optimal up to a two bits redundancy.
There is a variant of this algorithm in the form of the so called Range coders [22]. The theoretical

ideas are the same but range coders can use intervals larger than [0, 1). They define a scale s that
determines an interval [0, s) and divide this interval completely in subintervals the same way as the
arithmetic coders do.

1.6 Universality

As mentioned before, in order to perform a lossless compression of a sequence of symbols a proper
model of the data is needed. The model is used to assign probabilities to be used by an arithmetic
coder. This can be a problem in many practical applications where a model of the data is not known
in advance or we only have an individual sequence to be compressed with no probability distribution
underlying the data at hand. In these cases it is interesting to find out how much a sequence can be
compressed. To find this out it is necessary to impose a restriction on the class of possible models as we
can always find a probability model precisely fitted for a particular sequence that assigns probability
one to this sequence compressing it to one bit while leaving every other sequence uncompressed.

We can define a model class from a particular model leaving some free parameters that can be
adjusted in order to fit the model to some particular sequence. The class of models would be formed
by all the possible models that can be instantiated by assigning all possible values to the model class’
free parameters. For example, we could define a model for a binary alphabet that assigns probabilities
using a Bernoulli distribution with parameter θ. This is a memoryless model because the probability
of each symbol does not depend on the previous symbols. In this case the class of models would be
the set of all possible Bernoulli models for any value of the parameter θ.

It is in this setting that we define a universal code for some class C as one that performs asymp-
totically as well as any model in the class C for any string. More formally, we define an indexed class
of models {Pθ, θ ∈ Λ} where Λ is the index set and require that the normalized expected redundancy
for a sequence of n symbols vanishes for each θ:

1

n
RC,Pθ

(an) → 0 when n → ∞ ∀ θ ∈ Λ.

Moreover, the code is pointwise universal if:

1

n
max
an∈An

RC,Pθ
(an) → 0 when n → ∞ ∀ θ ∈ Λ.

Choosing the model class is a very important issue because, even when having a universal encoder
for a class, the larger the class the slower the convergence rate of the universal code to the best model
in the class. There is a known bound by Rissanen [30] for the expected normalized redundancy for
a block of n symbols that, under certain conditions, depends on the number of free parameters of
the model (model cost). For a model with k free parameters its higher order term is k logn

2n . It is
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intuitive to think of this bound as meaning that previously known information about the process
that generates the symbols helps to reduce the expected code length by reducing the number of free
parameters of the model.

There are two common methods for probability assignment in universal codes: the mixture ap-
proach and the plug-in approach [24].

Plug-in codes estimate the index θ at every time instant t based on the previous at−1 symbols
and use the model specified by this index to assign probabilities as if it was the true parameter. For
example the maximum likelihood estimator could be used at each instant. This estimator selects the
value of the model parameter that produce a distribution that gives the observed data the greatest
probability. In this case this is equivalent to using the empirical distribution of the symbols in at−1 .

On the other hand mixture codes are based on generating convex combinations (mixtures) of all
the models in the class. The coefficients of the convex combination (that must sum up to 1) can be
seen as a prior probability on Λ

As an example let us consider the already discussed class of Bernoulli models defined as:

{Pθ, θ ∈ Λ = [0, 1]}

where for each model in the class p(1) = θ and p(0) = 1− θ.
In this case, for a sequence an with n0 zeros and n1 ones we have:

min
θ∈Λ

− logPθ(a
n) = − logPθ̂(an)(a

n)

where θ̂(an) is the maximum likelihood estimator for θ which in this case is the empirical distribution:

Pθ̂(an)(a
n) = p̂(0)n0 p̂(1)n1

=
(n0

n

)n0
(n1

n

)n1

=
nn0
0 nn1

1

nn
.

We are then looking for a code with length function l(an) such that:

1

n

[

l(an) + log

(
nn0
0 nn1

1

nn

)]

→ 0 when n → ∞. (1.4)

An example of such a universal code would be to enumerate all
(
n
n1

)
sequences with n1 ones and

describe the sequence with its index and also encode the value of n1 resulting in a code length of:

l(an) =

⌈

log

(
n

n1

)⌉

+ ⌈log(n+ 1)⌉.

Next, to show that this code satisfies (1.4) we have these inequalities:

⌈

log

(
n

n1

)⌉

+ ⌈log(n+ 1)⌉ ≤ log

(
n

n1

)

+ log(n+ 1) + 2

= log

(
n!

n1!n0!

)

+ log(n+ 1) + 2

= − log

(
n1!n0!

n!

)

+ log(n+ 1) + 2

≤ − log

(
nn1
1 nn0

0

nn

)

+ log(n+ 1) + 2. (1.5)

So, substituting this last expression for l(an) in (1.4) we have:

log(n+ 1) + 2

n
→ 0 when n → ∞

which trivially holds.
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In (1.5) we are using Stirling approximation as:

n! >
(n

e

)n √
2πn

n! <
√
2
(n

e

)n √
2πn

so we then have:

n1!n0!

n!
>

(
n1

e

)n1 √
2πn1

(
n0

e

)n0 √
2πn0√

2
(
n
e

)n √
2πn

>
nn1
1 nn0

0

nn

√
πn1n0

n

and as
πn1n0

n
> 0

with n1, n0 > 0 (if ni = 0 then Pθ̂(an)(a
n) = 1 and all this is trivial) we can conclude that:

n1!n0!

n!
>

nn1
1 nn0

0

nn
.

Another example in the same class of Bernoulli models using the mixture approach would be to
sum the values of all the models in the class assigning the same weight to each of them (uniform
mixture). In a uniform mixture of θ:

∫ 1

0

Pθ(a
n)dθ =

∫ 1

0

θn1(1− θ)n0dθ

=
n1!n0!

(n+ 1)!
(beta function integral)

=
n1!n0!

n!

1

n+ 1

=

(
n

n1

)−1
1

n+ 1

which taking − log results in:

l(an) = log

(
n

n1

)

+ log(n+ 1).

So we get the same result as in the previous example.
This mixture can be also implemented sequentially giving a plug-in approach to estimate θ inde-

pendent from n on each step t as:

n1!n0!

(n+ 1)!
=

n−1∏

t=0

q(at+1|at)

where

q(1|at) = n1(a
t) + 1

t+ 2
.

Here n1(a
t) is the number of ones in the string. The formula for the conditional probability for zero

is symmetrical. This is the Laplace rule of succession [17].
Moreover, when other weight functions are used to perform the mixture (for example Dirichlet’s

density) other plug in interpretations can be obtained like the Krichevsky-Trofimov estimator (see
1.9)

1.7 Models

Next we will discuss some of the most commonly used models for probability estimation in compression
algorithms.
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1.7.1 Memoryless models

Memoryless models (like the Bernoulli model mentioned in section 1.6) consider that all the symbols
in the input string are statistically independent and thus it only needs to estimate a single probability
distribution for all symbols. In this case a sequential implementation only needs to update this single
probability distribution for each symbol read. A memoryless model for an alphabet of size α has
α− 1 free parameters.

This is the simplest model with minimal model cost. The drawback is that this model is not able
to exploit all the statistical redundancies existing in most input strings and thus is not able to achieve
good compression rates.

1.7.2 Markov models

Markov models are used to parametrize sources where the probability of the next symbol depends
on a finite number of contiguous past observations. Markov models define a number of states which
encode some history of the previous symbols. In each of these states there is a different probability
distribution, so the Markov model has a set of conditional probabilities for the next symbol for each
state.

The number of previous symbols on which the probability of the next symbol depends on is called
the order of the Markov model. In general a Markov model of order k will have αk states, one for
each possible combination of the past k symbols. For each of these states a probability distribution
has to be estimated when the model is used for encoding.

For example lets define a Markov model of order 2 for a binary alphabet with 4 (22) states s0 . . . s3
and a set of conditional probabilities such as:

• s0(0, 0) ⇒ p(0|s0) = 0.3

• s1(1, 0) ⇒ p(0|s1) = 0.3

• s2(0, 1) ⇒ p(0|s2) = 0.1

• s3(1, 1) ⇒ p(0|s3) = 0.5

where the conditional probability of the symbol 1 is not given but is the complement of the probability
for the symbol 0.

To implement an adaptive coding scheme the model includes a transition function f : S ×A → S
that, given a state in the state set S and a symbol emitted in this state, returns the state where the
next symbol should be processed. Moreover, the statistics in the current state should be updated
before the transition to account for the occurrence of the last symbol.

Under this definition it is possible to implement a Markov model with a finite state machine

(FSM). For example the FSM for the Markov model from the previous example could be graphically
represented like this:

00
1 //0
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1

��
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zz
10

0
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1

::

11
0
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In the case of a Markov model of order k we need to estimate αk(α− 1) parameters as there are
α− 1 conditional probabilities to estimate for each of the αk states of the model.

1.7.3 Tree models

Tree models are a parametrization of sources that may have finite memory ≤ k (e.g. Markov sources
of order ≤ k). A tree model for a source alphabet of size α is represented with a α-ary tree where
every internal node has exactly α children (i.e. the tree is full). The edges leading to each of these
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children are labeled with one different symbol of the alphabet. The node that is reached through an
edge with label a is called the node in the direction of a. For every leaf in the tree there is also a set
of conditional probability distributions on the source alphabet [37]. In principle this tree has depth
k and αk leaves, one for each state of the Markov source.

In many states the number of symbols needed to determine the next state may be less than the
order of the model. Thus, merging nodes from the full balanced tree containing all possible contexts
we get a model with a smaller number of free parameters (a smaller model class) and therefore a
lower model cost [37].

For example, the Markov source defined in the previous section would have this tree representation:

◦
0 1

◦
0 1

◦
0 1

◦ s0 ◦ s1 ◦ s2 ◦ s3

Remembering that the conditional probabilities in this model were:

• s0(0, 0) ⇒ p(0|s0) = 0.3

• s1(1, 0) ⇒ p(0|s1) = 0.3

• s2(0, 1) ⇒ p(0|s2) = 0.1

• s3(1, 1) ⇒ p(0|s3) = 0.5

it can be seen that in this source the states s0 ans s1 can be merged as they share the same con-
ditional probabilities. In other words we can predict the next state with the same probability only
knowing that the last symbol was 0 without the need to know the previous symbol. Taking this into
consideration we can give another tree model for this source as:

◦
0 1

◦
s(0,1)

◦
0 1

◦ s2 ◦ s3

The new state s(0,1) merges the two previous discrete states s0 and s1. Thus the importance of
tree models lays in the use of less parameters than the corresponding Markov models. Usually the
nodes of the tree models are called contexts and the model itself is called a context tree. The symbols
in the path to each node are reversed relative to the order of the symbols in the input string to be
able to shorten paths and reach a shorter context.

A common algorithmic tool to represent tree models is the construction of the so called suffix

trees. A suffix tree for a string u$ where u ∈ A∗ and the special symbol $ /∈ A is an α-ary tree with
the following properties:

1. The tree’s edges are labeled with non-empty strings.

2. The concatenation of the labels in the paths from the root to each leaf have a one-to-one
relationship with the non empty suffixes of u$. Thus, there is a leaf for every non empty suffix
of u$ and all the tree’s leaves are non empty suffixes of u$.

3. All internal nodes have at least two children.

The $ character is used to ensure that no suffix is prefix of another one. If this special character
was not included property 2 could not be assured because each suffix which is a prefix of another
would be a branching node and not a leaf.

This structure was first introduced in [38] and has been used for many different purposes like
finding substrings in a string or pattern matching. It is in fact a radix tree (also called patricia tree)
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[25, 14] for the suffixes of u$. This same structure is called Generalized context tree in [22]. This
structure is built using the reversed input string as the parameter so that the contexts represented
by each leaf are reversed with respect to the order of the symbols in the input string.

The basic idea of the compression schemes that use context trees is to build a tree that contains
information on the occurrences of each symbol in every context (possibly bounded by a maximum
tree height). Here a context is defined as any suffix of a sequence at where the next symbol at+1

occurs. A context of length n is the equivalent of a state on a Markov source of order n. Each node
s of the tree is associated with the subsequence of source symbols that occurred after context s and
this data is used to estimate the probability of the next symbol in this context.

Given this tree representation it is not clear how to efficiently find the next context to use after
a symbol has been processed in one of the contexts of the tree. If ai is the string processed so
far, the simplest way would be to traverse the tree from the root following the edges with labels
ai, ai−1, ai−2, . . . until a leaf is reached. This algorithm is not practical because of the large number
of tree traversing operations needed.

A solution for this has been proposed in [20] as the FSM closure of the tree model. Formally, a
tree is said to have the FSM property if it defines a next state function f which given a state on the
tree (i.e. a leaf) and a symbol from the alphabet returns a new state such that for any sequence an+1

we have:
s(an+1) = f(s(an), an+1)

where s(an) is the state reached after processing the sequence an. The FSM closure of a context tree
r is the smallest tree that has the FSM property and has r as a subtree.

Thus, the FSM closure endows the tree with next-state transition pointers that allow the encoder
to jump to the node where the next symbol will be encoded in O(1) time. As the FSM closure process
adds nodes to the tree there are also Origin pointers that provide access to the original states of the
tree where the statistics are stored and updated. An efficient algorithm to construct the FSM closure
of a tree is also described in [20].

We will return to tree models later in section 1.8.
To summarize, the process of losslessly compressing a string needs a probability model that can

assign probabilities to the string and a procedure to encode the data using these probabilities with a
number of bits per symbol a as close to − log p(a) as possible.

1.8 Double universality

Based on Rissanen’s lower bound, and given a class C of models we can define a code as Universal with
optimal convergence rate if for each source in the class the normalized expected redundancy vanishes
as k logn

2n up to lower order terms, where k is the number of free parameters and n is the input length.
In this case the goal is to find universal codes with optimal convergence rate with respect to a union
of a countable number of model classes of growing dimensionality: C1 ∪ C2 ∪ . . . ∪ Cn ∪ . . . [24]. An
example of this is the case where, for every k, Ck is the class of k -th order Markov sources over some
alphabet.

A double universal code should have a code length close to the minimum over all the classes of
the universal code for each individual model class. For example, for the class of Markov sources the
code in [31] has a redundancy upper bounded by;

(α− 1)αk log n

2n
+

c(k)

n
∀k

for an alphabet of size α, a source code of length n and a model of memory size k. Here c(k) is
independent of n.

As shown with universal codes, here we can also use both the plug-in and mixture approaches.
In the plug-in approach we use a two part code whose first part is the code for an integer i which
identifies the best model class. This can be identified by exhaustive search for example. The second
part of the code would be a universal code for the model class described in the first part.

The mixture approach can be also achieved in two stages, first within each Ci and then over all
the model classes.

Returning to the subject of tree models, it turns out that there exist efficient double-universal
and sequential codes in the class of tree models of any size. For example there are various versions
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of the Context algorithm [28] that use the plug-in approach and the CTW algorithm [39, 40] which
produces a sequential probability assignment using a mixture of all the models in the class.

With the plug-in approach a particular context is selected for each symbol to be encoded and the
occurrences of the symbols in this context are used to calculate the conditional probabilities. Using
the mixture approach the probability assignment is a mixture of assignments of all possible contexts
of different lengths.

There is also the semi-predictive approach [29, 20] where the best tree model is described to the
decoder in the first pass and then the data is sequentially encoded using this tree in a second pass.
In this case the tree is pruned before being sent to the decoder in order to use an optimal number of
parameters.

1.9 Probability estimation

When a model is used to assign probabilities using formula (1.2) it has to be able to estimate P (a|s)
for every symbol a in each state s. This is accomplished by collecting the number of occurrences of
each symbol in every state of the model and estimating the probability distributions from this data.
These counts are updated as long as the symbols are processed both in the encoder and the decoder.
In this section we discuss different approaches to estimating the probability distribution from the
number of occurrences of each symbol.

For example, consider an alphabet with α symbols and let cs(a) define the number of occurrences
of symbol a in a state s and let cs be the sum of occurrences of all symbols in that state. One

näıve approach would be to use an empirical frequency estimator assigning cs(a)
cs

as the conditional
probability of symbol a. The problem with this idea is that we are assigning zero probability to the
symbols that have not appeared in s and it is always possible that a new symbol occurs for the first
time.

As an alternative to this the Laplace estimator [17] already mentioned in 1.6 can be used. In this

case the probability of a known symbol would be cs(a)+1
cs+α . In this setting the numerator would be one

for the symbols that appear for the first time.
Another common estimator is the Krichevsky-Trofimov estimator [15, 16] (KT from now on),

also mentioned in 1.6 which is similar to Laplace where the conditional probability of symbol a is
cs(a)+1/2
cs+α/2 . This estimator has the additional property that there is a known bound for the parameter

redundancy. For example for a Bernoulli source where p(1) = θ and p(0) = 1− θ and a sequence an

with n0 zeros and n1 ones it can be proved [39] that:

log
(1− θ)n0θn1

KT (n0, n1)
≤ 1

2
log(n) + 1.

We will see how these estimators are used in the various compression algorithms described below.
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CTW

2.1 CTW algorithm

As mentioned in section 1.8 the CTW (Context Tree Weighting) [39, 40] algorithm works over the
class of tree models using a mixture approach. The algorithm uses context trees with contexts up to
a certain depth h.

On each context s the algorithm stores the number of bit occurrences in the subsequence associated
with that node. This is done for contexts of every length in the interval [0 . . . h]

On the leaves of the tree the only available information are the symbol counts so it is assumed
that the sequence associated to the leaves is memoryless and the KT estimator is used to assign a
probability for that sequence. For an internal node s of the tree a recursive argument can be used
assuming that there are good probability estimations for the subsequences associated with the two
children of s (we are assuming a binary alphabet here). Namely, it is possible to use the product of
the probability estimation on both children as the estimation for the parent node. Besides this, there
is still the possibility of using the KT probability estimator with the counts stored in s. So the idea
on internal nodes is to mix this two possibilities with 1/2 coefficients.

It is sound to use this mixture (called weighted distribution) as it can be seen that if P1(a
t) is a

good distribution estimation for source 1 and P2(a
t) is a good distribution for source 2 then:

Pw(a
t) ,

P1(a
t) + P2(a

t)

2

is a good probability distribution for both sources. As a proof for this it can be shown that, if an
arithmetic coder is used, then:

l(at) < log
1

Pw(at)
+ 2

= log
2

P1(at) + P2(at)
+ 2

≤ log
2

Pi(at)
+ 2

= log(2)− log
(
Pi(a

t)
)
+ 2

= log
1

Pi(at)
+ 3

where i ∈ {1, 2}. So the codeword length only increases by one bit in the worst case.
In this way if the KT probability of the sequence with n0 zeros and n1 ones that occurs in node s

is denoted as P s
KT (n0, n1) and the already calculated weighted estimation for the two children nodes

(called 0s and 1s) are named P 0s
w and P 1s

w respectively the CTW probability estimation P s
w for this

node would be:

P s
w =

{
1
2P

s
KT (n0, n1) +

1
2P

0s
w P 1s

w for 0 < h(s) < h

P s
KT (n0, n1) for h(s) = h

. (2.1)
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Here h(s) is the height of the node and h is the maximum height of the tree, so when h(s) = h, s is
a leaf.

Let Ch be the class of tree models of height not larger than h, and Kh(r) be the cost of encoding
a tree r ∈ Ch using a natural code (this code uses a bit per tree node, see page 41). Let also leaves(r)
be the set of leaves of r. Considering this and given a node s ∈ r it is also proved by induction in
[39] that:

P s
w =

∑

r∈Ch−h(s)



2−Kh−h(s)(r)
∏

u∈leaves(r)

Pus
KT (n0, n1)





with ∑

r∈Ch−h(s)

2−Kh−h(s)(r) = 1.

This is to say that the weighted probability on a node of height h(s) can be seen as a mixture of the
estimated probabilities P s

KT (n0, n1) on the leaves of the sub-trees of height not larger than h− h(s)
weighted by the cost of such trees. Thus the value Pλ

w(a
n
h+1|ah1 ) which is the weighted probability at

the root of the tree is the probability assigned by CTW to the string anh+1 given ah1 past symbols.
Let us show now an example for a context tree of depth 2. and an input string of 0010100. After

processing the first 6 input symbols, and assuming an initial state given by the string 00, the tree
nodes have the following values:

◦

#0=4, #1=2

Ps
w = 35

4096

0 1

◦
#0=2, #1=2

Ps
w = 7

256

0 1

◦
#0=2, #1=0

Ps
w = 3

8

0 1

◦
#0=2, #1=1

Ps
w = 1

16

◦
#0=0, #1=1

Ps
w = 1

2

◦
#0=2, #1=0

Ps
w = 3

8

◦
#0=0, #1=0

Ps
w = 1

Then, after processing the last symbol (0 in context 01), the tree turns out to be:

◦

#0=5, #1=2

Ps
w = 33

8192

0 1

◦
#0=3, #1=2

Ps
w = 5

512

0 1

◦
#0=2, #1=0

Ps
w = 3

8

0 1

◦
#0=2, #1=1

Ps
w = 1

16

◦
#0=1, #1=1

Ps
w = 1

8

◦
#0=2, #1=0

Ps
w = 3

8

◦
#0=0, #1=0

Ps
w = 1

The value Pλ
w on the root of the tree would be used to update the intervals in an arithmetic encoder.

Here the whole sequence probability is used to update the coder intervals. Based on equation (1.3)
we have that:

F (an) =
∑

xn<an

P (xn)

= F (an−1) +
∑

x<an

P (an−1x).

Thus the root of the CTW tree gives us the value P (an−1u) for each u ∈ A. In the case of a binary
alphabet the value P (an−10) is calculated first as it is enough to update the arithmetic coder interval
because:

F (an) =

{

F (an−1) if an = 0

F (an−1) + P (an−10) if an = 1
.
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In case the next symbol is 1 the value P (an−11) is also calculated to keep the tree updated. The
pseudo code for the CTW algorithm is given in algorithm 3.

Algorithm 3: CTW algorithm

input : String an to compress

1 for ai = a1 to an do

2 Calculate P̃ o
KT = P o

KT (n0 + 1, n1) where o is the root of the tree
3 for aj = ai to ai−h do

4 Calculate P̃ s
KT = P s

KT (n0 + 1, n1) for s = ai, ai−1, . . . , aj
5 end

6 for aj = ai−h to ai do

7 Calculate P̃ s
w for s = ai, ai−1, . . . , aj using P̃ s

KT as in (2.1)
8 end

9 Update P̃ o
w where o is the root of the tree

10 Update arithmetic coder using P̃ o
w

11 if ai = 0 then

12 Update symbol counts in the root of the tree
13 for aj = ai to ai−h do

14 Update context tree counts on node ai, ai−1, . . . , aj
15 end

16 for aj = ai−h to ai do

17 Set P s
w = P̃ s

w for s = ai, ai−1, . . . , aj
18 end

19 Set P o
w = P̃ o

w where o is the root of the tree

20 else

21 Update symbol counts in the root of the tree
22 for aj = ai to ai−h do

23 Update context tree counts on node s = ai, ai−1, . . . , aj
24 Calculate P s

KT (n0, n1 + 1)

25 end

26 for aj = ai−h to ai do
27 Update P s

w for s = ai, ai−1, . . . , aj
28 end

29 Update P o
w where o is the root of the tree

30 end

31 end

2.2 Byte-oriented files compression

The CTW binary algorithm can be applied to byte-oriented files simply by treating bytes as sequences
of bits. If we do this we can use only a few bits of a previous symbol as the context for a following
one. This does not seem useful as in binary files the natural context of a symbol are the previous full
8 bit symbols.

The scheme is adapted for byte-oriented files in [43] using different trees for each bit of a byte.
For each bit, a tree is selected from a group of trees using the previous bits of the byte as selectors.
For example, for the fourth bit in a byte the three previous bits are used to select one tree from the
eight (23) possible trees. The context tree for that bit would be formed by the symbols that preceded
the previous bytes with the same three bit prefix as this one.

Also, 256-ary trees are used instead of binary trees and the contexts are formed by full bytes.
Thus the CTW weighting is only performed on byte boundaries and not using bits inside of a symbol.
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In this case the CTW weighting is:

P s
w =

{
1
2P

s
KT (n0, n1) +

1
2

∏

0≤i≤255 P
is
w for 0 < h(s) < h

P s
KT (n0, n1) for h(s) = h

.

It is important to note that, even if the trees are not binary, the statistics stored in each node only
count bit occurrences, it is only the contexts that are not binary. This has the advantage that the trees
are smaller than full binary trees for the same context length and thus reduce the redundancy because
the number of bits required for describing a 256-ary tree are less than the required for describing a
binary tree (which would have more nodes).

2.3 Probability estimation

As was shown before, the CTW algorithm requires an estimation of the probability of the next symbol
based on the counts of bit occurrences in each node. When doing text compression the KT estimator
is not used but a variant called zero-redundancy estimator is used instead. If n0 and n1 are the counts
of zeros and ones respectively this is defined as follows:

ZR(n0, n1) =







1
2PKT (n0, n1) for n0 > 0, n1 > 0
1
2PKT (n0, 0) +

1
4 for n0 > 0, n1 = 0

1
2PKT (0, n1) +

1
4 for n0 = 0, n1 > 0

1 for n0 = 0, n1 = 0

Intuitively this estimator takes half KT and divides the remaining probability space adding 1/4
to the string with all zeros and 1/4 to the string with all ones. This is so because many byte values
never occur in ASCII text files so it is common that after particular bit combinations within a byte
most of the symbols are ones or zeroes. As a result, for some of the context trees, many estimations
end up working over states which contain only zeros or only ones.

More formally, with this estimator the redundancy that results for not knowing the parameter
for a source that only generates zeros or ones is never larger than two bits whereas with the KT
estimator this redundancy grows logarithmically with the number of symbols (see [43]).

2.4 CTW implementation

The implementation of CTW used for comparison is the one presented in [43] by Erik Franken and
Marcel Peeters from Eindhoven University of Technology. This has several improvements over the
original algorithm implementations. A general description of the implementation will be given below.

2.4.1 Tree construction

This implementation uses standard 256-ary suffix trees to store the statistics for each context and
calculate the weighted statistics. In fact 255 of these trees are used as mentioned in section 2.2.

The trees are built incrementally adding nodes as new symbols are processed. The algorithm
defines a maximum tree size parameter to keep the size of the trees bounded.

The trees are stored using a closed hash table in order to save the space needed for children
pointers in a standard tree implementation. When the child in the direction of symbol a of node s
needs to be found a hash function is evaluated. This hash function depends on the index of s in the
table, the symbol a, the position of the current bit being processed in the ASCII byte (called phase)
and the size n of the hash table as:

offset = hash(a)⊕ (2(phase+ 1))

index = index(s) + offset mod n

where hash is a random permutation table. The phase is needed because all 255 trees are stored in
the same table and this decreases the probability that two different trees conflict with each other,
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If the node in this index does not coincide with the searched node it is said that a collision has
occurred. In this case a new index is computed, and then another if there are still collisions. The
next index is computed by adding offset again to the last result. If the node cannot be found after
a certain number of tries the node cannot be stored in the hash and the algorithm continues with a
smaller tree. This means the value of h is reduced for some contexts.

One problem with this strategy is that the hash table size must be defined before starting the
compression process. This is a hard task because the optimal size is not easily predicted and memory
will be wasted if the table is too large and it may not be possible to build the full context tree if the
table is too small.

2.4.2 Weighting arithmetic

A few arithmetic techniques are used to achieve better performance in this implementation.
The first one is the use of integer arithmetic for all the operations. Integer arithmetic is much

faster than floating point and the results do not depend on the floating point implementation of the
architecture. In order to diminish the magnitude of rounding errors all values are multiplied by a
constant.

In addition, all values are represented with their logarithmic values. In this way all the multiplying
and dividing operations become adding and subtracting. However adding the logarithmic values is
harder; for this the jacobian logarithm is used:

log(p1 + p2) = log(p1) + log(1 +
p2
p1

) = log(p1) + log(1 + 2log(p2)−log(p1))

To increase the efficiency of the logarithm operation the algorithm uses precalculated tables for
log(x) and the jacobian logarithm log(1 + 2x).

Finally the algorithm stores some quotients of probabilities in each node which allows this imple-
mentation to calculate the weighted probabilities using only the nodes on the current path instead
of using additional nodes of the tree (see [43]). This quotients are updated every time the context
appears in the input string.

2.4.3 Path pruning

Another technique used to improve the performance and space requirements of the algorithm consists
in pruning from the tree the paths that, after certain level, only have one child for every node. Those
are called unique paths and the probability in every node is the same as the estimated probability
on the first node of the path. Unique path pruning decreases the number of nodes on the trees
saving memory and reducing the number of nodes to search and the number of calculations needed.
This same technique is also used in other algorithms which use context trees. As an example, in the
following tree all nodes below the black node would be pruned.

◦
0 1

◦ •
1

◦
1

◦

When a new context is seen that coincides in part with a pruned path, the coinciding part of the
original path has to be reconstructed using the data from input string that must be saved in memory.
This reconstruction process requires saving the already processed symbols in a memory buffer and
also a reference to this input string for every pruned path in every pruned node. After the previous
figure tree is pruned and the pruned path reference is stored on the node it would result in:
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◦
0 1

◦ • (1, 1)

The authors found that the memory saved by pruning tree nodes is greater than the space lost to
the input string buffer. When very large files are processed and the buffer gets full it is frozen and
pruned contexts are not reconstructed when they occur after the buffer is full.

In the previous example a new child of the black node in the direction of 0 would leave the tree
as shown in the next picture after reconstructing one pruned node from the input buffer:

◦
0 1

◦ •
0 1

◦ ◦ (1)



Chapter 3

PPM

3.1 PPM algorithm

The basic idea of PPM (Prediction by Partial Matching) [8] is again to use the last few symbols in
the input string (the context of the symbol) to predict the next one. PPM uses Markov models of
order k where each state is the context of length k where each symbol is found. In fact several models
of different order are used and one of them is chosen every time a symbol is coded. If a higher order
model cannot make a prediction then a lower order model is used (this is called a partial match).
This is the same idea as the plug-in approach for universal codes except that the context selection
is performed by heuristic methods. So, this algorithm lacks the universal properties that Context
(chapter 5) and CTW (chapter 2) possess.

As shown in section 1.7.3 a tree model can be used instead of the set of Markov models of different
orders to lower the model cost. In this case, the leaves of the tree are not the only possible states as
internal nodes are also considered as states for lower order models. Thus all the Markov models of
order 1 . . . k are represented in a single tree structure. Furthermore it is only necessary to look at the
parent node of a context to find the next shorter context for a symbol.

In every state of each Markov model a count of the number of occurrences of each symbol in that
context is stored. These counts are used to estimate the symbol probabilities which, in turn, are
used with an arithmetic coder. The probability estimation can be made with any of the methods
mentioned in section 1.9 or others. If the symbol did not occur in a state both the encoder and the
decoder have to backtrack to a lower order model. This is signaled using a special symbol called
escape. To ensure that a symbol never seen before can be encoded properly a special last model of
order −1 must be added. This last model assumes that all alphabet symbols have equal probability
and therefore there are no escapes.

This, in fact, can be also considered as a way of creating a mixture of several models assigning
a different weight to each one of them. In this case, supposing that the escape probability of the
context of length k is ek and h is the length of the longest context that can make a prediction, the
weight of each context is:

wk = (1− ek)
h∏

i=k+1

ei − 1 ≤ k < h

wh = (1− eh)

where the weight of the model of length k is the probability of descending to that model and not
going any further. So, the final contribution of a model of order k to the mixture probability can be
calculated as the product of the escape probabilities of every model of order greater than k multiplied
by the complement of the escape probability in the model of order k. These weights will define a
convex combination assuming all escape probabilities are between 0 and 1 and the escape probability
in the state of order −1 is 0.

To show that the weights define a convex combination we need to show that they sum up to 1.
We can prove this by induction on h. In the case that h = 0:

w0 + w−1 = (1− e0) + e0 = 1

21
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Assuming the property is true for h = d− 1 we have:

(1− ed−1) +
d−2∑

t=0

(1− et)
d−1∏

i=t+1

ei +
d−1∏

j=0

ej = 1

Then when h = d:

(1− ed) +
d−1∑

t=0

(1− et)
d∏

i=t+1

ei +
d∏

j=0

ej =

(1− ed) + (1− ed−1)ed + ed

(
d−2∑

t=0

(1− et)

d−1∏

i=t+1

ei

)

+

d∏

j=0

ej =

(1− ed) + (1− ed−1)ed + ed



ed−1 −
d−1∏

j=0

ej



+
d∏

j=0

ej = (induction hypothesis)

1− ed + ed − ed−1ed + eded−1 −
d∏

j=0

ej +
d∏

j=0

ej = 1.

It makes sense to use the complement of the escape probability as the weight of a model as the
escape probability is the probability that a particular context will be followed by a symbol that has
never seen before. Contexts with high escape probability should have less weight as their predictions
are not very good.

To formally define the probability assigned to a symbol using this algorithm let ck(a) be the
number of times symbol a has occurred in a context of order k. We assume that c−1(a) = 1 ∀a ∈ A.
Let us also define ck as

∑

a∈A ck(a).
The probability that will be assigned to the escape symbol remains to be defined. This is usually

determined heuristically and there are several different policies to do this [8, 2]:

PPMA With this method the probability of symbol a in a model of order k is:

pk(a) =
ck(a)

ck + 1

and the escape probability for a novel symbol in a model of order k is:

ek = 1−
∑

a∈Ak

pk(a) =
1

ck + 1

where
Ak = {a : ck(a) > 0}

PPMB In this approach a symbol is not predicted in a context until it has been seen at least twice.
The probability of symbol a is:

pk(a) =
ck(a)− 1

ck

Then the escape probability is:

ek = 1−
∑

a∈Ak

pk(a) =
|Ak|
ck

where
Ak = {a : ck(a) > 1}

PPMC This is similar to PPMB but makes predictions as soon as the symbol is seen in the context
and the probability of symbol a results in:

pk(a) =
ck(a)

ck + |Ak|
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The escape probability is:

ek = 1−
∑

a∈Ak

pk(a) =
|Ak|

ck + |Ak|

and Ak is defined just like PPMA.

Most PPM schemes use a technique called exclusion [2] in order to simplify the calculations needed
to obtain the probability of a symbol. Using exclusion only the model with the largest context is used
to predict every new symbol. However, if the new symbol has not appeared before in this context the
escape code is transmitted to let the decoder know that the longest context will not be used and the
algorithm falls back to the model with next smaller context of the symbol. When a context is found
that can predict the symbol only the probability of that context is used ignoring (i.e. excluding) all
the lower order models. In this case, instead of doing a mixture of the different models in the class,
the exclusion technique selects a single model for each symbol as in the plug-in approach.

A problem with the implementation of this algorithm is that every time a symbol is seen in a
context the counts for the symbol must be updated in all the shorter prefix contexts which can be
very time consuming if the model is large. To cope with this problem when exclusions are used,
there exists another technique called update exclusion. In this way when a symbol’s probability can
be estimated in one context the counts of the symbol in the shorter contexts are not updated (i.e.
are excluded). This can be rationalized supposing that the correct statistic to collect for the lower
order models is not the raw count but rather the frequency with which a symbol occurs when it is not
predicted by a longer context. This is mainly done as a way to simplify the algorithm implementation
but in fact it can improve the compression rate (for example in [2] they mention improvements of
about 2%).

To implement update exclusions efficiently we need a way to find the context where the next
symbol will be coded without the need to traverse the tree from the root to find it. This usually
means that we need an additional function NextState(s, ai) that given node s and symbol ai returns
the node where the probability of symbol ai+1 will be estimated. This is the longest path on the tree
for the context of symbol ai+1 and is the first node where the symbol will be processed. If escapes
occur the final node where the symbol is coded will be different.

Usually the context tree is constructed incrementally as the input symbols are processed se-
quentially. The same procedure that builds the tree creates the pointers needed to implement the
NextState function.

The pseudo-code for the PPM algorithm with update exclusion assuming that the root of the tree
is the state where all symbols have equal probability is shown in algorithm 4.

Algorithm 4: PPM algorithm with update exclusion

input : Symbol ai
input : Current node of the tree: s
output: The probability for ai
output: Node to use to encode the next symbol

1 repeat

2 if symbol ai is predicted in s then

3 Update symbol counts on s
4 return The probability for ai predicted in s
5 return NextState(s, ai)

6 else

7 Update symbol counts on s
8 s = Parent(s)

9 end

10 until s = root
11 return The probability for ai predicted in root
12 return NextState(s, ai)
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3.1.1 SEE

Many algorithms based on PPM use a technique called Secondary Escape Estimation (SEE for short)
[6] that tries to improve estimations of the escape probability on states where few symbols have been
processed. In these states usually the escape probability is overestimated initially as the escapes are
very common in the first iterations of the algorithm.

The idea is not to use the number of escapes in these nodes per se to estimate the escape probabil-
ity. Instead some properties of the nodes are used to find a SEE context where the escape probabilities
of all nodes with the same properties are accumulated. As the SEE context counts data from differ-
ent nodes it is expected that it can give a more precise escape estimation than each of the nodes by
themselves.

The properties of the node used to determine the SEE context are determined heuristically con-
sidering parameters like:

• The number of escapes in the node

• The number of processed symbols in the node

• The height of the node

• The number of symbols processed in the parent node

These values are quantized to a fixed number of bits and joined to form the number of the SEE
context to use. The SEE context gives an escape probability and then the counts of this context are
updated (along with the statistics in the original tree node) considering if an escape was generated
or not. In general the SEE context statistics are updated using large increments so initial data is
rapidly forgotten by new updates.

For example in [6] the SEE context for a node is determined by:

• The depth of the node mapped to two bits as:
{

depth/2 if depth ≤ 6

3 otherwise

• The number of escapes in the node using two bits (if greater than 3, SEE is not used)

• The total number of symbols found in the state (denoted here by cs) mapped to three bits as:






cs if cs ≤ 2

3 if cs ∈ {3, 4}
4 if cs ∈ {5, 6}
5 if cs ∈ {7, 8, 9}
6 if cs ∈ {10, 11, 12}
7 otherwise

• The 6th and 7th bits of the last four ASCII symbols in the input string which act as a flag to
identify lower case (11), upper case (10), punctuation (01) and escape (00) characters.

3.2 PPM implementations

There are a few relatively modern algorithms based on PPM which claim to have improvements over
the original algorithm. Some of them are:

• PPMZ by Charles Bloom [6]

• The algorithm presented in [9] by Michelle Effros

• PPMd by Dmitry Shkarin [35]

Among these the best one in terms both of speed and compression is PPMd. This was the
algorithm studied and used for practical comparison in this work.
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3.2.1 PPMd

PPMd uses the same basic probability assignment discussed in the case of PPM with exclusion with
some heuristic modifications regarding the counts of symbols. It also uses a different tree structure
and a form of SEE that will be discussed below. The tree is built incrementally as input symbols are
processed.

Tree construction

Assuming that we want to estimate the probability of symbol a using the counts in context s, the
procedure to select the final context and update the tree as needed is shown in algorithm 5. We let
cs(a) be the number of occurrences of symbol a in node s, sufs is the context which represents the
suffix of s one symbol shorter and fs(a) is the symbol that follows a in the input string after the first
occurrence of a in s after s was created. The value fs(a) is obtained by associating to node s the
index in the input string of the first occurrence of a in the node. The symbol in the next index is
fs(a). fs(a) is null if a has not occurred in s. The tree is initialized with a single root node.

In short the tree is built following this procedure:

• A new child s′ is created when a new symbol a occurs for the second time in a context s (line
6 of algorithm 5). cs′(a) = 0 ∀a ∈ A.

• This procedure is repeated for all suffixes of s until the root of the tree is reached (line 40) or
a suffix context is found where a new node addition is not necessary because it already has a
child in the direction of a (line 21) or no new node is added (line 31).

• All these newly created nodes need to have their suffix pointer correctly initialized. The suffix
of each of these nodes is the new node created on the suffix of its parent node (line 9) or the
child of the suffix of the parent in the direction of a in case it already exists (line 23) or the
suffix of the parent node in case a child is not created (line 33) or its parent (line 7) in case it
is not changed later. This only happens if the parent is the root.

• If we let snew be a new node created, after that we found its suffix, (denoted here s′) the counts
for the symbol fs′(a) in snew are initialized to the value b which is a heuristic value based on
the number of symbols and the sum of their frequencies in s′ (lines 10, 25, 27, 34).

As shown in algorithm 5 the PPMd tree is not constructed as a traditional context tree as was
shown before. Here the different context nodes are added to the tree in the same order that the
symbols appear in the input string. In this case a path from the root to a node represents a substring
from the input that occurred more than once. The context of a symbol occurring in a node s can be
found traversing from s to the root (ie. they are backwards with respect to the traditional context
tree). Thus, the context to estimate the probability of a new symbol is found traversing the tree
instead of using an external link to provide this function.

On the other hand, this construction does not allow the algorithm to reach a shorter context
traversing the tree towards the root. In order to achieve this the algorithm keeps suffix links which
point to the node of the tree where the suffix of each node is stored. Suffix links are used as auxiliary
structures in many algorithms, like the ones used to build suffix trees from [23, 36] and also in the
algorithm to build the FSM closure of a tree in [20].

This structure requires less pointers than the traditional PPM tree construction with “short-cut”
links to the next state. The former structure only needs one pointer in addition to the standard
children pointers while the latter needs an additional array of pointers for the next-state link. On
the other hand this tree’s edges cannot be compressed because all edges have length one.

The algorithm has a limit on the amount of memory that the tree model can use. By default the
model is grown until this level is reached and then it is restarted from scratch. There are also options
to freeze the model and to try to cut it. This last option is considered by the authors to be too slow.

We next show an example building a tree for the string 011011. We label each node with its name
and the pair (n0, n1) with the number of symbols 0 and 1 that occurred in each node. The dashed
arrows represent the suffix pointers. We also assume for simplicity that the symbol counts in new
nodes are always set to 1 (b = 1).

The first two symbols are processed in the root node (s0) and no new nodes are created as the
symbols are distinct.
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Algorithm 5: PPMd tree construction algorithm

input : Symbol a
input : Selected context s (a node of the tree)

1 ok = false

2 snew = null /* This will be a new node created. A reference is needed as we

search for its suffix context */

3 repeat

4 cs(a) = cs(a) + 1
5 if cs(a) = 2 then

6 Create new node s′ as a child of s in the direction of a
7 sufs′ = root // this may change later

8 if snew 6= null then

9 sufsnew = s′

10 csnew(fsufs′ (a)) = b /* b is based on the number of symbols and the sum of

their frequencies on sufs′ (see information inheritance below) */

11 end

12 for i ∈ A do

13 cs′(i) = 0
14 end

15 snew = s′

16 if s = root then
17 cs′(fs(a)) = b
18 else

19 s = sufs
20 end

21 else if ∃ s′ = child of s in the direction of a then

22 if snew 6= null then

23 sufsnew = s′

24 if fs′(a) 6= null then

25 csnew(fs′(a)) = b
26 else

27 csnew(fsufs′ (a)) = b
28 end

29 end

30 ok = true

31 else

32 if snew 6= null then

33 sufsnew = s
34 csnew(fs(a)) = b
35 ok = true

36 else

37 s = sufs
38 end

39 end

40 until s = root or ok
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◦s0(1,1)

011011

The third symbol gets cs0(1) = 2 so a new node is created as s1 (line 6 of algorithm 5). As
sufs1 = s0 (line 7) and fs0(1) = 1 then cs1(1) = 1 (line 17). The selected context to estimate the next
symbol will be s1.

◦
1

s0(1,2)

◦

gg

s1(0,1)

011011

The fourth symbol is a 0 and we have cs1(0) = 0 so it is searched in the suffix s0 (line 37) and, as
cs0(0) = 2 a new node (s2) is created (line 6). cs2(1) = 1 because sufs2 = s0 (line 7) and fs0(0) = 1.

◦
10

s0(2,2)

◦

77

s2(0,1) ◦

gg

s1(1,1)

011011

The next symbol is a 1 and, as now cs2(1) = 2, a new node is created (line 6) as s3. The suffix of
the parent of s3 (s0) already has a node in the direction of 1 (s1) so the suffix pointer is initialized
pointing to this node (line 23). The value cs3(1) is set to 1. As this is the first symbol 1 that occurs
in s1 (cs1(1) was initialized to 1 when s1 was created) the algorithm uses fs0(1) (line 27). This is the
third symbol of the string and it is 1.

◦
10

s0(2,3)

◦

77

1

s2(0,2) ◦

gg

s1(1,1)

◦

EE

s3(0,1)

011011

The last symbol is again a 1 so cs3(1) = 2 and a new node is created in the direction of 1 as s4
(line 6) and also a new node (s5) is created in the suffix of the parent (s1) to create the proper suffix
links. The count of occurrences of the symbol is incremented in all nodes in the path to the root.

◦
10

s0(2,4)

◦

33

1

s2(0,2) ◦

kk

1

s1(1,2)

◦

77

1

s3(0,2) ◦

gg

s5(0,1)

◦

77

s4(0,1)

011011
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Coding

When a symbol a occurs in a state s where cs(a) > 0 its probability is estimated using the statistics
stored on s. If cs(a) = 1, a new node is created as was explained earlier. In case cs(a) > 1, s should
have a child in the direction of a and that child node will be selected to estimate the probability of
the next symbol.

If cs(a) = 0 an escape is emitted and the algorithm tries to encode the symbol in sufs. This
search continues emitting escapes in each state until the root is reached or a state s′ is found where
cs′(a) > 0. After s′ is found all the other states visited during the search are updated to include the
new symbol a and more nodes are added as needed. The selected context for the following symbol is
the child in the direction of a of s′ (or the root if there is no s′)

Symbol and escape probabilities

In order to calculate symbol and escape probabilities the algorithm keeps a tally of the number of
times a symbol a occurs in a state s (cs(a)) and another counter for the total number of symbol and
escape occurrences in s (denoted SummFreqs).

If we, as before, let As = {a : cs(a) > 0} in the first state tried when coding a symbol the symbol
and escape probabilities are given by:

ps(a) =
cs(a)

SummFreqs

es = 1−
∑

a∈As
cs(a)

SummFreqs
.

In other states SummFreqs is not used and this value is substituted by a value obtained from SEE
(denoted by SEE) resulting in:

ps(a) =
cs(a)

SEE

es = 1−
∑

a∈As
cs(a)

SEE
.

Information inheritance

Another difference in the PPMd algorithm is the use of what the authors call Information Inheritance.
The underlying idea is that the statistics stored in a node must depend in some form on the statistics
of the suffix. This is why, when a new node s is created, some information is obtained from sufs in
order to initialize the counts of occurrences of symbols in s with values different from zero. This is
the b value in lines 10, 25 and 34 of algorithm 5. Given a new node s and its suffix sufs the value b
for symbol a is computed as:

a0 = SummFreqsufs − |Asufs | − csufs(a)− 1

b =







1 if a0 > 5(csufs(a)− 1)

2 if 2(csufs(a)− 1) ≤ a0 ≤ 5(csufs(a)− 1)
(csufs(a)− 1) + 2a0 − 3

a0
otherwise

The value a0 is roughly the number of symbols different from a that occur in sufs. If this number is
much larger than csufs(a) then the algorithm assumes that there are several symbols in sufs and b is
smaller. Otherwise the algorithm assumes that there are not many symbols different from a in sufs
and then uses a larger number for b as it can be estimated to be more probable in s as it has followed
the symbol a before.

For this same reason when a symbol a is coded in a state s the value csufs(a) is also incremented.
The value i of this increment is given by:

i =







2 if |Asufs | > 1 and csufs(a) < 115

1 if |Asufs | = 1 and csufs(a) < 32

0 otherwise
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This increment can change the estimation of symbols that are coded in sufs and also in future children
of sufs that can be created. The idea is to put a limit on the number of occurrences of the symbol
and not increase it if the symbol has already occurred many times. The limit is lower if the symbol
s is the only one that occurred in sufs as in this case its probability will already be very high and
increasing the number probably does not help very much.



Chapter 4

Other compression algorithms

4.1 BWT

4.1.1 BWT algorithm

There is a class of algorithms, which are based on the BWT (Burrows-Wheeler Transform) [7], which
do not process the whole input string sequentially but divide the input in blocks and work over each
of them separately. The idea is to apply the BWT to each of these blocks and compress each of them
individually. This transformation tends to group equal characters together so the resulting string
is easier to compress using simple compression algorithms. This transformation is reversible so the
original data can be restored by the decoder.

The BWT is composed by two quite different algorithms: the direct transformation that converts
the input string in the transformed string and the reverse transformation which obtains the original
string from the transformed one. The direct transformation is shown in algorithm 6.

Algorithm 6: BWT direct transformation

input : String an

output: String un and integer l

1 M = new n× n matrix
2 for i = a1 to an do

3 M [i] = the cyclic permutation of an that starts with ai
4 end

5 Sort(the rows of matrix M )

6 un = the last column of M
7 l = the index in M so that M [l] = an

8 return (un, l)

For example, applying this algorithm to the string cocos will result in the matrix:









c o c o s
c o s c o
o c o s c
o s c o c
s c o c o









then the BWT will be the pair (socco, 1)
Algorithm 7 shows the reverse transformation.
Continuing with the previous example for the string cocos the input string un would be socco and

the value of l is 1. Then the array z is (5, 3, 1, 2, 4) and we get:

30
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Algorithm 7: BWT reverse transformation

input : String un and integer l
output: String an

1 vn = Sort(un) // vn is the first column of M

2 for i = 1 to n do

3 if ui is the jth occurrence of symbol w in un then

4 z[i] = k where vk is the jth occurrence of symbol w in vn

5 end

6 end

7 for i = 0 to n− 1 do

8 an−i = uzi[l]

// z0[x] = x
// zi+1[x] = z[zi[x]]

9 end

10 return (an)

a5 = u1 = s (z0[1] = 1)

a4 = u5 = o (z1[1] = 5)

a3 = u4 = c (z2[1] = 4)

a2 = u2 = o (z3[1] = 2)

a1 = u3 = c (z4[1] = 3)

so we recover the original string xn = cocos.
One example of a simple compression algorithm that is used after applying the BWT is move-to-

front coding [4] which keeps a list of the symbols in the string being processed moving each symbol
that appears in the input to the front of the list. Each symbol is coded by its index in this list so
symbols that occur more often tend to use smaller indexes and thus require less bits to encode. In
particular if there are large clusters of the same symbol in the input string (as will be the case when
the BWT is used) all of them will be coded by the number 0.

Also it is customary to apply a run-length coding algorithm after the move-to-front coding. Run-
length coding works by replacing sequences of repeated symbols by one of those symbols followed by
the number of repetitions.

Summarizing, the BWT of a string v of n characters proceeds by building all the cyclic permuta-
tions of v and sorting them lexicographically. The result of the transformation is the last character of
all the n ordered permutations (string u) and the position l of the original string in the ordered list of
cyclic permutations. The position l is needed by the decoder in order to reverse the transformation
and obtain the original string. The reordered sequence is then encoded in a second pass without
resorting to use an arithmetic coder. See [10] for a complete analysis of the algorithm.

To understand why the BWT algorithm works we can see that if a character is commonly followed
by the same symbols, when the permutations are sorted there will be a region on u where the character
will occur disproportionately with respect to the rest of the string. For example, think of the letter t
in the word the. All the cyclic permutations that start with he will be lumped together resulting in
a region of u with many occurrences of the symbol t along with other symbols that normally precede
he like s, T and S.

Thus, the BWT of a reversed string groups symbols that follow the same context, so the algorithm
can be considered as coding based on a context tree. The difference is that there is no context selection
procedure and only a reordering of the sequence grouping symbols in similar contexts. In this view,
if the input string is not reversed the context of a symbol can be seen as formed by the symbols that
follow it instead of the symbols that precede it. This does not work in an algorithm that attempts
to process the input sequentially but works in BWT as it processes the input in blocks.
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4.1.2 Efficient implementation of BWT

In the case of the direct transformation procedure clearly the most complex step is the sorting of the
cyclic permutations. This could be done in O(n2 log(n)) time (assuming the comparison of strings
takes O(n) time) using an algorithm like quicksort, but this problem can be reduced to that of sorting
all the suffixes of a string. This could be efficiently accomplished by building a suffix tree of the input
string and doing an inorder traversal of this tree. This can be done in linear time using an algorithm
like the ones described in [23, 36] to build the suffix tree.

The reverse transformation procedure only sorts a string instead of sorting n strings so it is
inherently faster than the direct one. It can be implemented in three passes over the input string and
a pass over an auxiliary string of the size of the alphabet (see [7] for a full description).

It is important to note that neither of the two algorithms require the use of floating point arithmetic
in contrast with all the other algorithms mentioned in this thesis. This and the relative simplicity of
the algorithms make BWT compression inherently faster that other algorithms.

4.1.3 BWT implementation

The BWT implementation studied here is bzip by Julian Seward [32, 33]. It does not use a suffix
tree in order to sort the block permutations but builds a suffix array. In this context, a suffix array
is simply an array which indexes all suffixes in lexicographic order.

This suffix array is built sorting the suffixes using the Bentley-Sedgewick ternary quicksort [5] and
using some optimizations which include pre-sorting the first characters of each prefix using a form
of counting sort (see appendix A) similar to the one used in the algorithm described in page 38 and
other further optimizations described in [32].

In order to compress the string after the BWT is applied bzip uses move-to-front and then run-
length coding as was explained in section 4.1.1. After these steps the algorithm uses Huffman coding
[21] to assign shorter codes to more probable symbols (see [32] for details).

4.2 Context mixing algorithms

A context mixing algorithm combines the predictions of several different models using weighted
averages [18]. This seems similar to the ideas behind CTW (or the mixture approach of universal
codes) but is more general in the sense that it mixes predictions from arbitrary models instead of
only using context trees. This of course lacks the universality properties proved for CTW as the
model class is much larger. Besides, this algorithm mixes the probabilities predicted for each symbol
instead of doing a combination of several probabilities for the entire string as is done in CTW.

In this case the weights are adjusted dynamically in order to favor the most accurate models for
the data being coded and the compression ratio achieved becomes better as the number of different
models used is larger. The trade-off is that this also augments the processing time and hardware
resources needed. Top ranked context mixing compressors can be 500 to 1000 times slower than
efficient practical compressors like gzip [18]. Also, if many models are used, there would be a cost
in code length during the time the algorithm adapts itself to ignore models that make incorrect
predictions and gives more weight to the more accurate models.

Context mixing works as follows in a binary setting: for each bit to encode each model m inde-
pendently outputs two numbers n0m, n1m >= 0 which can be seen as a measure of the probability
estimated by the model that the next symbol will be 0 or 1 respectively. These numbers in general
do not need to sum up to one so the probabilities are in fact n0m

nm
and n1m

nm
where nm = n0m + n1m.

Then, a weighted summation of n0m and n1m over all the models is performed in order to obtain the
final algorithm prediction. These same steps are done during the decoding stage so that the same
probabilities are recovered and an arithmetic coder can be used. In this way letting wm be the weight
of model m we get:



CHAPTER 4. OTHER COMPRESSION ALGORITHMS 33

S0 = ǫ+
∑

m

wmn0m

S1 = ǫ+
∑

m

wmn1m

S = S0 + S1

p0 =
S0

S

p1 =
S1

S

where p0 and p1 are the probabilities that the next symbol will be a 0 or a 1 respectively and ǫ is a
small constant used to guarantee that S0 and S1 are greater than zero.

The values of wm can be initialized to favor previously known better models or with the same
value for every model. After each symbol is processed, assuming its value was x (0 or 1), the weights
are updated as follows:

wm = max

(

0, wm +
(S n1m)− (S1 nm)

S0S1
(x− p1)

)

. (4.1)

In (4.1) the term |(x− p1)| can be seen as the error measure for the current prediction. It will be
0 if the prediction is correct and go up to 1 in case of a completely wrong prediction (p(x) = 0). The
term (x− p1) will be positive when x = 1 and negative otherwise. We can also see that:

(S n1m)− (S1 nm) =

((S0 + S1)n1m − (S1(n0m + n1m)) =

S0n1m − S1n0m.

So this term will tend to be positive for models that predict 1 with more probability than their peers
and negative in the opposite case. This coincides with the sign of (x − p1) to raise the weight of
models that make correct predictions.

Current context weighting implementations use dozens of models. Some of them are context
based, others use word models and some use bidimensional models to model bidimensional data like
images or databases. Some implementations also use a form of SEE (called SSE in this case as we are
estimating probabilities of symbols not escapes) after mixing the estimations while others also use a
SSE stage internal to each model in addition to the one used after the mixing stage.

The implementation of this algorithm used for comparison is zpaq 1.02 by Matt Mahoney [44]
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Context

5.1 Context algorithm

The Context algorithm, introduced by Rissanen in [28], is a lossless universal coding scheme in the
class of tree models which uses the plug-in approach. The algorithm builds a tree that stores the
number of symbols occurring in every context and then a distinguished context from the tree is
selected for each symbol to code. The statistics on this node are used for estimating probabilities.
The algorithm does not collect symbol counts for every possible context as this would require too
much space. Only some of the contexts are used and, for choosing those, the algorithm associates a
cost with each context and only includes a particular context if its share in reducing the conditional
entropy exceeds its cost.

This algorithm was created as an improvement over the Lempel-Ziv algorithm [42] considering
that LZ partitions the string in incremental segments and can not capture dependencies between
non contiguous symbols which arise, for example, in image compression applications. To address this
problem the context algorithm collects statistics on overlapping sets of symbols each one of them
defining a context on which the symbol occurrences can be conditioned.

It has been proved [37] that this coding scheme is universal in the class of tree sources with
the following upper bound for the normalized difference between the ideal code length assigned by
any finite memory source with k sets of equivalent states and the ideal code length assigned by this
algorithm (for a string of length n):

k(α− 1)

2n
log n+O

(
1

n

)

which goes to zero at the fastest possible rate (considering Rissanen’s bound) as n goes to infinity.
This is how the tree is built in [37] (the algorithm used in [28] is slightly different because it always

constructs full trees):

1. The algorithm starts with only the root node with its symbol counts all zeroed.

2. Recursively let r(t) be the last constructed tree and at+1 the next observed symbol. The
next tree r(t + 1) is generated by climbing the tree r(t) following the path determined by
at, at−1, at−2, . . . taking the branch left for 0 and right for 1. For each node visited the count
for symbol at+1 is incremented by one until the deepest node of the tree is reached. Lets call
this node at, at−1, . . . , at−j+1.

3. If the last updated symbol count becomes at least 2, a new node in the direction of at−j has
to be created. Let us call this node at, . . . , at−j . This new node has all its symbol counts
with value zero except for symbol at+1 whose count is set to one. This resulting tree would be
r(t+ 1).

The goal of this stage is to build all the relevant contexts (the tree will grow only in directions
where repeated symbols occur) and accumulate symbol statistics for each one of them in a practical
way. In this case we are assuming that the context of a symbol is comprised by the past contiguous

34
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symbols, but in general the algorithm can use any computable function of the past symbols as this
context.

So far we have described the tree construction but the procedure used to select a distinguished
context for each input symbol remains to be defined. There are several variants of this procedure but
the basic idea is to select the node which would have assigned the shortest code length for its symbol
occurrences in the past string. One intuitive choice is to set the cost of a node to be a function of
the code length for the symbols encoded in that node and then estimate the probability of symbol
at+1 using the counts on the longest context for at+1 on r′(t) where r′(t) is the tree with minimum
cost after observing symbol at.

In [20], the model cost is calculated as if the full context tree for the entire string would be
constructed and then in a second pass the cost of the nodes would be determined and the tree would
be pruned. As in this algorithm the tree must be sent to the decoder the cost of each node also
includes the number of bits required to send each additional node to the decoder.

If we let cs(a) be the number of occurrences of symbol a in node s, the complete pseudo-code for
the Context algorithm is shown in algorithm 8.

Algorithm 8: Context algorithm

input : Symbol ai and context ai−1, . . . , ai−h

output: The probability for ai

1 s = root of r(i− 1)
2 j = 1
3 while s has a child in the direction of ai−j do

4 cs(ai) = cs(ai) + 1
5 s = child of s in the direction of ai−j

6 j = j + 1

7 end

8 cs(ai) = cs(ai) + 1
9 if cs(ai) ≥ 2 then

10 Create new node s′ as a child of s in the direction of ai−j

11 cs′(a) = 0 ∀a ∈ A
12 cs′(ai) = 1
13 r(i) = r(i− 1) ∪ s′

14 else

15 s′ = s
16 r(i) = r(i− 1)

17 end

18 s′′ = SelectContext (ai−1, . . . , ai−j , s
′) /* Explained in the text above */

19 return probability of symbol ai estimated on node s′′

As an illustration of the tree construction process we consider the tree corresponding to the binary
string 10001101. After the first two symbols are processed (10) no new nodes have been constructed
and the root node of r(2) has count (n0, n1) = (1, 1). Then, when the next 0 is processed the count
n0 for the root node becomes 2 so a new node is added to the left of the root node with count (1, 0)
so r(3) is:

◦ (2,1)

◦ (1,0)

10001101

The same thing happens with the next 0 (context starting with 00) as the count of the node added
in the previous step reaches (2, 0) leaving the following tree r(4):
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◦ (3,1)

◦ (2,0)

◦ (1,0)

10001101

The next 1 symbol (context starting with 00) only alters the counts of the nodes but the leaf had
n1 = 0 so no new nodes are added. The second 1 does make a difference because its context now
starts with 1 so a new node is added to the right of the root leaving the following tree as r(6):

◦ (3,3)

◦ (2,1) ◦ (0,1)

◦ (1,1)

10001101

Now the next 0 (context starting with 1) just alters the counts on the root and the last added
node but the last 1 symbol whose context starts with 01 generates the following tree as r(8):

◦ (4,4)

◦(2,2) ◦ (1,1)

◦ (1,1) ◦ (0,1)

10001101

5.2 Semi-predictive context algorithm

In this work, a new context algorithm using the semi-predictive approach has been developed. It is
based on the algorithm defined in [20] which has the important practical property of having linear
encoding and decoding time.

Generally speaking the encoding process in the algorithm in [20] has these steps (pseudo-code
shown in algorithm 9):

1. Build a suffix tree of the complete reversed input string.

2. Prune this tree in order to obtain an optimal model (a tree that minimizes the code length).

3. Build the FSM closure of the pruned tree. The construction of the FSM closure of the tree is
done for computational reasons as was explained in section 1.7.3.

4. Use this tree as a model to obtain probabilities and use them with an arithmetic encoder.

The decoder receives the optimal tree used in the encoding procedure with added nodes in order
to form an atomic1 full tree. It is done in this way because a full tree can be encoded using less bits
than would be required to encode an arbitrary tree. Additional bits could be used to describe the
exact tree used by the encoder (simply by stating for every node if it belongs to the tree used by the
encoder or not) but this cost can be avoided while preserving a linear complexity algorithm.

1A tree is atomic if all the labels on its edges have length one
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Algorithm 9: Context semi-predictive encoding algorithm

input : String to encode: an

output: The pruned tree
output: The probability for ai, 1 ≤ i ≤ n

1 r = BuildSuffixTree (an) // builds the suffix tree for an

2 foreach node s in a DFS traversal of r do

3 if HasChildren(s) then
4 if Cost(s) <

∑

i∈ Child(s) Cost(i) then

5 Make s a leaf
6 end

7 end

8 end

9 return pruned tree r
10 r′ = BuildFSM (r) // builds the FSM closure of r
11 s = root of r′

12 for ai = a1 to an do

13 return probability of symbol ai estimated on node s
14 cs(ai) = cs(ai) + 1
15 s = NextState(s, ai) /* Follows the pointer to the next state given by the FSM

closure */

16

17 end

Considering this, the decoding process in [20] consists of the following steps (pseudo-code shown
in algorithm 10):

1. Build a new tree starting from the one sent by the encoder deleting all leaves and nodes whose
outgoing degree after deleting the leaves is one.

2. Build the FSM closure of this new tree (this tree has fewer nodes than the tree used in the
encoder because of the nodes deleted in step 1).

3. Decode the input string using an arithmetic decoder with this tree as a model adding the missing
nodes as necessary.

Algorithm 10: Context semi-predictive decoding algorithm

input : The pruned tree r
input : The output of the arithmetic encoder for the input string an

output: Symbol ai, 1 ≤ i ≤ n

1 r′ = DeleteLeaves (r)
2 r′′ = BuildFSM (r′) // builds the FSM closure of r′

3 s = root of r′′

4 for i = 1 to n do

5 return symbol ai decoded using the probabilities on node s
6 cs(ai) = cs(ai) + 1
7 s = NextState(s, ai) /* Follows the pointer to the next state given by the FSM

closure */

8

9 end

5.2.1 Important contributions

Next we will describe the algorithm developed in this thesis. The main innovations are:
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• Regarding the implementation:

– This algorithm uses a modified version of the wotd algorithm (write-only top-down) pre-
sented in [11] in order to build the suffix tree and prune it at the same time (so we
implement steps 1 and 2 of the encoding algorithm in a single step). The top-down ap-
proach of wotd guarantees that once a branch has been created, it will never be traversed
again by the algorithm thus allowing us to prune the branch during the suffix tree con-
struction. This way the complete suffix tree is never built allowing memory savings and
thus enabling the algorithm to process longer input files using the same amount of memory.
Also in practice the procedure takes less time.

– The algorithm defines a constant indicating the maximum height of the pruned suffix
tree. In this way all nodes higher than this constant are automatically pruned without
calculating the cost which is a quite complex function (see below). If this constant is
chosen sufficiently large this does not affect the compression ratio and diminishes the work
needed. If the constant is too short the tree will not be optimal and the compression rate
will be lower.

– It has the first implementation of the ideas presented in [19] to implement the decompres-
sion using an incomplete FSM closure. Some extra steps are added in the implementation
because of the use of the PPM techniques mentioned next.

• Regarding the compression:

– The algorithm has been adapted to use some techniques seen in PPM algorithms such as
update exclusions and SEE.

– The prunning procedure was changed to account for the use of the mentioned PPM ideas.

– The KT estimator was replaced for another more adequate for large alphabets.

Next we will describe the encoding and decoding procedures with more detail.

5.2.2 Encoder

Initialization

The first task during the encoding procedure is to output the alphabet of the input string in order to
send it to the decoder. The encoder and decoder do not necessarily need to know the alphabet (they
can assume the alphabet is composed by all 256 8-bit symbols) but the probability estimations are
better if they know that some symbols never occur in the string. With a smaller alphabet all symbols
can have higher probabilities and thus lead to a shorter compressed representation.

Suffix tree building

The next step of the encoding procedure is to build a suffix tree (see 1.7.3) for the reversed input
string (u). We build the tree for u because the suffixes of this string are the prefixes of u. These
prefixes are the contexts where we need to store the number of occurrences of each symbol to estimate
probabilities.

Although there are linear time algorithms to build suffix trees (see [23, 36]) our algorithm uses,
as was mentioned before, a modified version of the wotd algorithm in order to build the suffix tree
and prune it at the same time. The linear algorithms presented in [23, 36], require more bytes per
node to implement and also have very little locality of memory reference which is a problem in cached
processor architectures.

The wotd algorithm uses an auxiliary array called suffixes that contains all suffixes of u$ ordered
by increasing suffix length so:

suffixes[0] = u$

· · ·
suffixes[n] = $.
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The algorithm begins the construction of the suffix tree by creating nodes for all the children of
the root and then each of these nodes is processed and new nodes are created for its children. These
new nodes created are processed recursively in a DFS fashion.

The children of the root node are found sorting the suffixes array by the first symbol of each
suffix using a counting sort algorithm (see appendix A). A group of suffixes that start with symbol
a (which are lumped together by the sorting process) corresponds to an edge whose label starts with
a outgoing from the root. If there is only one prefix starting with a the edge leads to a leaf and
otherwise it leads to a branching node. The label on edges that lead to a leaf is the rest of the string
up to the symbol $. This is not an atomic representation of the tree per definition of a suffix tree
(given in section 1.7.3).

Note that this step of the procedure is remarkably similar to the one used in the BWT imple-
mentation presented in [32]. In that case it is used during the sorting phase of the BWT algorithm
(see section 4.1.3) which is very different to this one but it shows that both algorithms are handling
contexts in a similar way.

To recursively process a branching node whose label starts with a (leaves do not need further
processing) the algorithm first computes the length of the edge label. This is found by calculating the
least common prefix (lcp) of all the suffixes in the group. This is the longest prefix that all suffixes
in the group share.

When this has been found the edge is built and all suffixes in the group are shortened by the
length of the lcp discarding the prefix symbols that all suffixes share and this group is processed in
the same way as was explained for the root.

The pseudo-code of this algorithm is shown in algorithm 11. Here we assume that the edge’s
labels are given by a pair of references to the complete input string (begin, end). We also assume
that the counting sort algorithm returns a structure we can use to get the indexes in the sorted
suffixes array where the first and last occurrence of each symbol appear. Let us call this structure
csort. For a symbol a we can get the beginning of the interval as csort[a].begin and the end as
csort[a].end. If the symbol a does not occur in the array to sort then csort[a].begin = csort[a].end =
−1. The first invocation of this recursive algorithm is performed with the following input parameters:
((1, |u$|), root) where root is the root node of the tree to build.

Algorithm 11: wotd algorithm

input : The bounds of the interval of suffixes to process (begin, end)
input : Root node of the tree r
output: Suffix tree r for the suffixes in the specified region

1 csort = Sort (suffixes, begin, end)
2 foreach symbol a with csort[a].begin >= 0 do

3 if csort[a].begin < csort[a].end then

4 lcp = Lcp (suffixes[csort[a].begin], suffixes[csort[a].end])
5 subNode = New branching node from r with label

(suffixes[csort[a].begin], suffixes[csort[a].begin] + lcp)
6 for i = suffixes[csort[a].begin] to suffixes[csort[a].end] do

// Remove first |lcp | symbols

7 suffixes[i] = Substring(suffixes[i], |lcp|)
8 end

9 Wotd (csort[a].begin, csort[a].end, subNode)

10 else

11 New leaf from r with edge label starting with suffixes[csort[a].begin]
12 end

13 end

14 return r

The wotd algorithm uses a highly optimized tree structure to represent the suffix tree that is built.
This structure and more details on the algorithm implementation are discussed in page 49.

Lets us now show an example building the suffix tree for the string abradacabra. As shown we
need to build a suffix tree for abracadabra$.
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The first step is to sort all suffixes of abracadabra$ by its first symbol:

abracadabra$
acadabra$
adabra$
abra$
a$
bracadabra$
bra$
cadabra$
dabra$
racadabra$
ra$
$

We added horizontal lines to separate the suffixes that start with each one of the six symbols in
the string. Thus we know that the root of the suffix tree has six children and three of them are leaves
as there is only one suffix starting with c, d and $. The lcp for the other tree branching nodes is “a”,
“bra” and “ra” respectively so the tree we can build so far is:

◦
a bra cadabra$

dabra$

ra $

◦ ◦ ◦ ◦ ◦ ◦

We continue recursively with the first branching node (the one labeled “a”). Here we sort again
the suffixes in this interval discarding the first symbol “a” as this is the lcp. We then get:

(a)bracadabra$
(a)bra$
(a)cadabra$
(a)dabra$
(a)$

We have four children with three leaves and another branching node. For this branching node the
lcp is “bra”. So the tree we currently can build is:

◦

a

bra

cadabra$

dabra$

ra $

◦

bra

cadabra$

dabra$

$

◦ ◦ ◦ ◦ ◦

◦ ◦ ◦ ◦

Following the next branching node the sorted prefixes are:

(abra)cadabra$
(abra)$

Both are leaves so the tree now is:
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◦

a

bra

cadabra$

dabra$

ra $

◦

bra

cadabra$

dabra$

$

◦ ◦ ◦ ◦ ◦

◦

cadabra$

$

◦ ◦ ◦

◦ ◦

We then backtrack to process the two remaining branching nodes on the first level. As both
contain only leaves we will next show the complete context tree:

◦
a

bra

cadabra$
dabra$

ra $

◦
bra

cadabra$
dabra$

$

◦
cadabra$

$

◦ ◦ ◦
cadabra$

$

◦

◦
cadabra$

$

◦ ◦ ◦ ◦ ◦ ◦ ◦

◦ ◦

Pruning

The pruning procedure seeks to build a tree r that minimizes the code length for a string an given
by:

L(r, an) = Lr(a
n) +K(r)

where K(r) is the cost of encoding the tree r in order to send it to the decoder and Lr(a
n) is the

code length of the input string conditioned on the states of r. It is important to remember that, as
mentioned in section 5.2, the tree is converted into a full atomic tree when sent to the decoder, so
K(r) is calculated considering this augmented tree.

The value K(r) depends on the algorithm used to encode the tree. In [20] the tree is encoded
using a natural code which uses one bit per node where every bit indicates if the node is internal or
if it is a leaf. In our algorithm the tree is encoded using the following procedure:

• The encoder sends the number ri of internal nodes of the tree to the decoder. The decoder then
can calculate the total number of nodes which is riα+ 1

• If we let rl be the number of leaves in r, an arithmetic coder is used to encode the class of
strings with ri ones and rl zeroes. The tree is traversed in-order and each node is encoded with
the arithmetic encoder using the probability given by the class (ie. the probability of being an
internal node or a leaf) and then ri and rl are adjusted to account for the symbol just encoded.
Initially we have that rl = ri(α−1)+1. As these values are adjusted the probabilities are given
by:

P (internal) =
ri

ri + rl

P (leaf) =
rl

ri + rl

• This continues until there is no more nodes to encode or it can be determined that all remaining
nodes are leaves.
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Considering the previously mentioned probabilities of a node being internal or a leaf, the entropy
of this probability distribution is:

H

(
ri

riα+ 1

)

= H

(

1

α+ 1
ri

)

∼ H

(
1

α

)

where H is the binary entropy function. It follows that, using an arithmetic encoder, each node of
the tree would need approximately H (1/α) bits.

On the other hand, the most important component of L(r, an) is the code length for the symbols
encoded in the tree’s nodes. Let this value be κ(an, s) for node s. The formula to calculate this value
depends on the probability estimation used by the algorithm implementation and will be discussed
below.

The algorithm which implements the pruning of the tree r is based on the observation that, by
recursively assigning costs to sub-trees, an optimal tree consists of optimal subtrees. Specifically, for
every node s, the sum of the costs of the optimal subtrees rooted at the children of s is compared with
the cost of making s′ a leaf where s′ is a prefix of s and |s′| = |Parent(s)| + 1 (or s′ = λ if s = λ).
This means that all the edges leading to leaves are made atomic as it makes no sense to consider a
longer prefix as this will increase the cost of encoding the tree with no gains in compression. This is
the same idea behind unique path pruning in the implementation of CTW described in section 2.4.3.

It is also necessary to remember that the tree that will be sent to the decoder will be atomic and
full. Thus, there will be more nodes added to the tree and the cost of these new nodes also has to be
taken into consideration.

Using these ideas in [20] every sub-tree rooted at a node s of r is assigned the cost Ω(s) recursively
defined by:

Ω(s) = min(

α(|s| − |s′|)H
(
1

α

)

+ (α− deg(s))H

(
1

α

)

+H

(
1

α

)

+
∑

w∈CHILDr(s)

Ω(w),

κ(an, s′) +H

(
1

α

)

)

where the first term represents the cost of leaving this node with all its children (and also all the
added nodes due to completion) and the second term is the cost of pruning the tree transforming s′

into a leaf. The first two summands of the first term count the number of nodes that appear when
the tree is converted to a full atomic tree, the third is the cost of this node and the fourth is the sum
of the optimal costs of the sub-trees rooted at each of the node’s children. The term H

(
1
α

)
represents

the cost of encoding a node of the full atomic tree as was shown before.
The previous expression can be simplified to:

Ω(s) = min(

α(|s| − |s′|+ 1)H

(
1

α

)

+H

(
1

α

)

+
∑

w∈CHILDr(s)

[

Ω(w)−H

(
1

α

)]

,

κ(an, s′) +H

(
1

α

)

)

and then defining a new variable Ω′(s) = Ω(s)−H
(
1
α

)
and subtracting the term H

(
1
α

)
we get:

Ω′(s) = min



α(|s| − |s′|+ 1)H

(
1

α

)

+
∑

w∈CHILDr(s)

Ω′(w), κ(an, s′)





We then have that, if s is the root of r, Ω′(s) = L(r, an). This cost formula was also modified
slightly in our algorithm on account of the specific details of the encoding procedure used. This will
be explained in detail shortly.
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In order to implement this pruning procedure some statistics must be gathered for every node.
These statistics consist of the number of times each symbol is seen on that node. These counts are
calculated recursively as the sum of the counts on the children of the node. The recursion starts at
the leaves where the counts are initialized during the suffix tree construction as there only occurs one
symbol which is the one that precedes that context in the reversed input string. The estimated code
length of the leaves can also be readily computed as log(α) as all symbols have equal probability in a
leaf. Considering there is only one symbol the cost is then 0. Here and in the rest of the description
of the algorithm we will consider A to be the subset of the alphabet that actually occurs in the input
string and α to be its size.

These statistics are accumulated over the whole tree using this algorithm:

• For the leaves, statistics are composed by only one symbol with one occurrence whose context
is represented by this node but they are not stored in our implementation

• For branching nodes the statistics are built recursively adding the symbols from the statistics
of all the children of the node. The statistics for the leaves are only computed when they are
needed to calculate Ω′(s).

As was mentioned before the algorithm used to build the suffix tree allows to prune the tree at the
same time it is being built. This is achieved by evaluating Ω′(s) for every node just after calculating
the statistics for the node. As the wotd algorithm guarantees that a branch will not be modified once
it has been constructed the node can be readily pruned at this stage if necessary. Also, Ω′(s) is not
evaluated for nodes after certain height as these nodes are always pruned.

FSM closure

The next step in the process is to build the FSM closure of the pruned tree obtained in the last
section. The algorithm was already discussed in section 1.7.3.

Encoding

The encoding stage starts once the optimal tree and its FSM closure have been obtained using the
previous steps. The procedure starts at the root of the tree where the first symbol of the input string
is processed. Each symbol is encoded using the statistics stored in the current node of the optimal
tree (via the Origin pointers explained in section 1.7.3). Then these statistics are updated to account
for the new encoded symbol and the current node is changed following the FSM transition for the
last processed symbol. This gives a new node where the procedure starts again until the input string
is finished.

This is the basic encoding procedure but our scheme has a few differences in order to improve
compression rates. The first one applies in the cases where the zero frequency problem appears. This
is when a new symbol a has to be encoded in a state where it has never been seen before. In this
case the algorithm encodes an escape symbol and does a PPM-like upwards search (see section 3) in
the tree looking for a shorter context that predicts a. The encoder produces escape symbols until the
root of the tree is reached or a state is found where a has been seen before. If a state with a positive
number of occurrences of a is found a is assigned the probability given by this state. If the root is
reached first and a is not found there an escape is emitted and then an order -1 state is used where
all symbols are assigned the same probability.

During this search the symbols not seen in previous states are not considered because, when an
escape is emitted in one state, the decoder knows that none of the symbols that occur in that state is
the one we are looking for. These symbols are no longer considered (i.e. are masked) for the rest of
the tree traversal. For each upwards traversal a set of masked symbols is recorded by the algorithm
adding to it all the symbols present in each state visited. The symbols in this set are considered to
have count 0 in further states.

This algorithm also uses the same update exclusion technique from PPM so that statistics are
only updated on the nodes traversed by the search and are not altered in lower order contexts once
the symbol is found. See algorithm 12.

The next issue is the determination of the escape probability in each state. The escape is consid-
ered as an extra symbol in each state and its probability is estimated differently in each one of them.
As before we let ck(a) be the number of times symbol a has occurred in a context c of order k. Let
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us also define Ak as the set of characters predicted in a node of order k minus the symbols masked
for having already been seen in higher order contexts and ck be

∑

a∈Ak
ck(a). It is important to note

that Ak is not constant for a node because it depends on the symbols already masked in the current
search.

The symbol probability is defined as:

pk(a) =
2ck(a)− 1

2ck

and the escape probability for a novel symbol in a node of order k is:

ek = 1−
∑

a∈Ak

pk(a) =
|Ak|
2ck

.

We also use a state of order -1 as in PPM to code symbols that were not found in any of the contexts
present on the tree (ie. a symbol that occurs for the first time). In this case the symbol probability
is:

p−1(a) =
1

|A−1|
∀a ∈ A−1.

This is a variant of the PPMC escape technique from section 3.1 called PPMD in [12]. In this case
the sum of occurences of symbols and escapes is incremented by one for each symbol which makes it
easier to estimate the code length for the pruning step. This is because the above probabilities can be
implemented by increasing the count by 1

2 for both the symbol and the escape in the first occurrence
of the symbol (an escape is generated in this case) and by increasing the count of the symbol by 1 in
subsequent occurrences (no escape).

The encoding procedure includes another feature which is the capability to reset the counts of
occurrences of symbols in each state when their sum exceeds some predefined threshold. This is
useful because it helps to maintain the statistics updated in case the input string is non-stationary
(has different statistics in different sections). If the string statistics are constant along the whole
string resetting is a bad idea because it forces the encoder to relearn the same statistics again. On
the other hand if the string statistics are not uniform the resetting procedure helps the encoder to
forget the old statistics in order to learn the new ones. In practice resetting statistics is more useful
in data files than in text files so the algorithm uses different resetting thresholds in each case (the
number of different symbols in the input file is used as a heuristic for distinguishing the two kinds of
files).

Considering this we define the formula used to estimate the code length on a node s in this
algorithm. Here cs(a), cs and As are the symbols and counts of them for the whole input sequence
for node s. We have

κ(an, s) = log
(cs − 1)!

∏

a∈As

[
Γ
(
cs(a)− 1

2

)]
π−

|As|
2

(
1
2

)|As|−1
(|As| − 1)!

.

More insight regarding the rationale behind this formula is given in appendix B.
The fact that symbols that occur for the first time in a context generate an escape and are passed

to the parent of the current node also changes the pruning procedure. This is caused by the fact that
the cost of not pruning a node is not only the sum of the costs of the children but also has to include
the cost of the symbols that will have to be encoded at the parent when escapes are produced on its
children. To account for this difference a term T is added to the previous minimization formula:

Ω′(s) = min



α(|s| − |s′|+ 1)H

(
1

α

)

+ T +
∑

w∈CHILDr(s)

Ω′(w), κ(an, s′)





where

T = log
(c′s − 1)!

∏

a∈A′
s

[
Γ
(
c′s(a)− 1

2

)]
π−

|A′
s|

2

(
1
2

)|A′
s|−1

(|A′
s| − 1)!
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and

c′s(a) =
∑

w∈CHILDr(s)

1Aw
(a),

A′
s =

⋃

w∈CHILDr(s)

Aw,

where 1Aw
is the indicator function defined in 1.3. Thus T is calculated with the same formula as

κ(an, s) except that the number of occurrences of a symbol in this case is the number of child nodes
where the symbol occurs as there will be one escape per symbol per child. In the same fashion the
number of different symbols will be the number of different symbols in all children. Since the first
(and only the first) occurrence of a symbol in a state will generate an escape that will be processed
in the parent node, this is the exact cost generated by the use of escape symbols.

When the algorithm decides to reset the statistics on some node (the exact reset threshold will
be discussed in page 52) it halves the counts of every symbol:

cs(a) =

⌊
cs(a)

2

⌋

∀ a ∈ As.

This raises another issue because some symbols which previously had a positive count are left with zero
occurrences. This does not seem to be important but, as will be seen below, generates some problems
during the decoding procedure. To solve these issues, when this situation of vanishing symbols arises,
the ancestors of the rescaled node are processed and the counts of symbols that disappeared in the
original node are also set to zero in case the parents do not have symbols that occurred more than
once. These nodes only processed escapes and thus their probabilities were not used to encode any
symbols. We will return to this problem when the decoding procedure is described.

Another optimization added to this basic algorithm is the use of a form of SEE in a similar way to
the one used in the PPMd algorithm (see section 3.2). The idea behind this is to use the SEE context
when the statistics gathered so far in the current state are not enough to obtain a good probability
estimation. The SEE context groups statistics from all contexts with similar properties thus giving
a better estimation.

In this case 214 contexts are used and each context stores two values, denoted (SEE1, SEE2).
When SEE is used we have that the probability of an escape is given by

e =
SEE1

SEE2

and the probability of a symbol is given by:

p(a) =
ps(a)(SEE2 − SEE1)

SEE2

where ps(a) is the probability assigned to the symbol by the current context counts ignoring the count
of escapes (they are not used to assign escape probability in this case). In order to choose a context
also chosen by other similar contexts a few properties of the current context are used in the selection:

• Three bits for the number of escapes

• Three bits for the number of occurrences of non-masked symbols and escapes in the state

• Three bits for the number of masked symbols in the state

• Two bits for the number of symbols in the parent node (only for text files)

• Three bits for the previous encoded symbol

These values where selected so that contexts with similar characteristics would share the same
SEE contexts. Some heuristic tests were performed to select them.

To reduce a number to a fixed number of bytes we take the logarithm of the number. If the
logarithm size exceeds the number of bits we use the maximum number available.

Neither the reset of statistics nor the use of SEE are reflected in the pruning formula as adding
these variables make the formula very complex and not practical to implement.

If we let As be the subset of A composed by the symbols that occur in s the pseudocode for
encoding one symbol is given in algorithm 12.
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Algorithm 12: Context encoding

input : Symbol to encode: a
input : State s in tree r
output: The probability for ai

1 masked = ∅ // empty set

2 ok = false

3 repeat

4 s = Origin(s)

5 if a ∈ As or Order(s) = −1 then

6 if UseSEE() then

7 see = FindSeeState()

8 return p(a) estimated on SEE state see

9 else

10 return p(a) estimated on node s
11 end

12 cs(a) = cs(a) + 1
13 masked = ∅
14 ok = true

15 else

16 if UseSEE() then

17 see = FindSeeState()

18 Code escape using counts on see

19 else

20 Code escape using counts on s
21 end

22 cs(a) = cs(a) +
1
2

23 cs(escape) = cs(escape) +
1
2

24 masked = masked ∪As

25 s = Origin(Parent(s))

26 end

27 until ok
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5.2.3 Decoder

Initialization

Here the only work to do is to decode the alphabet. This is done with the arithmetic decoder with
the inverse procedure as that already explained in page 38.

Tree building

The tree building procedure is very simple in this case. The tree is constructed by the reverse process
from the one showed in page 41. We obtain from the arithmetic decoder the information of whether
the current node is a leaf or an internal node and build the tree recursively.

As the tree is being built we ignore the leaves and delete nodes whose outgoing degree after
deleting the leaves is one. The leaves are never created during the recursive tree construction process
and, after building each child of a node, the algorithm checks if the child has outgoing degree one
and, if this is the case, this child node is deleted creating an edge with a label of length two.

Remember from section 5.2 that the tree that was encoded is the optimal tree obtained by the
encoder (denoted r) with additional nodes added to form an atomic full tree, denoted rfull. rfull has
more nodes than r, so its FSM closure will also have more nodes than the optimal tree closure (r′).
When the leaves and nodes with outgoing degree one are deleted from rfull we end up with a tree r̂
with less nodes than rfull. Furthermore the FSM closure of r̂ (r̂′) is a proper subtree of r′ (see [19]).
The algorithm will add more nodes to r̂′ when a node in r′ reached by the encoder is not present in
r̂′ during the decoding procedure.

FSM closure

The next step consists in the construction of the FSM closure of the tree built in the previous step
using the same algorithm used in the encoding stage. During the following decoding procedure
additional nodes will be added to this tree if needed.

Decoding

The decoding procedure starts at the root of the FSM closure in a similar fashion as the encoding.
The encoded symbols are obtained from the arithmetic decoder using the statistics stored on the
current node of the tree (via the Origin pointer). When a symbol is decoded the node statistics are
updated and the FSM is used to move to the next decoding state. In case of decoding an escape the
algorithm moves to the parent of this node searching again for the symbol to decode. As in each
decoding step the statistics on the decoder tree are the same as the ones stored during the encoding
phase the decoder is able to move up to the same state whose statistics where used to encode the
current symbol.

SEE is used in the same way as in the encoding procedure. A context is found using data already
known by the decoder in case the conditions for using SEE are met and the two values obtained from
this context are used to decide if an escape was encoded or not. The SEE context is then updated in
the same manner done by the encoder.

In case a walk up the tree is needed, after decoding the correct symbol the algorithm moves down
the tree again updating the statistics on the intermediate nodes. This step is not needed during the
encoding phase as the symbol at hand is already known while traversing the tree and the update is
done during this initial walk. After this, the algorithm follows the FSM transition for the decoded
symbol, creates new nodes if needed, and the procedure starts again until all symbols are decoded
(the number of symbols in the original string is passed to the decoder along with the tree and the
alphabet size). Essentially is the same process shown in algorithm 12.

The missing detail in the previous description is the process of adding new nodes to the tree during
the decoding procedure. The idea is to add nodes to the tree in order to create the same state used
in the encoder to process each symbol in case that state does not already exist in the tree. Together
with this node additional nodes might be added in order to preserve the FSM property of the tree.
More formally, the decoder uses a sequence of trees with the FSM property where each member of
the sequence is obtained from the previous one by adding the node si together with the branching
nodes resulting from this addition as well as the nodes needed to satisfy the FSM property where si
is the state used to encode the symbol ai in the encoder tree. The creation of this node starts from
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the node ŝi which is the node obtained by traversing the original FSM transition on the tree before
adding any nodes.

This algorithm is presented with the corresponding proofs in [19] and will not be described here.
As was mentioned before, there are some issues related with the resetting of statistics done by the

encoder. The problem is that, as the decoder tree is built incrementally as the symbols are decoded,
it is possible that it has less nodes than the tree that the encoder uses. Considering that the decoding
algorithm only guarantees that the initial state (i.e. the state before escaping) used in the encoder
tree is present in the decoder tree it may happen that the upwards search for a node to encode a
symbol not found in the initial state traverses more nodes in the encoder than the ones traversed by
the decoder. In general this is not a problem as the additional nodes traversed by the encoder by
definition where not used to encode any symbols (otherwise they would also be present in the decoder
tree) and as such they will only contain escapes from the leaf where symbols were processed and so
they will have the same number of symbols as the leaf and will not be used to encode a symbol that
is not present on the leaf.

Resetting statistics changes all this as it is now possible that a symbol which occurred on a leaf
ends up disappearing during the statistics reset but it is not affected in the node’s parent as this has
less symbols and is not reseted. In this way it can happen that the encoder processes a symbol in a
state that is not present in the decoder tree breaking the whole process.

To solve this, when a symbol disappears during node resets it is also forced to disappear in the
ancestors of this node that do not have symbols that occurred more than once. This forces the new
symbols to be coded in some other node upwards which has another leaf as a descendant. This node
has to exist in the decoder tree because the decoder only removed leaves and nodes with outgoing
degree equal to one from the tree sent by the encoder. This is done both in the encoder and the
decoder in case the state which has only escapes also exists in the decoder tree (remember that only
the leaves were removed).

5.3 Algorithm implementation details

Next we will describe some details of the implementation of the semi-predictive context algorithm
developed in this thesis.

5.3.1 Encoding

Here we will assume that the algorithm writes its output to a stream that can be connected to file
or a network socket.

Initialization

First of all, the encoder needs to read the file to compress. This could not be accomplished in the
traditional way by copying a portion of the file to a memory buffer, processing that buffer and then
reading another one because we need random access to the whole file in order to build the suffix tree.

To solve this issue the complete file is mapped to memory using the mmap system call in UNIX
systems or the CreateFileMapping and MapViewOfFile system calls in Windows systems. These
system calls copy the whole file to the virtual address space of the calling process allowing it to
access the file as if it was all available in RAM. In fact, the whole file does not need to be present in
memory at the same time as the operating system can map the needed parts of the file on demand
into the virtual memory of the process as well as remove part of this mapping if more RAM memory
is required for other purposes.

An additional advantage of using a memory mapped file instead of using partial memory buffers
is that there is no need for an additional copy of the file data to a user space buffer every time a new
read operation is done. Moreover, reading the memory mapped file does not incur any system call
or context switch overhead assuming that the portion of the file being read is already mapped. A
possible disadvantage could be that, in 32 bit systems, this can limit the maximum size of a file to
compress. Considering that the whole virtual space of a 32 bit process is 4 GiB it is not advised to
try to compress files larger than 2 GiB.

The next task is to write to the output the alphabet of the input string. This could be accomplished
by writing all the 8 bit symbols that occur on the input file but in order to save some space we do this
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in a different way. First the total number of symbols is written and then, depending on this value,
the alphabet or the complement of the alphabet is written. It is to say: if the alphabet is smaller
than 128 all the symbols of the alphabet are written, otherwise only the symbols that do not belong
to the alphabet are written. Obviously, if the alphabet size is 256 no symbols are written at all.

Also, the symbols themselves are encoded with an arithmetic coder in this way:

• The symbols are encoded in descending order starting with the ones with larger binary values.

• Each symbol is considered to have equal probability considering only the symbols that remain
to be sent. So, the first symbol to send will have probability 1

256 . If, say, this symbol is 128 the
next symbol will have probability 1

128 and so on.

For example, if we need to encode the symbols with binary values 234, 122, 89 and 23 the
probability used for each of them with the arithmetic encoder will be respectively 1

256 ,
1

234 ,
1

122 and
1
89 .

Suffix tree structure and construction

The representation of the suffix tree used in the wotd algorithm is a simple array of integers. Each
branching node requires two integers and the leaves use only one. The second integer on branching
nodes is a reference to the position on the array where its first child is stored and the rest of the
siblings are located sequentially in the array so that they do not need additional pointers. There is a
flag that signals that a node is the last child which is used to indicate where the section of adjacent
children nodes finishes. The two most significant bits of the first integer of every node are used as
flags to signal if the node is a leaf and if the node is the last child of its parent node.

Let u be the string over which the suffix tree is being built. The first integer in branching nodes
and the only one for leaves is a pointer to u used to indicate the section of u where the label for each
node occurs for the first time. Formally the labels are associated with the edges and not the nodes
but in this case they are stored in each edge’s “destination” node.

Next, we present an example of a tree represented with this array structure leaving out the labels
that will be discussed with more detail below (the pointers to the labels are marked with Xs). The
nodes of the tree are marked with letters that are shown over the array elements that model each
node in the array below. The two superscript bits represent the leaf and last child labels respectively.
The arrows below make clear where pointers to the first children go in the array. It can be seen that
the array representation has no root because the first elements in the array are assumed to be the
children of the root node.

◦ A

◦ B ◦ C

◦ D ◦ E ◦ F ◦ G ◦ H

◦ I ◦ J

B C D

︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷ ︸︸ ︷ E F G H I J

00 01 00 11 10 10 11 10 11

X 4 X 7 X 10 X X X X X X
0 1 2 3 4 5 6 7 8 9 10 11

6 6 6

In general two references to u are needed to represent the labels of the tree nodes: one marking
the beginning of the label and the other marking the end. In this array representation the leaves use
only one integer to signal the position in the source string of the leftmost character of the edge label.
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The rightmost character is not needed because for all leaves this is implicitly the last character of the
string ($).

On the other hand, it turns out that for branching nodes it is also sufficient to store only the left
pointer of the node label. This is achieved by ordering the node’s children so that the first child is
the one whose edge label left pointer is the leftmost in u (has the smallest index). In this way, having
a link from the parent to the first child, it is possible to find the right pointer of the parent label
which is the left pointer of the first child minus one. We show an example of this below.

We will construct a context tree for the string u = bobo so we will build a suffix tree for u$ (obob$).
As the algorithm determines the node’s labels using pointers to the input string we will make explicit
the ordinal number of each symbol of u$ that will be used subsequently:

o b o b $
0 1 2 3 4

The first step of the algorithm (as shown in page 38) is to sort all the suffixes of u$ lexicographi-
cally2 by the first symbol. The algorithm uses an array of suffixes ordered by decreasing length (called
suffixes) to implement this so we also give the index of every suffix in the array. The horizontal lines
divide the zones on the array where lay the suffixes that start with the same symbol.

0 bob$

1 b$

2 obob$

3 ob$

4 $

Here we determine that the root of the tree has three children. Two of them are branching nodes
and the other is a leaf. The lcp of the two branching nodes is “b” and “ob” respectively. Here we
show the tree that is built at this stage where the numbers on the edges indicate the left and right
pointers to the input string that signal the label of each edge. The label itself is also explicitly written
on the nodes.

◦
(1,1) (0,1) (4,4)

◦b ◦ ob ◦ $

In the array structure this tree would be represented as:

b ob

︷ ︸︸ ︷ ︷ ︸︸ ︷ $

00 00 11

0 1 2 3 4
0 1 2 3 4

The elements for the first two branching nodes contain the location in the sorted array of suffixes
of the suffixes that start with the branching node prefix. These nodes will be processed recursively
during the DFS walk of the tree and then their children will be created and the node values will
change. The nodes that contain references to the suffixes array are called unevaluated nodes and are
marked as such. The leaf node is already finished and it only contains the position of the first symbol
of the edge label (the last one being $ implicitly).

The next step is to evaluate the unevaluated node corresponding to the lcp “b”. The suffixes 0
and 1 of the suffixes array will be sorted by their second symbol leaving out the lcp that is “b”. We
also need the symbols to be stored in the order of their appearance in the suffixes array. This is
because, as already mentioned, the first child of the node must be the one whose label left pointer is
leftmost in u. As the array of suffixes is originally ordered by suffix length and the counting sort is
stable3, this is the leftmost suffix in the interval. In our case the suffixes are already correctly sorted
so we get:

2Any order will work as long as the suffixes that start with the same symbol are grouped together
3Stable sorting algorithms maintain the relative order of records with equal keys
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0 (b)ob$

1 (b)$

This means we have to add two leaves to this node. The tree now will be like:

◦
(1,1) (0,1) (4,4)

◦b
(2,4) (4,4)

◦ ob ◦ $

◦ob$ ◦ $

And now the array representation of this tree is:

b ob

︷ ︸︸ ︷ ︷ ︸︸ ︷ $ ob$ $

00 00 11 10 11

1 5 2 3 4 2 4
0 1 2 3 4 5 6

6

We can see that the two elements that represent the node “b” have changed its contents. The
first number is a reference to the position on the u$ string where this edge label starts. In this case
the label is “b” and starts in the position 1 of u$. This position can be obtained easily as it is the
position in u$ of the first symbol of the first suffix in the group. The end of the label can be obtained
by looking at the first child pointer (in this case 2) and subtracting one. This implies that the edge
string is (1,1), so it is the symbol “b”. The second element is a reference of the position of the first
child in the array. In this case is the position 5 which is indicated by the arrow below. There are no
recursive calls in this case as the two children of the node are leaves.

Then the next (and last) step is to evaluate the unevaluated node whose lcp is “ob”. Sorting the
subsection [2, 3] of the array of suffixes by the third symbol (as “ob” is the common prefix) we get:

2 (ob)ob$

3 (ob)$

So again we have two leaves leaving the tree as:

◦
(1,1) (0,1) (4,4)

◦b
(2,4) (4,4)

◦ ob

(2,4) (4,4)

◦ $

◦ob$ ◦ $ ◦ob$ ◦ $

Adding this two leaves to our array representation gives:

b ob

︷ ︸︸ ︷ ︷ ︸︸ ︷ $ ob$ $ ob$ $

00 00 11 10 11 10 11

1 5 0 7 4 2 4 2 4
0 1 2 3 4 5 6 7 8

6 6

As before the contents of the two elements of this node have changed. The first one is now 0
(the index in u$ of the suffix obob$) representing that this edge label is the subsection [0, 1] of u$ (ie.
“ob”). The second value is 7 which is the position on the array where the children of this node are
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located. The label of the edges leading to the two leaves are exactly the same as the previous case so
the array contents are the same.

To summarize, the construction of the suffix tree proceeds evaluating nodes starting from the root
and continues processing nodes recursively downwards into the subtrees. To evaluate an unevaluated
node s with label v the algorithm needs to have access to all the suffixes that start with v. In order to
achieve this the algorithm uses the suffixes array that contains pointers to all suffixes of u$. For each
unevaluated node its two integers point to an interval of the suffixes array that contains the suffixes
that start with the label of this node ordered by descending suffix length. To distinguish evaluated
and unevaluated nodes there is an additional flag (the third most significant bit of each integer).

The edges outgoing from s are obtained using a counting sort by the first character of each suffix
in the interval of suffixes. These suffixes are ordered grouping equal symbols together so that the
leftmost suffix remains to the left. Each character a with a count greater than zero corresponds
to an edge whose label starts with a outgoing from s. The complete label for the edge is obtained
calculating the least common prefix (lcp) of all the suffixes in the group. If there is only one suffix
in the group the edge leads to a leaf and the lcp is the full suffix. All the children nodes are stored
consecutively in the array reserving two elements for branching nodes and one for leaves.

All the new nodes that are not leaves are, by definition, unevaluated and so the pointers to the
corresponding range in suffixes must be stored. These pointers are obtained from the sorted section
of the suffixes array incrementing every suffix by the length of the corresponding lcp. The last step
consists of changing the two elements of the node s storing the left pointer of the node label in the
first one and the pointer to its first child in the second. Finally the unevaluated flag is removed.

In our implementation this tree structure was modified in order to store the counts of the occur-
rences of symbols on branching nodes. In order to achieve this an additional array element is used
for branching nodes. This extra integer is used to store a pointer to the counts on the node.

Pruning

The tree is pruned during its construction simply by computing Ω′(s) after a subtree becomes com-
pletely evaluated and storing the result on the root of the subtree. As the tree is built in a DFS
fashion using a stack we can return to each node after all children subtrees are evaluated. If the node
needs to be pruned the children are deleted and the node becomes a leaf. There is no extra work in
making the node atomic as the only value stored in the node is the first symbol of its label.

As the tree is already pruned at the end of the last step, the only remaining step is to write the
tree to the output stream. The tree is traversed in-order and completed to create a full atomic tree
during this traversal. Each node is encoded and written when it is reached in the traversal.

Encoding

Next we will comment on some of the changes to the algorithm done for tuning purposes during
testing.

To implement the periodic reset of statistics we determined that binary files required more frequent
resets than text files. So we use the number of symbols in the file as a heuristic method to differentiate
the two kind of files. If we let A be the number of symbols in the file and cs(a) be the counts of
symbol a in state s the reset is done when:

{

cs(a) > 450 if A ≤ 100

cs(a) > 200 otherwise

When using SEE, we obtain two values called SEE1 and SEE2 and use them to estimate the
escape probability. The escape probability will be SEE1/SEE2 and the probability of not escaping
is (SEE2 − SEE1)/SEE2

In this way, when a SEE context is used, the arithmetic coder can be used two times: the first
one to encode if an escape is emitted or not (one bit) using the probabilities shown before, and the
second to encode the found character in case there was no escape. This character is encoded using
only the probability of the characters not masked in the current state because the decoder already
knows that the symbol to encode is effectively found in the current state.

This SEE technique is only used when:
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• There are occurrences of non masked characters in the current state (otherwise the state is
ignored by the encoder and the decoder)

• The total number of symbols in this state is less than 30 for text files or 128 for data files

After each use of the SEE context the statistics of the context are updated to reflect the fact that
the searched symbol was found or not. The context is updated according to the following criteria:

• If the symbol was found the second value of the context is incremented by 17 for text files and
16 for data files.

• If an escape was emitted the first value is incremented by 17 and the second by 18

These increments are large in order to forget old statistics rapidly and adapt to new ones. The two
values on each SEE context are halved when any of them reach an upper limit which is different for
data and text files in a similar fashion as the statics resets in the main algorithm.

This fine tuning was performed using different files than the ones used for comparison in section
6.

5.3.2 Decoder

Tree building

The tree structure implementation used in the decoding stage is different from the one used while
encoding because the decoder obviously does not have access to the original string. The labels of the
edges in the encoder tree are represented using pointers to this string. In this case this is not possible
and the simple solution is to have a pointer to the label on every edge.

As the decoding algorithm sometimes needs access to the complete context of a node (ie. to all
the symbols in the edges on a path from the root to the node) we store this full string on every edge
with pointers indicating the suffix that corresponds to the label of this particular edge.

5.4 Algorithm execution analysis

In order to evaluate the algorithm behavior when encoding and decoding files it was run using a
profiling tool (Valgrind). This tool allows us to obtain a graphic representation showing the code
areas where the most time is spent.

5.4.1 Encoding

In this case clearly the three most expensive activities are building the suffix tree (which includes
pruning), creating the FSM closure and encoding the input file using this tree. There is a notorious
difference in the relative time needed for these three activities between text and data files. It is
important to consider also that data files take more time than text files as will be show in section 6.

In the case of data files the encoding phase tends to be the longest taking about 40% of the time.
In this case the FSM closure takes about 25% of the total time and the suffix tree construction takes
about 15% to 20% of the total time the proportion being larger with larger files.

On the other hand in text files the longest phase is the suffix tree construction which takes from
50% to 65% also being larger with larger files. The coding phase takes from 25% to 30% and the
FSM construction takes about 5% to 10%. In this case the other tasks are relatively shorter as the
tree construction phase gets larger.

This is explained mainly in terms of the encoding stage which takes more time on binary files. It
happens that binary files have a larger number of escape symbols than text files. The reason for this is
that binary files have a larger alphabet, usually near 256, and this produces trees with a larger number
of leaves (i.e. states). This causes the algorithm to take more time to capture relevant statistics.
Moreover, as was pointed out before, binary files usually benefit from more frequent statistics resets.
This also causes an extra number of escapes as the algorithm learns the new statistics.

This difference can also be appreciated in section 6 where it is shown that encoding binary files
with resets is approximately 10% slower than not using them. There is a trade-off in terms of the
coded file size.
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Considering the tree building stage, as text files usually have taller trees, it normally takes more
time for text files than for binary ones.

5.4.2 Decoding

The decoding procedure is simpler as it only requires to read the tree from the file in order to start
decoding. Here the decoding procedure takes about 90% of the time in text files and about 95% in
data files.

Considering this, it is interesting to study the time spent in the different steps within this decoding
stage. As was mentioned before, binary files tend to have a larger number of escapes which means
the decoding procedure is expected to take longer. In fact, if we consider only the time spent in
the decoding procedure alone4 and ignore the time consumed by the procedures invoked from there,
binary files take about 70% of the time here whereas text files spend about 50%. This is approximately
constant across different input file sizes.

It is also important to note that the decoding procedure starts by removing all leaves of the full
tree and has to add new ones as the algorithm proceeds. As binary files have larger alphabets, the
tree has more leaves and then more work is needed in order to add all these nodes.

4This includes the time used by the function which adds new nodes to the tree. As these tests where run with

compiler optimization enabled this function is inlined into the main decoding procedure as it is only called from there.

In fact, it was defined as a separate function in the source code for clarity purposes only.
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Experimental results

To evaluate the relative performance of the different algorithms several tests were performed using
files of different types and different sizes. The files where separated into text only files and binary
data files because, as was noted before and will be seen from the experimental results, they have
different behavior during compression and decompression. We also separate the data considering the
approximate size of the files. The data is averaged for files of the same type and size. The files used
for comparison were:

bible.txt A section of the bible in english (1012 KiB)

book2 Text in english (from Calgary corpus) (600 KiB)

circuitos.doc Microsoft Office file (52 KiB)

compat.xml Docbook file in english (100 KiB)

cookies.sqlite SQLite database (1024 KiB)

font.ttf TrueType font (608 KiB)

libfltk images.so.1.1 ELF 32-bit shared object (52 KiB)

librtmp.so.0 ELF 32-bit shared object (104 KiB)

object.o ELF 64-bit object file (596 KiB)

overlay spanish.txt Translation file from english to spanish (48 KiB)

random.c C code file (52 kiB)

smsserver.log Text log file (596 KiB)

steamui spanish.txt Translation file from english to spanish (1008 KiB)

super.c C code file(104 KiB)

timezones.png Image file (100 KiB)

user32.dll.so ELF 32-bit shared object (1036 KiB)

First we compare the final implementation of our algorithm with itself showing a base version and
then adding optimizations individually in order to show the improvements contributed by each one.
Then we compare our algorithm with other algorithms. The compression and decompression times
were evaluated separately for each algorithm

All the algorithms were run over the same files in the same hardware three different times and
the processing times were averaged. The five algorithms compared where:

bzip2 1.0.5 A BWT based algorithm by Julian Seward

ctw 0.1 A CTW implementation by Erik Franken and Marcel Peeters

55
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ppmd variant I ver. 1 A PPM implementation by Dmitry Shkarin

zpaq 1.02 A context mixing algorithm by Matt Mahoney

context The algorithm presented in this thesis

The hardware used for these tests was:

• AMD Phenom II X3 720 Processor @ 2.80 GHz

• 4 GiB RAM

• Linux kernel version 3.10.7

In the following tables all times are given in seconds and compressed file sizes in bytes.

6.1 Optimizations

Here we compare different versions of our algorithm with the following features:

• Base version

• Builds the tree using the Ukkonen algorithm [36] and prunes it afterwards in a separate step.

• Uses several sub-trees. The input is partitioned in five parts in this case and each one of them
is processed using a different tree.

• Resets count statistics (some resets are always needed in order to avoid number representation
overflow but they are far more frequent than in the base implementation)

• Uses SEE.

• Count resets and SEE optimizations combined (final version)

6.1.1 Text files

In table 6.1 we show the compression times and sizes for text files of different sizes. When the
Ukkonen algorithm is used to build the suffix tree the times are longer in all cases. The compressed
file size is the same as the final algorithm as the pruned tree is the same.

Here we see that adding resets and SEE results as expected in slower execution time but shorter
compressed files. SEE is more expensive than resets but gives better results.

The division in subtrees results in longer execution time and worse compression rate. In this case
the statistics are not being copied between trees. This is better for data files as shown below although
not really useful.

Considering decompression time we can see that it is considerably faster than compression in all
cases as there is no need to build and prune the context tree which is a costly operation. The relative
time differences remain the same as for compression except that in some cases the final algorithm
is slower than the partition in subtrees. The difference is that the smaller trees are processed faster
during decompression as there are less nodes to add to them. As the base algorithm times are shorter,
the use of SEE adds a greater proportion of time during decompression. Also we see that the use of
the Ukkonen algorithm makes no difference in the decoding stage as expected.

6.1.2 Binary files

Table 6.2 shows the times and sizes for binary files of different sizes. In general times are longer than
in the text case and the use of the Ukkonen algorithm also shows longer compression times.

Here we also see that resetting statistics is slower than in the text case as they are reseted more
frequently in binary files. On larger files, resets are better than SEE although they are more expensive
in all files. Also the cost in time is more in proportion during decompression as the cost of these
optimizations is mostly symmetrical and the rest of the algorithm is faster.

We also see that the partition in subtrees obtains better results than the base algorithm in some
cases. It is not shown here but, even in this case, adding the partition in subtrees to the final algorithm
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Input size Algorithm Comp. time (seconds) Comp. size (bytes) Decomp. time (seconds)

50 KiB

Base 0,06 10585 0,03
Ukkonen 0,09 10585 0,03
Sub-trees 0,07 12514 0,03
Reset 0,06 10569 0,03
SEE 0,06 10545 0,04
Final 0,07 10528 0,04

100 KiB

Base 0,11 21101 0,06
Ukkonen 0,20 21101 0,06
Sub-trees 0,14 26836 0,07
Reset 0,11 21087 0,07
SEE 0,12 20985 0,07
Final 0,12 20970 0,07

600 KiB

Base 0,52 91023 0,29
Ukkonen 1,12 91023 0,29
Sub-trees 0,63 114266 0,33
Reset 0,52 90049 0,29
SEE 0,54 89905 0,31
Final 0,55 88932 0,32

1 MiB

Base 0,91 145567 0,54
Ukkonen 2,18 145567 0,54
Sub-trees 0,96 166674 0,57
Reset 0,91 145006 0,55
SEE 0,95 144719 0,58
Final 0,96 144158 0,59

Table 6.1: Optimization in text files

does not produce better results. The cost of relearning the statistics for a new tree outweighs the
benefits of having a tree more precisely fitted to a particular section of the file. We also tried copying
statistics between nodes of the partitioned trees but in practice it is not very different than using
resets. As always it is better for data files as they benefit more from this kind of resets.

Finally, considering decompression times the relative times are the same as in the case of com-
pression but, as in the previous case, they are shorter.

6.2 Other algorithms

The five algorithms where compared in terms of the size of the compressed files and the average time
needed to process them, both during compression and decompression.

6.2.1 Text files

Table 6.3 shows that in compression and decompression time BZIP is the fastest algorithm followed
by PPM, Context, CTW and ZPAQ. This is expected as BZIP is much simpler than the other
algorithms and also is the only one that does not use floating point arithmetic at all. The operations
in BZIP are mostly string manipulations which are much faster than probability estimations, pruning,
context weighting or arithmetic coding. Also BZIP and Context have the property of having slower
decompression times as their compression and decompression algorithms are not symmetrical. In
general ZPAQ has the best compression ratio followed by PPM, Context, CTW and BZIP. CTW and
Context are very similar on average in this case.

6.2.2 Binary files

When data files are compressed (table 6.4), all algorithms except BZIP take more time than the time
they took to compress text files of similar sizes. PPM and Context take twice the time or more. In
the case of Context it was shown before that this is caused by the larger number of escapes in data
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Input size Algorithm Comp. time (seconds) Comp. size (bytes) Decomp. time (seconds)

50 KiB

Base 0,14 32987 0,09
Ukkonen 0,23 32987 0,09
Sub-trees 0,12 32747 0,06
Reset 0,17 32629 0,13
SEE 0,15 32238 0,09
Final 0,18 31589 0,12

100 KiB

Base 0,34 56477 0,18
Ukkonen 0,56 56477 0,18
Sub-trees 0,35 58195 0,18
Reset 0,38 56713 0,24
SEE 0,35 55650 0,19
Final 0,40 55499 0,23

600 KiB

Base 2,17 233213 1,16
Ukkonen 3,62 233213 1,16
Sub-trees 2,03 231254 1,07
Reset 2,40 222931 1,45
SEE 2,23 228731 1,22
Final 2,48 217059 1,44

1 MiB

Base 2,41 283755 1,31
Ukkonen 4,58 283755 1,31
Sub-trees 2,63 289587 1,36
Reset 2,61 274809 1,56
SEE 2,48 279867 1,38
Final 2,72 270002 1,59

Table 6.2: Optimization in binary files

files and also because of the fact that the tree built to model the data has many more nodes that
the ones used with text files of similar sizes. This is not caused by the tree being higher but mostly
because the eight-bit alphabet size in binary files is always near 256 while in text files it is usually
below 100. As CTW and PPM also build trees to model the data this probably can explain the
difference that is not seen in BZIP. Considering the compressed files size the order is similar to the
one seen on text files.

In the case of decompression time, the same pattern seen in previous tables emerges.

6.3 Standard test corpora

These algorithms where also tested using the standard Canterbury and Calgary corpora. These
corpora are developed specifically to test compression algorithms and are composed of a set of test
files representative of different common file types. To compare with the previous tables, the Calgary
corpus is composed by 12 files where the two largest are about 500 KiB and 8 of them are 100 KiB
or smaller. The Canterbury corpus consists of 11 files where 4 of them are larger than 400 KiB (the
largest is almost 1 MiB) and five of them are smaller than 100 KiB. On average Canterbury corpus
files are about 32 KiB larger than Calgary’s. The results for both of these tests averaged over all
files in each set can be seen in tables 6.5 and 6.6. The results are similar to the ones observed before.
CTW is better than Context as both corpora contain small files mostly. For comparison we add the
result of processing the previous 16 files tested considered as a corpus (table 6.7).

Comparing the three tables it is clear that Context does better when compressing larger files as
the difference to PPMD in bits per byte is reduced from 10% in Calgary to 7% in Canterbury to 6%
in our test files.
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Input size Algorithm Comp. Time (seconds) Comp. size (bytes) Decomp. time (seconds)

50 KiB

BZIP 0,01 10478 0,00
Context 0,07 10528 0,04
PPM 0,02 9008 0,03
CTW 0,19 10043 0,19
ZPAQ 4,22 8752 1,77

100 KiB

BZIP 0,02 21027 0,00
Context 0,12 20970 0,07
PPM 0,04 18001 0,05
CTW 0,38 20183 0,40
ZPAQ 5,91 17005 3,48

600 KiB

BZIP 0,09 93327 0,02
Context 0,55 88932 0,32
PPM 0,17 81009 0,18
CTW 2,44 89134 2,48
ZPAQ 22,27 72243 20,15

1 MiB

BZIP 0,15 147644 0,04
Context 0,96 144158 0,59
PPM 0,29 124852 0,32
CTW 4,13 153447 4,20
ZPAQ 35,49 120093 33,65

Table 6.3: Other algorithms in text files

6.4 Conclusions

Considering the compression ratio and the time consumed in the compression procedure we can
conclude that the best algorithm is PPM followed by BZIP which gets a slower compression ratio but
it is much faster especially on binary files. Context is similar to CTW with small files but it is much
faster (especially during decompression) and compresses better with larger files.

A possible explanation of the performance of PPM is that this is a highly optimized algorithm
which uses many heuristic techniques to improve compression. On the other hand the implementation
of Context cannot obtain so much benefit from this kind of heuristic techniques because of the fact
that it works with a fixed tree previously determined. Of course this tree is supposed to be optimal
but it is not possible to take into account all possible heuristic improvements in the cost formula used
in the pruning stage. For this reason the heuristic improvements implemented within the algorithm
produce little improvement in compression but do not compare with the benefits that can produce
using a free form tree like in PPM.

Nevertheless the differences between Context and PPM are smaller with larger files in general and
especially with data files. In our tests the difference in compression between PPM and Context in
data files was always less than about 4%. To show this we present the results of our test files as a
corpus considering only data files larger than 500 KiB (table 6.8).
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Input size Algorithm Comp. Time (seconds) Comp. size (bytes) Decomp. time (seconds)

50 KiB

BZIP 0,01 32387 0,00
Context 0,18 31589 0,12
PPM 0,08 31085 0,10
CTW 0,18 31373 0,18
ZPAQ 4,38 29524 1,91

100 KiB

BZIP 0,02 57431 0,01
Context 0,40 55499 0,23
PPM 0,12 53194 0,14
CTW 0,38 54982 0,38
ZPAQ 6,03 50364 3,60

600 KiB

BZIP 0,07 231920 0,04
Context 2,48 217059 1,44
PPM 0,52 209966 0,60
CTW 2,68 219273 2,73
ZPAQ 22,52 163727 20,42

1 MiB

BZIP 0,10 285944 0,04
Context 2,72 270002 1,59
PPM 0,62 257992 0,71
CTW 4,58 286724 4,63
ZPAQ 36,40 207228 34,56

Table 6.4: Other algorithms in binary files

Bits per byte Compression time (seconds) Decompression time (seconds)
BZIP 2,36 0,02 0,01
PPM 2,10 0,09 0,09

Context 2,32 0,25 0,15
CTW 2,23 0,83 0,84
ZPAQ 1,91 9,42 6,69

Table 6.5: Calgary corpus results

Bits per byte Compression time (seconds) Decompression time (seconds)
BZIP 2,22 0,03 0,01
PPM 1,98 0,13 0,15

Context 2,12 0,24 0,16
CTW 2,03 1,07 1,08
ZPAQ 1,87 11,60 8,87

Table 6.6: Canterbury corpus results

Bits per byte Compression time (seconds) Decompression time (seconds)
BZIP 2,53 0,06 0,02
PPM 2,30 0,24 0,27

Context 2,44 0,95 0,56
CTW 2,45 2,11 2,10
PAQ 2,09 18,69 15,85

Table 6.7: Tested files as a corpus results

Bits per byte Compression time (seconds) Decompression time (seconds)
BZIP 2,58 0,09 0,04
PPM 2,33 0,57 0,65

Context 2,42 2,63 1,54
CTW 2,50 3,63 3,69
PAQ 1,38 31,25 28,50

Table 6.8: Tested files as a corpus results, only data files larger than 500 KiB



Chapter 7

Conclusions and future work

It was shown in this thesis that it is possible to develop an algorithm with sound theoretical prop-
erties and also reasonable compression rate on everyday files. There is still a difference between the
algorithm developed here and the best performing algorithms in practice. Further work would be
needed to shorten this breach.

The complete source code of the implementation of the algorithm defined here is available on the
web on http://www.fing.edu.uy/~jmerlino/context thus it is possible that the community works
to improve it. We note that some possible lines of work on this regard are:

• Work further on the idea of using subtrees instead of a single tree.

• Adapt other optimization techniques from other compression algorithms.

• Make the pruning formula reflect better all these possible code optimizations considering that
it should be computed relatively fast for the algorithm to be competitive.
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Appendix A

Counting sort

This is a sorting algorithm that is used in the construction of the suffix tree in chapter 5. It is very
efficient when the range of the elements to sort is known and is not much larger than the length of
the array to sort. In this case it is used to sort 8 bit symbols. The counting sort has a running time
of Θ(n+ k) where n is the length of the array to sort and k is the range of the values to sort.

As explained in [14, section 5.2] this method is based on the simple idea that the jth element in
the sorted sequence is greater than exactly j − 1 of the other elements. Hence, if we can count how
many elements are smaller than a particular one we know the position of this element in the sorted
array.

Algorithm 13: Counting sort

input : String an to sort
output: Array C, C[ai] = position of the symbol ai in the sorted string

1 for i ∈ A do

2 C[i] = 0
3 end

4 for i = a1 to an do

5 C[i] = C[i] + 1
6 end

7 for i = A2 to Ak do // Ai is the i-th symbol of the alphabet

8 C[i] = C[i] + C[i− 1]
9 end

The algorithm starts by creating an array C with the same size as the range of the elements to
sort in such a way that it can be indexed by the values of these elements. This array will be zero-filled
at the beginning of the algorithm (lines 1-3). The value on index i of this array is used to store the
number of elements in the data to sort that have value i. These counts are accumulated iterating
over the array to sort (n steps, lines 4-6).

Afterwards, the counting array C is iterated in increasing order of its keys and the counts are
accumulated (lines 7-9). At this point the array C contains the position of each symbol in the sorted
array. If there are repeated elements in the original data the value C[i] will contain the position of
the last symbol i in the array. The previous free positions have to be filled with this same symbol.
This takes k steps to form the n+ k total algorithm time.

As an example lets see how the algorithm would sort the string abracadabra:

1. Initialize the count array: C[a] = C[b] = C[c] = C[d] = C[r] = 0

2. Count the number of occurrences of each element. The resulting array will be: C[a] = 5,
C[b] = 2, C[c] = 1, C[d] = 1, C[r] = 2

3. After the accumulation step the array will now be: C[a] = 5, C[b] = 7, C[c] = 8, C[d] = 9,
C[r] = 11
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4. The sorted string including the position of each symbol is then:

a a a a a b b c d r r
1 2 3 4 5 6 7 8 9 10 11

A possible variant of this algorithm is to skip the accumulation step and iterate over the array
C instead. Each symbol is stored in the sorted array as many times as indicated by the count in C.
This is useful if a new ordered array with the original elements is needed instead of an array with
pointers to the original one as is the result of the former algorithm.

As this algorithm uses counts to order the array it is not a comparison sort so the Ω(n log(n))
lower bound is not applicable in this case.



Appendix B

Pruning formula details

For a given state s if we let cs be the number of symbols that occur in s in the entire input sequence,
let cs(a) be the number of times the symbol a ∈ A occurs in s as recorded by the counter, As be
the subset of A composed by the symbols that occur in s and thus |As| is the number of different
symbols that occur in s. Then the code length estimation for this state is given by:

κ(an, s) =
∑

a∈As

cs(a)−1
∑

i=1

(− log ps,i(a))

where

ps,i(a) =
i− 1

2

cs,i(a)
.

and cs,i(a) is the number of symbols that occurred in s at the time symbol a occurs for the ith time.
This can be written as:

κ(an, s) = − log

∏

a∈As

∏cs(a)−1
i=1 (i− 1

2 )

(cs − 1)!
(B.1)

Here we can see that by estimating probabilities using PPMD from [12] the denominator of (B.1)
is given by (cs − 1)! as cs,i(a) increases by one in every step. It is not cs! because the state makes no
prediction the first time a symbol is seen there since cs,i(a) = 0 in this case.

Next, considering the numerator of (B.1) we compute separately the number of occurrences of
every symbol when it is predicted and the number of occurrences of the escape symbol.

For each symbol the number of occurences when predicted is given by:

[2(cs(a)− 1)− 1]!! 2−(cs(a)−1)

as each symbol count increases by 1
2 the first time it occurs (an escape is generated) and then the

count increases by 2
2 for each occurrence. For example, given a symbol that occurred five times, the

counts for each of the four successful predictions of the symbol would be: 1
2 ,

3
2 ,

5
2 ,

7
2 .

This term can also be expressed using the gamma function as:

Γ

(

cs(a)−
1

2

)

π− 1
2

And considering the product over all of the symbols occurring in the state we get:

∏

a∈As

[

Γ

(

cs(a)−
1

2

)]

π−
|As|

2

Finally, considering the number of escapes we have that the count increases by 1
2 for each new

escape. The number of escapes is |As|− 1 as one is produced for each new symbol except for the first
one as no prediction is made in this case. Then we have that the product of the number of escapes
is:
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(
1

2

)|As|−1

(|As| − 1)!

Mixing all these terms we get the final formula as:

κ(an, s) = − log

∏

a∈As

[
Γ
(
cs(a)− 1

2

)]
π−

|A(s)|
2

(
1
2

)|As|−1
(|As| − 1)!

(cs − 1)!
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