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ABSTRACT

Diffusion models have demonstrated potential to separate
individual sources from music mixtures in a generative
fashion, enabling a new solution for this challenging prob-
lem. However, existing works require clean multi-stem
data, which is scarce for several repertoires, consequently
compromising generalization. We explore the potential of
generative modeling to perform weakly-supervised singing
voice separation for Carnatic Music, a music repertoire for
which large quantities of multi-stem recordings with bleed-
ing between sources have been collected from live per-
formances. We pre-train a latent diffusion model to per-
form preliminary vocal separation conditioning on the cor-
responding mixture. Then, using a regressive model which
is separately trained on a clean, smaller, and out-of-domain
dataset, we estimate the level of bleeding in the prelimi-
nary separations and use that information to guide the dif-
fusion model toward generating cleaner samples. The ob-
jective and perceptual evaluations show the potential of the
proposed generative system for Carnatic vocal separation.
Code, weights, and further materials are available online. 1

1. INTRODUCTION

Denoising diffusion probabilistic models (DDPM) are a
class of generative systems that are emerging as an al-
ternative solution for audio inverse problems such as en-
hancement [1], upsampling [2], and even source separa-
tion [3–5]. Music source separation (MSS) is the task
of estimating the individual elements in a musical mix-
ture [6]. Because of their conditioning flexibility and gen-
erative potential, DDPM are considered a promising solu-
tion for MSS [7]. While competitive diffusion separation
systems exist [5, 8], these focus on instrumental music.

Large training data is key for DDPM [1, 9, 10], how-
ever, gathering clean, multi-stem data is challenging [11].
While large multi-stem collections recorded in live shows
exist [12–16], these come with source bleeding: the other
sources, room response, and other interferences leak into

1 https://github.com/genisplaja/ldm-carnatic-separation
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the individual stems. Regularly training an MSS model on
such data often results in suboptimal performance [17].

In this work, we aim to leverage the inherent domain
knowledge in a large collection of live multi-stem tracks
with bleeding while still targeting clean separation. Car-
natic Music, which is mostly enjoyed live [18], presents
an interesting case of study. Prior work targeted the same
objective for Carnatic vocals [17] and violin [19]. How-
ever, [17] relies on a complex heuristic compromising gen-
eralization and efficiency, while [19] uses a large, clean but
private in-domain dataset. Clean Carnatic multi-stem data
exist [20], but only for a small collection of 5 concerts.

We propose a generative approach to this problem, rely-
ing on latent diffusion models (LDM) [21]: the generative
diffusion process operates on a compact, pre-learnt audio
representation, enhancing efficiency and learning capac-
ity [10]. We pre-train an LDM to generate signing vocals
with source bleeding conditioned on music mixtures [22].
In parallel, we train a regressor to estimate the bleeding ra-
tio in vocal signals using open, clean, non-Carnatic multi-
stem data. We then refine the pre-trained LDM using a loss
penalization term based on the bleeding predictions aiming
at generating cleaner vocals. Inspired by gradient guid-
ance for diffusion models [23, 24], we subsequently pro-
pose regression-based bleeding level guidance: we steer
the gradients of the bleeding estimator to inform the diffu-
sion sampler toward the direction for cleaner separation.

Non-generative MSS systems that transform or mask
time-frequency representations normally rely on access to
all stems, assuming these combine linearly to the reference
mixture [25]. Leveraging generative flexibility we con-
sider two added challenges: (1) access to the mixture and
the corresponding vocal stem with bleeding only [26], and
(2) the mixture alone has undergone non-linear processing.

We prioritize efficiency using a compact latent space,
at the expense of signal quality and a significant penaliza-
tion on separation metrics, a known problem for the evalu-
ation of generative models [27, 28]. Nevertheless, our sys-
tem achieves, without the need for clean, in-domain, multi-
stem samples, competitive objective generation quality and
perceptual separation preference over the baselines.

2. BACKGROUND

2.1 Latent diffusion

Let X ∈ RF×D be a latent embedding with feature size
F and time dimension D = T

cf
, where T is audio length



and cf the compression factor of a certain latent encoder
E : x ∈ R1×T → X ∈ RF×D. In this work, we rely on a
latent forward diffusion process defined by a Markov chain
of T steps that converts a latent embedding X ∼ p(X),
into a sample of Gaussian noise ϵ ∈ RF×D. The interme-
diate steps of this transformation are computed as [29]:

Xσt
= ασt

Xσ0
+ βσt

ϵ, (1)

where σt ∈ [0, 1] is a noise schedule of T values to con-
trol the transformation, while we define ασt := cos(ϕt)
and βσt

:= sin(ϕt), where ϕt := π
2σt. Note also that

Xσ0
= X . A model is then trained to revert this process,

approximating the data distribution p(X) by learning to
map Gaussian samples to observations X ∼ p(X).

Let vσt ∈ R1×D be the velocity objective, which corre-
sponds to the inner variable of the diffusion process which
tracks the transformation between Xσ0

and XσT
. The ob-

jective vσt
is formally computed as:

vσt = ασtϵ− βσtXσ0 , (2)

and estimated by neural network m with parameters θ:

v̂σt
= mθ(Xσt

, σt, C) (3)

Network mθ is the generative LDM. Input C ∈ RF×D

represents the conditioning signal. Diffusion systems may
be trained unconditionally to sample random observations
from approximated p̂(X), while instructions from various
modalities (e.g., text prompts [9], audio signals [5], and
more) can be injected to the posterior to modify the gen-
eration trajectory. However, our work focuses on a well-
defined inverse problem. As a result, we inject C during
both training and inference, architecturally optimizing the
system to tailor the diffusion trajectory relating the con-
ditioning signal and the generator target X̂ . Let E denote
expectation. The diffusion loss objective is defined as [29]:

Ldiff = Et∼[0,T ],σt,Xσt

[
||v̂σt

− vσt
||22

]
(4)

2.2 Sampling process

The sampling process progressively models a sample per-
taining to the approximated distribution p̂(X) by denois-
ing a random sample of Gaussian noise. Previous works
in audio generation have relied on the Denoising Diffusion
Implicit Models (DDIM) sampler, achieving satisfactory
compromise between sampling steps and generation qual-
ity [30]. In DDIM sampling [29], the inference process is
performed using arbitrary T , and it is initiated at σt = 1.
A given sampling step t is composed of a set of operations:

We first run a forward pass with model mθ as defined
in Eqn (3). Using predicted velocity v̂σt

, we can compute
X̂σ0

, which corresponds to the estimated target sample at
t = 0, and ϵ̂σt ∈ R1×D which is Gaussian noise at step t:

X̂σ0
= ασt

Xσt
− βσt

v̂σt
(5)

ϵ̂σt
= βσt

Xσt
+ ασt

v̂σt
(6)

Note that, for t ≈ T , i.e. at an early stage of the sam-
pling process, predicted X̂σ0

is expected to be noisy, lim-
itedly consistent with signal C, while at t ≈ 0, it approxi-
mates further to the final, refined separation. For t > 0, the

input for the next sampling step is formally defined as:

X̂σt−1 = ασt−1X̂σ0 + βσt−1 ϵ̂σt (7)

Finally, X̂σ0
is decoded to the original domain using

decoder E′ : X ∈ RF×D → x ∈ R1×T . Encoder E and
decoder E′ are normally pre-trained and kept frozen.

3. METHOD

Let A and B represent musical repertoires or domains
which differ on instrumentation, concepts, and practices.
In our work, A corresponds to Carnatic Music and B to
Western radio music (e.g. pop, rock, hip-hop, and related).

3.1 Latent encoder

We use Music2Latent v1 [31] (M2L), which is a neural
codec based on a consistency model [32]. Both M2L en-
coder and decoder are depicted in red in Figure 1. M2L
compresses signals sampled at 48kHz down to 12Hz, and
produces 64-dimensional codes with 0 mean and deviation
1. The significant compression of M2L enables the devel-
opment of our work in an environment with limited com-
putational resources. M2L is trained using MTG-Jamendo
dataset [33], which includes numeros tracks for repertoire
B, and 90 recordings tagged as indian. It also includes
≈ 2k vocal tracks, and ≈ 2k tracks with violin. We are un-
aware of the number of recordings mixing these sources.

The enormous compression rate of M2L comes at a
cost: authors report −3.85dB of reconstruction SI-SDR, a
standard separation metric, and perceptible artifacts often
arise in the reconstructions. While official code to train
or fine-tune M2L is not available, we rely on the open
pre-trained model, prioritizing its compression and feature
learning capabilities to study the effectiveness of latent dif-
fusion for weakly-supervised MSS. Moreover, the M2L
compression rate enables us to perform our LDM study
with very limited computational resources, yet training a
model with the size on par with the literature [34–36].

3.2 Latent diffusion for separation

Model mθ is a 1D attention U-Net with skip-connections.
It is depicted in green in Fig. 1. It is composed of n residual
blocks which include two 1D convolutional layers, each
preceded by GroupNorm [37] and SiLU activation [38].
A pre-defined number of blocks include time-wise self-
attention to learn the relationship between different time
steps and enrich context, which is crucial for MSS.

To down and upsample the features at each level in the
U-Net, we add an extra layer with kernel size k×k, k being
the time compression or expansion factor. When k > 1,
for downsampling we double the feature channels, while
halving them for the upsampling blocks.

The time-step σt is projected into a 1024-channeled
random Fourier feature embeddings, which are processed
through a 3-layer multi-layer perceptron (MLP) with
GELU activations. The resulting embedding is incorpo-
rated into the model via FiLM layers.



Figure 1. Diagram of the proposed system. The LDM is first trained to generate encoded vocals with bleeding. Next, we
fine-tune using the bleeding ratio loss. Finally, during sampling, we use the bleeding predictions to compute the gradients
towards less bleeding and modify the generation trajectory on that direction. The order of development steps is indicated.

Several mechanisms to inject conditioning signals in
diffusion U-Nets exist [1,30,34]. We find the best quality-
efficiency compromise on concatenating, over the feature
channels, the conditioning signal C and Xσt

[39]. Previ-
ous latent diffusion work using M2L embeddings has re-
lied on this mechanism [34]. Even if the M2L embeddings
are 2D, we employ 1D convolutional layers to effectively
capture temporal dependencies in the compressed repre-
sentation, processing each feature vector independently
without imposing artificial spatial correlations.

The network is trained relying on the objective in Eq. 4
using corresponding pairs of vocal stems with bleeding
Xσ0

and mixture C, both encoded using E [22].

3.3 Bleeding level estimator

The glass ceiling of the separation LDM presented in Sec-
tion 3.2 is established at the inherent source bleeding in
the training data for domain A. However, the network may
still be trained to map from mixture to the corresponding
vocals with bleeding, leveraging domain knowledge [17].

Prior work has shown that a separator model trained
using only data with source bleeding can be fine-tuned
towards cleaner outputs by steering a bleeding estimator
network [19], which predicts the ratio of bleeding in the
preliminary separations, while the non-optimal separator
is optimized to minimize this ratio. Building on this in-
sight, we hypothesize that estimating bleeding ratios is less
prone to severe generalization errors compared to MSS.
This allows us to leverage the knowledge embedded in a
pre-trained separator for repertoire A, while fine-tuning us-
ing the bleeding estimator trained using repertoire B, by-
passing access to clean multi-stem data for repertoire A.

3.3.1 Regression-based bleeding level guidance

In an attempt to guide the pre-trained LDM to generate
cleaner vocals, we leverage a regression model to guide
the diffusion process using the level of source bleeding.

Similarly to [19], we aim to introduce a bleeding esti-
mator model to guide the separation system toward reduc-
ing the bleeding. Leveraging the flexibility of the sampling
process of diffusion models, we propose regression-based
bleeding level guidance (RG), which is inspired by clas-
sifier guidance (CG) [23], a technique to enhance quality
and control in diffusion image generation. CG leverages a
pre-trained classifier to estimate the class to which Xσt

be-
longs to. Using the gradients obtained w.r.t. Xσt

, we may
modify the sampling trajectory targetting better the desired
class. Prior studies have also relied on gradients from ex-
ternal networks to tune diffusion sampling [24, 40].

We use a bleeding estimator, in blue in Fig. 1, to predict
the amount of source bleeding in an individual stem, rep-
resented by a floating point value b ∈ [0, 1], where 0 repre-
sents no bleeding and 1 the mixture. Using a clean multi-
stem but out-of-domain dataset for repertoire B, we train a
neural network rϕ to perform this task. Since rϕ is meant
to be integrated within the iterative diffusion process, the
bleeding prediction input is expected to be X̂σt

, which is
infused with Gaussian noise following Eq. 1. Therefore,
the training input of rϕ is an M2L-encoded vocal stem with
bleeding (with ratio b), corrupted using Eq. 1 from the dif-
fusion formulation. Note that the M2L codes have shown
competitive performance in several downstream tasks [31].
The model is trained using L2 loss:

Lrϕ(Xσt , σt, b) = ∥rϕ(Xσt , σt)− b∥22 (8)

Bleeding is expected to stay consistent along an audio
sample, thus the model estimates a single b̂ per each input.
Diffusion time-step σt is also injected to the regressor to
provide information of the current noise level [23, 24].

Regression-guidance for diffusion sampling. We in-
corporate RG in the diffusion sampling algorithm by steer-
ing the gradients from the bleeding predictor. We predict
the bleeding of the input diffusion forward variable Xσt at
each sampling step t, and calculate the gradients that point
toward the direction of our target: 0 bleeding [40]. The ex-



tracted gradients are used to guide predicted velocity v̂σt ,
following the formulation below:

Wguid = η · 102 · 1

t− 1
· σt

2 (9)

v̂guidσt
= v̂σt

+Wguid · ∇Xσt
|0− rϕ(Xσt

, σt)| (10)

The gradients are normalized using per-sample L2 nor-
malization, ensuring stable guidance. The guidance level
is manually controlled by η, and is also dynamically scaled
to provide less guidance in the beginning of the sampling
process where Xσt

≈ ϵ, and strengthen the guidance effect
on the intermediate sampling steps [24].

LDM bleeding-aware fine-tuning. We incorporate a
penalization loss term to penalize the pre-trained LDM
using the level of bleeding in the predictions. For time-
steps with low noise exposure (σt < 0.6), the frozen
bleeding estimator predicts the bleeding ratio before and
after a denoising step, denoted as b̂pre = rϕ(Xσt

) and
b̂post = rϕ(X̂σ0

), respectively. A max-margin hinge term
max

(
0, b̂post − b̂pre +m

)
with margin m = 0.05, ensures

that the model must reduce bleed by at least m, otherwise
it is penalized. The penalization term is further weighted
by (1−σt)

2 to amplify its impact at later and perceptually
clearer steps. Overall, the fine-tuning loss becomes:

L = Ldiff +λ · (1−σt)
2 ·max

(
0, b̂post − b̂pre +m

)
(11)

We use parameter λ to control the balance between pe-
nalization term and diffusion loss, encouraging consistent
reduction in bleed while maintaining generation fidelity.

3.3.2 Network details

Bleeding estimator rϕ is based on a stack of dilated con-
volutions which are regularized using GroupNorm, SiLU
activations, and dropout. The output embedding is batch-
normalized and then σt, which is processed using the same
step embedder than the LDM, is injected via summation.
The resultant vector is then passed through a bidirectional
LSTM, capturing temporal dependencies. To model global
temporal relationships, we use multi-head self-attention
over the sequence. Finally, we apply global average pool-
ing across the time dimension and use sigmoid-activated
linear layer to produce a single scalar corresponding to pre-
dicted bleed score (∈ [0, 1]).

4. EXPERIMENTS

4.1 Experimental setup

4.1.1 LDM separation pre-training

The LDM U-Net is 7 levels deep. The feature channels per
layer are set as: {128, 256, 256, 512, 512, 1024, 2048}, in-
put channels being 64 ∗ 2–being the channel-wise concate-
nation of the M2L codes and the model input Xσt

. How-
ever, the last convolutional layer outputs a 64-channeled
signal, corresponding to the generated embedding to de-
code. The training input context are 1052000 samples
(≈ 24s), which is compressed to 2048 samples using
M2L. Time compression factors of the LDM are set to

{1, 2, 1, 2, 1, 2, 1}, factor 1 representing no compression,
thus we reach 128 samples in the bottleneck, trying not to
over-compress the information.

The first U-Net level is composed of 1 block, while the
deepest includes 4. The rest are composed of 2 blocks. The
four deepest levels of the U-Net include time-wise self-
attention with 8 heads, aiming at enriching context.

The LDM network has ≈ 365M trainable parameters,
and it is trained using the 168 multi-stem recordings from
Saraga Carnatic–15 recordings are kept for validation, each
of them from a different concert. We use ADAM optimizer
with learning rate 1∗10−5, and use a linear warm-up stage
using a cosine scheduler with a initial rate of 1.6 ∗ 10−6.
We reach 500k training steps in two weeks in an 8GB GPU.

4.1.2 Bleeding estimator guidance

Artificial bleeding dataset. The bleeding estimator rϕ is
trained using musdb18hq [41], corresponding to domain B.
We artificially create the bleeding following the pipeline
described in the SDX 2023 bleeding challenge [25]. Let
Si be a given source stem. The accompaniment A is the
weighted sum of the non-vocal sources: A =

∑N
i=1 wiSi,

where wi ∼ U(0, 1) are independently sampled random
mixing weights. We randomly filter the sources using the
following categorical distribution [19, 25]:

Si =


BPF(Si, f

low
c , f high

c ) with p = 0.4

HPF(Si, fc) with p = 0.4

Si with p = 0.2

where we use band pass filter (BPF) with low cutoff fre-
quency f low

c ∼ U(200, 600) Hz and high cutoff frequency
f high
c ∼ U(8k, 10k) Hz, and high-pass filter (HPF) with
fc ∼ U(900, 9k) Hz. The order of the filters is also ran-
domly sampled from ∼ U(3, 8). Next, a bleeding ratio
b ∼ U(0, 1) is sampled and used to compute the reference
mixture M = Sv + b · A. We normalize M to prevent
clipping and confine all values between [−1, 1].

Model details. The input artificial mix M is encoded
using M2L and merged with Gaussian noise using Eq. 1,
therefore, the input channel size is 64. We use five dilated
convolutions with ratios {1, 2, 4, 8, 8}. The number filters
of the convolutional stack and also the size of the hidden
state of the LSTM are set to 512. The multi-head attention
mechanism is configured with 8 heads.

Training scheme. The training context for the bleed-
ing predictor is the same as that of the LDM. The bleeding
estimator model totals ≈ 1M parameters. We use ADAM
optimizer with a learning rate 4∗10−4, and train until con-
vergence. Subsequently, the pre-trained LDM is fine-tuned
for 10k steps using λ = 50, using learning rate 1 ∗ 10−6.

4.1.3 Diffusion sampling parameters

We sample using overlapping segments of ≈ 24s with ≈ 5s
hop, which are subsequently combined using overlap-add.
If sampling with T = 64 on a single TITAN X 8GB GPU,
our system separates audio at an average speed of ≈ 0.4x
the duration of the track.



4.2 Datasets

Saraga Carnatic (Domain A, training data). This is a
collection containing 168 real multi-stem recordings (to-
taling ≈ 60h of music), including vocals, violin, and per-
cussion instruments, missing only the tanpura, which pro-
vides the tonic from which an entire performance is built.
Carnatic Music is mostly enjoyed live, therefore, to en-
sure ecological validity, Saraga is recorded in live perfor-
mances, collecting the stems from the mixer. However, this
has a drawback: the microphone of a given source cap-
tures, in the background, the other sources.

musdb18hq (Domain B, for RG). It is one of the most
established open datasets for MSS. It includes 100 train-
ing and 50 testing multi-stem tracks split in vocals, bass,
drums, and others. It represents a limited set of styles
mostly confined in Western commercial music.

Sanidha (A, evaluation data). It is the only available
open collection of clean multi-stem recordings for Carnatic
Music [20]. After some exploration on this dataset, which
is composed of 5 concerts, we discard 1 having bleeding
in the vocal stem leaked through the singer headphones.
While Sanidha has not been yet shown a potential dataset
for training over Saraga, we employ it for testing, enabling
more reliable objective evaluation for this repertoire.

4.3 Evaluation metrics

The objective evaluation of generative systems for audio
inverse problems is challenging [1]. In MSS, traditional
definitions for source-to-distortion ratio (SDR), the stan-
dard separation metric, have been reported to often mis-
represent the perceptual quality of separations [42, 43].
Moreover, SDR is significantly penalized by potential sub-
tle differences and phase mismatches commonly present
when evaluating fully-generative models. For these rea-
sons, SDR is being less used in prior generative separa-
tion work. In the case of LDM, given the added phase
reconstruction mismatch introduced by the latent encoder,
not even scale-invariant SDR (SI-SDR), present in various
generative separation systems [5,26], is being used [8,44].

Therefore, we rely on alternative audio quality mea-
sures that have been employed in prior work on la-
tent diffusion for generation [34, 35] and source separa-
tion [5, 8, 44]: log-spectral distance (LSD) [35] and log
mel-spectrogram L2 error [43]. These metrics are phase-
independent and may be more appropriate for generative
systems. We also report perceptual evaluation of speech
quality (PESQ) [45], aiming at measuring intelligibility.

To assess the quality of the generated signals without
relying on matching audio pairs, we report the Fréchet Au-
dio Distance (FAD) [46]. Model outputs with higher qual-
ity and lesser interferences should report lower FAD. The
FAD is often computed on short chunks. However, in ad-
dition to diversity, context is important [46]. Carnatic ren-
ditions often feature prolonged improvisational segments,
such as alapana and tanam, which can span several min-
utes. For these reasons, we split the samples into 1-minute
chunks. We discard the chunks with > 25% of silence,
which results in ≈ 150 testing samples.

Dataset L2 Loss↓ Avg. b̂ mix Avg. b̂ voc.

musdb18hq 0.054 0.89± 0.18 0.05± 0.09
Sanidha 0.098 0.80± 0.23 0.08± 0.18
Saraga - 0.97± 0.07 0.25± 0.29

Table 1. Assessing the bleeding regressor. Ideally, the
avg. b̂ should be ≈ 1 for mix, and ≈ 0 for vocals, except
for Saraga, whose vocal stems have inherent, real bleeding.

To complement the objective measures we run a percep-
tual test with human listeners. We conduct a preference-
based experiment [1]. We split the separations into chunks
of ≈ 15 seconds, discarding unvoiced regions, and ran-
domly select an instance for each rendition. Using the
mixture as reference, we select 6 examples from the pool,
including diversity of music sections and singer gender.

The participants are shown several unlabeled and ran-
domly ordered pairs of samples of our model against
other systems. We introduce comparisons between non-
generative models to prevent the participants from getting
familiar with model-specific artifacts.

4.4 Compared systems

We compare against the multi-source diffusion model
(MSDM) [5] for separation. Since no weights for vocals
are available, and the system is designed for clean multi-
stem data, we train it using musdb18hq, following the in-
structions in the repository. We do not compare against
existing LDM separators since these are not optimized for
vocals [8] or code or weights are not yet available [44].

While not directly comparable, since these are non-
generative and mask-based, we evaluate cold-diff [17] and
the mixer model from [19], the baseline systems address-
ing the same task for the Carnatic study case. Both mod-
els are directly used through the compIAM package [47].
Also, to provide a performance bound for our model, we
evaluate the M2L-reconstructed vocal stems in Sanidha.

We perform an ablation study on the bleeding fine-
tuning (FT), regression guidance level (RGη) for levels
η ∈ [0, 5, 10, 20], and sampling steps T ∈ [32, 64]. The
non fine-tuned model is trained for ≈ 10k more steps for
a fairer comparison with the FT model. For the perceptual
test we use T = 32, mid-guidance η = 10.

5. RESULTS

5.1 Evaluating the bleeding predictor

Evaluating the bleeding predictor is complex, since no
music datasets with real, annotated bleeding exist. How-
ever, we perform two sanity checks. First, we compute
the model L2 loss on artificial bleeding mixtures using
musdb18hq and Sanidha. Second, we compute the average
bleeding ratio on Saraga mixtures and vocal stems. To sim-
ulate the actual application of the bleeding predictor, inputs
are noised using Eq. 1, uniformly sampling σt values per-
example. We predict the bleeding for 500 randomly sam-
pled and voiced 12s-excerpts per each dataset.



Model T FAD↓ LogMel L2↓ LSD↓ PESQ↑

M2L – 0.281 2.95 1.22 2.73

cold-diff [17] 8 0.515 15.79 2.29 1.39
mixer [19] – 0.648 13.26 1.77 1.22

MSDM [5] 150 0.791 12.52 2.00 1.78

Proposed

no FT 32 0.637 16.74 1.80 1.15
FT 32 0.593 16.02 1.75 1.17
FT-RG5 32 0.587 13.36 1.68 1.22
FT-RG10 32 0.579 12.89 1.66 1.18
FT-RG20 32 0.626 13.44 1.67 1.19

no FT 64 0.642 16.78 1.79 1.16
FT 64 0.602 16.10 1.74 1.16
FT-RG5 64 0.600 13.41 1.68 1.21
FT-RG10 64 0.595 12.61 1.65 1.19
FT-RG20 64 0.623 12.31 1.64 1.16

Table 2. Objective evaluation of diverse systems on au-
dio and vocal quality measures. Arrow ↓ indicates lower
is better, ↑ otherwise. In bold, we indicate the best score
among all systems. We underline the best scores of the ab-
lation. See further ablation results in the companion repo.1

See the results in Table 1. The regressor generalizes
quite satisfactorily to the Carnatic domain. The system
also discriminates real Carnatic mixtures (b̂ ≈ 1) from vo-
cal stems with bleeding (b̂ = 0.25± 0.29). The high stan-
dard deviation in the predicted bleeding ratio for Saraga
may be explained by the high variance in accompaniment
presence in different sections of a Carnatic rendition.

5.2 Objective evaluation

See the objective evaluation in Table 2. We observe a tan-
gible improvement for our model when using the bleeding
guidance during sampling, finding the sweet spot on RG10

for T = 32, and RG20 for T = 64, despite the metrics
not always correlate. The bleeding fine-tuning loss term
provides a more moderate improvement.

Our generative system outperforms the baselines on the
spectral assessment metrics, while ranking second on FAD,
only outperformed by cold-diff, a non-generative system.
In terms of PESQ, our system scores the lowest, only lev-
eling the mixer model when using T = 32 and η = 10.

The performance across metrics for our system suggests
that stronger guidance further cleans and brings the gen-
eration closer to the target signal overall. However, this
results in a trade-off: stronger interference removal comes
at the cost of degraded vocal quality. While our system
shows competitive overall quality, especially when guided,
it reports lower PESQ than MSDM, the generative base-
line, suggesting that MSDM generations have further in-
telligibility but also stronger interference. Note however
that MSDM does not generate encoded latents but directly
waveforms, potentially accumulating less phase discrep-
ancy. Nevertheless, the general low PESQ scores for all
models may be explained by the fact that this metric is
for speech and it does not assume potential interferences,
while it is unclear how it characterizes the extremely com-
mon and strong vocal ornaments in Carnatic Music.

Model Quality (%) Interference (%)
Ours Other Ours Other

cold-diff [17] 5.0 95.0 97.50 2.50
mixer [19] 15.0 85.0 100.0 0.0
MSDM [5] 20.0 80.0 100.0 0.0

Table 3. Perceptual evaluation results showing the per-
centage of participants who preferred our system or base-
line models in terms of quality and interference removal.

The results suggest that an LDM can be trained to-
wards generating separated complex sources such as vo-
cals, while the proposed guidance method contributes to
a cleaner generation that gets closer to the target signal.
The objective metrics support the expected behavior of
the proposed approach, although we hypothesize potential
stronger improvement if future efforts are done on fine-
tuning the latent encoder and refining the bleeding estima-
tor, as well as scaling the network up (closely related LDM
relies on > 500M parameters [34]). These may contribute
to a refine the source quality of the generated vocals.

5.3 Perceptual assessment

A total of 20 participants took the test. Interestingly, the
participant agreement is remarkable. The results are re-
ported in Table 3. The perceptual assessment is signifi-
cantly clear: our system leads in interference removal but
is not able to reach the source quality of the baselines.
These results agree with the objective metrics, which sug-
gest that the overall quality and cleanliness of our genera-
tions are competitive, however, the fidelity and intelligibil-
ity of the generated vocals leave room for improvement.

6. CONCLUSIONS

We present a deep generative model to address weakly-
supervised singing voice separation for Carnatic Music,
leveraging pairs of in-domain mixture and vocal stems
which have source bleeding because these are recorded in
real live performances. We propose to train a latent diffu-
sion model to generate vocals with bleeding conditioned on
the corresponding mixture. We then guide the pre-trained
generative system toward producing cleaner samples using
a bleeding ratio predictor. Our system achieves compet-
itive scores for generation quality measures, and outper-
forms the baselines in terms of interference removal in a
preference listening test. While the proposed framework
shows promise, we envision extensive future work, espe-
cially to refine the vocal quality, which is sub-optimally
ranked in the results. Tailoring the latent encoder to Car-
natic, improving the bleeding estimator, and performing
multi-source separation are potential future research lines.

We believe that the flexibility, conditioning, and guid-
ance capabilities of DDPM may enable approaches to
tackle separation in non-optimal contexts, or even improve
performance on ideal conditions. This has potential for
separation of repertoires that are not commonly recorded
in studios, considering underrepresented instruments, and
prioritizing particular aspects such as interference removal.
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