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Abstract

Network reliability deals with reliability metrics of large classes of mul-
ticomponent systems. Recursive Variance Reduction (RVR) is a powerful
pointwise estimation method, widely applied in network reliability anal-
ysis. In this paper, RVR is extended to arbitrary Stochastic Binary Sys-
tems, with minor requirements. Additionally, its variance is again lower
than Crude Monte Carlo (CMC), in this general context.

Keywords: Stochastic Binary System, Network Reliability, Recursive Vari-
ance Reduction, Crude Monte Carlo.

1 Motivation

RVR is a powerful method for network reliability estimation, awarded by the
scientific community in 1995 [1]. Historically, its applicability has been diverse,
always in the context of networks. In this paper, we generalize RVR concept
to Stochastic Binary Systems (SBS). The proofs are precisely the ones from [1],
with minor changes in notation.

2 Global Notations and Definitions

• G = (E , p,Φ): SBS;

• E : elements of G, also called links;

• m: the number of elements of E ;

• G − l: the SBS (E − l, p,Φ−l) with Φ−l(X) = Φ(X); in order to simplify
the notation we will write Φ instead of Φ−l if no confusion arise.

• G/l: the SBS (E − l, p,Φ/l) with Φ/l(X) = Φ(X ∪{l}); in order to simplify
the notation we will write Φ instead of Φ/l if no confusion arise.
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• A subset E
′

of E is said to be a pathset if Φ(E
′

) = 1.

• A subset C of E is a cutset of G if Φ(C) = 0;

• |A|: the cardinality of the set A;

• xl: the binary random variable “state of link l”, defined by

xl =

{
1 if link l is up (operational),
0 if link l is down (failed);

• ql: the failure probability of link l, that is, ql = Pr {xl = 0};

• x denotes the real 1− x;

• X = (x1, . . . , xm): the random SBS state vector;

• GX : the subset of E obtained by removing each failed link in X;

• R(G) = Pr {GX is a path set}: the reliability of the SBS;

• Y = 1− Φ(X);

• Q(G) = Pr {Y = 1} = E {Y }: the unreliability parameter of SBS G;

• Ŵ denotes the sample mean based on r.v. W :

Ŵ =
1

N

N∑

i=1

W (i)

where N is the fixed sample size and W (1), . . . ,W (N) are s-independent
and identically distributed r.v. with distribution function of r.v. W ;

• 1E : the indicator function of the event E;

• E: complementary event of the event E.

3 Crude Monte Carlo Technique

The unbiased crude Monte Carlo estimator of the unreliability parameter Q(G)

is a sample mean Ŷ . More precisely,

Ŷ =
1

N

N∑

i=1

Y (i) =
1

N

N∑

i=1

(1− Φ(X(i))) (1)

where X(1), . . . , X(N) constitute a random sample of X. The variance of this
estimator is

Var
{
Ŷ
}
= Var {Y } /N = Q(G)Q(G)/N (2)
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and it is estimated by the unbiased estimator

V̂ = Ŷ (1− Ŷ )/(N − 1) =
1

N(N − 1)

N∑

i=1

(
Y (i) − Ŷ

)2

. (3)

The simulation algorithm consists of repeating independently N times the
following experiment. A sample of each variable xl is taken in order to form a
sample of vector state X. An implementation of Φ is called to decide resulting
subset of G is a pathset. The estimation of Q(G) is the frequency of subset
that are not path sets. The procedure CMC (for Crude Monte Carlo) can be
expressed as follows:

Procedure CMC

1. Initialization : Ŷ = 0.
2. For each experiment n = 1, . . . , N do

2.1 For each link l = 1, . . . ,m do
sample U from Uniform(0, 1);
If (U ∈ [0, ql[) Then xl = 0 Else xl = 1.

2.2 Evaluate structure function Φ(X) and add 1− Φ(X) to Ŷ .

3. Compute the estimate of Q(G) : Ŷ = Ŷ /N .

4. Compute the estimate of Var
{
Ŷ
}
: V̂ = Ŷ (1− Ŷ )/(N − 1).

4 Recursive Variance Reduction Algorithm

4.1 Basics

An unbiased estimator Û is more accurate than another unbiased estimator V̂ iff
the variance of Û is smaller than V̂ [2]. If Û and V̂ are sample mean estimators
we obtain

Var
{
Û
}
= Var {U} /N and Var

{
V̂
}
= Var {V } /N.

Consequently, it suffices to look at the variances of r.v. U and V to compare Û
and V̂ . In particular, a sample mean based on a r.v. that has same expectation
as Y and smaller variance is a more accurate estimator than the standard (crude)
one.

In first step of the proposed method we show how to obtain a r.v. with same
expectation as r.v. Y and smaller variance.

This r.v. will be expressed as a function of the probability that the c elements
of a given cutset in G are down and of c r.v. Y1, . . . , Yc. Each Yi is such that
E {Yi} = Q(Gi) where Gi is a SBS smaller than G. The following proposition
formalizes this step.
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Let Z be a r.v defined by

Z = QC +QC

i=|C|∑

i=1

1(U∈Ji)Yi (4)

where

• C = {l1, l2, . . . , l|C|} is a fixed cutset in G;

• QC is the probability of event AC which is the event that all elements in
C are in failed state;

• for 1 ≤ i ≤ |C|, Yi = 1−Φ(Xi) and Xi is the random vector state defined
by

Pr {Xi = x} = Pr {(X = x)|Bi} , for x ∈ {0, 1}m

where B1 denotes the event that link l1 is up and for 2 ≤ i ≤ |C|, Bi the
event that all elements in set {l1, l2, . . . , li−1} are failed and li is opera-
tional;

• (Ji)1≤i≤|C| is a sequence of disjoint intervals whose union gives [0, 1], the

length of each Ji being Pr {Bi} /QC ;

• U is a random variable with uniform distribution on [0, 1] s-independent
of all previously defined r.v.

Then Z has same expectation as Y and smaller variance. More precisely, we
have

E {Z} = Q(G) = E {Y } (5)

Var {Z} = (Q(G)−QC)Q(G) ≤ Q(G)Q(G) = Var {Y } . (6)

The following remarks will help us through the remainder of this work.

• (Bi)1≤i≤|C|, form a partition of AC and consequently

i=|C|∑

i=1

Pr {Bi} /QC =

i=|C|∑

i=1

Pr {(U ∈ Ji)} = 1.

• Each of the random variables Yi defined in the previous proposition verifies

E {Yi} = E {1− Φ(Xi)} = E {(1− Φ(X))|Bi} = E {Y |Bi} .

Since Bi is the event that all components in set {l1, l2, . . . , li−1} are failed
and li is operational,

E {Yi} = Q(Gi)

where Gi = (G − l1 − . . .− li−1) /li.
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The proof of Proposition 4.1 is given in the Appendix. The following proposition
shows that if we replace in Z each Yi by a r.v. Y

′

i that has same expectation
and at most same variance, the resulting r.v. Z ′ has variance smaller or equal
to Z.

With same definitions and notations as Proposition 4.1 and |C| random
variables Y

′

1 , Y
′

2 , . . . Y
′

|C| such that

• E
{
Y

′

i

}
= E {Yi};

• Var
{
Y

′

i

}
≤ Var {Yi};

• Y
′

i is s-independent of U , for i, i = 1, . . . , |C|,

the random variable Z
′

Z
′

= QC +QC

i=|C|∑

i=1

1(U∈Ji)Y
′

i (7)

has same expectation as Z and smaller or equal variance. More precisely, we
have

E
{
Z

′

}
= Q(G) = E {Y } (8)

Var
{
Z

′

}
≤ Var {Z} = (Q(G)−QC)Q(G) ≤ Q(G)Q(G) = Var {Y } . (9)

The previous proposition (proved in the Appendix) implies that the sample

mean Ẑ ′ based on Z ′ is more accurate than Ẑ. Next we present the process of
recursively applying the previous ideas to obtain an even more accurate estima-
tor.

Let Y ′
i , 1 ≤ i ≤ |C|, be as follows:

Y ′
i is





1 if Φ(Ei) = 0;
0 if Φ(∅) = 1;
Zi otherwise,

where Zi is a r.v. constructed from Yi by the same process as was used in
Proposition 4.1 to obtain a r.v. Z with same expectation as Y and smaller
variance. It is clear that the r.v. Y ′

i , 1 ≤ i ≤ |C|, verify the conditions of

Proposition 4.1. We can then apply this proposition to affirm that the r.v. Z
′

,

Z
′

= QC +QC

i=|C|∑

i=1

1(U∈Ji)Y
′

i

has same expectation as Y , smaller variance than Z and consequently than Y .
If for each i, 1 ≤ i ≤ |C|, Y ′

i is a constant value 1 or 0, the process terminates.
Otherwise, for all r.v. Y ′

i = Zi, we can apply the same idea recursively in order
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to construct a r.v that has same expectation and smaller variance. When all
resulting systems are either up or down independently of links state the process
terminates.

The recursive operator F () that associates to G = (E , p,Φ) the r.v. resulting
from the process described above to build an estimate of Q(G) can be expressed
as follows:

F (G) =





1 if E is a pathset ;
0 if E is a cutset;

QC(G) +QC(G)

|C(C(G))|∑

i=1

1(U(C(G))∈Ji)F (Gi) otherwise,
(10)

where

• C(G) = {l1, l2, . . . , l|C(G)|} is a fixed cutset in G;

• QC(G) is the probability that all components in C(G) are in failed state;

• (Ji)1≤i≤|C(G)| is a sequence of disjoint intervals whose union gives [0, 1],

the length of each Ji being Pr {Bi} /QC(G), where Bi denotes the event
that all components in set {l1, l2, . . . , li−1} are failed and component li is
operational;

• Gi = (G − l1 − . . .− li−1) /li;

• U(G) is a random variable with uniform distribution on [0, 1], s-independent
of all previously used r.v.

The resulting unbiased estimator of Q(G) is

F̂ (G) =
N∑

i=1

F (i)(G)/N (11)

where F (1)(G), . . . , F (N)(G) constitute a random sample of F (G). The variance
of this estimator is

Var
{
F̂ (G)

}
= Var {F (G)} /N. (12)

It is estimated by the unbiased estimator

V̂F =
N∑

i=1

(F (i)(G)− F̂ (G))2/((N − 1)N). (13)

(i) The exact value of the variance of the crude estimator Ŷ (1) isQ(G)Q(G)/N

(2). For the new estimator F̂ (G) (11), we know an upper bound of its
variance, that is by relation (9) of proposition (4.1) equal to (Q(G) −

QC(G))Q(G)/N . It results that an estimate of Q(G) by F̂ (G) is at least
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Q(G)/(Q(G) − QC(G)) times more efficient than an estimate by Ŷ . The
value Q(G)/(Q(G)−QC(G)) is then a lower bound of the efficiency of the
method. This bound, always greater than 1, depends on the chosen cutset
and it is maximal when we use the cutset which has the largest probability
QC(G) of having all of its components failed.

(ii) Suppose that we have to estimate a parameter Q(G′) where ΦG′(S) = 0 if
ΦG(S) = 0. Then, the cutset C(G) of G chosen to start the construction of
r.v. F (G) (10) is also a cutset of G′. Consequently, it can be used to start
the construction of r.v. F (G′) in order to estimate Q(G′). In this case, an

estimate of Q(G′) by F̂ (G′) is at least Q(G′)/(Q(G′)−QC(G)) times more
efficient than an estimate by the crude method.

4.2 Implementation

In this subsection we give the recursive algorithm that corresponds to the pro-
posed method when the cutset chosen at each step is the set of first links that
make Φ null.

The main procedure RV R (for Recursive Variance Reduction) consists of
a loop that calls N times the recursive procedure F and collects the returned
values to give an estimate of the desired measure Q(G).

Procedure RVR

Input: SBS G
Output: an estimate F̂ (G) of Q(G) and an estimate V̂ of its variance

1. Main loop: For i = 1, . . . , N F (i) = F (G).

2. Compute Q(G) estimate: F̂ (G) =
∑N

i=1 F
(i)/N .

3. Compute variance estimate: V̂F =
∑N

i=1 (F
(i) − F̂ (G))2/((N − 1)N).

Procedure F () embodies the proposed recursive variance reduction scheme.
When this procedure is called with parameters G, it gives a pseudo-random trial
of the variable F (G) defined in (10).

In step 1 of this procedure the end recursion conditions are checked. More
precisely, if Φ is 1 in the empty set return 0 (step 1.1) and if E is a cutset we
return 1 (step 1.2). When neither of these conditions are fulfilled, we can always
find at least one cutset of G. In step 2 the chosen cutset C is, for simplicity, the
first composed that make Φ null. In the third step, we compute the probability
that all components in C are failed.

Since the uniformly distributed value U will belong only to a single interval
Ji among all the possible Jk, 1 ≤ k ≤ |C| , we only make a recursive call for the
corresponding Gi. In step 4 an uniform r.v. is used to determine a Ji, and in
step 5 the corresponding graph and target set Ki are computed. Step 6 returns
the value for F (G) (after making a recursive call).

Procedure F (G)
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Input: network G,
Output: a random sample of r.v. F (G)

1. Check end recursion condition:
1.1. Check if G is always connected: If Φ(∅) = 1 return(0).
1.2. Check if the SBS is never a pathset: If Φ(E) = 0 return(1).

2. Find a cutset C : C = {l1, . . . , l|C|} the set of all links such that Φ(C) = 0 and
Φ({l1, . . . , li) = 1 for i < |C|.

3. Compute the probability that all components in C are failed: QC =
∏|C|

i=1 qli .
4. Sample U from Uniform(0, 1) and select Ji such that U ∈ Ji
5. Construct the corresponding network : Gi = (G− l1 − l2 − . . .− li−1)/li.
6. Recursive step: return(QC +QC × F (Gi)).

Let’s do a quick calculation of the complexity of this algorithm in terms of
evaluation of Φ. Step 1.1 and 1.2 is done in O(1) time. Steps 2, 3 and 4 are
clearly O(|E|). Step 5, the computation of Gi, takes O(1). Step 6 is the recursive
call, which calls F () for a single subgraph Gi. Then the added complexity of all
operations in the body of F () previous to the recursive call is O(|E|). As the
recursion depth is bounded by |E| (because at each recursive step the number
of links of the considered is diminished at least by one), we have that the total
complexity of a call to F (G) is O(|E|2).
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Appendix

Proof of Proposition 4.1.

(a) Since AC and Bi, 1 ≤ i ≤ |C|, are collectively exhaustive and mutually
exclusive, the total expectation theorem [2] gives

Q(G) = E {Y } = QCE {Y |AC}+

i=|C|∑

i=1

Pr {Bi}E {Y |Bi} .

Since Pr {Y = 0|AC} = 0, we obtain E {Y |AC} = 1 and it results that

E {Y } = QC +QC

i=|C|∑

i=1

Pr {Bi}

QC

E {Y |Bi}

= QC +QC

i=|C|∑

i=1

E
{
1(U∈Ji)

}
E {Y |Bi} .

Since U is s-independent of Yi, for any i, we obtain

E {Y } = QC +QCE





i=|C|∑

i=1

1(U∈Ji)Yi



 = E {Z} . (14)

(b) The variance of Z is

Var {Z} = QC
2
Var





i=|C|∑

i=1

1(U∈Ji)Yi



 .

Since

i=|C|∑

i=1

1(U∈Ji)Yi is a Bernoulli r.v. we have

Var {Z} = QC
2
E





i=|C|∑

i=1

1(U∈Ji)Yi






1− E





i=|C|∑

i=1

1(U∈Ji)Yi






 . (15)

By (14) we have

E





i=|C|∑

i=1

1(U∈Ji)Yi



 =

E {Y } −QC

1−QC
=

Q(G)−QC

1−QC
.

By replacing in (15), we obtain

Var {Z} = (Q(G)−QC)Q(G) ≤ Q(G)Q(G) = Var {Y } . (16)
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Proof of Proposition 4.1.

(a) Since E
{
Y

′

i

}
= E {Yi} for each i, 1 ≤ i ≤ |C|, we obtain E

{
Z

′

}
= E {Z}.

(b) We have

Var
{
Z

′

}
−Var {Z} = QC

2
(

i=|C|∑

i=1

(Var
{
1(U∈Ji)Y

′

i

}
−Var

{
1(U∈Ji)Yi

}
)

+ 2
∑

1≤i<j≤|C|

(Cov
{
1(U∈Ji)Y

′

i ,1(U∈Jj)Y
′

j

}

− Cov
{
1(U∈Ji)Yi,1(U∈Jj)Yj

}
)).

It suffices to show that for any i,

Var
{
1(U∈Ji)Y

′

i

}
≤ Var

{
1(U∈Ji)Yi

}
(17)

and

Cov
{
1(U∈Ji)Y

′

i ,1(U∈Jj)Y
′

j

}
= Cov

{
1(U∈Ji)Yi,1(U∈Jj)Yj

}
. (18)

As by hypothesis Var
{
Y

′

i

}
≤ Var {Yi} and E

{
Y

′

i

}
= E {Yi} we have

E
{
Y

′

i

2
}
≤ E

{
Y 2
i

}
. (19)

By the independence between r.v. U and Y
′

i and relation (19) we obtain

E
{
12
(U∈Ji)

Y
′

i

2
}
= E

{
12
(U∈Ji)

}
E
{
Y

′

i

2
}
≤ E

{
12
(U∈Ji)

}
E
{
Y 2
i

}
. (20)

Since r.v. Y
′

i and Yi have same expectation we obtain

E
{
1(U∈Ji)

}2
E
{
Y

′

i

}2

= E
{
1(U∈Ji)

}2
E {Yi}

2
. (21)

Finally relations (20) and (21) imply (17). It remains to prove relation
(18). Since, for i 6= j,

Pr
{
1(U∈Ji)1(U∈Jj) = 1

}
= 0

we have

E
{
1(U∈Ji)1(U∈Jj)Y

′

i Y
′

j

}
= E

{
1(U∈Ji)1(U∈Jj)YiYj

}
= 0. (22)
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By using independence between U and each Y
′

i , for i = 1, . . . , |C|, we
obtain

E
{
1(U∈Ji)Y

′

i

}
E
{
1(U∈Jj)Y

′

j

}
= E

{
1(U∈Ji)

}
E
{
Y

′

i

}
E
{
1(U∈Jj)

}
E
{
Y

′

j

}
.

(23)

In relation (23), if we replace E
{
Y

′

k

}
by E {Yk} for k = i, j we have

E
{
1(U∈Ji)

}
E
{
Y

′

i

}
E
{
1(U∈Jj)

}
E
{
Y

′

j

}
= E

{
1(U∈Ji)

}
E {Yi}E

{
1(U∈Jj)

}
E {Yj} .

(24)
Finally by independence between U and r.v. Yi, for i = 1, . . . , |C|, we
obtain

E
{
1(U∈Ji)Y

′

i

}
E
{
1(U∈Jj)Y

′

j

}
= E

{
1(U∈Ji)

}
E {Yi}E

{
1(U∈Jj)

}
E {Yj}

= E
{
1(U∈Ji)Yi

}
E
{
1(U∈Jj)Yj

}
.

The last result and relation (22) imply (18).
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