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Nash Equilibrium in Evolutionary Competitive Models

of Firms and Workers under External Regulation
Elvio Accinelli, Bruno Bazzano, Franco Robledo, Pablo Romero

Facultad de Ingenierı́a. Universidad de la República.

Julio Herrera y Reissig 565, PC 11300. Montevideo, Uruguay.

Abstract

The object of this paper is to study the labor market using evolutionary game

theory as a framework. The entities of this competitive model are firms and work-

ers, with and without external regulation. Firms can either innovate or not, while

workers can either be skilled or not. Under the most simple model, called normal

model, the economy rests in a poverty trap, where workers are not skilled and

firms are not innovative. This Nash equilibria is stable even when both entities

follow the optimum strategy in an on-off fashion. This fact suggests the need of

an external agent that promotes the economy in order not to follow in a poverty

trap.

Therefore, an evolutionary competitive model is introduced, where an external

regulator provides loans to encourage workers to be skilled and innovative firms.

This model includes poverty traps but another Nash equilibria, where firms and

workers are jointly innovative and skilled.

The external regulator, in a three-phase process (loans, taxes and inactivity)

achieves a common wealth, with a prosperous economy, with innovative firms

and skilled workers.

Keywords

Poverty Trap; External Regulator; Nash Equilibrium; Replicator Dynamics; Stochas-

tic Dynamics

1 Introduction

Poverty is a highly complex phenomenon, defined by multiple factors. This work

is focused on poverty as a result of a rational answer from economic agents in a
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downturn. In other words, the decisions ruled by the rest of the economy force a

rational agent to conduct an inefficient activity in order to maximize its gain, or

equivalently, reduce its losses. This approach can be formally studied in a game-

theoretic framework. Specifically, we are interested in the dynamic behavior of

different agents, so this paper will consider evolutionary game theory. The goal is

to mathematically understand and fully characterize poverty traps, find alternative

global optimum in the overall strategy-space and promote the economy to reach

this global optimum.

The essential contribution of this paper is the introduction of an external reg-

ulator that avoids firms and workers to evolve to a poverty trap. The external reg-

ulator is able to define both incentive and tax policies. The successful procedure

works in three stages. In the first stage, the regulator provides grants to inno-

vative firms. As a consequence, non-innovative firms are encouraged to change

their strategy. The means for the success is to incentive workers to educate and

train in order to start innovative jobs with top-technology, while firms invest in

technology and awards to trained workers. Once a “critical mass” of innovative

firms and trained workers is achieved, such that the economy will not turn back

to a poverty trap, the regulator introduces a tax policy. Its goal is to perceive a

return enough to cancel the debt inherited from the first stage. Once the goal is

reached, the action of the regulator ceases, and the economy keeps by itself in

a joint innovation/modernization state, efficient from both aspects: incomes and

stability under perturbations.

More specifically, the contributions of this work are summarized in the fol-

lowing items:

• The definition of a non-cooperative network game between firms and work-

ers, where its rules are inspired in real-life economics. The game is an

extension, inspired in prior works [3, 1, 2].

• The expected dynamic evolution of the game using an intuitive fluid limit.

• A stochastic process that captures the evolution when the population is infi-

nite.

• A full analysis of rest points and Nash equilibrium of the previous games,

including both pure strategies and mixtures. This point includes a full char-

acterization of poverty traps, and the fact that the economy evolves to the

poverty trap under this model.
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• An extended game with a new player, an External Regulator, where their

strategies involve taxes, loans or inactivity.

• A three-phase dynamic strategy from the External Regulator, that forces the

system to escape from the poverty trap and achieve a Pareto-efficient Nash

equilibria. This is a product of the future work predicted in [2].

• Numerical results that highlight the matching between the stochastic pro-

cess and fluid limit model when the population size grows, and the effec-

tiveness of the External Regulator under different scenarios. These results

are in harmony with the underlying theory here developed for the specific

game under study.

This article is structured in the following manner. Section 2 includes the re-

lated terminology coming from economic game theory to obtain mathematical

models of interaction between firms and workers. Classical propositions from the

area are cited, including authoritative references. Additionally, previous works

in poverty traps is discussed, that present an economic but an evolutionary game

theory approach.

Section 3 formally presents the mathematical models. A competitive model

between firms and workers is introduced, with and without external action. Those

games in normal form and evolutionary stochastic processes are analyzed, such as

deterministic dynamics that tend to the stochastic process for infinite populations.

A brief numerical analysis is included in Section 5. They highlight the har-

mony between the theoretical predictions and simulations, carried out using clas-

sical Runge Kutta to solve ordinary differential equations from the models. Con-

cluding remarks and trends for future work are presented in Section 6.
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2 Background

In this section we outline the terminology and classical results that support the

models developed in this article. Subsection 2.1 and 2.2 present key concepts

coming from economical theory and evolutionary game theory, respectively.

2.1 Economical Theory

In [4], the authors provide a definition for poverty trap, which we consider an

excellent point of departure.

Definition 2.1 (Poverty Trap) A poverty trap is any self-reinforcing mechanism

that endures poverty.

Poverty trap is aligned with the conception that in certain circumstances poverty

is far beyond the control of its economic agents. This is in contrast with the idea

that poverty as a result of non-proactivity. The authors term “poverty circles” as

a recurrent vice faced in several economies, strictly related with the reinforcing

of poverty traps. The authors present a first non-cooperative model between firms

and workers where a poverty trap is identified. Starting from a non-innovative

economy, innovative agents cannot support their strategy, since their incomes are

discouraging. The main characteristic of this model is that the poverty trap is a

Nash equilibria, stable in an evolutionary viewpoint and Pareto-inefficient. This

model has been further extended in [1, 2]. These works add relevant economical

parameters and propose the introduction of an external regulator as a future work.

The aim of this paper is precisely the introduction of an external regulator, in order

to tackle the poverty trap.

Poverty traps have been recognized in different scales and contexts. A de-

rived concept from such different scales is fractal poverty traps, introduced in [5].

There, the authors present an informal theory where multiple dynamic equilibria

occur simultaneously in different scales. They assure that there is no equilibrium

under efficient or even high level of operation. On the contrary, all scales operate

on a low or inefficient level. The dynamic analysis is based on growth economic

models. In the following paragraphs, we briefly comment these dynamic schemes.

In growth models a certain economic variable x associated with wealth is stud-

ied, such as income, expenses or capital. The dynamic evolution xt of the eco-

nomic variable is studied, assuming a discrete-time model t ∈ N
+. A functional
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Figure 1: Resulting Dynamics in a Growth Model

relation between xt+1 = F (xt) is called growth function. A stationary state is a

fixed point α = F (α) of the growth function. Such state will be stable whenever

a small perturbation ǫ from the fixed point α (i.e. x0 = α + ǫ) does not affect the

limit xt
t−→ α. A formal definition of stability is provided in the book [9].

In global terms, if the growth function is a contraction mapping in a whole

Banach space F : S → S, Banach fixed-point theorem will guarantee the conver-

gence to the unique fixed point α ∈ S, no matter the initial condition x0 ∈ S. In

that case α is globally stable in the growth model. Local stability is assured if F
is a contraction near a fixed point α [6].

Figure 1 shows a pictorial example of growth function with two stable and

one unstable fixed points. The lowest stable point xP is a poverty trap, while

the highest xE is an efficient equilibria. Between them, we can find an unstable

fixed point xC , such that the evolution converges to it whenever x0 ≥ xC , but the

evolution converges to xP if x0 < xC . Two sample trajectories that rest in the

poverty trap xP are represented in blue, while two other trajectories that tend to

the efficient equilibria xE are represented in red.
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2.2 Evolutionary Game Theory:

Normal Games and Nash Equilibria

We will follow the terminology from the book [13], which we consider an excel-

lent point of departure to explore the world of evolutionary game theory.

We will focus on multi-player non-cooperative games in normal form, and

the dynamic selection associated to them. Let I = {1, . . . , n} be the player-

set. Each player i has a finite set of pure strategies Si = {1, 2, . . . ,mi}, being

mi ≥ 2. The strategy selection of all players can be summarized in a vector

s = (s1, s2, . . . , sn), with si ∈ Si for all i ∈ {1, . . . , n}. The space of pure

strategies is the Cartesian product of individual strategies S =
∏

i Si, so s ∈ S .

Each player has an income function for pure strategies. Such function de-

fines a preference for player i to strategy si, given that the other players choose

other pure strategies. The income function for pure-strategies from player i is

πi : S → R. These functions are grouped to define the income function for pure

strategies π : S → R
n that assigns an income π(s) = (π1(s), π2(s), . . . , πn(s))

for each pure strategy s ∈ S . A game G in its normal form is defined by the tern

G = (I,S, π).

Now, we will consider mixed strategies. The mixed strategy for player i is

a probability distribution over the set of pure strategies Si. We will store that

distribution in a stochastic vector xi = (xi1, xi2, . . . , ximi
). Therefore, xik ∈ [0, 1]

is the probability that player i chooses pure strategy k.

The simplex of mixture strategies for player i, denoted by ∆i, is the set of all

possible mixture strategies:

∆i = {xi ∈ R
mi :

mi
∑

k=1

xik = 1, xik ≥ 0, ∀k} (1)

Pure strategies from player i are the vertices, or extremal set, of ∆i. Mixture

strategies are the convex hull of pure strategies, represented by the canonic vectors

e1i = (1, 0, 0, . . . , 0), e2i = (0, 1, 0, . . . , 0),..eimi
= (0, 0, . . . , 1):

xi =

mi
∑

k=1

xike
k
i (2)

The set of all mixture strategies of all players is expressed in a vector, x, called

the profile of mixture strategies. Specifically, x = (x1, x2, . . . , xn) is a vector from
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the space of mixture strategies from the game Θ =
∏

i ∆i.

The following notation will be useful, where z = (xi, y−i) ∈ Θ is defined by

zi = xi and zj = yj for all j 6= i. This vector represents the profile of mixture

strategies, where player i applies mixture strategy xi but all other players apply

strategy y ∈ Θ. We are able to define the expected incomes of all players. The

definition assumes the selection events from different players are independent.

Given a profile of pure strategies s = (s1, s2, . . . , sn) ∈ S , the probability to

select s given a profile of mixture strategies x ∈ Θ is P (s) =
∏n

i=1 xisi . The

expected income of player i for the profile x ∈ Θ is:

ui(x) =
∑

s∈S

P (s)πi(s) (3)

The set of expected incomes from all player can be summarized in a function

called expected incomes of the game. This function is defined by u : Θ → R
n,

such that u(x) = (u1(x), u2(x), . . . , un(x)).
Given a profile of strategies y ∈ Θ, the best answer for player i is the one

with the best income. The correspondence of best answer in pure strategies is

βi : Θ → Si:

βi(y) = {h ∈ Si : ui(e
h
i , y−i) ≥ ui(e

k
i , y−i) ∀k ∈ Si} (4)

Analogously, the correspondence of best answer in mixture strategies is β̃ :
Θ → ∆i such that:

β̃i(y) = {xi ∈ ∆i : ui(xi, y−i) ≥ ui(zi, y−i) ∀zi ∈ ∆i} (5)

It turns to be useful to group those best answers, in both pure and mixture

strategies, in a level of games. The correspondences are β(y) =
∏

i βi(y) ⊂ S
and β̃(y) =

∏

i β̃i(y) ⊂ Θ respectively.

We are in conditions to define the key concept from non-cooperative game

theory, to know, Nash Equilibria.

Definition 2.2 (Nash Equilibria) A profile of mixture strategies x ∈ Θ is a Nash

equilibria if and only if x ∈ β̃(x).

In words, a Nash equilibria is met whenever all players are simultaneously

using one of their best answers to the strategies of the other players. In [11], Nash

formally proves that the set of Nash equilibrium is nonempty for any finite game
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G. A Nash equilibria is strict if the inequalities from the definition of best answers

hold strictly. This means that players choose a strategy profile with a strictly large

income that any other alternative.

2.3 Evolutionary Stable Equilibrium

The concept of evolutionary stable equilibrium is introduced in [10]. The idea

comes from symmetric games between two players (i.e. where two players have

identical set of pure strategies). Informally, a “resident strategy” x ∈ Θ is evo-

lutionary stable if after an arbitrary small perturbation y ∈ Θ, the post-mutation

profile w = x(1− ǫ) + ǫy has a worse result than the resident profile (in terms of

expected incomes). The idea can be extended to several players with different set

of pure strategies.

Definition 2.3 (Evolutionary Stable Equilibria ESE) The profile of mixture strate-

gies x ∈ Θ is an evolutionary stable equilibria iff for each y 6= x ∈ Θ there exists

ǫy ∈ (0, 1) such that

ui(xi, w−i) > ui(yi, w−i) for some i ∈ I,

for all ǫ ∈ (0, ǫy], being w = x(1− ǫ) + yǫ

Parameter ǫy is called invasion barrier mutation y, since it states the size where

the mutation is not enough to move the resident strategy.

It is worth to notice that the inequality is not required for all i ∈ I, but only

for some i ∈ I. However, the following proposition holds even for this weak

definition:

Proposition 2.4 The profile of mixture strategies x ∈ Θ is ESE if and only if x is

a strictly Nash equilibria.

An ESE discards all Nash equilibria but the strict one.

2.4 General Dynamic Selection

Let us assume an infinite population that are scheduled to choose a certain strategy

during their lifetimes. These individuals are grouped by class, so each player-class

i ∈ I will have a certain number of individuals. Among those classes, individuals
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are divided into sub-populations h ∈ Si associated with pure strategies from each

player. The population state in time t is x(t) = (x1(t), . . . , xn(t)) ∈ Θ.

The population state will be governed by a system of first-order ordinary dif-

ferential equations (ODEs). Let us call dynamic selection to a system of ODEs.

For each player-class i ∈ I and subpopulation h ∈ Si we get that:

ẋih(t) = xih(t)qih(x) ∀i ∈ I, h ∈ Si (6)

Functions qih : Θ → R, called rate functions. Rate functions must be Lips-

chitz in some open set X ⊂ R
m such that Θ ⊂ X , with m =

∑

i mi. They are

grouped by player-class and population level, qi(x) = (qi1(x), qi2(x), . . . qimi
(x)),

where i ∈ I and q(x) = (q1(x), q2(x), . . . , qn(x)) respectively.

Rate functions share certain properties, known as regularity, income mono-

tonicity and positiveness:

Definition 2.5 A rate function q(x) is regular iff qi(x) · xi = 0 for all x ∈ Θ,

i ∈ I.

Regularity implies that the population size of different player-classes hold con-

stant, since
∑

h ẋih = 0.

Definition 2.6 A rate function q(x) verifies income monotonicity if the following

equivalence holdS for all i ∈ I, x ∈ Θ and h, k ∈ Si:

ui(e
h
i , x−i) > ui(e

k
i , x−i) ⇔ qih(x) > qik(x)

Income monotonicity implies that if for player-class i strategy h ∈ Si has

higher expected income than other strategy k ∈ Si, then subpopulation h has

higher rate than sub-population k.

Definition 2.7 A rate function q(x) is positive in the incomes iff the following

equality holds for all i ∈ I, x ∈ Θ y h ∈ Si:

sg[qih(x)] = sg[ui(e
h
i , x−i)− ui(x)],

The last property implies that if a certain player-class i gets higher expected in-

come choosing strategy h than the current profile x, then the rate function for

sub-population h must be positive. As a consequence, sub-population h will be

increased with time. The expected income for player i given the current pro-

file x is an average of the expected incomes for all pure strategies, ui(x) =
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∑

k xikui(e
k
i , x−i). An alternative way to express this property is that pure strate-

gies that have incomes above (below) the average must have positive (negative)

rates.

There exist positive rate functions that are not monotonous in the incomes.

However, in dynamic selection with two strategies per player-class (mi = 2 for

all i ∈ I) monotonicity and positiveness are equivalent.

Proposition 2.8 In a dynamic selection with two players, a regular rate function

q(x) is monotonous in the incomes if and only if its is positive in the incomes.

Proposition 2.8 can be found in [13].

3 Competitive Model between Firms and Workers

3.1 Game in Normal Form

In the game in normal form G = {I,S, π} players are firms and workers: I =
{W,F}, and S represents the set of pure strategies. Firms and workers interact

in a labor market. They must decide the optimum profile in terms of their incomes.

Strategies from workers are to get skills or not. A worker is skilled when he

invests in specialized education in order to access to qualified jobs in innovative

firms. Another option is not to invest in education, refusing the possibility to

access to qualified jobs. A skilled worker must have a continuous effort in spe-

cialized education. He can abandon this strategy and to be a non-skilled worker.

These strategies are denoted by SW = {S,NS}, where the acronyms stand for

Skilled Worker and Non-Skilled Worker.

Analogously, firms have two strategies. They can either be innovative or not.

In the former, firms invest in technology and are benefited from skilled workers,

while in the latter, firms do not invest in technology and hires non-skilled workers.

Innovative firms are in the fore-front, and they can choose to abandon the tech-

nological career at any moment. These strategies are denoted by SF = {I,NI},

where the acronyms stand for Innovative Firm and Non-Innovative Firm.

Let us define the incomes for each scenario. The array of all possible pure

strategies are {(S, I), (NS, I), (S,NI), (NS,NI)}. Denote πW (·, ·) and πF (·, ·)
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the incomes from firms and workers, respectively. They depend on economical

parameters defined as follows.

1. Skilled-worker (S):

• s̄: This is the basic salary perceived by a skilled worker, no matter

whether the firm is innovative (I) or not (NI).

• p̄: This is the bonus perceived by a worker when it is hired by an

innovative firm (I).

• CE: This is the cost of a worker to acquire knowledge and to be up-

dated.

2. Non-skilled worker (NS):

• s: This is the basic salary perceived by a skilled worker, no matter

whether the firm is innovative (I) or not (NI).

• p: This is the bonus perceived by a worker when it is hired by an

innovative firm (I). This bonus is lower for non-skilled workers in

relation with skilled ones (p̄ > p).

3. Innovative Firm (I):

• BI(S): This is the gain of an innovative firm (I) when a skilled worker

(S) is hired.

• BI(NS): This is the gain of an innovative firm (I) when a non-skilled

worker (NS) is hired.

• CI: This is the cost in technology in order to be an innovative firm.

4. Non-Innovative Firm (NI):

• BNI(S): This is the gain of a non-innovative firm (NI) when a skilled

worker (S) is hired.

• BNI(NS): This is the gain of a non-innovative firm (NI) when a non-

skilled worker (NS) is hired.
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Innovative firms offer bonus for both skilled and non-skilled workers. On the

other hand, non-innovative firms do not have this incentive policy. In order to

reduce the number of parameters involved in the model, costs are perceived for

skilled workers and innovative firms exclusively. They can be understood as the

differential cost between skilled and non-skilled, or between an innovate firm and

a non-innovative one.

The global incomes can be expressed as a function of the previous parameters.

This is performed for each pair of strategies of firms and workers. Thus, we

define the incomes for pure strategies from workers and firms respectively as πW :
SW × SF → R and πF : SW × SF → R.

Incomes from Workers:

πW (S, I) = s̄+ p̄− CE

πW (S,NI) = s̄− CE

πW (NS, I) = s+ p

πW (NS,NI) = s

Incomes from Firms:

πF (S, I) = BI(S)− (s̄+ p̄)− CI

πF (S,NI) = BNI(S)− s̄

πF (NS, I) = BI(NS)− (s+ p)− CI

πF (NS,NI) = BNI(NS)− s

The incomes for pure strategies can be presented as usual in a bi-matrix:

I NI

S [s̄+ p̄− CE] [BI(S)− (s̄+ p̄)− CI] [s̄− CE] [BNI(S)− s̄]
NS [s+ p] [BI(NS)− (s+ p)− CI] [s] [BNI(NS)− s]

12



The parameters respect certain inequalities based on economic arguments.

These relations are called Strategic Complements. They were also present in prior

works by Accinelli et al. [1, 2]. We will further extend those works:

• The benefit from a skilled worker (S) hired by an innovative firm (I) is

higher than a non-skilled worker:

s̄+ p̄− CE > s+ p (7)

• The benefit from a non-skilled worker (NS) hired by a non-innovative firm

(NI) is higher than a skilled worker:

s > s̄− CE (8)

• The benefit from an innovative firm (I) is higher than a non-innovative firm

(NI) when a skilled worker (S) is hired:

BI(S)− p̄− CI > BNI(S) (9)

• The benefit from a non-innovative firm (NI) is higher than an innovative

firm (I) when a non-skilled worker (NS) is hired:

BNI(NS) > BI(NS)− p− CI (10)

• The benefit from an innovative firm (I) that hires a skilled worker (S) is

higher than the benefit of a non-innovative firm (NI) that hires a non-skilled

worker (NS):

BI(S)− s̄− p̄− CI > BNI(NS)− s (11)

The five inequalities have a direct impact in Nash equilibrium on the game

under study.

3.1.1 Nash Equilibrium

Nash equilibrium under pure strategies are found studying the best responses to

pure strategies: βW (sF ), with sF ∈ SF and βF (sW ) with sW ∈ SW .
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From (7) and (8):

βW (I) = {S}
βW (NI) = {NS}

From (9) and (10):

βF (S) = {I}
βF (NS) = {NI}

We conclude that ΘNE
1 = {S, I} and ΘNE

2 = {NS,NI} are Nash equilib-

rium. Now we look for a mixed Nash equilibria. Players are assumed to follow

mixture strategies x = (xS, 1− xS) ∈ ∆W and y = (yI , 1− yI) ∈ ∆F . First, we

find the expected incomes:

uW (x, y) = xS [yIπW (S, I) + (1− yI)πW (S,NI)] +

(1− xS) [yIπW (NS, I) + (1− yI)πW (NS,NI)]

uF (x, y) = yI [xSπF (S, I) + (1− xS)πF (NS, I)] +

(1− yI) [xSπF (S,NI) + (1− xS)πF (NS,NI)]

We will state the following equalities, that force players to be indifferent to

change their mixture strategies and hence to result in a mixed Nash equilibria

uW (eS, y) = uW (eNS, y) (12)

uF (x, e
I) = uF (x, e

NI) (13)

From the previous system of equations the following expression holds for the

mixed Nash equilibria ΘNE
3 = {x∗, y∗}:
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x∗
S =

BI(NS)− BNI(NS)− p− CI

BI(NS)− BI(S) + BNI(S)− BNI(NS) + p̄− p
(14)

y∗I =
CE − s̄+ s

p̄− p
(15)

Since the mixture strategy is a probability, x∗
S ∈ [0, 1] and y∗I ∈ [0, 1]. From In-

equality (10), the numerator of Equation (14) is negative. Using Inequality (9), the

denominator in (14) is strictly lower than the numerator. Therefore, 0 < x∗
S < 1.

Analogously, from the definition of bonus p̄ and p, the denominator from Equa-

tion (15) is positive. Using (8) we know that the denominator from Equation (15)

is non-negative. Finally, from Equation (7) we know that the denominator is

higher than the numerator in (15). Therefore, 0 < y∗I < 1.

As a consequence, we get two Nash equilibrium in pure strategies: ΘNE
1 =

{S, I}, ΘNE
2 = {NS,NI}, and one Nash equilibria in mixture strategies: ΘNE

3 =
{(x∗

S, 1− x∗
S), (y

∗
I , 1− y∗I )}

3.1.2 Poverty Trap

In this paragraph we will show that the strategy profile {NS,NI} behaves like a

poverty trap, in the sense that three conditions are met:

i) Players do not have incentives to move to another strategy.

ii) There is another equilibria where at least one of the players can have better

income and the other does not decrease the income.

iii) It is robust under mutations. In other words, it is not possible to escape from

this trap from small perturbations.

Since {NS,NI} is a Nash equilibria (see 3.1.1), the first condition is met.

Additionally, the Nash equilibria {NS,NI} is Pareto dominated by {S, I}:

πF (S, I) > πF (NS,NI) (16)

πW (S, I) > πW (NS,NI) (17)

Indeed, bonus are positive. Using (7) we get that s+ p > s, and consequently

s̄+ p̄−CE > s, which is equivalent to (16). Inequality (17) is equivalent to (11).
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Finally, to check the third condition we should study if {NS,NI} verifies

ESE. From Proposition 2.4, it suffices to prove that {NS,NI} is a strict Nash

equilibria. It is the case if the following inequalities hold:

uW (eNS, eNI) > uW (x, eNI) , ∀x ∈ ∆W : x 6= eNS (18)

uF (e
NS, eNI) > uW (eNS, y) , ∀y ∈ ∆F : y 6= eNI (19)

By definition: uW (x, eNI) = xS uW (eS, eNI) + (1 − xS) uW (eNS, eNI), and

an analogous expression holds for uF (e
NS, y). Inequalities (18) and (19) can be

re-written:

uW (eNS, eNI) > uW (eS, eNI) (20)

uF (e
NS, eNI) > uF (e

NS, eI) (21)

These inequalities hold, since they are equivalent to Strategic Complements (8)

and (10). As a conclusion, the strategy profile {NS,NI} verifies ESE, and be-

haves like a poverty trap.

3.2 Replicator Stochastic Process

We will present a stochastic process of population dynamics between the two

player-classes {W,F}, divided in sub-populations {S,NS} and {I,NI}.

The stochastic dynamics is governed by the concept of replication of success-

ful agents, an approach based on [13]. In this model, agents decide to check

their strategies from time to time, in a random and different fashion for each sub-

population. Once the agent decides to check its strategy, he chooses another agent

from his own class uniformly at random, and switches to that strategy only if

he considers that the contacted player is more successful than himself. A measure

of success is given in terms of the expected incomes perceived by different agents.

Here we will describe the elements that jointly compose stochastic processes

in sub-populations. First, both the firm and worker population sizes are defined

by NF y NW respectively. Their ratio is denoted by η = NF

NW

. In order to fix ideas,

let us assume η < 1.

Player-classes are divided in sub-populations. From now on, we will denote

stochastic processes in bold, while capital letters are reserved for random vectors.

The stochastic processes that provide the size of different sub-populations S, NS,

I and NI are:
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nS(ω, t) : Ω× R
+ → RW

nNS(ω, t) : Ω× R
+ → RW

nI(ω, t) : Ω× R
+ → RF

nNI(ω, t) : Ω× R
+ → RF

(22)

being RW = {0, 1, . . . , NW} ⊂ N and RF = {0, 1, . . . , NF} ⊂ N the range

of random variables 22.

Since the interest resides in the evolution of different sub-populations, a nor-

malization is useful:

xS(t) =
nS(t)

NW

xNS(t) =
nNS(t)

NW

yI(t) =
nI(t)

NF

yNI(t) =
nNI(t)

NF

being now GW =
{

0, 1
NW

, . . . , 1
}

⊂ [0, 1] and GF =
{

0, 1
NF

, . . . , 1
}

⊂ [0, 1]

the domain of these processes. The points depend only on NW , since 1
NF

= 1
η

1
NW

.

We can summarize the previous normalized processes in a vectorial stochastic

process X(ω, t) : Ω×R
+ → S, being S = G2

W ×G2
F ⊂ R

4 the state-space of the

vectorial process.

X(t) =









xS(t)
xNS(t)
yI(t)
yNI(t)









(23)

It is mandatory to define the transitions and their respective rates. Let us de-

note τA,B to transition from A ∈ S to B ∈ S:

1.

τS,NS =
1

NW









−1
1
0
0









(24)
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2.

τNS,S =
1

NW









1
−1
0
0









(25)

3.

τI,NI =
1

ηNW









0
0

−1
1









(26)

4.

τNI,I =
1

ηNW









0
0
1

−1









(27)

The respective rates respect the following conditions:

i) The revision of the strategies from individual agents are governed by inde-

pendent Poisson processes of rate r.

ii) Switchings are obtained by a division of the revision process into two parts,

with a Bernoulli variable with success p. Therefore, once the strategy is

under revision, the agent switches the strategy with probability p.

As a consequence, switchings follow a Poisson process, with rates p r. By

sum-rule in Poisson process, if there are n independent identical agents, the num-

ber of switchings is a Poisson process with rate n p r. Transition rates consider this

last observation. We will use the following notation: x = (xS(t),xNS(t)) ∈ G2
W

and y = (yI(t),yNI(t)) ∈ G2
F .

The transition rates between different states are functions q : S × S → R
+.

We define q(τ,X) as the transition rate between states X ∈ S and X + τ ∈ S.

q(τS,NS,X(t)) = NW xS(t) pS→NS(x,y) rS(y) (28)

q(τNS,S,X(t)) = NW xNS(t) pNS→S(x,y) rNS(y) (29)

q(τI,NI ,X(t)) = NF yI(t) pI→NI(x,y) rI(x) (30)

q(τNI,I ,X(t)) = NF yNI(t) pNI→I(x,y) rNI(x) (31)
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Now, we define the value for revision rates: rS(y), rNS(y), rI(x) and rNI(x),
given x ∈ ∆W and y ∈ ∆F . In the replication model of successful agents, revi-

sion rates for different sub-populations will decrease as a function of the income

perceived by the agent. The aim is to model the fact that an agent that perceives a

high income will revise its strategy less regularly than another with lower income.

We will assume a linear model for rates, inspired in [13].

rS(y) = αW − βW uW (eS, y) (32)

rNS(y) = αW − βW uW (eNS, y) (33)

rI(x) = αF − βF uF (x, e
I) (34)

rNI(x) = αF − βF uF (x, e
NI) (35)

The following relations should be met in order to have non-negative and de-

creasing rates in the expected incomes:

βW , βF > 0 (36)

αW/βW ≥ uW (x, y), ∀x ∈ ∆W e y ∈ ∆F (37)

αF/βF ≥ uF (x, y), ∀x ∈ ∆W e y ∈ ∆F (38)

We must define switching probabilities, given that a strategy revision has been

performed. Let us consider first agents from sub-population S. They decide to

change the strategy to NS if they choose an agent from class NS and the expected

income from that agent is better:

pS→NS(x,y) = xNS Pr
(

ûW (eNS,y) > ûW (eS,y)
)

(39)

The other probabilities are found analogously:

pNS→S(x,y) = xS Pr
(

ûW (eS,y) > ûW (eNS,y)
)

(40)

pI→NI(x,y) = xNI Pr
(

ûF (x, e
NI) > ûF (x, e

I)
)

(41)

pNI→I(x,y) = xI Pr
(

ûF (x, e
I) > ûF (x, e

NI)
)

(42)

It suffices to define the probabilities of the event corresponding to a compar-

ison of expected incomes. The aim is to represent the fact that agents do not

know a priori the expected income perceived by the current population, nor the
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one from the contacted agent. This fact comes from different possible sources, as

incomplete, imperfect information of the expected incomes, agent preferences, or

estimation errors.

The expected incomes perceived by different agents will be different between

firms and workers, but in sub-populations. This is a simplification of real-life,

where different sub-populations might commit distinct errors when they estimate

expected incomes. Nevertheless, this simplified model includes the uncertainty

effect during the comparison of expected incomes, and the analysis can be fur-

ther generalized to models with more uncertainty parameters in the perception of

expected incomes.

If ε ∼ N (0, σ2
W ) are independent identically-distributed random variables, for

workers we will assume that:

ûW (x, y) = uW (x, y) + ε

While for firms, if ξ ∼ N (0, σ2
F ) are identically-distributed random variables:

ûF (x, y) = uF (x, y) + ξ

The probabilities of comparison for expected incomes are summarized in Equa-

tions (43):

Pr
(

ûW (eNS, y) > ûW (eS, y)
)

= Φ

(

uW (eNS − eS, y)√
2σW

)

= fW (y) (43)

Pr
(

ûW (eS, y) > ûW (eNS, y)
)

= Φ

(

uW (eS − eNS, y)√
2σW

)

= 1− fW (y)(44)

Pr
(

ûF (x, e
NI) > ûF (x, e

I)
)

= Φ

(

uF (x, e
NI − eI)√
2σF

)

= fF (x) (45)

Pr
(

ûF (x, e
I) > ûF (x, e

NI)
)

= Φ

(

uF (x, e
I − eNI)√
2σF

)

= 1− fF (x) (46)

Switching rates are fully characterized from Equations (43):

q(τS,NS,X(t)) = NW xS(t) xNS(t)
(

αW − βW uW (eS,y)
)

fW (y)

q(τNS,S,X(t)) = NW xS(t) xNS(t)
(

αW − βW uW (eNS,y)
)

(1− fW (y))

q(τI,NI ,X(t)) = ηNW yI(t) yNI(t)
(

αF − βF uF (x, e
I)
)

fF (x)

q(τNI,I ,X(t)) = ηNW yI(t) yNI(t)
(

αF − βF uF (x, e
NI)

)

(1− fF (x))
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Given such transitions and their rates, it is possible to directly simulate the

vectorial stochastic process, from an arbitrary starting point.

3.3 Replicator Dynamics

We will use non-bold symbols for deterministic functions. For instance, a deter-

ministic approach for process X(t) will be denoted by X(t).
The system of ordinary differential equations for the replicator dynamics is

a limit, for an infinite population, of the replicator stochastic process. In Sec-

tion 3.3.1 we obtain, starting from the stochastic process 23, the system of ODE

that is limit for an infinite population. Then, in Section 3.3.2 we study the main

properties of this system and its relation with the game. Finally, a convergence-

mode of the stochastic process to the solution of the system of ODE is proved in

Section 3.3.3.

3.3.1 System of ODE

As a first approach, we will present the flow-balance to find the system of ODEs

from replicator model for an infinite number of agents. This method is simple and

intuitive. The key is to consider transitions from infinite agents as a deterministic

fluid model.

An argument for the equivalence between stochastic fluid and deterministic

ones is that by Strong Law, rates for infinite populations converge almost surely

to the expected number of transitions in a given interval.

The balance equations are specified as follows:

d

dt
xS(t) =

∑

Input Flow(S)−
∑

Output Flow(S) (47)

d

dt
yI(t) =

∑

Input Flow(I)−
∑

Output Flow(I) (48)

Input flow in sub-population S are switchings fom agents in class NS (that

decide to switch their strategy). From 3.2, the normalized flow rate (normalized

with respect to population NW ) equals rNS(y) xS (1−xS) (1− fW (y)). The rate,

also normalized, corresponding to agents output from sub-population S equals

rS(y) xS (1− xS) fW (y). Combining previous flows, we can re-write the follow-

ing ODE:

ẋS = xS (1− xS) [rNS(y) (1− fW (y))− rS(y) fW (y)]
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From Equation (48) we observe that the input flow in sub-population I are

agents from NI , that decide to switch their strategy. The normalized rate with

respect to population NF equals rNI(x) yI (1− yI) (1− fF (x)). The output flow

given by agents from I that switch to NI , has rate rI(x) yI (1− yI) fF (x).
Combining the previous flows we get the following ODE:

ẏI = yI (1− yI) [rNI(x) (1− fF (x))− rI(x) fF (x)]

Sub-populations xNS and yNI are the complement of xS and yI respectively.

Therefore, we can find the former sub-populations as a function of the latter. The

system of ODE for the dynamic replicator under stochastic process 23 is denoted

by DR.

DR
{

ẋS = xS (1− xS) [rNS(y) (1− fW (y))− rS(y) fW (y)]
ẏI = yI (1− yI) [rNI(x) (1− fF (x))− rI(x) fF (x)]

We present a second approach to retrieve DR starting from the stochastic

process. The key idea is to re-write such process in its integral form, and then

to take limit when the population size NW grows to infinity in order to reach a

deterministic integral equation. This integral deterministic equation is precisely

the dynamic replicator ODE. We will denote X(t) the normalized process with

respect to the population sizes.

First, we need to define the drift vector fir each state v ∈ S.

Definition 3.1 (Drift) The drift of stochastic process {X(t)}t∈R+ ⊂ S is a func-

tion γ : S → R
4 such that:

γ(v) =
∑

v′ 6=v

(v′ − v) q(v, v′) (49)

Being q(v, v′) the transition rate from state v ∈ S to state v′ ∈ S. Next, we

use Definition 3.1 to write the normalized process from Section 3.2 in its integral

form.

X(t) = X0 +M(t) +

∫ t

0

γ(X(s))ds (50)

Equation (50) defines process M(t), and X0 is a starting point.

In Section 3.3.3 we prove the convergence in L1 space, uniform in compacts

of the stochastic process X(t) to function X(t), which is the solution of DR.
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Informally, we can think that if NW → ∞, the integral stochastic equation is

reduced to a deterministic integral equation, since M(t) is a Martingale that tends

to 0, and the drift tends to a deterministic function that is the vector-field of the

resulting system of ODE.

The deterministic integral equation that is the limit of the stochastic one for

infinite populations is:

X(t) = X0 +

∫ t

0

g(X(s))ds (51)

If Equation (51) is derived with respect to t, the system of ODE in its differ-

ential form is obtained:

DR
{

Ẋ(t) = g(X(t))
X(0) = X0

(52)

where the vector-field of the system of ODE is (for all X ∈ R
4):

g(X) = lim
NW→∞

γ(X)

We wish to determine the vector-field of DR for the stochastic process pre-

sented in Section 3.2. For that purpose we need to find its drift using Defini-

tion 3.1, together with rates and transitions of the previously mentioned process.

Taking X = (xS, xNS, yI , yNI)
T ∈ R

4.
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γ(X) =
∑

X′ 6=X

(X ′ −X) q(X,X ′)

= τS,NS q(τS,NS) + τNS,S q(τNS,S) +

τI,NI q(τI,NI) + τNI,I q(τNI,I)

=
q(τS,NS)

NW









−1
1
0
0









+
q(τNS,S)

NW









1
−1
0
0









+

q(τI,NI)

ηNW









0
0
−1
1









+
q(τNI,I)

ηNW









0
0
1
−1









=









xS xNS [ rNS(y)( 1− fW (y) )− rS(y)fW (y) ]
xS xNS [ rS(y)fW (y)− rS(y)( 1− fW (y) ) ]
yI yNI [ rNI(x)( 1− fF (x) )− rI(x)fF (x) ]
yI yNI [ rI(x)fF (x)− rNI(x)( 1− fF (x) ) ]









It is worth to remark that function γ : R4 → R
4 does not depend on NW .

Then, we get that g(X) = γ(X), for all X ∈ R
4. As a consequence, we reach the

expression for the vector-field of DR. We can express the replicator dynamics for

all components of the populations:

DR















ẋS(t) = xS xNS [ rNS(y)( 1− fW (y) )− rS(y)fW (y) ]
ẋNS(t) = xS xNS [ rS(y)fW (y)− rS(y)( 1− fW (y) ) ]
ẏI(t) = yI yNI [ rNI(x)( 1− fF (x) )− rI(x)fF (x) ]
ẏNI(t) = yI yNI [ rI(x)fF (x)− rNI(x)( 1− fF (x) ) ]

(53)

In order to simplify the numerical resolution of the ODE dynamic replicator,

we will reduce the dimension of the system to two. We must relate the unknowns

for all t ∈ R
+. Summing the first two components from (53) we see that ẋS(t) +

ẋNS(t) = 0. Since xS(0) + xNS(0) = 1, we get for all t ∈ R
+ that

xS(t) + xNS(t) = 1

Analogously,

yI(t) + yNI(t) = 1
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The previous relations allow us to take x = (xS(t), 1− xS(t)) and y =
(yI(t), 1− yI(t)). The equivalent two-dimensional system is:

(

ẋS(t)
ẏI(t)

)

=

(

xS(t) (1− xS(t)) [ rNS(y)( 1− fW (y) )− rS(y)fW (y) ]
yI(t) (1− yI(t)) [ rNI(x)( 1− fF (x) )− rI(x)fF (x) ]

)

(54)

The system is precisely the one obtained by a flow balance.

3.3.2 Properties of the System of ODE

The vector-field from Equation (53) is differentiable in R
4 hence Lipschitz con-

tinuous in the compact set [0, 1]4. By Picard’s Theorem (see for instance Section

8.3 in [9]), the existence and uniqueness of the solutions of DR is guaranteed.

Second, the growth rate from the replicator dynamics is both regular and

monotonous in the incomes (see 2.4). Regularity holds since we check in Sec-

tion 3.3.1 that the derivative of the sum of sub-populations of workers and firms

is null. Monotonicity in the incomes is based on finding the differences:

qW,S(X)− qW,NS(X) (55)

qF,I(X)− qF,NI(X) (56)

If the perceived income of a strategy is higher than another, their respective rate

functions verify the same relation. This is reflected from the sign of the differences

(55) and (56). We will verify those relations for sub-populations S and NS as an

example.

qW,S(X)− qW,NS(X) = xNS [ rNS(y)( 1− fW (y) )− rS(y)fW (y) ]−
xS [ rS(y)fW (y)− rS(y)( 1− fW (y) ) ]

= rNS(y)( 1− fW (y) )− rS(y)fW (y)

Let us assume that

uW (eS, y) > uW (eNS, y)

We can observe that from Definitions 43 and 32:
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1− fW (y) > fW (y)

rNS(y) > rS(y)

Then:

rNS(y)( 1− fW (y) ) > rS(y)fW (y)

Or equivalently:

qW,S(X) > qW,NS(X)

An identical calculation provides the equivalence between uF (x, e
I) > uF (x, e

NI)
and qF,I(X) > qF,NI(X). The monotonicity in the incomes is proved.

Using Proposition 2.8 and the fact that firms and workers have only two strate-

gies to choose, the rate function is both monotonous and positive in the incomes

as well (see Appendix A for a complete proof). As a consequence, the dynamics

rests in the assumptions of the following result:

Theorem 3.2 (Weibull 1997) A strict Nash equilibria is asymptotically stable in

each dynamic selection with a growth rate positive in the incomes.

In Section 3.1.2 we observe that the Nash equilibria called Poverty Trap is

strict. We can conclude that the point {xS = 0, yI = 0} is asymptotically stable

under the replicator dynamics. This motivates the study of its attraction set by

means of numerical analysis performed in Section 5.

An important property from DR is that Nash equilibrium obtained in Sec-

tion 3.1.1 are rest points of that set of ODE (a general analysis of this point can

be found in Chapter 5 of [13]). We will verify the last statement for each Nash

equilibria of the game.

Proposition 3.3 Equilibria ΘNE
1 = {S, I} is a rest point of DR.

Proof The strategy profile ΘNE
1 = {S, I} in normalized terms is represented by

xS = 1 and yI = 1. Replacing these values in (53): ẋS(t) = 0, ẏI(t) = 0. Then,

the first pure Nash equilibria is a rest point of DR.

�

Proposition 3.4 Equilibria ΘNE
2 = {NS,NI} is a rest point of DR.
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The proof is analogous to that of Proposition 3.3. �

Proposition 3.5 Equilibria ΘNE
3 = {(x∗

S, 1− x∗
S), (y

∗
I , 1− y∗I )} is a rest point of

DR.

Proof Combining Equations (14) and (15) for x∗
S and y∗I , it suffices to recall the

fact that the expected incomes respect Equations (12) and (13). From these con-

ditions, we get that:

fW ((y∗I , 1− y∗I )) = 1/2 (57)

fF ((x
∗
S, 1− x∗

S)) = 1/2 (58)

rS((y
∗
I , 1− y∗I )) = rNS((y

∗
I , 1− y∗I )) (59)

rI((x
∗
S, 1− x∗

S)) = rNI((x
∗
S, 1− x∗

S)) (60)

Replacing the previous conditions in Equation (53), we obtain that ẋS(t) = 0,

ẏI(t) = 0. Therefore, the mixed Nash equilibria is also a rest point of DR.

�

Remark It is worth to notice that there are another rest points of DR that are not

Nash equilibrium: {xS = 0, yI = 1} and {xS = 1, yI = 0}.

3.3.3 Convergence of the Replicator Stochastic Process

We analyze the convergence of the stochastic process to the solution of the system

DR. The main reason of this analysis is to provide a formal deduction of DR
using Drift.

The second reason is to formally justify that for large but finite populations,

the study of the stochastic replicator model by means of the deterministic model

is satisfactory.

The source of inspiration of the following result is prior works [7] and the

book [12], where similar processes are studied.

Theorem 3.6 The stochastic process X(t) from (23) converges in L1 norm and

uniformly on any compact set [0, T ], to X(t), the solution of the system (53).

lim
NW→∞

E

(

sup
t∈[0,T ]

‖X(t)−X(t)‖
)

= 0

being ‖ · ‖ the Euclidean norm.
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Proof The stochastic process is first presented in its integral form:

X(t) = X0 +M(t) +

∫ t

0

γ(X(s))ds (61)

Equation (61) plays the role of the definition of process M(t). The ODE can also

be represented in an integral form:

X(t) = X0 +

∫ t

0

g(X(s))ds (62)

Taking differences between (61) and (62), and adding Euclidean norm:

‖X(t)−X(t)‖ ≤ ‖M(t)‖+
∥

∥

∥

∥

∫ t

0

γ(X(s))− g(X(s))ds

∥

∥

∥

∥

(63)

‖X(t)−X(t)‖ ≤ ‖M(t)‖+
∫ t

0

‖γ(X(s))− g(X(s))‖ds (64)

From prior calculations provided in Section 3.3.1 we know that γ(v) = g(v), ∀v ∈
R

4. We also know from Section 3.3.2 that g(v) is Lipschitz. Therefore ‖g(v) −
g(w)‖ ≤ L ‖v − w‖ for all v, w ∈ [0, 1]4, being L ∈ R

+.

‖X(t)−X(t)‖ ≤ ‖M(t)‖+
∫ t

0

L‖X(s)−X(s)‖ds (65)

We define the random function f(s) = supt∈[0,s] ‖X(t) − X(t)‖. Inequal-

ity (65) also holds taking supreme with respect to t ∈ [0, T ]:

f(T ) ≤ sup
t∈[0,T ]

‖M(t)‖+
∫ T

0

L f(s)ds (66)

Taking expected values on both sides:

E(f(T )) ≤ E

(

sup
t∈[0,T ]

‖M(t)‖
)

+

∫ T

0

L E(f(s))ds (67)

We must bound the expected value of the supreme of ‖M(t)‖. For that pur-

pose, we will bound the square of the expected value and use Cauchy-Schwarz

inequality.
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E

(

sup
t∈[0,T ]

‖M(t)‖
)2

≤ E





[

sup
t∈[0,T ]

‖M(t)‖
]2



 (68)

≤ E

(

sup
t∈[0,T ]

‖M(t)‖2
)

(69)

Defining α : S → R
+ as:

α(v) =
∑

v′ 6=v

‖v′ − v‖2q(v, v′) (70)

In [7] the authors prove that M(t) is a martingale, and the following inequality:

E

(

sup
t∈[0,T ]

‖M(t)‖2
)

≤ 4 E

(∫ T

0

α(X(t))dt

)

(71)

Using Expressions (69) and (71) and exchanging integral with expected value

we get the following inequalities:

E

(

sup
t∈[0,T ]

‖M(t)‖
)

≤ 2

√

E

(∫ T

0

α(X(t))dt

)

(72)

≤ 2

√

∫ T

0

E[α(X(t))]dt (73)

The following bound for E[α(X(t)] is obtained in Appendix C:

E

(

sup
t∈[0,T ]

‖M(t)‖
)

≤ 2

√

c T

NW

, (74)

being c ∈ R
+. Returning to Inequality (67) and using (74):

E(f(T )) ≤ 2

√

c T

NW

+

∫ T

0

L E(f(s))ds (75)

Finally, from Inequality (75) Gronwall’s Lemma allow us to conclude that:
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E(f(T )) ≤ 2

√
c T eLT√
NW

(76)

Taking limit with NW → ∞, we lead to the result. �

Using Markov Inequality, the result can be expressed in probabilistic terms:

Pr

(

sup
t∈[0,T ]

‖X(t)−X(t)‖ < ǫ

)

≥ 1− 2

√
c T eLT√
NW ǫ

for any given ǫ ∈ R
+.

4 Competitive Model with External Regulator

We introduce a modification of the game G from Section 2.2. Now, there is an

external regulator that is capable of providing incentives and taxes to both firms

and workers. The goal of the regulator is to facilitate firms to be innovative and

workers to be skilled, in order to have a developed economy. In other words, the

regulator will try to avoid poverty traps in the economy.

4.1 Game in Normal Form

4.1.1 Definition

The game is denoted by GE = {I,S, πE}, where the supra-index E stands for

external regulation. The player-set I is precisely the one from game G defined in

Section 2.2, so are the strategies S . The incomes from pure strategies πE make

the difference of both games.

Details of the descriptions of strategies {S,NS} for workers W and {I,NI}
for firms F can be found in Section 2.2. We also consider the incomes from pure

strategies from that section, but additional parameters that determine taxes and

incentives.

1. Skilled Worker (S):

• mW : is the loan perceived by a skilled worker, hired either by an in-

novative (I) or non-innovative (NI) firm.
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• IW : is the tax of a skilled worker, hired either by an innovative (I) or

non-innovative (NI) firm..

2. Innovative Firm (I):

• mW :

is the loan perceived by an innovative firm, no matter the worker class

to be hired by this firm.

• IF : is the tax perceived by an innovative firm, no matter the worker

class to be hired by this firm.

As in the previous game, we can define the incomes for pure strategies, but now

taking into consideration taxes and incentives. The incomes for workers are πE
W :

SW × SF → R, while for firms πE
F : SW × SF → R.

Incomes for Workers:

πE
W (S, I) = s̄+ p̄− CE +mW − IW

πE
W (S,NI) = s̄− CE +mW − IW

πE
W (NS, I) = s+ p

πE
W (NS,NI) = s

Incomes for Firms:

πE
F (S, I) = BI(S)− (s̄+ p̄)− CI +mF − IF

πE
F (S,NI) = BNI(S)− s̄

πE
F (NS, I) = BI(NS)− (s+ p)− CI +mF − IF

πE
F (NS,NI) = BNI(NS)− s

Once defined the parameters for firms and workers, we can find Strategic Com-

plements as in Section 2.2. In the game GE we keep Constraints (7), (8), (9) and

(10) that were defined in the game G. Two intuitive relations for incentives will

be added.
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Specifically, an aggressive incentive policy will lead to the fact that is is irra-

tional to choose another strategy different from innovation and getting skills. In

terms of the game GE , this is the case where there is a single Nash equilibria of

pure strategies given by {S, I}. We are not interested in this case, since it requires

an intensive incentive policy. On the contrary, we are concerned with cases of

moderate incentives. The following conditions are added:

mW < s− s̄+ CE (77)

mF < BNI(NS)− BI(NS) + p+ CI (78)

As stated before, these conditions have a direct impact on Nash equilibrium of

the game GE .

4.1.2 Finding Nash Equilibrium

We will find pure Nash equilibrium first. For that purpose, we first obtain the

function for best response under pure strategies, BRW (sF ) with sF ∈ SF , and

BRF (sW ) with sW ∈ SW , using the incomes with external regulation.

From (7), (8) and (77), for workers we have that:

BRW (I) = {S}
BRW (NI) = {NS}

While using (9), (10) and (78), for firms:

BRF (S) = {I}
BRF (NS) = {NI}

Using the best response for pure strategies and the definition of Nash equilib-

rium, we conclude that ΘNE
1 = {S, I} and ΘNE

2 = {NS,NI}.

Now we will look for mixed Nash equilibrium. Again, we assume players

randomize their mixture strategies; hence their strategies will be x = (xS, 1 −
xS) ∈ ∆W y y = (yI , 1− yI) ∈ ∆F .

In order to find a mixed Nash equilibria we should find the expected incomes

from players. We will identify incomes with supra-index E:
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uE
W (x, y) = xS

[

yIπ
E
W (S, I) + (1− yI)π

E
W (S,NI)

]

+

(1− xS)
[

yIπ
E
W (NS, I) + (1− yI)π

E
W (NS,NI)

]

uE
F (x, y) = yI

[

xSπ
E
F (S, I) + (1− xS)π

E
F (NS, I)

]

+

(1− yI)
[

xSπ
E
F (S,NI) + (1− xS)π

E
F (NS,NI)

]

We will impose equalities that make players indifferent to choose other mix-

ture strategies and lead to mixed Nash equilibrium.

uE
W (eS, y) = uE

W (eNS, y) (79)

uE
F (x, e

I) = uE
F (x, e

NI) (80)

Solving the linear system (79) and (80), we determine the following expression

for the single mixed Nash equilibria for the game GE , ΘNE
3 = {xE∗, yE∗}.

xE∗
S =

BI(NS)− BNI(NS)− p− CI +mF − IF
BI(NS)− BI(S) + BNI(S)− BNI(NS) + p̄− p

(81)

yE∗
I =

CE − s̄+ s−mW + IW
p̄− p

(82)

Again, the mixed Nash equilibria must respect xE∗
S ∈ [0, 1] and yE∗

I ∈ [0, 1],
since they represent probabilities. The deduction is analogous to the ones from

Section 3.1.1, and they use Complementary Strategies (7), (8), (9) and (10) to-

gether with incentive constraints (4.1.1). We invite the reader to complete the

proof.

Summarizing, the competitive model between firms and workers with external

regulation has the following Nash equilibrium:

ΘNE
1 = {(1, 0), (1, 0)} (83)

ΘNE
2 = {(0, 1), (0, 1)} (84)

ΘNE
3 = {(xE∗

S , 1− xE∗
S ), (yE∗

I , 1− yE∗
I )} (85)
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4.2 Replication Stochastic Process

As in Section 3.2 we have finite population of firms and workers that follow suc-

cessful agents, and the stochastic process X(t) from that section 3.2 holds for the

current competitive model.

The new expected incomes perceived by agents force us to update transition

rates defined in (29), (30), (31) and (31), since both the revision rates and compar-

ison probabilities depend on such expected incomes. Therefore, with an adjust-

ment of the expected incomes the other definitions of rates and transitions hold,

and the process is fully characterized.

4.3 Replicator Dynamics

We will find the system of ODE of replicator dynamics for the competitive model

between firms and workers with external regulation, based on Section 3.3.1. The

derivation is completely analogous to 3.3.1, either by flow balance or drift.

On the other hand, in order to obtain the dynamic behavior of the external

regulator easily, we will introduce the following definition of the control vector

Φ. This is composed by both incentives (mW ,mF ) and taxes (IW , IF ).

Φ =









mW

mF

IW
IF









(86)

The control vector must respect Constraints (78) and (77) for incentives and

taxes. It is important to remark that the economy without external regulation

(model from Section 2.2) is precisely the case with Φ = 0. Furthermore, any

function that depends on the expected incomes will be a parametric function of Φ.

Now, we will find the system of ODE for the replicator dynamics with external

regulation explicitly as a function of Φ.

DRE

{

ẋS = xS (1− xS) [rNS(y,Φ) (1− fW (y,Φ))− rS(y,Φ) fW (y,Φ)]
ẏI = yI (1− yI) [rNI(x,Φ) (1− fF (x,Φ))− rI(x,Φ) fF (x,Φ)]

(87)

The function vector with unknowns is Z(t) ∈ R
2 such that:

Z(t) =

(

xS(t)
yI(t)

)
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The vector field, parametric in Φ, from (87), is F : R2 × R
4 → R

2

F (Z(t),Φ) =

(

xS (1− xS) [rNS(y,Φ) (1− fW (y,Φ))− rS(y,Φ) fW (y,Φ)]
yI (1− yI) [rNI(x,Φ) (1− fF (x,Φ))− rI(x,Φ) fF (x,Φ)]

)

Therefore, the system of ODE (87) can be written as follows:

DRE

{

Ż(t) = F (Z(t),Φ)
Z(0) = Z0

(88)

Another step needed to express the behavior from the external regulator is

to define, for DRE , the attraction region for the Nash equilibria with innovative

firms and skilled workers.

Before, let us consider denote the family of solutions for ODE (88), as ξ(t, Z0,Φ)
such that ∀Z0 ∈ [0, 1]2:

ξ(0, Z0,Φ) = Z0 (89)

d

dt
ξ(t, Z0,Φ) = F (ξ(t, Z0,Φ),Φ) (90)

The set A(Φ) ⊂ [0, 1]2 is the attraction region of ZS,I = (1, 1)T ∈ [0, 1]2 iff:

lim
t→∞

ξ(t, Z0,Φ) = ZS,I (91)

for all Z0 ∈ A(Φ). We are in position to announce the rules that the external

regulator will state in order to tend the economy to a Pareto-efficient equilibria.

The regulator will request at time t = 0 a loan to an external institution. In

t = 0 and using the loan, he will incentive both innovative firms and skilled

workers in a constant manner until ti > 0. Then, the regulator will stop incentives

and impose taxes to both firms and workers until tii > ti, in order to retrieve the

initial loan. Once time tii is reached, the activity of the external regulator ceases.

The regulator defines times ti, tii and the control parameters Φi and Φii for

each phase, as follows:

1. Loan stage: See Point D in Figure 2. It is chosen Φi = (mi
W ,mi

W , 0, 0)T

such that Z0 ∈ A(Φi). Observe that mi
W ,mi

W is found identifying the mixed

Nash equilibria (81) with starting point Z0.
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Figure 2: Dynamics under External Regulation

2. Tax Stage: See Point E in Figure 2. In time ti ∈ R
+ incentives are dis-

rupted. Point E is defined by:

ti = inf
t≥0

{

t ∈ R
+ : ξ(t, Z0,Φ

i) ∈ A(Φii)
}

+ δt (92)

The control vector for this stage is Φii = (0, 0, I iiW , I iiF )
T . The external

regulator is free to choose taxes. It is necessary to define also δt > 0, the

time that ensures the system to reach the attraction region A(Φii).
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3. Ending stage: See Point F in Figure 2. In time tii ∈ R
+ the external

regulator disappears from the system:

tii ∈ R
+ :

∫ tii

ti
I iiW xS + η I iiF yI dt =

∫ ti

0

mi
W xS + η mi

F yI dt (93)

With tii, the regulator collects exactly the loans offered during the first stage.

In this way we simplify the economic problem, since we do not add interest

rates. In this model we get that:

Prestamo(tii) = Recaudacion(tii) (94)
∫ ti

0

NW xS mi
W +NF yI m

i
Fdt =

∫ tii

ti
NW xS I iiW +NF yI I

ii
F dt(95)

∫ ti

0

mi
W xS + η mi

F yI dt =

∫ tii

ti
I iiW xS + η I iiF yI dt (96)

Summarizing, the control parameters for the three phases are:

Φ(t) =







Φi si, t ∈ [0, ti)
Φii si, t ∈ [ti, tii)
0 si, t ≥ tii

(97)

Finally, ODE (88) and control function (97) provide the complete dynamics

for the competitive model between firms and workers under external regulation.

5 Numerical Analysis

The evolution of firms and workers is numerically studied as a function of time,

with and without external regulation. We find attraction regions for both cases,

and find the gap between the stochastic process and the fluid model as a function

of the population size. The ODE has been numerically solved using Dormand

and Prince algorithm, a stable modification of classical fourth-order Runge Kutta,

with adaptive step [8].
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5.1 Model without regulation

We carried-out simulations from the dynamic model introduced in Section 3.2.

The goal is to analyze the gap for different population sizes with respect to the

deterministic dynamics.

The evolution strongly depends on the starting point in order to tend the Pareto

optimum equilibria (S, I) or the povert trap (NS,NI). Finally, the attraction re-

gion is numerically found for the deterministic model.

The economic parameters are presented in Table 1. They respect the Comple-

ment Strategies and constraints given by revision rates. A real-life scenario is a

line for future research.

Parameter Value

αW 1.50

βW 0.50

σW 0.10

s̄ 2.00

p̄ 1.00

CE 0.50

s 1.60

p 0.75

αF 1.00

βF 0.40

σF 0.05

BI(S) 4.50

BI(NS) 3.00

CI 0.40

BNI(S) 3.00

BNI(NS) 2.00

Table 1: Dynamic and Economic parameters

As a first case, we consider the starting point xS0 = 0.3 and yI0 = 0.6. Figures 3,4

and 5 present 10 independent runnings of the stochastic process with respective
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populations NF = 20, NF = 100 and NF = 1000, with ratio η = 0, 1. The reader

can appreciate that the economy converges to the poverty trap in the three cases.

The component yI(t) presents higher variability than xS(t). The cause is that

η = 0.1, so there are more workers than firms, and the behavior in workers is

closer than the one of firms to the asymptotic one.

We present three other cases with xS0 = 0.2 e yI0 = 0.85, where the evolution

tends to the Pareto-optimum equilibria (xS, yI) = (1, 1). .

Now, we present numerical solutions of the replicator system of ODE (54).

First, we provide deterministic solutions with the same starting conditions for

stochastic solutions. Then, we will study the attraction region. Figure 9 shows the

solution when (xS0, yI0) = (0.3, 0.6). There is a clear coincidence between the

deterministic solution and the stochastic process for NF = 1000.

When we consider the starting point (xS0, yI0) = (0.85, 0.2), we can appre-

ciate again a nice matching between the stochastic process for NW = 1000 and

the EDO replication dynamics. Figure 11 presents the attraction region for both

the poverty trap and the Pareto-optimum equilibria. It is worth to mention that the

mixed equilibria is precisely in the border of both attraction regions, and the vec-

tor field from the ODE flows to the other equilibrium. Black diamonds represent

the starting conditions selected in previous simulations.

Now, we will contrast the results with the model under regulation. We take the

same parameters of the model without regulation, control parameters Φi, Φii and

starting point (xS0, yI0) = (0.3, 0.6).

Parmetro Valor

mi
W 0.0000

mi
F 0.0875

I iW 0.0000

I iF 0.0000

δt 1.5000

mii
W 0.0000

mii
F 0.0000

I iiW 0.0200

I iiF 0.0100

Table 2: Parameters for the model with regulation.
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Loans from Stage 1 were found in such a way that the mixed Nash equilibria is

inside the rectangle delimited by points (0, 0) and (xS0, xI0). With this selection

the dynamics evolves to the Pareto-optimum equilibria (1, 1). Taxes from Stage 2
were chosen in a similar order of incentives.

Figure 12 shows the attraction region for the dynamics of Stage 1, and the

starting point with a black diamond. The starting point is in the attraction reguin of

the Pareto-efficient in the dynamic with incentives. We remark that loans increase

the area of the Pareto-efficient attraction region, which is a relevant aspect of

regulation. This means that there are less starting points that evolve to the poverty

trap.

Figure 13 shows the attraction region for Stage 2. A tax increase reduces the

area of the attraction region to the Pareto-efficient equilibria.

The dynamic evolution for parameters from Table 1 and 5.1 are presented

in Figure 14. There, xS(t), yI(t) and (xS(t), yI(t)) are represented in red, blue

and black respectively. The border of attraction regions for loans (magenta) and

taxes (green) is also included. We can identify the three stages, each one with a

different vector field. The extra-time δt where loans are kept after the border of

the attraction region is met helps to rest in the Pareto-optimum equilibria.

Table 3 summarizes the sizes of sub-populations and required time for differ-

ent stages, where the symbols correspond to Figure 14.

t xS(t) yI(t)
Start: (�) 0 0.300 0.600

End of Stage i: (O) 4.873 0.518 0.860

End of Stage ii: (�) 9.413 0.720 0.840

Table 3: Results with external regulation - (xS(0), yI(0)) = (0.3, 0.6)

6 Conclusions

The main contribution of this article is to provide a means to avoid poverty trap

equilibria, with the assistance of an external regulator. This regulator has an action

in three phases: loans, taxes and inactivity, in chronological order. The time the

system needs to escape from the poverty trap and converge the Pareto-efficient

equilibria is in the order of the evolution without external regulation. Therefore,
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the results of our incentive mechanism become evident in a reasonable amount of

time.

During the first phase, innovative agents are encouraged to innovate, and the

poverty trap is mitigated. On the other hand, the poverty trap is exacerbated when

taxes take place. These results are consistently verified from both numerical sim-

ulation and finding attraction regions analytically.

Numerical results highlight a nice matching between the stochastic process for

big populations and the limit for infinite populations given by the system of ordi-

nary differential equations. This idea is formally proved in Theorem 3.6. There-

fore, the aggregated behavior of agents for big populations is close to the limit of

deterministic fluid model for infinite population.

As a future work, we would like to develop stochastic differential equations to

approach dynamic replicator system. Then, by central limit theorems, confidence

intervals for deterministic evolutions will help to understand the variability of the

evolution.

A second research line is to implement the model in a real-life economy, by

means of a pointwise estimation of its relevant parameters and providing a thor-

ough predictive analysis of its evolution.

7 Appendix

7.1 A: Monotonicity and Positivity

Proposition 7.1 Consider a regular rate function q(x) in a game with two strate-

gies per player (mi = 2 for all i ∈ I). Then, q is positive iff it is monotonous in

the incomes.

Proof Player i has exactly two strategies: xih + xik = 1. The case xik = 0 and

xih = 1 has no interest, since sub-populations remain fixed (ẋih = ẋik = 0). Let

us consider xik 6= 0:

ui(e
h
i , x−i)− ui(x) = ui(e

h
i , x−i)− xihui(e

h
i , x−i)− xikui(e

k
i , x−i) (98)

= xik

(

ui(e
h
i , x−i)− ui(e

k
i , x−i)

)

(99)

We know that q(x) is regular, so:

xihqih = −xikqik (100)
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Monotonicity in the incomes is by definition:

ui(e
h
i , x−i) > ui(e

k
i , x−i) ⇔ qih(x) > qik(x) (101)

From Equation (99) we obtain that the left-hand side of 101 is equivalent to:

sgn[ui(e
h
i , x−i)− ui(x)] = 1 (102)

On the other hand, from Equation 100, we can conclude the right-hand side

of 101 is equivalent to:

sgn[qih(x)] = 1 (103)

Thus, from (102) and (103), monotonicity is equivalent:

sgn[qih(x)] = sgn[ui(e
h
i , x−i)− ui(x)], (104)

as desired. �

7.2 B: Switching Probabilities

We find the probability of a switching of strategy in a revision. Let Φ(t) denote the

standard normal distribution. We will find Pr
(

ûW (eNS, y) > ûW (eS, y)
)

using

the definition of expected incomes perceived by agents (ûW (·, ·) and ûW (·, ·))
given in Section 3.2.

Pr
(

ûW (eNS, y) > ûW (eS, y)
)

= Pr
(

uW (eNS, y) + ε > uW (eS, y) + ε′
)

= Pr
(

ε′ − ε < uW (eNS, y)− uW (eS, y)
)

= Fε′−ε

(

uW (eNS − eS, y)
)

= Φ

(

uW (eNS − eS, y)√
2σW

)

Analogously,

Pr
(

ûF (x, e
NI) > ûF (x, e

I)
)

= Pr
(

uF (x, e
NI) + ξ > uF (x, e

I) + ξ′
)

= Pr
(

ξ′ − ξ < uF (x, e
NI)− uF (x, e

I)
)

= Fξ′−ξ

(

uF (x, e
NI − eI)

)

= Φ

(

uF (x, e
NI − eI)√
2σF

)
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Finally, in order to find Pr
(

ûW (eS, y) ≥ ûW (eNS, y)
)

and Pr
(

ûF (x, e
NI) ≥ ûF (x, e

I)
)

it suffices to observe that events are complementary each other, so:

Pr
(

ûW (eS, y) ≥ ûW (eNS, y)
)

= Φ

(

uW (eS − eNS, y)√
2σW

)

= 1− fW (y)

Pr
(

ûF (x, e
I) ≥ ûF (x, e

NI)
)

= Φ

(

uF (x, e
I − eNI)√
2σF

)

= 1− fF (x)

7.3 C: Bounding E[α(X(t))]

We find a bound for E(α(X(t)). Function α : S → R
+ is defined by:

α(v) =
∑

v′ 6=v

‖v′ − v‖22 q(v, v′) (105)

Since E(α(X(t)) is in the range of α(v), the following inequality holds:

E(α(X(t)) ≤ sup
v∈S

α(v) (106)

Then, we find for transition vector and rates from 3.2 the supreme of α(v), where

v ∈ S. The set of transition vectors with positive rates is:

V = {τS,NS , τNS,S , τI,NI , τNI,I} ⊂ R
4

The expression for these vector in coordinates are given in (24), (25), (26) and

(27), while transition rates are given in (29), (30), (31) and 31.

Now, we re-write Equation 105:

α(v) =
∑

τ∈V

‖τ‖22 q(τ, v) (107)

Replacing 107 in (106) and combining

sup
x∈A

(f(x) + g(x)) ≤ sup
x∈A

f(x) + sup
x∈A

g(x)

we get that
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E(α(X(t)) ≤ sup
v∈S

∑

τ∈V

‖τ‖22 q(τ, v) (108)

≤
∑

τ∈V

‖τ‖22 sup
v∈S

q(τ, v) (109)

The transition norms are found:

‖τS,NS‖22 = 2
N2

W

‖τNS,S‖22 = 2
N2

W

‖τI,NI‖22 = 2
η2 N2

W

‖τNI,I‖22 = 2
η2 N2

W

(110)

Recall the following notation:

z = (xS, xNS, yI , yNI) ∈ S

x = (xS, xNS) ∈ G2
W

y = (yI , yNI) ∈ G2
F

Then, the supreme for rates are:

sup
z∈S

q(τS,NS, z) = NW sup
z∈S

xS xNS rS(y) fW (y)

sup
z∈S

q(τNS,S, z) = NW sup
z∈S

xS xNS rNS(y) (1− fW (y))

sup
z∈S

q(τI,NI , z) = ηNW sup
z∈S

yI yNI rI(x) fF (x)

sup
z∈S

q(τNI,I , z) = ηNW sup
z∈S

yI yNI rNI(x) (1− fF (x))

Functions z are differentiable in R
4. Since S ⊂ R

4 is bounded, such supremes

exist and are denoted c1, c2, c3, c4 ∈ R
+:
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supz∈S q(τS,NS, z) = NW c1

supz∈S q(τNS,S, z) = NW c2

supz∈S q(τI,NI , z) = ηNW c3

supz∈S q(τNI,I , z) = ηNW c4

(111)

Finally, combining (110) and (111) in Inequality (109):

E(α(X(t)) ≤
(

2

N2
W

NW c1 +
2

N2
W

NW c2 + . . .

2

η2 N2
W

η NW c3 +
2

η2 N2
W

η NW c4

)

≤
2
(

c1 + c2 +
c3
η
+ c3

η

)

NW

If c = 2(c1 + c2 +
c3
η
+ c3

η
) ∈ R

+:

E(α(X(t)) ≤ c

NW

(112)
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Figure 3: Ten independent runs for X(t) with NF = 20, η = 0.1, (xS0, yI0) =
(0.3, 0.6)
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Figure 4: Ten independent runs for X(t) with NF = 100, η = 0.1, (xS0, yI0) =
(0.3, 0.6)
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Figure 5: Ten independent runs for X(t) with NF = 100, η = 0.1, (xS0, yI0) =
(0.3, 0.6)
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Figure 6: Ten independent runs for X(t) with NF = 20, η = 0.1, (xS0, yI0) =
(0.85, 0.2)
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Figure 7: Ten independent runs for X(t) with NF = 100, η = 0.1, (xS0, yI0) =
(0.85, 0.2)
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Figure 8: Ten independent runs for X(t) with NF = 1000, η = 0.1, (xS0, yI0) =
(0.85, 0.2)
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Figure 9: Deterministic Solution X(t) - (xS0, yI0) = (0.3, 0.6)
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Figure 10: Deterministic solution X(t) - (xS0, yI0) = (0.85, 0.2)
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Figure 11: Attraction regions - Model without regulation.
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Figure 12: Attraction region - Stage 1 with incentives.
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Figure 13: Attraction region - Stage 2 with taxes.
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Figure 14: ODE System - Solution with external regulation - (xS(0), yI(0)) =
(0.3, 0.6)
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