
● Grid search and fine tuning parameters is crucial. Out of 
the box methods will not (ever) work.

● Adding information of relatives improves the predictions.
● Number of parameters grows with the model complexity.
● More results on www.comet.ml/dna-i

● Genome enabled prediction of complex traits aims to 
predict a measurable characteristic of an organism using 
its genomic information. 

● Deep Learning architectures: CNNs, GCNs and CNN+GCN.
● Increasing number of SNPs, increases number of 

parameters and memory needed very fast.
● Uses of  AEs and VAEs in population genomics.
● Python library is in process to be released at 

github.com/farielberry-lab

Deep learning for genomic prediction and tasks learned on the way
María Inés Fariello1,2, Lucía Arboleya1, Diego Belzarena1, Graciana Castro1, Leonardo de los Santos1, Juan Elenter1, Guillermo Etchebarne1, 

Romina Hoffman1, Ignacio Hounie1, Mateo Musitelli1, Federico Lecumberry1,2

(1) Facultad de Ingeniería, Universidad de la República, Uruguay. (2) Institut Pasteur de Montevideo, Uruguay

Introduction and motivation

Acknowledgements Some references
Francisco Peñagaricano, José Crossa, Abelardo and Osval Montesinos, Daniel Gianola, Hugo 
Naya, Elly Navajas and Gabriel Ciappesoni  for their valuable discussion, data and proposed 
experiments and INIA for data access.
This work was partially funded by Universidad de la República and project ANII 
FSDA 1_2018_1_154364 and IA_1_2022_1_173411 

.

Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2017). Imagenet classification with deep convolutional 
neural networks. 
Yin, L., Zhang, H., Zhou, X., Yuan, X., Zhao, S., Li, X., & Liu, X. (2020). KAML: improving genomic prediction 
accuracy of complex traits using machine learning determined parameters..
Wu, Z., Pan, S., Chen, F., Long, G., Zhang, C., & Philip, S. Y. (2020). A comprehensive survey on graph neural 
networks. 

German Holstein bulls: 
● Individuals (n): 5024 
● Genotypes (p): 42.551 SNPs after quality control filtering.
● Phenotypes: somatic cell score (SCS) and milk yield (MY). 
○ SCS is governed by many small effect loci.
○ MY is determined by a few moderate effect loci and many 

small effect loci
● Experiments were repeated 10x using random splits.\
● Hyperparameter searches and fine tuning: five-fold X-val.

Datasets and experiments settings

Convolutional Neural Networks (CNN) + Residual CNN (ResNet)
● CNNs are a classical architecture used in image analysis.
● AlexNet-like CNN, residual CNN, with their corresponding 

single and multitrait variants were tested.
● The ResNet made the difference in MY prediction.

Graph Convolutional Networks (GCN) Holstein overall results
● Build a graph with an individual's parameter in nodes and a 

similarity measure between nodes as edge's weights.
○ CNN output in each node

● Convolution supported in the graph for data aggregation.
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Jersey bulls: 
● Individuals (n): 1569 (from 2008 to 2018)
● Genotypes (p): 95.434 SNPs after quality control filtering.
● Phenotype: Sire Conception Rate (SCR)
○ Expected difference between the conception rate (CR) 

of a bull compared with the mean of the rest of the 
population in a certain year. CR: amount of successful 
inseminations as a fraction of the total inseminations 
attempted

(Variational) Autoenconders (VAE and AE)

Conclusions and future work

AEs and VAEs are capable of learning dense representations of the input data. They can be used for: 
● Dimensionality reduction for visualization or memory reduction through its  latent representations.
● Imputation: train the data without missing data, then use the autoencoder on data with missingness.

Algorithm for genomic prediction:
1. Split genotypes by chromosome 
2. Fit a  dimensionality reduction network (AE, 

VAE) for each one. The latent dimension is a  
fixed proportion of the input dimension.

3. Concatenate the latent representations to 
build the low-dimensional genotype.

4. Train a neural network (eg. CNN) on the 
low-dimensional genotype for prediction.
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● Same network architectures can be useful for different tasks 
(imputation, dimensionality reduction).

● Understand how missing data affects the latent representations.
● Good latent representations could overcame imputation.
● As datasets (features and individuals) grow, dimensionality reduction 

could be as important as regularizations.
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Imputation results (in progress)

The AE can be trained 
including missing 
data in the data set. 
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