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Abstract

A new way to expand De Bruijn and Kautz graphs is presented. It consists of deleting
super)uous sets of edges (i.e., those whose removal does not increase the diameter) and adding
new vertices and new edges preserving the maximum degree and the diameter. The number of
vertices added to the Kautz graph, for a 7xed maximum degree greater than four, is exponential
on the diameter. Tables with lower bounds for the order of super uous sets of edges and the
number of vertices that can be added, are presented.
? 2003 Elsevier B.V. All rights reserved.
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1. Introduction

De Bruijn and Kautz digraphs have attracted the attention of researchers for a long
time. Their properties have been intensively studied and many families of graphs have
been constructed inspired on them.
One outstanding property is that the De Bruijn and Kautz digraphs have large orders

for a given maximum out-degree and diameter. The optimization problem that consists
of 7nding large graphs [digraphs] with 7xed maximum [out-]degree : and diameter D
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is known as the (:; D)-problem. In this context, Kautz digraphs are the largest known
digraphs (except for (:; D) = (4; D) with D¿ 4). Their underlying graphs are also
large as graph, and they were the largest known for some time. Besides, both families
have easy routing algorithms and low vulnerability, a fact that motivates their study as
models for the design of interconnecting networks.
In spite of their high orders, it is possible to add new vertices to the original graphs

preserving their diameter and maximum degree. For instance, Bond [4] was able to add
:+1 vertices to Kautz graphs preserving their maximum degree : and diameter (when
the latter is greater than 2). The possibility of adding new nodes to a graph is known
as expansiveness or scalability and has also been considered by many authors, since
it is a desirable property for the modularity of computer networks. Some instances of
scalability of the De Bruijn and Kautz graphs have been studied in [1,10,19], but in
these cases the authors allow the graphs to change their maximum degree or diameter.
Our main results are the following. We proved the existence in these graphs of large

sets of edges whose removal does not increase the diameter, sets we call super)uous
sets of edges. We shown that it is possible to add a large number of vertices to
the graph obtained by the deletion of these super uous sets of edges, maintaining the
maximum degree and the diameter. For instance, in the case of Kautz graphs, we added
2(:+1) vertices (Proposition 13) or even an exponentially growing amount (Theorem
26) when the diameter goes to in7nity.
The study of graphs without super uous edges and the possibility of expanding

them were introduced by Gliviak [11] and Gliviak et al. [13]. However, they allow the
maximum degree to grow, so their results fall outside the frame of the (:; D)-problem.

2. De�nitions

Let G= (V; E) [G= (V; A)] denotes a [di]graph with vertex set V = V (G) and edge

set E=E(G) [arc set A=A(G)]. If uv= vu= {u; v} ∈E [uv=(u; v)∈A] we write uG∼v

or simply u ∼ v[u
G
 v or simply u v].

The union of two vertex disjoint graphs G and G′ is denoted by G ∪G′ and has as
vertex and edge sets the union of the corresponding vertex and edge sets; i.e.,

G ∪ G′ = (V (G) ∪ V (G′); E(G) ∪ E(G′)):

If G = (V;R) is a [di]graph and F is a subset of V (2) = {U ⊂ V (G): |U | = 2} [of
V 2 = V × V ], then G + F and G − F denote the [di]graphs

G + F = (V; R ∪ F);

G − F = (V; R \ F):

The underlying graph of a digraph G = (V; A) is the graph UG = (V; E) obtained
from G by forgetting orientations and eliminating loops and multiple edges; that is,
E = E(UG) = UA(G) = {{u; v} | u �= v; (u; v)∈A}. For example, the underlying graph
of a tournament over V (i.e., a digraph T = (V; A) with no loops such that uv is in A
if and only if vu is not in A), is the complete graph over V .
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A sequence of vertices u0; u1; : : : ; un−1; un of a [di]graph G, such that ui−1ui is an
edge [arc] of G, is called a u0 − un walk or a [directed] walk from u0 to un of length
n. The walk is closed if u0 = un. Directed closed walks of length one are called loops
and those of length two digons (whenever u0 �= u1). We will write DN (G) for the set
of digons of G; i.e.,

DN (G) = {uv∈A(G) | vu∈A(G)}:
Notice that, with this de7nition, any directed walk (without loops) of a digraph G is
a walk of its underling graph UG, as well. We will work with [strongly] connected
[di]graphs; that is, those having some [directed] walk between any pair of diUerent
vertices. In such graphs, it is possible to de7ne a distance between two vertices, as
the length of a shortest walk joining them. Analogously, the distance in a digraph
from a vertex to another is the length of a shortest directed walk from the 7rst to the
second (despite its name, this function is not a metric because it is not symmetric).
The diameter D(G) of a [di]graph G is the maximum of its distance function. If we
write dG(u; v) or simply d(u; v) for the distance between [from] u and [to] v, then

D(G) = max
u;v∈G

d(u; v):

The degree degG(u) [in and out-degrees, deg−
G (u) and deg+G(u) resp.] of a vertex u

of G is the cardinality of the set V(u) [sets V−(u) and V+(u) resp.] of the vertices
adjacent with u [to and from u resp.]. The maximum [in and out] degree of a [di]graph
G is denoted by :(G). In Section 4.4, we will use the following particular extension
of V+ and V−: given a subset F of arcs of a digraph G, we de7ne V+(F) and V−(F)
to be the sets of vertices incident from and to an arc of F , respectively; i.e.,

V+(F) = {v : ∃u∈V (G) | uv∈F};
V−(F) = {u : ∃v∈V (G) | uv∈F}:

From a set-theoretical point of view, these functions are the projections to the second
and 7rst coordinate of the elements of F , respectively.
Following Bollob-as [3],HD(n;:) stands for the set of graphs G of order n=|V (G)|

with maximum degree : and diameter D. Also in [3], the minimum number of edges
of a graph in HD(n;:) is denoted by eD(n;:); that is,

eD(n;:) = min{|E(G)|: G ∈HD(n;:)}:
The exact value of eD(n;:) is not known, except for some special cases. A graph with
maximum degree : and diameter D is usually called a (:; D)-graph. We will denote
by H:;D the class of all (�; d)-graphs with �6: and d6D; that is,

H:;D =
⋃
d6D
n¿1
�6:

Hd(n; �):

Our purpose in working with graphs in H:;D, and not simply with (:; D)-graphs,
is to simplify the formulation of the statements or proofs since the deletion of the
super uous edges of a graph might decrease its maximum degree, and the addition of
vertices might decrease its diameter.
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A graph G is a subgraph of G′ and written G ⊂ G′, if V (G) ⊂ V (G′) and E(G) ⊂
E(G′). This relationship is an order on the class of all graphs and its restriction to
the family H:;D gives rise to a new order that we will denote by ❁:;D or simply ❁;
more precisely,

G ❁ G′ in H:;D if G ⊂ G′ and G;G′ ∈H:;D:

We will also work with the restriction / of the order ❁ to the set of graphs with the
same vertex set; that is

G / G′ in H:;D if G ❁:;D G′ and V (G) = V (G′):

If D(G′)=D, the edges of G′ not in G are called super)uous edges of G′. Moreover,
we say that a nonempty set of edges F of G′ is a super)uous set of edges if both G′

and the graph G′ − F have the same diameter; i.e., D(G′ − F) =D(G′). The minimal
elements of the order / are known as diameter-minimal or edge-critical graphs (see
[7,12]) and are those having no super uous edges.
We say that a sequence G0; : : : ; G2n of graphs is a (:; D)-admissible expansion of

G0 in k = |G2n| − |G0| vertices, if:

G0 . G1 ❁ G2 . · · · . G2n−1 ❁ G2n in H:(G0);D(G0):

When two or more consecutive graphs of the sequence are equal, we will just write the
7rst one. We will make an abuse of notation saying that G2n is a (:; D)-admissible
expansion of G0.
In [1], the authors use the name extension when the increments in the orders are

“atomic”, that is, by at most one unit. Following them, we will say that the previous
considered (:; D)-admissible expansion is a (:; D)-admissible extension if |G2i| −
|G2i−1| = 1 for i = 1; : : : ; n.
When a graph is not regular, it is possible, in many cases, to add new vertices without

increasing its maximum degree and diameter, taking into account the existence of
vertices with “free valences”. In order to compute the total amount of these “valences”
on a given graph G, let us call the total de:ciency of G respect to k¿:(G), the
integer tdk(G), de7ned by

tdk(G) =
⌊
1
2 k|G|⌋ − |E(G)|:

Graphs with high total de7ciency have been used by some authors [2,4,14] in order to
obtain large graphs. In this context, one can wonder if it is actually possible to increase
the total de7ciency of a graph. In order to measure this potential increment, we call
de:ciency reserve of a graph G the maximum cardinality der(G) of a super uous edge
set; that is,

der(G) = max{|F |: F super uous edge set of G}:
Notice that if we order the super uous edge sets of G by inclusion, the maximal
elements are those sets F that make G − F an edge-critical graph. Besides, if F has
maximum order, i.e., if |F | = der(G), then

td:(G)(G − F) = td:(G)(G) + der(G):
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Fig. 1. K(2; 3) and UK(2; 3).

The concept of (:; D)-admissible expansion is related to the concept of routing. A
routing � in G = (V; E) is a function � :V × V → V ∗ where V ∗ is the set of all
walks of G. The routing � is bounded by k if the lengths of its walks is not greater
than k and if k =D(G), � is said to be compatible with G. A routing avoids F if its
paths contain no edge of F . It is possible to rede7ne the previous concepts in terms
of routing:

• A set of edges F of G is super uous if and only if there exists a compatible routing
in G avoiding F .

• G ❁ G′ in H:;D iU there exists routing �′ in G′ bounded by D, which restricted to
V (G) × V (G) is also a routing �= �′|V (G)×V (G) in G.

The former formulation tells us that, when a computer network is extended to a new
one which is a (:; D)-admissible expansion of it, the traWc between nodes needs not
to be stopped. In fact, in some steps of the expansion (those of the form G2i−1 ❁ G2i),
the routing algorithms need not be changed, but extended to the new nodes.
The basic graphs we will work with are the De Bruijn and Kautz graphs UB(d;D)

and UK(d;D), respectively, which are the underlying graphs of the De Bruijn and
Kautz digraph B(d;D) and K(d;D) of maximal in and out-degree d and diameter D.
One way to de7ne B(d;D) [K(d;D)] is as a digraph whose vertices are the words
x0 : : : xD−1 of length D over an alphabet X(B(d;D))=Zd [alphabet X(K(d;D))=Zd+1

with the restriction that xi �= xi+1] and whose arcs are the pairs (x0 : : : xD−1; x1 : : : xD).
Both graphs, UB(d;D) and UK(d;D), have diameter D and maximum degree := 2d
if D¿ 3 and 2d − 1 if D = 2. Fig. 1 shows Kautz digraph K(2; 3) and its underlying
graph UK(2; 3).
In order to simplify the notation for edges [arcs] and [directed] walks of our basic

graphs, instead of writing edges [arcs] as sets {x0w; wxD} [pairs (x0w; wxD)] of words
we will write them as single words x0wxD of length D + 1. Similarly, if a [directed]
walk w0; w1; : : : ; wl is such that wi = xixi+1 : : : xi+D−1, then we will write it as a single
word x0 : : : xl+D−1 of length D + l.
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Since we will work frequently with words that have periodic strings, e.g., 010101
or 3201010, we will write “01” for the former and “3201” for the latter. We make the
following three remarks about this notation:

• There is an ambiguity about the number of repetition, that will depend on the context.
For example, if 01 is a vertex of UK(2; 3), then it represents the word 010, but if
it is a vertex of UK(2; 4) or an edge of UK(2; 3) it represents the word 0101.

• If a directed walk W = x0 : : : xl+D−1 is closed, the sequence x0 : : : xl+D−1 will be
periodic of period a divisor of l, thus we can represent it by the word x0 : : : xl−1

of length l.
• We include the empty string as a periodic word of any period, e.g., 3401 could
represent the word 34.

For any other terminology or notation not de7ned above see [8].

3. Super�uous sets of underlying graphs of digraphs

As remarked in [6], the diameter of the underlying graph of a digraph does not grow
by the deletion of any edge that is not the underlying edge of a digon; i.e., given a
digraph G, then

D(UG − uv)6D(G)

for any edge uv∈E(UG) such that uv �∈ DN (G). This remark almost characterizes the
super uous edges of the underlying graph of a digraph:

Lemma 1. Let G=(V; A) be a digraph with underlying graph UG, both with diameter
D; i.e., D(G) = D(UG) = D. Then the underlying edge of any arc which does not
belong to a digon is super)uous; that is

uv �∈ DN (G) ⇒ D(UG − uv) = D:

In what follows, we will call “ex-digons” the underlying edges of digons.
The next result will be extremely useful in order to 7nd super uous sets of edges

of underlying graphs of digraphs.

Lemma 2. Let G = (V; A) be a digraph such that D(G) =D(UG) =D. If F ⊂ A is a
subset of arcs of G such that:

(1) no arc of F belongs to a digon of G (i.e., F ∩ DN (G) = ∅),
(2) for any directed closed walk W of G of length bounded by 2D, the number of

times that W goes through F is, at most, one; i.e., if

W = v0; v1; : : : ; vl−1; vl

with vl = v0 and l6 2D, then

|{i: vivi+1 ∈F; i = 0; : : : ; l − 1}|6 1:
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Under these conditions, the set UF of underlying edges of F is a super)uous set of
edges of UG.

Proof. Since D(UG) =D, given two diUerent vertices u and v of UG, there exist two
directed walks Wv

u and Wu
v of G, from u to v and from v to u, respectively, both of

length at most D. Thus, the walk W constructed by concatenating Wv
u with Wu

v , is a
directed closed walk of G of length at most 2D. Applying hypothesis (2) to W , we
infer that at most one of the 7rst two walks contains an arc of F , then the other one,
say Wv

u contains no arc of F . Therefore, Wv
u is a walk of UG joining u and v in at

most D steps and, by hypothesis (1), avoiding UF .

3.1. The super)uous edges of the De Bruijn and Kautz graphs

In the next results, we study the behavior of the diameter of De Bruijn and Kautz
graphs under the deletion of its ex-digons. In particular, the next lemma give us some
details in order to construct further expansions.

Lemma 3. Let u = x1 : : : xD be a vertex of a De Bruijn or Kautz graph of diame-
ter greater than 1 and 2, respectively, and let G be one of these graphs without its
ex-digons. Then the distance in G between u and the vertex 01 is at most D. Fur-
thermore, if xD = 0 or xD−1xD = 01 this distance is less than D provided u is not 10.
More precisely, if

G1 = B(d;D); D¿ 2

or

G1 = K(d;D); D¿ 3

and

G = UG1 − U (DN (G1))

then

dG(u; 01)6

{
D − 1 if u �= 10 and; either xD = 0 or xD−1xD = 01;

D otherwise:

Proof. For B(d; 2), if x �= 1 and y �= 0 then the result follows from the fact that the
sequences x0; 01; 01; yx; 1y; 01; 0x; 00; 01 and y1; 11; 01 are walks in G. Thus, in what
follows we suppose that D¿ 3.
If xD �= 0; 1, we distinguish two cases. First when xDxD−1 : : : x1 = xD 0. In this case,

if D is even [odd], the word W = 1 0 xD 0 1 [word 0 1 0 xD 1] represents a walk in
UG1 of length D − 1 joining vertex 0 1 and vertex v= 10 xD [vertex 0 xD 1]. Besides,
its edges are not ex-digons since they contain the triple xD01 [triple 0xD1] which has
three diUerent symbols. Thus, W represents in fact a walk in G and dG(u; 1 0)6D,
since u and v are adjacent.
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Second, when xDxD−1 : : : x1 �= xD 0, the edge of UG1 represented by e=x1 : : : xD 0 is
not an ex-digon. Hence, the walk of length D in UG1 represented by w = x1 : : : xD 01
has no ex-digons since, besides e, its other edges contain the triple xD01. Thus, w is
also a walk in G and dG(u; 01)6D.
If xD=0; 1, then we distinguish three cases. First, when there exists i∈ {1; : : : ; D−1}

such that xi �= 1 and u= x1 : : : xi 0 10, then by an argument similar to the previous one,
x1 : : : xi 01 is a walk in G between u and 01 of length i6D − 1. Notice that for De
Bruijn graphs xi could be 0, but this is not a obstacle, since no digon contains the
pair 00.
Second, when u = x1 : : : xi 1 01 for some xi �= 0, then, as before, the distance in G

between u and xi 10 is at most i − 1. Now, for Kautz graphs xi �= 0; 1 and we have
that

xi 10
G∼ 10 xi

G∼ 01:

For De Bruijn graphs, if s is the last symbol of vertex xi 10, we have that

xi 10
G∼ 10 sG∼ 01:

And then, for both cases,

dG(u; 01)6 (i − 1) + 26 (D − 1 − 1) + 2 = D:

Furthermore, if xD=0 or xD−1xD=01, then i6D− 2 and i6D− 3 respectively, and
then dG(u; 01)6D − 1 in both cases.
Third and last, when u= 10, the sequence

10; x 10; 10y; 01

is a walk in G of length 36D joining u and 01, for any x; y �= 0; 1 in the case of
Kautz graphs, and for x = 1 and y = xD in the case of De Bruijn graphs.

Notice that if we consider the symmetric group over the alphabet of any Kautz or
De Bruijn graph acting on the words that represent vertices, we obtain a subgroup (in
fact, the whole group) of automorphisms of the graph. It can be veri7ed that the same
happened for the graph G of the previous lemma, so we have the following remark.

Remark 4. Under the hypothesis of Lemma 3, for any vertex u = x1 : : : xD and any
vertex a b, the distance in G between u and ab veri7es

dG(u; ab)6

{
D − 1 if u �= b a and either xD = a or xD−1xD = ab;

D otherwise:

In [6], Bond and Peyrat proved (Theorem 8) that any edge of De Bruijn and Kautz
graphs of diameter at least three is super uous. Another way to prove it is, by Lemma
1, to show that any ex-digons of these graphs is super uous. The next proposition states
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that not only each isolated ex-digon is super uous, but the entire set of ex-digons is
super uous, as well.

Proposition 5. The set of digons of any De Bruijn or Kautz digraph gives rise to a
super)uous edge set in the corresponding De Bruijn and Kautz graph if and only if
the diameter is at least 2 or 3, resp.; furthermore if

G1 = B(d;D); G2 = K(d;D); (d¿ 2)

then for i = 1; 2,

D¿ i + 1 ⇒ D(U (Gi − DN (Gi))) = D

and

16D6 i ⇒ D(UGi − e)¿D; ∀e∈U (DN (Gi)):

Proof. First, we show that if i = 1; 2 and 16D6 i, then D(UGi − e)¿D for any
ex-digon e. Indeed, UB(d; 1) and UK(d; 1) are complete graphs and thus, have no
super uous edges. If G=UK(d; 2)−e, with e=aba=bab, we have that V(ab)={xa | x �=
a; b}∪{bx | x �= a; b} and V(ba)={xb | x �= a; b}∪{ax | x �= a; b}, then V(ab)∩V(ba)=∅,
and dG(ab; ba)¿ 2.
Let D¿ i+1. By way of contradiction, let us suppose that D(U (Gi−DN (Gi)))¿D,

then there exist two vertices u= x1 : : : xD and v=y1 : : : yD such that any walk of length
at most D joining them in U (Gi), contains an ex-digon e= a b. We claim that u or v
(maybe both) must be incident with e, and then by Remark 4, it must be at distance at
most D from any other vertex of the graph, contradicting our assumption. Indeed, the
words uv = x1 : : : xDy1 : : : yD and vu = y1 : : : yDx1 : : : xD represent two walks of length
D in U (Gi) between u and v, then both must contain e as a substring. In other terms,
there exist i and j such that e= xi : : : xDy1 : : : yi = yj : : : yDx1 : : : xj. But then our claim
is true since if j6 i, vertex v is a substring of e = a b, and then, incident with it.
Otherwise if i¡ j, it is u which is a substring of e, thus incident with it.

From this result and Lemma 1 we can characterize the super uous edges of De
Bruijn and Kautz graphs.

Corollary 6. An edge of a De Bruijn graph is super)uous if and only if the diameter
of the graph is greater than 1.

Corollary 7. An edge of a Kautz graph is super)uous if and only if the diameter of
the graph is 2 and the edge is not the underlying edge of a digon or the diameter is
greater than 3.

3.2. A large super)uous edge set for the De Bruijn and Kautz graphs

We now present the largest super uous sets of edges for UB(d;D) and UK(d;D)
we have been able to 7nd (for d¿ 3).
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Proposition 8. Let G be B(d;D) or K(d;D), and let s∈X(G) be an element of its
alphabet (Zd and Zd+1 resp.); then the set UFG(s) of underlying edges of

FG(s) = {x0 : : : xD−1 s∈A(G) | xi �= s ∀i}
is a super)uous set of edges of UG for D¿ 2.

Proof. First of all notice that the arcs of FG(s) do not belong to any digon since
xD−2 �= s. Hence, by Lemma 2, it suWces to prove that any directed closed walk of
length l6 2D cannot cross FG(s) more than once. By way of contradiction, let us
suppose that there exists such a directed closed walk,

W = x0 : : : xl−1

of length l6 2D, and two arcs e and e′ of FG(s), such that

e = x(imod l) · · · x(i+Dmod l); (1)

e′ = x(i′ mod l) · · · x(i′+Dmod l) (2)

for two diUerent integers i; i′ ∈ {0; : : : ; l − 1}. We claim that

i′ �∈ I = {(imod l); (i + 1mod l); : : : ; (i + Dmod l)}:
Indeed, if i′ ≡ i + j (mod l) for some j with 16 j6D, then

x(i′−j+Dmod l) = x(i+Dmod l) = s;

where the last equality follows from (1) since e∈FG(s). Then e′ has an s in its (D−j)th
position, but as e′ ∈FG(s) it has an s only in its Dth position and D¿D− 1¿D− j.
By symmetry, we infer that

i �∈ I ′ = {(i′ mod l); (i′ + 1mod l); : : : ; (i′ + Dmod l)}
thus I and I ′ are disjoint sets, both of cardinality D + 1, but included in a set Zl of
cardinality l6 2D.

From this proposition we can compute lower bounds for the de7ciency reserve of
the De Bruijn and Kautz graphs, and thus, upper bounds for eD(n;:) when n is the
order of these graphs.

Corollary 9. If D¿ 2 and d¿ 2, then

der(UB(d;D))¿ (d − 1)D;

der(UK(d;D))¿d(d − 1)D−1:

Proof. Let G be B(d;D) or K(d;D) and G′ be B(d−1; D) or K(d−1; D), respectively.
In order to compute the cardinality of UFG(d) we compute the cardinality of FG(d),
since neither FG(d) has loops nor UFG(d) has ex-digons. Finally, the map b : FG(d) →
G′ de7ned by b(x0 : : : xD−1d) = x0 : : : xD−1 is a bijection and we have that

|FB(d;D)(d)| = |B(d − 1; D)| = (d − 1)D;

|FK(d;D)(d)| = |K(d − 1; D)| = d(d − 1)D−1:
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Fig. 2. The set of dashed edges is super uous in UK(2; 3).

Table 1
Lower bounds for der(UK(d; D))

D D
d : 2 d : 3 4 5 6 7
2 3 2 2 4 6 9 19 31 51
3 5 6 3 6 20 34 48 96 192
4 7 14 4 8 48 108 324 972 2 916
5 9 26 5 10 97 320 1 280 5 120 20 480
6 11 42 6 12 174 750 3 750 18750 93 750
7 13 62 7 14 252 1 512 9 072 54 432 326 592
8 15 86 8 16 392 2 744 19 208 134 456 941 192

Corollary 10. If D¿ 3 and d¿ 2, then

eD(dD; 2d)6dD+1 − (d − 1)D − d2=2 − d=2;

eD(dD + dD−1; 2d)6dD+1 + dD − d(d − 1)D−1 − d2=2 − d=2:

The bounds of Corollary 9 are not tight in general. For instance, by Proposition 5,
the set of edges {0 1; 0 2; 1 2} is super uous in UK(2; 3) and, even this set, is not of
maximum order since the set of edges SF={2012, 0210, 2101, 2010, 1212, 0202} is
still a super uous one, as can be veri7ed by hand (see Fig. 2). The set SF was obtained
by computer search in such a way that it is a maximal super uous set of edges. In
Table 1, we present lower bounds for der(UK(d;D)) derived either from Corollary 9
or by computer search (indicated in bold). The latter arise from maximal super uous
set of edges. We split the table into two subtables, depending on whether D is equal
to 2 or not. This is carried out because the maximum degree : of UK(d;D) is 2d−1
if D = 2, but 2d if D¿ 3.
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3.3. Some useful super)uous sets of edges

Next, we give super uous sets of edges which are not as large as FG(s), but that
will enable us to add vertices in diUerent suitable ways. Let G be a De Bruijn or a
Kautz digraph, and let s∈X=X(G) be an element of its alphabets. Given a tournament
T = (X \ {s}; A) over X \ {s}, we associate to any subset AT ⊂ A of its arcs a subset,
FG(AT ) ⊂ A(G) of arcs of G de7ned by

FG(AT ) = {ax1x2 : : : xD−1b∈A(G) | (a; b)∈AT ;

xD−1 = s; xi �= s if i �= D − 1} for D¿ 2: (3)

The next proposition states that the set of underlying edges of the arcs of FG(AT ) is
a super uous set of edges of UG.

Proposition 11. If G is B(d;D) or K(d;D), then the set UFG(AT ) of underlying edges
of the arcs of FG(AT ) is a super)uous set of edges of UG for D¿ 2. That is,

UB(d;D) . UB(d;D) − UFB(d;D)(AT ) in H:(G);D;

UK(d;D) . UK(d;D) − UFK(d;D)(AT ) in H:(G);D:

Proof. We proceed as in Proposition 8 noticing that the arcs of the set FG(AT ) do not
belong to any digon, since they contain more than two diUerent symbols (i.e., “a”,“b”
and “s”). Next, in order to use Lemma 2 and proceed by way of contradiction, let us
suppose that there exists a directed closed walk W = x0 : : : xl−1 in G of length l6 2D,
and two arcs e, e′ of FG(AT ), such that

e = x(imod l) x(i+1mod l) : : : x(i+D−1 mod l) x(i+Dmod l)

=a x(i+1mod l) : : : s b
(4)

and

e′ = x(i′ mod l) x(i′+1mod l) : : : x(i′+D−1 mod l) x(i′+Dmod l)

=a′ x(i′+1mod l) : : : s b′

for two diUerent integer i; i′ ∈ {0; : : : ; l − 1}. We claim that

i′ �∈ I = {(imod l); (i + 1mod l); : : : ; (i + D − 1mod l)}: (5)

Indeed, if i′ ≡ i + j (mod l), for some j in {1; : : : ; D − 1}, then x(i′−j+D−1 mod l) =
x(i+D−1 mod l) which is, by (4), equal to s. Thus, e′ has an s at position D − j −
1∈ {0; : : : D−2}, but since e′ ∈FG(AT ) it has an s only in position D−1. By symmetry,
we conclude that i �∈ I ′ = {(i′ mod l); : : : ; (i′ + D − 1mod l)}, which together with
(5) implies that I and I ′ are disjoint sets of cardinality D included in the set Zl of
cardinality l6 2D. Thus, l= 2D and i ≡ i′ + D (mod 2D). Therefore, (a; b) = (b′; a′),
contradicting the fact that, by de7nition of FG(AT ), both (a; b) and (a′; b′) are arcs of
the tournament T .
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4. Expansions for De Bruijn and Kautz graphs

The deletion of super uous set of edges enables us to add new vertices to the new
graphs. For example, Fig. 3 shows a (4; 3)-admissible expansion of UK(2; 3) in 10
vertices. In the next subsections, we describe general methods.

4.1. (:; D)-admissible expansions of Kautz graphs in :+ 2 and 2: + 2 vertices

In this subsection, we show that we can double the number of vertices added in [4]
by means of the removal of the digons. First, we prove the existence of an expansion
in : + 2 vertices.

Proposition 12. If D¿ 3 and G0 = UK(d;D) there exist graphs Gi ∈H2d;D for i =
1; : : : ; d+ 3 such that:

(1) G0 ❁ G1 ❁ · · · ❁ Gd+1 . Gd+2 ❁ Gd+3 in H2d;D,
(2) |Gi+1| = 1 + |Gi| for i = 0; : : : ; d,
(3) |Gd+3| = |Gd+2| + d+ 1.

Proof. For i = 0; : : : ; d we obtain the graph Gi+1 by adding a new vertex vi to the
graph Gi and joining vi to the previously added vertices (i.e., vj with j¡ i) and to
any vertex x i with 7rst symbol x �= i; formally,

vi ∼ vj; ∀j¡ i (6)

and

vi ∼ x i; ∀x∈Zd+1 \ {i}: (7)

Fig. 3. A (4; 3)-admissible expansion of UK(2; 3) in 10 vertices.
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Fig. 4. Graphs G1, G2, G3, G4 and G5 of Proposition 12 for UK(2; 3).

We construct Gd+2 by deleting from Gd+1 all the ex-digons of G0. Finally, we obtain
Gd+3 by adding a complete graph on d+1 vertices {v′

0; : : : ; v
′
d} and joining each vertex

v′
i to the same vertices of G0 that vi is adjacent with. Thus, the map , that exchange
vi and v′

i for all i is a graph automorphism. Fig. 4 shows some graphs of the sequence
for (d;D) = (2; 3).
In order to compute the maximum degree of the graphs Gi, we observe that any

vertex vi is adjacent, by (6), with i vertices vj and, by (7) with d vertices of G0.
Thus, the degree of these vertices is at most 2d and the same holds for the vertices
v′
i , since the degree is invariant under automorphisms. On the other hand, any vertex
x i is adjacent, in Gj with:

• 2d − 1 vertices of G0 if j6d+ 1,
• 2d − 2 vertices of G0 if j¿d+ 2,
• no vertex vk if j6 i,
• 1 vertex (i.e., vi) if i¡ j6d+ 2,
• 2 vertices (i.e., vi and v′

i) if j = d+ 3.

Thus, their degrees are upper bounded by 2d.
Next, in order to verify that the diameters of the graphs of the expansion are upper

bounded by D, we claim that it suWces to 7nd a walk of length at most D between any
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Fig. 5. The G10 graph of Proposition 13 for UK(2; 3).

vertex in V (G0) and any vertex vi. Indeed, we do not need to 7nd such walks between
two vertices of G0 because the set of edges deleted is super uous by Proposition 5.
Also, we do not need to 7nd such walks between vertices vi and v′

i since they are either
adjacent or have an adjacent vertex in common. Besides, any walk of Gd+3 joining a
vertex v of G0 with another vertex vi gives rise, via ,, to a v − v′

i walk of the same
length.
Therefore, let v= x1 : : : xD be a vertex of G0 and vi one of the added vertices. First,

if v=a b then v and vi have vb as an adjacent vertex in common. Otherwise, if v �= a b,
then, by Remark 4, the distance between v and w= xD−1 i or w= xD i is at most D−1
depending upon xD be equal to i or not. In both cases, since vi and w are adjacent in
Gj, the distance between v and vi is at most D.

Re7ning the above argument we obtain a similar construction that duplicates the
number of added vertices in [4]. The idea is illustrated in Fig. 5. We enunciate
the result without proof, but give a possible de7nition of the graphs in the
expansion.

Proposition 13. If D¿ 3 and G0 = UK(d;D) there exist graphs Gi ∈H2d;D for i =
1; : : : ; 2d+ 3 such that:

(1) G0 ❁ G1 ❁ · · · ❁ G2d+1 . G2d+2 ❁ G2d+3 in H2d;D,
(2) |Gi+1| = 1 + |Gi| for i = 0; : : : ; 2d
(3) |G2d+3| = |G2d+2| + 2d+ 1.

We 7rst de7ne G2d+3 in terms of G = K(d;D) as follows:

G2d+3 = (U (G − DN (G)) ∪ Kd+1;d ∪ K ′
d+1;d) + E;
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where Kd+1;d and K ′
d+1;d are complete bipartite graphs with stable sets {v0; : : : ; vd} ∪

{u0; : : : ; ud−1} and {v′
0; : : : ; v

′
d} ∪ {u′

0; : : : ; u
′
d−1}, respectively, and E is a set of edges

de7ned by

∀i; j; x : i∈Zd; j∈Zd+1; x∈Zd+1 \ {j}; x j ∼ vj ∼ ui ∼ u′
i ∼ v′

j ∼ x j:

The graph G2d+2 is the subgraph of G2d+3 induced by the vertices of G and the vertices
without primes, i.e., vi and ui. The graph G2d+1 is G2d+2 plus the ex-digons of UG, and
the graph Gi for d+ 26 i6 2d, is the subgraph of G2d+1 induced by the vertices of
G, the vertices vj and the vertices u0 to ui−d−2. Similarly, graphs Gi for 16 i6d+1,
are the ones induced in G2d+1 by the vertices of G and the vertices v0 to vi−1.

4.2. (:; D)-admissible expansions for diameter 2

Kautz graphs UK(d; 2) with diameter 2 are the only regular members of the family
(of Kautz graphs), and then the only ones without de7ciency vertices. Thus, it is not
possible to add new vertices without increasing the maximum degree. Nevertheless, the
next result shows that (:; 2)-admissible expansions of UK(d; 2) up to d vertices do,
in fact, exist for any d.

Proposition 14. Let m∈N and 16m6d. Then there exists a (:; D)-admissible ex-
pansion in m vertices of Kautz graph of maximum degree 2d − 1 and diameter 2.

Proof. By Proposition 8, UK(d; 2) . G0 =UK(d; 2)−UFK(d;2)(d) in H2d−1;2. Hence,
if we construct a graph Gm such that

G0 ❁ Gm in H2d−1;2 (8)

and |Gm|= |UK(d; 2)|+m, the proof will be completed. Let Km be the complete graph
on m vertices with V (Km) = {P0; : : : ; Pm−1}. In order to de7ne Gm, we take the union
of G0 with Km and then, we add a set E of edges de7ned in the following way:

Pi ∼ id for i = 0; : : : ; (m − 1);

Pm−1 ∼ id for i = m; : : : ; (d − 1);

ji ∼ Pi for i = 0; : : : (m − 1) and j∈ {0; : : : ; (d − 1)} \ {i}:
In other words, Gm=(G0∪Km)+E. Hence, G0 is a subgraph of Gm and then, the only
thing we need to verify in order to prove (8) is that Gm ∈H2d−1;2 (Fig. 6). Indeed,
the degree of the vertices Pi is

deg(Pi) =

{
(m − 1) + 1 + (d − 1)6 2d − 1 if i �= m − 1;

(m − 1) + 1 + (d − m) + (d − 1) = 2d − 1 if i = m − 1:

The vertices of the form id have degree deg(id) = 2d− 1− (d− 1)+ 1= d+1 which
is at most 2d − 1 if d¿ 2. The vertices of the form ji with m¡i¡d have degree
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Fig. 6. Addition of vertex to UK(d; 2) in Proposition 14.

2d− 2. The remaining vertices have degree 2d− 1. Finally, in order to verify that Gm

has diameter two, we de7ne a compatible routing � in the following way:

�(u; v) =




u; v; u ∼ v;

Pi; ji; kj; u∈Km3v= kj and d �∈ {k; j};
Pi; id; dj; u∈Km3v= dj;

Pi; Pj; jd; u∈Km3v= jd and 16 j¡m;

Pi; Pm; jd; u∈Km3v= jd and j¿m;

�(v; u)t ; u �∈ Km � v;

a minimal walk in G0; u; v �∈ Km;

where �(v; u)t is the walk �(v; u) travelled in the opposite direction. Proposition 8
guarantees the existence of the minimal walk mentioned in the last case.

A similar result holds for De Bruijn graphs, even though in this case the result is
not so unexpected since the graphs are not regular.

Proposition 15. Let m∈N and 16m6d. Then, there exists a (:; D)-admissible
expansion in m vertices of UB(d; 2).

Proof. Similarly to the Kautz graphs case,

UB(d; 2) . G0 = UB(d; 2) − UFB(d;2)(d − 1) ❁ G0 ∪ Km + E in H2d−1;2;

where Km is the complete graph on m vertices P0; : : : ; Pm−1, and E is the set of edges
de7ned as follows:

Pi ∼ i(d − 2) for i = 0; : : : ; (m − 1);

Pm−1 ∼ i(d − 1) for i = m; : : : ; (d − 1);
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Fig. 7. Atomic vertex additions to UK(d; 2). Proposition 16.

ji ∼ Pi for i = 0; : : : ; (m − 2) and j = 0; : : : ; (d − 2);

jj ∼ Pm−1 for j = 0; : : : ; (d − 1):

The veri7cation of the conditions on the degrees and the diameter is almost the same
as in Proposition 14.

4.3. (:; D)-admissible extensions

As we said in the introduction, we are also interested in 7nding (:; D)-admissible
extensions, that is, expansions such that two consecutive graphs of the sequence have
orders that diUer in at most one unit. In order to make these “atomic” steps, we should
remove edges of the form UFG(AT ) for a suitable choice of the tournament T . We
choose T to be any tournament Td over Zd+1 \ {d} containing the arcs

ATd =
{
(a; (a+ i)mod d) | 16 i6

⌊
d − 1
2

⌋}
:

By Proposition 11, if G is B(d + 1; D) or K(d;D), then the set of edges UFG(ATd)
is super uous in UG. These sets enable us to make (:; D)-admissible extensions for
D = 2 and 3.

4.3.1. Diameter two
Proposition 16. For any d¿ 3 there exist graphs Gi ∈H2d−1;2 for i = 0; : : : ; l with
l= 2�(d − 1)=2� such that

(1) UK(d; 2) . G0 ❁ G1 ❁ · · · ❁ Gl in H2d−1;2,
(2) |Gi+1| = 1 + |Gi| for i = 0; : : : ; l − 1.

Proof. Let G0 be the graph UK(d; 2) − UFK(d;2)(ATd) and for i¿ 1, let us construct
graph Gi by adding a new vertex vi to graph Gi−1 and joining vi as in Fig. 7, i.e.,
vertex vi is adjacent with

• any previous added vertex vj with j �≡ i (mod 2) (i.e., with the vertices vi−1; vi−3; : : : ;
v(i+1mod 2)),
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• vertex dk for k = 0; : : : ; d − 1 if i is even,
• vertex kd for k = 0; : : : ; d − 1 if i is odd.

Since condition (2) is veri7ed by construction, it remains to prove that Gi ∈H2d−1;2.
Indeed, the degree of the vertices vi in the graph Gj is upper bounded by �(d−1)=2�+d
which is less than 2d−1, while the degree of the remaining vertices is at most 2d−1.
Finally, the diameter of each graph Gi is 2 since the following routing:

�i(u; v) =




vi; v if u= vi ∼ v;

vi; vj−1; vj if u= vi; v �∈ G0 and i ≡ j (mod 2);

vi; dj; jk if u= vi; v= jk and i even;

vi; kd; jk if u= vi; v= jk and i odd;

�i(v; u)t if v= vi

�i−1(u; v) otherwise

is a well-de7ned compatible routing for them if �0 is one for G0.

A similar result holds for De Bruijn graphs and we shall use the above result to
prove it.

Proposition 17. For any d¿ 3 there exist graphs Gi ∈H2d+1;2 for i = 0; : : : ; l with
l= 2�(d − 1)=2� such that:

(1) UB(d+ 1; 2) . G0 ❁ G1 ❁ · · · ❁ Gl in H2d+1;2,
(2) |Gi+1| = 1 + |Gi| for i = 0; : : : ; l − 1.

Proof. It suWces to bear in mind that K(d;D) and UK(d;D) are subdigraphs and sub-
graphs of B(d+1; D) and UB(d+1; D), respectively. Applying the previous proposition
to the copy of UK(d; 2) included in UB(d+1; 2) and extending the routing �i to those
vertices not in the copy will complete the proof. These vertices are of the form xx and
we make the extension by adding the following rules to the de7nition of �i:

�i(vi; xx) =




vi; xd; xx if x �= d; and i is odd;

vi; dx; xx if x �= d; and i is even;

vi; 0d; dd if x = d; and i is odd;

vi; d0; dd if x = d; and i is even;

the fact that FK(d;2)(ATd+1) ⊂ FB(d+1;2)(ATd), guarantees the correctness of this
extension.

4.3.2. Diameter three
In order to work with diameters greater than two, let us say that two arcs

e = a x1 : : : xD−2 d b and e′ = a′ x′
1 : : : x′

D−2 d b
′ of FG(ATd) are �-equivalent,
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writing e � e′, if

a′ − a ≡ b′ − b ≡ x′
1 − x1 ≡ · · · ≡ x′

D−2 − xD−2 (mod d):

Notice that, from the 7rst equality, we deduce that b−a ≡ b′−a′ (mod d). As usual, <e=
stands for the class of arcs equivalent to e and FG(ATd)= � for the quotient of FG(ATd)
by �. As an example, we show the equivalence class of the arc e = 31 4 1 5 9 2 of
FK(8;6)(AT8 ):

<3 1 4 1 5 9 2== {3 1 4 1 5 9 2; 2 0 3 0 4 9 1; 1 8 2 8 3 9 0; 0 7 1 7 2 9 8;
8 6 0 6 1 9 7; 7 5 8 5 0 9 6; 6 4 7 4 8 9 5; 5 3 6 3 7 9 4;

4 2 5 2 6 9 3}:

The cardinality, nb(d;D), of FK(d;D)(ATd)= � is

nb(d;D) = |FK(d;D)(ATd)= � | =
⌊
d − 1
2

⌋
(d − 1)D−2;

since the cardinality of <e= is d for any arc e and the cardinality of FK(d;D)(ATd) is

|FK(d;D)(ATd)| = |ATd |(d − 1)D−2 = d
⌊
d − 1
2

⌋
(d − 1)D−2:

A similar computation gives the cardinality nbb(d+ 1; D) of FB(d+1;D)(ATd)= �:

nbb(d+ 1; D) = |FB(d+1;D)(ATd)= � | =
⌊
d − 1
2

⌋
dD−2:

In what follows we shall identify Zd+1 \ {d} with Zd.

Remark 18. For any arc e, its �-class <e= veri7es:

{b | ∃f∈ <e= : f = a x1 : : : xD−2 d b} = Zd: (9)

This property of � will play a key role in the proceeding constructions. In fact, it
seems to be the only property that an equivalence relation over FG(ATd) must verify in
order to prove the next results. This means that diUerent relations satisfying (9) would
yield nonisomorphic constructions.

Theorem 19. For any d¿ 3 there exist graphs Gi ∈H2d;3 for i = 0; : : : ; l with l =
nb(d; 3) such that:

• UK(d; 3) . G0 ❁ G1 ❁ · · · ❁ Gl in H2d;3,
• |Gi+1| = 1 + |Gi| for i = 0; : : : ; l − 1.
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Proof. Let G0 be the graph UK(d; 3)−UFK(d;3)(ATd) and for i¿ 1 let Gi be the graph
obtained by adding a new vertex vi to Gi−1 and joining vi as we next describe. First,
we order the set FK(d;3)(ATd)= � saying that <0 x d c= is previous to any <0 x′ d c′= such
that either c¡c′ or c= c′ and x¡x′. Then, we can label each vertex vi with the ith
element of FK(d;3)(ATd)= �, since l= |FK(d;3)(ATd)= � |. If vi is labelled with <0 x d c=,
we join it to:

• any previous added vertices (labelled with) <0 x′ d c= for any x′ ¡x,
• vertex 〈j; x; c〉d j∈G0 for any j∈Zd, where 〈j; x; c〉 = (j + x − c)mod d .

Notice that the vertices of the form x d b are adjacent to vertices (vi labelled with)
<0 〈c; x; b 〉d c= for c = 1; : : : ; �(d − 1)=2�.
In order to verify the condition on the maximum degree, it suWces to verify it for

Gl, because the rest of graphs are subgraphs of it. Let u be a vertex of Gl, then its
degree is

degGl
(u)6




degUK(d;D)(u) −
⌊
d − 1
2

⌋
if G0 � u= a x d;

degUK(d;D)(u) −
⌊
d − 1
2

⌋
+

⌊
d − 1
2

⌋
if G0 � u= x d b;

(d − 2) + d if G03u= vi for some i;

degUK(d;D)(u) otherwise;

which is always less than 2d. Next, we verify that the condition on the diameter holds
by giving the following compatible routing � in Gl (Fig. 8).

�(u; v) =




u; v if u ∼ v;

a minimal u − v walk in G0 if u; v∈G0;

u; �∗(u; v); v if u �∈ G0;

�(v; u)t if v �∈ G0;

where �(v; u)t is the walk �(v; u) travelled in the opposite direction, and

�∗(<0 x d c=; v) =




<0y d c=; y d c if G03v= <0 x′ d c′=

and y = 〈c; x′; c′〉 �= x;

x d c; if G03v= <0 x′ d〈x′; c; x〉=;
〈z1; x; c〉d z1; d z1z2 if G0 � v= z1z2z3

and z1 �= d;

〈z2; x; c〉d z2 if G0 � v= d z2z3:

The restriction �|Gi of � to any Gi gives rise to a compatible routing in Gi.
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Fig. 8. Graph construction for Proposition 19.

We can derive a similar result for De Bruijn graphs.

Proposition 20. For any d¿ 3 there exist graphs Gi ∈H2d+2;3 for i = 0; : : : ; l with
l= �(d − 1)=2�(d − 1) such that

• UB(d+ 1; 3) . G0 ❁ G1 . G1 ❁ · · · ❁ Gl,
• |Gi+1| = 1 + |Gi| for i = 0; : : : ; l − 1.

Proof. As in Proposition 17, we apply the previous proposition to the copy of UK(d; 2)
included in UB(d+1; 2) and extend the routing � from the new added vertices to those
vertices, u= x1x2x3 not in the copy of UK(d; 2), adding the follow rule:

�(v; u) = <0 x d c=; 〈x1; x; c〉d x1; d x1 x2; x1 x2 x3 if G03v= <0 x d c=;
where the fact that FK(d;3)(ATd) ⊂ FB(d+1;3)(ATd+1) guarantees the correctness of the
extension.

4.4. The ,-union and expansions for diameters greater than 3

In previous constructions, we were able to add an amount of vertices close to
nb(d;D). It seems to be very diWcult to obtain similar results (at least with our ap-
proach) for larger diameters. Nevertheless, we are still able to add an exponential
amount of vertices, as shown below.
Let , :A(⊂ A(G)) → V (H) be a map from a subset A of the arcs of a digraph G

to the vertices of a graph H . Then, we call the ,-union of H to G the graph

G ∪, H = U (G − A) ∪ H + UA,;
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Fig. 9. The ,-union of G and H .

where

A, = {(v; h)∈V (G) × V (H): v∈V+(,−1(h))}:

Intuitively, the function , selects arcs of the digraph and vertices of the graph and
joins them as in Fig. 9.
Now we establish some directs bounds for the diameter and the maximum degree

of a ,-union.

Lemma 21. Let G∪, H be the ,-union of a graph H in H:1 ;D1 to a digraph G such
that U (G − A) is in H:2 ;D2 , where A is the domain of ,. Then,

D(G ∪, H)6max
(
D1; D2; 1 + max

h∈H
lh

)
;

:(G ∪, H)6max
(
:2;:1 + max

h∈H
|,−1(h)|

)
;

where

lh =max
u∈G

d(u;V+[,−1(h)]) = max
u∈G

min
v∈V+[,−1(h)]

d(u; v)

and d(u; v) denotes the distance between u and v in U (G − A).

Proof. We 7rst bound the diameter. Given two vertices in G ∪, H , if both belong to
the copy of H or U (G−A), then they are at distance less than D1 and D2, respectively.
If they are in diUerent copies, then the one in the copy of H , say h, is adjacent to
the vertices of V+[,−1(h)]. Among them, there is at least one at distance lh from the
vertex in the copy of U (G − A), say u. Hence, h is at distance at most 1 + lh from u.
In order to verify the upper bound for the maximum degree, notice that the degree

of each vertex h of the copy of H in G∪,H is |,−1(h)|+degH (h). On the other hand,
the degree of a vertex in U (G − A) does not exceed :2, because either it belongs to
V−(A) in which case its degree has decreased or its degree has not changed at all.
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Proposition 22. Let D¿ 4 and H ∈Hd;D a graph with order at most the cardinality
of FK(d;D)(ATd)= �; i.e.,

|H |6 |FK(d;D)(ATd)= � | = nb(d;D) =
⌊
d − 1
2

⌋
(d − 1)D−2: (10)

Then there exists a subset A of the arcs of K(d;D) and a map , :A → V (H), such
that the ,-union of H to K(d;D) is a graph in H2d;D; i.e.,

K(d;D) ∪, H ∈H2d;D:

Proof. By inequality (10), there exists a one-to-one map b :V (H) → FK(d;D)(ATd)= �.
We de7ne A to be the set “covered” by the image of b; more precisely

A= ∪h∈Hb(h)

and thus we claim that the map , :A → V (H) de7ned by ,(e) = b−1(<e=) veri7es the
assertion of the proposition.
In order to check that the diameter of K(d;D) ∪, H is at most D, let us apply

Lemma 21. With the notation of this lemma, both D1 and D2 are upper bounded by
D. Indeed, D16D by hypothesis and D2 =D because the set of edges UFK(d;D)(ATd)
is super uous. In order to bound lh, let u = x1 : : : xD be a vertex of K(d;D). Given
an h∈H , its preimage by , is a �-equivalence class ,−1(h) = <e= for some e∈A(G),
and, as we observed in Remark 18:

Zd = {b | ∃f∈ <e= : f = a y1 : : : yD−2 d b}:
Then, we can distinguish two cases depending whether x1 is equal to d or not. If
x1 = d [x1 �= d], there exists an f∈ <e= such that its last symbol is x2 [x1] and then,
if f = vw, the vertex w will be at distance at most D − 2 [D − 1] to u. In both cases
d(u;V+[,−1(h)])6D − 1 and, therefore, each lh is upper bounded by D − 1 and the
diameter of K(d;D) ∪, H is at most D.
Finally, the maximum degree of K(d;D) ∪, H is 2d, since |,−1(h)| = |Zd| = d,

:(H)6d and :(UK(d;D) − UA) = 2d.

The next result says that the ,-union operates as a “❁-order homomorphism” in the
sense that given an expansion in k vertices

H = H0 . H1 ❁ H2 . · · · . H2n−1 ❁ H2n = H ′ in H:(H);D(H)

from H to H ′ such that H ′ veri7es the hypothesis of previous proposition, we can
construct an expansion in k vertices

UG . G0 ❁ G ∪,0 H0 . · · · . G ∪,2n−1 H2n−1 ❁ G ∪,2n H2n in H:(G);D(G)

for a suitable Kautz digraph G. Notice that if a step in the 7rst expansion is “atomic”,
so it is the corresponding step in the second one.

Corollary 23. If H ′ ∈Hd;D veri:es inequality (10), then there exists a map , such
that K(d;D) ∪, H ′ is a (:; D)-admissible expansion of UK(d;D) in |H ′| vertices.
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Table 2
Number of vertices added to Kautz graphs

D
d : 3 4 5 6 7 8 9 10

2 4 P13
10

P13
10

P13
10

P13
10

P13
10

P13
10

P13
10

P13
10

3 6 P13
14

P13
14

P13
14

Q4
16

T
24

IS
32

T
48

IS
64

4 8 P13
18

P13
18

UII
27

UB
64

UK
192

UK
384

D
1 024

UK
1 536

5 10 P13
22

UK
24

D
64

IS
324

T
1 080

IS
1 944

T
6 480

IS
11 664

6 12 P13
26

UII
50

UB
243

UK
972

D
4 374

UK
8 748

D
39 366

UK
78 732

7 14 P13
30

UK
108

D
486

IS
2 304

T
12 096

IS
27 648

T
145 152

IS
331 776

8 16 P13
34

UII
147

UB
1 024

UK
5 120

D
32 768

UK
81 920

D
524 288

Ha
13 964 808

UB, De Bruijn graphs; UK, Kautz graphs; UII, Imase-Itoh graphs [18]; D, Delorme graphs [5]; T , graphs
de7ned by G-omez and Fiol in [16]; IS graphs de7ned by Bond and Delorme in [5]; Q4 the 4-cube; Ha
found by Hafner by computer search [17].

Furthermore, if

H . H1 ❁ H ′ in Hd;D;

then, there exist maps ,0 and ,1 such that

UG . G0 ❁ G ∪,0 H . G ∪,1 H1 ❁ G ∪, H ′ in H2d;D;

where G = K(d;D) and G0 = U (G − A) being A the domain of ,0.

Proof. Follows by taking , to be the map of Proposition 22, and the map ,1 [map,0]
the restriction of , [,1] to the set ,−1(H1) [set ,−1(H)].

Notice that even though nb(:; D)(=�(: − 1)=2�(: − 1)D−2) is smaller than the
Moore bound, :(:−1)D=(:−2), it is larger than the largest known graphs for many
values of the parameters : and D. For instance, the largest known (8; 10)-graph H was
found by Hafner [17] and has |H | = 13 964 808 vertices while nb(8; 10) = 17 294 403.
Hence, there exists a , such that K(8; 10) ∪, H is a (:; D)-admissible expansion of
UK(8; 10) in |H | vertices. Table 2 presents this expansion together with other possible
ones for 46:6 16 and 36D6 10. The number of vertices that is possible to add
to UK(d;D) is indicated in bold. The name over the numbers are the one of the
corresponding graph with which it is made the ,-union. The name “P 13” stands for
the (:; D)-admissible expansions given by Proposition 13. The other names stand for
a graph verifying the hypothesis of Corollary 23.
The two previous results of this section have corresponding ones in the case of De

Bruijn graphs.

4.4.1. Asymptotic results
The direct application of the ,-union to families of asymptotically large graphs gives

rise to new asymptotically large ones when the degree grows to in7nity. Indeed, one
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of the best-known general families of large (:; D)-graphs are the graphs on alphabets
(see [5,16]). For even values of : and D, the extensions of the graphs S(d1; d2; q)
de7ned in [4] are larger than the corresponding graphs on alphabets. This extensions
S ′ have the following orders:

|S ′| =
(
:
2

)D

+
(
:
2

)D−1

+ k
(
:
2

)D=2

− (k − 3)
(
:
2

)D=2−1

;

where

k =
⌊
D − t + 2

2

⌋

and

t = �(D=2 − 1) log:=4(:=2) + log:=4(:=2 − 1)�:
However, the next result states that there exists graphs G, which are (:; D)-admissible
expansions of Kautz graphs, with orders:

|G| =
(
:
2

)D

+
(
:
2

)D−1

+
(
:
4

)D−1

for :¿ 8 multiple of 4 and D¿ 6.

Proposition 24. For d¿ 4 even and D¿ 6, there exists an exponential function
f :N → N such that, the Kautz graph UK(d;D) has a (:; D)-admissible expan-
sion in

• (d=2)D vertices if d¡f(D),
• (d=2)D−1 vertices if d¿f(D).

Furthermore, 2D−3¡f(D)¡ 2D−2 for D¿ 6.

Proof. Let f be the function de7ned by

f(D) = 2max{k ¿ 1 | (k − 1)(2k − 1)D−2¿kD}:
By means of Calculus (Appendix A), it is possible to prove that f is well de7ned
and that 2D−3¡f(D)¡ 2D−2 for D¿ 6. Hence, if d = 2k6f(D), we have that
(d=2)D6 nb(d;D) and, for D¿ 6, UB(k; D) veri7es the hypothesis of Corollary 23.
Therefore, there exists a map ,, such that K(d;D)∪,UB(d=2; D) is a (:; D)-admissible
expansion of UK(d;D) in (d=2)D vertices. Otherwise, if d¿f(D), the graph UB(k; D−
1) veri7es the hypothesis of Corollary 23, since it has order N =(d=2)D−1¡ nb(d;D),
and then, K(d;D) ∪, UB(d=2; D) is a (:; D)-admissible expansion of UK(d;D) in
(d=2)D−1 vertices.

Corollary 25. For d even and D¿ 4, the Kautz graph UK(d;D) has an (2d;D)-
admissible expansion in (d=2)D−1 vertices.
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Asymptotically, many families of (:; D)-graphs have orders of the form k(:=2)D for
k=1; 2; 3; 5 depending upon : and D (see [9,16]) exceeding bound nb(:; D) only for
:¿4(2D). Thus, using the ideas of Proposition 24, it is possible to prove a similar
result without restriction on the parity of d.

Theorem 26. There exist integers d0 and D0, and a function f :N → N such that,
f(D)¿c2D for a positive constant c; and UK(d;D) has an (:; D)-admissible expan-
sion in

• k�d=2�D vertices if d0¡d¡f(D),
• k�d=2�D−1 vertices if d¿f(D),

where D¿D0 and k = 2; 3; 5 depending upon the values of d and D.

5. Conclusions

For all : �= 4, we have expanded Kautz and De Bruijn graphs adding an exponential
amount of new nodes in such a way that the routing algorithms remain simple and
invariant on the existent vertices. However, we wonder if it is possible to do the same
for : = 4. Other questions arise:

• How can we extend our results to general graphs or digraphs? For instance, which
conditions need a digraph G satisfy in order to expand its underlying graph or the
underlying graph of its iterated line digraphs?

• What can we say about the recursive structure obtained by making ,-union of graphs
of the same family? For example, which are the automorphism groups of the ,-union
of a Kautz graph with another Kautz graph?

Even though our techniques seem not to be applicable to all families of graphs, we
believe that it is possible to use them with the Generalized Compound Graphs [15]
which are among the largest known graphs with given diameter and maximum degree.
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Appendix A.

Proposition A.1. (1) For each D¿ 6 there exists a unique integer k0¿ 2 such that
for each integer k:

(k − 1)(2k − 1)D−2¿kD (A.1)
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for 26 k6 k0 and

(k − 1)(2k − 1)D−2¡kD (A.2)

for k ¿k0.
(2) 2D−36 k0¡ 2D−2.

Proof. (1) Since both sides of inequality (A.1) are positive, we may take logarithms:

(k − 1)(2k − 1)D−2¿kD ⇔ log((k − 1)(2k − 1)D−2)¿ log(kD):

Now, we consider the function g(x) = log((x − 1)(2x − 1)D−2) − log(xD), and prove
that exists an x′, such that g(x) is monotonic increasing for 26 x6 x′ and monotonic
decreasing for x¿ x′. Indeed, since

g′(x) =
1

(x − 1)
+ 2

D − 2
2x − 1

− D
x
=

−2x2 + (D + 3)x − D
(x − 1)(2x − 1)x

;

which is positive from x = 2 to some value x′ ¿ 2 and negative for x¿x′, as we
claimed. But g(x) is positive at x=2, since 3D−2 − 2D is greater than zero for D¿ 6,
and negative for large enough values of x. Thus, by continuity, k0 is the integer part
of the unique x0¿x′ for which g(x0)= 0. Finally, by parity, (k − 1)(2k − 1)D−2 �= kD

for any integer k.
(2) Since (k−1)(2k−1)D−2¡k(2k)D−2=2D−2kD−1 and 2D−2kD−16kD iU k¿2D−2,

then k0¡ 2D−2. On the other hand, in order to prove that k0¿ 2D−3, let us verify that
D¡k6 2D−3 implies inequality (A.1). Indeed, inequality (A.1) is veri7ed for k ¿ 0
iU

2D−2
(
1 − 1

k

) (
1 − 1

2k

)D−2

¿k:

Therefore, it will suWces to prove that 1=2¡ (1 − 1=k)(1 − 1=(2k))D−2. But when
k ¿D¿ 6 we have that(

1 − 1
k

) (
1 − 1

2k

)D−2

¿
(
1 − 1

D

) (
1 − 1

2D

)D−2

¿
(
1 − 1

6

) (
1 − 1

12

)4

;

where the last inequality holds because the function (1−1=D)(1−1=2D)D−2 is (not obvi-
ously) monotonic increasing for D¿ 6. Finally (1−1=6)(1−1=12)4¿0:5884¿1=2.
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