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ABSTRACT. Lower and upper bounds on the order of digraphs and gen-
eralized p-cycles with specified maximum degree and unilateral diame-
ter are given for generic values of the parameters. Infinite families of
digraphs attaining the bounds asymptotically or even exactly are pre-
sented. In particular, optimal results are proved for bipartite digraphs

(p = 2) and digraphs with unilateral diameter 3.
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1. INTRODUCTION

The construction of the largest [directed] graphs with diameter at most
D and maximum [out-] degree A has attracted considerable attention both
from the graph-theoretical point of view and from the network-designer com-
munity; it is known as the (A, D)—problem (see [2]).

Besides, as we noted in [6], routing strategies may have different purposes,
such as minimizing the length of the paths, minimizing congestion, simplify-
ing routing tables or avoiding deadlock, among others. One of the strategies
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for preventing deadlock is to assign directions (up/down) to the links in the
network in such a way that the resulting directed graph is acyclic. If routing
tables only allow the use of a sequence of up links followed by a sequence
of down links, it is easy to prove that deadlock is not possible. This is the
case of the up/down routing in Autonet ([8]). This kind of routing suggests
the study of directed graphs with some relaxation in the usual definition of
distance between vertices.

In this paper, as a first approach, we deal with unilaterally connected
digraphs. A digraph is said to be unilaterally connected with unilateral di-
ameter D* if for any pair of vertices u, v there exists a directed walk of length
at most D* from u to v or from v to u. According to this definition, the
(A, D)-problem becomes what we call the (A, D*)—problem, which consists
of determining the largest order nj p. of a digraph with unilateral diameter
D* and maximum in- and out-degree A.

In Section 3, we derive Moore-like upper bounds for ”27 p+ by counting
the possible number of vertices at distance j from or to a fixed vertex. We do
this for digraphs without restrictions, as well as for bipartite digraphs and
generalized p-cycles (digraphs in which the length of any cycle is a multiple
of p).

In Section 4, we study the existence of Moore digraphs, i.e. those attaining
such Moore-like bounds. We show that the problem of classifying Moore
bipartite digraphs with unilateral diameter 2 and arbitrary in- and out-

degrees is equivalent to a difficult open problem in hypergraphs. However,
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for diameters 2 or 3, we prove that unilateral Moore bipartite digraphs do
exist. Finally, we prove that there are no unilateral Moore generalized p-
cycles with odd unilateral diameter p.

In Section 5, we study the (A, D*)-problem for asymptotic values of the
parameters, finding nontrivial constructions for unilateral diameters 2 and 3,
and for p—cycles with p odd and unilateral diameter D* with (D* mod p) <
|p/2|. With respect to the former, in the last section, we summarize some

advantages of the techniques used to construct large unilateral digraphs.

2. NOTATION

A directed graph or digraph G = (V, A) consists of a non empty set V =
V(G) of elements called vertices and a set A = E(G) of ordered pairs of
elements of V' called arcs. The number of vertices |G| = |V| is the order of
the digraph. If (u,v) is an arc, we say that u is adjacent to v and that v
is adjacent from u, and we write u ~ v. We also write uv instead of (u,v)
whenever this does not lead to confusion, and we say that uv is incident
from u and to v. An arc uu is called a loop.

Usually, for any subset U of vertices of V(G), T'"(U) denotes the set of

vertices of G adjacent from a vertex of U. We define recursively:

T+ (U) k=1,
M) = { I YU)) k> 2.

If ' (U) denotes the set of vertices adjacent to a vertex of U, we can define
analogously T*(U) for k < 0. The cardinality of 't (u) = T+ ({u}) [[~(u) =

I'"({u})] is the out-degree [in-degree] of u. We write A(G) for the maximum
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among the in- and out-degrees of the vertices of G. A digraph is reqular of
degree A or A-regular if its vertices have in- and out-degree A.

A sequence of vertices u = ug, u1,...,Up_1, Uy = v of GG, such that u;_qu;
is an arc of G, is called a wu-v walk or a directed walk from u to v of length
n. A u-v walk is closed when u = v and it is a cycle when there is no other
repetition. A cycle of length 2 is called a digon. We say that a directed
walk joins v and v if it is a u-v or a v-u walk. In this work all walks will be
directed, thus the word “walk” will stand for “directed walk”.

A digraph is strongly connected if there is a walk from any vertex to
any other, and it is wnilaterally connected if there is a walk joining any
pair of vertices. The distance, dist(u,v), between two vertices u and v is
the number of arcs of a shortest u-v walk, and the wunilateral distance,
dist*(u, v), between them is the minimum of dist(u,v) and dist(u,v). The
[unilateral] diameter [D*(G)] D(G) of a digraph G is the maximum of the

[unilateral] distance function, that is:

D(G) = max {dist(u,v)}

u,veV
and
D*(G) = max {dist*(u, v)} = max {min{dist(u,v), dist(v,u)} }.
u,weV u,veV
If G has vertex set {vi,...,v,} and adjacent matriz M, i.e. that whose

entry ¢,7 is 1 or 0 depending upon the vertex v; is adjacent to the vertex v;

or not, respectively, then D*(G) is the minimum £ such that

I+M+M" -+ M (MDY > g,
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where J,, is the n X n matrix with all its entries equal to 1.

A generalized p—cycle is a digraph whose cycles have lengths that are a
multiple of p. The vertex set of a generalized p—cycle can be partitioned in
p disjoint sets, Vp, ..., Vp_1 in such a way that the vertices in the partite
set V; are adjacent only to the vertices in V11 where the last sum is reduced
modulo p. In particular, a bipartite digraph is a generalized 2-cycle.

Finally, in the interests of completeness, we give the definition of an r—
uniform k-regular simple hypergraph, which is a pair (X,{E;}ic;) where
{E;}ier is a family of non empty subsets of X whose union is X and such

that

e B, CEj=i=j (simple),
o r = |E Viel (r-uniform).

eVze X, {i: z€ E}|=k (k-regular).

3. MOORE-LIKE UPPER BOUNDS

In this section we state bounds to the largest order n*A’ p- of a digraph
G with unilateral diameter D* and maximum in- and out-degrees A. We
split the section into three subsections: in the first, we consider digraphs
having no restrictions, while in the last two, we treat bipartite digraphs
and generalized p-cycle. Although bipartite digraphs are particular cases of
generalized p-cycles, we deal with them in a deeper way, considering different

in- and out-degrees.
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3.1. General case. When no additional restrictions are assumed, n*A’ p- 18
upper-bounded as follows:

(3.1)

1420871 for A> 1,

1+ 2D* for A=1.

na p- < Mapr = 14240 +2A%+. . 2AP" = {

Indeed, for any digraph G with maximum degree A, the number of vertices

that can be reached from a fixed vertex v in j steps is A7; thus
(3.2) ‘I‘j(v)‘ < Al Vi€ Z,veQG.

Therefore, if G has unilateral diameter D*, then we have that

D*
|G| = U Fj(v) < Z ‘Fj(v)‘ < Z Al — Z Alil — M* A -
|71< D> |7I<D* lj|<D* j=—D*

We call M*A p« the Moore bound for unilateral digraphs and unilateral

Moore digraph any digraph attaining that bound.

3.2. Bipartite Case. Let G = (V5 |JVi,A4) be a bipartite digraph with
partite sets Vp and V;. Suppose that vertices in the set V) [set V] have in-
and out-degrees Ay and AJ [A] and Af] respectively. A two-way count

argument gives rise to the following equality:
(3.3) AFAT = AJAT.

Let us call A the square root of that product, i.e. A= \/AS'AT. If G is
unilaterally connected with odd unilateral diameter D* = 2m + 1, and v is

a vertex of Vj, then the number of vertices of Vj at unilateral distance at
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most D* from v is upper-bounded by
(3.4)

L+ (ATAT 4+ (AFAT)™) + (Ag AT +- -+ (AgAD)™) = 1+2§:52k-
k=1

Symmetrically, if v € V;, the number of vertices of V; at unilateral distance

at most D* is not greater than

(3.5)

1+ (ATA +- -+ (ATAD)™) + (AT Ay +- -+ (ATA)™) = 1+2iA2’“.
k=1

On the other hand, when D* is even, say 2m, and v is a vertex of Vj [of

V1], the number of vertices of V; [resp. Vp] at unilateral distance at most

D* from v is not greater than

m—1
AF+ Ay +-+AFAYTT A AH)™ T = (A +4,) Y A%
k=0
m—1
AF + A7+ AT A H AL (AY)™ = (AT +A]) YA

k
Therefore, if A = (A7, AT, AL, AF) and AFAT = AFAT, then the largest

*
i

A,D*

Ay, AT, A(")', Ai" is upper-bounded by

order n of a bipartite digraph with unilateral diameter D* and degrees

2D* +1 if D* is odd and A =1,

(3.6) M _ 2Dj‘ ) if D* is even and AA =1.
A.D 4(AP™+ —1)/(A?2 —1) =2 if D* is odd and A > 1,

A4A(AP" —1)/(A% —1) if D* is even and A > 1,

where A = (Ay + Af + A7 + Af)/4. We call unilateral Moore bipartite

digraphs the digraphs attaining that bound.

3.3. Generalized p-cycles. Let G be a generalized p-cycle with partite

sets Vo, V1, ..., Vp—1 and unilateral diameter D*. Note that D* > |p/2],
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since the length of any walk joining a vertex in Vp with another in V|, 5| is at
least |p/2|. In order to simplify the formulae, let us only consider A-regular
digraphs. Then, the cardinality of each partite set V, is upper-bounded as

follows:

Va| < mi IV (v) NV, | < min mi I (v)] <
Vol < min > [@)NVe|<minmin > |IV()[ <
ljl<D* l7|<D*

i+j=a (mod p)

< min min E Al = min g Al
€L, vEV; L k€Zp
lil<D l7l<D
j=a—i (mod p) j=k (mod p)

Where the first inequality holds because each vertex must be reached by any
other in at most D* steps forward or backward, while the second inequality

holds because, for any two integers ¢ and j, and any v € V;,

(37) Fj (U) C ‘/(i-i-j) mod p*

Therefore, the largest order n;; A, D of a generalized p-cycle with maximum

in- and out-degrees A and diameter D* is upper-bounded as follows:

* * . j
(3.8) ny A < M A D :plgreuzn Z Al
P lilkDr
j=k (mod p)

We call this upper bound the Moore bound for unilateral generalized p-cycles
and unilateral Moore generalized p-cycle any digraph attaining it. For A =1
the unilateral Moore generalized p-cycles are directed cycles, thus we will
assume A > 2. We end this section by giving a closed form to the summation

in (3.8)
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Proposition 3.1. If D* = mp+r with r = D* mod p and A > 1, then

(
2pAs AL peven , <[],
(3.9) M'pans = p(A"T +A")AL p odd , r < |2],
AP
[P+ 2pAP 55 r> (5]

Proof. For each k we set

Sk = Z Al

l71<D*
j=k (mod p)

If m = 0, then D* = r and s = 1 or 2A* depending on whether or not
k = 0. Thus mins; = 1 as stated in (3.9) since r = D* > |p/2|. For m > 0,

we split the above sum in two, depending on whether j is positive or not.

m—1+a m—+b
Sp = Z AT+ Z AT — Z Abptk Z Ahr—k,
j=hp+k<D* —j=hp—k<D* h=0 h=1
h>0 h>1

where a = 1 if &k < r and 0 otherwise, and b = 1 if K+ > p and 0 otherwise.
Thus we can distinguish four cases:

(1) If k < r and k +7 > p, then s, = (AF + AP=F)(1 4 ... 4 A™P)
and reaches its minimum at k = [p/2] which is s¢) = (Alr/2l 4
AP (1 4 ... 4 ATP),

(2) Ifk < rand k+r < p, then s, = AP+ (AF+AF)(AP+- ..+ A™) and
reaches its minimum at k = 0 which is s(9) = 1+ 2(AP 4.+ + A™P).

(3) If k > r and k +r > p, then s;, coincides with s,_j of case 2, thus
the minimum s(3) of sy in this case is greater than or equal to s(y).

(4) If k > r and k +r < p, then s, = (AF + AP=F)(1 4 ... 4 A(m=Dp),
which reaches its minimum at k = |p/2| which is sy = (Alr/2l 4
AP/21) (1 4. 4 Alm=1)p),
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r
p—h
p/2
(p—1)/2
p/2—-1
4
k
0 T T
01 p—1p
FIiGURE 1.

Thus s4) < s@2) < 5(@3),8(1) and (see Figure 1) s reaches its minimum at

k= |p/2] if r < |p/2], (case 4), or at k = 0 if r > |p/2] (case 2), and we

have that
(ARl AP (1 4 - 4 Al=1P) i - < |p/2]
min s =
ke, .
1+2(AP + ... 4 A™P) otherwise.
From which (3.9) follows readily. O

Note that for p =2 and A = (A, A, A, A) we obtain (3.6).

4. UNILATERAL MOORE DIGRAPHS

Unlike what happens in the directed and undirected contexts for which
the characterizations of Moore graphs are well known (except for (A, D) =
(57,2) in the undirected context), the classification of such digraphs in the
unilateral context seems to be difficult even for small values of the parame-
ters. Indeed, for D* = 1, unilateral Moore digraphs are the regular tourna-

ments on 2A + 1 vertices, but these digraphs are not completely known and
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are still a subject of research ([4]). The only really trivial case is for A =1,
for which unilateral Moore digraphs are the cycles on 2D* 4+ 1 vertices. In
[6], we prove that there is no unilateral Moore digraph for A = 2, D* = 2,
and we present a digraph with 12 vertices (thus, optimal for those values of

the parameters). Apart from this no other results are known.

4.1. Bipartite case. If a unilateral Moore bipartite digraph with unilateral
diameter 2 exists, then its underlying graph must be a bipartite complete
graph, because each vertex in one of the partite sets reaches any vertex in
the other partite set in 1 or “-1”7 step. However, the converse is not true,

and we need an additional condition besides the non—existence of digons.

Theorem 4.1. A bipartite digraph G with degrees Ay, Ay, A] and Af is
a unilateral bipartite Moore digraph with unilateral diameter 2 if and only
if it has no digons, its underlying graph is a complete bipartite graph and

there is no pair of vertices u and v such that T (u) = ' (v).

Proof. Suppose that G is a unilateral Moore bipartite digraph with unilateral
diameter 2 and let u and v be two different vertices. If v and v belong
to different partite sets, then dist*(u,v) < 2, and thus dist(u,v) = 1 or
dist(v,u) = 1, that is u ~ v or v ~» u, which implies that UG is a complete
bipartite graph. Besides, if u,v,u is a digon, then the order of G is at
most Ay + A(")' + A7 + Ai" — 2, contradicting the assumption that G is a
Moore bipartite digraph. If v and v belong to the same partite set, then
dist*(u,v) = 2, and there exists a vertex w such that either u, w, v or v, w, u is
a walk. Since G has no digons, then w € I'" (u) ATT (v) and I'" (u) # 't (v)
(where A stands for the symmetric difference between sets, i.e. AA B =

(A\B)U (B 4)).
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Conversely, if the underlying graph of a bipartite digraph G is complete,
then the order of G is [T (u) U™ (u)|+ | (v) UT™ (v)] for any two vertices
u and v taken from different partite sets. Now, if G has no digons, the
previous unions are disjoint and the order of G' becomes equal to |TF (u)| +

T~ (u)| + T (v)|+|T~(v)| = Ay +Af +A] + A which is exactly M*&’D*

for D* = 2. The completeness of UG also implies that the unilateral distance
between vertices in different partite sets is 1. Finally, if two different vertices
u and v are in the same partite set, since T'f(u) # T'"(v), there exists
w € It (u) ATH(v). Therefore, either u,w,v or v,w,u is a walk, which

implies that the unilateral distance between u and v is 2. O

This result allows us to relate the existence of unilateral bipartite Moore
digraphs with D* = 2 with the existence of a special kind of hypergraph, as
shown in the following corollary.

Corollary 4.2. A bipartite digraph G is a unilateral Moore bipartite digraph

with diameter 2 and degrees Ay, A0+, AT, AT if and only if the hypergraph
defined by

H*" = (Vo, {T" (u) }uews)
is a AT ~uniform Ay —regular simple hypergraph.

The existence of such hypergraphs is a particular case of a known (and,
to the best of our knowledge open) problem in the theory (see the open
problem in [1, p. 5]). However, we can construct such digraphs for special
values of the parameters. To this end, let us introduce some basic facts

about circulant matrices.
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An n xn matrix M is said to be circulant if its entries satisfy the equality
m;; = mi j—i+1, where the subscripts are reduced modulo n and lie in
the set {1,...,n}. Let W, denote the n x n circulant matrix whose first
row is [0,1,0,...,0]. Thus the following basic equalities hold: W' = I,
W, =W, =W ! and

Gn(Wy) = Jp,
where G, (z) denotes the polynomial 14-z+- - -+2" . Furthermore, if j,, de-
notes any column of .J,,, then j,, and j, are the only right and left eigenvector
of W, with eigenvalue 1. Thus, for any polynomial ¢(z), ¢(Wy)jn = q¢(1)jn
and ! q(Wy) = q(1)j,.

In what follows, if A = (a;;) and B = (b; ;) are two matrices we will say
that A < Bifa;; < b;; for all i, j. We also say that if p(z) = ap+-- - +ap2"
and ¢(z) = bo + - -+ + byz™ are two polynomials, then p(z) < q(z) if a; < b;
for all . Note that if p(x) < ¢(x), then p(A) < ¢(A) for any given matrix

A.

Proposition 4.3. For any positive integer A there exists a unilateral Moore

bipartite A—regular digraph with unilateral diameter 2.

Proof. If W = Wsa, let G be a digraph with adjacency matrix

0 ga(W)
WAGA(W 1) 0

M =

First, we check that G is A-regular. Indeed, both Ga (W) and W2GA (W 1)

are circulant matrices whose rows have exactly A entries equal to +1, since

2A71)

the polynomials Ga (x) and 22Ga (= have exactly A not null terms and

all of them have coefficient 1. Besides, if X = Go (W) + (WAGA(W )T,
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then

M+M" = o

X 0
But (WAT=WH2 =W H2 =W 2 = W2, thus
(4.1) X = GA(W) + WEGA(W) = Goa(W) = Jon,
which implies the regularity.

Next, in order to prove that the unilateral diameter is 2, we will verify

that A=T+ M+ M" + M?+ (M")? > Jya. First note that, by (4.1)

for some polynomial r(x). Thus it suffices to prove that r(xz) > Goa(z).

Now, the corresponding matrix and polynomial computations results in:
r(z) =14 28°Ga(2)Ga(z7h).

But, Ga(z7!) = wl_AgA(x) and Ga(7)% > Gaa 1(x), thus

r(z) = 1420Ga(2)” > 14 22Goa-1(2) > 1+ 2Gon—1(z) = Goa () = Gu().

0

For unilateral diameter 3, a similar result can be obtained. In this case we
will consider any possible values for the degrees Af, A, A, A]. However,
since the partite sets of a unilateral Moore bipartite digraph with odd unilat-
eral diameter have the same cardinality (equations (3.4) and (3.4)), we have
that A(')'r = A and Ai" = A, and we can consider only two parameters.

Proposition 4.4. Given two positive integers Ay and Ay, there exists a
unilateral Moore bipartite digraph with unilateral diameter 8 and maximum

out—degrees Ao and Aq.
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Proof. Let us call p(z) and ¢(z) the polynomials Ga, (x) and z21 TG, (2220)
respectively. Then, if n = 2A¢0A;+1 and W = W,,, let G be a digraph with

adjacency matrix

In order to check the condition on the degrees, we proceed as in Proposi-
tion 4.3, noticing that both p(W) and ¢(W) are circulant matrices whose
rows have exactly Ay and A; entries equal to 1 respectively, since p(z) and
q(z) have, respectively, Ag and A no null terms and all of them have coeffi-
cient 1. Besides, j, p(W) = p(1)j) = Aoj, and j) (W) = q(1)j, = Avj,)
which implies the regularity.

Next, in order to prove that the unilateral diameter is 3, we will verify
that A=T+M+M" + M2+ (M")2 + M+ (M")? > Jp,. A matrix
computation results in:

e I+pg+p'q" p+aq" +p*q+pT(q")?
pT+aq+ @) +pd’ I+pg+p'q"
where p and ¢ stand for p(W) and (W) respectively. Thus it suffices to

prove that

(1) T +pg+p'q" =J, (since G is a Moore digraph),

2) p+q" +p*a+p"(q")? > Jn.

In order to prove (1), we will restrict the matrices to the orthogonal subspace
ji- of j,. Note that since the eigenvalues of W are the n-th root of the unity,
and since 2A¢ does not divide n = 2A¢A; + 1, the eigenvalues of W20 are

all different to -1. Then, the following equalities are valid in 5;-:

WAO—IWAOHW?A‘)AI—I I WAoﬂw—l—I —W Ao

W—1 W2k — ] W —1 Who+1 WhotrI

pg =
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And therefore

—W Ao I
W20+  Who4]’

Thus I +pg+p'q" =0inj,, but (I +pg+p'q")jn = [1+p(1)g(l) +

p(W)TqW)" =p(W W) =

p(1)q(1)]4n = (1 + 2A¢A1)jn, which implies (1), since J, is the only matrix
verifying these two properties, i.e., having j, as a eigenvector with eigenvalue
1 and having j;- as its kernel.
In order to prove (2), we note that ¢(z~') = £207"Ga, (£220), and that,
p(1)? > Gony—1 () thus if
r(z) = Gay (@) + 220G, (2229) + Gony—1(2) 320 TG A, (720),
then p + ¢ + p?>q > r(W). But
r(z) = Gao (z) + 22°Ga, (z22°) (1 + 2Gony—1(x))
=G, (z) + ongAl ($2A0)g2A0 (x)
= Gno(7) + 72°G2n0a, (2) = Gonea,+2,(7)
and Goaga; 1A, (%) = Goaga,+1(x). Hence, p+q' +p?q = Goaga, 11(W) =
Gn(W) = Jy. O

Figure 2 shows the digraph of Proposition 4.4 with Ay = Ay = 2.

4.2. Generalized p—cycles. For p > 2, we could not find unilateral Moore
p—generalized cycles. Instead, we can prove that they do not exist for odd p
and D* = p.

Proposition 4.5. There is no unilateral Moore generalized p—cycle digraph

with odd unilateral diameter p (and mazximum degree A > 1).

Proof. Suppose that G is a unilateral Moore generalized p—cycle with odd
unilateral diameter p and partite sets Vp, ..., V1. Let u be a vertex in

Vo and v a vertex in I'"(u). Then, set A =T (u) \ {v}, B=T"(v) \ {u}
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FIGURE 2. A unilateral Moore (2,3)-bipartite digraph.

and M = |p/2]. With these choices, and since G is a unilateral Moore
generalized p—cycle with odd unilateral diameter p, the following equations

hold,
Vargr = M ) UM () = TM (0) uTM (A) UT ™M (u),
Virgr =M () UL~ M) () = DM () UM (B) UT™M (u),
where all the unions are disjoint. Thus we have that,
r'M(A) =1=M(B).

Hence, for any ¢ € T=M+1(B), all the vertices adjacent to ¢ will be in '™ (A),
ie.

I'(c) cTM(A4) = [ T(a).
acA
But ‘F_l(c)‘ = A > A—1=|A]|, thus, by the pigeonhole principle, there are

two vertices wy,ws € I'"(c) and a vertex a € A such that wy,wy € TM(a).

But this implies that there exist two different walks of length M + 1 =
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|p/2| + 1 from vertex a to vertex ¢, which is impossible in a unilateral

Moore digraph like G. U

Corollary 4.6. For any positive integers p =2k + 1 and A,

(NS pAFFL L pAF 1.

5. ASYMPTOTIC LOWER BOUNDS

In order to study the unilateral (A, D*)-problem when A goes to infinity,
let us summarize the bounds (3.1) and (3.9) of Section 3:
e General case: nj p. < 2AD" 4+ oAD"
e Bipartite case: nj 5 p« < 4AP" 1+ O(ADP"=2)

e Generalized p-cycle case: if D* = mp + r with r = D* mod p

2pA™P=P/2 f O(A™P=3P/2) peven,r < |5,
ni ap- < pAMP=P=1/2 4 O(AMP=IP/2HL/2) podd , r < |B],
2pA™P + O(A™PP) r>|B].

5.1. General Case. First of all, let us point out that the Kautz digraphs
K (A, D) have unilateral diameter D, since the unilateral diameter is always
at most the diameter, and, with an alphabetic notation (see [6]), the vertices
u = 0101... and v = 2121... are at unilateral distance D. Besides, this
digraph is A-regular and its order is AP+ AP~1 thus NA p+ 2 AP AP
That is asymptotically half the unilateral Moore bound M*A p-.

In [6], we proved that there exist families of A-regular digraphs with
orders 1.5A% and 1.25A3 for D* = 2, 3 respectively, by making the directed

product of a suitable digraph with some De Bruijn digraphs. More precisely,
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if G is a Aj—regular digraph which is k—unilaterally reachable, i.e., such that
for any two vertices v and v (not necessarily different) there exists a walk
joining v and v in exactly k steps, then the directed product G x B (Ag, k) of
G and the De Bruijn digraph B (Ag, k) of maximum degree Ay and diameter
k is a A1 Ag-regular digraph with unilateral diameter k and order |G| A%.
Therefore, if G has order larger than A’f, there is a family of digraphs with
unilateral diameter £ and orders asymptotically larger than the orders of
the corresponding Kautz digraphs. We obtained the previous two bounds
by finding 2-regular digraphs which are 2 and 3—unilaterally reachable and
have 6 and 10 vertices respectively.

Putting these results together, we have that:

1.5A%  if D* =2,
nx p- = § 1.26A% if, D* = 3,
A" if, D* > 4.
5.2. Bipartite and Generalized p-cycles. The work [7] introduces a fam-

ily of generalized p-cycles, called BGC (p, A, n), with vertex set Z, x Z,, and

the following adjacency rules:

(a0, i) ~ (@ + 1, Ai+ 1) fort=0,...,A—1.

Some instances of these digraphs have asymptotically optimal orders for p

odd and r < [p/2], as we stated as a corollary of the following proposition.

Proposition 5.1. The unilateral diameter of BGC (p,A,Ah) is at most
h+ 5] for h=0,[5] mod p.
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Proof. First of all, note that for any n,7 > 0, the set of vertices at distance

at most j from a vertex («, i) in BGC (p, A, n) is
Fj(Oé,’i) :{(Oé —I—j,Aji + Aj_ltj_l + -+ Aty —I—t()) 0Kt < A},
={(a+4,Ai+z): 0<z <A}
Therefore the cardinality of TV (cv,4) is |TV(cv,4)| = min(n, A7) and, if j = h

and n = A", we have that ‘Fh(a,i)‘ = n and then, ['"(a,7) = Vaih mod p-

Consequently, since any vertex is adjacent from another, we have that:

(51) Fh+k(aai) = Va—l—h—i—k mod p k = 07 17 ) LP/2J :

It remains to be proved that for any 1 < k' < |p/2] the vertex (a, %) reaches
the vertices in V45 g forward or backward in at most h + |p/2| steps.
In fact, we will see that the vertex (a,i) reaches the vertices in Vyip—p
backward, or equivalently, that any given vertex i’ € Vo4ph_k mod p reaches

(e, i) forward in at most h + |p/2] steps. Indeed, by (5.1) we have that
" a4+ h = K,i') = Varon—k4k  mod p

forany 0 < k < |p/2]. But, a+2h—k'+k =« mod p if we take k = k' —¢
and

1 ifpisodd and h=[p/2] modp,

0 otherwise.

Corollary 5.2. If | = mp +r with r =] mod p and

2

I,

hp=ymp—(p—1)/2 podd,r<|t],

mp — p/2 peven,r<[

NGRS

mp r> B,

\

then BGC ( A, A’”J)) has unilateral diameter 1 and order pAh». O
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These digraphs are asymptotically optimal for p odd and r < |p/2|. For
the other values of the parameters, their orders are asymptotically half the

corresponding Moore bound.

6. CONCLUSIONS

We have shown that the unilateral (A, D*)-problem is not trivial even
for small values of the parameters. As in the undirected case, no general
techniques, such as the line digraph in the directed context, seem to exist
(see [5] for a discussion of the disadvantages of the line digraph technique
in this context). However, for some particular cases, direct products and
voltage graphs have been useful. As mentioned in Section 5.1, the direct
product of certain classes of digraphs gives rise to families of asymptotically
large unilateral digraphs. The method works because the construction of a
k-unilaterally reachable A-regular digraph leads to a complete infinite family
of large digraphs with the same unilateral diameter and maximum degree
being a multiple of A. Although we only know of two such digraphs, new
results may be obtained by means of a computer search.

Voltage graphs give good results [3] in the construction of large graphs
with fixed small degree and diameter. In fact we used a simplified version
of voltage graphs in [5], obtaining optimal and quasi-optimal results for
unilateral diameter 2 and maximum degrees 2, 3 and 4. However, this
approach does not seem to work neither for maximum degrees larger than 4

nor for unilateral diameter larger than 2.
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