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Abstract

Graphs with maximum degree�, diameterD and orders greater than(�/�)D , for a constant� < 2,
are proved to exist for infinitely many values of� and forD larger than a fixed value.
Published by Elsevier B.V.
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1. Introduction

The problem of finding the largest ordern�,D, among(�, D)-graphs, i.e. graphs with
maximum degree� and diameterD, has attracted considerable attention from the graph-
theoretical point of view, as well as from the network-designers community, and it is known
as the(�, D)-problem (see[2,16]). An upper bound onn�,D derived by counting the
maximum possible number of vertices at a fixed distance from a given one is theMoore
boundM�,D = 1+ � + �(� − 1) + · · · + �(� − 1)D−1. Besides the trivial cases (D = 1
or � = 2), the bound can be attained in two cases (D = 2 and� = 3, 7) and maybe in a
third, which is still open (D = 2 and� = 57), but for the other values of the parameters the
bound cannot be attained (see[6]). Except for a few more cases, and even for small values
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of � andD, the largest known graphs (maintained in[8]) have orders far below the Moore
bound. One might still wonder whether� or D goes to infinity, or if there exist graphs
with orders asymptotically equivalent toM�,D. The question was answered affirmatively
in [4] by means of probabilistic methods, forD going to infinity and fixed�. However, for
fixed diameter, the question, posed by Bollobás ([3, Ch. IV, p. 8]), remains open, except
for D = 2, 3, 5 (see[10]). However, the best known large graphs for large values ofD have
orders of the form

k

(
�
2

)D

+ o(�D),

wherek = 2, 3, 5 depending onD (see[15]). To the best of our knowledge, only one class
of larger graphs, for infinitely many values of the parameters, has been found, namely the
generalized compound graphs introduced in[12]. They can be built as a particular case of
the construction that we will present in Section 3. This construction enables us to prove
(Theorem 7) that there exist constants� < 2 andD0, such that for eachD > D0 there exists
a sequence of(�n, D)-graphs with�n −→ ∞ and orders greater than

(
�n

�

)D

.

Finally, in Section 4, we present a second construction that improves the value of the
constant� for diameters congruent with−1, 0 and 1 modulo 6, which is an extension of a
work presented in a seminar by one of the authors[13].

2. Notation and basic facts

If G = (V , E) is a graph with vertex setV = V(G) and edge setE = E(G), we denote

its order by|G|. Given two adjacent verticesu andv joined by an edgeuv, we writeu
G∼ v

or simplyu ∼ v. Analogously, ifH = (V , A) is a directed graph (or digraph for short) with
vertex setV = V(H) and arc setE = E(G), we denote its order by|H |, and we will write

by u
H� v or simplyu�v if u is adjacent tov.

We denote by UH , the underlying graph ofH. Conversely, we call thesymmetric looped
digraph of a graphG the digraph obtained fromG by replacing each edge by two
opposite arcs and adding a loop to each vertex, i.e., the digraph(V(G), {(u, v) : {u, v} ∈
E(G)} ∪ {(u, u) : u ∈ V(G)}). A digraphH is symmetricif wheneveruv is an arc ofH,
thenvu is also an arc ofH.

If u = u0, u1, . . . , un−1, un = v is au–v walk, then we say thatv belongs to�n(u) andu
belongs to�−n(v) (we omit thenwhenn =1). It is said that a directed or undirected graph
with vertex setV is k-reachableif �k(u) = V for any vertexu. Notice that anyk-reachable
graph (with more than one vertex) isk′-reachable for anyk′ > k as well. We will denote
by dG(u, v), or simply d(u, v), the distance fromu to v, and by D(G) the diameter ofG.
A related concept is theunilateral diameterof a digraph, which is the minimum integerD
such that, for any two verticesu andv, min(d(u, v), d(v, u))�D.



E.A. Canale, J. Gómez / Discrete Applied Mathematics 152 (2005) 89–108 91

Recall that, if�−
H (v) and�+

H (v) are the in and out-degrees of a vertexv, then∑
v∈H

�+
H (v) =

∑
v∈H

�−
H (v) = |A(H)|. (1)

We denoted by�(H) the maximum among the in and out-degrees, i.e.

�(H) = max
v∈H

max(�+
H (v), �−

H (v)).

Analogously, the maximum degree of a graphG will be denoted by�(G). A (�, D)-
[di]graph is a [di]graph with maximum degree� and diameterD. Notice that ifG is
a (�, D)-graph then its symmetric looped digraph is aD-reachable(� + 1, D)-digraph.
A [di]graph all of whose vertices have the same [in and out-]degree� is called
�-regular.

The line digraph LH of a digraphH has as vertices the arcs ofH and as arcs the
pairs of adjacent arcs ofH, i.e., V(LH) = A(H) and A(LH) = {(uv, vw) : uv, vw ∈
A(H)}. WhenH is �-regular with��2, this operator verifies the following important
properties:

• LH is �-regular,
• D(LH) = D(H) + 1,
• LH is (k + 1)-reachable ifH is k-reachable.

The first two properties allow us to iterateL to obtain large(�, D)-digraphs, since if
��2 andH is a �-regular digraph with diameterD and ordern, then LkH is a �-
regular digraph with diameterD + k and ordern�k. Good examples of this are the
two well-known families of iterated line digraphs calledDe Bruijn andKautzdigraphs:

• the De Bruijn digraph B(�, D) is defined asLD−1K+
� , whereK+

� is the complete digraph
on � vertices with a loop at each vertex (i.e.|K+

� | = � and A(K+
� ) = V(K+

� )2). Thus,
B(�, D) is a�-regularD-reachable digraph with diameterD and order��D−1 = �D,
which is the largest possible order for aD-reachable(�, D)-digraph.

• The Kautz digraph K(�, D) is defined asLD−1K∗
�+1, whereK∗

�+1 is K+
�+1 without

loops. Thus, K(�, D) is a�-regular digraph with diameterD and order�D + �D−1,
which is the largest known order for a(�, D)-digraph with��3.

Finally, as usual in calculus, bybn = o(an) we mean that limn→+∞ bn/an = 0.

3. First construction

Our first construction is based on a graph–digraph product that we call the�-shuffle
c-exchangeproduct, inspired by the ones defined in[9,1]. In order to define this and compute
the order, maximum degree and diameter of the graphs obtained from it, let us introduce
some previous related concepts.
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Fig. 1. Two shifts of K(2, 2): (abc)(ef d)(gh)(ij)(lk) and(abc)(ef hgd)(ij)(lk).

3.1. Forward arc-colorings of a digraph

We say that a mapc : A(H) −→ C from the arcs of a digraphH to a setC is a forward
arc-coloring over Cif the restriction ofc to the arcs incidentfrom any given vertex is an
injection, i.e.∀x ∈ H, ∀y, z ∈ �+(x)

c(xy) = c(xz) ⇒ y = z.

Since the arcs of a digraph are partitioned according to which vertex they are incident from,
any digraphH with maximum degree�� |C| admits a forward arc-coloring overC. More
precisely, for each vertexx, the setAx = {xy : y ∈ �+(x)} has cardinality at most�. Thus,
there exists an injective functioncx : Ax −→ C. Besides,Ax ∩ Ax′ = ∅ for x �= x′. Thus,
the mappingxy �→ cx(xy) is a well-defined forward arc-coloring.

3.2. Shifts of a digraph

We call ashift of a digraph, any permutation of its arcs such that the cycles of the
permutation are cycles of the digraph. Alternatively, given a digraphH, a permutation� of
A(H) is a shift ifa��a for all a. Notice that any regular digraph has at least one shift since
it is Eulerian (see[7, Theorem 2.23]). In Fig. 1, we show two different shifts of the Kautz
digraph K(2, 2) by drawing the cycles of the permutation with different dash styles.

3.3. The�-shuffle c-exchange product

Let G1, H2 andH3 be a graph and two digraphs respectively. Ifc : A(H2) −→ V(G1)

is a forward arc-coloring ofH2 over the vertex set ofG1, and� is a shift ofH2, then we
call the�-shuffle c-exchange productof H3 andH2 accordingto G1 the graphG=H3 �×H2
whose vertex set is V(H3) × A(H2) and such that two pairs(u1, a1), (u2, a2) are adjacent
if u1 = u2 andc(a1) is adjacent withc(a2) in G1, or if u1 is adjacent to or fromu2 in H3
anda2 is equal to�a1 or �−1a1 respectively. Equivalently, given a vertex(u, a) = (u, xy)

of G, its set�((u, a)) of neighbors consists in three parts: the “exchange” set of neighbors,
which is

X(u, xy) = {(u, xz) : x
H2� z, c(xy)

G1∼ c(xz)},
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Fig. 2. TwoK2-exchange graphs of Kautz digraph K(2, 2).

and the forward and backward “shuffle” sets of neighbors, which are

S+(u, a) = {(u′, �a) : u
H3� u′},

S−(u, a) = {(u′, �−1a) : u′ H3� u}
respectively.

In Fig. 2, we give two examples of�-shuffle c-exchange graphs, using the digraph
and shifts ofFig. 1, asG1 the complete graphK2 on 2 vertices and asH3 the digraph
with one vertex and a loop on it. We do not specify the arc-forward colorings because
in this case (G1 = K2) any choice gives rise to the same�-shuffle c-exchange
graphs.

Remark 1. Notice that ifH2 is |G1|-regular, then the restrictioncx of c to the arcsAx

incident from a given vertexx, is bijective. Thus, ifa and b are two arcs inAx and
v0, v1, . . . , vn is ac(a)–c(b) walk in G1, then, for each vertexu of H2, the sequence

(u, a) = (u, c−1
x (v0)), (u, c−1

x (v1)), . . . , (u, c−1
x (vn)) = (u, b)

is a(u, a)–(u, b) walk in G.

The order ofG and a tight upper bound for its maximum degree follow directly from the
definition. We state this as a proposition.

Proposition 2. LetG = H3 �× H2 be the�-shuffle c-exchange product of a digraphH3 with
a digraphH2 according to a graphG1. If H2 is |G1|-regular, then

(1) |G| = |G1||H2||H3|.
(2) If �, �1 and�3 are the maximum degrees of G, G1 andH3 respectively then

��
{

�1 + �3 if H3 is symmetric and� is an involution,
�1 + 2�3 otherwise.

Proof. SinceH2 is |G1|-regular it has|G1||H2| arcs, thus

|G| = |H3||A(H2)| = |H3||G1||H2|
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asitem(1) asserts. In order to bound the degree of a vertex(u, a) ofG, we know by definition
that

�((u, a)) = X(u, a) ∪ S+(u, a) ∪ S−(u, a).

Thus, in general, the cardinality of�((u, a)) is at most�1 + 2�3, since|X(u, a)|��(G1)

and|S+(u, a)|, |S−(u, a)|��(H3). However, whenH3 is symmetric, we have thatu
H3� u′

if and only if u′ H3� u. If, in addition,� is an involution (� = �−1), then the forward and
backward shuffle sets coincide, i.e.,S+(u, a) = S−(u, a), and|�(u, a)|��1 + �3. �

In order to obtain an upper bound on the diameter of a�-shufflec-exchange product,
we will consider different kinds of diameters forH2. This requires some detailed analysis,
which we develop in the following theorems. We begin with the following lemma.

Lemma 3. LetG1 be a graph with diameterD1 andG=H3 �× H2 the�-shuffle c-exchange
product of aD3-reachable digraphH3 and a |G1|-regular digraphH2 according toG1.
Given any directed walku0, u1, . . . , ul in H3 and any directed walkW = x0, . . . , xl in H2,
then the distance in G between two vertices(u0, a0) and(ul, al+1), such thata0 = x0x−1
andal+1 = xlxl+1 for somex−1 andxl+1, is at most(D1 + 1)l + D1

dG((u0, a0), (ul, al+1))�(D1 + 1)l + D1. (2)

Moreover, if H3 is symmetric and� an involution, thenW can be taken to be a walk inUH2.

Proof. Indeed, if l = 0, thenu0 = ul and, from Remark 1, it suffices to find a walk in
G1 joining c(a0) andc(al+1) in at mostD1 steps. Such a walk does exist sinceD1 is the
diameter ofG1.

For l�1, we will bound the distance between(u0, a0) and(ul, al+1) making use of the
triangular inequality. Let us first focus on the digraphP whose vertices arex−1, x0, . . . ,

xl, xl+1 and whose arcs area0, . . . , al+1, where for 1� i� l, ai is eitherxi−1xi or xixi−1
depending uponxi−1xi being an arc ofH2 or not respectively. Next, we define recursively
a sequencew0, . . . , wl+1 of vertices ofH3 beginning withw0 = u0; and fori > 0 we set
wi = uj+� if wi−1 = uj and� = �−

P (xi−1). Solving the recurrence and remembering Eq.
(1), we have thatwl+1 = us with

s =
l+1∑
i=1

�−
P (xi−1) = |A(P )| − �−

P (x−1) − �−
P (xl+1) = l.

Finally, by the triangular inequality,wecanboundby theabove thedistancebetweenvertices
(u0, a0) and(ul, al+1) as follows:

dG((u0, a0), (ul, al+1))�
l∑

i=0

dG((wi, ai), (wi+1, ai+1)). (3)

Now, in order to bound each termdi =dG((wi, ai), (wi+1, ai+1)) of the sum, we distinguish
four cases, depending on the directions ofai andai+1. First, notice that, whenH3 is not
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symmetric, thenW is a directed walk and the arcai must be adjacent to the arcai+1
(forthcoming case 2). Hence, whenai is not adjacent toai+1 (forthcoming cases 1, 3 and
4) we are under the hypothesis thatH3 is symmetric and� an involution. Thus, we assume
that the forward and backward shuffle sets of neighbors coincide. Letwi = uj , then

(1) if ai andai+1 are both incident from the same vertexxi , then�−
P (xi)=0 andwi+1=uj .

Thus, from Remark 1, the distance inG between(wi, ai) and(wi+1, ai+1) is at most
D1, hencedi�D1.

(2) If ai is adjacent toai+1, then�−
P (xi) = 1, wi+1 = uj+1 and�ai is incident inH2 from

the same vertex asai+1 (vertexxi). Thus, the distance inG between(wi+1, ai+1) and
(uj+1, �ai) is at mostD1. Finally, since(uj+1, �ai) ∈ S+(uj , ai), thendi�D1 + 1.

(3) If ai is adjacent fromai+1, then�−
P (xi) = 1, wi+1 = uj+1 and�ai+1 is incident in

H2 from the same vertex asai (vertexxi). Thus, the distance inG between(wi, ai)

and (wi, �ai+1) is at mostD1. Finally, sinceH3 is symmetric and� an involution,
(uj+1, ai+1) is a shuffle neighbor of(uj , �ai+1) in G, and thendi�D1 + 1.

(4) Finally, if bothai andai+1 are incident to the same vertexxi , then�−
P (xi) = 2,wi+1 =

uj+2 and both�ai and�ai+1 are adjacent inH2 from the same vertexxi . Thus, the
distance inG between(uj+1, �ai) and (uj+1, �ai+1) is at mostD1. Finally, since
H3 is symmetric,(uj+1, �ai) and(uj+1, �ai+1) are shuffle neighbors of(uj , ai) and
(uj+2, ai+1) respectively, and thendi�D1 + 2.

In any case, it holds that:

di�D1 + �−
P (xi).

Thus, we can upper-bound the sum in inequality (3) by

(l + 1)D1 +
l∑

i=0

�−
P (xi) = (l + 1)D1 + l,

which implies inequality (2), as was claimed.�

With this lemma we are in a position to bound the diameter of a�-shufflec-exchange
product.

Theorem 4. Given a graphG1, let G = H3 �× H2 be the�-shuffle c-exchange product of a
D3-reachable digraphH3 with a |G1|-regular digraphH2 according toG1. If D, D1 and
D2 are the diameters of G, G1 andH2 respectively, then

D + 1�(D1 + 1)(D2 + 1) + max(D3 − D2, 0), (4)

Moreover, if H3 is symmetric and� an involution, D2 can be taken to be the diameter of
UH2.

Proof. Let us consider two vertices(u, a) and(ũ, ã) with a = xy andã = x̃ỹ. We need to
find a walk inG joining these vertices in at most the bound in inequality (4). We first treat
the case whenD3�D2. From the hypothesis, we know that the distancel in H2 (or in UH2
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if H3 is symmetric), fromx to x̃ is at mostD1, i.e, l�D1. If there exists a directed walk in
H3 from u to ũ of lengthl, we can apply inequality (2) and conclude the proof. Let us then
consider the case when there is no directed walk of lengthl fromu to ũ in H3. Thus,l < D3
becauseH3 is l-reachable for anyl�D3. Next, we setk = D3 − l and consider a vertexu0
in �−k(u) and a directed walk

u0, u1, . . . , uD3 = ũ

of lengthD3 in H3, from u0 to ũ, which exists becauseH3 is D3-reachable. Thus, the
sequenceuk, . . . , uD3 is a directed walk of lengthl fromuk to ũ, and we can apply inequality
(2) to upper bound by(D1 +1)l +D1 the distance inGbetween(uk, a) and(ũ, ã). Finally,
sinceu0 ∈ �−k(u) there is a directed walku0, u−1, . . . , u−k =u in H3 from u0 tou, which
gives rise the following walk:

(u, a) = (u−k, a), (u−k+1, �−1a), . . . , (u−1, �−k+1a), (u0, �−ka),

(u1, �−k+1a), . . . , (uk−1, �−1a), (uk, a)

in G joining (u, a) and(uk, a) in 2k steps. Therefore,

dG((u, a), (ũ, ã))�dG((u, a), (uk, a)) + dG((uk, a), (ũ, ã))

�2k + l(D1 + 1) + D1 = 2(D3 − l) + (D1 + 1)l + D1,

which is less than or equal to(D1 + 1)D2 + D1, sinceD3�D2 andD1�1. Let us now
treat the case whenD2 < D3. We seth = D3 − D2 > 0 and consider the vertexx′ of H3,
incident to the arc�ha. Then, the distancel in H2 (or in UH2 if H3 is symmetric and� and
involution), fromx′ to x̃ is at mostD2. Let k = D2 − l andW̃ be a directed walk,

u0, u1, . . . , uD3 = ũ,

in H3 from a vertexu0 in �−k(u) to ũ. Then, we can apply inequality (2) to the directed
walk uD3−l , . . . , uD3 of length l, and bound by(D1 + 1)l + D1 the distance inG be-
tween(uD3−l , �ha) and(ũ, ã). Finally, sinceu0 ∈ �−k(u), there is au0-u directed walk
u0, u−1, . . . , u−k = u of lengthk in H3 which, together withW̃ , gives rise to the following
walk in G:

(u, a) = (u−k, a), (u−k+1, �−1a), . . . , (u−1, �−k+1a),

(u0, �−ka), (u1, �−k+1a), . . . , (uD3−l , �−k+D3−la)

joining (u, a) and(uD3−l , �ha) in D3 − l + k = D3 + D2 − 2l steps. Thus

dG((u, a), (ũ, ã))�dG((u, a), (uD3−l , �ha)) + dG((uD3−l , �ha), (ũ, ã))

�D3 + D2 − 2l + (D1 + 1)l + D1,

which is at most(D1 + 1)D2 + D1 + D3 − D2, sincel�D2 andD1�1. �

The first part of the proof of this theorem for the caseD3�D2 enables us to prove
the same result whenD2 is the unilateral diameter ofH2, as explained in the following
proposition.
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Proposition 5. With the same hypothesis of the previous theorem, if D2 is the unilateral
diameter ofH2 andD3�D2 then

D + 1�(D1 + 1)(D2 + 1). (5)

Proof. Let (u, a) and (ũ, ã) be two vertices ofG with a = xw and ã = x̃w̃. If l is the
unilateral distance inH2 betweenxandx̃, then there will be a directed walk of lengthl from
x to x̃ or vice-versa. In any case, we can make the same arguments as in the caseD3�D2
in Theorem 4 can be made in order to prove that the distance from(u, a) to (ũ, ã) verifies
(5). �

The above constructions are an extension to other values of the diameter and a unifi-
cation of the first two constructions defined in[12] (see the Appendix). Indeed, whenH2
andH3 are the De Bruijn digraphs B(k, |G1|) and B(k, m) respectively, then graphG of
Theorem 4 has the same parameters as graphG1{m, k} defined in[12]. If, instead of a De
Bruijn digraph,H2 is the Kautz digraph K(k, |G1|), then graphG has the same parameters
as graphG1(m, k) defined in[12]. In fact, a good choice of the forward arc-coloring and
shift of the digraphH2 not only gives rise to graphs with the same parameters, but also to
isomorphic ones.

The present construction has a large degree of freedom, since in general a digraph has
many different forward arc-colorings, as well as many different shifts. The question of
which of these forward arc-colorings and shifts give rise to isomorphic�-shufflec-exchange
products is not dealt with.

The following corollary, which can be established by means of elementary calculus
arguments, will lead us to the main result of the work, namely, Theorem 7.

Corollary 6. LetD1, D2 andD3�D2 be three fixed positive integers, and let� = D3/D

whereD = D1(D2 + 1) + D3. Suppose that for a given sequence�n −→ +∞ there exists
a sequence of graphsG1,n and two sequences of digraphsH2,n and H3,n such that for
each n:

• graphG1,n and digraphH2,n have diametersD1 andD2 respectively, and digraphH3,n

is D3-reachable;
• the graph and digraphsG1,n, H2,n and H3,n have maximum degrees�1,n, |G1,n| and

�3,n respectively, where|�1,n − (1− �)�n| and|2�3,n − ��n| are upper bounded by a
constant;

• the previous graph and digraphs have orders�D1
1,n +o(�D1

1,n), |G1,n|D2 +o(|G1,n|D2) and

�D3
3,n + o(�D3

3,n) respectively.

Then,any�-shuffle c-exchangeproduct ofH3,n andH2,n accordingwithG1,n,hasmaximum
degree at most�n + o(�n), diameter at most D and order

|Gn| =
(

�n

�

)D

+ o(�D
n ),
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Table 1
First construction, wherek = limn−→∞|Gn|/(�n/2)D

D = 11 15 16 17 18 23 24 25 26 29 30 31 32 33
D1 = 5 7 7 5 5 7 7 7 7 5 5 7 7 7
D2 = 1 1 1 2 2 2 2 2 2 4 4 3 3 3
D3 = 1 1 2 2 3 4 5 6 5 4 5 3 4 5
k�71 831 39 69 9 2347 248 35 6 297 45 14073 1558 215

where

� = f (�) = 2�

��(1− �)1−�
.

Besides, if H3,n is symmetric, �n is an involution, and|�3,n − ��n| is upper-bounded by a
constant, then� = f (�)/2�.

In order to apply this result, we take into account the existence of large graphs with
diameter 5. Indeed, for each odd powerqof 3, the quotient graphsH ′(q) of the generalized
hexagonsH(q), described in[9], have maximum degree(q + 1), diameterD1 = 5 and
orders(q + 1)(q4 + q2 + 1). Thus, for each integerD�10 letD2 andr be, respectively,
the quotient and rest of the division ofD − 5 by 6, soD − 5 = 6D2 + r. Then, if we set
D3 = D2 + r, � = D3/D and�n = [(32n+1 + 1)/(1− �)], we can take the graphG1,n and
the digraphsH2,n andH3,n to be, respectively:

• the quotient graphH ′(32n+1),
• the Kautz digraph K(|G1,n|, D2),
• the De Bruijn digraph B([1

2��n], D3).

Therefore, Corollary 6 tells us that there exists a sequenceGn of graphs with diameters at
mostD, maximum degrees at most�n + o(�n) and orders:

|Gn| =
(

�n

f (1/6) + �D

)D

+ o(�D
n )

with f (1/6) < 1.7614 and

lim
D−→+∞ �D = 0

(whenr = 5, �D goes to 0 like 1/D and whenr = 0 it is exactly zero).
In a similar way, if we take asG1,n the graph with diameterD1 = 7, defined in[10] that

arise from the incidence graphs of generalized octagons,wewill obtain(�n, D)-graphswith
orders|Gn|=(�n/(f (1/8)+�D))D +o(�D

n ) with f (1/8) < 1.5895 and limD−→+∞�D =0.

Notice that, by the Moore bound, the diameter of eachGn must be exactlyD. In
Table 1, we give lower bounds to the orders obtained in these two ways, for some small
values of the diameter.

The above application of Corollary 6 enables us to state our main theorem:
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Table 2
First construction using symmetric looped digraphs of large graphs

D = 15 16 17 18 19 20 23 24 25 26 31 33 35
D1 = 3 7 5 5 7 5 7 7 5 7 7 7 5
D2 = 3 1 2 2 1 2 2 2 3 2 3 3 5
D3 = 3 2 2 3 5 5 2 3 5 5 3 5 5
k�18 157 277 78 9 13 9388 1984 123 199 112591 6890 20051

Theorem 7. There are two constantsD0 and � < 2 such that for eachD�D0 and in-
finitely many values of� there exists a graph G with maximum degree�, diameter D and
order

|G|�
(

�
�

)D

.

Furthermore� < 1.59.

For particular values ofD we can improve some of the values in Table1by taking asH2,n

andH3,n the symmetric looped digraphs of large graphs and as� the mappinguv �→ vu. For
instance, the graphs with diameterD=2, 3, 5, maximum degrees� and orders�D +o(�D)

described in[9] (for D = 7 the family described in[10] is useless because its graphs have
degrees not dense enough). We illustrate the results inTable 2.

Finally, in [14] it is proved that there exists a family of digraphs with unilateral
diameter 2 and orders 1.5�2, for even values of�. Thus, we can improve the entries of
Table1 for D = 17 from 69 to 104. Nevertheless, these values are still smaller than the
corresponding ones in Table2.

It is possible to make slight modifications to the�-shufflec-exchange product defini-
tion, in order to include, as particular cases, the other compound graphs presented in[12].
However, the procedure is similar to the one presented in this section and the graphs ob-
tained do not give better lower bounds forn�,D. In next section, a new method is presented
which gives rise to families of graphs larger than those defined in[12].

4. Second construction

The next construction provides an improvement on the upper bound of the constant� in
Theorem 7, for diameters congruent with 0, 1 or−1 modulom, with m=6 or 8. Specifically,
wewill prove that� couldbe takensmaller than1.57.As inSection3webeginby introducing
some arc transformations and graph–digraph products.

4.1. Reflections of a digraph

We call areflectionof a digraphH any involution� : V(H) −→ V(H) of its ver-
tices which is anantiautomorphism(i.e. a bijection that reverses the direction of the arcs).
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Fig. 3. A reflection of the largest known(2, 4)-digraph.

Formally, if we writeū for �(u), then ¯̄u = u and

u�v ⇒ v̄�ū.

Thus, ifuv andvw are arcs ofH, so arev̄ū andw̄v̄. But, in that case, the arcsuv andw̄v̄

are adjacent inLH to the arcsvw andv̄ū respectively, hence

uv
LH� vw ⇒ w̄v̄

LH� v̄ū.

This means that the extension of� to the set of arcs ofH given by uv �→ v̄ū is an
antiautomorphism ofLH as well. Furthermore, it is also an involution sincev̄ū �→ ¯̄u ¯̄v=uv;
therefore we have proved the following proposition.

Proposition 8. If the mappingu �→ ū is a reflection of a digraph H, then the mapping
uv �→ v̄ū is a reflection of its line digraphLH as well.

In fact, it can be proved that any reflection of the line digraph of a regular digraph arises
in this way. These results enable us to find all the reflections of the De Bruijn and Kautz
digraphs by taking reflections in the corresponding complete digraphs which are simply the
permutations of order 2.

In Fig. 3 we describe (dashed arrows) a reflection of the largest known digraph with
maximum degree 2 and diameter 4 (given in[11]). Therefore, by Proposition 8, the largest
known (�, D)-digraphs with maximum degree 2 (which are the line digraphs of that in
Fig. 3) have reflections.

4.2. The G-antiexchange graph

If c : A(H) −→ V(G) is a forward arc-coloring of a digraphH over the vertex set of
a graphG, and� : u �→ ū is a reflection ofH, then we define theG-antiexchange graph
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S
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ā0a1

X̄

a0

ā0

a1

ā1

a2

ā2

a3

ā3

Fig. 4.

G=A(G, H, c, �) of H according to c and� as the graph whose vertices are the arcs ofH,
and such that two arcsa0 anda1 are adjacent if either̄a0 is adjacent toa1 in H andc(a0) and
c(a1) are adjacent inG (the “antiexchange” adjacency) or ifa1 = ā0 (the “�-adjacency”).
Formally,

G = A(G, H, c, �) = (A(H), X̄ ∪ S)

where

X̄ = X̄(G) = {{a0, a1} : ā0
LH� a1, c(a0)

G∼ c(a1)}
and

S = S(G) = {{a, ā} : a ∈ A(H)}.
Whereā = v̄ū if a = uv. SeeFig. 4, in left.

4.3. The�-product

Given twoantiexchangegraphsAandB,wecall the�-productof them thegraphG=A×̄B

whose vertex set is V(A)×V(B), and where two pairs(a0, b0), (a1, b1) are adjacent if their
first coordinates are antiexchange adjacent and their second are�-adjacent or vice-versa.
Formally,

(a0, b0)
G∼(a1, b1) ⇔ {a0, a1} ∈ X̄(A) and{b0, b1} ∈ S(B)

or {b0, b1} ∈ X̄(B) and{a0, a1} ∈ S(A).

Before stating the next theorem, let us give some insights into the local adjacency structure
of a�-product.

Remark 9. Suppose thatG = A×̄B with A = A(G1, H1, c, �), and leta0, a2, . . . , a2n

be arcs adjacent to the arcsa1, a3, . . . , a2n+1 in H1 such thatc(ā0), c(a1), . . . , c(ā2n),
c(a2n+1) is a walk inG1. Then, for each vertexb of B, the sequence

(ā0, b), (a1, b̄), . . . , (ā2n, b), (a2n+1, b̄)
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is a walk inG (see right part inFig. 4). In particular, ifG1 isD1-reachable for an odd integer
D1 andH1 is |G1|-regular, then for any arca0 of H1 adjacent to another arca1,

dG((ā0, b), (a1, b̄))�D1

for each vertexb of B.

Theorem 10. Let G1 andG2 be two graphs and letHA andHB be two|G1| and |G2|-
regular digraphs respectively. Then, the�-productG=A×̄B between anyG1-antiexchange
graph A ofHA and anyG2-antiexchange graph B ofHB verifies:

(1) |G| = |A||B| = |G1||G2||HA||HB |.
(2) If �, �1 and�2 are the maximum degrees of G, G1 andG2 respectively then

���1 + �2.

(3) If G1, G2 and HB are D1, D2 and DB -reachable respectively withD1�3, and the
diameterDA of HA verifies|DA − DB |�1, then

D(G)�(DA + 1)D1 + (DB + 1)D2.

Proof. The order ofG follows from the fact that the digraphsHA andHB have|G1||HA|
and|G2||HB | arcs respectively and that V(A) = A(HA) and V(B) = A(HB). In order to
bound the degree of a vertex(a, b) of G, we express its neighbors as follows:

�((a, b)) = {(a′, b̄) : {a, a′} ∈ X̄(A)} ∪ {(ā, b′) : {b, b′} ∈ X̄(B)}.
Now, since |{a′ : {a, a′} ∈ X̄(A)}|��1 and |{b′ : {b, b′} ∈ X̄(B)}|��2, thus
|�G((a, b))|��1 + �2, as asserted initem(2).

In order to upper bound the diameter let us consider two vertices(a, b) and(a∗, b∗) of
G and distinguish three cases depending on the value ofDA − DB .

Case1: DA = DB − 1. Leta = a0, a1, . . . , al = ā∗ be a shortest directed walk froma to
ā∗ in LH A. Now, we distinguish two cases depending uponl being equal to or smaller than
DA + 1. If l = DA + 1. Then we consider a directed walkb̄ = b0, . . . , bl+1 = b∗ from b̄ to
b∗ in LH B of length exactlyDB +1 whose existence is guaranteed by theDB -reachability
of HB . By the triangular inequality, we have that

d

([
a

b

]
,

[
a∗
b∗

])
�d

([
a0
b̄0

]
,

[
ā0
b1

])
+

l−1∑
i=0

[
d

([
āi

bi+1

]
,

[
ai+1
b̄i+1

])

+d

([
ai+1
b̄i+1

]
,

[
āi+1
bi+2

])]
.

(Where we have written the pairs as columns in order to clarify the expression.) Thus, by
Remark 9,

d

([
a

b

]
,

[
a∗
b∗

])
�D2 +

l−1∑
i=0

(D1 + D2) = (DA + 1)D1 + (DB + 1)D2.
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On the other hand, ifk = DA + 1 − l > 0, then we consider a walk inG of length 2k of
the form(a, b) = (a0, 	̄0), (ā−1, 	0), . . . , (ā−k, 	−k), (a−k, 	̄−k−1), and a directed walk
	−k−1 = b−k−1, . . . , bl = b∗ from 	−k−1 to b∗ in LH B of lengthDB + 1. As before, by
the triangular inequality we have that

d

([
a

b

]
,

[
a∗
b∗

])
�d

([
a

b

]
,

[
a−k

	̄−k−1

])
+ d

([
a−k

	̄−k−1

]
,

[
ā−k

b−k

])

+ d

([
ā−k

b−k

]
,

[
a∗
b∗

])

�2k + D2 +
l−1∑

i=−k

[
d

([
āi

bi

]
,

[
ai+1
b̄i

])
+ d

([
ai+1
b̄i

]
,

[
āi+1
bi+1

])]

�2k + D2 + k + lD1 + (DA + 1)D2,

which is less than or equal to(DA + 1)D1 + (DB + 1)D2 if D1�3. Notice that, in the last
inequality, we have used that d((āi , bi), (ai+1, b̄i )) = 1 for i < 0.

The other cases (DA = DB andDA = DB + 1), which are similar to the previous one,
are developed in the Appendix.�

As for the first construction, we can infer the following corollary:

Corollary 11. Let D1, D2, DA and DB be four fixed integer such thatD1�3 and
|DA − DB |�1, and let� = (DB + 1)D2/D whereD = (DA + 1)D1 + (DB + 1)D2.
If for a sequence�n −→ +∞ of positive integers there exist two sequencesG1,n, G2,n

of graphs and two sequencesHA,n, HB,n of digraphs with reflections such that:

• for each n, the graphsG1,n, G2,n and the digraphGB,n are D1, D2 andDB -reachable
respectively, and the graphGA,n has diameterDA.

• The graphs and digraphsG1,n, G2,n, HA,n andHB,n, have maximum degrees�1,n, �2,n,
|G1,n| and|G2,n| respectively, being|�1,n − (1−�)�n| and|�2,n −��n| upper bounded
by a constant;

• the graphs and digraphs of the previous item have orders�D1
1,n +o(�D1

1,n), �D2
2,n +o(�D2

2,n),

|G1,n|DA + o(|G1,n|DA) and|G2,n|DB + o(|G2,n|DB ) respectively.

Then, for any sequenceAn, of G1,n-antiexchange graphs ofHA,n and any sequenceBn,
of G2,n-antiexchange graphs ofHB,n, the graphsGn of the sequence of their�-products,
i.e.

Gn = An×̄Bn,

have maximum degrees�n + o(�n), diameters at most D and orders

|Gn| =
(

�n

�

)D

+ o(�D
n )
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Table 3
Second construction, wherek = limn−→∞|Gn|/(�n/2)D

D = 12 13 15 16 17 18 19 23 24 25 29 30 31
D1 = 5 5 7 7 5 5 5 7 7 7 5 5 7
DA = 1 1 1 1 2 2 2 2 2 2 4 4 3
DB = 1 2 0 1 1 2 3 1 2 3 3 4 2
k�18 7 831 157 277 79 29 9388 1984 565 4754 1447 112591

where

� = g(�) = 1

��(1− �)1−�
.

In order to apply this corollary, for each integerD�11 congruent with−1, 0 or 1 modulo
6, letDA andr be two integers such thatD−6=6DA +r and|r|�1. Then, ifDB =DA +r,
� = (DB + 1)/D and�n = [(32n+1 + 1)/(1− �)], we can take graphsG1,n andG2,n and
digraphsHA,n andHB,n to be, respectively,

• the quotient graphH ′(32n+1) of the generalized hexagonH(32n+1),
• the complete graph on[��n] + 1 vertices,
• the Kautz digraph with diameterDA and maximum degree|G1,n| and
• the De Bruijn digraphs with diameterDB and maximum degree[��n] + 1,

Consequently, the graphsGn of Corollary 11 will have diameters at mostD, maximum
degrees at most�n + o(�n) and orders:

|Gn| =
(

�n

g(1/6) + �D

)D

+ o(�D
n )

with g(1/6)�1.5692 and�D −→ 0 whenD −→ +∞.
Similarly, for each integerD�15 congruent with−1, 0 or 1 modulo 8, we can take as

G1,n the graph with diameterD1 =7, defined in[10]. The corresponding(�n +o(�n), D)-
graphsGn of Corollary 11 will have orders:|Gn| =(�n/g(1/8) + �D)D + o(�D

n ) with
g(1/8)�1.4576 and�D −→ 0 whenD −→ +∞. Table3 shows the result for some values
of the diameter.

As a consequence of the above application, we can state the following final result.

Theorem 12. For m = 6, 8, there is a constantD0 such that for eachD�D0 congruent
with −1, 0or 1 modulo m, and for infinitely many values of�, there exists a graph G with
maximum degree�, diameter D and order

|G|�
(

�
�

)D

, where� =
{

1.57 if m = 6,

1.45 if m = 8.
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5. Conclusions

As in other works (e.g.[5]), we have illustrated that the implicit parallelism between
some constructions, like those of the graphsG{m, k} and G(m, k) in [12], and the De
Bruijn and Kautz digraphs, can be explicitly given by a special kind of product (in our
case the�-shufflec-exchange product). As in previous works, we have shown (by means
of the�-product) that the existence of a reflection on these digraphs allows the improve-
ment of the constructions based on them by means of a reduction of the maximum
degrees.

Finally, we have shown that if there exist graphs with diameterD1�5, maximum degree
�1 and orders�D1

1 + o(�D1
1 ) for infinitely many values of�1, then there exists� < 2 such

that, for eachD greater than a certain constant, graphs with diameterD, maximum degree
� and order greater than(�/�)D do exist for infinitely many values of�. Furthermore, the
largerD1, the smaller the value of�.
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Appendix A.

In the first two subsections, we give the definition of the first two constructions presented
in [12] and the one given in[13]. In the last subsection, we develop the remaining two cases
in the proof of Theorem 10.

A.1. GraphsG1{m, k} andG1(m, k)

Given an alphabetA on m symbols and a(�1, D1)-graphG1 on N1 vertices, the graph
G1{m, k} has as vertices the wordsw of the form

w = �1�2 . . . �k−1, x1x2 . . . xk−1xk, �j ∈ A, xi ∈ V(G1),

and the neighbors of the vertexw are given as follows:

w ∼
{�1�2 . . . �k−2�k−1, x1x2 . . . xk−1x′

k x′
k ∼ xk in G1,

�0�1 . . . �k−3�k−2, x0x1 . . . xk−2xk−1 �0 ∈ A,

�2�3 . . . �k−1�k, x2x3 . . . xkx1 �k ∈ A.

In order to defineG1(m, k), we take a set ofN1 one to one mapsfl : C\{l} −→ V(G1)

from an alphabetC on |C| = N1 + 1 symbols to the set of vertices ofG1. Then, a vertexw
of G1(m, k) is a word

w = �1�2 . . . �k−1, x1x2 . . . xk−1xk �j ∈ A, xi ∈ C
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such thatxi �= xi+1. The neighbors ofw are the following:

w ∼



�1�2 . . . �k−2�k−1, x1x2 . . . xk−1x′
k x′

k = f −1
xk−1

(�(fxk−1(xk))),

�0�1 . . . �k−3�k−2, x0x1 . . . xk−2xk−1 x0 = f −1
x1

(fxk−1(xk)),

�2�3 . . . �k−1�k, x2x3 . . . xkx1 xk+1 = f −1
xk

(fx2(x1)).

A.2. Definition of the graphs mentioned in Section 4

Given an alphabetA on m symbols and a(�1, D1)-graphG1 on N1 vertices, the graph
defined in[13] has as vertices the wordsw of the form

w = �1�2 . . . �2k+1, x1x2 . . . x2k+1, �j ∈ A, xi ∈ V(G1),

and the vertexw is adjacent to the following vertices:

w ∼
{

�2k+1�2k . . . �2�1, xk−1xk . . . x1x′
k x′

k ∼ xk in G1,

�2k�2k−1 . . . �1�′
2k+1, xkxk−1 . . . x2x1 �′

2k+1 ∈ A.

A.3. Remaining cases in the proof of Theorem 10

Case2: DA = DB . Let ā = a0, a1, . . . , al = ā∗ be a shortest directed walk from̄a to ā∗
in LH A. If l = DA + 1, letb = b0, . . . , bl = b∗ be ab-b∗ directed walk inLH B of length
DB + 1. Thus,

d

([
a

b

]
,

[
a∗
b∗

])
�

l−1∑
i=0

[
d

([
āi

bi

]
,

[
ai+1
b̄i

])
+ d

([
ai+1
b̄i

]
,

[
āi+1
bi+1

])]

�
l−1∑
i=0

(D1 + D2) = (DA + 1)D1 + (DB + 1)D2.

On theotherhand, ifk=(DA+1)−l > 0,weconsiderawalk(a, b)=(ā0, 	0), (a0, 	̄−1), . . . ,

(ā−k+1, 	−k+1), (a−k+1, 	̄−k) in G and a	−k-b∗ directed walk	−k = b−k, . . . , bl = b∗ in
LH B of lengthDB + 1. Thus,

d

([
a

b

]
,

[
a∗
b∗

])
�d

([
a

b

]
,

[
a−k+1
	̄−k

])
+ d

([
a−k+1
	̄−k

]
,

[
ā−k+1
b−k+1

])

+ d

([
ā−k+1
b−k+1

]
,

[
a∗
b∗

])

�2k − 3+ D2 +
l−1∑

i=−k+1

[
d

([
āi

bi

]
,

[
ai+1
b̄i

])

+ d

([
ai+1
b̄i

]
,

[
āi+1
bi+1

])]
�2k − 3+ D2 + (k − 1) + lD1 + (DA + 1)D2,

which is less than or equal to(DA +1)D1+ (DB +1)D2 if and only ifD1�3(k−1)/k−1,
but 3(k − 1)/k − 1< 3�D1.
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Case3: DA = DB + 1. Let ā = a0, a1, . . . , al = a∗ be a shortest̄a-a∗ directed walk in
LH A. If l = DA + 1, letb = b0, . . . , bl−1 = b̄∗ be ab-b∗ directed walk inLH B of length
DB + 1. Thus,

d

([
a

b

]
,

[
a∗
b∗

])
�d

([
ā0
b0

]
,

[
a1
b̄0

])
+

l−2∑
i=0

[
d

([
ai+1
b̄i

]
,

[
āi+1
bi+1

])

+ d

([
āi+1
bi+1

]
,

[
ai+2
b̄i+1

])]

�D1 +
l−2∑
i=0

(D1 + D2) = (DA + 1)D1 + (DB + 1)D2.

If k=(DA+1)−l > 0,we consider awalk(a, b)=(ā0, 	0), (a0, 	̄−1), . . . , (ā−k+1, 	−k+1),
(a−k+1, 	̄−k) in Gand a	−k-b̄∗ directed walk	−k = b−k, . . . , bl−1 = b̄∗ in LH B of length
DB + 1. Thus,

d

([
a

b

]
,

[
a∗
b∗

])
�d

([
a

b

]
,

[
a−k+1
	̄−k

])
+ d

([
a−k+1
	̄−k

]
,

[
a∗
b∗

])

�2(k − 1) +
l−2∑

i=−k

[
d

([
ai+1
b̄i

]
,

[
āi+1
bi+1

])

+ d

([
āi+1
bi+1

]
,

[
ai+2
b̄i+1

])]
�2(k − 1) − 1+ DAD2 + k + (l − 2 + 1)D1,

which is less than or equal to(DA +1)D1+(DB +1)D2 if and only ifD1�3(k−1)/(k+1)

which is smaller than 3 for anyk > 0. �
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