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Abstract

Graphs with maximum degre diameteD and orders greater thar /c) 2, for a constant < 2,
are proved to exist for infinitely many values dfand forD larger than a fixed value.
Published by Elsevier B.V.
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1. Introduction

The problem of finding the largest ordery, , among(4, D)-graphs, i.e. graphs with
maximum degreel and diameteD, has attracted considerable attention from the graph-
theoretical point of view, as well as from the network-designers community, and it is known
as the(4, D)-problem (se€2,16]). An upper bound om, p derived by counting the
maximum possible number of vertices at a fixed distance from a given one liddbie
boundM, p=1+A4+4U4—-1)+ -+ A4 — 1)P—1. Besides the trivial case®(= 1
or A = 2), the bound can be attained in two casbs=£ 2 and4 = 3, 7) and maybe in a
third, which is still open D = 2 and4 = 57), but for the other values of the parameters the
bound cannot be attained (4€&). Except for a few more cases, and even for small values
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of 4 andD, the largest known graphs (maintained8h) have orders far below the Moore
bound. One might still wonder whethelr or D goes to infinity, or if there exist graphs
with orders asymptotically equivalent i, . The question was answered affirmatively
in [4] by means of probabilistic methods, forgoing to infinity and fixedd. However, for
fixed diameter, the question, posed by Bollob@s Ch. 1V, p. 8)), remains open, except
for D =2, 3,5 (sed10]). However, the best known large graphs for large valud3 lofve
orders of the form

A\P b

wherek = 2, 3, 5 depending oD (see[15]). To the best of our knowledge, only one class

of larger graphs, for infinitely many values of the parameters, has been found, namely the
generalized compound graphs introducefli?]. They can be built as a particular case of
the construction that we will present in Section 3. This construction enables us to prove
(Theorem 7) that there exist constamts 2 andDg, such that for eacl > Dg there exists

a sequence df4,,, D)-graphs with4,, — oo and orders greater than

A\ P
. .
Finally, in Section 4, we present a second construction that improves the value of the

constantx for diameters congruent with1, 0 and 1 modulo 6, which is an extension of a
work presented in a seminar by one of the authfibj.

2. Notation and basic facts

If G =(V, E) is a graph with vertex sét = V(G) and edge sef = E(G), we denote

its order by|G|. Given two adjacent verticasandv joined by an edgev, we writeu £
or simplyu ~ v. Analogously, ifH = (V, A) is a directed graph (or digraph for short) with
vertex setV = V(H) and arc seE = E(G), we denote its order byH |, and we will write

by u Lyor simplyu~~v if uis adjacent ta.

We denote by W, the underlying graph dfl. Conversely, we call theymmetric looped
digraph of a graphG the digraph obtained fronG by replacing each edge by two
opposite arcs and adding a loop to each vertex, i.e., the digk&@h), {(«, v) : {u, v} €
E(G)} U {(u,u) : u € V(G)}). A digraphH is symmetridf wheneveruv is an arc ofH,
thenvu is also an arc oH.

If u=ug, u1,...,u,—1,u, =vis au—v walk, then we say that belongs ta™ («) andu
belongs ta"~" (v) (we omit then whenn = 1). It is said that a directed or undirected graph
with vertex seV is k-reachabldf I'*(x) = V for any vertexu. Notice that ank-reachable
graph (with more than one vertex) #&sreachable for any’ > k as well. We will denote
by dg (u, v), or simply du, v), the distance fronu to v, and by O0G) the diameter of.

A related concept is thenilateral diameteiof a digraph, which is the minimum integBr
such that, for any two verticasandv, min(d(u«, v), d(v, u)) < D.
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Recall that, ifo; (v) andéj{l(v) are the in and out-degrees of a vertexhen

Y Shwy=)" 55w =AM (1)

veH veH

We denoted byl (H) the maximum among the in and out-degrees, i.e.

A(H) = m%xmax((S;(v), 5 (V).

Analogously, the maximum degree of a grapihwill be denoted by4(G). A (4, D)-
[dilgraph is a [di]graph with maximum degred and diameteiD. Notice that if G is
a (4, D)-graph then its symmetric looped digraph i®aeachablg4 + 1, D)-digraph.
A [di]lgraph all of whose vertices have the same [in and out-]Jdegfeés called
A-regular.

The line digraph LH of a digraphH has as vertices the arcs Bif and as arcs the
pairs of adjacent arcs df, i.e., V(LH) = A(H) and A(LH) = {(uv, vw) : uv,vw €
A(H)}. WhenH is 4-regular with4>2, this operator verifies the following important
properties:

e LH is A-regular,
e D(LH)=D(H) +1,
e LH is (k + 1)-reachable iH is k-reachable.

The first two properties allow us to iterateto obtain large(4, D)-digraphs, since if
A>2 andH is a A-regular digraph with diameteD and ordern, then L¥H is a 4-
regular digraph with diameteb + k and ordern4*. Good examples of this are the
two well-known families of iterated line digraphs call&# Bruijn and Kautz digraphs:

e the De Bruijn digraph B4, D) is defined ag.” K |, wherek 7 is the complete digraph
on 4 vertices with a loop at each vertex (ij& || = 4 and AK ) = V(K })?). Thus,
B(4, D) is aA-regularD-reachable digraph with diametBrand order4 4”1 = 4P,
which is the largest possible order fobDareachablg 4, D)-digraph.

e The Kautz digraph K4, D) is defined ag.?~1k7_,, whereK%  , is K, without

loops. Thus, K4, D) is a A-regular digraph with diameted and order4” + AP,
which is the largest known order for(d, D)-digraph with4 > 3.

Finally, as usual in calculus, by, = o(a,,) we mean that lin, 1~ b, /a, = 0.

3. First construction

Our first construction is based on a graph—digraph product that we cadi-theiffle
c-exchange product, inspired by the ones defing@, . In order to define this and compute
the order, maximum degree and diameter of the graphs obtained from it, let us introduce
some previous related concepts.
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Fig. 1. Two shifts of K2, 2): (abc)(efd)(gh)(ij)(Ik) and(abe)(ef hgd) (i) (k).

3.1. Forward arc-colorings of a digraph

We say thata map: A(H) — C from the arcs of a digrapH to a setC is aforward
arc-coloring over Cif the restriction ofc to the arcs incidenfrom any given vertex is an
injection, i.e¥x € H,Vy,z € I'" (x)

cxy)=c(xz) = y=z.

Since the arcs of a digraph are partitioned according to which vertex they are incident from,
any digraphH with maximum degreel < |C| admits a forward arc-coloring ov€l. More
precisely, for each vertex the setd, = {xy : y € I'*(x)} has cardinality at most. Thus,

there exists an injective functian : A, — C. BesidesA, N A,» =@ for x # x’. Thus,

the mappingey — ¢, (xy) is a well-defined forward arc-coloring.

3.2. Shifts of a digraph

We call ashift of a digraph, any permutation of its arcs such that the cycles of the
permutation are cycles of the digraph. Alternatively, given a digkdph permutatiorw of
A(H) is ashiftifa~~oa for all a. Notice that any regular digraph has at least one shift since
it is Eulerian (se¢7, Theorem 2.23] In Fig. 1, we show two different shifts of the Kautz
digraph K(2, 2) by drawing the cycles of the permutation with different dash styles.

3.3. Theo-shuffle c-exchange product

Let G1, H2 and H3 be a graph and two digraphs respectively: fA(H2) — V(G1)
is a forward arc-coloring oH> over the vertex set ofi1, ando is a shift of H,, then we
call thes-shuffle c-exchange produst H3 and H, accordingto G1 the graphG = Hax Hp
whose vertex set is M{3) x A(H2) and such that two pairg1, a1), (u2, ap) are adjacent
if uy = up andc(az) is adjacent withc(az) in G1, or if uj is adjacent to or frona in H3
anday is equal tosay or 6~ 1as respectively. Equivalently, given a vertéx, a) = (u, xy)
of G, its setl'((u, a)) of neighbors consists in three parts: the “exchange” set of neighbors,
which is

X(u,xy)={(u,xz):x ng, c(xy) Q}C(xz)},
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Fig. 2. Two K»-exchange graphs of Kautz digraph2).

and the forward and backward “shuffle” sets of neighbors, which are

S*tu, a) = (', oa) - uBu'),
S™(u, a) = {(, o~ %a) - u' Buy

respectively.

In Fig. 2, we give two examples of-shuffle c-exchange graphs, using the digraph
and shifts ofFig. 1, asG1 the complete graplK, on 2 vertices and a#/z the digraph
with one vertex and a loop on it. We do not specify the arc-forward colorings because
in this case ¢1 = K»2) any choice gives rise to the sameshuffle c-exchange
graphs.

Remark 1. Notice that if H, is |G1|-regular, then the restriction), of ¢ to the arcsA,
incident from a given vertex, is bijective. Thus, ifa and b are two arcs inA, and
vo, V1, ..., Uy IS ac(a)—c(b) walk in G1, then, for each vertex of Ho, the sequence

(u,a) = (u, c; 1 (v0)), (u, ex t (), . ..., (u, e H(vp)) = (u, b)

isa(u,a)—(u, b) walk in G.

The order ofG and a tight upper bound for its maximum degree follow directly from the
definition. We state this as a proposition.

Proposition 2. LetG = Hzx H> be thes-shuffle eexchange product of a digraptiz with
a digraph H, according to a graphG;. If Hz is |G1|-regular, then

(1) |G| =|G1l|H2||H3].
(2) If 4, A1 and 43 are the maximum degrees of G1 and H3 respectively then

A1+ A3 if Hz is symmetric andr is an involution
A< :
A1+ 243 otherwise

Proof. SinceH; is |G1|-regular it hagG1|| H2| arcs, thus

|G| = |Hs||A(H2)| = |H3||G1|| Ha|
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asitem(1) asserts. In order to bound the degree of a vertex) of G, we know by definition
that

I'((u,a))=Xw,a)UST(u,a)U S (u,a).

Thus, in general, the cardinality &f((u, a)) is at mostd4 + 243, since| X (i, a)| < 4(G1)
and|S*(u, a)|, |S™(u, a)| < A(Hz). However, wherHz is symmetric, we have that™3 i’

if and only if u’ By If, in addition, ¢ is an involution ¢ = ¢~1), then the forward and
backward shuffle sets coincide, i.6% (u, a) = S~ (u, a), and|I'(u, a)| <A1+ A43. O

In order to obtain an upper bound on the diameter efshuffle c-exchange product,
we will consider different kinds of diameters féf,. This requires some detailed analysis,
which we develop in the following theorems. We begin with the following lemma.

Lemma 3. LetG be a graph with diameteP; andG = Hzx H> thes-shuffle eexchange
product of aD3z-reachable digraphHz and a|G1|-regular digraph H, according toG1.
Given any directed walko, u1, ..., u; in H3 and any directed wall/ = xo, ..., x; in Ho,
then the distance in G between two verti¢eg ag) and (u;, a;+1), such thatug = xox_1
anda; 1 = x;x;41 for somex_; andx;11, is at most(D1 + 1)[ + D1

dg ((uo, ao), (w1, aj41)) < (D1 + 1)1 + Dj. )

Moreover if Hz is symmetric and an involution then W can be taken to be a walkUrHy.

Proof. Indeed, ifl = 0, thenug = u; and, from Remark 1, it suffices to find a walk in
G1 joining c¢(ag) andc(a;41) in at mostD; steps. Such a walk does exist singg is the
diameter ofG1.

Forl>1, we will bound the distance betweéry, ag) and(u;, a;+1) making use of the
triangular inequality. Let us first focus on the digraphwhose vertices are_1, xo, .. .,
X1, x;+1 and whose arcs a, . . ., a;+1, Where for 1<i </, g; is eitherx; _1x; or x;x;_1
depending upon;_1x; being an arc ofi, or not respectively. Next, we define recursively
a sequenceay, . . . , w41 Of vertices ofHz beginning withwg = uo; and fori > 0 we set
wp =ujy5if wiog=u; andé = 9, (x;—1). Solving the recurrence and remembering Eq.
(1), we have thatv; 1 = ug with

I+1
s =30 0p (1) = IACP)] = 0p(x-0) = Sp(xis1) = 1.
i=1

Finally, by the triangular inequality, we can bound by the above the distance between vertices
(ug, ag) and(u;, a;+1) as follows:

!

dg ((uo, ao), (ur, arr1) < Y de ((wi, a;), (Wit1, ai1)). ®3)
i=0

Now, in order to bound each terh=dg ((w;, a;), (w;+1, a;+1)) of the sum, we distinguish
four cases, depending on the directions;pofinda; 1. First, notice that, wheii/z is not
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symmetric, thenWV is a directed walk and the ag must be adjacent to the atg1
(forthcoming case 2). Hence, whepis not adjacent ta; 1 (forthcoming cases 1, 3 and
4) we are under the hypothesis thaf is symmetric and an involution. Thus, we assume
that the forward and backward shuffle sets of neighbors coincidevletu ;, then

(1) if @; anda; 1 are both incident from the same vertextheno, (x;) =0 andw; 1 =u;.
Thus, from Remark 1, the distance@between(w;, a;) and(w;11, a;+1) iS at most
D1, henced; < D1.

(2) If a; is adjacent ta; 11, thend, (x;) = 1, wi11 = u ;41 andaa; is incident inH, from
the same vertex ag (vertexx;). Thus, the distance i6 between(w; 1, a;+1) and
(ujy1, oa;) is at mostD1. Finally, since(u 11, oa;) € ST (u;, a;), thend; < D1 + 1.

(3) If g; is adjacent fromu; 41, thend, (x;) = 1, w11 = u ;41 andoa; 41 is incident in
H> from the same vertex ag (vertexx;). Thus, the distance iG between(w;, ;)
and (w;, ga; 1) is at mostD;. Finally, sinceHs is symmetric ands an involution,
(uj+1, ai+1) is a shuffle neighbor ofu ;, 5a; 1) in G, and then?; < D1 + 1.

(4) Finally, if botha; anda; 11 are incident to the same vertex thend, (x;) =2, w;y1 =
u j+2 and bothoa; andoa; 1 are adjacent irff> from the same vertex;. Thus, the
distance inG between(u 1, ca;) and (41, ca;4+1) is at mostD;. Finally, since
Hz is symmetric,(u 11, 0a;) and(u 11, ga;41) are shuffle neighbors af:;, ¢;) and
(uj2, aj11) respectively, and thedt < Dy + 2.

In any case, it holds that:
di < D1+ 0p(x;).

Thus, we can upper-bound the sum in inequality (3) by

1
(+DD1+ Y 6p()=(U+DD1+1,
i=0

which implies inequality (2), as was claimed]

With this lemma we are in a position to bound the diameter ofshuffle c-exchange
product.

Theorem 4. Given a graphG1, let G = Hazx H> be thes-shuffle eexchange product of a
Ds-reachable digraphHz with a |G 1|-regular digraph H2 according toG;. If D, D1 and
D> are the diameters of 351 and H» respectivelythen

D+ 1< (D1 + 1) (D2 + 1) + max(D3 — D2, 0), (4)

Moreover if Hz is symmetric and an involution D, can be taken to be the diameter of
UH->.

Proof. Let us consider two vertice, a) and(it, a) with « = xy anda = xy. We need to
find a walk inG joining these vertices in at most the bound in inequality (4). We first treat
the case whe3 < D». From the hypothesis, we know that the distahiceH, (or in UH>
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if Hsis symmetric), fronxto x is at mostD1, i.e,l < D1. If there exists a directed walk in
Hs fromuto i of lengthl, we can apply inequality (2) and conclude the proof. Let us then
consider the case when there is no directed walk of lelhfgttm uto &z in Hz. Thus,/ < D3
becausdds is I-reachable for any> D3. Next, we sek = D3 — [ and consider a vertax

in I'*(u) and a directed walk

UQ, U1, ..., Upy =1U

of length D3 in Hsz, from ug to &, which exists becaus#élz is Ds-reachable. Thus, the
sequencey, ..., up, is adirected walk of lengthfromu, to iz, and we can apply inequality
(2) to upper bound byD1 + 1)/ + D1 the distance i between(uy, a) and(ui, a). Finally,
sinceug € I' *(u) there is a directed walko, u_1, . .., u_x = u in Hs fromug to u, which
gives rise the following walk:

—k+1

—-1 —k
w,a)=W_g,a), Uu_ry1,0 ~a),...,u-1,0 a), (ug, o0 "a),

(u1, 6 a), ... (w1, 0 a), (uk, @)
in G joining (u, a) and(uy, a) in 2k steps. Therefore,
dg ((u, @), (i, @) <dG((u, @), (uk, @) + dg (uk, @), (i, @)
<2k +1(D1+ 1)+ D1=2(D3—1) + (D1 + DI + Da,

which is less than or equal @1 + 1) D2 + D1, sinceD3< Dy and D1 > 1. Let us now
treat the case wheb, < D3. We seth = D3 — D, > 0 and consider the vertex of Hs,

incident to the are”a. Then, the distandgn H, (or in UH, if Hz is symmetric and and
involution), fromx’ to ¥ is at mostD,. Letk = D, — [ andW be a directed walk,

MO,M_‘]_,--.,MDBZM,

in Hs from a vertexug in I'"*(u) to i. Then, we can apply inequality (2) to the directed

walk up,—, ..., up, Of lengthl, and bound by Dy + 1)/ + D, the distance irG be-
tween(up,—;, o"a) and (@, ). Finally, sinceug € I'"*(u), there is aug-u directed walk
uo, u—1, ..., u_r =u of lengthk in Hs which, together with¥, gives rise to the following
walk in G:
u,a) = (u_x.a), U—gs1,0 ), ..., (u_1,0 ),
(o, 0 Fa), (ur, 6% ta), ..., (upy_t, a7 FTP37a)

joining (u, @) and(up,—;, 6"a) in D3 — [ 4+ k = D3 + D, — 21 steps. Thus

de ((u, a), (ii,a)) <dg((u, a), (ups—i, d"a)) + de ((ups—1, d"a), (ii, @))
<D3+ Do — 2]+ (D1+ 1)l + D1,

whichis at mostD1 + 1)Do + D1+ D3 — Dy, sincel <Dy andD;>1. [
The first part of the proof of this theorem for the caBe< D, enables us to prove

the same result wheD; is the unilateral diameter dff, as explained in the following
proposition.
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Proposition 5. With the same hypothesis of the previous theprem- is the unilateral
diameter ofH, and D3 < D2 then

D +1<(D1+1)(D2+ 1), (5)

Proof. Let (u,a) and (i, a) be two vertices ofc with a = xw anda = xw. If | is the
unilateral distance i/, betweenxandx, then there will be a directed walk of lendtfrom
x to x or vice-versa. In any case, we can make the same arguments as in tizzcase
in Theorem 4 can be made in order to prove that the distance(om to (i, a) verifies
(5). O

The above constructions are an extension to other values of the diameter and a unifi-
cation of the first two constructions defined[?] (see the Appendix). Indeed, whéfy
and H3 are the De Bruijn digraphs B, |G1|) and Bk, m) respectively, then grap& of
Theorem 4 has the same parameters as gtapi, k} defined in[12]. If, instead of a De
Bruijn digraph,H> is the Kautz digraph kk, |G1|), then graplG has the same parameters
as graphG1(m, k) defined in[12]. In fact, a good choice of the forward arc-coloring and
shift of the digraphH2 not only gives rise to graphs with the same parameters, but also to
isomorphic ones.

The present construction has a large degree of freedom, since in general a digraph has
many different forward arc-colorings, as well as many different shifts. The question of
which of these forward arc-colorings and shifts give rise to isomopisicufflec-exchange
products is not dealt with.

The following corollary, which can be established by means of elementary calculus
arguments, will lead us to the main result of the work, namely, Theorem 7.

Corollary 6. Let Dy, D2 and D3> D5 be three fixed positive integeend letd = D3/ D
whereD = D1(D2 + 1) + D3. Suppose that for a given sequent;e—> +oo there exists
a sequence of graphS, and two sequences of digrapl& , and Hz, such that for
eachn

e graphG1 , and digraphH> , have diameter®; and D, respectivelyand digraphHs ,
is D3-reachable

e the graph and digraph&/1,, H2,, and Hz, have maximum degreef, ,,, |G1,| and
A3, respectivelywhere|41 , — (1 — A)4,| and|243,, — A4, | are upper bounded by a
constant

o the previous graph and digraphs have ordﬂ%}, + o(Af;), |G1..P240(]G1.,|P?) and

A:?,i + 0(4‘3?2) respectively

Thenanyag-shuffle eexchange product @iz ,, and H» , according withG 1 ,,, has maximum
degree at mostl,, + o(4,,), diameter at most D and order

A, \P
|Gl =(7> +0(42),
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Table 1
First construction, where = lim,,—, ~ |G, \/(An/Z)D

D=11 15 16 17 18 23 24 25 26 29 30 31 32 33
Dy =5 7 7 5 5 7 7 7 7 5 5 7 7 7
Dy;=1 1 1 2 2 2 2 2 2 4 4 3 3 3
D3z=1 1 2 2 3 4 5 6 5 4 5 3 4 5
k=71 831 39 69 9 2347 248 35 6 297 45 14073 1558 215

where

2/1
/“L/L(l _ ;L)l_A
Besidesif Hs, is symmetrica, is an involutionand|43, — 14, is upper-bounded by a
constantthena = f(1)/2*.

In order to apply this result, we take into account the existence of large graphs with
diameter 5. Indeed, for each odd powef 3, the quotient graph&’(¢) of the generalized
hexagonsH (¢), described if9], have maximum degreg + 1), diameterD; = 5 and
orders(g + 1)(¢* + g% + 1). Thus, for each intege > 10 let D, andr be, respectively,
the quotient and rest of the division &f — 5 by 6, soD — 5= 6D, + r. Then, if we set
D3=Dy+r,.=D3/D and4, = [(3%+1 4 1)/(1— A)], we can take the grapfi; , and
the digraphdd2 , and Hs ,, to be, respectively:

e the quotient graplt’ (32'+1),
e the Kautz digraph K\G1.,|, D2),
o the De Bruijn digraph B374,1, D3).

Therefore, Corollary 6 tells us that there exists a sequéhcef graphs with diameters at
mostD, maximum degrees at madt, + o(4,,) and orders:

A b b
= y
(Gl <f<1/6)+eD) +oldy)
with £(1/6) < 1.7614 and

lim ep=0
D— 400

(whenr =5, ¢p goes to 0 like 1D and wherr = 0 it is exactly zero).

In a similar way, if we take a&'1 ,, the graph with diameteb; = 7, defined if10] that
arise from the incidence graphs of generalized octagons, we will alataiD)-graphs with
ordersG,|=(4,/(f(1/8)+ep)” +0(A,?) with f(1/8) <1.5895and linp_, 1 o0ep =0.

Notice that, by the Moore bound, the diameter of e&&h must be exactlyD. In
Table 1 we give lower bounds to the orders obtained in these two ways, for some small
values of the diameter.

The above application of Corollary 6 enables us to state our main theorem:
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Table 2
First construction using symmetric looped digraphs of large graphs

D =15 16 17 18 19 20 23 24 25 26 31 33 35
D1=3 7 5 5 7 5 7 7 5 7 7 7 5
Dy=3 1 2 2 1 2 2 2 3 2 3 3 5
D3=3 2 2 3 5 5 2 3 5 5 3 5 5

k>18 157 277 78 9 13 9388 1984 123 199 112591 6890 20051

Theorem 7. There are two constant®g and o < 2 such that for eachD > Dg and in-
finitely many values ofl there exists a graph G with maximum degreediameter D and
order

A D
|G|2<) :
o

Furthermorex < 1.59.

For particular values dd we can improve some of the values in Tabley taking asH> ,,
andHs , the symmetric looped digraphs of large graphs andthe mappingiv +— vu. For
instance, the graphs with diamefer=2, 3, 5, maximum degrees and orderst” +0(4?)
described if9] (for D = 7 the family described ifiL0] is useless because its graphs have
degrees not dense enough). We illustrate the resuligbte 2

Finally, in [14] it is proved that there exists a family of digraphs with unilateral
diameter 2 and orders34?, for even values ofi. Thus, we can improve the entries of
Tablel for D = 17 from 69 to 104. Nevertheless, these values are still smaller than the
corresponding ones in Tablke

It is possible to make slight modifications to theshuffle c-exchange product defini-
tion, in order to include, as particular cases, the other compound graphs presdttfd in
However, the procedure is similar to the one presented in this section and the graphs ob-
tained do not give better lower bounds fof. . In next section, a new method is presented
which gives rise to families of graphs larger than those defin¢tizh

4. Second construction
The next construction provides an improvement on the upper bound of the canstant
Theorem 7, for diameters congruent with 0, 2drmodulom, with m =6 or 8. Specifically,

we will prove that: could be taken smaller than 1.57. As in Section 3 we begin by introducing
some arc transformations and graph—digraph products.

4.1. Reflections of a digraph

We call areflectionof a digraphH any involution¢ : V(H) — V(H) of its ver-
tices which is arantiautomorphisngi.e. a bijection that reverses the direction of the arcs).
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Fig. 3. A reflection of the largest know@, 4)-digraph.

Formally, if we writei for ¢(u), thenz = u and
U~V = V>

Thus, ifuv andvw are arcs oH, so arevu andwwv. But, in that case, the are® andwv
are adjacent il H to the arcayw andvi respectively, hence

LH - _LH __
Uv ~> VW = WU ~> VU.
This means that the extension ¢fto the set of arcs oH given byuv — v is an

antiautomorphism of H as well. Furthermore, itis also an involution singée— uv=uv;
therefore we have proved the following proposition.

Proposition 8. If the mappingy +— i is a reflection of a digraph Hthen the mapping
uv — vi is a reflection of its line digrapli. H as well

In fact, it can be proved that any reflection of the line digraph of a regular digraph arises
in this way. These results enable us to find all the reflections of the De Bruijn and Kautz
digraphs by taking reflections in the corresponding complete digraphs which are simply the
permutations of order 2.

In Fig. 3 we describe (dashed arrows) a reflection of the largest known digraph with
maximum degree 2 and diameter 4 (giveijliti]). Therefore, by Proposition 8, the largest
known (4, D)-digraphs with maximum degree 2 (which are the line digraphs of that in
Fig. 3) have reflections.

4.2. The G-antiexchange graph

If ¢ : A(H) — V(G) is a forward arc-coloring of a digrapgt over the vertex set of
a graphG, and¢ : u — i is a reflection oH, then we define th&-antiexchange graph
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Fig. 4.

% =./(G, H, ¢, ¢) of Haccording to c an@ as the graph whose vertices are the ards,of
and such that two areg anda; are adjacent if eithety is adjacent tag in H andc(ag) and
c(a1) are adjacent is (the “antiexchange” adjacency) ordf = ag (the “¢-adjacency”).
Formally,

G =./(G,H,c,$)=A(H),XUS)
where

X = X(%) = {ao. a1} : do & a1, c(ao) % c(ap))
and

S=S(9) ={{a,a}:a € A(H))}.

Wherea = vu if a = uv. SeeFig. 4, in left.
4.3. Theg-product

Giventwo antiexchange grapAsindB, we call thep-productof them the graplv=A x B
whose vertex setis§A) x V(B), and where two pair&y, bo), (a1, b1) are adjacent if their
first coordinates are antiexchange adjacent and their secorgad@cent or vice-versa.
Formally,

(ag. bo) 2(ay. b1) < {ao. a1} € X(A) and {bo, by} € S(B)
or {bg, b1} € X(B) and{ag, a1} € S(A).

Before stating the next theorem, let us give some insights into the local adjacency structure
of a ¢-product.

Remark 9. Suppose thaG = Ax B with A = .«/(G1, Hy, ¢, ¢), and letag, az, . .., az,
be arcs adjacent to the ares, as, ..., a2,+1 in Hy such thatc(ag), c(a1), ..., c(az,),
c(azy,+1) is awalk inG1. Then, for each vertels of B, the sequence

(do. b), (a1, b), ..., @za, b), (2441, b)
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is awalkinG (see right part irrig. 4). In particular, ifG is D;-reachable for an odd integer
D1 andH is |G1|-regular, then for any argy of H; adjacent to another arq,

dg ((ao, b), (a1, b)) < D1

for each vertexb of B.

Theorem 10. Let G1 and G2 be two graphs and leif4 and Hg be two|G1| and |G>|-
regular digraphs respectively. Thghe¢-productG = A x B between ang 1-antiexchange
graph A ofH4 and anyGz-antiexchange graph B dfp verifies

(1) IGI=1AllB| = |G1l|G2||Hal|HE].
(2) If A4, 41 and 45 are the maximum degrees of G; and G, respectively then

A< A1 + Ao,

(3) If G1, G2 and Hp are D1, Do and Dg-reachable respectively with1 >3, and the
diameterD4 of H, verifies|D4 — Dg|<1,then

D(G)<(Da+1)D1+ (Dp + 1 D2.

Proof. The order ofG follows from the fact that the digraph$4 and Hg have|G1||H4|
and|G,||Hg| arcs respectively and that(M) = A(H4) and (B) = A(Hp). In order to
bound the degree of a vertéx, b) of G, we express its neighbors as follows:

I'((a,b)) ={(d,b):{a,d'} € X(A)YU{@,b):{b b} e X(B)).

Now, since|{a’ : {a,a’} € X(A)}|<4y and [{p’ : {b,b'} € X(B)}|<A4s, thus
[I'G((a, b))|< 41+ 42, as asserted itlem (2).

In order to upper bound the diameter let us consider two verticds and (ay, by) of
G and distinguish three cases depending on the valugsof Djp.

Casel: Dy =Dp —1.Leta=aqg, a1, ..., a =a, be a shortest directed walk froato
a, in LH 4. Now, we distinguish two cases depending upbaing equal to or smaller than
Dj+1.1f1 = D4 + 1. Then we consider a directed walk= bo, .. ., b;1 = b, fromb to
b in L H p of length exactlyDp + 1 whose existence is guaranteed by Ehgreachability
of Hp. By the triangular inequality, we have that

_ -1 _
a A ao | | dao a; aiy1
d<[b} ’ [b*D gd([bo] ’ [blb * Zc:) [d<[bi+l] ' |:bi+1i|>
d C_li+1:| ’ |:C_li+l:|)i| _
* <|:bi+1 biy2
(Where we have written the pairs as columns in order to clarify the expression.) Thus, by

Remark 9,

-1
d(m ’ [bD <D2+) (D1+D2) = (Da+ D1+ (Dp+1Dz.
* i=0
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On the other hand, & = D4 + 1 — [ > 0, then we consider a walk i of length Z of
the form (a, b) = (ao, By), (@-1, Bo), - - -+ (@—k, P_x), (a—k, P_x_1), @and a directed walk
P_r_1=b_k-1,...,by=Dbyfrom p_,_, tob,in LHp of lengthDp + 1. As before, by
the triangular inequality we have that

(o) ]) <ele) [ )+l ) )
+d([§iﬂl’_£5j>
<acvops & o[ ] [50]) o[ ] ()]

which is less than or equal t® 4 + 1) D1 + (Dp + 1) D2 if D1 > 3. Notice that, in the last
inequality, we have used that@;, b;), (a;+1, b;)) =1 fori <O0.

The other cased{y = Dy and D4 = D + 1), which are similar to the previous one,
are developed in the Appendix.[]

As for the first construction, we can infer the following corollary:

Corollary 11. Let Dy, D2, D4 and Dg be four fixed integer such thab; >3 and
|Dy — Dg|<1,and letA = (Dg + 1)D2/D whereD = (Ds + 1)D1 + (Dpg + 1) D>.
If for a sequencel,, — +oo of positive integers there exist two sequen€as,, G2,
of graphs and two sequencé&s, ,, Hg, , of digraphs with reflections such that

o for each nthe graphsGi ,, G2, and the digraphG s , are D1, D2 and Dg-reachable
respectivelyand the graphG 4 , has diameteiD 4.

e The graphs and digraphS1,,,, G2.,, Ha., and Hg ,,, have maximum degreets ,,, 42 ,,,
|G1.,| and|G2,, | respectivelybeing|41 , — (1—2)4,| and|42 , — A4, | upper bounded
by a constant

e the graphs and digraphs of the previous item have 0rd€r},s+ O(Afjl), Agi + O(Agfl),
|G1.1P4 +0(1G1,.|P4) and| G2, P + 0(1G2,,|P*) respectively.

Then for any sequencd,,, of G ,-antiexchange graphs d#, , and any sequencas,,
of G2 ,-antiexchange graphs di; ,, the graphsG, of the sequence of theff-products
i.e

Gp = Ay X By,

have maximum degrees, + 0(4,,), diameters at most D and orders

A D
Gl :(7") +o(4P)
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Table 3
Second construction, wheke= lim,, s 0|Gn /(45 /2)P

D =12 13 15 16 17 18 19 23 24 25 29 30 31
Dy =5 5 7 7 5 5 5 7 7 7 5 5 7
Dy=1 1 1 1 2 2 2 2 2 2 4 4 3
Dp=1 2 0 1 1 2 3 1 2 3 3 4 2
k>18 7 831 157 277 79 29 9388 1984 565 4754 1447 112591

B 1
A= s

"

o=g(4)

In order to apply this corollary, for each integet> 11 congruent with-1, 0 or 1 modulo
6, letD4 andr be two integers suchth&—6=6D4 +r and|r|<1.Then,ifDg=D4 +r,
J=(Dp +1)/D and4, = [(3**+1 + 1)/(1 — )], we can take graph§1, andG,,, and
digraphsHy4 , andHpg , to be, respectively,

the quotient graptt’(3%*+1) of the generalized hexagdii(32'+1),

the complete graph o4, ] + 1 vertices,

the Kautz digraph with diametép4 and maximum degrel& 1 ,| and

the De Bruijn digraphs with diametéyz and maximum degrelg.4,,] + 1,

Consequently, the graplt, of Corollary 11 will have diameters at moBt maximum
degrees at most, + o(4,,) and orders:

A b D
Gl =( —2" ) +o
(Gl (8(1/6)+81)> ot

with ¢(1/6) <1.5692 anckp — 0 whenD — +o0.

Similarly, for each integeD > 15 congruent with-1, 0 or 1 modulo 8, we can take as
G 1., the graph with diametad; =7, defined i10]. The corresponding4,, +0(4,), D)-
graphsG, of Corollary 11 will have orderstG,| =(4,/g(1/8) + ep)? + o(A,?) with
2(1/8)<1.4576 andkp — 0 whenD — +o0. Table3 shows the result for some values
of the diameter.

As a consequence of the above application, we can state the following final result.

Theorem 12. For m = 6, 8, there is a constanDg such that for eactD > Dg congruent
with —1, 0or 1 modulo mand for infinitely many values aof, there exists a graph G with
maximum degred, diameter D and order

A" 157 ifm=86,
'G|>(§)’ Whereo‘_{1.45 if m = 8.
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5. Conclusions

As in other works (e.g[5]), we have illustrated that the implicit parallelism between
some constructions, like those of the grafhgn, k} and G(m, k) in [12], and the De
Bruijn and Kautz digraphs, can be explicitly given by a special kind of product (in our
case ther-shufflec-exchange product). As in previous works, we have shown (by means
of the ¢-product) that the existence of a reflection on these digraphs allows the improve-
ment of the constructions based on them by means of a reduction of the maximum
degrees.

Finally, we have shown that if there exist graphs with diam&tep 5, maximum degree
A1 and ordersA fl + o(Afl) for infinitely many values of11, then there existg < 2 such
that, for eacltD greater than a certain constant, graphs with diarm2tenaximum degree
A and order greater thant /o) do exist for infinitely many values of. Furthermore, the
larger D1, the smaller the value of.
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Appendix A.

In the first two subsections, we give the definition of the first two constructions presented
in [12] and the one given if13]. In the last subsection, we develop the remaining two cases
in the proof of Theorem 10.

A.l. GraphsGi{m, k} andG1(m, k)

Given an alphabeh on m symbols and &41, D1)-graphG1 on N1 vertices, the graph
G1{m, k} has as vertices the wordsof the form

w =010 ...0r—1, X1X2 ... X—1Xk, OCj < A, Xi EV(Gl),
and the neighbors of the vertaxare given as follows:

01002 . .. Olf—20k—1, X1X2 .. .xk_lx,’( x,/( ~ x; in Gq,
W~ 3 oo ... O —30k—2, XOX1 ... Xk_2Xk—1 0OQ € A,
0203 . . . Ok — 10k, X2X3 .. . Xk X1 or € A.

In order to definegG1(m, k), we take a set o1 one to one mapg; : C\{/} — V(G1)
from an alphabe€ on |C| = N1 + 1 symbols to the set of vertices 6f,. Then, a vertexv
of G1(m, k) is a word

W= 0102 ...0k-1, X1X2 ... Xp—1Xk &j €A, X; € C
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such thatr; # x;4+1. The neighbors ofv are the following:

0100 . 0201, X1X2 . . Xp—1X), X, = fo (D (fy 1 (x0),
W~ {0 .. 30—, XOXT . .. Xk—2Xk—1 X0 = [y~ (frrs (X)),
0203 . . . Ok—10k, X2X3 . . . XkX1 Xiy1 = fr N(frp(x1)).

A.2. Definition of the graphs mentioned in Section 4

Given an alphabeh on m symbols and &41, D1)-graphG1 on Nj vertices, the graph
defined in[13] has as vertices the wordsof the form

W= 0002, ..0k+1, X1X2. .. X2%41, & € A, x; € V(Gy),
and the vertexv is adjacent to the following vertices:

w ~ Ok +1002k - - - 0201, Xf—1X - - .xlx,’( x,i ~ x;in Gy,
0ok O2k—1 - .- ala/Zk+1, XiXk—1...X2X1 a/2k+l e A.

A.3. Remaining cases in the proof of Theorem 10

Case2: Dy = Dp. Leta =aq, ax, ..., a = a, be a shortest directed walk froito a
iNLHA. Ifl=Dy+1,letb=bq,...,b =b, be ab-b, directed walk inL H 3 of length
Dpg + 1. Thus,

]—

d([Z]’[ZID<%[d([ii]’[“é;f])“’([“ésleZiIi])]

< ) D1+ D2)=(Da+1)D1+ (Dp+ 1)D>.

Onthe otherhand, fi=(D4+1)—! > 0, we consider awalk:, b)=(ao, fq). (a0, f_1), - -+

(k41> P_s1)s (a—i+1, B_y) in Gand af_;-b, directed walkB_, =b_y, ..., by = b, in
LH g oflengthDp + 1. Thus,

a as a a—k+1 a—k+1 a—k+1
(3] )) =ol5) [ ol )
a_j41 Ax

o)1)
l_l . .
asims 8 (315
i=— k41
a; L_l,'
o[ [0
<2k -3+ Do+ (k—1) +1D1+ (Da + 1) Dy,

whichislessthan orequal t® 4 + 1) D1+ (Dp+1)Dyifandonly if D1 >3(k—1)/k—1,
but3k —1)/k —1<3<D;.
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Case3: Dy = Dp + 1. Leta =ap, a1, ..., a1 = ax be a shortesi-a,. directed walk in
LHA Ifl=Dy+1,letb=by,...,b_1=b,be ab-b, directed walk inL H 3 of length
Dpg + 1. Thus,

(o] [s:]) <[} (2] S5 ) 5D
o] [52])]

-2

<D1+ Y (D1+ D2) =(Da+)D1+ (Dg + 1 D2.
i=0

If k=(Da+1)—I > 0, we consider awalka, b)=(ao, fo), (@0, B_1); - - -» (@—tk+1, B_is1)s
(a—_k+1, B_p) inGand aB_,-b, directedwalkB_, =b_y, ..., bj_1 =b, in LH p of length
Dpg + 1. Thus,

o)) =dle) L7070 [5)
<=+ T[] [52])
o] [52])]

<2k —1) =1+ DaDr+k+(—2+1)Dy,

whichislessthanorequal t® 4 +1) D1+ (Dp+1)Dyifandonlyif D1 >3(k—1)/(k+1)
which is smaller than 3 for any>0. O
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