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Abstract—Since 2020, the ‘Antarctic Soundscapes’ (AS)
project has aimed to study anthropogenic impact in Antarctica
through sound by deploying a network of AudioMoth recorders
at key locations across the Fildes Peninsula (King George
Island). These devices continuously capture bioacoustic data
during summer campaigns, providing insights into the impacts
of human activity on this ecosystem. However, the project faces
two significant challenges: the limited autonomy of the recording
devices, which typically require battery replacements every 15-
20 days, and the extensive human effort needed to process
and analyze months of continuous recordings. To address these
limitations, we enhanced the AudioMoth-based recording system
by integrating a solar panel, rechargeable battery, and charge
controller, enabling continuous operation for up to 84 days
without human intervention during the 2022-2023 campaign.
Additionally, we implemented a machine learning-based audio
tagging system that automates the identification of anthropogenic
sounds, reducing the time and resources required for manual
analysis. These contributions represent a significant step towards
fully autonomous monitoring and analysis of Antarctic sound-
scapes, enabling more efficient and sustainable research.

I. INTRODUCTION

Understanding the sound impact of human activity in
Antarctica is crucial for protecting its environment and
wildlife [1]. As a vulnerable and unique ecosystem, Antarctica
requires protection against acoustic pollution, which poses
risks to its fauna [2]-[4]. Studying these impacts not only
helps establish appropriate noise limits to safeguard the
ecosystem but also holds scientific significance by providing
critical insights into human influence on protected areas.

The ‘Antarctic Soundscapes’ (AS) project, led by Dr. Lucia
Ziegler of the Department of Ecology and Environmental
Management at Universidad de la Repiiblica (CURE, Centro
Universitario Regional Este), focuses on studying anthro-
pogenic impacts on the Antarctic sound environment [5].
Since 2020, the project has deployed a series of AudioMoth
(AM) [6] acoustic recorders across nine points on the Fildes
Peninsula (King George Island) (See Figure 1).

The methodology followed by AS is a structured three-
stage process. Recording devices are prepared and deployed
in key locations. These devices are setted on a predefined
schedule, recording the first five minutes of each hour—a
widely practice in bioacoustics [7]. Then, devices are serviced
every 15 days to prevent battery depletion. Finally, a post-

campaign analysis is done to identify anthropogenic sound
sources.

The AS methodology encounters two primary challenges.
First, the limited battery life of AM devices, which need
replacements every 15-20 days, poses logistical difficulties
for field operations in remote areas. Second, analyzing the
extensive audio data collected during campaigns demands
substantial human effort, making the process both time-
consuming and resource-intensive.

The project implements three key contributions. First, we
extend the autonomy of AM recording devices by integrating
solar panels, rechargeable batteries, and optimized power
management systems, ensuring uninterrupted operation. We
also increased SD card capacity to accommodate extended
recording periods. Field tests during the 2022-2023 Antarctic
Summer Campaign confirmed the prototype’s effectiveness,
achieving continuous operation for up to 84 days. Second,
we evaluated the feasibility of solar power in Antarctica by
employing a custom-built data logger to monitor the power
system and correlating the collected data with irradiance
levels, providing insights into sustainable energy solutions
tailored for remote and extreme environments. Finally, we
enhanced post-campaign audio analysis by developing a ma-
chine learning-based audio tagging system that automates the
detection of anthropogenic sounds, such as aerial, terrestrial,
and aquatic vehicles, significantly reducing manual effort.

Collectively, our contributions represent significant ad-
vancements in data acquisition technology for Antarctic re-
search, addressing critical challenges and opening new pos-
sibilities for conducting impactful scientific investigations in
one of the most extreme environments on Earth.

II. RECORDING DEVICE
A. Audiomoth (AM)

AudioMoth, developed by Open Acoustic Devices, is a low-
cost, energy-efficient recording device designed to capture
high-quality audio economically, supporting extended record-
ing intervals due to its minimal power consumption. Its afford-
ability allows the deployment of multiple devices, making it a
valuable tool for bioacoustic research and environmental mon-
itoring. Leveraging its advantages, the AS project has used
AM extensively in recent Antarctic campaigns, establishing
it as the primary choice for this project. A literature review
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Fig. 1. Deployment locations of AM devices across the Fildes Peninsula,
King George Island.

was conducted to evaluate alternatives such as the Song Meter
Mini and BAR-LT, but AM stands out as significantly more
cost-effective, making it especially suitable for projects that
require deploying a large number of units.

The AM is based on the Silicon Labs Gecko EFM32
processor and includes an integrated MEMS (Micro-Electro-
Mechanical System) microphone. The microcontroller con-
tains internal SRAM memory and stores acquired recordings
uncompressed (16-bit linear PCM format) in .wav format
on an external SD card. The AM was designed to capture a
wide range of frequencies, allowing for the selection of the
sampling frequency between fixed values from 8k to 384k
samples per second. A notable feature of the device is its
small size (58 x 48 x 15 mm). The device features a wide
input voltage range and typically is powered at 3.6V nominal,
utilizing three AA NiMH rechargeable batteries. The AM also
includes red and green LEDs to provide users with operational
feedback, such as indicating recording statusor SD card issues.

B. Power profile

The AM operates in three modes: Continuous recording,
USB/OFF (for PC connection or turning off), and Custom
recording. The AS project uses the Custom mode, configured
to record the first five minutes of each hour. In this mode, as
shown in Figure 2, the AM alternates between two primary
states: a low-power sleeping state to conserve energy and a
recording state, where it captures the soundscape.

Next, we analyze current consumption in more detail based
on the consumption profile shown in Figure 2. During the
sleeping phase (7), the device enters an ultra-low power
mode (EM4), drawing a minimal average current, /,, which
is approximately 0.092 pA. In this mode, periodic interrupts
from a timer briefly wake the device to check the recording
schedule (denoted as Sleeping in Figure 3).

Before transitioning to the recording phase, the device
enters a preparation stage, lasting 7},,.., during which it con-
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Fig. 2. AM’s power consumption profile showing the alternation between
Sleeping (low power mode) and Recording (audio capture with higher current
consumption).
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Fig. 3. AM’s power consumption profile in Custom mode: Sleeping (low
power), Preparation to Record (system initialization), and Recording (audio
capture with data transfer spikes).

sumes an average current, . (denoted as Prepare to record
in Figure 3). This stage involves initializing components such
as the microphone, memory buffers, and performing power
checks. Power consumption during this phase is higher, with
an average current of around 12.7 mA over a duration of 750
ms for a SD card of 32 GB.

During the recording phase, the device captures audio data
through the microphone, stores it in SRAM, and periodically
transfers it to an SD card via SPI. This phase consumes I,
during the recording interval T, (denoted as Recording in
Figure 3), with average current of about 11 mA.

Since the recording time is fixed, any preparation time is
subtracted from the total available sleep time, ensuring that
the overall cycle remains within the designated time frame.

Based on the measured current consumption and time spent
in each phase, we developed a simple yet effective energy
model for the AM, which can predict energy consumption
under various configurations, presented in Eq. (1):

Qhour = TgIg + (Ts - T;m“e)ls + Tprelpre (1)



TABLE 1
MEASURED AND MODELED CURRENT CONSUMPTION VALUES FOR

CONFIGURATIONS.
Sleeping Preparing Recording 1,004 Imeas error
Ts Is Tpre  1Ipre Ty Iy
3300 0.092 3 127 300 114 1.045 1.04 0.47%

55 0.029 3 23.3 5 20 2.857 2.86 -0.11%

To validate the model, we measured the current consump-
tion and the corresponding times for two different configu-
rations using a 32 GB SD card, as shown in Table I (time
is expresed in s and current in mA.). The first experiment
corresponds to the typical schedule (five minutes of recording
per hour) and the second one the schedule was modified to
five seconds of recording per minute.

Based on the measurement values presented in Table I, the
total charge for one cycle was calculated. The average current
consumption per cycle (/,,,4) was then determined by divid-
ing the total charge by the cycle period. This calculated value
was compared with direct measurements taken throughout the
period (I,,eqs), yielding a relative error below 1%. This result
confirms the accuracy of the proposed model. Interestingly,
the results show that for more frequent recording, while
maintaining the recording-to-sleep ratio, the pre-recording
charge consumption becomes increasingly significant, thereby
raising the overall energy consumption.

The power consumption of 32 GB, 64 GB, and 128 GB
Kingston SD cards was measured under the typical AM con-
figuration. The analysis showed minimal variation in energy
consumption across different SD card sizes in this setup.

The analysis provides a daily energy consumption of 24.28
mAh for the AM, which is crucial for accurately sizing its
power supply and understanding its energy requirements.

C. Enhanced Device: Extending Autonomy with Solar Power

To extend the autonomy of AM devices, a solar-powered
system was developed, consisting of an Adafruit bq24074
charger, a 6V 1W solar panel, and a 3.7V 2500mAh Li-
Po battery. Considering Antarctica’s extreme conditions, a
conservative approach was taken by over-sizing the solar panel
and battery. Despite this, the solution proved to be both cost-
effective and reliable. Experiments conducted in Antarctica
validated the design and provided data for future improve-
ments, aiming to reduce the safety margin in redesigns.

III. EXPERIMENTS

To evaluate the solar-powered design’s performance and
its feasibility for autonomous audio recording in extreme
conditions, field tests were conducted during the 2022-2023
Antarctic Summer Campaign in two main experiments.

A. Short-Term Experiment

A custom data logger was built using an Arduino Uno with
an RTC/SD card shield to sample signals with a timestamp.
Powered by an independent source, it collects time-based data
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Fig. 4. Time series plot showing the digital pins PGOOD (blue) and CHG
(orange), alongside the normalized irradiance time series (green). Red bands
indicate missing data in the irradiance series.

without affecting the AM’s operation. The logger samples
the PGOOD and CHG signals every eight seconds. PGOOD
indicates sufficient solar irradiance for battery charging, while
CHG shows active charging. When PGOOD is high and CHG
is low, it confirms the battery is fully charged, demonstrating
effective energy storage.

The analysis, as shown in Figure 4, demonstrated that
the device discharged during periods of no irradiance (night)
and efficiently recovered lost energy when sunlight returned.
Table II presents the irradiance values for the analyzed days,
comparing them to the mean and worst days of the campaign.
Notably, the system achieved a fully charged battery on both
a good day (08/12, the best day of the campaign) and a
relatively bad day (09/12), demonstrating its robustness under
varying irradiance conditions. On average, the PGOOD pin
was active for 16.2 hours per day, while the CHG pin was
active for 4.1 hours daily, highlighting the over-dimensioning
of the solar-powered solution to ensure reliable operation even
in challenging Antarctic conditions.

TABLE 11
STATISTICS OF DAILY IRRADIANCE. ALL VALUES ARE IN I/V/WL2

Date Maximum Mean Std. Deviation
Worst Day 122.5 39.3 41.2
Mean Day 525.5 143.6 160.2

08/12 1026.0 303.9 314.5

09/12 364.5 89.6 101.5

B. Long-Term Experiment

One key experiment involved deploying a solar-powered
AM alongside an original device used in the AS project.
Both devices were tested at Ardley Island from December
3, 2022, to March 4, 2023, and housed in weather-resistant
enclosures. The prototype achieved 84 days of continuous
operation, far exceeding the estimated 16-day autonomy of
the original device. The test demonstrated that the prototype’s
limitations were due to storage capacity rather than power, as
the SD card became full, highlighting the potential for even
longer autonomy with higher-capacity storage.



IV. POST-CAMPAIGN AUDIO ANALYSIS

Following the summer campaign, the AS project faces
another significant challenge: analyzing two months’ worth of
audio recordings. This task heavily relies on human personnel
for manual analysis, making it time-consuming and resource-
intensive. To address this, we developed a machine learning-
based audio tagging system capable of processing Antarctic
soundscape recordings and automatically identifying anthro-
pogenic sources, specifically aircraft and motorized vehicles,
including boats.

Due to the limited availability of labeled anthropogenic
sound data for training a model, we created a synthetic
dataset using Scaper [8], combining foreground (anthro-
pogenic sounds) and background (ambient Antarctic sounds)
audios. Backgrounds were easily sourced from AS project
recordings, as most lacked human-made sounds, while fore-
grounds were selected from public datasets like AudioSet
[9] and Freesound [10]. Inspired by a DCASE competition
[11], we synthesized 6,500 ten-second audio files, simulating
realistic Antarctic soundscapes to provide essential training
data for training audio tagging model.

TABLE III
PERFORMANCE COMPARISON OF THE BASELINE AND DIFFERENT MODELS
FOR AUDIO TAGGING

Method Accuracy PR_AUC EER Motors EER Air
Baseline 0.308 0.368 0.432 0.402
MobileNetV2 0913 0.970 0.045 0.079
VGG13 0.783 0.867 0.088 0.215
AST 0.487 0.838 0.231 0.152
PaSST 0.515 0.903 0.187 0.104

To address this audio tagging problem, we used log-
mel spectrograms as input, optimizing the parameters to
n_mels = 128, window length = 2048, and hop length =
511, based on a baseline model using MobileNetV1 from the
DCASE 2019 framework. We then evaluated various models
for audio tagging, including MobileNetV2, VGG13, PaSST
and AST; using Accuracy, Precision-Recall AUC and Equal
Error Rate (EER) as evaluation metrics. In order to mitigate
overfitting, we applied data augmentation techniques such as
Mixup, Random Erasing, Scaling, Shifting, and Rotating. The
performance results are summarized in Table III.

MobileNetV2 outperformed other models in audio tagging
tasks, showing strong performance on the synthetic dataset.
However, real-world testing highlighted challenges from do-
main shifts, particularly noisy and windy conditions, leading
to increased false positives. These issues, along with the
limitation of recording only the first five minutes of each
hour, make detecting sparse anthropogenic sounds difficult.
Examples of detections and a model testing tool are available
on the project site!.

Adjustments to both the recording methodology and dataset
composition are anticipated to enhance the model’s perfor-
mance in real-world applications.

Thttps://pfcserena.github.io/

V. CONCLUSIONS

The advancements in the AS project significantly enhance
the viability of long-term bioacoustic monitoring in the harsh
Antarctic environment. By integrating a solar-powered system
into the AM-based devices, we extended the autonomy of
the recorders to 84 days without the need for battery re-
placements, addressing a critical limitation of previous setups.
The proposed solar power solution proved both reliable and
cost-effective, as confirmed by an independent data logger
monitoring the charging process, ensuring optimal energy
system performance throughout the campaign. In addition
the integration of machine learning for automatic audio tag-
ging represented a key development in reducing the time
and resources required for manual analysis of the collected
recordings. This approach not only streamlined the processing
of continuous recordings but also enhanced the efficiency of
identifying anthropogenic impacts on the Antarctic ecosystem.

These innovations collectively contribute to a more sustain-
able, autonomous monitoring solution, empowering the AS
project to track the effects of human activity on Antarctic
soundscapes more effectively. With these improvements, the
project is well-positioned to provide valuable insights that
will inform future research and conservation efforts in this
ecologically sensitive region.
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