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Abstract: The polynomial affine model of gravity was proposed as an alternative to metric
and metric-affine gravitational models. What, in the beginning, was thought to be a source
of unpredictability—the presence of many terms in the action—turned out to be a milestone
since it contains all possible combinations of the fields compatible with the covariance
under diffeomorphisms. Here, we present a review of the advances in the analysis of the
model after 10 years of its proposal and sketch the guidelines for our future perspectives.

Keywords: alternative models of gravity; affine gravity; cosmological models; affine
connection; emergent metric; cosmological perturbations; affine foliations

1. Introduction
General relativity was the model proposed by Einstein in response to the need to make

the constancy of the velocity of light and the Newtonian theory of gravity compatible [1].
The equations of gravitational interaction, described as a field theory for the metric ten-
sor field, were presented almost simultaneously by Einstein and Hilbert [2]. However,
the latter obtained the field equations based on an optimisation problem aligned with the
Lagrangian formalism of classical mechanics. Within the following months, the first (non-
trivial) exact solution to these equations was obtained by Schwarzschild [3], but also the
first phenomenological predictions of the model were derived: (i) the Perihelion precession
of Mercury’s orbit; (ii) the deflection of light by the Sun; and (iii) the gravitational redshift of
light. A modern comparison between the predictions of general relativity and experimental
observations can be found in Refs. [4,5]. The amount of evidence supporting the validity of
general relativity is vast; however, nowadays, it is presumed that Einstein’s theory is an
effective model, mostly due to the unsuccessful attempts to renormalise and quantise the
model [6–15] and the necessity of hypothesising the existence of an extensive dark sector to
commensurate the cosmological observations with the predictions from the model [16–18].
Such a belief encourages the inquiry of models of gravity that extend general relativity.

Einstein formulated the theory of general relativity under the following precepts: the
fundamental field is the metric tensor field, the theory is covariant under the group of
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diffeomorphism, and the field equations are second-order differential equations. Lovelock
showed the uniqueness of general relativity [19]; in addition, he proposed gravitational
models in diverse dimensions that satisfy the same axioms [20]1. These models are known
as Lanczos–Lovelock models of gravity. In order to build extensions of general relativity,
one needs to relax the axioms stated above.

One of the most interesting formulations of gravitational models comes with the
independence of the connection from the metric tensor. These are dubbed metric-affine
models of gravity (for a review, see Ref. [22]). The first metric-affine models of gravity were
proposed by Weyl [23,24] and Cartan [25–28], who consider connections with nonmetricity
and torsion, respectively. There were other formulations of gravity, for example, based on
projective transformations [29] or affine formulations [30–36]; other formulations consider
non-symmetric metrics [37,38] and models with extra dimensions [39–41]. Extensions that
consider additional fields involved in the mediation of gravitational interaction are known
as TeVeS (Tensor-Vector-Scalar) gravities. For contemporary presentations of different
modifications of gravity, see Refs. [42,43].

In the past decades, interest in different formulations of general relativity and its
extensions has increased, with the aspiration that some models could remediate the re-
maining issues of general relativity. The teleparallel and symmetric teleparallel equivalent
formulations of general relativity (see, for example, Refs. [44–46]) have been fertile soil for
building extended gravitational models2, originating a huge amount of theories [48–56].

In the same spirit, there are modern proposals of affine gravity that extend the Einstein–
Eddington–Schrödinger model. This renewed interest in affine models of gravity started
with the foundational work of J. Kijiowsky [57–61], followed by reformulations of general
relativity by Krasnov [62–67], the affine proposal by Poplawski [68–70], and the polynomial
affine model of gravity (the target of this review) [71,72]. The cosmological solutions and
some phenomenological aspects of these models have been examined in Refs. [73–79].

The affine formulations of gravity, due to the lack of a fundamental metric tensor field,
do not have the flexibility of building invariant quantities offered in metric models of gravity.
We call this property the rigidity of affine gravity. Moreover, the affine connection, which,
in general, has 64 components in four dimensions (much more than the 10 components of
the metric tensor field), has more room to accommodate additional fields associated with
the geometrical nature of the manifold, which could be interpreted as additional degrees of
freedom to explain the dark sector of the Universe.

Invariants built with the affine connection do not refer to any length scale, and there-
fore, the group of symmetries could be naturally enhanced to the group of conformal or
projective transformations. Some applications of these groups in gravitational models are
found in Refs. [80–82].

The aim of this article is to present the state of the art with regard to the development of
the polynomial affine model of gravity in four dimensions. Section 2 gives a brief overview
of the polynomial affine model of gravity, highlighting the method used to obtain the action
of the model (see Equation (16)) and listing the remarkable features of the model. Next,
in Section 3 (complemented with the content of Appendix A), we find the covariant field
equations of the model. We have included the field equations in the particular scenario of
the torsion-less sector in Section 3. In order to search for solutions to the field equations,
as in any other gravitational model, we need the ansatz of the affine connection. We build
the ansatz of a spherical and cosmological connection in Section 4. In Section 5, we scan
the space of solutions to the field equations of the model in the cosmological context,
and we present a model to analyse cosmological perturbations in affine models of gravity
in Section 6. Issues regarding the perspectives of the model are discussed in Section 7.
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The content of that section is a road map of our current research interest and the reach of
the model. We end the article with a brief set of concluding remarks in Section 8.

2. Purely Polynomial Affine Gravity
Polynomial affine gravity is a model of gravitational interactions for which the funda-

mental field is the affine connection, and this does not require the existence of a (fundamen-
tal) metric tensor field to build its action functional, with the requirement of covariance
under the group of diffeomorphism. In order to define an action functional on a four-
dimensional manifold M, we write a linear combination of all possible 4-forms that can be
made that are linearly independent. When choosing a coordinate system, {xµ}, there is an
induced basis on the tangent and cotangent bundles, ∂µ

∣∣
x and dxµ

∣∣
x, respectively, and on

other tensor bundles. Using this notation, 4-form integrals can be written in components as
follows [83]: ∫

M
F(4) =

∫
M

1
4!

Fµ1···µ4 dxµ1 ∧ · · · ∧ dxµ4 (1)

=
∫
M

1
4!

Fµ1···µ4 E
µ1···µ4 d4x. (2)

defined with

Eµ1···µ4 =


1 µ1 · · · µ4 an even permutation of 0123

−1 µ1 · · · µ4 an odd permutation of 0123

0 otherwise,

(3)

where the skew-symmetric tensor density of weight, w = +1, is invariant under coordinate
transformations [84]. Note that the term d4x is independent of the fields but has the role of
an integration measure and has a weight of w = −1.

The affine structure is an additional structure that could be added to the differential
manifold, and its purpose is to allow for the comparison of geometric objects placed at
different points of the manifold M. Such a structure is determined by the affine connection,
the components of which are defined as

∇̃µ⃗eν = Γ̃µ
λ

ν⃗eλ, (4)

where e⃗µ represents the basis vectors at a given point, p ∈ M. Generically, an affine
connection in four dimensions has 64 components.

The starting point for building our model would be a generic affine connection, Γ̃µ
λ

ν.
Without the aid of a (fundamental) metric tensor field, a connection can be decomposed
into its symmetric and anti-symmetric parts,

Γ̃µ
λ

ν = Γ̃(µ
λ

ν) + Γ̃[µ
λ

ν]

= Γµ
λ

ν +
1
2 T̃µ

λ
ν

= Γµ
λ

ν + Bµ
λ

ν +A[µδλ
ν]

.
(5)

In the second line of Equation (5), we have denoted with Γ the symmetric part of the
affine connection, and with T̃ , the torsion of the affine connection3. In the third line,
we have decomposed the torsion into its traceless and trace parts, proportional to B and
A, respectively.

In four dimensions, a covariant theory of the affine connection requires that it enters
into the functional action as a covariant derivative, ∇. For simplicity, let us focus on the
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symmetric affine connection, Γ, because the extension to asymmetric affine connections
would be straightforward.

Schematically, a generic action functional for the (symmetric) affine connection has the
symbolic form of

S[Γ] =
∫
M

d4x Eαβγδ∇α∇β∇γ∇δ. (6)

The action in Equation (6) can be rewritten in terms of those that are quadratic in the
curvature tensor due to the contraction of the covariant derivative with the skew-symmetric
tensor density E.

A typical term of the quadratic action would be of the form∫
M

d4x E····R··
·
·R··

·
·, (7)

where the dots represent indices that have to be contracted in every possible (but inequiva-
lent) way. A consequence of the algebraic Bianchi identity,

EµνλρRµν
σ

λ = 0, (8)

is that each curvature tensor has to have two of it lower indices contracted with the skew-
symmetric tensor density.

Using the identity in Equation (8), also written as

Rµ[α
ν

β] = −1
2
Rαβ

ν
µ, (9)

and its contracted version,

R[αβ] = −1
2
Rαβ

µ
µ, (10)

one can work out all the possible contractions admissible in the action functional, and only
two of these terms are inequivalent,

EαβγδRαβ
µ

νRγδ
ν

µ and EαβγδRαβ
µ

µRγδ
ν

ν, (11)

which are Pontryagin terms that, in the notation of Refs. [85–87], are denoted as P4 and
(P2)

2 = P2 ∧ P2, which are topological terms4. Therefore, the model built in this way is not
very interesting from a dynamic point of view.

In order to build up more interesting models, instead of considering the whole connec-
tion, we would use the decomposition shown in Equation (5). We shall engage in forming
the most general action that contains the fields A and B and the symmetric connection
Γ through the covariant derivative ∇. To keep track of all possible terms that might be
included in the action functional, we used a sort of dimensional analysis of the index
structure. Let us define the operator N , which counts the net number of indices (upper
indices count +1 and lower indices count −1) of a term, and also define the operator W ,
which counts the weight of a tensor density.

The action of the operators on the basic ingredients of the model is

N (A) = N (B) = N (∇) = −1 N (E) = 4, (12)

W (A) = W (B) = W (∇) = 0 W (E) = 1. (13)

A polynomial action contains powers of the basic fields, i.e., a generic term has the form

O = AmBn∇pEq. (14)
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Since the action has to be a scalar, the action of the operators N and W on the term in
Equation (14) yield the restrictions

m + n + p + q = 1, and m + n + p = 4q. (15)

Table 1 shows all the solutions to the constraints in Equation (15). Using the sym-
metries of the fields and the Bianchi identities (both algebraic and differential), the most
general action, up to boundary and topological terms, is

S =
∫

d4x Eαβγδ

[
B1Rµν

µ
ρBα

ν
βBγ

ρ
δ

+B2Rαβ
µ

ρBγ
ν

δBµ
ρ

ν + B3Rµν
µ

αBβ
ν

γAδ

+B4Rαβ
σ

ρBγ
ρ

δAσ + B5Rαβ
ρ

ρBγ
σ

δAσ

+C1Rµα
µ

ν∇βBγ
ν

δ + C2Rαβ
ρ

ρ∇σBγ
σ

δ

+D1Bν
µ

λBµ
ν

α∇βBγ
λ

δ + D2Bα
µ

βBµ
λ

ν∇λBγ
ν

δ

+D3Bα
µ

νBβ
λ

γ∇λBµ
ν

δ + D4Bα
λ

βBγ
σ

δ∇λAσ

+D5Bα
λ

βAσ∇λBγ
σ

δ + D6Bα
λ

βAγ∇λAδ

+D7Bα
λ

βAλ∇γAδ + E1∇ρBα
ρ

β∇σBγ
σ

δ

+E2∇ρBα
ρ

β∇γAδ + F1Bα
µ

βBγ
σ

δBµ
λ

ρBσ
ρ

λ

+F2Bα
µ

βBγ
ν

λBδ
λ

ρBµ
ρ

ν

+F3Bν
µ

λBµ
ν

αBβ
λ

γAδ + F4Bα
µ

βBγ
ν

δAµAν

]
.

(16)

In the above equation, the covariant derivative, ∇, and the curvature, R, are associated
with the symmetric connection, Γ.

Table 1. Possible terms to be considered in the action functional, according to the indices struc-
ture analysis.

m n p q O
4 0 0 1 AAAAE
0 4 0 1 BBBBE
0 0 4 1 ∇∇∇∇E
3 1 0 1 AAABE
3 0 1 1 AAA∇E
1 3 0 1 ABBBE
0 3 1 1 BBB∇E
1 0 3 1 A∇∇∇E
0 1 3 1 B∇∇∇E
2 2 0 1 AABBE
2 0 2 1 AA∇∇E
0 2 2 1 BB∇∇E
2 1 1 1 AAB∇E
1 2 1 1 ABB∇E
1 1 2 1 AB∇∇E

The action in Equation (16) is much more complex than the action of Einstein–Hilbert;
however, it possesses very interesting features: (i) The lack of a metric tensor field en-
dows the action with the property of rigidity since it contains all possible combinations
of the fields and their derivatives; (ii) all the coupling constants are dimensionless, which
might be a sign of conformal (or projective) invariance and also ensures that the model is
power-counting renormalisable; (iii) the model has no explicit three-point graviton vertices
since all graviton self-interactions are mediated by non-Riemannian parts of the connec-
tion, allowing to bypass the general postulates supporting the no-go theorems stated in
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Refs. [88,89], where it was proven that generic three-point graviton interactions are highly
constrained by the causality and analyticity of the S-matrix; (iv) the field equations are
second-order differential equations for the fields, and the Einstein spaces are a subset of
their solutions; (v) the supporting symmetry group is the group of diffeomorphisms, desir-
able for the background independence of the model; (vi) it is possible to obtain emergent
(connection-descendent) metric tensors in the space of solutions; (vii) the cosmological con-
stant appears in the solutions as an integration constant, changing the paradigm concerning
its nature5; (viii) the model can be extended to be coupled with a scalar field, and the
field equations are equivalent to those of general relativity interacting with a massless
scalar field; (ix) the action possesses just first-order derivative of the fields, yielding second-
order differential equations, and this might avoid the necessity of terms analogous to the
Gibbons–Hawking–York boundary term in general relativity.

Before moving forward to the analysis of the dynamical aspects of the model, let us
inspect some general facets of the model.

Firstly, note that all the terms in the action of the model, Equation (16), contain powers
of the torsional fields, that is, A and B. Therefore, it is not possible to take a torsion-free
limit at the level of the action. Nevertheless, at the level of the field equations, such a limit
exists. The field equations of this sector can easily be found varying the action restricted
to the linear terms of the torsion field with respect to these fields [72], i.e., the terms with
coefficients C1 and C2 in Equation (16). A quick look at these terms of the action shows that
the restricted field equations for the torsion-free sector would be

∇[µRν]λ + C ∇λRµν
σ

σ = 0. (17)

Note that the field equations for the symmetric affine connection are obtained, varying with
respect to the B-field, which raises a mismatch between the number of equations (gener-
ically, this would be 4 × 4×3

2 − 4 = 20) and unknowns (4 × 4×5
2 = 40). As mentioned in

previous articles, this characteristic might arise from the non-uniqueness of the Lagrangian
describing the system [72,92].

The quantity Rµν
σ

σ in the second term of Equation (17), called homothetic curvature
or second Ricci curvature, vanishes in Riemannian geometries (and, therefore, in general
relativity) and also in (metric-)affine geometries with constant volume form [84,93]. In either
case, the above field equations would be simplified to

∇[µRν]λ = 0. (18)

The above equation is the condition for the Ricci tensor to be a Codazzi tensor [94,95], and it
is a well-known generalisation of Einstein’s field equations. In addition, Equation (18) is
equivalent (via the differential Bianchi identity) to the condition of harmonic curvature,

∇σRµν
σ

λ = 0, (19)

which has been considered in the literature [96–98].
The field equations in Equation (18) are also obtained from the variation with respect

to the affine connection of the gravitational Yang–Mills action,

SgYM =
∫
M

tr(R ∧ ⋆R), (20)

where R ∈ Ω2(M, T∗M ⊗ TM) is the two-form curvature, and ⋆ : Ωp(M, E) →
Ω4−p(M, E) represents the Hodge operator; the trace is taken over the indices on the bundle
E = T∗M⊗ TM. This model was considered by Stephenson, Kilmister, and Yang [99–101]
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in the context of a metric model of gravity. Although the Stephenson–Kilmister–Yang model
is known to possess nonphysical solutions to the field equations [102,103], the arguments
to declare those solutions nonphysical come from the field equations for the metric tensor
field [104]. The absence of a metric in our model allows one to bypass the arguments.

The Codazzi condition of the Ricci tensor has very recently gained interest due to
the novel formulation of gravity proposed by Harada [105–108]. In Harada’s model, the
geometrical contribution to the field equations comes through the Cotton tensor [109],
defined as

Cµνλ = 2∇[µRν]λ − 1
3

gλ[µ∇ν]R. (21)

Note that a projective version6 of a vanishing Cotton tensor would be equivalent to the
field equations in Equation (18).

There are other projective quantities of interest; for example, the Weyl projective
curvature tensor (in n dimensions) is defined by [84,93,110,111]

W(p)
µν

λ
ρ = Rµν

λ
ρ − 1

n−1

(
Rνρδλ

µ −Rµρδλ
ν

)
− 1

n+1Rµν
σ

σδλ
ρ

− 1
n2−1

(
Rνρ

σ
σδλ

µ −Rµρ
σ

σδλ
ν

)
,

(22)

and it is a curvature tensor invariant under projective transformations. Note that if the
trace of the curvature vanishes, the above expression reduces to the well-known definition
of the Weyl conformal curvature, where the terms containing the metric tensor have
been removed.

Equation (18) has three levels of solutions: (1) the vanishing Ricci tensor; (2) the
parallel Ricci tensor; and (3) the Ricci tensor as a Codazzi tensor. Solutions to the field
equations at certain levels include the solutions at previous levels; however, there might
exist proper solutions at the level of interest. In addition, at the second and third levels
of solutions, the Ricci could be either degenerated or nondegenerated. When the Ricci is
nondegenerate, its symmetric part might be interpreted as a metric tensor. Note that such a
metric tensor, or similar, is not fundamental from the point of view of building the model,
and therefore, we call it an emergent metric (see Section 7.2).

In those cases where the Ricci tensor, evaluated at the space of solutions, is symmetric
and nondegenerate, the condition of being parallel with respect to the connection is equiva-
lent to restricting to a Riemannian geometry. Similarly, nontrivial solutions to the Codazzi
condition on the Ricci tensor are equivalent to focusing on non-Riemannian manifolds with
completely symmetric nonmetricity, i.e., ∇λgµν = Qλµν ∈ C∞(S3(T∗M)). These types
of manifolds are subjects of interest in Information Geometry, which are known as statis-
tical manifolds and provide a geometrical framework for understanding and analysing
statistical models [112–114].

3. Covariant Field Equations
In order to obtain the field equations of the model, the action of Equation (16) has to

be varied with respect to the fields Γ, B, and A, leading to the Euler–Lagrange equations,

∂µ

(
∂L

∂(∂µΓν
λ

ρ)

)
− ∂L

∂Γν
λ

ρ
= 0, (23)

∂µ

(
∂L

∂(∂µBν
λ

ρ)

)
− ∂L

∂Bν
λ

ρ
= 0, (24)

∂µ

(
∂L

∂(∂µAν)

)
− ∂L

∂Aν
= 0. (25)
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Although explicit equations (in terms of the component of the fields) can be obtained from
here, it turns out to be more convenient to find a covariant version of them. To this end,
from the equation for Γ, the canonical conjugated momentum is defined as

ΠΓ
µν

λ
ρ :=

∂L
∂(∂µΓν

λ
ρ)

=
∂L

∂Γµν
λ

ρ
.

Since the derivative of the field Γ only appears in the curvature terms, the chain rule can be
used, and we write

∂L
∂Γµν

λ
ρ
=

∂L
∂Rαβ

γ
δ

∂Rαβ
γ

δ

∂Γµν
λ

ρ
,

where the second factor can be directly computed,

∂Rαβ
γ

δ

∂Γµν
λ

ρ
= 4δ

γ
λ δ

µ

[α
δ
(ν
β]

δ
ρ)
δ .

By defining the auxiliary variable zΓ
αβ

γ
δ ≡ ∂L

∂Rαβ
γ

δ
, the canonical conjugated momentum

can be written as

ΠΓ
µν

λ
ρ = zΓ

αβ
γ

δ4δ
γ
λ δ

µ

[α
δ
(ν
β]

δ
ρ)
δ = 2zΓ

[µν]
λ

ρ + 2zΓ
[µρ]

λ
ν.

Similarly, the second term in the Euler–Lagrange equation can be expressed as

∂L
∂Γν

λ
ρ
=

∂L
∂Rαβ

γ
δ

∂Rαβ
γ

δ

∂Γν
λ

ρ
= zΓ

αβ
γ

δ
∂Rαβ

γ
δ

∂Γν
λ

ρ
.

However, this is only valid for the terms in the action that contain the curvature tensor.
By using the result,

∂Rαβ
γ

δ

∂Γν
λ

ρ
= 4

(
δ

γ
λ δ

(ν
[α

Γβ]
ρ)

δ + δ
ρ
δ δ

(ν
[β

Γα]
γ)

λ

)
,

it can be obtained that

∂L
∂Γν

λ
ρ

= 2
(

zΓ
[βρ]

γ
νΓβ

γ
λ + zΓ

[βν]
γ

ρΓβ
γ

λ + zΓ
[νβ]

λ
δΓβ

ρ
δ + zΓ

[ρβ]
λ

δΓβ
ν

δ

)
= ΠΓ

µν
γ

ρΓµ
γ

λ − ΠΓ
µν

λ
δΓµ

ρ
δ − ΠΓ

µρ
λ

δΓµ
ν

δ.
(26)

These two results can be replaced in the Euler–Lagrange equation for Γ, and it can be
expressed in a covariant form:

∇µΠΓ
µν

λ
ρ =

∂∗L
∂Γν

λ
ρ

, (27)

where the asterisk indicates that the partial derivative is only in the terms that do not
contain the curvature. In obtaining this expression, the fact that the conjugate momentum
is a density was used, so its covariant derivative is

∇σΠΓ
µν

λ
ρ = ∂σΠΓ

µν
λ

ρ

+Γσ
µ

τΠΓ
τν

λ
ρ + Γσ

ν
τΠΓ

µτ
λ

ρ − Γσ
τ

λΠΓ
µν

τ
ρ

+Γσ
ρ

τΠΓ
µν

λ
τ − Γσ

τ
τΠΓ

µν
λ

ρ.
(28)

where contracting µ with σ makes the second and last terms cancel each other.
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Following the same procedure, the covariant version of the equations for B and A can
be found:

∇µΠB
µν

λ
ρ =

∂L
∂Bν

λ
ρ

, (29)

∇µΠA
µν =

∂L
∂Aν

. (30)

It is important to note that, in this case, the variation with respect to B is given by

∂Bα
β

γ

∂Bν
λ

ρ
= 2δ

β
λδ

νρ
αγ +

2
3

δ
β
α δ

νρ
γλ − 2

3
δ

β
γδ

νρ
αλ, (31)

in order to count the traceless character of the field, B. The explicit covariant field equations
for the action of the model are shown in Appendix A.

Torsion-Less Sector

The field equations can be analysed in different sectors. One such sector is the torsion-
free sector, in which both torsional tensors vanish, i.e., A → 0 and B → 0. The field
equations cannot be obtained by setting the torsion to zero in the action because it would
vanish, but this can be carried out at the covariant equation level.

In this case, the only nontrivial equation comes from the variation of the action with
respect to B, which results in

∇µ(−Rσα
σ

λE
µνρα + 2

3Rσα
σ

τδ
[ν
λ Eρ]µτα

+CRαβ
σ

σδ
µ
λE

νραβ

+ 2
3 CRαβ

σ
σδ

[ν
λ Eρ]µαβ) = 0,

(32)

where C = C1
C2

. However, the contraction of three indices of the tensor density, E, with
the curvature tensor and the covariant derivative ensures, via the Bianchi identities and
their contractions, that the second and fourth terms in Equation (32) vanish identically.
Therefore, the field equations of the polynomial affine model of gravity in its torsion-free
sector are

∇µ

(
−Rσα

σ
λE

µνρα + CRαβ
σ

σδ
µ
λE

νραβ
)
= 0, (33)

which can be rewritten as in Equation (17).
Moreover, if the affine connection preserves the volume, this type of geometry is

called equi-affine, where the trace of the curvature (Rµν
σ

σ) vanishes, and the Ricci tensor is
symmetric. In this scenario, the field equations simplify further to the condition that the
Ricci tensor is a Codazzi tensor.

4. Building Ansatz for the Connection
In gravitational theories, the field equations are, in general, a very complicated system

of nonlinear partial differential equations, the unknown functions of which are the com-
ponents of the fundamental geometrical objects, e.g., in general relativity, the unknown
functions of Einstein equations are the components of the metric tensor field. The unknown
functions in our model are the components of the affine connection7.

The general strategy to tackle the problem of finding solutions to the field equations
is to propose an ansatz for the geometrical object. For that, one demands our object be
compatible with the symmetries of the system one wants to model, e.g., spherical symmetry
for modelling a round astronomical body, axial symmetry for rotating bodies, isotropy and
homogeneity for cosmological evolution, plane-parallelism for domain walls, etc.
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The set of transformations preserving the symmetry of the system forms a group;
in particular, for continuous transformations, they form a Lie group, G. The local structure
of a Lie group is determined by a set of generators and their (Lie) algebra, g ∈ TeG. The set
of generators forms a vector basis for the tangent space of the symmetry group based on the
identity. Each of these vectors generates a flow on the manifold, M, in the sense that they
form one-parametric subgroups of the symmetry group, G, which act on the manifold, M.

A geometrical object, O, is said to be compatible with the symmetry (Lie) group, G, if
its variation along the integral curves generated by the set of generators of the Lie algebra,
g, vanishes; in mathematical terms,

£VO = 0, ∀ V ∈ g. (34)

Although the explicit formulas for the Lie derivative of tensor expressions can be found in
almost any textbook on differential geometry or general relativity, the expression of the Lie
derivative of an affine connection is much less known, and it is given by (see, for example,
Ref. [84])

£ξΓµ
λ

ν = ξρ∂ρΓµ
λ

ν − Γµ
ρ

ν∂ρξλ + Γρ
λ

ν∂µξρ

+Γµ
λ

ρ∂νξρ + ∂2ξλ

∂xµ∂xν ,
(35)

or, in covariant form,

£ξ Γµ
λ

ν = ξρRρµ
λ

ν +∇µ∇νξλ −∇µ

(
Tν

λ
ρξρ
)

. (36)

In concordance with the above, it is possible to restrict the form of the connection
even further by requiring discrete symmetries in the system, such as time-reversal or parity
(which are of utmost importance in quantum field theory). In the following, we shall denote
by T and P the time and azimuthal angle φ reversal operators, the action of which on the
base vectors is

P : e⃗φ → −e⃗φ, T : e⃗t → −e⃗t (37)

PT denotes the simultaneous action of both operators. For example, the tensor e⃗t ⊗ e⃗φ is
odd under the action of P or T, but it is invariant under the action of PT.

In gravitational physics, one usually analyses configurations with lots of symmetries
since they simplify the form of the geometrical objects and, hence, the field equations
driving the dynamics of the system. A brief (and incomplete) list of customary symmetry
conditions is presented in Table 2.

Notice that for vectors with constant components, such as e⃗t or e⃗φ in our coordinate
system (explained below), the vanishing Lie derivative of the connection is equivalent to
the independence of the component of the connection on that coordinate. For example,
a stationary solution is invariant under translations along the time-like coordinate, i.e., the
connections satisfy that

£⃗et Γµ
λ

ν = ∂tΓµ
λ

ν = 0, (38)

and, therefore, none of the components of the connection depend on the time-like coordinate,

Γµ
λ

ν = Γµ
λ

ν(r, θ, φ). (39)

Equation (38) restricts the dependence on the coordinates but does not restrict the number
of components of the connection. The same is true if one wants par-axisymmetry (the prefix
“par” means “partially” in the sense that the symmetry group does not contain discrete
transformations, such as P).
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The effect of the discrete transformations cannot be seen at the level of the Lie deriva-
tive, but it can be seen using the definition of the connection coefficients. For example, let
us consider the variation of the time-like base vector for a stationary connection,

∇e⃗t e⃗t = Γt
t
t⃗et + Γt

r
t⃗er. (40)

By applying the time-reversal transformation e⃗t 7→ −e⃗t, one obtains

∇−e⃗t(−e⃗t) = −Γt
t
t⃗et + Γt

r
t⃗er. (41)

In order for the covariant derivative to remain invariant under time reversal, the Γt
t
t

component of the connection must vanish,

Γt
t
t = 0. (42)

A similar analysis of the behaviour of the variation of other vector bases under time-reversal
reveals that the components of the connection with an odd number of time-like indices
must vanish.

The same type of analysis can be applied if we require invariance under reversal of
the azimuthal angle φ, say, by transforming e⃗φ 7→ −e⃗φ. The conclusion is analogous; the
components of the affine connection with an odd number of φ-indices must vanish.

Table 2. Non-exhaustive list of symmetries and their constraints on the functions characterising the
affine connection. In the column “Symmetry”, we list the algebra of the symmetry group, and the
operators T and P represent the time-reversal and φ-parity.

Condition Symmetry Functions Coordinates

General 40 t, r, θ, φ

Stationary ∂t 40 r, θ, φ

Par-axisymmetry ∂φ 40 t, r, θ

Stationary par-axisymmetric [∂t, ∂φ] = 0 40 r, θ

Static ∂t, T 24 r, θ, φ

Axisymmetric ∂φ, P 24 t, r, θ

Circular [∂t, ∂φ] = 0, PT 20 r, θ

Static axisymmetric [∂t, ∂φ] = 0, P, T 16 r, θ

Par-spherical o(3) 12 t, r

Stationary par-spherical o(3), ∂t 12 r

Spherical o(3), P 10 t, r

Static par-spherical o(3), ∂t, T 6 r

Static circular spherical o(3), ∂t, PT 6 r

Static spherical o(3), P, ∂t, T 5 r

Interesting cases, usually considered in gravitational physics, are spherically symmet-
ric and isotropic-homogeneous spaces. Note that isotropy and homogeneity refer to the
spacial section of spacetime. We emphasise the names space and spacetime because, with-
out an explicit metric on the manifold, we cannot distinguish between a coordinate similar
to time and one similar to space. However, we treat t as a time-like coordinate that is not
equivalent to the remaining coordinates under the symmetry transformations.
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In the remaining part of this section, we shall review the general ansätze of the
affine connection compatible with the isotropic (or spherical) and cosmological symmetries.
The results below were found in Ref. [115]8. Note, however, that one can treat the symmetric
affine connection separately from the torsional fields A and B, as suggested in Ref. [120].

4.1. Par-Spherically Symmetric Connections

The isotropy group in three (real) dimensions is O(3,R), which has the dimension of
dim(O3) = 3. In spherical coordinates (t, r, θ, φ), its generators are the following vectors:

J1 =
(

0 0 − cos(φ) cot(θ) sin(φ)
)

,

J2 =
(

0 0 sin(φ) cot(θ) cos(φ)
)

,

J3 =
(

0 0 0 1
)

.

(43)

4.1.1. Par-Spherical A-Field

A par-spherical vector has the following functional form:

At = A0(t, r), Ar = A1(t, r),

Aθ = A2(t, r), Aφ = A2(t, r) sin(θ).
(44)

4.1.2. Par-Spherical B-Field

The nontrivial components of the B-field can be found with some ease. The par-
spherical ansatz is parameterised by six functions:

Bθ
t
φ = −Bφ

t
θ = B203(t, r) sin(θ), Bθ

r
φ = −Bφ

r
θ = B213(t, r) sin(θ),

Bt
θ

φ = −Bφ
θ

t = B023(t, r) sin(θ), Br
θ

φ = −Bφ
θ

r = B123(t, r) sin(θ),

Bt
φ

θ = −Bθ
φ

t =
B032(t, r)

sin(θ)
, Br

φ
θ = −Bθ

φ
r =

B132(t, r)
sin(θ)

.

(45)

4.1.3. Par-Spherical Symmetric Connection

The par-spherical (symmetric) connection can be obtained by solving the differential
equations determined by the vanishing Lie derivative of the connection, Equation (35).

After a straightforward but long manipulation, one finds that the nontrivial compo-
nents of the par-spherical symmetric connection are

Γt
t
t = F000(t, r), Γt

t
r = Γr

t
t = F001(t, r),

Γr
t
r = F101(t, r), Γθ

t
θ = F202(t, r),

Γφ
t
φ = F202(t, r) sin2(θ), Γt

r
t = F010(t, r),

Γt
r
r = Γr

r
t = F011(t, r), Γr

r
r = F111(t, r),

Γθ
r
θ = F212(t, r), Γφ

r
φ = F212(t, r) sin2(θ),

Γt
θ

θ = Γθ
θ

t = F022(t, r), Γt
θ

φ = Γφ
θ

t = F023(t, r) sin(θ),

Γr
θ

θ = Γθ
θ

r = F122(t, r), Γr
θ

φ = Γφ
θ

r = F123(t, r) sin(θ),

Γφ
θ

φ = − cos(θ) sin(θ), Γt
φ

θ = Γθ
φ

t = − F023(t, r)
sin(θ)

,

Γt
φ

φ = Γφ
φ

t = F022(t, r), Γr
φ

θ = Γθ
φ

r = − F123(t, r)
sin(θ)

,

Γr
φ

φ = Γφ
φ

r = F122(t, r), Γθ
φ

φ = Γφ
φ

θ =
cos(θ)
sin(θ)

.

(46)
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The symmetric connection is determined by 12 functions of the coordinates t and r.

4.2. Cosmological Connections

In order to obtain the cosmological connection, we could start from the results of the
previous section and require, in addition, the invariance (in the sense of a vanishing Lie
derivative) under the generators of translations. However, such an extension is not unique
and depends on whether or not the generators of translations commute.

The dimension of the symmetry group compatible with the cosmological principle
is six, and therefore, its algebra could be homomorphic to o(4), io(3), or o(3, 1). The Lie
algebras of these groups can be written in terms of the generators JAB = {Jab, Ja∗} as

[Jab, Jcd] = δbc Jad − δac Jbd + δad Jbc − δbd Jac,

[Jab, Jc∗] = δbc Ja∗ − δac Jb∗,

[Ja∗, Jb∗] = −κ Jab,

(47)

with κ = 1, 0,−1 for o(4), io(3), and o(3, 1), respectively.
The generators Pa = Ja∗ can be expressed in spherical coordinates as

P1 =
√

1 − κr2
(

0 sin(θ) cos(φ) cos(θ) cos(φ)
r − sin(φ)

r sin(θ)

)
,

P2 =
√

1 − κr2
(

0 sin(θ) sin(φ) cos(θ) sin(φ)
r

cos(φ)
r sin(θ)

)
,

P3 =
√

1 − κr2
(

0 cos(θ) − sin(θ)
r 0

)
.

(48)

In practice, since we require isotropy and homogeneity simultaneously, if the ansatz is
compatible with par-spherical symmetry and we add homogeneity along a single direction,
the geometrical object would be symmetric along the other directions.

The homogeneity implies that none of the functions characterising the spherical
connection defined in Section 4.1 would depend on the radial coordinate.

4.2.1. Cosmological A Field

Requiring the vanishing Lie derivative of the isotropic A along the vectors, Pi, has the
consequence of

At = A0(t) ≡ η(t), Ar = Aθ = Aφ = 0. (49)

Hence, a vector compatible with the cosmological symmetries is determined by a single
function depending on the time-like coordinate, t, which we have called η.

4.2.2. Cosmological B Field

Similar to what happened for the A field, the invariance of the B field along the
vectors, Pi, would restrict the functions that characterise the par-spherical field. In this
particular case, the cosmological B-field would be determined by

Bθ
r

φ = −Bφ
r
θ = B123(t)

√
1 − κr2r2 sin(θ),

Br
θ

φ = −Bφ
θ

r = −B123(t)
sin(θ)√
1 − κr2

,

Br
φ

θ = −Bθ
φ

r = B123(t)
1√

1 − κr2 sin(θ)
.

(50)

Interestingly, the cosmological field, B, is defined by a single function of the time-like
coordinate, B123(t). In the following, this function would be renamed as

B123(t) ≡ ψ(t).
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4.2.3. Cosmological Symmetric Connection

Interestingly, since the group of cosmological symmetries is six-dimensional, acting
on the three-dimensional (spacial) submanifold, the group determines a nondegenerated
symmetric (0

2)-tensor on the submanifold, i.e., a spacial metric:

sij =


1√

1−κr2 0 0

0 r2 0
0 0 r2 sin2(θ)

, (51)

which shall be used to characterise the nontrivial components of the symmetric connection Γ.
Starting with the par-spherical ansatz and requiring the vanishing Lie derivative along

the symmetry generators, Pi, the symmetric cosmological affine connection is characterised
by the following components:

Γt
t
t = G000(t), Γi

t
j = G101(t) sij,

Γt
i
j = Γj

i
t = G011(t)δi

j, Γi
j
k = γi

j
k,

(52)

with γi
j
k being the Levi-Civita connection associated with the three-dimensional metric sij, i.e.,

γr
r
r =

κr
1 − κr2 ,

γr
θ

θ = γθ
θ

r =
1
r

,

γθ
r
θ = −r(1 − κr2),

γφ
θ

φ = − cos(θ) sin(θ),

γφ
r

φ = −r(1 − κr2) sin2(θ),

γr
φ

φ = γφ
φ

r =
1
r

,

γθ
φ

φ = γφ
φ

θ =
cos(θ)
sin(θ)

.

(53)

In the following sections, we discuss the functions determining the cosmological
connection; Equation (52) will be renamed

G000(t) ≡ f (t), G101(t) ≡ g(t), G011(t) ≡ h(t). (54)

In addition, it is important to notice that one might reparameterise the coordinate t to
require that f (t) = 0 [121], so we shall use this parameterisation.

5. Cosmological Solutions in Four Dimensions
The set of cosmological equations is obtained by replacing the cosmological ansatz

with the covariant field equations. The set of field equations for the field A leads to a
first-order differential equation.(

B3(ġ + gh + 2κ)− 2B4(ġ − gh) + 2D6ηg − 2F3ψ2
)

ψ = 0. (55)

The field B leads to a second-order differential equation.

B3(ġ + gh + 2κ)η − 2B4(ġ − gh)η
+C1(2κh + 4gh2 + 2gḣ − g̈)
−6hψ2(D1 − 2D2 + D3)

+D6η2g − 6F3ηψ2 = 0

(56)
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and finally, the Γ field leads to three differential equations:

(B3ηψ − 2B4ηψ + C1(ψ̇ − 2hψ))g = 0, (57)

(B3 + 2B4)ηgψ + 2C1(κψ + 4ghψ − gψ̇ − ψġ)
−2ψ3(D1 − 2D2 + D3) = 0,

(58)

B3(η(hψ − ψ̇)− ψη̇)− 2B4(η(−hψ − ψ̇)− ψη̇)

+C1(4h2ψ + 2ψḣ − ψ̈) + D6η2ψ = 0.
(59)

Although the system is overdetermined, we will prove that it is indeed possible to
find analytical solutions without any type of assumption on the functions. First, notice that
Equations (55) and (57) can be written in a more compact manner as follows:

F (g, ġ, h, ψ, η)ψ = 0, (60)

G(h, ψ, ψ̇, η)g = 0, (61)

where the functions F and G are defined as

F (g, ġ, h, ψ, η) ≡ B3(ġ + gh + 2κ)− 2B4(ġ − gh)
+2D6ηg − 2F3ψ2.

(62)

G(h, ψ, ψ̇, η) ≡ B3ηψ − 2B4ηψ + C1(ψ̇ − 2hψ). (63)

Thus, by using Equations (60) and (61), it is possible to distinguish four different branches:

• First branch: F (g, h, ψ, η)= 0 ∧ G(h, ψ, η)=0.
• Second branch: F (g, h, ψ, η) = 0 ∧ g = 0.
• Third branch: G(h, ψ, η) = 0 ∧ ψ = 0.
• Fourth branch: ψ = 0 ∧ g = 0.

Clearly, the first branch has the least restrictions on the field equations, and therefore, it has
more information than the rest of the branches.

5.1. First Branch

The first branch is the most general case, with functions g(t) ̸= 0 and ψ(t) ̸= 0; the
system to be solved, then, is given by

B3(ġ + gh + 2κ)− 2B4(ġ − gh) + 2D6ηg − 2F3ψ2 = 0, (64)

B3(ġ + gh + 2κ)η − 2B4(ġ − gh)η
+C1(2κh + 4gh2 + 2gḣ − g̈)
−6hψ2(D1 − 2D2 + D3)

+D6η2g − 6F3ηψ2 = 0

(65)

B3ηψ − 2B4ηψ + C1(ψ̇ − 2hψ) = 0, (66)

(B3 + 2B4)ηgψ + 2C1(κψ + 4ghψ − gψ̇ − ψġ)
−2ψ3(D1 − 2D2 + D3) = 0,

(67)

B3(η(hψ − ψ̇)− ψη̇)− 2B4(η(−hψ − ψ̇)− ψη̇)

+C1(4h2ψ + 2ψḣ − ψ̈) + D6η2ψ = 0.
(68)

In the following steps, we shall show how to solve the differential equation system (64)–(68)
exactly without any assumption. First, from Equation (66), we found an expression
for η(t) as
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η(t) = (2hψ − ψ̇)

(
C1

B3 − 2B4

)
, (69)

where we required that B3 ̸= 2B4. Replacing the expression of η(t) in the system leads to

h(t) =


h1 =

ψ̇

2ψ

h2 =
ψ̇

ψ

(
C1D6

3B2
3 − 8B3B4 + 4B2

4 + 2C1D6

)
.

(70)

Although there are two possible choices of h(t), the choice of h2(t) leads to inconsistencies
in the system of differential equations; therefore, we will take h1(t), and the system is
reduced to

4κB3 + 2ġ(B3 − 2B4) +
ψ̇g
ψ

(B3 + 2B4)− 4F3ψ2 = 0 (71)

(D1 − 2D2 + D3)ψ
3 − C1(ψ(κ − ġ) + gψ̇) = 0 (72)(

κψ̇ − ψg̈ + gψ̈

ψ

)
C1 − 3(D1 − 2D2 + D3)ψψ̇ = 0 (73)

From Equation (72), it is possible to find an expression g(t) in terms of ψ(t):

g(t) = ψ

(
g0 +

∫ (
κ

ψ
−
(

D1 − 2D2 + D3

C1

)
ψ

)
dτ

)
, (74)

where g0 is an integration constant. Replacing the above expression of g(t) automatically
solves (73), and Equation (71) leads into a first-order integro-differential equation

(3B3 − 2B4)

(
2κ + ψ̇

(
g0 +

∫ (
κ

ψ
−
(

D1−2D2+D3
C1

)
ψ

)
dτ

))
= ψ2

(
2(B3−2B4)(D1−2D2+D3)

C1
+ 4F3

)
. (75)

As a standard practice in cosmology, we shall take κ = 0, and therefore, the above equation
is reduced even further to

(3B3 − 2B4)ψ̇
(

g0 −
(

D1−2D2+D3
C1

) ∫
ψdτ

)
= ψ2

(
2(B3−2B4)(D1−2D2+D3)

C1
+ 4F3

) (76)

By using the following definitions

α =
D1 − 2D2 + D3

C1

β =
3B3 − 2B4

2
γ = (β − 2B3)α + 2F3

(77)

the dynamic equation for ψ can be written in a more compact manner:

βψ̇

(
g0 − α

∫
ψdτ

)
= ψ2γ (78)

The above equation can be solved analytically; to prove this, consider the variable change
ψ(t) ≡ ϕ̇, which, when applied to the above equation, leads to

ϕ̈(g0 − ϕα)β − ϕ̇2γ = 0, (79)
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the solution of which is
ϕ(t) =

g0

α
+ λ(t − t0)

αβ
αβ+γ (80)

where λ and t0 are integration constants. By using the solution ϕ(t), it is straightforward to
recover this to the original function

ψ(t) =
λαβ

αβ + γ
(t − t0)

− γ
αβ+γ . (81)

Now, knowing the ψ(t) function and using the relations defined in Equations (69), (70),
and (74), a straightforward computation allows us to obtain an analytical expression for
the affine functions:

η(t) = 0 (82)

h(t) = − γ

2(αβ + γ)(t − t0)
(83)

g(t) = g1(t − t0)
− γ

αβ+γ − α2βλ2

αβ + γ
(t − t0)

αβ−γ
αβ+γ (84)

where g1 is an integration constant.

5.2. Second Branch

The second branch imposes the restrictions F (g, h, ψ, η) = 0 and g(t) = 0, leading to

κB3ψ − F3ψ3 = 0, (85)

κC1ψ − ψ3(D1 − 2D2 + D3) = 0, (86)

B3(η(hψ − ψ̇)− ψη̇)− 2B4(η(−hψ − ψ̇)− ψη̇)

+C1(4h2ψ + 2ψḣ − ψ̈) + D6η2ψ = 0,
(87)

B3κη + C1κh − 3hψ2(D1 − 2D2 + D3)− 3F3ηψ2 = 0. (88)

From Equation (85), it is possible to find an expression for ψ(t) in the form

ψ(t) = ±

√
κB3

F3
. (89)

Using the compatibility condition from Equation (86) (as long as κ ̸= 0) leads to a relation
between the coupling constant

C1F3 = (D1 − 2D2 + D3)B3. (90)

Solving the algebraic expression for C1
9 and replacing Equation (89) in Equation (88) leads to

h(D1 − 2D2 + D3) + F3η = 0, (91)

which establish a relation between the functions h(t) and η(t) as follows:

h(t) = −η(t)
(

F3

D1 − 2D2 + D3

)
(92)

Combining the above result with Equation (89) turns Equation (87) into a first-order differ-
ential equation of the form

η̇ − η2
(

D6

3B3 − 2B4
+

F3

D1 − 2D2 + D3

)
= 0, (93)
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the solution of which is

η(t) =
(3B3 − 2B4)(D1 − 2D2 + D3)

(D1 − 2D2 + D3)(η0(3B3 − 2B4) + tD6) + tF3(3B3 − 2B4)
(94)

where η0 is an integration constant. Then, h(t) is given by

h(t) =
F3(3B3 − 2B4)

(D1 − 2D2 + D3)(η0(3B3 − 2B4) + tD6) + tF3(3B3 − 2B4)
(95)

It is important to note that the solutions mentioned were derived for this particular
case κ ̸= 0.

If κ = 0, then Equation (85) tells us that ψ(t) = 0 completely solves the other equations,
and the remaining functions h(t) and η(t) cannot be determined.

5.3. Third Branch

The restrictions G(h, ψ, η) = 0 and ψ(t) = 0 impose a strong constraint on
Equations (55)–(59), condensing the equations down to a single, second-order differen-
tial equation.

gη2D6 + 2B4η(gh − ġ) + B3η(2κ + gh + ġ)
+C1

(
2h(κ + 2gh) + 2gḣ − g̈

)
= 0.

(96)

The above differential equation has three unknown functions of time: h(t), g(t), and η(t)
that cannot be solved without further restriction or by providing an ansatz for two functions.

5.4. Fourth Branch

The restrictions for this branch require that g(t) = ψ(t) = 0; therefore, the set of field
Equations (55)–(59) is reduced to one algebraic equation for two unknown functions

κ(hC1 + B3η) = 0. (97)

The system is underdetermined and cannot be solved analytically.

5.5. Special Cases

Although the first branch leads to an analytical solution without any assumption,
Equation (79) has special cases that are given when α = 0 and αβ + γ = 0. The first
comes directly from the structure of Equation (79), and setting α = 0 changes its structures,
whereas the second restriction comes from the solution space where the relation αβ + γ = 0
appears in the denominator of the function ψ(t). We will address both cases now; first,
the former restriction simplifies Equation (79) to

ϕ̈g0β − ϕ̇2γ = 0, (98)

which can be solved exactly by

ϕ(t) = ϕ0 +
βg0

γ
log(γ(t − t0)), (99)

where ϕ0 and t0 are integration constants. From this, it is straightforward to recover the
original function:

ψ(t) =
βg0

2γ(t − t0)
h(t) = − γ

2γ(t − t0)
(100)

g(t) =
g1

γ(t − t0)
(101)
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where g1 is another integration constant.
The latter constraint leads to the following:

ϕ̈(g0 − αϕ) + ϕ̇2α = 0, (102)

the solution of which is given by

ϕ(t) = ϕ0eαϕ1(t−t0) +
g0

α
, (103)

where the integration constants are ϕ0 and t0. From simple algebra, we can recover the rest
of the affine functions:

ψ(t) = ψ0e
(t−t0)

τ0 h(t) =
α

2
(104)

g(t) = ψ(t)
(

g1 −
ψ(t)
ϕ1

)
where we have defined the constant ψ0 = αϕ0 and τ−1

0 = αϕ1, and g1 is an integration constant.

6. Cosmological (Affine) Perturbations
In order to build a method to analyse cosmological perturbations of affine models of

gravity, we shall follow the same steps as in metric models of gravitation. Hence, let us
first review the perturbation technique in these theories (additional details can be found in
Refs. [17,18,122,123]).

The algorithm for cosmological perturbations in metric gravities can be summarised
as follows: (i) Take an isotropic and homogeneous (background) metric, ḡµν, solution of
the cosmological field equations; (ii) assume the physical metric, g, is a deformation of the
background version,

gµν = ḡµν + hµν, (105)

with hµν(≪ ḡµν) representing the perturbation10; (iii) Split the perturbation in a (3 + 1)-
decomposition, e.g., hµν →

{
htt, hti, hij

}
; (iv) the decomposition of the fields into longitu-

dinal and transversal components, following the Helmholtz algorithm, see, for example,
Ref. [124]; (v) define the composite fields that are invariant under coordinate transfor-
mations and express the field equations in gauge-invariant form. The dynamics of the
perturbation fields can be analysed after this gauge analysis.

The perturbation technique could be implemented in our affine theory with a similar
treatment. The results reported in the following are a summary of the method described in
Ref. [125]11.

As in the metric theory, we consider the generic physical connection as the sum of a
background cosmological connection, Γ̄µ

λ
ν, like the ones found in Section 5, and a small

perturbation Cµ
λ

ν(≪ Γµ
λ

ν),
Γµ

λ
ν = Γ̄µ

λ
ν + Cµ

λ
ν. (106)

As the perturbation, C, results from the difference between two connections, it is a tensor
field, i.e., Cµ

λ
ν ∈ C∞(TM⊗2 T∗M).

From the point of view of group theory, the affine perturbation, C, behaves as a third-
order tensor under the (local) group GL(4,R), and in four dimensions, it has 64 components.
However, in the cosmological scenario, where three dimensions are equivalent, the compo-
nents of the perturbation obtained after the (3 + 1)-decomposition are tensors of GL(3,R).

The (3+ 1)-decomposition of the perturbation, C, yields the following fields: Ct
t
t, Ct

i
t,

Ci
t
t, Ct

t
i, Ci

t
j, Ct

i
j, Cj

i
t, and Ci

j
k, comprehending a scalar field, three vector fields, three

2-tensor fields, and one 3-tensor field, all defined under (local) GL(3,R) transformations.
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It is worthwhile to introduce the notation

Σµνλ =
1
2
(
Cµνλ + Cλνµ

)
,

Λµνλ =
1
2
(
Cµνλ − Cλνµ

)
,

(107)

where, because the isotropy and homogeneity symmetries can induce (spatial) metric struc-
tures sij emerging from the background connection fields, we can relate the perturbation
(3 + 1)-decomposition fields with lower indices as 12

Cµtν ≡ Cµ
t
ν, Cµiν ≡ sij Cµ

j
ν, (108)

considering that the components can be parameterised by unrelated objects in the former
equation and they could be related by the sij object in the other equation. The contributions
to the components of the symmetric part of the affine connection or to the torsion (anti-
symmetric part) are shown in Table 3.

Table 3. Number of contributions of each term in the scalar-vector-tensor decomposition to the
symmetric and anti-symmetric components of the affine perturbation.

Terms Symm. (Σ) Anti-Symm. (Λ)

Cttt 1 0
Ctit 3 0
Citt, Ctti 3 3
Citj 6 3
Cijt, Ctji 9 9
Cijk 18 9

Total components: 40 24

The existence of a metric tensor (induced by the cosmological symmetries imposed on
the spatial sector of our spacetime) allows for an additional decomposition of the irreducible
representations of GL(3,R) into those of SO(3,R) [127,128].

For example, the generic GL(3,R) 3-tensor Cijk splits into irreducible representations as

⊗ ⊗ =

 ⊕

⊗

= ⊕

︸ ︷︷ ︸
18

symmetric

⊕ ⊕

︸ ︷︷ ︸
9

anti−symmetric

= 10GL3 ⊕ 8GL3 ⊕ 8GL3 ⊕ 1GL3 ,

(109)

which decomposes onto SO(3,R) as follows:

10GL3 → 7SO3 ⊕ 3SO3 ,

8GL3 → 5SO3 ⊕ 3SO3 ,

1GL3 → 1SO3 .

(110)

A similar analysis decomposition can be made to the other components of the C-field in
Table 3. Table 4 summarises the results of that decomposition.
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Table 4. Summary of irreducible representations of SO(3,R) obtained from the irreducible compo-
nents of the affine perturbation tensor C in terms of its symmetric (Σ) and anti-symmetric (Λ) parts.

Term Components GL(3,R) SO(3,R)
Σttt 1s 1GL3 1SO3
Σtit 3s 3GL3 3SO3
Σtti 3s 3GL3 3SO3
Λtti 3a 3GL3 3SO3
Σitj 6s 6GL3 5SO3 ⊕ 1SO3
Λitj 3a 3GL3 3SO3
Σtij 9s 6GL3 ⊕ 3GL3 5SO3 ⊕ 1SO3 ⊕ 3SO3
Λtij 9a 6GL3 ⊕ 3GL3 5SO3 ⊕ 1SO3 ⊕ 3SO3
Σijk 18s 10GL3 ⊕ 8GL3 7SO3 ⊕ 3SO3 ⊕ 5SO3 ⊕ 3SO3

Λijk 9a 6GL3 ⊕ 3GL3 5SO3 ⊕ 1SO3 ⊕ 3SO3

In order to obtain the Helmholtz decomposition of the affine perturbation, it is conve-
nient to see this process as the decomposition of representations of SO(3,R) into irreducible
representations of SO(2,R), given that fixing a longitudinal direction still leaves a trans-
verse plane of symmetry [125]. Therefore, all the objects in Table 4 can be decomposed
into a trivial longitudinal one-dimensional representation and a family of non-equivalent
two-dimensional (irreducible) representations of SO(2,R), labelled by the winding number,
as is summarised in Table 5.

Table 5. Number of scalars (T0), vectors (T1), 2-tensors (T2), and 3-tensors (T3) obtained from the
Helmholtz decomposition of the irreducible components of the affine connection.

Component T0 T1 T2 T3

1s 1
3s 1 1
3a 1 1
6s 2 1 1
9a 3 2 1
18s 4 4 2 1

With these considerations, and taking account of the index symmetries in each object,
we have the Helmholtz decomposition of the fields in Table 4, which can be written as

Σttt = A, (111a)

Σtit = DiB + Ci, (111b)

Σtti = DiD + Ei, (111c)

Λtti = Di B̃ + C̃i, (111d)

Λitj =
√

s eijk skl(Dl D̃ + Ẽl), (111e)

Σitj =
sij

3
F +

(
DiDj −

sij

3
D2
)

G + 2D(i Hj) + Iij, (111f)

Σtij =
√

seijkskl(Dl J + Kl) +
sij
3 L

+
(

DiDj −
sij
3 D2

)
M + 2D(i Nj) + Oij,

(111g)

Λtij =
√

seijkskl(Dl J̃ + K̃l
)
+

sij
3 L̃

+
(

DiDj −
sij
3 D2

)
M̃ + 2D(i Ñj) + Õij,

(111h)
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Σijk = 3
5

(
s(ijDk)P + s(ijQk)

)
+
(

D(iDjDk) − 2
5 D2s(ijDk) − 1

5 s(ijDk)D2
)

R

+D(iDjSk) − 1
5 D2s(ijSk)

− 1
5 s(ijDmDk)Sm + D(iTjk) + Uijk

+ 1
2
√

sspq
(
eijpδr

k + ekjpδr
i

)
[
(

DqDr − 1
3 sqrD2

)
V

+2D(qWr) + Xqr +
√

seqrmsmn(DnY + Zn)],

(111i)

Λijk =
√

seijk Ã + 1
2
√

sspq(2eikpδr
j + eijpδr

k

−ekjpδr
i )[
(

DqDr − 1
3 sqrD2

)
Ṽ + 2D(qW̃r)

+X̃qr +
√

seqrmsmn(DnỸ + Z̃n)] ,

(111j)

where the tensor objects are symmetric, traceless, and transverse. A summary of the fields
obtained in the Helmholtz decomposition of C can be found in Table 6.

Table 6. Classification of the modes obtained after the Helmholtz decomposition of the perturbation
C-field.

Scalars A, B, D, F, G, L, M, P, R, Y, B̃, L̃, M̃, Ỹ
Pseudoscalars J, V, Ã, D̃, J̃, Ṽ
Vectors Ci, Ei, Hi, Ni, Qi, Si, Zi, C̃i, Ñi, Z̃i
Pseudovectors Ki, Wi, Ẽi, K̃i, W̃i
2-tensor Iij, Oij, Tij, Õij
Pseudo-2-tensor Xij, X̃ij
3-tensor Uijk

Now, the infinitesimal gauge transformation of the perturbation field, C, is given by
the relation

δCµ
λ

ν = £ξ Γµ
λ

ν

= ξσRσµ
λ

ν +∇µ∇νξλ −∇µ(Tν
λ

σξσ).
(112)

Next, we (Helmholtz) decompose the spacial component of the generator of the transfor-
mation, ξ i, as

ξ i → Diψ + ζ i where Diζ
i = 0, (113)

which allows us to obtain the transformation rules of the fields under the coordinates’
infinitesimal transformations:

δA = ξ̈t, (114)

δB = ψ̈ + 2hψ̇, (115)

δCi = ζ̈ i + 2hζ̇ i, (116)

δ(Dl J + Kl) = − 1
2
√

s
slkϵkijDiζ j, and (117)

δWi =
1
3
√

sϵijkDjζk. (118)

From this analysis, we can see that 24 of the 64 components of C are invariant under
infinitesimal coordinate transformations, and the following conditions are satisfied:

• ξt affects the fields (G, P, Y, Ã, B̃, D̃, Ỹ)
• ψ affects the fields (F, G, R, Ã, Ṽ)

• ζ i affects the fields (Hi, Si, Wi, W̃i, Di J + Ki)

A total of 4 out of the 64 components of the perturbation can be disregarded with a
particular choice of ξt, ψ, and ζ i (or gauge) since they can be associated with a particular
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coordinate frame. Therefore, only the remaining 60 components can be associated with
gravitational interactions. Under these circumstances, a combinatorial factor allows us to
count 165 different possible gauge choices.

7. Perspectives of the Models
The content in the preceding sections has been extensively explored by our research

group, and the presented results today have a solid ground and well-understood interpretation.
The purpose of this section is to overview some additional edges, which we have

explored in a yet non-exhaustive way. The content can be seen as a compendium of
preliminary results of our ongoing investigations.

7.1. Metric Independence of the Model

While it is not strictly necessary to use a metric for achieving diffeomorphism in-
variance when discussing gravitational phenomena, it frequently offers a more intuitive
framework. In the polynomial affine model of gravity, the symmetric connection can be
described using a metric, although this approach is subject to gauge symmetries that relate
different metric choices through nonmetricity transformations13.

To make this clearer, let us break down the connection Γµ
λ

ν into two components: the
Riemannian part corresponding to a reference metric gµν and the non-Riemannian part
related to nonmetricity:

Γµ
λ

ν =
1
2

gλκ(∂µgνκ + ∂νgµκ − ∂κ gµν) + Ŷλ
µν + Ŝλ

µν, (119)

where Ŷλµν = 1
2 (Ŷ[λµ]ν + Ŷ[λν]µ) and Ŝλµν = Ŝ(λµν).

In terms of the connection, we have

∇Γ
λgµν = 2Ŷλµν + 2Ŝλµν. (120)

For the connection Γµ
λ

ν to remain invariant under infinitesimal transformations of
the metric, we have

gµν → g′µν = gµν + sµν, (121)

where sµν is symmetric; the nonmetricity components must transform as follows:

Ŷλµν → Ŷ′
λµν = Ŷλµν +

2
3
(∇Γ

[λsµ]ν +∇Γ
[λsν]µ) (122)

and
Ŝλµν → Ŝ′

λµν = Ŝλµν −
1
2
∇Γ

(λsµν). (123)

Although the polynomial affine model of gravity is generally invariant under changes
in the metric, using a metric simplifies the comparison with Einstein’s gravity and helps
in understanding the solutions of the polynomial affine model. In this sense, there is an
absolute sense in which we can affirm the total background independence of the model,
where, by background, we choose to refer to the metric on which we perform an expansion
of the field equations14.

On many symmetric subspaces of solutions, the description of the connection can
be more familiarly described by a metric instead of using non-metricity. For instance,
in cosmological and spherically symmetric spaces. To show this, we are going to decompose
the non-metricity into its traceless and trace parts:

Γµ
λ

ν = Γµ
λ

ν(g) + Sλ
µν + Yλ

µν + Vλgµν + 2W(µδλ
ν), (124)
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The introduction of a metric relates the representation of the connection to a specific
choice of the full set of geodesics of the spacetime regardless of the full set of autoparallels
associated with the specific connection. Moreover, it can be shown that in the cosmological
scenario, there is a metric for which geodesics are the autoparallels of the connection
according to the criteria in Refs. [129,130].

7.1.1. Autoparallels and Geodesics in Cosmology

In order to represent the split between the dimensions of homogeneous space and time,
in this section, we use Greek letters for the full space and Latin letters from the beginning
of the alphabet for spacial coordinates such that xµ → (t, xa).

We propose the cosmological metric gµν = diag(−N2, a2sab), where sab = diag((1 −
κr2)−1, r2, r2 sin2(θ)), with κ = −1, 0, or 1. The split of the connection reveals that the only
symmetric components of the connection are

Γ0
0

0 = J =
Ṅ
N

− N2V0 + 2W0, (125)

Γa
0

b = gsab =
( aȧ

N2 + a2V0
)

sab, (126)

Γ0
a

b = hδa
b =

( ȧ
a
+ W0

)
δa

b , (127)

Γa
c
b = γa

c
b(s), (128)

where γa
c
b(sab) is the connection ∇γ

c sab = 0. As the reader may have noticed, there are
three equations to relate (J, g, h) to (N, a, W0, V0), but there is some ambiguity left to the
reader’s choice to find unique solutions to these equations. An additional condition may
impose the condition that geodesics are also autoparallels; thus, we set V0 = 0.

The system of equations for (N, a, W0),

g =
aȧ
N2 , h =

ȧ
a
+ W0, and J =

Ṅ
N

+ 2W0, (129)

can be used to obtain 2h − J = 2 ȧ
a −

Ṅ
N , the solution of which is

a2

N
=

a2
0

N0
exp

( ∫ t

0
dt′ (2h − J)

)
. (130)

We also obtain g
(

a2

N

)−2
=

ȧ
a3 , from which we obtain

a2 =
a2

0

1 −
N2

0
2a2

0

∫ t
0 dt′ g exp

(
− 2

∫ t′
0 dt′′ (2h − J)

) (131)

which can be used, together with the previous solution, to obtain N. Finally, we obtain W0

using any of the equations where we find it.
One concludes that any set of specific solutions in polynomial affine model of gravity

cosmology can be expressed in terms of a metric for which the geodesics are the autoparal-
lels and a vector, which is a combination of projective transformations of the connection
and the Weyl connection.

7.1.2. Autoparallels and Geodesics in Spherically Symmetric Spacetimes

In this section, we propose a splitting of the indices, corresponding to the coordinates
xµ = (t, r, θ, φ), as µ = (a, i), where the letters of the initial part of the alphabet take values,
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a = (t, r), while mid-alphabetic letters correspond to the angular coordinates, i = (θ, φ).
This will allow us to establish a naming convention that will be useful when we further
restrict the model.

From a general decomposition of the connection such that it is parity invariant and
spherically symmetric, we use the metric

gµν = δb
µδb

νqab + δi
µδ

j
νr2sij, (132)

where

sij =

(
1 0
0 sin2 θ

)
. (133)

As in two dimensions, some of the nonmetricity components in Equation (124) can be
expressed in terms of the metric connection; thus, we can set the traceless parts of the
nonmetricity to

Sλµν =

(
δa
(λδb

µδc
ν)qbc − 4δa

(λδi
µδ

j
ν)

r2sij

)
Sa

and

Yλµν =

(
2δ

[a
λ δ

b]
(µ

δc
ν)qbc − δ

[a
λ δ

i]
(µ

δ
j
ν)

r2sij

)
Ya,

while Wµ = δa
µWa and Vµ = δ

µ
a Va.

Static Black Hole-Like Connections

Stationary black holes can be studied by imposing time-independent variables, and
static solutions additionally have time-reversal symmetry; thus,

qab =

(
−F(r)G(r) 0

0 1
F(r)

)
, (134)

and
Sa = S(r)δr

a, Ya = Y(r)δr
a,

Vλ = V(r)δλ
r , Wλ = W(r)δr

λ.
(135)

From the general autoparallel equation, we obtain

DUµ

Dτ
+ UµWλUλ + U2Vµ + Sµ

λκUλUκ + Yµ
λκUλUκ = 0. (136)

Here, the presence of Sµ
λκUλUκ + Yµ

λκUλUκ makes it improbable for us to be able to
choose a metric for which geodesics coincide with autoparallels. We can concentrate our
efforts on studying radial geodesics. In such a case, transformations of the metric make it
possible to rewrite these equations into geodesic equations with a different choice of the
affine parameter. Thus, by using radial geodesics, black holes can be defined as regions of
spacetime where radial null geodesics (the paths followed by massless particles such as
photons) that enter the region cannot escape back to infinity.

7.2. Emerging Metrics in the Space of Solutions

In order to provide a physical interpretation of the solutions of the field equations, we
explore the descendant metric structures that emerge from the fundamental fields of the
connection. Hence, it is convenient to revisit the definition of a metric tensor.
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Definition 1. Let M be an n-dimensional smooth manifold. A section, g ∈ C∞(T∗M⊗ T∗M),
is said to be a metric tensor field in M if its action on vector fields X, Y, Z ∈ C∞(TM) satisfies the
following: (i) it is symmetric, g(X, Y) = g(Y, X); (ii) it is C∞(M)-bilinear, g( f1X + f2Y, Z) =
f1 g(X, Z) + f2 g(Y, Z); (iii) it is nondegenerate, i.e., if at a point g(X, Y)p = 0 for all Yp implies
Xp = 0.

All three points must always be satisfied simultaneously in order to have a proper
metric tensor; however, the last point plays a crucial role because it allows us to ensure
the existence of the inverse tensor of gµν denoted by gµν. The metric structure allows us to
provide a notion of distance.

In gravitational physics, the signature of the metric tensor is mainly required to
be Lorentzian (sig(g) = ±(n − 2)) or Euclidean (sig(g) = ±n). In the former, there
is a notion of light-cone and causal structure, while the latter is useful for analysing
soliton configurations.

In the literature, there are examples of derived metric tensors in affinely connected
manifolds [70,78,84,111], but these emergent metrics are defined on the space of solutions
of the field equations of the gravitational model.

A first example of an emergent metric is the symmetrised Ricci tensor, R(µν), defined
by the contraction of the Riemann curvature tensor

Rβδ = Rαβ
α

δ. (137)

A second metric structure comes from the contraction of the product of two torsion tensors.
This idea was first introduced by Poplawski, and the metric structure is defined as follows:15

Pαδ =
(
Bα

β
γ + δ

β

[γ
Aα]

)(
Bβ

γ
δ + δ

γ
[δ
Aβ]

)
. (138)

Finally, the third candidate of metric tensor comes from the covariant derivative (sym-
metrised) of the vectorial part of the torsion tensor, defined by the A field as follows:

Aµν = ∇(µAν). (139)

By using the cosmological ansatz for the symmetric part of the connection, defined in
Section 4.2, the nontrivial components of the symmetrised Ricci tensor are

Rtt = −3(ḣ + h2), Rij = ġ + gh + 2κsij. (140)

The Poplawski metric is computed using the ansatz for the anti-symmetric part of the affine
connection (see Section 4.2)

Ptt = η2, Pij = −2ψ2sij. (141)

The final emergent metric coming from Aµν is

Att = η̇, Aij = ηgsij. (142)

Notice that, from the definition of a metric tensor, we have provided three different
metric candidates that do not match each other, and that is because they are built from
different/combined parts of the affine connection. Moreover, from the definition, since the
tensor must be invertible and, in the space of solutions, we have found that η(t) = 0, then
we can discard Pµν and Aµν as suitable candidates (due to degeneracy). For that reason,
the only viable candidate is the Ricci tensor.
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If this Ricci tensor can be identified with a homogeneous and isotropic metric, we
should have gtt = Rtt/R0 and a2(t)sij = Rij/R0, and R0 is some constant with curvature
dimensions used to obtain a dimensionless metric. From the above analysis, it can be
deduced that the signature of the metric would depend on the explicit form of the functions,
g and h, and the values of the coupling constants of the model.

7.3. Coupling Scalar Matter

The simplest (fundamental) type of matter to couple with gravity is a scalar field, ϕ.
An essential term for the matter field is kinetic energy. In the absence of a metric, one can
only write the term ∇µϕ∇νϕ16, so we need a symmetric (2

0)-tensor for which transvection
with the former yields a scalar.

Due to the nature of the fields, we have to include the skew-symmetric tensor density,
E, to obtain the aforementioned tensor. Hence, the resulting quantity would be a symmetric
(2

0)-tensor density. Using the analysis of the indices structure explained in Section 2, it is
easily demonstrable that the expected tensor has the form

gµν = α∇λBρ
(µ

σE
ν)λρσ + βAλBρ

(µ
σE

ν)λρσ

+γBκ
µ

λBρ
ν

σE
κλρσ,

(143)

where the parameters α, β, and γ are arbitrary constants.
The action of the scalar field would be a kinetic term,

Sϕ = −
∫

d4x gµν∇µϕ∇νϕ. (144)

Although one could add the term in Equation (144) with the complete action of polyno-
mial affine gravity, Equation (16), it is interesting that the restriction to the torsion-less sector
is well-defined, giving us the opportunity to focus our attention on a simplified model.

The only two terms that would contribute to the field equations in the torsion-free
sector are those that are linear in the B-field,

S =
∫

d4x Eαβγδ
(
Rµα

µ
ν − C∇αϕ∇νϕ

)
∇βBγ

ν
δ. (145)

The variation of the action in Equation (145) with respect to the B-field yields the
field equations:

∇µ(Rαλ − C∇αϕ∇λϕ)Eµνρα = 0, (146)

while the variation with respect to either the symmetric connection (Γ) or the scalar field (ϕ)
turns into identities in the torsion-free sector, B → 0.

The coupling of the scalar field via its kinetic term is not enough to introduce nontrivial
effects on the simplified, torsion-free sector of the polynomial affine model of gravity
and does not allow self-interaction of the scalar field. Since the scalar field does not have an
index structure, it would be possible to include non-minimal couplings, e.g., multiplying
the terms of the action by functions of the scalar field.

An interesting proposal was considered by Kijowski in Ref. [61] and was implemented
further by Azri and collaborators in Refs. [74–76] is the scaling of the action terms by the
function V(ϕ). This scaling—which might be thought of as analogous to the substitution,
gµν(x) → gµν(ϕ), used to obtain nonlinear σ-models from the standard kinetic term of the
scalar field action—is implemented through the substitution

Eαβγδ 7→ Eαβγδ

V(ϕ) . (147)
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The consequence of the scaling in Equation (147) is the inclusion of a scalar field self-
interaction potential, V(ϕ), in the model field equations17.

In our simplified coupled model, Equation (145) has the scaling included; the field
equations are just a modification of the ones derived in the torsion-free sector,

∇[λSµ]ν = 0, (148)

with

Sµν =
Rµν − C ∇µϕ∇νϕ

V(ϕ) . (149)

In particular, if we restrict our focus to cosmological scenarios, the compatibility of
the scalar field with the cosmological principle requires that ϕ = ϕ(t), and therefore, the
S-tensor (up to the scaling) differs from the Ricci tensor by a deformation of its (t, t)-
component.

The solutions to the field equations in Equation (148) can be classified into three types:
(i) a vanishing S-tensor, Sµν = 0; (ii) a covariantly constant S-tensor, ∇λSµν = 0; and (iii) a
tensor, S , that is a Codazzi tensor, ∇[λSµ]ν = 0.

The field equations in the S-flat cosmological scenario are

ḣ + h2 +
C
3
(ϕ̇)2 = 0,

ġ + gh + 2κ = 0,
(150)

the solutions to which are parameterised by the h-function,

ϕ(t) = ϕ0 ±
√
− 3

C

∫
dt
√

ḣ + h2,

g(t) = e−
∫

dt h
(

g0 − 2κ
∫

dt e
∫

dt h
)

.
(151)

In accordance with the interpretation of the component of the affine connection, Γt
i
j = hδi

j,

from the autoparallel equation, the h-function takes the role of the Hubble function18.
Although Equation (151) has a lack of predictability due to the arbitrariness of the

h-function, if one could determine the Hubble function from the observations (e.g., from
the latest observations of the DESI Collaboration [132,133]), the cosmological model would
be completely determined.

In Ref. [134], we show that the case of a parallel S-tensor is (somehow) equivalent to
the minimally coupled Einstein–Klein–Gordon system. The equivalence is ensured by the
existence of a symmetric, nondegenerate, and parallel (0

2)-tensor, say, gµν. Hence, the field
equations of the polynomial affine model of gravity might be written as follows:

Rµν −
1
2
Rgµν = C

(
∂µϕ∂νϕ − 1

2
gµν(∂ϕ)2

)
− ΣV(ϕ)gµν, (152a)

C∇µ∇µϕ = ΣV ′(ϕ), (152b)

with Σ ∈ R being an arbitrary constant and ∇µ = gµν∇ν. A key point to be highlighted is
that the field equation for the scalar field is a consequence of the symmetries of the system
(not of a least-action principle), following the method proposed in Ref. [135].

In the case of S being a Codazzi tensor, there is a single field equation, say,

CV(ϕ)gϕ̇2 + V(ϕ)(4gh2 + 2κh + 2gḣ − g̈)
+V ′(ϕ)ϕ̇(gh + 2κ + ġ) = 0.

(153)
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Therefore, one has to complement Equation (153) with additional equations to search for
solutions19.

7.4. Toward the Spherically Symmetric Solutions

In this section, we shall inquire about the space of solutions of the field equations
of the polynomial affine model of gravity; this is carried out by using the static spherical
connection starting from the ansatz found in Section 4.1. The requirement of invariance
under the action of the time and φ reversal operators (T and P, respectively) eliminate seven
of the functions characterising the stationary par-spherical connection; see Equation (46).

With all these considerations, we rename the nonzero components of the static spheri-
cal symmetric connection in Equation (46), as follows:

F001(t, r) = a(r)

F010(t, r) = b(r)

F111(t, r) = c(r)

F212(t, r) = f (r)

F122(t, r) = g(r)

(154)

The system of equations will categorise (as before) into three groups: Ricci flat, parallel
Ricci, and Ricci as a Codazzi tensor.

In the Ricci flat case, Rµν = 0, the corresponding set of equations is

−ab + b′ + b(c + 2g) = 0,

−a′ + ac − a2 + 2cg − 2g′ − 2g2 = 0,

f (a + c) + f ′ + 1 = 0.

(155)

For the case where the Ricci tensor is parallel, ∇λRµν = 0, the field equations are
as follows:

b(−a′ + c′ + 2g′)− a(3b′ + 2b(c + 2g))
+2a2b + b′′ + b′(c + 2g) = 0,

(156)

b
(
a′ + 2g(g − c) + 2g′

)
− a
(
b′ + 2b(c + g)

)
+ 2a2b = 0, (157)

−a′′ + a
(
c′ − 2

(
a′ + c2))+ c

(
3a′ + 6g′ + 4g2)

+2a2c + 2g(c′ − 2g′)− 4c2g − 2g′′ = 0,
(158)

f
(
a′ + 2g′

)
− a f (c + g) + a2 f − g

(
3c f + f ′ + 1

)
+ 2 f g2 = 0, (159)

− f
(
a′ + c′

)
+ 2g

(
f (a + c) + f ′ + 1

)
− (a + c) f ′ − f ′′ = 0. (160)

Finally, in the case where the Ricci is a Codazzi tensor, ∇[λRµ]ν = 0, the system of
equations reduces to

b
(
−2
(
a′ + g2)+ c′ + 2cg

)
−2a(b′ + bg) + b′′ + b′(c + 2g) = 0,

(161)

− f ′(a + c − g) + f g(a − c) + a f (a − c)
− f c′ − f ′′ + 2 f g′ + 2 f g2 + g = 0.

(162)

From the above, we observe that, in general, the number of field equations is not
enough to solve the whole set of unknown functions. Interestingly, the case of parallel
Ricci is the case which could allow us to solve all the unknowns, but an analysis like the
one presented in Ref. [134] shows that this would be a spherically symmetric metric tensor
(if nondegenerated).
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Hence, it is interesting to analyse the case where the Levi-Civita connection is associ-
ated with a symmetrically spherical metric.

Let us then consider the spherically symmetric line element,

ds2 = −p(r)dt2 +
dr2

p(r)
+ dΩ2. (163)

Therefore, the five functions in Equation (154) reduces to solve only for the p-function,

a =
1
2

p′

p
, b =

1
2

pp′,

c = −a, f = −rp,

g =
1
r

.

(164)

By inserting the functions in Equation (164) into the Codazzi field equations,
Equations (161)–(162), yield

p
(

rp(3) + 2p′′ − 2p′

r

)
= 0,

rp′′ +
2 − 2p

r
= 0,

(165)

the solution of which is
p(r) = 1 +

c1

r
+ c2r2. (166)

Hence, the geometry is a Schwarzschild–(Anti-)de-Sitter Riemannian spacetime.
For the parallel Ricci case, we also obtain Schwarzschild–(Anti-)de-Sitter geometry,

while for the Ricci flat case, there is a restriction on the parameters, and, consequently, the
solution is restricted to Schwarzschild spacetime.

7.5. Affine Foliations and Dimensional Reduction

A formalism that allows for defining foliations in an affine theory is crucial for advanc-
ing in the incorporation of matter and the study of symmetries and degrees of freedom in
the model.

In general relativity, the Arnowitt–Deser–Misner (ADM) formalism, based on the
foliation of spacetime into three-dimensional hypersurfaces, facilitates the development of
the Hamiltonian formalism that enables a detailed analysis of these aspects. Similarly, the
Kaluza–Klein theory provides a way to incorporate bosonic matter, such as electromagnetic
fields, through the process of dimensional reduction, which should be understood as a
local projection of the higher-dimensional space onto a reduced space.

In the case of an affine theory of gravity, which relies solely on an affine connection and
lacks a metric, incorporating matter and analysing symmetries becomes significantly more
challenging. In particular, the absence of a metric prevents the use of canonical orthogonal
projections, which are a common tool in metric spaces.

A possible solution to these challenges is to decompose the space locally using the
direct product of subspaces. This approach could provide a basis for defining projections
and foliations in the context of affine gravities.

In this section, we shall use the modern language of differential geometry, incorpo-
rating the formalism of fibre bundles into our discussion [136–140]. Our aim would be to
resolve the dimensional reduction in the manner of Kaluza–Klein in geometrical terms
using the notion of projection.
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The standard setup of the Kaluza–Klein model consists of a higher-dimensional space,
M̂, and a lower-dimensional space, M, which could be thought of as embedded in the
higher-dimensional one. However, as a bundle, the space, M̂, would be the total space
based in M; the bundle projection, π : M̂ → M, defines the fibre as the preimage of a
point m ∈ M, i.e., F = preimπ(m).

The original Kaluza–Klein model has a U(1)–fibre (F ∼= G = U(1)) so that dim(M̂) =

dim(M) + dim(G) = dim(M) + 1. Hence, the setup is a U(1)-principal bundle based
on M.

On each manifold of the Kaluza–Klein-bundle, one can define their tangent bundles,
and the projection, π, induces the derived projection on the tangent bundles denoted
by Tπ20,

TM̂ TM

M̂ M

Tπ

π

.

A 1-form field θ̂ ∈ C∞(T∗M̂) induces a natural splitting of the tangent bundle TM̂
into two sub-bundles, vertical (VM̂) and horizontal (HM̂), defined as vectors along the
directions of the fibre and the base manifold, respectively. The 1-form θ̂ is known as the
Ehresmann connection.

A vector field ṽ ∈ C∞(TM̂) is said to be a horizontal lift of a vector field v ∈ C∞(TM)

if, at each point, p ∈ TM̂, the map Tπ projects ṽ into v, and, in addition, ṽ belongs to the
horizontal sub-bundle, i.e.,

θ̂(ṽ) = 0. (167)

Let η ∈ C∞(VM̂) be the unique vertical vector field (Tπ(η) = 0) such that

θ̂(η) = 1. (168)

For illustrative purposes, we shall introduce the downward arrow operation (↓), which
represents the induced map of the π projection, ↓ ∼= Tπ. The downward arrow operator
acts by removing the hat to the tensor fields, i.e.,

↓ (v̂) = v, (169)

for v̂ ∈ C∞(⊗pTM̂ ⊗⊗qT∗M̂) and v ∈ C∞(⊗pTM⊗⊗qT∗M).
Similarly, we shall define the lifting operator, denoted with the upward arrow, ↑, as the

unique linear map (up to the action of an element of the Lie group G) that satisfies

↓ (↑ (v)) = v and θ̂(↑ (v)) = 0. (170)

Its action should be understood as the addition of the tilde, i.e.,

↑ (v) = ṽ, (171)

for v ∈ C∞(⊗pTM⊗⊗qT∗M) and ṽ ∈ C∞(⊗pTM̂ ⊗ ⊗qT∗M̂). Moreover, this map
generates a point-wise isomorphism, Tπ(p)M ∼= TpM̃ ⊂ TpM̂, so we can locally identify
the reduced space as part of the total space.

The above isomorphism allows us to identify the action of operators, L̂, over the
sections of the lifted sub-bundle with that of projected operators L =↓ (L) on the unlifted
bundle, as follows:

L̂(ṽ) = L(v), (172)
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with ṽ =↑ (v).
In the remainder of this section, we shall use the described setup to reproduce the

metric Kaluza–Klein decomposition of the metric, as a warming up of the affine Kaluza–
Klein decomposition of the connection, which would be detailed in a future article.

Consider a bundle, M̂ → M, with projection π : M̂ → M and fibre G. Let ĝ be a
metric on M̂, i.e., a section, g ∈ C∞(S2(T∗M̂)). The metric ĝ naturally induces a metric
g ∈ C∞(S2(T∗M)) on the reduced space M, defined as

g =↓ (ĝ). (173)

Additionally, we define the module of a vector lying on the fibre G as ϕ̂ =
√

ĝ(η, η), and the
one-form α̂, α̂ : TM̂ → R such that α̂(x̂) = ĝ(x̂, η).

Assuming that, at each point, the vertical sub-bundle VM̂ is orthogonal to the hori-
zontal lifting TM̃, then TM̃ = ker(α̂). This implies that α̂ = ϕ̂2θ̂ and ĝ(x̂, η) = 0.

Since every vector field X̂ ∈ C∞TM̂ admits a decomposition of the form

X̂ = X̃ + θ̂(X̂)η, (174)

it follows that the metric ĝ acts as follows,

ĝ(X̂, Ŷ) = ĝ
(
X̃ + θ̂(X̂)η, Ỹ + θ̂(Ŷ)η

)
= ĝ(X̃, Ỹ) + ϕ̂2θ̂(X̂)θ̂(Ŷ)

= g̃(X̃, Ỹ) + ϕ̂2θ̂(X̂)θ̂(Ŷ).

(175)

In free index notation, ĝ = g̃ + ϕ̂2θ̂ ⊗ θ̂21.
Finally, by projecting in a basis B = {ê0, ê1, . . . , êD = η}, we recover

ĝ =

(
ĝij ĝiD

ĝDj ĝDD

)
=

(
g̃ij + ϕ̂2θ̂i θ̂j ϕ̂2θ̂i

ϕ̂2θ̂j ϕ̂2

)
. (176)

The above is the ansatz usually employed in Kaluza–Klein theory, which has been
obtained using our geometric formalism. Although we initially assumed that θ̂ was inde-
pendent of the metric, we found a relationship between them.

We can highlight that this formalism does not require a metric a priori, so it can be
applied to decompose the connection in purely affine models of gravity.

8. Conclusions
This article examines the progress and advancements in the polynomial affine model

of gravity that have taken place over a decade since its introduction.
The model presents an alternative, or a generalisation, to the affine model introduced

by Einstein and Eddington, distinguished by its polynomial action. The action, as shown
in Equation (16), encompasses numerous terms, especially when compared to other alter-
native models. The characteristics discussed in detail in Section 2 motivate a thorough
investigation into the model’s dynamic properties.

We showed that the space of solutions of polynomial affine gravity contains the space
of Einstein manifolds, and, in general, the affine generalisations of Einstein manifolds
are parametric families that contain the solutions of pure general relativity as points of
those families. Interestingly, the restriction to the torsion-free sector is still well-defined,
and for equiaffine connections, the space of solutions is equivalent to the space of statistical
manifolds. This indicates that such a space of solutions can be seen as a projective manifold.
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We have found diverse ansatz for the affine connection, especially for the par-spherical
and cosmological symmetries, and determined the role of the discrete symmetries P and T
by constraining their components. We used those ansatz to analyse the explicit cosmological
models, even when the polynomial affine model of gravity is coupled with a scalar field,
and note that even if completely determined exact solutions can be obtained, the most
interesting solution (proper solutions of the Ricci as a Codazzi tensor) is parameterised
by an undetermined function, e.g., h. Even if this type of solution is not suitable as a
physical model, we believe that this scenario provided a unique possibility to test our
model. For example, the latest observations reported by the DESI collaboration favour a
modification of the ΛCDM over the standard model of cosmology [132,133]; we could use
those results to determine the function h and then compare other cosmological observables
with the predictions derived from our fitted model. We also have all the ingredients to
consider scenarios with affine inflation.

Even though our model is based on the lack of a fundamental metric structure, metric
structures might emerge in the space of solutions. The emergence of metric structures
allows us to define distances on the manifold and provide a tool to discriminate between
time-like and space-like geodesics (or autoparallel curves) or even analyse the causal
structure of the model (on-shell).

We built up the method of cosmological affine perturbations with the aim of analysing
the phenomena of structure formation and the stability of the cosmological models. We
are pointing toward the use of the tools from dynamical systems to obtain qualitative
information about the model. These ideas are currently under development.

In affine models, although there is no necessity to consider a fundamental metric
structure, one could choose to use a metric in the model, inducing a splitting of the affine
information into a Levi-Civita connection, nonmetricity, and torsion. Based on the criteria
analysed in Refs. [129,130], we enquire about the condition of metric independence of an
affine model of gravity. In this context, we found that cosmological models in polynomial
affine gravity differ from metric cosmological formulations by a vector that encodes the
projective transformation of the connection. A similar analysis was made for connections
with spherical symmetry, but the equation of autoparallel curves contains terms that might
make the task of identifying autoparallels with geodesics impossible.

Despite the discussion above, metrics could emerge in the space of solutions of affine
models. We show that in our model, there are three possible emergent metric tensors:
the symmetric component of the Ricci tensor, the Poplawski tensor (there is a variation if
the contribution of the A-field is ignored), or the symmetrisation of the covariant derivative
of the A-field.

Even in those cases where the space of solutions admits emergent metrics, due to their
being defined in terms of the components of the connection, using those metrics (or their
inverse) to couple matter to the model would spoil the polynomial property. However, it is
possible to build up a sort of inverse metric density using the strategy of index structure
analysis (called dimensional analysis in our earlier articles), which allows us to couple
scalar fields to polynomial affine gravity. The study of coupling to other matter fields is a
subject of great interest but is still under development by our research group.

It is worth highlighting that the field equations of polynomial affine gravity coupled
with a scalar field are an affine generalisation of the Einstein–Klein–Gordon equations,
and we could use this coupled system to enquire inflationary scenarios within the context
of affine gravity.

Another interesting subject is the study of the space of solutions with spherical sym-
metry. In Ref. [72], we used a metric ansatz to try to say something about the spherical
solutions in the polynomial affine model of gravity, concluding that, starting from a static
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Schwarzschild-like metric (with a single undetermined function), the sole solution was the
Schwarzschild (-Anti)-de Sitter solution22.

In this opportunity, we started to enquire about the most basic affine static spherical
solutions to the field equations of polynomial affine gravity (without torsion) and found
that the affine solutions were parameterised by five functions that determine the connection.
Interestingly, the number of field equations coming from the condition of parallel Ricci,
∇λRµν = 0, is five, and the connection could be integrated exactly. We conjecture that
the solution to this interesting case is given by an affine generalisation of Schwarzschild
geometry with a cosmological constant. In the Ricci flat case, the number of field equations
is three, and therefore, generically, the solutions would be parameterised by two arbitrary
functions. Although those functions might be fixed by observations or restricted by bound-
ary conditions, in a future article, we shall consider that this pair of functions coincides with
two of the functions determining the components of the Levi-Civita connection. However,
finding proper solutions to the field equations coming from the Codazzi condition for the
Ricci tensor is very difficult since the system has a third arbitrary function parameterising
the connection.

In order to extend the richness of our model, we would like to be able to define
conserved charges in or (as mentioned) coupling matter to the polynomial affine model
of gravity. The foliation of affinely connected manifolds becomes an interesting tool for
solving both problems. On the one hand, the foliation of the manifold is the starting point
of the Arnowitt–Deser–Misner formalism, which allows us to define conserved charges
in general relativity; so an analogous affine would be the initial place to develop a similar
programme. On the other hand, dimensional reduction (in the manner of Kaluza–Klein)
could shed light on the sort of couplings between polynomial affine gravity and matter
fields in the same way the standard Kaluza–Klein model yields general relativity coupled
with gauge fields and scalars.

Clearly, some of the formal and phenomenological aspects of the model are still under
development, but during these 10 years, we have been able to carry the idea of a polynomial
affine gravity onto a viable model of gravitational interactions; this encloses the successes
of general relativity but allows for the flexibility of accommodating additional geometrical
effects that might be helpful in unveiling the current mystery of the dark sector of the
Universe and possibly hinting toward a (consistent) quantum theory of gravity.
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Appendix A. Detailed Contributions to the Covariant Field Equations
This appendix provides the field equations for Γ, B, and A. Observe that because of

the extensive nature of the equations, they were broken down based on the contribution of
each term in the action (16). The complete set of field equations is derived by summing all
the given relations, each multiplied by its respective coupling constant.

Appendix A.1. Field Equations for Γ

B1 : ∇µ

(
2δ

[µ
λ Bα

ν]
βBγ

ρ
τ + 2δ

[µ
λ Bα

ρ]
βBγ

ν
τ

)
Eαβγτ (A1)

B2 : ∇µ

(
4Bγ

σ
δBσ

(ρ
λ

)
Eν)µγδ (A2)

B3 : ∇µ(2δ
[µ
λ Bβ

ν]
γAδE

ρβγδ

+ 2δ
[µ
λ Bβ

ρ]
γAδE

νβγδ)
(A3)

B4 : ∇µ

(
−4Bγ

(ρ
δAλ

)
Eν)µγδ (A4)

B5 : ∇µ

(
−4Bγ

σ
δAσδ

(ρ
λ

)
Eν)µγδ (A5)

C1 : ∇µ(2∇βBγ
ρ

δδ
[µ
λ Eν]βγδ

+ 2∇βBγ
ν

δδ
[µ
λ Eρ]βγδ)

+ 2Rµα
µ

λBγ
(ρ

δE
ν)αγδ

(A6)

C2 : ∇µ

(
−4∇σBγ

σ
δδ

(ρ
λ Eν)µγδ

)
+ 2Rαβ

σ
σ

(
2Bλ

(ν
δE

ρ)αβδ − δ
(ν
λ Bγ

ρ)
δE

αβγδ
) (A7)

D1 : 2Bτ
σ

λBσ
τ

αBγ
(ρ

δE
ν)αγδ (A8)

D2 : 2Bα
σ

βBσ
(ν|

τ

(
2Bλ

τ
δE

|ρ)αβδ − δτ
λBγ

|ρ)
δE

αβγδ
)

(A9)

D3 : 2Bα
σ

τBβ
(ν

γ(δ
ρ)
σ Bλ

τ
δ

+ δ
ρ)
δ Bσ

τ
λ − δτ

λBσ
|ρ)

δ)E
αβγδ

(A10)

D4 : 2Bα
(ν

βBγ
ρ)

δAλE
αβγδ (A11)

D5 : 2Bα
(ν|

βAσ

(
2Bλ

σ
δE

|ρ)αβδ − δσ
λBγ

|ρ)
δE

αβγδ
)

(A12)

D6 : − 2Bα
(ν

βAγAλE
ρ)αβγ (A13)

E1 : 4∇σBα
σ

β

(
2Bλ

(ν
δE

ρ)αβδ − δ
(ν
λ Bγ

ρ)
δE

αβγδ
)

(A14)

E2 : 2Fαβ

(
Bλ

(ν
δE

ρ)αβδ − δ
(ν
λ Bγ

ρ)
δE

αβγδ
)

(A15)

Appendix A.2. Field Equations for B

B1 : − 4Rµ(σ
µ

λ)Bγ
σ

δE
νργδ

− 4
3Rµτ

µ
σBγ

σ
δδ

[ν
λ Eρ]τγδ

− 4
3Rµσ

µ
τBγ

σ
δδ

[ν
λ Eρ]τγδ

(A16)
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B2 : − 2Rαβ
µ

σBµ
σ

λE
νραβ

− 2Rαβ
[ν

λBγ
ρ]

δE
αβγδ

− 4
3Rαβ

µ
σBµ

σ
τδ

[ν
λ Eρ]ταβ

− 2
3Rαβ

τ
τBγ

[ν
δδ

ρ]
λ Eαβγδ

+ 2
3Rαβ

[ν
τδ

ρ]
λ Bγ

τ
δE

αβγδ

(A17)

B3 : − 2Rµλ
µ

αAβE
νραβ − 4

3
Rµτ

µ
αAβδ

[ν
λ Eρ]ταβ (A18)

B4 : − 2Rαβ
σ

λAσE
νραβ − 4

3
Rαβ

σ
τAσδ

[ν
λ Eρ]ταβ (A19)

B5 : − 2Rαβ
τ

τAλE
νραβ − 4

3
Rαβ

τ
τAδδ

[ν
λ Eρ]δαβ (A20)

C1 : ∇µ

(
−2Rσα

σ
λE

µνρα +
4
3
Rσα

σ
τδ

[ν
λ Eρ]µτα

)
(A21)

C2 : ∇µ

(
2Rαβ

σ
σδ

µ
λE

νραβ +
4
3
Rαβ

σ
σδ

[ν
λ Eρ]µαβ

)
(A22)

D1 : ∇µ

(
−2Bσ

θ
λBθ

σ
α

)
Eµνρα

− 2Bλ
[ν

α∇βBγ
ρ]

δE
αβγδ

− 2Bλ
[ν|

σ∇βBγ
σ

δE
|ρ]βγδ

− 2
3 δ

[ν
λ Bτ

ρ]
α∇βBγ

τ
δE

αβγδ

+ 2
3Bτ

[ν
σδ

ρ]
λ ∇βBγ

σ
δE

τβγδ

(A23)

D2 : ∇µ(2Bα
σ

βBσ
µ

λE
νραβ

+ 4
3Bα

σ
βBσ

µ
τδ

[ν
λ Eρ]ταβ)

− 2Bλ
µ

σ∇µBα
σ

βE
νραβ

− 2Bα
[ν

β∇λBγ
ρ]

δE
αβγδ

− 4
3Bτ

µ
σ∇µBα

σ
βδ

[ν
λ Eρ]ταβ

− 2
3Bα

τ
β∇τBγ

[ν
δδ

ρ]
λ Eαβγδ

+ 2
3Bα

[ν
βδ

ρ]
λ ∇τBγ

τ
δE

αβγδ

(A24)

D3 : ∇µ(−2Bβ
µ

γBα
[ν

λE
ρ]αβγ

− 2
3Bβ

µ
γBα

[ν
τδ

ρ]
λ Eαβγτ)

− 2Bβ
µ

γ∇µBλ
[ρ

δE
ν]βγδ

− 2Bγ
µ

σ∇λBµ
σ

δE
νργδ

− 2
3Bβ

µ
γ∇µBτ

[ν
δδ

ρ]
λ Eτβγδ

− 4
3Bγ

µ
σ∇τBµ

σ
δδ

[ν
λ Eρ]τγδ

(A25)

D4 : − 4Bα
σ

β∇(λAσ)E
νραβ

− 4
3Bα

σ
β∇τAσδ

[ν
λ Eρ]ταβ

− 4
3Bα

σ
β∇σAτδ

[ν
λ Eρ]ταβ

(A26)

D5 : ∇µ(2Bα
µ

βAλE
νραβ

+ 4
3Bα

µ
βAτδ

[ν
λ Eρ]ταβ)− 2∇λBα

σ
βAσE

νραβ

− 4
3∇τBα

σ
βAσδ

[ν
λ Eρ]ταβ

(A27)

D6 : − 2Aγ∇λAδE
νργδ − 4

3
Aγ∇τAδδ

[ν
λ Eρ]τγδ (A28)

D7 : −AλFγδE
νργδ − 4

3
AτFγδδ

[ν
λ Eρ]τγδ (A29)
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E1 : ∇µ(4δ
µ
λ∇σBα

σ
βE

νραβ

+ 8
3∇σBα

σ
βδ

[ν
λ Eρ]µαβ)

(A30)

E2 : ∇µ

(
2δ

µ
λFαβE

νραβ +
4
3
Fαβδ

[ν
λ Eρ]µαβ

)
(A31)

F1 : − 4Bα
µ

βBµ
σ

τBλ
τ

σE
νραβ

− 4Bα
µ

βBγ
[ν

δBµ
ρ]

λE
αβγδ

− 8
3Bα

µ
βBµ

σ
τBκ

τ
σδ

[ν
λ Eρ]καβ

(A32)

F2 : − 2Bα
µ

σBβ
σ

τBλ
τ

µE
νραβ

+ 2Bα
µ

βBµ
σ

λBγ
[ν

σE
ρ]αβγ

− 2Bα
µ

βBγ
σ

λBµ
[ν

σE
ρ]αβγ

− 2Bα
[ν

βBγ
ρ]

σBδ
σ

λE
αβγδ

− 4
3Bα

µ
σBβ

σ
τBκ

τ
µδ

[ν
λ Eρ]καβ

− 2
3Bα

µ
βBµ

σ
τBγ

[ν
σδ

ρ]
λ Eαβτγ

+ 2
3Bα

µ
βBγ

σ
τBµ

τ
σδ

[ν
λ Eρ]αβγ

− 2
3Bα

µ
βBγ

σ
τBµ

τ
σδ

[ν
λ Eρ]αβγ

− 2
3Bα

τ
βBδ

σ
τBγ

[ν
σδ

ρ]
λ Eαβγδ

(A33)

F3 : − 2Bλ
[ν

αBβ
ρ]

γAδE
αβγδ

− 2Bα
σ

βAγBλ
[ν

σE
ρ]αβγ

− 2Bσ
µ

λBµ
σ

αAβE
νραβ

+ 2
3Bβ

τ
γAδBτ

[ν
αδ

ρ]
λ Eαβγδ

+ 2
3Bτ

[ν
σδ

ρ]
λ Bα

σ
βAγE

ταβγ

(A34)

F4 : − 4Bα
µ

βAµAλE
νραβ

− 8
3Bα

µ
βAµAτδ

[ν
λ Eρ]ταβ

(A35)

Appendix A.3. Field Equations for A

B3 : −Rστ
σ

αBβ
τ

γE
αβγν, (A36)

B4 : −Rαβ
ν

σBγ
σ

τE
αβγτ , (A37)

B5 : −Rαβ
ρ

ρBγ
ν

τE
αβγτ , (A38)

D4 : ∇µ

[
Bα

µ
βBγ

ν
τ

]
Eαβγτ , (A39)

D5 : −Bα
σ

β∇σBγ
ν

τE
αβγτ , (A40)

D6 : ∇µ

[
Bα

µ
βAγ

]
Eαβγν + Bα

µ
β∇µAγE

αβγν, (A41)

D7 : ∇µ

[
Bα

σ
βAσ

]
Eαβµν −Bα

ν
βFγτE

αβγτ , (A42)

E2 : ∇µ

[
∇σBα

σ
β

]
Eαβµν, (A43)

F3 : −Bσ
τ

λBτ
σ

αBβ
λ

γE
αβγν, (A44)

F4 : − 2Bα
σ

βBγ
ν

τAσE
αβγτ . (A45)

Notes
1 Lanczos–Lovelock models of gravity might be inspired by Sakharov’s proposal that general relativity might be an effective model

that receives higher curvature corrections [21].
2 In the words of K. Krasnov [47], “There may be equivalent formulations of a theory, all leading to the same physical predictions.

But such reformulations may be inequivalent if one decides to generalise”.
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3 In our convention, the torsion is defined as the difference between the components of the connection, T̃µ
λ

ν = Γ̃µ
λ

ν − Γ̃ν
λ

µ.
In order to avoid the half factor in the second line of Equation (5), it is usually referred to as the tensor, S̃µ

λ
ν = Γ̃[µ

λ
ν].

4 Note that when the connection is metric, the Pontryagin P2 vanishes explicitly since the anti-symmetric part of the Ricci tensor is
zero, R[µν] = 0.

5 this is similar to what happens in the unimodular model of gravity [90,91];
6 Operationally, a projective equivalent quantity is defined by a similar expression, where the terms containing the metric tensor

field are dropped.
7 Note that there are 64 of these functions in four dimensions.
8 The Lie derivatives of the affine connection were computed using the free and open mathematical software SAGE [116], using its

module sagemanifolds [117–119].
9 Assuming that D1 − 2D2 + D3 ̸= 0, F3 ̸= 0, B3 ̸= 0.

10 it should be noted that, as the metric g has to be symmetric, the perturbation field h is symmetric, too;
11 A cosmological perturbation technique for metric-affine theories has been proposed in Ref. [126].
12 In Equation (108), the lowering of the t-index should be considered an identification to simplify the presentation of the forthcoming

expression and not as the action of a metric.
13 Generically, the independence of the affine connection under a change of metric would also require a transformation of the

torsion tensor.
14 In fact, making a functional derivative of the action with respect to the metric is going to return a trivial output.
15 Note that one could restrict this to the traceless part of the torsion, obtaining another metric as the trace of the squared B-tensor.
16 In the literature on Horndeski gravity (see, for example, Ref. [131]), this tensor is usually denoted by Xµν.
17 Notice that, in general, one could scale each term of the action by different functions of the scalar field.
18 In the metric Friedmann–Robertson–Walker scenario, the Hubble function is expressed in terms of the scale factor as H(t) = ȧ/a.
19 This strategy is similar to that utilised in thermodynamics, where one supplements the thermodynamic equations with the

equation of states.
20 The notation Tπ refers to the induced map in any tangent bundle (including tensor bundles) [141]. If we would like to refer

to a specific induced map, e.g., over the tangent or cotangent bundles, we would use the more standard notation π∗ and π∗,
respectively.

21 It is worth clarifying that the quantity g̃(X̃, Ỹ) = ĝ(X̃, Ỹ) would be, according to Equation (172), the effective metric in the
manifold, M.

22 When we considered the Schwarzschild-like metric with two unknown functions, we were unable to solve the field equations
exactly. However, a power series expansion of the unknown functions points to the necessity of three conditions to determine
the solution; we hypothesise that those conditions are related to three different scales in gravity, which might be thought of as
celestial scale (Newtonian gravity plus corrections), galactic scale (which might explain the rotation curves of galaxies, i.e., dark
matter), and cosmological scale (related to the cosmological constant, i.e., dark energy).

23 OCF wants to dedicate this article to the memory of Ivan, who passed away recently.
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138. Kolář, I.; Michor, P.W.; Slovák, J. Natural Operations in Differential Geometry, corrected 2nd printing ed.; Springer: Berlin/Heidelberg,

Germany, 1993.
139. Nakahara, M. Geometry, Topology and Physics; Institute of Physics: Bristol, UK, 2005.
140. Dudek, M.; Garecki, J. Ehreshmann Theory of Connection in a Principal Bundle—Compendium for Physicists. arXiv 2018,

arXiv:1810.03447.
141. Ivancevic, V.G.; Ivancevic, T.T. Applied Differential Geometry: A Modern Introduction; World Scientific: Singapore, 2007.
142. Peeters, K. Symbolic Field Theory with Cadabra. Comput. Rundbr. 2007, 41, 16.
143. Peeters, K. Introducing Cadabra: A Symbolic Computer Algebra System for Field Theory problems. arXiv 2007, arXiv:hep-

th/0701238.
144. Peeters, K. Cadabra: A Field-Theory Motivated Symbolic Computer Algebra System. Comput. Phys. Commun. 2007, 176, 550–558.

[CrossRef]
145. Brewin, L. Using Cadabra for Tensor Computations in General Relativity. arXiv 2019, arXiv:1912.08839.
146. Kulyabov, D.S.; Korol’kova, A.V.; Sevast’yanov, L.A. New Features in the Second Version of the Cadabra Computer Algebra

System. Program. Comput. Softw. 2019, 45, 58–64. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1177/10812865211016530
http://dx.doi.org/10.1007/s10714-012-1353-4
http://dx.doi.org/10.1007/s00220-013-1850-7
http://dx.doi.org/10.1007/s10773-024-05558-2
http://dx.doi.org/10.1088/1475-7516/2025/02/021
http://dx.doi.org/10.1063/1.525753
http://dx.doi.org/10.1016/j.cpc.2007.01.003
http://dx.doi.org/10.1134/S0361768819020063

	Introduction
	Purely Polynomial Affine Gravity
	Covariant Field Equations
	Building Ansatz for the Connection
	Par-Spherically Symmetric Connections
	Par-Spherical A-Field
	Par-Spherical B-Field
	Par-Spherical Symmetric Connection

	Cosmological Connections
	Cosmological A Field
	Cosmological B Field
	Cosmological Symmetric Connection


	Cosmological Solutions in Four Dimensions
	First Branch
	Second Branch
	Third Branch
	Fourth Branch
	Special Cases

	Cosmological (Affine) Perturbations
	Perspectives of the Models
	Metric Independence of the Model
	Autoparallels and Geodesics in Cosmology
	Autoparallels and Geodesics in Spherically Symmetric Spacetimes

	Emerging Metrics in the Space of Solutions
	Coupling Scalar Matter
	Toward the Spherically Symmetric Solutions
	Affine Foliations and Dimensional Reduction

	Conclusions
	Appendix A. Detailed Contributions to the Covariant Field Equations
	Field Equations for 
	Field Equations for B
	Field Equations for A

	References

