INVESTIGACIÓN DE CIRCULACIÓN DEL VIRUS INFLUENZA EN AVES RESIDENTES Y MIGRATORIAS DEL URUGUAY.

María José Rivas
Licenciatura en Bioquímica
Sección Virología
Facultad de Ciencias
Universidad de la República

Orientador Dr. Juan Arbiza
Co-Orientadora MSc. Andrea Blanc

Montevideo, 2014
Agradecimientos

Al Dr. Juan Arbiza, por brindarme la oportunidad de haber realizado mi proyecto de fin de carrera en la cátedra de Virología, por ofrecerme siempre oportunidades para mi desarrollo profesional y formar parte de su grupo de trabajo al que doy gracias por haber compartido y acompañado todos estos años.

A Msc. Andrea Blanc por ser mi referente, por sus ideas, su tiempo, dedicación, apoyo y sobre todo por brindarme su amistad.

A la Dra. Dora Ruchansky por aportar el final a este trabajo.

A todos mis compañeros y amigos, por darme ánimo y alentarme todos los días.

A mi familia, mi madre Susana, mis hermanos, Eugenia, Pía y Jeremías, mi abuela Olga, mi padre Carlos y mis abuelos Alix y Miguel; por haberme brindado su apoyo siempre, en momentos alegres y en los difíciles, y sobre todo por el amor que siempre recibí.

A Ronie, por ser mi compañero, mi apoyo de todos los días, por todo el amor y el tiempo compartido.

A Renata, mi compañera de todos los días y todos los momentos.
Su presencia hace milagros en mi vida, por eso este trabajo y todos mis logros son también de Uds.

A todas las personas que han sido mi compañía durante todo este tiempo: Muchas gracias!!
Índice

1. INTRODUCCIÓN ... 5
 1.1. BIOLOGÍA DE LOS VIRUS INFLUENZA... 5
 1.1.1. Clasificación ... 5
 1.1.2. Nomenclatura.. 5
 1.1.3. Estructura viral y genoma de Influenza A .. 5
 1.1.4. Ciclo reproductivo ... 8
 1.2. ECOLOGÍA .. 11
 1.2.1. Reservorios .. 11
 1.2.2. Prevalencia genotipos ... 11
 1.2.3. Migración .. 12
 1.3. EPIDEMIOLOGÍA .. 15
 1.3.1. Brotes con virus de alta patogenicidad ... 15
 1.3.1.1. H5N1 .. 15
 1.3.1.2. H7 .. 17
 1.3.2. Brotes con virus de baja patogenicidad .. 17
 1.3.2.1. H5 y H7 .. 17
 1.3.2.2. H9 y otros subtipos .. 18
 1.3.3. Influenza aviar en América del Sur .. 18
 2. OBJETIVOS ... 21
 2.1. Objetivo general .. 21
 2.2. Objetivos específicos ... 21
 3. MATERIALES Y MÉTODOS .. 22
 3.1. Colecta de muestras .. 22
 3.2. Extracción de ARN total ... 22
 3.3. Retrotranscripción y Reacción en Cadena de la Polimerasa (RT/PCR) 22
 3.4. Electroforesis ... 23
 3.5. Extracción y purificación de bandas .. 23
 3.6. Clonación, transformación bacteriana, preparación de minicultivos y minipreps 24
 3.6.1. Clonación ... 24
 3.6.2. Transformación ... 24
 3.6.3. Screening – PCR M .. 24
 3.6.4. Minicultivos y minipreps ... 24
 3.7. Secuenciación y análisis de secuencias ... 25
 4. RESULTADOS ... 26
4.1. Colecta de muestras

4.2. Amplificación del ARN por RT/PCR

4.3. Alineamiento de secuencias nucleotídicas y Análisis filogenético

5. DISCUSIÓN

6. REFERENCIAS BIBLIOGRÁFICAS
1. INTRODUCCIÓN

En las décadas pasadas, la Influenza aviar altamente patogénica demostró ser una enfermedad devastadora en aves de corral. El subtipo viral H5N1 es ahora endémico en Asia, afecta a las poblaciones de aves de corral domésticas y representa una amenaza para la salud humana y animal.

Poca es la información que se dispone acerca de la epidemiología de estos virus en la región. En Uruguay, la Influenza aviar es una enfermedad exótica por lo que se hace necesario implementar sistemas de vigilancia para evitar la introducción y difusión del virus en el país. El objetivo del presente trabajo fue muestrear aves migratorias y residentes que pudieran ser portadoras de virus Influenza.

1.1. BIOLOGÍA DE LOS VIRUS INFLUENZA

1.1.1. Clasificación

La familia Orthomyxoviridae, del griego orthos “correcto, estándar”, y mixo, “mucus”, contiene cinco géneros (ICTV, International Committee for the Taxonomy of Viruses): Virus Influenza A, B y C, Isavirus y Thogotovirus, a veces llamados virus Influenza D. Los virus Influenza son nombrados como Orthomyxoviridae por su habilidad de unirse a las mucosas, y por la capacidad de hemoaglutinación, y para distinguirlos de otra familia de virus ARN de sentido negativo, Paramyxoviridae (Lamb and Krug 1996).

1.1.2. Nomenclatura

El sistema de nomenclatura para los virus Influenza requiere que se describa el tipo de virus, el hospedador (este dato se omite en el caso de que el hospedador sea humano), el sitio geográfico del aislamiento, número de cepa, año de aislamiento. En el caso de que el tipo de virus Influenza sea A, se debe indicar entre paréntesis el tipo de HA y de NA. Por ejemplo, A/Chicken/Pennsylvania/1370/83 (H5N2) (WHO.Memorandum 1980).

1.1.3. Estructura viral y genoma de Influenza A

La morfología característica de estos virus es un rasgo genético pero también depende del tipo celular en el cual el virus está creciendo (Kilbourne 1963, Roberts, Lamb et al. 1998). Las partículas víricas son pleomórficas, tendientes a la forma esférica, con diámetros que oscilan entre los 80 y los 120 nm. Están compuestas por 1% de ARN, 70% de proteínas, 20% de lípidos y de un 5 a 8% de carbohidratos. La envuelta
viral deriva de la membrana plasmática de la célula hospedadora en la que el virus está replicando, alrededor de 500 espículas de entre 10 y 14 nm de longitud se encuentran sobre la superficie; estas espículas representan a dos de las principales glicoproteínas, HA y NA, en relación 5:1. También insertas aunque en menor proporción, se encuentran proteínas M2 (Ver figura 1). La proteína de Matriz, M1, la más abundante del virión, se encuentra por debajo de la membrana y está asociada a los core ribonucleoproteicos (RNPs) (Lamb and Krug 1996).

Figura 1. Representación esquemática del virus Influenza. Extraída de (Heinen 2002).

El genoma consta de 8 segmentos de ARN simple cadena de polaridad negativa que codifican para once proteínas virales: PB1, PB1-F2, PB2, PA, HA, NP, NA, M1 y M2, NS1 y NS2 (Tabla 1) (Lamb and Krug 1996, Chen, Calvo et al. 2001). Los extremos 5′ y 3′ de los ARN virales (ARNv) están altamente conservados y presentan secuencias complementarias invertidas. Todas las señales necesarias para la replicación y el empaquetamiento del genoma residen en estas secuencias terminales (Desselberger, Racaniello et al. 1980). Cada uno de los 8 segmentos de ARN es encapsidado con múltiples moléculas de NP viral para formar los RNPs y cada molécula de NP se encuentra asociada a unos 20 nucleótidos de ARN, manteniendo así la estructura de la nucleocápside (Ruigrok and Baudin 1995).

Los RNPs son estructuras flexibles, cada cadena se encuentra plegada sobre sí misma formando una estructura helicoidal con un “bucle” en uno de sus extremos y en el otro extremo se encuentra el promotor del ARNv que se forma por complementariedad de las secuencias terminales 5′ y 3′ libres. A estas secuencias se une el complejo polimerasa, un heterotrimero compuesto por subunidades de PB1, PB2 y PA, determinando así el arreglo superenrollado de los RNPs. Tales RNPs son maquinarias moleculares independientes responsables de la transcripción y replicación de cada segmento viral y su longitud depende del tamaño específico de cada segmento. En el RNP, el ARN es susceptible a la actividad ARNasa mientras que la proteína está relativamente protegida de la digestión por proteasas, sugiriendo que el ARN se encuentra por fuera de la estructura (Comphans,

<table>
<thead>
<tr>
<th>Segmento ARN</th>
<th>Longitud (nt)</th>
<th>Proteína</th>
<th>Aminoácidos</th>
<th>Moléculas por virión</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2341</td>
<td>polimerasa PB2</td>
<td>759</td>
<td>30-60</td>
</tr>
<tr>
<td>2</td>
<td>2341</td>
<td>polimerasa PB1</td>
<td>757</td>
<td>30-60</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PB1-F2</td>
<td>87</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>2233</td>
<td>polimerasa PA</td>
<td>716</td>
<td>30-60</td>
</tr>
<tr>
<td>4</td>
<td>1778</td>
<td>hemaglutinina HA</td>
<td>566</td>
<td>500</td>
</tr>
<tr>
<td>5</td>
<td>1540</td>
<td>nucleoproteína NP</td>
<td>498</td>
<td>1000</td>
</tr>
<tr>
<td>6</td>
<td>1392</td>
<td>neuraminidasa NA</td>
<td>454</td>
<td>100</td>
</tr>
<tr>
<td>7</td>
<td>1027</td>
<td>proteína matriz M1</td>
<td>252</td>
<td>3000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>proteína matriz M2</td>
<td>97</td>
<td>20-60</td>
</tr>
<tr>
<td>8</td>
<td>890</td>
<td>proteína no estructural NS1</td>
<td>230</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>proteína no estructural NS2</td>
<td>121</td>
<td>130-200</td>
</tr>
</tbody>
</table>

Los tres segmentos más grandes de ARN codifican para las polimerasas que juntas forman el complejo polimerasa.

La polimerasa PB2 es codificada por el segmento 1, su función es conocida durante el inicio de la transcripción del ARN mensajero (ARNm) viral como la proteína que reconoce y se une al CAP 5’ de los ARNm celulares para ser usados como cebadores para la transcripción viral.

La polimerasa PB1 es codificada por el segmento 2 y su función dentro del complejo polimerasa es elongar la cadena de ARNm naciente a partir del cebador. Las proteínas PB1 recién sintetizadas se localizan en el núcleo de las células infectadas. La proteína PB1-F2 es transcripta por un marco de lectura alternativo de este segmento viral y que no está presente en todos los subtipos virales (Chen, Calvo et al. 2001).

La polimerasa PA es codificada por el segmento 3, su localización es nuclear y su función es desconocida.

La proteína HA es codificada por el segmento 4. Es un homotrímero de monómeros unidos no covalentemente, cada molécula consiste en un ectodominio, un dominio transmembrana carboxi-terminal (Ct) y una cola citoplasmática. El dominio globular está formado únicamente por la subunidad HA1 y contiene el sitio receptor y los sitios antígenicos. El dominio transmembrana consiste en toda la molécula de HA2 y parte de la subunidad HA1. La región Ct de la molécula de HA2 contiene una secuencia transmembrana hidrofóbica y una secuencia citoplasmática donde es anclado el palmitato. La HA es el mayor antígeno de superficie y es responsable de la unión de los viriones a la superficie de la célula hospedadora y de la fusión entre la membrana viral y la membrana endosomal (Lamb and Krug 1996).

La NP es codificada por el segmento 5, es la segunda proteína más abundante del virión. Tiene un rol importante en el cambio de la síntesis del ARNm viral a la síntesis del ARN copia (ARNc) y ARNv en la célula infectada.
La NA es codificada por el segmento 6, es una proteína integral de membrana y es el segundo antígeno de superficie más importante. Los tetrámeros de NA no están distribuidos uniformemente por la superficie viral como lo están las moléculas de HA, sino que se encuentran formando "parches". La NA cliva moléculas de ácido siálico terminales de glicoproteínas o glicolípidos de superfcie. Así su función es liberar a las partículas virales de las células receptoras, facilitando su diseminación (Lamb and Krug 1996).

La transcripción colineal del segmento 7 codifica para la proteína M1 que es la más abundante del virión. Esta proteína forma una capa alrededor de la nucleocápside y se encuentra inmediatamente por debajo de la envuelta viral. En las células infectadas se localiza en el citoplasma y núcleo y tiene un rol importante en el ensamblaje de la progenie viral. La proteína M2 es transcripta por “corte y empalme” (splicing, en Inglés) alternativo del segmento 7. Es una proteína integral de membrana y su dominio sirve como señal de transporte a la superficie celular. Se encuentra en grandes cantidades en la superficie celular de la célula infectada y unas pocas proteínas se encuentran en los viriones (Lamb and Krug 1996). Al igual que la NP, la proteína M es un antígeno tipo específico.

Las proteínas no estructurales, NS2 y NS1 son codificadas por el segmento 8, NS1 es traducida colinealmente con el ARNv y abunda en el citoplasma de las células infectadas. NS2 es transcripta por splicing del ARNm. En un principio se la clasificó como no estructural pero luego se descubrió que está presente en las partículas virales (Richardson and Akkina 1991).

1.1.4. Ciclo reproductivo

El ciclo replicativo comienza con el clivaje de la proteína HA en HA1 y HA2 por enzimas presentes en el ambiente extracelular. Las enzimas son producidas por el huésped pero pueden eventualmente ser producidas por bacterias, promoviendo la infección por Influenza. Luego del clivaje de HA, el sitio de unión al receptor de HA1 se une a un residuo de ácido siálico presente en glicoproteínas o glicolípidos de la superficie celular. Diferentes virus Influenza tienen diferentes afinidades por el ácido siálico según estén unidos a la galactosa con uniones α-2,3 o α-2,6, y esto depende de residuos específicos de la molécula de HA (Lamb and Krug 1996, Bentz and Mittal 2003).

El virus ingresa a la célula por endocitosis mediada por receptor, se produce una invaginación recubierta de clatrina que va rodeando a la partícula hasta formar una vesícula completa que se desprende hacia el citoplasma (Lakadamyali, Rust et al. 2004). Luego de la internalización, la cubierta de clatrina es removida y las vesículas se fusionan con los endosomas, madurando de endosomas tempranos a tardíos. El bajo pH de los endosomas activa los canales M2, una bomba H⁺-ATPasa, que provoca la entrada de protones al virión. Se produce la disociación de la proteína M1 de los RNPs y un cambio conformacional en la HA de superficie que expone una secuencia de fusión, HA2 N-terminal (Skehel, Cross et al. 2001), uniendo la membrana viral y la membrana endosomal, y liberando a los RNPs al citoplasma (Bullough, Hughson et al. 1994). Las cuatro proteínas que componen el complejo RNP, PB1, PB2, PA y NP, contienen señales de localización nuclear (SLN), y los RNPs son transportados activamente al núcleo; ingresando a él a través de los poros de la membrana nuclear.
Figura 2. Ciclo de replicación de Influenza A. En azul se indican las diferentes etapas. Extraído y modificado de (Sidorenko and Reichl 2004).

En el núcleo se produce la síntesis de los ARNm virales. El complejo polimerasa se une al extremo 5’ de los precursores de ARNm celulares y cliva la región del CAP que es utilizado como cebador para el inicio de la transcripción, las diferentes etapas de la síntesis está dirigida por el complejo polimerasa. El “splicing” de los segmentos génicos M y NS también ocurre en el núcleo y está regulado por la proteína NS1. Finalmente los ARNm recién sintetizados son transportados hacia el citoplasma. El incremento de la concentración de NP promueve el inicio de la replicación del genoma viral y bloquea la síntesis del ARNm virales. La replicación involucra la síntesis de toda la longitud de las cadenas de ARNv(-) y ARNc(+), el ARNc sirve como molde para la síntesis de ARNv y éste a su vez es utilizado para la síntesis de más ARNm viral, ARNc y para la formación de los complejos RNPv (Lamb and Krug 1996, Amorim and Digard 2006).

En esta fase de la infección, las proteínas PB1, PB2, PA, NP, NS1, NS2 y M son producidas en el citoplasma celular. El flujo de producción de proteínas celulares baja lentamente mientras que la síntesis de las proteínas virales ocurre a flujo máximo por ribosomas (Park and Katze 1995). Las polimerasas recién sintetizadas como también las proteínas de NP, M y NS son transportadas al núcleo, donde participan en el "splicing" de los ARNm de M y NS, en la transcripción y replicación del genoma. Adicionalmente, son consumidas para la producción de nuevos complejos RNPv. La síntesis de M2, HA y NA es llevada a cabo por ribosomas que se encuentran unidos al retículo endoplasmático (RE). Las proteínas de la envuelta recién sintetizadas se insertan en el RE, son glicosiladas y transportadas al aparato de Golgi. Finalmente son liberadas a la membrana
de la célula hospedadora donde se ensamblan con los complejos RNPv (Lamb and Krug 1996, Sidorenko and Reichl 2004).

La formación de los RNPv tiene lugar en el núcleo de la célula hospedadora. Esto resulta de la unión de nuevas proteínas PB1, PB2, PA, NP y NS2 que se unen al ARNv. Las proteínas M1 también se unen a los RNPv, formando el complejo M1-RNPv y cataliza el transporte de éstos al citoplasma. La exportación nuclear de los RNPv también está dirigida por las proteínas NS2 y por señales de exportación nuclear (NES) presentes en la NP (Portela and Digard 2002). Las proteínas M1 también inhiben la importación de los complejos RNPv, de esta manera los nuevos RNPv asociados con M1 son incapaces de penetrar en el núcleo nuevamente.

Los complejos M1-RNPv interactúan con las colas citoplasmáticas de las proteínas M2, HA y NA, que favorecen la formación del sitio de ensamblaje en la membrana apical de las células epiteliales polarizadas. El virión se separa de la membrana celular y es liberado al medio extracelular por actividad enzimática de la NA que cliva los residuos de ácido siálico liberando así a la progenie viral. Además, muchas de las proteínas de la membrana celular son excluidas de las partículas virales por proteínas de NA. (Luo, Chung et al. 1993, Nayak, Hui et al. 2004, Nayak, Balogun et al. 2009). El modelo asume que los complejos RNPv son incorporados a los viriones al azar de manera no específica (Bancroft y Parslow 2002).

El mecanismo de apoptosis es el más aceptado para explicar la muerte celular cuando las células son infectadas con virus Influenza, sin embargo los detalles sólo han sido elucidados experimentalmente (Olsen, Dybdahl-Sissoko et al. 1996, Schultz-Cherry and Hinshaw 1996, Schultz-Cherry, Dybdahl-Sissoko et al. 2001, Lin, Holland et al. 2002). El péptido PB1-F2 tiene localización mitocondrial y es conservado en muchos virus aviares y de mamíferos pero no ha sido identificado en virus porcinos (Chen, Calvo et al. 2001). La habilidad de un virus Influenza de promover o inhibir la apoptosis contribuye a su virulencia y la severidad de la apoptosis refleja un balance entre las actividades virales y factores celulares (Baigent and McCauley 2003).
1.2. **ECOLOGÍA**

1.2.1. **Reservorios**

Las aves acuáticas principalmente de los órdenes Anseriformes (patos y gansos) y Charadriiformes (gaviotas y aves costeras) constituyen el reservorio natural de todos los subtipos virales de Influenza A (Webster, Bean et al. 1992, Krauss, Walker et al. 2004). Estos virus han sido aislados en al menos 103 de las 144 posibles combinaciones de HA y NA (Alexander 2006, Munster, Baas et al. 2007) y en más de 88 especies de aves salvajes pertenecientes a 12 órdenes diferentes (Alexander 2000).

No hay evidencias de que el virus persista por largos períodos de tiempo en un mismo individuo por lo que se han propuesto varias hipótesis acerca de mecanismos que aseguran la perpetuación de los virus en las aves acuáticas. Entre ellos están el comportamiento migratorio de las aves, la transmisión del virus entre aves de una misma especie, la transmisión entre aves de especies diferentes y la conservación de las partículas virales por largos períodos de tiempo en ambientes acuáticos (Stallknecht, Kearney et al. 1990, Webster, Bean et al. 1992) como también en lagos congelados (Zhang, Shoham et al. 2006).

En las aves, los virus Influenza replican preferentemente en células epiteliales del tracto intestinal resultando en la excreción de altos títulos virales con las heces, aislándose directamente de éstas como de aguas contaminadas (Webster, Bean et al. 1992). Por lo que, la ruta fecal-oral es el principal mecanismo de transmisión y diseminación del virus entre aves de la misma especie o entre especies diferentes (Horimoto and Kawaoka 2001). Se han descrito también otras rutas de transmisión de virus Influenza tales como la oral-oral o la respiratoria (Sturm-Ramirez, Hulse-Post et al. 2005).

1.2.2. **Prevalencia genotipos**

Estudios recientes han demostrado que las aves costeras y las gaviotas de América son los principales precursores potenciales de virus Influenza aviar de alta patogenicidad (IAAP) H5 y H7 (Krauss, Walker et al. 2004), mientras que en Eurasia los precursores de las formas patogénicas son usualmente los patos (Suss, Schafer et al. 1994, Munster, Wallensten et al. 2005).

Varias explicaciones tratan sobre porqué ciertos tipos de HA, de NA y combinaciones de ellas son más frecuentes en aves silvestres. Se especula que habría un balance funcional entre la afinidad de unión de la molécula de HA con la actividad enzimática de la NA (Wagner, Matrosovich et al. 2002). En América se han detectado los 9 subtipos de NA y todas las HA a excepción de los subtipos H14 y H15 que sólo han sido aislados en Eurasia (Krauss, Obert et al. 2007). A pesar de que existe superposición en las rutas migratorias de las aves acuáticas (Kilpatrick, Chmura et al. 2006, Olsen, Munster et al. 2006), una importante cuestión que no ha sido respondida es cómo los virus IA de Eurasia se diseminan hacia América y establecen linajes en ese continente y viceversa (Krauss, Obert et al. 2007). Varios estudios han basado sus análisis en un solo gen (Makarova, Kaverin...
et al. 1999, Liu, Okazaki et al. 2004, Widjaja, Krauss et al. 2004, Wallensten, Munster et al. 2005), pero ninguno a la fecha trata acerca del intercambio intercontinental que involucra a los ocho segmentos génicos. Si bien han ocurrido intercambio de genes, basados en la separación filogénetica y geográfica de las dos superfamilias, la Americana y la Euroasiática, se especula que el intercambio de virus enteros podría ser un fenómeno infrecuente (Krauss, Obert et al. 2007).

1.2.3. Migración

La migración estacional de las aves silvestres es uno de los fenómenos más espectaculares de la naturaleza. Si bien no todas las especies migran, las que sí lo hacen, migrantes de corta y larga distancia, tienen oportunidades de explotar y ocupar nuevos ambientes de suministro de alimento. Las especies que residen en climas favorables viven toda su vida a pocas millas de las áreas donde se reproducen. En cambio, los migrantes de corta y larga distancia viajan cientos de millas o cientos de miles de millas, respectivamente, hacia los lugares de hibernación. En estos viajes extensos realizan una serie de vuelos cortos durante la noche, cuando las condiciones climáticas son más favorables, y los días son utilizados para descansar y reponer energías (Reed, Meece et al. 2003).

Las aves utilizan rutas migratorias que han sido bien establecidas (Figura 3)(Olsen, Munster et al. 2006). Sin embargo, existen numerosas variaciones que contribuyen en algunas ocasiones a tener un patrón de migración impredecible; por ejemplo, eventos climáticos extremos (Gilbert, Slingenbergh et al. 2008), una abundancia inusual de comida en nuevas localidades o la escasez de una fuente de alimento. La acción del hombre sobre el ambiente puede también incidir sobre los patrones de migración debido a la pérdida de ambientes naturales o a la creación de ambientes artificiales (Reed, Meece et al. 2003). En los continentes y a lo largo de las principales rutas migratorias los migrantes se conectan en tiempo y espacio con muchas poblaciones de aves, compartiendo áreas comunes de reproducción o de descanso (Olsen, Munster et al. 2006).

El incremento de biodiversidad puede ser ventajoso para una especie que está buscando incrementar sus fuentes de alimento y lugares de refugio, pero por otra parte, puede representar un riesgo por exponerse a nuevos individuos y patógenos. El stress que está asociado a la migración es otro factor de riesgo que incrementa la susceptibilidad de las aves a enfermedades infecciosas. En algunas aves el stress de la migración puede llevar a la reactivación de infecciones latentes. Si bien es mucho lo que debe aprenderse acerca de este fenómeno, se dispone de muchos datos acerca de los patrones de migración de muchas especies aviares (Reed, Meece et al. 2003).
De un total de 450 especies de aves reconocidas en la fauna silvestre nacional, la tercera parte de ellas son migratorias. Varios factores hacen de Uruguay un país rico en aves migratorias. Su posición latitudinal intermedia entre el Ecuador y el extremo sur de Sudamérica lo coloca en plena zona de movimientos Sur-Norte, Norte-Sur de especies migrantes. A su vez, en aguas jurisdiccionales se da la confluencia de dos grandes corrientes marinas del Atlántico Sur, con un movimiento de nutrientes del que dependen importantes cadenas tróficas oceanícas, en las que las aves ocupan escalones superiores. La marcada estacionalidad del clima se acompaña de movimientos de migración en aves, que llegan escapando de los rigores invernales. Es posible hacer una clasificación primaria de los grandes movimientos de migración de aves que se dan en Uruguay, considerando la estación del año y la ocurrencia o no de reproducción en el país (Cravino 2004):

1) **Migrantes estivales no nidificantes.** Especies que se reproducen en el Hemisferio Norte y llegan a Uruguay como territorio de “invernada”. Permanecen en territorio nacional en primavera y verano para retornar entonces a sus territorios de cría. Este grupo de especies incluye los migrantes de más larga distancia.

2) **Migrantes invernales australes.** Especies que se reproducen en el extremo sur del continente sudamericano: Patagonia, Tierra del Fuego, así como en Antártida, e islas oceanícas. Permanecen en territorio nacional en invierno y retornan antes del inicio de la primavera a sus territorios de cría en el sur.

3) **Migrantes estivales nidificantes.** Especies que se reproducen en Uruguay en los meses de primavera y verano y migran hacia el centro y
norte de Sudamérica en el otoño. Algunas especies alcanzan el sur de Norteamérica.

4) **Migrantes invernales precordilleranos.** Especies que se reproducen al oeste de Argentina, en ambientes cordilleranos y precordilleranos y que realizan una migración altitudinal, desplazándose en invierno a zonas más bajas. En esta dispersión estacional llegan al noreste de la provincia de Buenos Aires y en menor medida, al suroeste del territorio uruguayo, en Colonia y San José.

5) **Migrantes transversales.** El pato picazo, *Netta peposaca*, cumple una migración anular entre la región del Río Paraná en Santa Fé y Entre Ríos, Argentina, el Estado de Rio Grande do Sul, Brasil, y los humedales uruguayos.

6) **Residentes con desplazamientos tróficos.** Especies que se reproducen y cumplen todo su ciclo de vida en territorio nacional, de hábitos gregarios y dependientes de sitios de reposo nocturno colectivo. Algunos individuos de las poblaciones nacionales de estas especies traspasan regularmente fronteras en sus desplazamientos diarios.
1.3. EPIDEMIOLOGÍA

Los virus Influenza A están distribuidos en todo el mundo, causando infecciones sintomáticas y asintomáticas en varias especies de vertebrados, incluyendo a una amplia variedad de aves como patos, gansos, gaviotas, gallinas, codornices, pavos, faisanes, estorninos como también en suínos, caballos, ballenas, gibones, chimpancés y humanos (Webster, Bean et al. 1992).

A la fecha no existen registros del virus H5N1 de alta patogenicidad en el Nuevo Mundo. Se piensa que existen tres modos posibles de que pudieran llegar al continente si se considera a las aves como su hospedador introductorio: migración normal interhemisférica, vagancia y las importaciones legales e ilegales de aves. Sin embargo, el rol individual de cada uno de estos mecanismos de introducción y diseminación está en debate (Chen, Smith et al. 2005, Normile 2005, Ducatez, Olinger et al. 2006, Normile 2006, Rappole and Hubalek 2006).

Muchas especies aviares domésticas y silvestres son susceptibles a la infección por los virus influenza, pero aquellos que son patogénicos para una especie aviar pueden no serlo para otra (Alexander 1982). Estos virus se agrupan en dos clases: los de alta patogenicidad (IAAP) y los virus de baja patogenicidad (IABP) (Alexander 2000).

1.3.1. Brotes con virus de alta patogenicidad

Desde el año 1959, donde se reportó un brote provocado por un virus IAAP del subtipo H5, al año 1995, se registraron en 14 instancias brotes en aves de corral infectadas con los subtipos H5 o H7 también de alta patogenicidad (Alexander 2000).

1.3.1.1. H5N1

No hay evidencia de que la transmisión con el virus H5N1 hubiera sido humano-humano, en cada uno de los casos la transmisión del virus aviar a mamíferos fue directa e independiente. Este incidente, la Gripe Aviar de 1997, demostró que la especificidad de receptor no es un factor determinante del rango de hospedador (Zhou, Shortridge et al. 1999) y que los virus aviares pueden causar enfermedad aguda en humanos sin previo reordenamiento con virus circulantes en éstos y sin ningún hospedador intermedio (Matrosovich, Zhou et al. 1999). No se reportaron más casos...
humanos y el virus no ha sido detectado en aves desde que fueron sacrificadas en 1997, afortunadamente el virus no desarrolló la capacidad de transmitirse entre humanos. Sin embargo las cepas precursoras continuaron circulando durante el periodo 1999-2000 en las poblaciones de gansos y codornices en el sureste de China (Xu, Subbarao et al. 1999, Cauthen, Swayne et al. 2000, Guan, Peiris et al. 2002, Webster, Guan et al. 2002).

Estudios moleculares de los aislamientos llevados a cabo entre febrero y mayo de 2001 identificaron seis diferentes genotipos, generados por la reasociación entre el virus de Guangdong con otros virus de aves silvestres y domésticas de diferentes subtipos identificados en los mercados. Una segunda ola de despoblación de las aves de corral en los mercados de Hong Kong en mayo de 2001 fue necesaria para erradicar los virus (Guan, Peiris et al. 2002, Li, Guan et al. 2004).

Las reasociaciones y la presión selectiva originaron que en 2002 se identificaran ocho nuevos genotipos. En diciembre de ese año se detectaron brotes de H5N1 en dos parques de Hong Kong, las especies afectadas fueron aves residentes provocando la muerte de muchas de ellas (Guan, Poon et al. 2004, Sturm-Ramirez, Ellis et al. 2004). También se detectó la cepa viral en varias especies de aves migratorias (Ellis, Bousfield et al. 2004), este es un evento raro pero con un antecedente significante en Sudáfrica en 1961 donde la cepa H5N3 terminó con la vida de estas aves (Becker 1966).

La epidemia de Influenza aviar en el período comprendido entre diciembre de 2003 a febrero de 2004 fue de una magnitud sin precedentes, se reportaron simultáneamente brotes de H5N1 de alta patogenicidad en aves de corral en nueve países de Asia (Tiensin, Chaitaweesub et al. 2005, Alexander 2007). Se murieron cientos de millones de aves de corral principalmente especies gallináceas. En varios países, los brotes de H5N1 estuvieron confinados a las aves pero en al menos dos países el virus se transmitió a humanos y muchas de las personas infectadas murieron (Lipatov, Govorkova et al. 2004). Se piensa que la amplia transmisión del virus ocurrió cuando estas aves migratorias retornaron a sus hábitats (Sturm-Ramirez, Ellis et al. 2004).

En diciembre de 2003 durante el brote de H5N1 en Tailandia, dos tigres y dos leopardos de un zoológico en la localidad de Suphanburi mostraron síntomas clásicos de la infección y de modo inesperado todos murieron. Los felinos habían sido alimentados con carcasas frescas de pollos de un matadero local. Este es el primer reporte de infección con virus IA en felinos no domésticos (Keawcharoen, Oraveerakul et al. 2004).

En el 2004 se reportaron casos de H5N1 de alta patogenicidad en aves silvestres en Hong Kong (Alexander 2007) y en Sudáfrica se detectó la cepa viral H5N2 en avestruces sacrificándose el 40% de la población de estas aves (Sinclair, Bruckner et al. 2006).

Desde el 2006 se han identificado varios brotes de H5N1 en aves de corral y aves silvestres en Pakistán, en una provincia donde se encuentran alrededor del 70% de los criaderos de aves del país. En octubre de 2007 se produjo un brote de H5N1 en uno de estos criaderos; se procedió luego al
sacrificio y al enterramiento de las aves. Sólo una persona de los que realizaba estas tareas sin la adecuada protección presentó síntomas de la enfermedad. La enfermedad luego se propagó en el núcleo familiar de este individuo, y posteriormente se identificó al agente causal como un virus Influenza del subtipo H5N1. Las evidencias soportan la idea de que la transmisión inicial se produjo desde las aves de corral a humanos, y luego las transmisiones se produjeron por contacto humano-humano, ya que los demás integrantes de la familia no realizaban tareas que estuvieran en contacto directamente con las aves. A pesar de la exhaustiva investigación y de la vigilancia por parte de las autoridades sanitarias, no hubo evidencia de la transmisión a la comunidad por lo que este brote estuvo limitado al grupo familiar. La transmisión humano-humano probablemente ocurrió debido a un contacto prolongado e íntimo entre los miembros de la familia (WHO 2008).

Hasta la fecha, se han reportado a la Organización Mundial de la Salud (OMS) más de 600 casos de infecciones humanas con la cepa H5N1 de alta patogenicidad. El primer caso en América de infección humana causada por el subtipo H5N1 ocurrió en Canadá en enero de 2014 (CDC 2014).

Millones de aves silvestres y domésticas murieron o fueron sacrificadas. Los virus IA H5N1 asiáticos muestran una variación considerable en sus genes internos a través de reordenamientos con otros virus IA y una continua evolución de los genes HA y NA (Lee, Suarez et al. 2005). El control de la diseminación de la enfermedad provocada por el virus endémico H5N1 en aves de corral puede contribuir a la reducción del riesgo para los humanos (Webster 2002), previniendo de esta manera el surgimiento de una nueva cepa viral que se transmita eficientemente y que dispare una pandemia (Li, Guan et al. 2004). Es un asunto de interés los posibles rearreglos que puedan ocurrir entre estos virus de alta patogenicidad con el virus pandémico H1N1 que surgió en México en el 2009 y que rápidamente se transmitió entre humanos (Dawood, Jain et al. 2009).

1.3.1.2. H7

En Italia en 1878 se describió el primer brote con virus Influenza de alta patogenicidad en especies gallináceas y se denominó como “Peste aviar” (Perroncito 1878), el agente causal descrito como H7N7 fue aislado en 1902, siendo el primer registro de aislamiento del virus en aves (Horimoto and Kawaoka 2001). En 1955 se demostró que el virus de la peste aviar pertenecía al grupo de Influenza A (Schafer 1955).

En marzo de 2003 se reportó en Holanda 255 brotes de IA, el agente causal fue del subtipo H7N7 y fueron sacrificadas alrededor de 30 millones de gallinas (Koopmans, Wilbrink et al. 2004); y en 2004 se detectó un brote de IA en una granja del Valle Fraser en Columbia Británica, se ordenó el sacrificio de 1.3 millones de aves (Tweed, Skowronski et al. 2004);(Hirst, Astell et al. 2004).

1.3.2. Brotes con virus de baja patogenicidad

1.3.2.1. H5 y H7

Infecciones con virus de baja patogenicidad H5 y H7 han sido reportadas en varios países en cuatro continentes. El potencial de mutar
hacia una forma de alta patogenicidad llevó a que en los países donde fueron detectados estos subtipos virales se tomaran medidas de control para su erradicación (Alexander 2007).

A finales de 1993 y hasta 1995 en México, el subtipo viral H5N2 de baja patogenicidad afectó a varias localidades. El virus se diseminó ampliamente y a finales de 1994 y principios de 1995 se identificaron cepas H5N2 de alta patogenicidad en dos regiones de México, Puebla y Querétaro (Lee, Senne et al. 2004). Como medida para la erradicación y el control de la diseminación, entre otras medidas, se sacrificaron las parvadas infectadas y se aplicaron más de 1 billón de dosis de vacunas inactivadas y recombinantes autorizadas para su uso durante el período 1995 a 2001 (Villarreal-Chavez and Rivera-Cruz 2003, Lee, Senne et al. 2004).

1.3.2.2. H9 y otros subtipos

1.3.3. Influenza aviar en América del Sur

La vigilancia epidemiológica de aves de vuelo libre en la región es y ha sido muy limitada en el continente. La diseminación viral entre diferentes regiones varía según la prevalencia de los virus en aves silvestres acuáticas, el momento en el cual se da la migración y patrones estacionales entre otros (Spackman, McCracken et al. 2006).

En orden de proveer un análisis de riesgo de la introducción de IA en aves de corral comerciales y de traspatio más acorde a la realidad es necesario monitorear la presencia y la prevalencia de estos virus en las poblaciones de aves silvestres, como también definir los patrones espaciales y temporales de infección y determinar la diversidad de subtipos que es mantenida en la población de aves silvestres como reservorio natural (Munster, Veen et al. 2006, Brown, Luttrell et al. 2010).

1.3.3.1. Chile

En mayo de 2002 se detectó en un criadero de pollos en Chile un brote causado por el subtipo viral H7N3 de baja patogenicidad. En junio de ese año se detectó un segundo foco con el mismo subtipo viral pero de alta patogenicidad, en total murieron o fueron sacrificadas más de 465.000 aves. Luego de un estricto programa de limpieza, desinfección y
esterilización de todos los sectores afectados, Chile se declaró libre de IA
2007). Al analizar el área afectada, se determinó que existían cuerpos de
guas artificiales con presencia de aves silvestres, los que eran utilizados
durante algunos periodos como fuente de agua para las aves comerciales.
Cerca de los establecimientos afectados existen ambientes acuáticos
naturales costeros, sitios utilizados por aves migratorias y costeras. Aunque
no se disponen de aislados para su comparación, se postuló como hipótesis
más probable que la fuente viral provino de un ave acuática silvestre debido
da su baja infectividad en gallinas (Jones and Swayne 2004, Max, Herrera et
al. 2007). Este brote con el subtipo H7N3 en aves comerciales de Chile en
2002 es el primer reporte de IA en Sudamérica. Los virus chilenos son
genéticamente diferentes de otros virus IA reportados y se propone que
representan un linaje separado que diverge de virus norteamericanos o
euroasiáticos (Suarez, Senne et al. 2004).

En 2009 en cerdos, surgió la cepa H1N1 altamente transmisible que
contenía combinaciones únicas de segmentos génicos provenientes de
diferentes linajes suinos. El agente viral fue detectado en Norteamérica y se
diseminó por todo el mundo en pocas semanas, afectando principalmente a
suinos como también humanos y otros animales, esto llevó a la
Organización Mundial de la Salud (OMS) a declarar estado de pandemia
(Fraser, Donnelly et al. 2009, Garten, Davis et al. 2009, OIE 2009, WHO
2009). En agosto de 2009, se reportó en un criadero de pavos en la región
de Valparaíso en Chile, un brote en las aves con características similares a
IA. Se subtipificó el agente como H1N1 y se encontró que las secuencias
eran completamente idénticas a la cepa pandémica que circulaba en
humanos. Aunque no se ha descubierto el factor que provocó que estas
aves fueran el reservorio de la cepa pandémica en la región, los resultados
sugieren una transmisión directa de humanos a aves (Mathieu, Moreno et
al. 2010).

1.3.3.2. Bolivia

En 2001 en Bolivia, 9 meses antes del brote en Chile en 2002, se
aisló el subtipo viral H7N3 de baja patogenicidad de un Cinnamon Teal. El
análisis genético reveló que 5 de ellos, HA, NP, PA, PB1 y PB2, estaban
relacionados con el virus H7N3 aislado del brote en aves en Chile
confirmando la hipótesis de que este virus fue introducido por un ave
silvestre. Los tres genes restantes tienen diferentes fuentes indicando un
reordenamiento viral; los genes de NA y M estaban relacionados con virus
de aves acuáticas silvestres norteamericanas, sugiriendo algún tipo de
intercambio entre genes del virus IA de América del Norte y del Sur y el gen
NS estaba más relacionado con un virus de Influenza equina proveniente de
América del Sur (Spackman, Stallknecht et al. 2005, Spackman, McCracken
et al. 2006, Spackman, McCracken et al. 2007).

1.3.3.3. Argentina

Durante un programa de vigilancia virológica en aves silvestres,
levado a cabo en el período 2006-2007 en Argentina, se aisló el subtipo
viral H13N9 y la especie se identificó como Kelp Gull, una gaviota residente.
La secuenciación y la caracterización filogenética de este subtipo sugieren
un único linaje de genes Influenza en Sudamérica. Los segmentos
genómicos internos PB2, PB1, PA, NP, M y NS están muy relacionados con
los virus IA aislados durante el brote en Chile en 2002 y con su posible ancestro aislado de un ave en Bolivia. En cambio, la glicoproteína de superficie H13 aislada ha evolucionado independientemente de otros virus H13 y el gen que codifica para la NA se mostró con más relación filogenética con virus aislados en América del Norte o en Europa (Pereda, Uhart et al. 2008). En 2008, se aisló también en Argentina el subtipo viral H1N1. El análisis filogenético demostró que los genes de HA y NA están más relacionados con virus aislados en Norteamérica. En cambio, todos los genes internos, PB1, PB2, PA, NP, M y NS se agrupan dentro del linaje Sudamericano apoyando la hipótesis de la existencia de un único linaje en la región. La filogenia de los genes PB1 y M también revela intercambio génico entre los linajes Norte y Sudamericanos, indicando una reciente cocirculación de virus de estas regiones en las poblaciones de aves migratorias (Alvarez, Mattiello et al. 2009).

Durante ese mismo período de tiempo, se colectaron 540 muestras de aves, la gran mayoría de ellas perteneciente al orden Anseriforme. El alto porcentaje de anticuerpos para el virus IA detectado en diferentes especies de patos sugiere que el mismo es endémico en la población de aves silvestres en Sudamérica (Brown, Luttrell et al. 2010).

En el período 2007 – 2010, se aislaron los subtipos H6N2 y H6N8 de 5 muestras de patos, todas ellas pertenecientes a la especie Rosy-billed pochard, Netta peponosa. El análisis filogenético sugirió que los genes internos están altamente relacionados con los virus IA encontrados en la región (Argentina, Bolivia y Chile). Sin embargo, el análisis de H6 reveló dos linajes diferentes en Sudamérica que han evolucionado independientemente. Un linaje contiene secuencias provenientes de Norteamérica y Oceanía y el otro está formado con secuencias de Eurasia, Norteamérica y Oceanía. Formando un único cluster en el primer linaje se agruparon 4 de las muestras identificadas como H6, sugiriendo una evolución independiente de los genes Argentinos. La secuencia restante se agrupó con el segundo linaje (Rimondi, Xu et al. 2011).

En abril de 2008, se aisló por primera vez el subtipo H1N1 en Red-winged tinamou, una especie silvestre terrestre no migratoria. El sitio de clivaje de la HA se correspondía con un IABP, aunque la presentación clínica y los estudios de patogenicidad indicaron que fue patogénico en la especie encontrada. Los análisis filogenéticos sugirieron que los genes de NA y HA estaban relacionados con los Norteamericanos mientras que los genes internos se los relacionó con los aislados en Sudamérica. Estos hallazgos soportan la idea de que existe un linaje filogenético Sudamericano para los genes PB2, PB1, PA, M y NS y también sugieren que los genes de NA y HA han experimentado intercambios entre las cepas de los hemisferios Norte y Sur (Alvarez, Mattiello et al. 2010).
2. OBJETIVOS

2.1. Objetivo general

Investigar la presencia del virus Influenza en aves residentes y migratorias del Uruguay.

2.2. Objetivos específicos

Poner a punto la técnica de PCR para detectar parcialmente los genes conservados que codifican para las proteínas de Matriz y de Nucleoproteína del virus Influenza aviar.

Obtener la secuencia nucleotídica parcial de los genes M y NP.

Determinar las relaciones filogenéticas de las cepas de Influenza aviar detectadas con cepas que circulan en la región y el mundo.
3. MATERIALES Y MÉTODOS

3.1. Colecta de muestras

Las colectas de muestras se llevaron a cabo en diferentes Departamentos de nuestro país en el período comprendido entre febrero de 2006 y febrero de 2007.

Las muestras obtenidas de hisopados cloacales o directamente de las heces se colocaron en 1 mL de medio de transporte para virus VEAL (6,25 g de Veal Infusion Broth, 1,25 g de Albúmina bovina fracción V, 0,25 mg/mL de Gentamicina, 0,25 µg/mL de Fungizona y 0,25 mg/mL de Penicilina G en 150 mL finales) y fueron conservadas en nitrógeno líquido hasta su manipulación en el laboratorio.

3.2. Extracción de ARN total

Para la extracción del ARN total se realizó el método del Trizol® (Gibco), según las instrucciones del fabricante. Se utilizó 1 mL de Trizol® para 400 µL de muestra. Se homogeneizaron las muestras con vórtex aproximadamente 15 segundos. Esta primer parte de la extracción del ARN se realizó en una sala de bioseguridad nivel 2 con normas de nivel 3 (BSL2+).

A continuación se agregó 0,2 mL de Cloroformo; luego fueron centrifugadas durante 15 minutos a 4°C y 13000 r.p.m. Se alicuotó el sobrenadante acuoso, sin recoger nada de la interfase, a un tubo eppendorf estéril y se agregó 0,5 mL de Isopropanol frío. Se mezcló y se dejó 10 minutos a temperatura ambiente. Luego de una centrifugación de 10 minutos a 4°C y 13000 r.p.m. y descartado el sobrenadante, se añadió al pellet 1 mL de Etanol 75%. Finalmente se realizó una última centrifugación durante 2 minutos a 4°C y 13000 r.p.m. El pellet fue resuspendido en 9.5 µL de agua estéril Gibco® a 60°C y 0,5 µL de Ribolock® RNase Inhibitor (Fermentas, 40 U/µL). Las muestras se conservaron a – 80°C.

3.3. Retrotranscripción y Reacción en Cadena de la Polimerasa (RT/PCR)

Para la detección del ARN viral se empleó la técnica de RT-PCR. Se buscaron genes conservados: el gen que codifica para la Nucleoproteína y el gen que codifica para la proteína de Matriz.

En un primer paso se incubó 2 µL de ARN y 0,1 µg de random oligonucleótidos por 5 minutos a 70°C en un volumen final de 6 µL empleando el equipo PCR Sprint Thermal cycler (Thermo). Los pretranscriptos fueron colocados en hielo unos segundos. A estos 6 µL le fueron incorporados 0,5 µL de dNTPs (10 mM), 10 U de enzima Revertaid™ H Minus M-Mulv Reverse Transcriptase (Fermentas), 2 µL de buffer de reacción 5X (Fermentas) y 0,5 µL de Ribolock™ Ribonuclease Inhibitor (40 U/µL, Fermentas), totalizando 10 µL de reacción. La transcripción se llevó a cabo a 42°C durante 60 minutos seguido por 10 minutos a 70°C. El ADNc se conservó a –20°C.

En un segundo paso, 2 µL de ADNc fueron amplificados en un volumen final de 50 µL conteniendo buffer PCR 10X (Fermentas), MgCl₂ (1,5
mM), dNTPs (0,2 mM), cebadores (0,2 µM de cada uno de los cebadores sentido y antisentido, ver tabla 3) y 1,25 U de Taq Polimerasa (Fermentas). La reacción de amplificación se llevó a cabo siguiendo el ciclado que se indica a continuación. Para el gen de Nucleoproteína: 95°C, 3 minutos; 35 ciclos de (95°C, 30’; 57°C, 40’; 72°C, 40”) 72°C, 10 minutos. Para el gen de Matriz: 95°C, 4 minutos; 35 ciclos de (95°C, 30’; 55°C, 40’; 72°C 50”) 72°C, 10 minutos.

<table>
<thead>
<tr>
<th>Cebadores</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Matriz</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sentido</td>
<td>M52C</td>
<td>5’- CTT CTA ACC GAG GTC GAA ACG – 3’</td>
<td></td>
</tr>
<tr>
<td>Antisentido</td>
<td>M253R</td>
<td>5’- AGG GCA TTT TGG ACA AA(G/T) CGT CTA – 3’</td>
<td></td>
</tr>
<tr>
<td>Nucleoproteína</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sentido</td>
<td>NP1200</td>
<td>5´- CAG(A/G) TAC TGG GC(A/T/C)A TAA G(A/G)AC - 3’</td>
<td></td>
</tr>
<tr>
<td>Antisentido</td>
<td>NP1529</td>
<td>5´- GCA TTG TCT CCG AAG AAA TAA G - 3´</td>
<td></td>
</tr>
</tbody>
</table>

Tabla 3. Secuencias de los cebadores utilizados para la amplificación de Matriz y Nucleoproteína (Fouchier, Bestebroer et al. 2000, Lee, Chang et al. 2001)

3.4. Electroforesis

El producto amplificado fue analizado por electroforesis en gel de agarosa al 1% (Agarose I™, Amresco) en buffer TBE 1X (0,89 M Tris-Borato; 0,002 M EDTA; pH 8.0) conteniendo Bromuro de Etidio (10 mg/mL) como agente intercalante. La visualización de las bandas se realizó con la exposición del gel a luz UV a través de transiluminador. Los geles fueron fotografiados con una cámara digital KODAK DC 290.

El tamaño esperado de las bandas amplificadas con los oligonucleótidos descriptos en la tabla 3, es de 244 pb para M y 330 pb para NP. Se utilizó como marcador de peso molecular (PM) un ADN de 100 pb (Fermentas).

3.5. Extracción y purificación de bandas

Para aquellas muestras que fueron amplificadas; se realizó extracción y purificación de ADN a partir de los geles de agarosa utilizando el kit comercial de extracción, QIAGEN. Para este fin, se cortó el fragmento de ADN de un gel de agarosa al 1% en buffer TBE 1X y se agregó 3 volúmenes de buffer QG a 1 volumen de gel. Para favorecer la disolución del gel se incubó durante 10 minutos a 56°C. Luego de chequear que el color de la muestra fuera amarillo, se agregó un volumen de Isopropanol y se mezcló. Se colocó la muestra en una columna de filtración provista por el kit y se centrifugó 1 minuto a 13000 r.p.m. Luego de agregar 0,5 mL de buffer QG a la columna se realizó una centrifugación durante 1 minuto a 13000 r.p.m. Para lavar se agregó 0,75 mL del buffer PE a la columna y se centrifugó 1 minuto a 13000 r.p.m. Se descartó el eluido y se centrifugó 1 minuto adicional a 13000 r.p.m. Se colocó la columna en un tubo eppendorf estéril y se eluyó el ADN con 30 µL de Agua estéril Gibco® centrifugando durante 1 minuto a 13000 r.p.m.
3.6. Clonación, transformación bacteriana, preparación de minicultivos y minipreps

Este procedimiento fue empleado para aumentar la cantidad de ADN presente en el producto de PCR cuando se utilizaron los primers de Matriz y así poder secuenciar el fragmento amplificado.

3.6.1. Clonación

En una primera etapa se clonó el producto de PCR utilizando Genejet™ PCR cloning kit (Fermentas), según las instrucciones del fabricante. Se preparó una reacción compuesta por: Buffer de reacción (1X), 2 µL del producto de PCR, 1 µL de la enzima DNA blunting y Agua libre de ARNasa Gibco®. Esta mezcla se incubó durante 5 minutos a 70°C. Luego se colocó en hielo por unos segundos, se agregó 5 U de T4 DNA ligasa y 50 ng de pJet1/blunt cloning vector. Finalmente se incubó a 22°C durante 30 minutos.

3.6.2. Transformación

Se descongelaron en hielo las células competentes NEB 5-alpha Competent E.coli (New England Biolabs). Se hicieron alícuotas de 25 µl en tubos eppendorf y se agregó 2,5 µL de la mezcla de ligación. Se incubó en hielo durante 30 minutos y luego se las sometió a un shock térmico durante 30 segundos a 42°C. Tras 5 minutos en hielo, se agregó 425 µL de SOC (provisto por el kit comercial) a temperatura ambiente. Se agitó una hora a 37°C y se sembró en placa con LB agar.

3.6.3. Screening – PCR M

Para detectar si las colonias bacterianas incorporaron el plásmido con el fragmento en estudio, se realizó una PCR utilizando como molde una colonia y los mismos reactivos y ciclados utilizados para amplificar el gen de Matriz. Los productos amplificados fueron analizados por electroforesis en gel de agarosa al 1% en buffer TBE 1X conteniendo Bromuro de Etidio (10 mg/mL) como agente intercalante.

Para aquellas colonias que fueron amplificadas se procedió de la siguiente manera.

3.6.4. Minicultivos y minipreps

Se picó una colonia y se agregó a un tubo conteniendo 3 mL de medio LB (Bacto triptona 10 g/L, Extracto de Levadura 5 g/L, NaCl 10g/L) y 3 µL de Ampicilina (100 mg/µL). Se incubaron los tubos toda la noche a 37°C con agitación a 180 r.p.m.

Para los minicultivos que presentaron crecimiento bacteriano, se realizaron minipreps utilizando el kit Nucleospin® Plasmid Quick Pure (Macherey Nagel) según las instrucciones del fabricante.

Se sembraron las muestras en un gel de agarosa al 1% en buffer TBE 1X. Los clones positivos fueron almacenados en glicerol al 25% en freezer de -80°C.
3.7. **Secuenciación y análisis de secuencias**

Los productos de PCR del gen NP purificados y los minicultivos conteniendo al gen de M, fueron enviados a un servicio tercerizado de secuenciación automática; Macrogen, Korea.

Las secuencias de ADN fueron analizadas utilizando el programa Bioedit (Clustal W) (Hall 1999) y MEGA versión 4.0.2. (Tamura, Dudley et al. 2007).
4. RESULTADOS

4.1. Colecta de muestras

Se colectaron 113 muestras de aves que incluían a 23 especies residentes y 90 especies visitantes, en los departamentos de Paysandú, Salto, San José y Rocha (Ver tabla 4).

<table>
<thead>
<tr>
<th>ORDEN</th>
<th>Nombre Científico</th>
<th>Nombre común</th>
<th>Muestras</th>
<th>Estatus*</th>
<th>Lugar Captura</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anseriformes</td>
<td>Amazonetta brasilensis</td>
<td>Pato Brasilero</td>
<td>1</td>
<td>R</td>
<td>Barra de la laguna Rocha</td>
</tr>
<tr>
<td>Charadriiformes</td>
<td>Bartramia longicauda</td>
<td>Batitú</td>
<td>4</td>
<td>VV</td>
<td>Camino entre ruta 26 y ruta 31 (Paysandú/Salto)</td>
</tr>
<tr>
<td>Charadriiformes</td>
<td>Calidris fuscicollis</td>
<td>Playerito Rabadilla Blanca</td>
<td>31</td>
<td>VV</td>
<td>Barra de la laguna Rocha</td>
</tr>
<tr>
<td>Charadriiformes</td>
<td>Charadrius falklandicus</td>
<td>Chorlito Doble Collar</td>
<td>5</td>
<td>VI</td>
<td>Barra de la laguna Rocha</td>
</tr>
<tr>
<td>Charadriiformes</td>
<td>Charadrius modestus</td>
<td>Chorlito Pecho Canela</td>
<td>8</td>
<td>VI</td>
<td>Barra de la laguna Rocha/Playa Penino (San José)</td>
</tr>
<tr>
<td>Charadriiformes</td>
<td>Charadrius semipalmatus</td>
<td>Chorlito Palmado</td>
<td>1</td>
<td>VV</td>
<td>Barra de la laguna Rocha</td>
</tr>
<tr>
<td>Charadriiformes</td>
<td>Gallinago paraguaiae</td>
<td>Becasina</td>
<td>3</td>
<td>R</td>
<td>Barra de la laguna Rocha</td>
</tr>
<tr>
<td>Charadriiformes</td>
<td>Himantopus mexicanus</td>
<td>Tero Real</td>
<td>1</td>
<td>R</td>
<td>Barra de la laguna Rocha</td>
</tr>
<tr>
<td>Charadriiformes</td>
<td>Nycticryphes semicollaris</td>
<td>Aguatero</td>
<td>1</td>
<td>R</td>
<td>Barra de la laguna Rocha</td>
</tr>
<tr>
<td>Charadriiformes</td>
<td>Pluvialis dominica</td>
<td>Chorlo Dorado</td>
<td>23</td>
<td>VV</td>
<td>Barra de la laguna Rocha</td>
</tr>
<tr>
<td>Charadriiformes</td>
<td>Rinchops niger</td>
<td>Rayador</td>
<td>14</td>
<td>R</td>
<td>Playa Penino (San José)</td>
</tr>
<tr>
<td>Charadriiformes</td>
<td>Sterna hirundinacea</td>
<td>Gaviotín Sudamericano</td>
<td>11</td>
<td>VI</td>
<td>Barra de la laguna Rocha</td>
</tr>
<tr>
<td>Charadriiformes</td>
<td>Tringa flavipes</td>
<td>Playero Patas Amarillas Chico</td>
<td>2</td>
<td>VV</td>
<td>Camino entre ruta 26 y ruta 31 (Salto)/Barra Laguna Rocha</td>
</tr>
<tr>
<td>Charadriiformes</td>
<td>Tryngites subruficollis</td>
<td>Playerito Canela</td>
<td>4</td>
<td>VV</td>
<td>Barra de la Laguna de Rocha</td>
</tr>
<tr>
<td>Ciconiiformes</td>
<td>Ardea cocoi</td>
<td>Garza Mora</td>
<td>1</td>
<td>R</td>
<td>Barra de la Laguna de Rocha</td>
</tr>
<tr>
<td>Falconiformes</td>
<td>Buteo albidus</td>
<td>Águila Cola Blanca</td>
<td>1</td>
<td>RV</td>
<td>Camino entre ruta 26 y ruta 31 (Arroyo Guayabos - Salto)</td>
</tr>
<tr>
<td>Falconiformes</td>
<td>Buteo albicollis</td>
<td>Chimango</td>
<td>1</td>
<td>RV</td>
<td>Camino entre ruta 26 y ruta 31 (Arroyo Guayabos - Salto)</td>
</tr>
<tr>
<td>Procellariiformes</td>
<td>Pterodroma incertae</td>
<td>Petrel Cabeza Parda</td>
<td>1</td>
<td>VV</td>
<td>Playa Aguada (Rocha)</td>
</tr>
</tbody>
</table>

4.2. Amplificación del ARN por RT/PCR

Solamente para una de las 113 muestras pertenecientes a la especie Calidris fuscicollis, se lograron amplificar 244 pb correspondientes a parte de la secuencia nucleotídica del gen de M y 330 pb correspondientes a parte de la secuencia nucleotídica del gen de NP (Figura 6).
4.3. Alineamiento de secuencias nucleotídicas y análisis filogenético

Para el análisis filogenético se utilizaron las secuencias amplificadas de los genes de M y de NP. Estas secuencias al ser muy conservadas permiten comparar con otras secuencias de M y NP de diferentes subtipos de Influenza A. Para la confección de los árboles filogenéticos, se eligieron secuencias de diferentes regiones, subtipos y hospedadores.

Las secuencias nucleotídicas de las muestras analizadas fueron editadas y alineadas con el programa Bioedit (Clustal W).

La muestra positiva presentó una homología del 97% para ambos segmentos amplificados con las secuencias aviares obtenidas del Genbank (Tabla 5).

Figura 6. Amplificación de los segmentos 5 y 7 del virus Influenza aviar

Izquierda. Amplificación con primers de NP. PM: Marcador de Peso Molecular de 100 pb Fermentas, 1-8: muestras en estudio, 3: muestra positiva, 9: control positivo (H1N1 humano), 10: control negativo H2O Gibco®.

Derecha. Amplificación con primers de M. PM: Marcador de Peso Molecular de 100 pb Fermentas, 1-8: muestras en estudio, 4: muestra positiva, 9: control positivo (H1N1 humano), 10: control negativo H2O Gibco®.
Matriz

<table>
<thead>
<tr>
<th>Nº Acceso</th>
<th>Secuencia nucleotídica</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>GU053514.1</td>
<td>A/mallard/Maryland/324/2003 (H2N3)</td>
<td>97</td>
</tr>
<tr>
<td>GU053164.1</td>
<td>A/Turkey/Minnesota/38429/1988 (H7N9)</td>
<td>97</td>
</tr>
<tr>
<td>GU053158.1</td>
<td>A/duck/Victoria/9003-9-1400/1976 (H7N7)</td>
<td>97</td>
</tr>
<tr>
<td>GU053039.1</td>
<td>A/chicken/Chile/184240-1/2002 (H7N3)</td>
<td>97</td>
</tr>
<tr>
<td>GU053024.1</td>
<td>A/chicken/Canada/314514-2/2005 (H7N3)</td>
<td>97</td>
</tr>
<tr>
<td>GU186603.1</td>
<td>A/chicken/Canada/314514-1/2005 (H7N3)</td>
<td>97</td>
</tr>
<tr>
<td>CY034759.1</td>
<td>A/mallard/Italy/4223-2/2006 (H5N2)</td>
<td>97</td>
</tr>
<tr>
<td>AB370203.2</td>
<td>A/duck/Hokkaido/1019/2001 (H4N6)</td>
<td>97</td>
</tr>
<tr>
<td>CY022638.1</td>
<td>A/teal/Italy/3931-38/2005 (H5N2)</td>
<td>97</td>
</tr>
<tr>
<td>CY020878.1</td>
<td>A/pintail/Alaska/49/2005 (H3N8)</td>
<td>97</td>
</tr>
<tr>
<td>CY016181.1</td>
<td>A/pintail/Alaska/211/2005 (H3N8)</td>
<td>97</td>
</tr>
<tr>
<td>CY015493.1</td>
<td>A/mallard/Alaska/256/2005 (H3N8)</td>
<td>97</td>
</tr>
<tr>
<td>CY015028.1</td>
<td>A/chicken/Chile/184240-4322/2002 (H7N3)</td>
<td>97</td>
</tr>
<tr>
<td>AY611525.1</td>
<td>A/chicken/British Columbia/04 (H7N3)</td>
<td>97</td>
</tr>
<tr>
<td>AY303657.1</td>
<td>A/turkey/Chile/4418/02 (H7N3)</td>
<td>97</td>
</tr>
<tr>
<td>AY303656.1</td>
<td>A/chicken/Chile/4977/02 (H7N3)</td>
<td>97</td>
</tr>
</tbody>
</table>

Nucleoproteína

<table>
<thead>
<tr>
<th>Nº Acceso</th>
<th>Secuencia nucleotídica</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>CY016159.1</td>
<td>A/gadwall/Ohio/37/1999 (H6N2)</td>
<td>97</td>
</tr>
<tr>
<td>GU051919.1</td>
<td>A/chicken/New Jersey/15906-9/1996</td>
<td>97</td>
</tr>
<tr>
<td>GU051325.1</td>
<td>A/mallard/Minnesota/410/2000 (H5N2)</td>
<td>97</td>
</tr>
<tr>
<td>GU051310.1</td>
<td>A/mallard/Minnesota/166/2000 (H5N2)</td>
<td>97</td>
</tr>
<tr>
<td>FJ357072.1</td>
<td>A/mallard/MN/1/2000 (H5N2)</td>
<td>97</td>
</tr>
<tr>
<td>CY013266.1</td>
<td>A/pintail/Alaska/53/2005 (H3N6)</td>
<td>97</td>
</tr>
<tr>
<td>GU051259.1</td>
<td>A/mallard/Minnesota/168/1999 (H4N8)</td>
<td>97</td>
</tr>
<tr>
<td>FJ686725.1</td>
<td>A/mallard/Ohio/363/2003 (H2N1)</td>
<td>97</td>
</tr>
<tr>
<td>EU743049.1</td>
<td>A/pheasant/NJ/1355/1998 (H5N2)</td>
<td>97</td>
</tr>
<tr>
<td>EU742631.1</td>
<td>A/pheasant/NJ/9804566/1998 (H5N2)</td>
<td>97</td>
</tr>
<tr>
<td>CY020880.1</td>
<td>A/pintail/Alaska/49/2005 (H3N8)</td>
<td>97</td>
</tr>
<tr>
<td>CY016414.1</td>
<td>A/mallard/Alaska/715/2005 (H3N8)</td>
<td>97</td>
</tr>
<tr>
<td>CY015503.1</td>
<td>A/pintail/Alaska/279/2005 (H3N8)</td>
<td>97</td>
</tr>
<tr>
<td>CY015495.1</td>
<td>A/mallard/Alaska/256/2005 (H3N8)</td>
<td>97</td>
</tr>
<tr>
<td>CY014875.1</td>
<td>A/black duck/NJ/184/1988 (H5N2)</td>
<td>97</td>
</tr>
<tr>
<td>AY633343.1</td>
<td>A/pintail/Alberta/156/97 (H3N8)</td>
<td>97</td>
</tr>
</tbody>
</table>

Tabla 5. Comparación de las secuencias de los segmentos génicos individuales de la muestra positiva con secuencias obtenidos del Genbank

*El símbolo % indica el porcentaje de homología de las secuencias nucleotídicas en estudio con las de referencia.

En la filogenia del gen M las secuencias se agruparon en dos linajes aviares asociados a regiones geográficas, linaje aviar Americano y el linaje aviar Euroasiático (Figura 7). Mientras que para el gen NP las secuencias se distribuyeron en cinco linajes diferentes representando tres de ellos a linajes aviares asociados a una determinada región geográfica y los otros
dos linajes representan a un linaje hospedador-específico. Linaje Equino, Linaje Suino y Linajes aviares: Norteamericano, Sudamericano y Euroasiático (Figura 8).

Figura 7. Árbol filogenético para la secuencia nucleotídica de la proteína Matriz. Se indican los linajes asociados a regiones geográficas. El análisis se realizó con el programa Mega 4.0.2 por el método de Neighbor-Joining (bootstrap 500 réplicas). Se indican valores de bootstrap por encima del 60%. La secuencia subrayada corresponde a la amplificada en este trabajo. El árbol tiene como raíz la secuencia: A/equine/Prague/1/56(H7N7).

La secuencia de la muestra positiva Calidris fuscicollis de Rocha se agrupa dentro del linaje aviar Americano y está muy relacionada con secuencias aisladas en la región, con un rango de homología del 97%. Los genes que fueron aislados en un brote en aves de corral en Chile en el 2002 (Suarez, Senne et al. 2004), están relacionados con la secuencia en estudio pero se agrupan en una rama separada en la filogenia.
Figura 8. Árbol filogenético para la secuencia nucleotídica de Nucleoproteína. Se indican linajes asociados a regiones geográficas u hospedadores. El análisis se realizó con el programa Mega 4.0.2 por el método de Neighbor-Joining (bootstrap 500 réplicas). Se indican valores de bootstrap por encima del 60%. La secuencia subrayada corresponde a la amplificada en este trabajo.

La secuencia nucleotídica de NP amplificada en este trabajo se agrupa con genes aviares Norteamericanos, esto sugiere intercambio de genes virales que circulan en los hemisferios Norte y Sur. Además la secuencia diverge de las aisladas en la región (Argentina, Bolivia, Brasil y Chile). Estas secuencias del linaje aviar Sudamericano están muy relacionadas y tienen un antecesor en común.
5. DISCUSIÓN

Uruguay está localizado entre los corredores utilizados por muchas especies aviares migradoras neoárcticas y neotropicales, que aparecen en el país durante su período no reproductivo. La muestra positiva para M y NP fue obtenida de un ave capturada en la laguna de Rocha. Esta laguna cubre un área de 7200 hectáreas y está situada al Sureste del Uruguay separada del Océano Atlántico por una barra arenosa (Figura 9). El ave pertenece a la especie *Calidris fusicollis*, un migrador de largo alcance que nidifica en el Ártico de Norteamérica e hiberna al noroeste de Sudamérica. Esta ave más conocida como Playerito rabadilla blanca es una de las aves costeras más abundantes de la laguna y se ha observado su presencia en todos los meses del año excepto en el mes de julio (Harrington, Leeuwenberg et al. 1991, Alfaro and Clara 2007).

![Figura 9. Laguna de Rocha ubicada en el departamento de Rocha, Uruguay. Extraída y modificada de (Alfaro and Clara 2007).](image)

Las secuencias amplificadas forman parte de diferentes linajes dependiendo del gen que se esté considerando en la filogenia. La secuencia del gen M se agrupa dentro del linaje aviar Americano y se encuentra relacionada filogenéticamente con las que circulan en la región, excepto la aislada en Bolivia que se agrupa con las secuencias aviares Norteamericanas (Figura 7). La secuencia del gen NP se encuentra alejada del cluster aviar Sudamericano donde están agrupadas todas las secuencias aisladas en la región (Argentina, Bolivia, Brasil y Chile) y se agrupa dentro del linaje aviar Norteamericano, sugiriendo un posible intercambio de genes entre aves del norte y del sur de América (Figura 8).
Los resultados son consistentes con la ruta migratoria de esta especie y además la congregación de diferentes especies aviares residentes y migratorias en la Laguna de Rocha que a un mismo tiempo favorece la transmisión del virus Influenza.

En este trabajo se logró amplificar por primera vez genoma del virus Influenza en aves en Uruguay. A pesar de la importancia de la ecología de los virus Influenza sobre el impacto que tienen en la industria comercial y para nuestro conocimiento en la salud humana y animal, la vigilancia en aves silvestres en América del Sur es mínima. La secuenciación y la caracterización filogenética del virus Influenza A en la región que ha tenido lugar en estos últimos años, sugiere la presencia de linajes únicos en Sudamérica para los genes internos: PB1, PB2, PA, NP, M y NS. (Suarez, Senne et al. 2004, Spackman, McCracken et al. 2006, Pereda, Uhart et al. 2008, Alvarez, Mattiello et al. 2009).

Por lo tanto, la vigilancia de los virus Influenza en aves acuáticas se hace necesaria para disponer de información de los subtipos que pudieran estar circulando en la población a fin de prevenir brotes en especies silvestres y subsecuentemente en aves domésticas y el hombre.
6. REFERENCIAS BIBLIOGRÁFICAS

CDC (2014). "Highly Pathogenic Avian Influenza A (H5N1) in People.".

Edited by Fields, B.N., Knipe, D.M., Howley, P.M.

