
Immunology | Full-Length Text

Characterization of the immunosuppressive environment 
induced by larval Echinococcus granulosus during chronic 
experimental infection

Leticia Grezzi,1,2 Yamila E. Martínez,1,2 Anabella A. Barrios,2 Álvaro Díaz,2 Cecilia Casaravilla1

AUTHOR AFFILIATIONS See affiliation list on p. 17.

ABSTRACT The larval stage of Echinococcus granulosus causes the chronic infection 
known as cystic echinococcosis, deploying strong inhibitory mechanisms on host 
immune responses. Using experimental intraperitoneal infection in C57BL/6 mice, we 
carried out an in-depth analysis of the local changes in macrophage populations 
associated with chronic infection. In addition, we analyzed T cells and relevant soluble 
mediators. Infected animals showed an increase in local cell numbers, mostly accounted 
for by eosinophils, T cells, and macrophages. Within macrophage populations, the largest 
increases in cell numbers corresponded to resident large peritoneal macrophages (LPM). 
Monocyte recruitment appeared to be active, as judged by the increased number of 
monocytes and cells in the process of differentiation towards LPM, including small (SPM) 
and converting peritoneal macrophages (CPM). In contrast, we found no evidence of 
macrophage proliferation. Infection induced the expression of M2 markers in SPM, CPM, 
and LPM. It also enhanced the expression of the co-inhibitor PD-L1 in LPM, SPM, and 
CPM and induced the co-inhibitor PD-L2 in SPM and CPM. Therefore, local macrophages 
acquire M2-like phenotypes with probable suppressive capacities. Regarding T cells, 
infection induced an increase in the percentage of CD4+ cells that are PD-1+, which 
represent a potential target of suppression by PD-L1+/PD-L2+ macrophages. In possible 
agreement, CD4+ T cells from infected animals showed blunted proliferative responses 
to in vitro stimulation with anti-CD3. Further evidence of immune suppression in the 
parasite vicinity arose from the observation of an expansion in FoxP3+ CD4+ regulatory T 
cells and increases in the local concentrations of the anti-inflammatory cytokines TGF-β 
and IL-1Ra.

KEYWORDS Echinococcus granulosus, M2-like macrophage, PD-L1/PD-L2, immunosup­
pression

E chinococcus granulosus sensu lato is the species cluster of cestode parasites that 
causes cystic echinococcosis. Within this cluster, the most frequent species is 

Echinococcus granulosus sensu stricto (1, 2). The larval forms of these parasites (known as 
hydatids) infect internal organs (mainly liver and lungs) of intermediate hosts (domestic 
ungulates and humans), developing as fluid-filled vesicular structures. Once completely 
formed, the hydatids grow delimited by a thin cellular layer, the germinal layer, which 
is in turn protected by a thick acellular layer known as the laminated layer. The germi­
nal layer undergoes endogenous asexual proliferation producing protoscoleces, which 
are the infective forms for the definitive hosts (mostly dogs). Protoscoleces have dual 
differentiation potential. In the dog’s gut, they develop into adult worms, whereas 
within the intermediate hosts, protoscoleces freed by accidental rupture of a hydatid 
can undergo reverse development into new hydatids; the latter phenomenon is known 
as secondary infection (1).
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Knowledge on the host-parasite interaction in natural infections is mostly limited 
to histopathological observations (3, 4). By far, the largest body of information has 
been obtained from experiments using secondary intraperitoneal infection in mice, 
which takes advantage of the mentioned capacity of protoscoleces to generate new 
hydatids in an intermediate (including experimental) host. Based on these experimen­
tal studies, E. granulosus infections have been divided into two phases: the early or 
establishment phase, when the parasite is more susceptible to immune attack, and 
the late or established phase (also called chronic stage), during which the parasite is 
protected by its laminated layer and therefore more resistant to immune attack (5). 
Hydatids grow in their tissue niche throughout the established phase and eventually 
become fertile (5, 6). During early infection, the parasite induces a cellular inflammatory 
response that comprises neutrophils, macrophages, and eosinophils recruited during 
the first 3–5 days of infection; these cells persist, together with lymphocytes, until the 
established phase arises (7). The commencement of the established phase coincides with 
the deployment of immune evasion mechanisms, usually leading to the inflammatory 
response being mostly resolved (8). From this point on, the hydatid grows slowly in 
the organ parenchyma up to a size that may exceed 20 cm in diameter, chronically 
surrounded by a capsule of collagen fibers, which is only poorly infiltrated (1, 9, 10). How 
the parasite achieves this control of the inflammatory response is still poorly understood.

Information on the systemic immune response in cystic echinococcosis also arises 
mostly from experimental infections, in which it is well established that the effector 
adaptive response is Th2-biased but includes Th1 components (11, 12). The limited data 
available on natural infections suggest a similar profile (13, 14). In addition, regulatory 
components are induced and superimposed on effector responses, as evidenced by the 
expansion of regulatory T cells (Treg cells) and the upregulation of TGF-β and IL-10 at 
the infection site (as studied in the liver) and blood (4, 15–18). Therefore, similar to other 
helminths, in order to survive, the E. granulosus larva stimulates the inhibitory circuits 
inherent to the host’s immune system, blunting the Th effector responses (19).

Information on how the established phase of E. granulosus infection affects the 
local immune environment in the experimental model is scarce. Wang et al. observed, 
in animals transplanted with micro-hydatids obtained by protoscolex culture, the 
expression of the M2 markers Chil-3, Relm-α, and arginase-1 by conventional PCR in 
a purified macrophage fraction (20). In agreement, Cao et al. observed the induction 
of arginase-1 at the mRNA and protein levels both in peritoneal macrophage and 
non-macrophage cell fractions, starting on the third month of infection (21). Both of 
these studies were carried out on BALB/c mice, which are highly susceptible to infection 
with E. granulosus (22) and the most widely used strain.

In this work, we carried out an in-depth study of the local immune environment 
established during the late (chronic) phase of secondary experimental cystic echinococ­
cosis, in the relatively resistant C57BL/6 strain. We focused on the analysis of the different 
populations of monocytes/macrophages present at the infection site (peritoneal cavity), 
evaluating the expression of several M2-like phenotype markers, among other parame­
ters. We also evaluated changes in T cell populations and relevant soluble mediators. We 
found that the peritoneal cavity milieu of chronically infected mice displays several signs 
of immunosuppressive mechanisms at play, including the induction of monocyte/macro­
phage populations with an M2-like anti-inflammatory phenotype, the expansion of Treg 
cells, and the preponderant presence of anti-inflammatory cytokines such as TGF-β and 
IL-1Ra.

MATERIALS AND METHODS

Parasites

Protoscoleces were obtained from naturally infected cattle from Uruguay. Infected 
organs (usually lungs) were collected at local abattoirs and processed in the lab. 
Protoscoleces were extensively washed with sterile saline solution in a laminar flow 
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cabinet. Viability was determined using the eosin vital stain. Only batches with more 
than 95% viability were used. Parasite genotype was determined according to reference 
(23). All the batches of protoscoleces used corresponded to E. granulosus sensu stricto, 
genotype G1.

Mouse infections

Female C57BL/6 mice were obtained from DILAVE (MGAP, Uruguay) and kept at the 
animal house of the Instituto de Higiene (UdelaR, Uruguay). Mice, 9–12 weeks old, were 
infected intraperitoneally (i.p.) with 2,500 viable protoscoleces per mouse in 200 µL of 
sterile saline solution. Control animals were injected with the same volume of vehicle. 
All the mice were kept at the animal house for 6–7 months, which corresponds to the 
late chronic infection phase. The procedure was approved by the Comisión Honoraria 
de Experimentación Animal (CHEA, Universidad de la República, Uruguay: protocol 
101900-001096-19).

Peritoneal lavage

Mice were euthanized using the anesthetic isofluorane and peritoneal lavages carried 
out using cold RPMI medium supplemented with 0.2% (vol/vol) fetal bovine serum, 
penicillin, streptomycin, and amphotericin B (lavage medium). The first lavage was 
carried out with 1 mL of lavage medium, and this was followed by two additional lavages 
with 5 mL each. After lavage, the peritoneal cavity of infected mice was exposed and 
hydatids were collected to estimate parasite load, both in terms of numbers of hydatids 
and total parasite volume. The first peritoneal lavage was spun, and the supernatant was 
kept at −20°C for the measurement of soluble mediators. Peritoneal exudate cells (PEC) 
were recovered from the pooled pellets of the three lavages and kept on ice. They were 
counted using the Nexcelom K2 Cellometer and the acridine orange/propidium bromide 
viability stain (Nexcelom Bioscience, USA). PEC were used for measuring arginase activity 
and analysis by flow cytometry and qPCR, as described below.

Flow cytometry

Four hundred thousand cells per sample were stained with the Live/Dead Fixable Green 
Cell Stain Kit according to the manufacturer’s instructions (Life Technologies, Thermo 
Fisher). Then, non-specific binding sites were blocked by incubating on ice with 1 µg/mL 
of anti-CD16/CD32 (Biolegend) and 10% (vol/vol) normal rat serum in FACS buffer [0.5% 
(wt/vol) bovine seroalbumin (BSA) and 2 mM EDTA in phosphate-buffered saline]. After 
blocking, the cells were surface-stained, washed twice, fixed in 1% (wt/vol) PFA (Sigma), 
washed again, and kept in FACS buffer. The details of the viability probe and antibodies 
are given in Table S1. For intracellular staining of Relm-α (from resistin-like molecule 
α) or Chil-3 (from chitinase-like protein 3, synonym Ym-1), after fixation, cells were 
permeabilized overnight with Permeabilization Buffer (eBioscience, Thermo Fisher) and 
then intracellularly stained as described in reference (24). For FoxP3 and Ki-67 intracel­
lular staining, cells were fixed and permeabilized using the Foxp3 Transcription Factor 
Fixation/Permeabilization reagent (Invitrogen, Thermo Fisher) prior to staining with the 
corresponding antibodies. All the samples were acquired in a FACS Canto II Cytometer 
(BD Biosciences) and analyzed using the FlowJo software package. The expression level 
of molecules of interest was estimated in terms of ΔGeoMean. This is the difference 
between the geometric mean of fluorescence intensity of the cells positive for the 
molecule and that of the cells negative for the molecule (within the gate of interest). 
The boundary between positive and negative cells was established on the basis of 
Fluorescence Minus One (FMO) controls.

ELISA and arginase activity assays

Cytokines were detected in samples of peritoneal lavage fluid by ELISA, using commer­
cial kits, according to the manufacturer’s instructions: TNFα, IL-6, IL-10, and IL-5 using 
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OptEIA kits from BD Biosciences and IL-1-β, TGF-β, IL-1Ra, Chil-3, IL-13, and IL-17A using 
DuoSet ELISA Systems from RnD Systems. IL-12/23p40, Relm-α, and IFN-γ were meas­
ured using non-labeled and biotin-labeled paired antibodies, followed by streptavidin-
peroxidase (Thermo Fisher). For IL-12/23p40 ELISA, a monoclonal antibody from clone 
C15.6 (BD Biosciences) was used as a capture antibody and a biotinylated monoclonal 
antibody from clone C17.8 (Biolegend) was used as a detection antibody. For Relm-α 
ELISA, non-biotinylated and biotinylated polyclonal antibodies were used as capture and 
detection antibodies, respectively (PeproTech). For IFN-γ ELISA, a monoclonal antibody 
from clone R4.6A2 (Judith E. Allen’s lab, University of Manchester) was used as a capture 
antibody and a biotinylated monoclonal antibody from clone XMG1.2 (Biolegend) was 
used as a detection antibody.

Arginase activity was measured by colorimetry in terms of urea produced from the 
hydrolysis of exogenous L-arginine added to 0.1% (wt/vol) Triton X-100 cell extracts, as 
described elsewhere (25).

Preparation of cell samples enriched in monocytes/macrophages

PEC samples were washed and incubated at 4°C with a cocktail of biotinylated antibodies 
against CD19, TCR-β, and SiglecF to enrich the preparation in monocyte/macrophage 
populations by negative affinity. The amounts of the antibodies were optimized for 
samples obtained from control and infected mice; representative enrichment results are 
shown in Fig. S4. After the incubation, cells bound to antibodies were pulled out using 
streptavidin-conjugated magnetic beads and a magnet (Dynabeads, Thermo Fisher), 
according to the manufacturer’s instructions. The resulting preparation contained 95% 
and 94% of monocytes/macrophages/dendritic cells over total cells for samples derived 
from control and infected mice, respectively. Within the monocyte/macrophage/den­
dritic cell population, 70% and 71% were LPM for samples derived from control and 
infected mice, respectively (the rest being monocytes/SPM and dendritic cells).

qPCR

The expression of phenotypic makers and soluble mediators was assessed by qPCR on 
preparations of PEC enriched in monocytes/macrophages. Briefly, RNA extraction was 
carried out using TRIzol (Invitrogen), and DNA contamination was eliminated by DNase 
I treatment (Invitrogen) following the manufacturer’s recommendations. cDNA was then 
obtained from 1 µg of RNA per sample using MMLV-RT (Invitrogen). qPCR reactions 
were performed using mouse-specific primers for Relm-α, Chil-3, Arg-1, PD-L1, PD-L2, 
CD206, MMP-9, CD86, CD80, MHCII, IL-10, TGF-β, IL-1Ra, IL-1R2, IL-1β, TNF-α, and IL-6. 
The primer sequences are shown in Table S2. Following the manufacturer’s instructions, 
the QuantiTest SYBR Green PCR Kit (Qiagen) and a Rotor-Gene Q real-time PCR cycler 
(Qiagen) were used for the qPCR reactions. Conditions of cycling reactions were 95°C for 
15 min, 40 cycles at 95°C for 15 s, and 60°C for 1 min, followed by a melting curve rising 
from 72°C to 90°C. β-2-microglobulin was used as a normalizing gene, and relative mRNA 
amounts were calculated using the 2-ΔΔCt method (26).

In vitro culture of PEC

In specific infection experiments, PEC from individual infected or control mice were 
cultured ex vivo. The cells were plated in U-bottom 96-well plates (Greiner) at 1.25 × 
105 cells per well (in a final volume of 200 µL), in RPMI with 10% (vol/vol) fetal bovine 
serum supplemented with 5 µM 2-mercaptoethanol, 10 mM HEPES, penicillin, streptomy­
cin, and amphotericin B. Then, the cells were stimulated with 1 µg/mL anti-CD3 (BD 
Biosciences) or vehicle only as control. After 48 h at 37°C and 5% CO2, CD4+ T cells 
were analyzed in terms of proliferative response by flow cytometry, using Ki67 as a 
proliferation marker. Separate plates seeded with 5 × 105 cells per well were cultured 
under the same conditions but kept for 72 h to measure cytokine production in cell 
supernatants by ELISA (IFN-γ, IL-5, IL-17 and IL-10).
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In vitro re-stimulation of splenocytes and lymph node cells

Spleens and mesenteric lymph nodes from infected and control mice were crushed 
through a sieve. For spleen samples, red blood cells were lysed for 2 min using a lysing 
buffer (Sigma-Aldrich). After counting, 2 × 106 splenocytes or 1 × 106 lymph node cells 
per well were plated into flat or U-bottom 96-well culture plates (Greiner), respectively, 
in RPMI with 10% (vol/vol) fetal bovine serum supplemented with 5 µM 2-mercaptoetha­
nol, 10 mM HEPES, penicillin, streptomycin, and amphotericin B. Cells were left either 
un-stimulated or re-stimulated with hydatid fluid and kept at 37°C and 5% CO2 for 72 h. 
Cytokine production was measured by ELISA of cell supernatants (IL-5, IL-1 and IL-10). 
Hydatid fluid was obtained from fertile hydatids. The fluid was concentrated 10 times 
using Ultrafree-MC centrifugal filter devices (Millipore) and then diluted 10 times in the 
cell culture media to re-stimulate the cells.

Statistical analyses

Data from two to seven independent experiments were plotted and analyzed together. 
Statistical analyses comparing control vs infected mice were carried out by the nonpara­
metric Mann-Whitney method (GraphPad Prism software). In assays involving more than 
two experimental groups, the nonparametric Kruskal-Wallis test was used. When the 
Kruskal-Wallis test resulted in a statistic with a P-value < 0.05, the test was followed 
by the Dunn post-test, and multiplicity-adjusted P values were calculated using the 
Bonferroni method (also using GraphPad Prism). Throughout the paper, the symbols *, **, 
***, and **** represent P-values less than 0.05, 0.01, 0.001, and 0,0001, respectively.

RESULTS

Chronic experimental infection with E. granulosus increases local cellularity

Analysis of the peritoneal cavities of C57BL/6, 6–7 months post-infection (p.i.) with 
E. granulosus sensu stricto showed substantial diversity in the parasite burdens, even 
among different animals within each experiment. The number of hydatids in 44 infected 
animals from seven independent experiments ranged from 1 to 141, and the size 
of individual hydatids ranged from 1 to 20 mm in diameter (Fig. 1a). Infection was 
accompanied by increased cellularity, with infected animals having a median of 19 
× 106 PEC (range 2–59 × 106) in comparison with a median of 7 × 106 PEC (range 
3–14 × 106) in control animals (Fig. 1b). As shown in Fig. 1c, this increase in total 
cell numbers was mostly due to increases in the numbers of eosinophils, T cells, and 
monocyte/macrophage populations. The latter were defined according to references 
(27, 28) as Ly6ChighMHCII- (recently recruited monocytes), Ly6C-F4/80lowMHCII+ (SPM; a 
gate also containing dendritic cells), and Ly6C-F4/80highMHCIIlow (LPM). We also obtained 
data for the monocyte/macrophage populations defined as Ly6C+MHCII+ (monocytes 
differentiating to SPM) and Ly6C-F4/80medMHCII+ (SPM converting to LPM, which we 
called CPM). To name CPM, we took into consideration the equivalent cells in the pleural 
cavity , previously named CCM (converting cavity macrophages) (28). Neutrophils were 
also identified in some infected animals but, in contrast to the rest of the results in this 
work, this observation was not reproducible across different experiments. All the gating 
strategies for PEC are provided in Fig. S1.

Among monocytes/macrophages, LPM was the population that contributed the most 
to the increase in cellularity. LPM proliferation was not enhanced by infection (Fig. S2). 
On the other hand, monocyte recruitment appeared to be active, as judged by the 
increased number of these cells, but also of the cells in the subsequent process of 
differentiation toward LPM, including monocytes differentiating to SPM, SPM, and CPM. 
The increases in cell numbers did not correlate with the parasite burdens, considered 
either in terms of the number or size of hydatids.
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Macrophage populations in the peritoneal cavity of infected mice exhibit 
M2-like phenotypes

Flow cytometry analysis of monocyte/macrophage populations revealed that SPM, CPM, 
and LPM exhibited M2 phenotypes (Fig. 2a), evident in terms of increases in the 
percentages of cells positive for the typical markers Relm-α and Chil-3 (29, 30). For 
monocytes and monocytes differentiating to SPM, only a slight increase in either of 
the two markers was observed. The increase in the expression of these markers was 
confirmed by qPCR analysis of a cell fraction enriched in monocytes/macrophages (Fig. 

FIG 1 Chronic peritoneal infection with E. granulosus leads to an increase in local cellularity (PEC number). Six to seven months p.i., peritoneal lavage reveals 

(a) a large spread in the parasite burden recovered from infected animals, (b) a significant increase in total local cell numbers, and (c) increases in the cell 

numbers of all the monocyte/macrophage populations, defined as Ly6ChighMHCII- (recently recruited monocytes), Ly6C+MHCII+ (monocytes differentiating to 

SPM), Ly6C-F4/80lowMHCII+ (SPM; gating including dendritic cells), Ly6C-F4/80medMHCII+ (CPM), and Ly6C-F4/80highMHCIIlow (LPM). In addition, increases in SiglecF+ 

cells (eosinophils), CD19+ cells (B cells), and T cells (both CD4+ and CD8+) were observed. C and I denote control and infected animals, respectively. The graphs 

show the results of four to seven independent experiments, analyzed together. The median value of results for each experimental group is shown. Each 

experiment is shown with a different color, and each dot represents one mouse.
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FIG 2 Local monocyte/macrophage populations during chronic experimental infection with E. granulosus exhibit M2-like 

phenotypes. Six to seven months p.i. PEC were recovered by peritoneal lavage. (a) The monocyte/macrophage populations 

were analyzed by flow cytometry in terms of Relm-α and Chil-3 expression. Results are shown as a percentage of Relm-α+

(Continued on next page)
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2b; see Fig. S3 for results of a representative enrichment protocol). A milieu strongly 
biased toward a type 2 response was also evidenced by increase in the concentrations of 
Relm-α and Chil-3 in the peritoneal cavity fluid (Fig. 3).

Arginase activity, which is another of the typical markers of M2 phenotypes, also 
showed a very strong increase in PEC extracts from infected animals compared to 
control mice (Fig. 4a).  When the monocyte/macrophage-enriched cell fraction was 
analyzed by qPCR, an increase in the expression of Arg-1 was also observed (Fig. 4b).

In one experiment, we were also able to determine that the expression of Relm-α and 
Chil-3 proteins and arginase activity started to be markedly elevated at 5 months p.i. and 
continued to rise between 5- and 7-months p.i. (Fig. S4a).

We also analyzed the expression of the co-inhibitors PD-L1 and PD-L2, of known 
suppressive activity (31) and expressed in M2-like macrophage phenotypes in other 
biological systems (32–36). By flow cytometry, we observed increases in the percentages 
of SPM and more markedly CPM and LPM expressing PD-L1, as well as increases in terms 
of median intensity of expression of the marker (ΔGeoMean, calculated as described in 
Materials and Methods) (Fig. 5a). A median of 98% of CPM and 96% of LPM expressed 
PD-L1, compared to 46% and 58% in control animals, respectively. We also observed 
infection-induced increases in the percentages of monocytes differentiating to SPM, 
CPM, and particularly SPM that expressed PD-L2. No difference in median intensity of 
expression of PD-L2 was observed for SPM or CPM from infected vs control animals. No 
expression of PD-L2 was observed in LPM from either infected or control animals. The 
expression of both co-inhibitors was also observed to be increased at the mRNA level 
(Fig. 5b). These observations suggest that monocyte-macrophage sub-types induced by 
E. granulosus infection have suppressive functions (32, 33).

Analysis of the expression of other markers previously reported to be upregulated in 
M2-like macrophage phenotypes revealed an increase in CD206 but no changes in CD86, 
CD80, MHCII, MMP-9, or IL-10 (Fig. S5).

The local presence of TGF-β and IL-1RA yields further evidence of an immu­
nosuppressive environment

We also quantitated several pro-inflammatory and anti-inflammatory cytokines, as well 
as the cytokines evidencing Th lymphocyte polarization in the peritoneal fluid. IL-1β, 
TNF-α, IL-12/23p40, IL-5, IL-13, IL-10, IFN-γ, and IL-17A were not detected, either in 
infected or control mice. IL-6, TGF-β, and IL-1Ra were detected in the cavities of infected 
mice at significantly higher levels than in control mice (Fig. 6a). As observed for M2 
markers, the concentration of TGF-β and IL-1Ra increased from 5 months p.i. onwards 
(Fig. S4b). We also analyzed monocyte/macrophage-enriched fractions to quantitate the 
expression of IL-1β, TNF-α, IL-6, TGF-β, IL-1R2, and IL-1Ra, at the mRNA level. Only IL-6, 
IL-1Ra, and IL-1R2 showed higher expression levels in infected mice with respect to 
controls, whereas the mRNA expression of IL-10 was decreased with respect to basal 
levels (Fig. 6b). The result for TGF-β mRNA suggests that monocytes/macrophages are 
not the source of the TGF-β measured at the protein level.

FIG 2 (Continued)

and Chil-3+ cells within monocytes and monocytes differentiating to SPM, SPM, CPM, or LPM populations. (b) Monocytes/mac­

rophages were purified from PEC using magnetic beads, and mRNA was isolated from the resulting fraction for qPCR analysis 

of Relm-α and Chil-3 expression. Fold changes in expression were calculated in relation to the median of control mice. C and I 

denote control and infected animals, respectively. Results are from three or four independent experiments, analyzed together. 

The median value of results for each experimental group is shown. Each experiment is indicated by a different color, and each 

dot represents one mouse.
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Chronic infection with E. granulosus sensu stricto is associated with the 
expansion of the Treg and PD-1+ T cell populations

The analysis of local T cell populations present in the peritoneal cavity after 6–7 months 
of infection revealed that infected animals significantly expanded the Treg (FoxP3+) 
population within CD4+ cells (Fig. 7a). An increase in the percentage of PD-1+ cells within 
the CD4+ population was also observed (Fig. 7a). Bidimensional dot plot analysis of T 
CD4+ cells showed that the FoxP3+ cells were segregated from the PD-1+ cells (Fig. 7b).

Local CD4+ T cells from infected animals have diminished proliferative 
capacity

PEC from control or infected animals were cultured in vitro in complete medium only or 
in the additional presence of the polyclonal stimulus anti-CD3. CD4+ T cells present in the 
peritoneal cavity of infected animals proliferated more than the ones in control animals 
in the absence of the anti-CD3 stimulus, but their capacity to respond to anti-CD3 was 
dampened. This suggests a hypo-proliferative phenotype in these cells, induced by the 
parasite (Fig. 8a). In terms of local Th polarization, the anti-CD3 stimulation experiments 
suggested that infection induces a mixed Th2/Th17 profile, as evidenced by trends 

FIG 3 A type 2-biased response is also evidenced by increases in the Relm-α and Chil-3 concentrations in the peritoneal 

fluid. Six to seven months p.i., the peritoneal fluid was recovered by a small volume lavage (1 mL), and Relm-α and Chil-3 

were quantified by ELISA. C and I denote control and infected animals, respectively. Results are from three independent 

experiments, analyzed together. The median value of results for each experimental group is shown. Each experiment is 

indicated by a different color, and each dot represents one mouse.

FIG 4 The type 2-biased response is confirmed by the increases in arginase activity in PEC extracts and in the expression of Arg-1 in the monocyte/macrophage 

populations. Six to seven months p.i., PEC were recovered by peritoneal lavage. (a) Arginase activity was measured in the total PEC in terms of the amount of urea 

(μg) produced by micrograms of protein present in the cell extracts. (b) Monocytes/macrophages were purified using magnetic beads, and mRNA was isolated 

from the resulting fraction for qPCR analysis of Arg-1 expression. Fold changes in expression were calculated in relation to the median of control mice. C and 

I denote control and infected animals, respectively. Results are from three independent experiments, analyzed together. The median value of results for each 

experimental group is shown. Each experiment is indicated by a different color, and each dot represents one mouse.
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FIG 5 Local monocyte/macrophage populations during chronic experimental infection with E. granulosus express co-inhibitory molecules. Six to seven months 

p.i., PEC were recovered by peritoneal lavage. (a) The monocyte/macrophage populations were analyzed in terms of PD-L1 and PD-L2 expression by flow 

cytometry. Results are shown both as a percentage of PD-L1+ and PD-L2+ cells within monocytes and monocytes differentiating to SPM, SPM, CPM, and LPM.

(Continued on next page)
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toward higher IL-5 and IL-17 production and significantly lower IFN-γ production in 
comparison to the response of cells from control mice (Fig. 8b). In addition, cells from 
infected animals unexpectedly showed diminished IL-10 production in response to the 
polyclonal stimulus. In agreement with a local Th2/Th17-biased response, re-stimulation 
of cells from spleen and mesenteric lymph nodes with hydatid fluid led to significant IL-5 
production and a trend toward IL-17 production in infected animals (Fig. S6). In the same 
assay, a trend toward IL-10 being produced by splenocytes in response to hydatid fluid 
was also observed.

FIG 5 (Continued)

In addition, relative expression levels, estimated in terms of ∆GeoMean are shown. “NO” indicates that PD-L2 surface expression was not observed in LPM. 

(b) Monocytes/macrophages were purified using magnetic beads, and mRNA was isolated from the resulting fraction for qPCR analysis of PD-L1 and PD-L2 

expression. Fold changes in expression were calculated in relation to the median of control mice. C and I denote control and infected animals, respectively. 

Results are from two or three independent experiments, analyzed together. Median value of results is indicated for each experimental group. Each experiment is 

indicated by a different color, and each dot represents one mouse.

FIG 6 The peritoneal cavities of chronically infected mice are enriched in anti-inflammatory mediators. (a) IL-1β, TNF-α, IL-12/IL-23p40, IL-6, IL-5, IL-13, IFN-γ, 

IL-17A, IL-10, TGF-β, and IL-1Ra were measured in the peritoneal cavity fluid by ELISA. (b) mRNA coding for IL-1Ra, IL-1R2, TGF-β, IL-10, IL-1β, IL-6, and TNF-α was 

measured by qPCR in monocyte/macrophage-enriched fractions. Fold changes were calculated in relation to control animals. Results are from three independent 

experiments, analyzed together. C and I denote control and infected animals, respectively. Median value of results is indicated for each experimental group. Each 

experiment is indicated by a different color, and each dot represents one mouse.
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DISCUSSION

General remarks

E. granulosus hydatids develop in their intermediate hosts after overcoming an initial 
inflammatory response and deploying immune evasion strategies that allow their 
survival. Our study was focused on the local environment established once the 
chronic infection is established and provided clear evidence of an immune suppressive 
environment in terms of the phenotypes of monocyte/macrophages and T cells as well 
as soluble mediators. Although BALB/c mice are the most often used experimental 
model for E. granulosus infection, we chose to carry out our studies in the C57BL/6 
strain, which corresponds to a less permissive immunological environment. BALB/c mice, 
in addition to having intrinsic defects in Th1 differentiation, generally show stronger 

FIG 7 During chronic E. granulosus infection, a local expansion of FoxP3+ regulatory T CD4+ cells takes place, together with an increase in the PD-1+ T CD4+ 

population. T cells in the peritoneal cavity were analyzed by flow cytometry. (a) Percentages of FoxP3+ and PD-1+ cells among CD4+ T cells are shown. C and 

I denote control and infected animals, respectively. Results are from three or four independent experiments, analyzed together. Median value of results is 

indicated for each experimental group. Each experiment is indicated by a different color, and each dot represents one mouse. (b) Representative dot plots of the 

FoxP3 and PD-1 FMOs and the corresponding positive samples from control or infected mice, analyzed after gating on live, CD4+ T cells.
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regulatory T cell responses (37), which probably explains their higher susceptibility to E. 
granulosus infection (22). Thus, in comparison to analogous observations that may be 
made in BALB/c mice, our observations in C57BL/6 mice lend a stronger level of support 
to the idea that this infection generates local immune suppression in its hosts.

As already pointed out by other groups (5, 6), our experiments showed that larval E. 
granulosus from a single genotype and infecting inbred hosts at the same anatomical site 
can show important spread in their development. In agreement with previous observa­
tions in humans (38), we did not find significant correlations between the number or size 
of hydatids and the intensity of any of the immune components assessed.

Chronic infection in C57BL/6 mice was accompanied by an increase in the number 
of PEC, as previously reported for BALB/c mice (20). This increase reflects a certain 

FIG 8 During chronic experimental E. granulosus infection, local CD4+ T cells are Th2/Th17 biased, and their proliferative capacity is dampened. PEC were 

cultured and stimulated with anti-CD3 antibody or vehicle only as a control. (a) After 48 h incubation, cells were harvested, and the CD4+ T proliferative response 

was evaluated by flow cytometry in terms of Ki67 expression. (b) After 72 h incubation, culture supernatants were harvested, and cytokines were measured by 

ELISA. Results are from two to four independent experiments. Median value of results is indicated for each experimental group. Each experiment is indicated by a 

different color, and each dot represents one mouse.
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degree of ongoing inflammation, which would be counterbalanced by the immunosup­
pressive environment that has also been established. Therefore, in peritoneal mouse 
infections, a dynamic balance between inflammation and immunosuppression appears 
to be installed, in place of the mostly complete inflammatory resolution observed in solid 
organs of suitable natural hosts (9).

Local macrophage numbers

The increase in PEC numbers observed in infected mice was mostly accounted for by 
eosinophils (typically recruited during helminth infections), lymphocytes, and mono­
cyte/macrophage populations, particularly LPM. Macrophage populations in helminth 
infection can expand both as a result of monocyte recruitment and local proliferation 
(39). Our results suggest that the proliferation of monocyte/macrophage populations is 
not induced by experimental E. granulosus infection. This may relate to the capacity of 
particles from the parasite’s laminated layer to inhibit macrophage proliferation induced 
either by M-CSF or by IL-4 (24). Shed laminated layer materials are effectively detected 
in host peritoneal cavity cells (presumably macrophages) in the BALB/c infection model 
(40). The increase in the numbers of monocytes and of the subsequent macrophage 
differentiation stages observed in our experiments suggest that the marked increase 
in LPM numbers observed is explained by cell recruitment from the blood. A higher 
potential to accomplish the differentiation pathway from monocytes to large cavity 
macrophages (in the pleural cavity) has been observed in C57BL/6 in comparison to 
BALB/c mice (28).

Local macrophage polarization

Macrophages have been described as key cells in natural E. granulosus infections and 
are also known to be present near the parasite in long-term peritoneal infections in 
mice (4, 6, 9). In the better-studied helminth models, including infection by the cestode 
Taenia crassiceps, macrophages are known to adopt M2-like phenotypes (30, 33). Within 
the umbrella of M2-like phenotypes a range of repertoires of surface and secreted 
molecules exists, adapted to functions such as mediating parasite expulsion, repairing 
damaged tissues, and resolving inflammatory responses (30, 41). Extending previous 
limited observations made in BALB/c mice (21, 42), we showed in C57BL/6 mice that 
different monocyte/macrophage populations present in the peritoneal cavity, namely 
SPM, CPM, and LPM, adopt M2-like phenotypes in chronic E. granulosus infection. In 
contrast to the macrophage populations mentioned, the recently arrived monocytes 
and the population of monocytes differentiating to SPM only showed slight increases in 
Relm-α or Chil-3, respectively.

Our search for additional markers previously found to be expressed in M2-like 
macrophages in other pathological contexts led us to conclude that TGF-β present in the 
peritoneal lavages of infected mice does not originate from macrophages. This stands in 
contrast to histopathological studies in sheep livers in which this cytokine was detected 
in macrophages, along with IL-10 (4).

We observed upregulation of the expression of PD-L1 and/or PD-L2 in different 
macrophage populations present in the peritoneal cavity of E. granulosus-infected 
mice, indicative of these cells having an immunosuppressive function. PD-L1 and/or 
PD-L2 expression appears to be induced in monocyte-derived cells in parallel with 
their differentiation into macrophages after arrival to the cavity, as no expression was 
detected in monocytes. The interaction of PD-L1 and PD-L2 with their receptor PD-1 on 
T cells is well known to dampen T cell activation and effector functions (31). A range 
of pathogens including helminths exploit this pathway to evade host defenses. Several 
studies show that these parasites induce PD-L1 and PD-L2 expression in macrophages, 
in cases together with M2 markers, endowing macrophages with the capacity to inhibit 
T effector cell populations (32–36, 43). PD-L2, in particular, is expressed in the context 
of helminth infections by macrophages recently derived from monocytes but not by 
resident macrophages (44, 45). In agreement, we observed PD-L2 expression in SPM 
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and to a lesser extent CPM and monocytes differentiating to SPM, but not in LPM. On 
the other hand, PD-L1 was constitutively expressed in macrophages and its expression 
was markedly increased by infection in CPM and LPM, whereas it was increased only 
weakly in SPM. The functional impact of the differential expression of PD-L1 and PD-L2 
by local monocyte/macrophage populations in cystic echinococcosis deserves further 
investigation.

Local T cell response

In our PEC culture experiments, CD4+ T cells from infected mice showed blunted capacity 
to proliferate in response to anti-CD3, suggesting a hyporesponsive state. PD-L1 and 
PD-L2 expressed by monocyte-macrophages may contribute, via PD-1 signaling, to this 
state. This hypothesis is supported by the observed increase in the percentage of PD-1+ 

T cells in infected animals. Two additional factors may contribute to the hyporesponsive 
state of T cells in infection. One such factor is the expanded population of Treg cells, 
which are the most likely source of TGF-β, the local levels of which were observed to 
be increased by infection. The second probable factor is the very strong induction of 
arginase activity, which in other contexts has been reported to dampen T cell activation 
by inhibiting the expression of CD3ζ through L-arginine deprivation (21, 46).

PD-1 expression on the T cell surface is a consequence of cell activation. During acute 
infections, PD-1 is only transiently expressed. In contrast, during chronic infections, its 
expression is sustained, and it is a marker of a hyporesponsive or dysfunctional state 
in T cells known as exhaustion (31, 47). We were not able to detect the expression of 
additional markers of exhaustion observed in other biological models, such as CTLA-4 
and LAG-3 (48). Of note, LAG-3 and the additional exhaustion marker 2B4 were shown 
to be expressed by liver CD4+ and CD8+ T cells, respectively, in mice chronically infected 
with Echinococcus multilocularis (49). It is worth noting that the function of CTLA-4 and 
LAG-3 is associated with inhibition of T cell activation in the lymph nodes, whereas the 
main function of PD-1 is to limit effector T cell activation in the periphery (31).

The ratio between the numbers of effector and Treg cells is crucial for determining 
effective immunity vs tolerance. In E. granulosus chronic infection, we determined that 
this ratio is diminished at the infection site, potentially contributing to the establishment 
of the immunosuppressed environment that favors parasite survival. These observations 
are in broad agreement with the expansion in Treg cells in blood all along E. granulosus 
experimental infection reported for the BALB/c mice model (50). In our experiments, 
we did not observe PD-1 expression in FoxP3+ T cells. Therefore, although PD-L1 in the 
periphery is reported to be important for stable FoxP3 expression by PD-1+-induced Treg 
cells (51), PD-L1/PD-L2 would not contribute to maintaining FoxP3 expression in Treg in 
our system.

Our study is, to our knowledge, the first to analyze the polarization of effector T 
cells at a cystic echinococcosis infection site. In re-stimulation assays using anti-CD3, we 
observed a Th2/Th17 bias. We also observed a Th2/Th17 bias after spleen and mesenteric 
lymph node cell re-stimulation with antigen in vitro. A Th2, but no Th17, bias was 
previously reported in chronic experimental mouse infection with E. granulosus but using 
the BALB/c experimental model (11).

Local cytokines

TGF-β, produced by Treg and/or innate cells, has been long known to play a role in 
helminth immunosuppression (9, 52) including infection by E. multilocularis (53–56). 
TGF-β was previously reported to be increased during chronic experimental E. granulosus 
BALB/c infections, both in terms of its serum levels and liver mRNA expression, compared 
to control animals (57). Our results point to an important role of TGF-β in chronic E. 
granulosus infection and also in the less regulatory C57BL/6 model.

Other groups have reported that IL-10 is an important anti-inflammatory cytokine in 
late experimental E. granulosus infections in BALB/c mice (11, 16, 58). In our experiments, 
we were not able to detect IL-10 in the peritoneal cavity, and in fact, infection appeared 
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to decrease the expression of this cytokine at the mRNA level in macrophages and the 
protein level in CD3-stimulated T cells. This unexpected finding, which may reflect mouse 
strain differences, deserves further investigation.

Our results suggest that in E. granulosus-infected mice, local monocytes, macro­
phages, and/or dendritic cells are important sources of IL-1Ra. This anti-inflammatory 
cytokine binds to IL-1R1, inhibiting the binding of IL-1α and IL-1β to their high-affinity 
receptor and thus dampening the effects of these strongly pro-inflammatory cytokines 
(59). Also, qPCR analysis of monocytes/macrophages from infected animals revealed an 
increase in the expression of IL-1R2, a decoy receptor for IL-1α and IL-1β, which acts 
as a sink for these cytokines without inducing pro-inflammatory effects. These observa­
tions suggest that the parasite deploys evasion mechanisms targeted to this cytokines 
(even if we were not able to detect IL-1β in the peritoneal cavity of infected animals). 
The possible deployment of evasion mechanisms against IL-1β may be related to our 
previous observation that particles from the E. granulosus laminated layer can activate 
the NLRP3 inflammasome in dendritic cells and macrophages primed with TLR agonists 
(60).

In spite of the cell recruitment observed in infected animals, we did not detect any 
of several important inflammatory or CD4 effector cytokines in the peritoneal cavity 
fluid (TNF-α, IL-1β, IL-12/23p40, IFN-γ, IL-4, IL-5, IL-13, and IL-17). It can be argued that 
the detection of in vivo changes in cytokine levels in fluids is made difficult by the 
uptake of the cytokines by target cells. However, the qPCR data for TNF-α in particu­
lar suggest that the infection may not cause upregulation in the expression of key 
inflammatory mediators (the exception being IL-6). Furthermore, certain CD4 cytokines 
(IL-5, IL-17) were produced by polyclonally stimulated peritoneal T cells ex vivo, so their 
lack of detection in the peritoneal fluid suggests that their production may indeed be 
suppressed in vivo.

Our failure to detect IL-4 or IL-13 at the infection site contrasts with the strong 
induction of M2-like macrophages observed. It is possible that factors other than IL-4/
IL-13, of either parasite or host origin, may contribute to the M2-like monocyte/macro­
phage differentiation observed in our model (30, 61–63). Along similar lines, the lack of 
detection of IL-5 in the cavity fluid contrasts with the marked eosinophil recruitment to 
the peritoneal cavity of infected animals, as IL-5 has been described as a central regulator 
of eosinophilia and eosinophil activation (64).

Concluding remarks

Our work defines important immune components that contribute to the local immuno­
suppressive environment that allows parasite survival in cystic echinococcosis. It will be 
interesting to analyze the roles of the M2-like macrophage populations present in the 
peritoneal cavity of E. granulosus-infected animals, including determining if the PD-L1/
PD-L2-PD-1 axis contributes to the inhibition of the T effector response. It will also 
be important to define the contribution of Treg cells and TGF-β to the immunosuppres­
sive milieu induced by the parasite infection. Finally, the understanding of the parasite 
components involved in the induction of the observed immunosuppressive environment 
may lead to applications in the field of autoimmune and inflammatory disorders.
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