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Abstract— Automatic sign language translation has gained
particular interest in the computer vision and computational
linguistics communities in recent years. Given each sign lan-
guage country’s particularities, machine translation requires
local data to develop new techniques and adapt existing ones.
This work presents iLSU-T, an open dataset of interpreted
Uruguayan Sign Language RGB videos with audio and text
transcriptions. This type of multimodal and curated data is
paramount for developing novel approaches to understand or
generate tools for sign language processing. iLSU-T comprises
more than 185 hours of interpreted sign language videos
from public TV broadcasting. It covers diverse topics and
includes the participation of 18 professional interpreters of sign
language. A series of experiments using three state-of-the-art
translation algorithms is presented. The aim is to establish
a baseline for this dataset and evaluate its usefulness and
the proposed pipeline for data processing. The experiments
highlight the need for more localized datasets for sign lan-
guage translation and understanding, which are critical for
developing novel tools to improve accessibility and inclusion
of all individuals. Our data and code can be accessed at
https://github.com/ariel-e-stassi/iLSU-T.

I. INTRODUCTION

Sign languages are natural languages of the deaf commu-
nities worldwide that use manual and non-manual features
over time and 3D space to convey meaning. Manual features
include hand shapes, locations, orientations, and movements.
Non-manual features include facial expressions, lip patterns,
gaze, and body movements. People without hearing impair-
ment generally do not know sign language, so automatic
translation can shorten the communication gap between
signers and listeners. Moreover, it can lower the cost of the
automatic translation and generation of media content that
includes sign language [4], [13].

Each region or country has its sign language, its lexicon,
grammar rules, and dialect. LSU (an acronym for Lengua
de Señas Uruguaya) is the sign language used by the deaf
community in Uruguay. Suitable data is required to develop
solutions for LSU processing tasks, including LSU automatic
translation.

In this paper, we present the first dataset for automatic
processing of LSU, with particular interest in tackling the
problem of automatic translation of interpreted RGB videos
using different data sources. The main contributions of this
work are:

• iLSU-T, the first dataset with multimodal video, audio,
and text for LSU translation. iLSU-T comprises more

than 185 hours of curated video from TV broadcasting
in Uruguay.

• A preprocessing pipeline to derive the iLSU-T dataset.
• A theoretical discussion from the linguistic perspective

about the problem of aligning and annotating interpreted
sign language videos with text.

• The first recorded evaluation and benchmarking of state-
of-the-art available methods for sign language transla-
tion in the LSU context.

II. RELATED WORK

Sign language processing is a set of techniques for analysis
and understanding sign language data, including recognition,
translation, and sign language production [4], [13]. Sign
language processing is a naturally interdisciplinary field that
lies at the intersection between computer vision, machine
translation, and linguistics [13]. Among the problems as-
sociated with sign language processing, we can mention
sign language (or fingerspelling) detection, i.e., recognizing
whether a signer appears in a video doing sign language [29]
(or fingerspelling [34], respectively). On the other hand,
there is the problem of recognizing signs, either isolated or
within a sequence. More specifically, the problems of isolated
sign language recognition [14], [15], [19], continuous sign
language recognition [45], and sign spotting [40]. In the case
of a continuous stream of sign language content, several
existing techniques require pre-segmentation of the data into
phrases or signs depending on the downstream task [8], [9],
[39], [41]. The automatic approach to tackle this problem
has been named sign language segmentation [7], [28], [32].
Continuous sign language recognition recognizes the gloss
sequence in the input sign language phrases. In this case, the
labels are gloss annotations, defined as a written representa-
tion of sign language content based on the chronologically
labeled sign language units in a one-to-one fashion [41].

Sign language translation (SLT) maps a sequence of signs
in a sentence to the corresponding written phrase, includ-
ing the target language’s grammar. SLT methods can be
coarsely classified into three categories [13], [41]: 1) two-
stage methods based on continuous sign language recognition
followed by a gloss-to-text translation; 2) end-to-end gloss
supervised methods; and 3) end-to-end gloss-free methods.
Gloss annotations help the models to learn the alignment
between signs and (visual) input features, but their generation
requires significant expert annotation efforts. Hence, gloss-
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TABLE I
SIGN LANGUAGE DATASETS FOR SIGN LANGUAGE TRANSLATION (SORTED BY NUMBER OF HOURS).

NUMBER OF SIGNERS, HOURS, SAMPLES, AND VOCABULARY SIZE (USED WORDS).

Dataset Source language Target language #signers #hours #samples Vocabulary Video quality Annotations Source

Phoenix2014T [8] DGS German 9 10.5 8257 2k9 210×260@25 fps text, gloss TV
LSA-T [12] LSA Spanish 103 21.8 14880 14k2 1920×1080@30 fps text (SD) Web
CSL-Daily [43] CSL Chinese 10 23 20654 2k5 1920×1080@30 fps text, gloss Lab
KETI [21] KSL Korean 14 28 14672 419 1920×1080@30 fps text Lab
AUSLAN-Daily [33] Auslan English 67 45 25106 13k9 1280×720/1920×1080@25|30 fps text TV
SIGNUM [22] DGS German 25 55.3 33210 N/A 776×578@30 fps text Lab
How2Sign [17] English ASL 11 79 35k2 16k 1280×720@30 fps text Lab
OpenASL [35] ASL English 220 288 98417 33k5 variable text Web
BOBSL [1] English BSL 37 1467 1M2 78k 444×444@25 fps text TV

iLSU-T (ours) Spanish LSU 18 201.5 86550 37k9 variable, 343×364@25|30 fps text (SD) TV

based approaches are frequently limited in the coverage of
different domains, making it challenging to apply them in
realistic scenarios [27]. In this work, we are focused on gloss-
free sign language data and, hence, translation methods.

Table I shows the most popular and recent datasets for
sign language translation sorted by size. The acronyms used
in the source and target language columns refer to the local
sign language. Most table datasets were constructed using
original sign language data with audio or subtitles. The
iLSU-T dataset is the first large-scale dataset for automatic
LSU translation. The table shows that it is comparable to
other large state-of-the-art datasets regarding the number of
samples, duration, vocabulary size, and signers. Note that SD
in the annotations column refers to “subtitle derived” with
particularities in the phrase conformation.

III. ILSU-T DATASET

A. Data sources

The data sources of iLSU-T videos are two channels of
the public Uruguayan Television –Canal 5 and TV Ciudad,
hereafter referred to as Sources 1 and 2, respectively– and
sessions of the Uruguayan Parliament –hereafter referred to
as Source 3–, with an average width and height of 343×364
pixels, respectively (see Section III-C for more details).

B. Processing pipeline and data curation

We define an episode as a single video containing a con-
tinuous broadcast block (in a similar way as [1]). Here, we
imposed that each episode be signed by only one interpreter,
i.e., its temporal boundaries be fixed based on the signer’s ap-
pearance on the scene or when there is a signer substitution.
Given the raw data, we use a processing pipeline (see Fig. 1)
to compose valuable episodes. The data generation process
includes five main stages: (1) RoI identification, (2) Signer
recognition, (3) Automatic captioning, (4) Manual alignment
of phrases, and (5) Linguistic context labeling.

1) RoI identification: The RoI (Region of Interest) cor-
responds to the sign language interpreter’s bounding box in
each video. As each raw file has only one RoI position for the
entire video, it was manually labeled by visual inspection.
We use the (x, y) coordinates of the rectangle’s upper left and
lower right corners. Each RoI includes only one signer. Fig. 2
shows RoI examples at each source’s frame level. Please
note the different RoI backgrounds depending on the media

source. Note that the sizes and aspect ratios are variable
between the sources and even between different episodes
from the same source. Additionally, the interpreter scale
within the RoI presents slight variations across episodes.

2) Signer recognition: To detect and recognize if a given
signer is present in the RoI, we used a KNN-based face
classifier1. The classifier was trained in a supervised manner
with 50 samples per signer. All the videos were processed
by a uniform sampling of one frame per second, and the
corresponding signer was classified. A median filter was
applied for post-processing recognition, considering that the
minimum time per signer was 30 seconds. The raw videos
were segmented to have one signer per episode. Finally, the
signer recognition stage was verified, and time boundaries
were refined for each episode by visual inspection.

3) Automatic captioning: Text subtitles were produced us-
ing WhisperX [2] over the audio track, using the large-v3
model, which provides text segmented in sentences with
timestamps at the word level.

4) Manual alignment of phrases: Simultaneous interpre-
tation encompasses interpretation from an audio-oral lan-
guage to a viso-gestural language [16]. The resulting linguis-
tic form exhibits specific characteristics that must be consid-
ered to determine the appropriate alignment between text
and sign language gestures. Naturally, the interpretation of
LSU will inevitably be out of sync with the transcribed text.
Moreover, there is a variable delay between both modalities.

As presented in Section I, SLT maps a sign language
phrase to the corresponding written phrase. Then, the seg-
mentation of the video and text content and its mutual
alignment, considering the video and the audio or text
tracks, are required. The alignment task can be defined as
a comparative translation task involving the analysis of the
expressions in LSU and Spanish and matching them. The
segmentation task must determine where the LSU content
can be cut into phrases or utterances. Text is automatically
segmented based on recognizing speech pauses. However,
this segmentation is not necessarily aligned with the pauses
used in the sign language interpretation. In this work, we
segmented LSU content based on two concepts: pauses and
epenthesis.

1https://github.com/ageitgey/face_recognition/
blob/master/examples/face_recognition_knn.pys.
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Fig. 1. (a) Pipeline for the generation of iLSU-T dataset. First, we locate the sign language interpreter Region of Interest (RoI) in the raw videos. Then,
the presence and recognition of the signer are determined. From the audio track, text phrases are obtained by automatic captioning (transcription). (b) An
experimental pipeline was implemented to benchmark iLSU-T for automatic translation. The text processing step refers to changes in the time support of
text events to compose aligned phrases. Dashed lines denote auxiliary stages to carry out controlled experiments following different criteria, for example,
by splitting the data considering the signer’s IDs or by restrictions in the linguistic diversity from the context labeling.

Pauses in interpreting may be attributed to several factors:
the discourse itself, instances of overlapping speech, the time
required for the interpreter to process the spoken information,
technical difficulties, and other variables. These pauses are
expressed in a variety of ways: (1) the interpreter remains
stationary after a given sign and then resumes interpreting
from that point, or (2) the interpreter returns to the resting po-
sition2. The involved frames do not correspond to linguistic
segments per se; instead, they represent strategies employed
in simultaneous interpreting from spoken languages into sign
languages.

In the literature on sign language phonology, the term
epenthesis is associated with the phonological feature “move-
ment”, specifically concerning interpolation transitions that
occur between two signs made at two different places of
articulation [18], [25]. These movements differ systemati-
cally from those encoded in sign language phonology [5].
Furthermore, epenthetic movements can be made from and
to the resting position. In both cases, this phenomenon allows

2In this work the resting position is conceived in the same way as in [36].
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Fig. 2. Isolated frame examples of RoI, background, and signers for the
three video sources of iLSU-T.

for segmenting sign language content in phrases or utterances
without affecting their meaning.

A sign language translation human expert carried out the
manual alignment of phrases in the following way: (1) Phrase
beginnings and endings are removed. The resting position
and the initial and final epenthetic movements of each
segment in LSU are eliminated. (2) Textual segments not
interpreted in LSU are eliminated. (3) Consider an instance
where two text segments are present in the source text.
Still, only a single segment exists in LSU characterized by
a sustained signer activity, i.e., no pauses. Then, the video
segments are separated by the epenthetic movement between
the two LSU phrases. (4) If the interpreter pauses in the
middle of a clip that cannot be cut, and in this pause assumes
the resting position, a “0” mark is made to consider this
annotation in future dataset use.

5) Linguistic context labeling: Considering the same
episodes for manual alignment of phrases previously de-
scribed, we simultaneously labeled them on two linguistic
context categories: topics and discourse genres. iLSU-T
data was organized by topics according to the principal
thematic axis, with the same conception as other studies in
this field [1], [33]. iLSU-T covers a wide range of topics:
weather, traffic, health, human rights, politics, social, culture,
news, security, laws and regulations, sports, and shows.
The term “discourse genres” refers to stereotyped forms
of discourse, i.e., forms fixed by usage and repeated with
relative stability in the same communicative situations. These
discourse genres are frequently linked with a community
of speakers in a particular context, for example, within
a professional sphere. The genres share the same way of
organizing information and the same set of linguistic re-
sources, including register and phraseology [3], [11]. iLSU-T
includes the following discourse genres: greetings and polite-
ness formulae, reports, interviews, anecdotes and narratives,
legal and normative procedures, debate and discussion, and
argumentation.



TABLE II
ILSU-T EPISODES STATISTICS: ROI DIMENSIONS, TIME DURATION (IN

HOURS), VOCABULARY SIZE, AND NUMBER OF SIGNERS PER SOURCE.

Set/Subset RoI width RoI height Duration [h] Vocabulary #signers

Whole dataset 343.2± 46.6 363.7± 60.5 187.4 37k9 18

Source 1 331.9± 2.7 312.9± 2.6 18.1 12k3 1
Source 2 246.6± 11.8 240.1± 3.9 22.4 14k1 5
Source 3 362.2± 27.8 393.2± 29.0 146.9 29k9 12

Signer 1
Signer 2
Signer 3
Signer 4
Signer 5
Signer 6
Signer 7
Signer 8
Signer 9
Signer 10
Signer 11
Signer 12
Signer 13
Signer 14
Signer 15
Signer 16
Signer 17
Signer 18

Source 1

Source 3

Source 2

Fig. 3. Time duration distribution per signer and source in iLSU-T episodes.

C. Dataset statistics

iLSU-T comprises 187.4 hours of RGB video interpreted in
LSU and structured in 571 episodes with an average length
of 19.7 minutes. Table II shows its distribution between the
3 video sources. There are 18 signers in the whole dataset.
The signers involved in each source are mutually exclusive.
Fig. 3 shows the distribution of the time duration per signer
and source. Sources 1 and 2 have a frame rate of 25 fps
for all episodes. Source 3 has two frame rate values, 25 and
30 fps, with a time duration proportion of about 3:7 for the
lowest frame rate over the highest one.

D. Dataset structure

As previously mentioned, the dataset comprises 571
episodes. A unique text ID identifies episodes with the
following information: media source, source file, time range
in the source file, and signer ID. The audio was automatically
transcribed for each episode, with an independent timeline.
Each episode includes the text track, as explained in Sec-
tion III-B. Sign language experts manually produce ground
truth alignment of text and video tracks for over 20 hours
of the iLSU-T dataset. These annotations are available for
some episodes of each data source.

E. Dataset license of use

iLSU-T dataset was collected and published in a collabora-
tion between academia and media sources. The data is shared
under a restricted use license (see data repository3 for details)
that allows its access and use for research and educational
purposes.

3https://github.com/ariel-e-stassi/iLSU-T.

IV. EXPERIMENTS

This section describes experiments on the iLSU-T dataset
using three state-of-the-art methods. We present each method
and the experimental setup implemented.

A. Methods

1) Sign Language Transformers (SLT): In 2020, Camgoz
et al. [9] proposed a method based on the transformer
architecture to simultaneously translate a sequence of video
frames to sign language glosses and written language. For
this purpose, the authors considered a joint loss function
for simultaneous recognition and translation. The expression
of the loss function is L = λR LR + λT LT , where LR

and LT are the recognition and translation loss, respectively.
Because gloss annotations are unavailable in iLSU-T data,
we considered λR = 0 and λT = 1.

2) Stochastic Transformer Networks with Linear Compet-
ing Units: application to end-to-end SL translation (STLCU):
In 2021, Voskou et al. [39] proposed a method based on the
transformer architecture with a novel scheme in the layer
structure. Stochastically competing units replace the conven-
tional ReLU activation functions, and the layer weights are
fitted with a variational inference approach. This method
includes a numerical compression strategy for the model
weights. In this work, we use the STLCU model with full
numerical precision.

3) Gloss Attention for Gloss-Free Sign Language Transla-
tion (GASLT): In 2023, Yin et al. [41] proposed a method for
sign language translation from videos that takes into account
textual information to solve the task by using the proximity
of sentence embeddings. This notion of similarity computed
for each pair of sentences of the dataset makes it possible
to mitigate the lack of gloss supervision. In this work, we
substituted the original BPE encoding with word encoding
for the text, which performs better.

B. SOTA methods on iLSU-T

1) Automatic video clipping: Here, we refer to a video
clip as a fragment that ideally corresponds to a text phrase.
Automatic video clipping was performed using a method-
ology based on random delays. Similarly to Dal Bianco et
al. [12], we consider a pre-delay and a post-delay between
the beginning and ending times of the sign language video
content and the beginning and ending times of each text
phrase or utterance, respectively.

As a first approach to the ground-truth association between
sign language video clips and their corresponding phrases
or utterances, here we considered that pre-delay time t1
as well as post-delay time t2 follows uniform distribu-
tions t1 ∼ U(a1, b1) and t2 ∼ U(a2, b2). We propose a
first selection of [a1, b1, a2, b2] = [0.4, 1.2, 2.1, 2.9] values
for the whole dataset. These values were chosen by visual
inspection from a random sample of episodes trying to
compose video clips containing the complete sign language
phrase associated with the text sentence. With this approach,
86550 video clips were obtained with an average duration of
8.38 seconds and a standard deviation of 5.95. Fig. 4 shows a
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Fig. 4. Histogram of video-clip durations for the whole iLSU-T dataset.
The red arrow points to the average duration of 8.38 seconds.

histogram of video-clip durations for the whole dataset. Note
that some clips are more than 20 seconds long. The video
clips can overlap, so the total duration of all the video clips is
201.52 hours. Despite the temporal overlapping between the
visual content of two consecutive fragments of an episode,
the text content of each video clip is a priori independent
from the others.

2) Datasets and data splitting: Four iLSU-T data config-
urations are proposed for training and testing. The first is
to consider a random splitting of all video clips, hereafter
referred to as the whole dataset. Based on the data sources,
additional data subsets are proposed to study the performance
of the methods in slightly more controlled scenarios. Here-
after, these subsets will be referred to as Source 1, Source 2,
and Source 3, respectively. For each data configuration, video
clips were randomly split into train, validation, and test sets,
considering a proportion of 0.8, 0.1, and 0.1, respectively.

C. Reproduction details

1) I3D visual features: The tested methods were fed
with video visual features provided by feature extractors
previously trained. Two feature extractors were considered
based on the I3D architecture originally proposed in [10].
Each video clip input is reorganized as a sequence of over-
lapped sub-video clips. This sequence is determined by the
window width and stride defined in [23]. We used the official
implementation of the method TSPNet [23], with a window
width value of 8 frames and a stride of 2 frames. The I3D
network was used as a frozen feature extractor by considering
existing pre-trained weights for two sign language tasks.
The first one, I3D-ASL2k, is a model trained for sign
language recognition or classification over the 2000 isolated
signs of the American Sign Language WLASL dataset [24].
The weights of this model were obtained from https:
//github.com/verashira/TSPNet. The second one,
I3D-BSL5k, is a model trained for temporal sign localization
considering attention localizations, mouthing, and dictionary
annotations (M+D+A model) over a vocabulary of 5383
words of the British Sign Language [38]. The weights of
this model were obtained from https://www.robots.
ox.ac.uk/˜vgg/research/bslattend/.

2) Sentence-embedding similarities in GASLT method:
For the reproduction of the GASLT method, a semantic
similarity matrix for each dataset was calculated. This matrix

comprises the cosine similarity between each pair of sen-
tences in the datasets. We followed the procedure presented
in the official repository of the method [41]. However, given
its sizes, it was necessary to compute this matrix by parts in
two of the four data configurations. To this aim, the GASLT
model was slightly modified to reconstruct the similarity
matrix from its parts internally.

3) Training details: All the SOTA methods were trained
for a maximum of 100 epochs with a batch size of 128 sam-
ples, except for the GASLT method on the whole dataset,
which used a 64-sample batch size due to RAM restrictions.
We explore some variations from the default training config-
uration for each considered method. Configuration files for
each method are included in the iLSU-T repository.

D. Evaluation metrics

We used two classical metrics for the quantitative evaluation
of automatic translations: ROUGE− L and BLEU−N . For
the ROUGE− L metric, we must consider the longest com-
mon sequence between two sequences of words or tokens.
Let be X , a reference translation of length r, and Y , a
candidate translation of length c. We denote as LCS(X,Y )
the longest common sequence between X and Y . Then,

ROUGE− L =
(1 + β2)RLCSPLCS

RLCS + β2PLCS
, (1)

with RLCS = LCS(X,Y )
r and PLCS = LCS(X,Y )

c [26]. In this
work, we use β = 1.2 as in the official implementation of
the selected methods [9], [39], [41].

For BLEU−N metric we must consider the concept of
modified precision score, denoted as pn and defined as [30]:

pn =

∑
Y

∑
n−gram∈Y #clip(n−gram)∑

Y

∑
n−gram∈Y #(n−gram)

, (2)

where n−gram is a “sequence of n words.” [20], and

#clip(n−gram) = min{#(n−gram),max
X

{#(n−gram)}}.
(3)

In Equation 3, # represents the counting operation and X a
set of reference sentences for a given candidate sentence Y .
Then, BLEU−N is computed as [30]:

BLEU−N = BP · exp

(
N∑

n=1

wn log pn

)
, (4)

where wn = 1/N and BP = min {1, exp (1− r/c)} is a
penalty for brevity of the translation. In this work we use
SacreBLEU, a standardized tool for computing reproducible
and comparable BLEU scores [31].

V. RESULTS

This section presents the results obtained by applying the
selected methods to the four data configurations previously
described. Tables III, IV, V, and VI show the BLEU-N
metrics and ROUGE-L for the validation (DEV) and test
(TEST) sets obtained in each of the splits. Table VII shows
translation examples using the three considered methods.



TABLE III
BASELINE ON THE WHOLE ILSU-T DATASET WITH SELECTED SOTA METHODS ( BEST VALUE , SECOND-BEST VALUE ).

Method Visual feature DEV TEST
extraction BLEU-1 ↑ BLEU-2 ↑ BLEU-3 ↑ BLEU-4 ↑ ROUGE-L ↑ BLEU-1 ↑ BLEU-2 ↑ BLEU-3 ↑ BLEU-4 ↑ ROUGE-L ↑

SLT [9] I3D-ASL2k 15.10 5.55 2.30 1.24 11.25 15.09 5.46 2.14 1.10 11.40
I3D-BSL5k 17.98 6.04 2.42 1.31 11.42 18.00 6.06 2.34 1.24 11.57

STLCU [39] I3D-ASL2k 17.46 8.10 4.90 3.45 14.65 17.69 8.17 4.92 3.43 14.86
I3D-BSL5k 14.81 5.01 2.15 1.16 11.27 14.76 4.98 2.04 1.03 11.45

GASLT [41] I3D-ASL2k 15.32 5.60 2.54 1.37 11.53 15.61 5.64 2.49 1.29 11.57
I3D-BSL5k 13.29 4.78 2.18 1.14 10.15 13.26 4.71 2.06 1.03 10.09

TABLE IV
BASELINE ON SOURCE-1 ILSU-T VIDEOS WITH SELECTED SOTA METHODS ( BEST VALUE , SECOND-BEST VALUE )

Method Visual feature DEV TEST
extraction BLEU-1 ↑ BLEU-2 ↑ BLEU-3 ↑ BLEU-4 ↑ ROUGE-L ↑ BLEU-1 ↑ BLEU-2 ↑ BLEU-3 ↑ BLEU-4 ↑ ROUGE-L ↑

SLT [9] I3D-ASL2k 14.58 4.74 1.51 0.72 11.19 14.50 4.71 1.60 0.71 10.97
I3D-BSL5k 13.35 3.77 1.19 0.57 9.44 13.22 3.66 1.16 0.53 9.26

STLCU [39] I3D-ASL2k 12.99 4.41 2.12 1.23 9.04 11.97 3.77 1.59 0.88 8.72
I3D-BSL5k 11.53 3.45 1.46 0.79 7.70 11.27 3.19 1.58 1.01 7.44

GASLT [41] I3D-ASL2k 11.16 4.00 1.51 0.67 9.33 10.81 3.67 1.23 0.31 8.96
I3D-BSL5k 11.56 4.26 1.77 0.77 9.01 11.69 4.03 1.44 0.44 9.13

TABLE V
BASELINE ON SOURCE-2 ILSU-T VIDEOS WITH SELECTED SOTA METHODS ( BEST VALUE , SECOND-BEST VALUE )

Method Visual feature DEV TEST
extraction BLEU-1 ↑ BLEU-2 ↑ BLEU-3 ↑ BLEU-4 ↑ ROUGE-L ↑ BLEU-1 ↑ BLEU-2 ↑ BLEU-3 ↑ BLEU-4 ↑ ROUGE-L ↑

SLT [9] I3D-ASL2k 15.55 5.13 1.71 0.79 10.84 15.32 5.00 1.39 0.55 10.58
I3D-BSL5k 10.74 3.81 1.14 0.43 10.59 10.88 3.72 0.99 0.41 10.21

STLCU [39] I3D-ASL2k 16.57 5.78 2.72 1.69 10.62 16.12 5.34 2.25 1.30 10.72
I3D-BSL5k 13.81 4.46 2.14 1.37 8.80 13.81 4.04 1.70 1.01 8.70

GASLT [41] I3D-ASL2k 16.49 5.76 2.20 0.90 11.20 15.65 5.35 1.97 0.82 10.74
I3D-BSL5k 16.00 5.45 2.06 0.96 10.47 15.35 5.23 1.79 0.75 9.72

TABLE VI
BASELINE ON SOURCE-3 ILSU-T VIDEOS WITH SELECTED SOTA METHODS ( BEST VALUE , SECOND-BEST VALUE )

Method Visual feature DEV TEST
extraction BLEU-1 ↑ BLEU-2 ↑ BLEU-3 ↑ BLEU-4 ↑ ROUGE-L ↑ BLEU-1 ↑ BLEU-2 ↑ BLEU-3 ↑ BLEU-4 ↑ ROUGE-L ↑

SLT [9] I3D-ASL2k 14.63 5.98 3.53 2.48 12.93 14.68 5.79 3.31 2.26 13.03
I3D-BSL5k 15.90 5.50 2.41 1.35 11.96 15.83 5.26 2.10 1.07 11.78

STLCU [39] I3D-ASL2k 18.74 9.00 5.65 4.08 16.18 18.44 8.75 5.40 3.82 16.05
I3D-BSL5k 13.54 4.95 2.53 1.54 11.80 13.45 4.55 2.15 1.18 11.66

GASLT [41] I3D-ASL2k 19.29 8.08 4.34 2.73 15.12 19.04 7.65 3.89 2.34 14.80
I3D-BSL5k 16.72 6.33 3.03 1.69 12.43 16.39 5.98 2.76 1.47 12.20

VI. DISCUSSION

Tables III to VI show that there are significant differences in
the performance depending on the considered combination of
datasets and methods. Source-3 iLSU-T presented the best
results in general, regardless of the process. This behavior
could be explained by the fact that this source has more
data and includes duplicate text phrases between its different
internal splits, i.e., train, validation, and test sets. The best
performance obtained on this dataset was 3.82 for BLEU-4
and 16.05 for ROUGE-L. The better performance of the
methods on Source-3 configuration is not due to a higher

spatial resolution nor a higher frame rate compared to the
other two sources’ datasets. Before the extraction of visual
features by the I3D network, frames are rescaled to a size
of 224×224 pixels regardless of the original resolution.

Concerning the frame rate differences, an experiment was
carried out to evaluate the effect of the frame rate on the
video content representation. As presented in Section III-C,
Source-3 videos have native frame rates of 25 and 30 fps. We
resampled the 30-fps video clips to 25-fps clips before visual
feature extraction. Then, the results were compared with and
without resampling using the same I3D-ASL2k with fixed
window width and stride values –8 and 2, respectively– and



TABLE VII
QUALITATIVE TEST EXAMPLES WITH I3D-ASL2K VISUAL FEATURES’ EXTRACTOR. MODELS TRAINED AND TESTED ON SOURCE-3 DATA.

Method Selected example BLEU-1 ↑ BLEU-2 ↑ BLEU-3 ↑ BLEU-4 ↑ ROUGE-L ↑ BERTScore ↑

Reference continuando con la lista de oradores, tiene la palabra el
senador adrián peña.

SLT tiene la palabra el senador doménech. 25.95 25.43 24.72 23.66 49.35 0.793
SCULT tiene la palabra la senadora de la aventura. 33.45 22.61 16.59 0.00 27.39 0.772
GASLT continuando con la lista de oradores, tiene la palabra el senador

mieres.
84.34 83.99 83.59 83.14 87.36 0.947

Reference bueno, muchas gracias, señora presidenta.
SLT gracias, señora presidenta. 51.34 51.34 51.34 0.00 71.76 0.891

SCULT muchas gracias, señora presidenta. 77.88 77.88 77.88 77.88 87.14 0.929
GASLT gracias, señora presidenta. 51.34 51.34 51.34 0.00 71.76 0.891

Reference 24 en 24.
SLT 23 en 23. 33.33 0.00 0.00 0.00 33.33 0.960

SCULT 23 en 25. 33.33 0.00 0.00 0.00 33.33 0.892
GASLT 23 en 26. 33.33 0.00 0.00 0.00 33.33 0.882

Reference continuando con el debate, tiene la palabra el senador mieres.
SLT a la sesión de la comisión de asuntos laborales y seguridad

social.
8.33 0.00 0.00 0.00 9.24 0.699

SCULT tiene la palabra el senador germán coutinho. 46.53 44.95 42.91 40.05 57.01 0.773
GASLT continuando con la lista de oradores, tiene la palabra el senador

bordaberri.
33.33 0.00 0.00 0.00 64.70 0.879

Reference vamos a votar la solicitud de licencia leı́da, se está votando.
SLT tiene la palabra el senador martı́nez huelmo. 8.07 0.00 0.00 0.00 10.68 0.650

SCULT se va a votar la solicitud de licencia, se está votando. 72.73 66.06 57.88 46.92 72.73 0.915
GASLT gracias, señor senador. 0.00 0.00 0.00 0.00 0.00 0.682

Reference a ese cuenta de otra solicitud y licencia llegada a la mesa.
SLT vamos a votar la licencia solicitada. 18.39 0.00 0.00 0.00 20.96 0.729

SCULT gracias, señora senadora. 0.00 0.00 0.00 0.00 0.00 0.682
GASLT vamos a votar la solicitud de licencia llegada a la mesa. 66.41 49.25 41.95 36.03 60.40 0.823

the same data splitting for training, validation, and testing.
We ran 50 epochs for training. Table VIII shows that the
tested approaches are robust to small changes in the video
frame rate, handling 25 and 30 fps without further training.

Although these results are still far from ideal values, it
is worth noting that translation results for other datasets
of similar complexity in terms of the number of samples
and vocabulary size are in the same order. Let’s take two
datasets, OpenASL and How2Sign, as examples. In Table I,
it can be seen that both datasets have a similar size to
Source-3 iLSU-T. For OpenASL [35], the best BLEU-4 and
ROUGE-L metrics obtained were respectively 6.57 and 21.02
with an approach proposed by the authors, based on a multi-
stream translation system fed by global, handshape, and
mouthing feature sequences. The authors highlight remark-
able differences in the translation performance depending on
the presence or absence of duplicate phrases, i.e., whether
text phrases are present in the train and test sets. For the
How2Sign dataset [17], a study that explores translation
performance obtains a BLEU-4 metric of 8.02 [37].

A qualitative analysis of some selected examples shows
that the studied models produce, in some cases, translations
with sense. There are phrases like “dese cuenta de otra solici-

TABLE VIII
EFFECT OF SOURCE-3 VIDEOS FRAME RATE ON SCULT PERFORMANCE.

frame rate BLEU-1 ↑ BLEU-2 ↑ BLEU-3 ↑ BLEU-4 ↑ ROUGE-L ↑

25 & 30 fps 18.81 9.01 5.51 3.88 16.41
only 25 fps 18.37 8.78 5.40 3.80 16.15

tud de licencia llegada a la mesa.” (“Register another license
application.”) or “se está votando.” (“voting is underway”)
for which automatic translations are almost perfect. This is
expected due to the high frequency of these expressions in
the Parliament sessions, where such phrases are part of the
daily protocol of this legislative body. As in [35], Fig. 5
shows the translation performance of SCULT I3D-ASL2k
over two subsets of the Source-3 test set, one composed of
736 duplicate phrases and the other composed of 5552 non-
duplicate phrases, both w.r.t. the phrases of the training set.

Table VII illustrates some example translations and their
corresponding metrics. Note that the last column of the table
corresponds to BERTScore [42] for Spanish. This metric
ranges from 0 to 1 and captures each method’s semantic
similarity between a reference and candidate sentences. For
example, let’s see the phrase “24 en 24.” (“24 in 24”),
concerning a vote in the Chamber. All methods show a
poor performance in the sense of BLEU-N and ROUGE-L
metrics, but not in the BERTScore metric, which measures
a high degree of correspondence between the sentences. The
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three candidate phrases refer to a numerical proportion as
the reference does. Moreover, BERTScore correctly captures
that the SLT method proposes the same numbers in the
proportion, even if they differ from the reference, giving
a higher score for this method. This example shows the
limitations of the BLEU-N and ROUGE-L metrics in cap-
turing the difference in meaning between a reference and a
candidate phrase. Those metrics count the number of equal
words differently; in this case, only one word is correct.
Even more, when the number of words in a phrase is lower
than N , the BLEU-N score is 0, as it is impossible to
find N correct words. BLEU-N is used to characterize the
translation performance on a corpus, but this issue hinders
its global value for a dataset with several short phrases.

We can highlight some limitations on iLSU-T video clips.
As seen in Table VII, there are some challenges in automat-
ically generating video clips at two levels: text and video.

Two significant problems can be noticed in text generation.
First, sentences like “a ese cuenta de otra solicitud y licencia
llegada a la mesa” have not been correctly transcribed by
WhisperX. Second, like any automatic speech recognition
system, WhisperX has limitations on punctuation prediction.
This is an open problem frequently associated with oral
discourse [44]. The correct generation of video clips partially
depends on the proper punctuation of the sentences.

For video content, different problems arise: the interpreters
omit performing some signs, switch to fingerspelling to
refer to proper nouns, and use different signs for each one
with their corresponding significance. Sign omission can be
conceptualized as a data augmentation phenomenon in the
best case, but clearly, it is a language aspect that is hard to
control. Since the data is not labeled about fingerspelling, the
trained models are not explicitly supervised concerning the
switch between different signing modalities. Finally, another
sign language particularity is called coreference resolution,
which has been discussed in the context of automatic sign
language translation by Shen et al. [33]. Coreference reso-
lution refers to using a specific region of the signing space
to refer to an object previously introduced. The considered
methods are trained and tested on isolated phrases; hence,
the methods tested in the present study do not account for
this phenomenon.

Finally, regarding the alignment at the sentence level, it is
important to highlight that iLSU-T is composed of a series
of episodes of approximately 20 minutes in length, which
are split into shorter video clips to create batches to feed the
neural network models, as explained in Section III-B. In this
work, video clips’ conformation is based on empirically ad-
justed random delays. This practical strategy allows for a first
approximation of using iLSU-T data to train and test three
selected translation methods. The problem of automatic sign
language segmentation and automatic alignment between the
text and the video content is an open problem [6], [7].

VII. CONCLUSIONS AND FUTURE WORKS

In this work, we introduced iLSU-T, a new dataset for auto-
matic translation of interpreted Uruguayan Sign Language.

A reproducible pipeline is also presented for processing
raw data and obtaining the dataset episodes. The statistics
reflect a dataset with diverse topics and numerous signers
with a video quality similar to one of the most popular
benchmarks in the field, i.e., Phoenix2014T. The state-of-the-
art methods tested are exclusively based on visual features
directly extracted from the video. BLEU-N and ROUGE-L
metrics values show that iLSU-T presents significant chal-
lenges when performing automatic translations to Spanish,
the written or spoken language commonly used by hearing
people in Uruguay.

Two major fronts appear as future lines of work: methods
and data. Regarding the methods, we must study the limita-
tions of each considered method, focusing on the effects of
the alignment between the text and the video track of the in-
terpreted videos. Remarkably, the three considered methods
are exclusively based on visual feature inputs. In this sense,
we will explore strategies based on skeleton data, either using
one-stream or multi-modal approaches. Concerning the data,
it is crucial to enrich the annotations to conduct controlled
experiments. For example, in this paper, we only considered
visual features derived globally from each video RoI, i.e., the
bounding box where the sign language interpreter appears.
We do not consider features associated with the activity
of the hands, face, or lips as is often done in the sign
language translation field [35], [38]. Secondly, it is important
to consider the effect of various aspects of the text. Among
others, it is necessary to conduct experiments that consider
the length of the phrases and the amount of text phrase
duplication between the train and test sets. Finally, enriching
the text annotations by considering multiple references to
evaluate the metrics is important. Generative text tools could
be used for this purpose, which take an input sentence and
provide multiple alternatives according to different similarity
criteria based on semantics and language expressions.
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