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Abstract: The Zika virus was introduced in Brazil in 2015 and, shortly after, spread all over the
Americas. Nowadays, it remains present in more than 80 countries and represents a major threat
due to some singularities among other flaviviruses. Due to its easy transmission, high percentage of
silent cases, the severity of its associated complications, and the lack of prophylactic methods and
effective treatments, it is essential to develop reliable and rapid diagnostic tests for early containment
of the infection. Nonstructural protein 1 (NS1), a glycoprotein involved in all flavivirus infections,
is secreted since the beginning of the infection into the blood stream and has proven to be a valuable
biomarker for the early diagnosis of other flaviviral infections. Here, we describe the development of a
highly sensitive nanobody ELISA for the detection of the NS1 protein in serum samples. Nanobodies
were selected from a library generated from a llama immunized with Zika NS1 (ZVNS1) by a
two-step high-throughput screening geared to identify the most sensitive and specific nanobody
pairs. The assay was performed with a sub-ng/mL detection limit in the sera and showed excellent
reproducibility and accuracy when validated with serum samples spiked with 0.80, 1.60, or 3.10 ng/mL
of ZVNS1. Furthermore, the specificity of the developed ELISA was demonstrated using a panel
of flavivirus” NS1 proteins; this is of extreme relevance in countries endemic for more than one
flavivirus. Considering that the nanobody sequences are provided, the assay can be reproduced in
any laboratory at low cost, which may help to strengthen the diagnostic capacity of the disease even
in low-resource countries.
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1. Introduction

The Zika virus (ZV) is an arthropod-borne virus, isolated for the first time in Uganda in 1947 [1],
that belongs to the Flaviviridae family. Nevertheless, ZV remained almost unnoticed for fifty years,
until, in 2015, it was introduced in Brazil and, shortly after, spread all over the continent [2,3].
Thus, in 2016, the World Health Organization (WHO) declared the ZV epidemic as an international
public emergency. This virus represents a major threat due to some singularities not common among
other flaviviruses. In particular, apart from the bite of infected Aedes spp. mosquitoes, ZV can be
vertically transmitted during pregnancy or breastfeeding, as well as spread through sexual contact
or blood transfusion [4]. Moreover, although symptoms are usually mild, complications are severe.
In particular, a ZV infection carries the risk of Guillain-Barré Syndrome and several adverse pregnancy
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and congenital outcomes, collectively known as congenital Zika syndrome [5,6]. Although the intensity
of the epidemic decreased in the past years, it is important to have a rapid and reliable diagnostic test
to monitor the transmission and help to contain eventual outbreaks. Until now, a ZV diagnosis mainly
depends on the detection of viral RNA in patients’ sera by quantitative polymerase chain reaction
(qPCR). RNA quantification is highly specific, but its efficiency drops after seven days of the onset
of symptoms [7]. At the same time, the process is laborious and requires expensive equipment and
specialized operators. On the other hand, when the viremia is about to disappear, the antibody response
begins to become evident; therefore, during the convalescent phase, the detection of immunoglobulin
M (IgM) and later immunoglobulin G (IgG) by immunoassays are preferred. However, due to
extensive shared similarities between ZV and other flaviviruses, such as Dengue (DV), West Nile (WN),
and Yellow fever (YF), considerable immunological cross-reactivity has been observed [8]. There is
plenty of evidence of false-positive results for patients living in endemic areas for more than one
Flavivirus [9,10]. Consequently, this constitutes a major drawback in the use of serology tests.

Nonstructural protein 1 (NS1) is a glycoprotein involved in Flavivirus infection, and its secreted
form is demonstrated to be highly immunogenic; therefore, it might be used as a diagnostic biomarker of
the disease [11]. It is known, from other flavivirus infections, that NS1 appears in blood concomitantly
with viremia and circulates in large amounts, even up to twelve days after fever onset; hence, it is an
indicator of ongoing or recent infection [11-14]. Even more, the detection of this protein can be carried
out through a simple capture ELISA [15]. Nonetheless, the evaluation of several presently available
DV serological tests based on the NS1 detection cross-react with the ZV protein, probably due to the
important structure similarity between them [16]. In addition, little progress has been made on the
Zika NS1 (ZVNSI1) detection, and the evaluation of cross-reactivity is limited.

In the past years, nanobodies (Nbs), the recombinant fragment derived from the variable domain
(VHH) of camelid heavy-chain-only antibodies, have been recognized as versatile and advantageous
diagnostic reagents [17,18]. Their monodomain nature facilitates the construction and expression of
highly diverse libraries using phage displays. Once isolated, the Nbs are easily expressed in soluble
form in the periplasm of Escherichia coli, with much higher expression levels than those of conventional
antibodies fragments [19]. Furthermore, due to their high stability and robustness, outstanding stability,
low-cost production in bacteria, and indefinite reproducibility from its known sequence, they provide
an improvement in the robustness and lower test costs [18,20]. Previously, our group described a
high-throughput methodology for the selection of pairs of nanobodies that allowed the development
of sensitive sandwich immunoassays [21]. This permitted us to generate a highly sensitive, low-cost
sandwich Nb-ELISA for the specific detection of ZVNSI as an early marker for the diagnosis of Zika
acute infection.

2. Materials and Methods

2.1. Materials

Flaviviruses” nonstructural protein 1 and mouse anti-ZVNS1 monoclonal antibody were
purchased from The Native Antigen Company (Oxford, OX, UK). Anticoagulant citrate dextrose
solution (ACD), histopaque-1077, Tween 20, polyethylene glycol 8000 (PEG), bovine serum
albumin (BSA), IPTG (isopropyl p-p-1-thiogalactopyranoside), p-biotin, trypsin from bovine
pancreas, 3,3',5,5 -tetramethylbenzidine (TMB), and other common chemicals were purchased from
Sigma-Aldrich (Mississauga, MO, USA). TRIZOL reagent was from Invitrogen (Carlsbad, CA, USA).
M-MulLV Reverse Transcriptase, random primer mix, Taq polymerase, helper phage M13KO7, and all
restriction enzymes were purchased from New England Biolabs (Ipswich, MA, USA). The pComb3X
vector was a kind gift from Dr. Carlos Barbas, The Scripps Research Institute (La Jolla, CA,
USA). E. coli ER2738 electrocompetent cells and recovery medium were purchased from Lucigen
Corporation (Middleton, WI, USA). The primers used for library construction were from Integrated
DNA Technologies (Coralville, IA, USA). Plasmid extraction, PCR clean up, and gel extraction kits
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were acquired from Qiagen (Germantown, MD, USA). Bacterial protein extraction reagent (BPER),
NHS (N-Hydroxysuccinimide)-biotin, and streptavidin peroxidase were purchased from Thermo
Fisher (Rockford, IL, USA). ELISA strips and plates were from Greiner Bio-One (Monroe, NC, USA).
Anti-hemagglutinin mAb (3F10) peroxidase conjugate was from Roche (Madison, WI, USA). His-Pur
Ni-NTA chromatography columns were from GE Health Care (Pittsburgh, USA).

2.2. Llama Immunization and Library Construction

The use of a three-year-old female llama (Lama glama) for this study was approved by the
authorities of the Zooldgico Parque Lecocq, Montevideo, Uruguay. All the procedures were carried
out by the veterinarians of the zoo following the protocol approved by the Comisién de Etica en
el Uso de Animales del Parque Lecocq (CEUA), protocol number CEUA-1-141107. The animal
was immunized by subcutaneous injection with 150 pug of ZVNSI in incomplete Freund adjuvant,
as described previously [22-24]. Three additional boosters were performed every 3 weeks in the same
conditions. Fifteen days after the final booster, 150 mL of blood were collected in bags containing
sodium citrate as the anticoagulant. Peripheral mononuclear cells were obtained by centrifugation
on histopaque-1077 gradients according to the manufacturer’s recommendations. Total RNA from
107 cells was extracted using TRIZOL, and 10 ug of it was reverse-transcribed using the M-MuLV
Reverse Transcriptase enzyme and a random primer mix. Then, the genes encoding the variable
domain of the heavy chain of conventional antibodies (VH) and heavy-chain-only antibodies (VHH)
were PCR-amplified using VH1, VH3, and VH4 as forwards primers and JH as the reverse primer,
as previously described [23]. Sfi sites were introduced during amplification, permitting to clone the
fragments into the phagemid plasmid pComb3X. VHH/VH-digested fragments were separated in 1%
agarose, purified by gel extraction, and 1.2 ug were ligated overnight at 16 °C with 1.0 pg of Sfil-digested
pComb3X. Then, the ligation mix was concentrated and desalted by ethanol precipitation, resuspended
in 25 uL of water, and electroporated in E. coli ER2738. Cells were allowed to recover 1 h in recovery
medium and were then inoculated to 10 mL of LB (Luria-Bertani) broth containing 100 ug of ampicillin
and incubated for 2 h with agitation at 37 °C. E. coli cells were superinfected with M13KO?7 helper
phage for 30 min without agitation, and then, kanamycin was added at a concentration of 50 pug/mL
and cultured overnight (ON) with shaking in the same conditions. Next day, the supernatant was
harvested by centrifugation, and phages were precipitated twice with 0.2 volume of 20% polyethylene
glycol 8000 in 2.5-M NaCl and resuspended in phosphate-buffered saline (PBS) containing 3% BSA,
0.3% Tween 20, 10%, glycerol, and 150-mM L-arginine. The VH/VHH phage library was titrated by
infection of E. coli and stored at —80 °C.

2.3. Purification of Immune Llama Immunoglobulins

The total fraction of immunoglobulins were obtained from the serum of the immune llama using
a protein A column from GE healthcare (Piscataway, NJ, USA), as described in [17]. After dialysis
against PBS, the immune llama IgG (ill-IgG) were stored at —20 °C.

2.4. Panning Strategies for the Selection of ZVNS1-Specific Antibodies

For panning, ZVNS1 was immobilized on high-binding ELISA strips using three different
strategies: (A) wells coated with 100 uL of ZVNSI (1 pg/mL) in PBS, (B) wells coated with 100 puL of
streptavidin (1 ug/mL) in PBS, followed by incubation with 100 pL of biotinylated ZVNSI (1 pg/mL) in
PBS, and (C) wells coated with 100 pL of ill-IgG (10 pg/mL) in PBS, followed by incubation with 100 uL
of ZVNSI (1 pg/mL) in PBS-0.1% Tween 20 (PBST). After each coating step (ON, 4 °C), the strips were
blocked with PBS-1% BSA for 1 h at room temperature (RT) and then washed with PBST. For panning,
wells were loaded with 100 pL of the 1/100 diluted antibody library (1 x 1011 colony-forming units, cfu)
and incubated for 2 h with agitation at 4 °C. Unspecific phages were eliminated by 10 times washing
with PBST, and the bound phages were eluted by incubation for 30 min at 37 °C with 100 pL/well
of 10-mg/mL trypsin. Finally, the phages were collected and used for titration and subsequent
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amplification in ER2738 E. coli for an additional round of selection. Three rounds were performed
in total.

2.5. Nanobody Expression

A culture 96-deep-well plate from Greiner Bio-One (Monroe, NC, USA) was prepared to produce
supernatants from 24 clones randomly picked from the outcome of each of the three immobilization
strategies used for panning (A, B, and C). To this end, 72 individual colonies were inoculated into
0.5 mL of Super Broth (SB)-ampicillin in a 96-deep well block, grown at 37 °C until an optical density
(OD) of 1.0 AU, and then, the expression of the secreted Nb was induced by the addition of IPTG at
1-mM final concentration. The 96-well culture plate was incubated ON at 37 °C. The next day, the block
was centrifuged at 1200x g for 20 min, and the supernatants were collected in a fresh 96-deep-well
plate (“master plate”), which was a source of Nb clones throughout the study.

2.6. ELISA Method for Selection of Capturing Nanobodies

The ELISA plates were coated as described in panning coating. After blocking PBS-1% BSA
and washing, the plates were incubated with 100 uL of the Nb supernatant. The binding of Nbs
was detected using anti-HA monoclonal antibody conjugate to peroxidase (3 ng/mL). After washing,
the peroxidase activity was developed by the addition of 100 pL/well of substrate solution (0.4 mL of
6 mg of TMB in 1 mL of DMSO + 0.1 mL of 1% H,O, in water, in a total of 25 mL of 0.1-M acetate
buffer, pH 5.5) and incubated at RT for 15 min. The enzyme reaction was stopped by the addition
of 50 pL of 2-N H,SOy, and the absorbance was read at 450 nm on a Fluostar Optima Reader (BMG,
Ortenberg, Germany).

2.7. Large-Scale Production of Biotinylated and HA-Tagged Nbs

The Nb genes were cloned into a pINQ-BtH6 vector and transformed into BL21(DE3)
overexpressing the BirA biotin ligase of E. coli, as described previously [21,25]. Individual colonies
were then used to inoculate 200 mL of LB containing 50-pug/mL kanamycin, 35-pug/mL chloramphenicol,
and 0.04% of L-arabinose in shaking flasks. When the optical density at 600nm (ODgpp nm) = 0.6 AU,
the expression of Nbs was induced with IPTG at 10 pM and grown ON at 37 °C. The next day,
the bacteria was harvested, and the pellet was resuspended in 10 mL of PBS supplemented with
100 uM of D-biotin, lysed by sonication at 50% amplitude during 15 min on ice, and finally, subjected
to post-biotinylation by incubation for 2 h at 37 °C [24]. After centrifugation (18,000x g), the soluble
fraction was purified on Ni-NTA columns according to the manufacturer’s instructions. The eluted
fractions were PBS-dialyzed, and the biotinylated Nbs (BtNbs) were spectrophotometrically quantified
(Abs 280 nm) and kept at —20 °C until use.

HA-tagged nanobodies were produced in a similar fashion after cloning in the pINQ-H6HA
vector and transformed into E. coli BL21 (DE3) cells. Individual colonies were used to inoculate 500 mL
of LB containing 50-pg/mL kanamycin in shaking flasks. When ODgpp nm = 0.6 AU, the expression
of the HA-Nbs was induced as described above. The cell pellet was then resuspended in 10 mL of
PBS, lysed by sonication, and purified on Ni-NTA columns. The eluted fraction was PBS-dialyzed,
quantified at 280 nm, and stored at —20 °C.

2.8. Pairwise Selection of Nanobodies

ELISA plates were coated ON with 100 uL/well of 1-ug/mL streptavidin, blocked with PBS-1% BSA
for 1 h at RT, and then dispensed with 100 puL/well of 1-ug/mL purified capturing BtNb. After washing,
the plates were incubated with 100 uL of different concentrations of ZVNS1 in PBS (0, 2.0, and 20 ng/mL)
for 1 h at RT. After washing, each plate was incubated with a 1/10 dilution in PBS of the “master plate”
Nbs supernatants. Binding of the secondary antibody was detected by the addition of 100 uL of
3-ng/mL anti-HA monoclonal antibody conjugate to peroxidase.
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2.9. Nanobody Sandwich ELISA for the Detection of ZVNS1 in Serum Samples

Deidentified normal serum samples available in our laboratory from previous research work
were spiked with two different known concentrations of ZVNS1 (1.5 and 4.5 ng/mL) and subjected to
quantification with the nanobody sandwich ELISA. To this end, streptavidin-coated plates (0.2 ng/well)
were blocked as described above and then dispensed with 100 uL of capturing BtNb (2 pg/mL).
After washing, 100 pL of ZVNSI standards or spiked samples were loaded and incubated for 1 h at
RT. After washing, the purified detecting Nb was added (100 uL, 1 ug/mL) and incubated for 1 h at
RT. The binding of the Nb was detected by the addition of 100 uL of 3-ng/mL anti-HA peroxidase
conjugate. After washing, the peroxidase activity was developed as described above.

3. Results and Discussion

3.1. To Promote a Broad Representation of the NS1 Epitopes, Different Antigen Immobilization Strategies Were
Used to Pan the Nb Library

A llama was immunized four times with 150 ug of ZVNSI1, and the antibody response was
followed by serum titration. The antibody titer rose rapidly after the primer and first booster and did
not change significantly afterwards (Figure S1). After the fourth immunization, a VHH/VH library
of 3 x 108 transformants was generated from 10”7 blood mononuclear cells. In order to maximize
the recovery of Nbs defining different epitopes on the ZVNS1 antigen, the library was panned on
microtiter wells with the antigen immobilized in different ways. Condition A: ZVNSI1 passively
absorbed into ELISA wells, condition B: biotinylated ZVNS1 immobilized on streptavidin-coated
wells, and condition C: ZVNS1 captured on ill-IgG-coated wells. After three rounds of selection,
a 96 deep-well culture master plate was prepared using 72 individual clones obtained from each of the
three panning conditions. We next tested the reactivity of 24 Nb clones from each panning strategy
with ZVNS1 immobilized using the conditions A, B, and C (Figure 1). Most of them reacted in a
similar fashion with ZVNS], regardless of the condition used for its immobilization, but a few showed
differential reactivity (e.g., 4, 18, 30, etc.), providing a first evidence of the diversity of the selected
clones. Based on the intensity of their readouts and the effect of the ZVNS1 immobilization method
on their reactivity, an initial panel of 34 clones were submitted for sequencing, resulting in 22 (65%)
unique sequences (Figure S3). The fact that 65% of the sequences were unique and most of them
unrelated suggests that a large number of epitopes were represented in this initial nanobody panel.
Curiously, among these 22 clones, seven (32%) corresponded to VH domains with the characteristic
GLEW motif in framework 2 and the frequent Trp to Arg substitution in framework 4 found in the
VH of heavy-chain-only antibodies that bear this variable domain. The significance of this finding is
unknown, but this is indeed a larger-than-usual frequency of soluble VH, since they only account for
up to 10% of heavy-chain-only antibodies in llamas [26].

Considering that serum is the main matrix for the detection of circulating ZVNS1, we next tested
the ability of these 22 unique Nbs to recognize ZVINSI in the presence of a human pool of Zika-negative
sera (50% in PBS) (Figure S2). Although all the clones performed better in the absence of the serum,
a considerable number of them maintained high reactivity in the presence of this matrix. We also tested
their capacity to react with limited amounts of ZVNSI1 (Figure 2). In this case, differences between tested
Nbs were notorious. This provides a simple but useful criterion to limit their selection, because highly
reactive clones are those that possess high levels of expression and/or high affinity, which are both
advantageous features.
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Figure 1. Reactivity of clones selected by different strategies. The supernatant of 24 Nb clones selected
using the A, B, and C panning conditions—clones 1-24, 25-48, and 49-72, respectively—were tested by
ELISA on plates coated with Zika virus NS1 (ZVNS1) immobilized using the A (dark gray), B (light gray),
or C (gray) strategies. ill-IgG: immune llama immunoglobulin G and BtNS1: biotinylated NS1. Optical
density at 450nm (OD450nm) was measured.
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Figure 2. Reactivity of 22 Nb clones against different concentrations of ZVNSI1. The supernatant of each
clone was exposed to three different concentrations of ZVNSI (0.5 ng/mL, 5.0 ng/mL, and 100 ng/mL)
passively absorbed in the ELISA wells. Measurements were done by duplicates.
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After this initial screening using crude supernatants, we narrowed the selection to nine of the most
promising Nbs and cloned them into the pINQ-BtH6 vector for further characterization. This vector
allows the high-yield expression of soluble nanobodies, as well as their enzymatically site-specific
biotinylation in a 15-mer biotin-acceptor-peptide (BtAP) tag [24]. Every selected clone was produced
in large scale and purified, and identical concentrations were then titrated against a fixed amount
of ZVNS1 (100 ng/well) to rank their relative affinities. The Nb concentration values causing 50%
of signal saturation (SCsp) were then used as an estimator of their relative affinity for the antigen
(Figure 3). All nanobodies reacted with ZVNS1 at a low concentration, with similar SCsy in the
1.5-8.2 ng/mL range.

1.0

o- 22 SCsq =2.1ng/mL
212 SCs = 3.2 ng/mL
246 SCsy = 1.7 ng/mL
278 SCsy = 1.5 ng/mL
32 SCso = 2.7 ng/mL
38 SCsq = 6.8 ng/mL
326 SCs = 8.2 ng/mL
340 SCsq = 1.5 ng/mL
345 SCsy = 4.3 ng/mL
5~ B9 (Neg. Control)

0.0¥ ' . M —————— .

1 100 10,000
BtNb (ng/mL)

OD 450nm
LK IR B B

s

Figure 3. Titration curves of the selected capture nanobodies. Decreasing concentrations of each
nanobody were exposed to a fixed concentration of ZVNS1 (100 ng/well) directly adsorbed on
the ELISA well. Measurements were done by triplicates. SCsg: 50% signal saturation and BtNb:
biotinylated nanobodies.

3.2. Most Capture Nbs Had Negligible Cross-Reactivity with Other Flavivirus NS1 Proteins

Due to high-sequence conservation among flavivirus NS1 proteins (47-57% identity [27]),
the undesired cross-reactivity of the Nbs might give a place to the false-positive diagnostic results,
which is evident from the high degree of cross-reactivity of the sera from flavivirus-infected patients
when NS1 is used as the antigen for serology. Therefore, we assayed the reactivity of the Nbs against
the NS1 protein of Yellow fever, Dengue type 1, West Nile, and Saint Louis viruses (Figure 4). With the
exception of Nb38 that showed a small degree of cross-reactivity with the NSI1 from Yellow Fever,
Dengue, and West Nile viruses, the OD signals obtained for the rest of the Nbs were negligible and
similar to that obtained against BSA. The fact that most Nbs define highly Zika virus-specific epitopes is
of high diagnostic relevance, since many countries are endemic for more than one flavivirus infection.
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Figure 4. Evaluation of the cross-reactivity of the capture nanobody candidates against different
flavivirus NS1 proteins. A fixed concentration of antibody was loaded into wells coated with 100 ng
of NS1 from Zika virus (ZV), Yellow Fever virus (YFV), Dengue type 1 virus (DV), West Nile virus
(WNV), Saint Louis Encephalitis virus (SLV), and bovine serum albumin (BSA) as a negative control.
Measurements were done by triplicates.

3.3. Selection of Best Nanobody Pair for the Detection of ZVNS1

A high-throughput approach was applied for the identification of the detection antibodies.
First, based on their relative affinity, its performance in the serum, and yields of expression, we selected
four capture-Nb candidates (BtNB22, BtNb246, BtNb278, and BtNb32) to screen for the best detection
antibodies. These four BtNb were individually immobilized on four streptavidin-coated microtiter
plates, which, in turn, were used to capture a limited amount of ZVNS] (2 ng/well). Then, the captured
ZVNS1 was detected using the 72 Nb supernatants from the master plate, prepared as described
above (Figure 5). Except for a few exceptions, the working pairs were essentially the same for the four
capture Nbs, suggesting that they may target overlapping epitopes on ZVNS]. Interestingly, the Nbs
panned on the ZVNSI directly adsorbed on the wells (condition A) were less efficient at forming
pairs, suggesting that some of them react to denatured epitopes. In general, Nb32Bt formed a larger
number of productive pairs and outperformed the others in terms of higher readouts. For that reason,
Nb32 was chosen as the capture antibody, and sixteen of the detection Nbs producing the highest
signals were selected to optimize the assay.
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Figure 5. Pairwise screening of detection Nbs. The four capture Nb candidates (BtNB22, BtNb246,
BtNb278, and BtNb32) were used to capture ZVNS1 (2 ng/well) and were assayed against the 72 master
plate Nb supernatants. Black, gray, and white are used to denote detection Nbs selected with the A, B,
and C panning strategies, respectively. The horizontal lines represent the mean OD values.
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Sixteen of the detecting Nb clones that produced the highest readouts in combination with BtNb32
were sequenced, and 10 unique sequences were obtained (Figure S4), three of which (E1, A7, and B8)
also appeared in the capture Nb panel shown in Figure S3 (38, 224, and 210). The Nb genes of these
10 clones were transferred to the pINQ-H6HA vector for high-yield expression of the soluble nanobody
fused to a HA tag (HAND). The purified HA-tagged Nbs were tested for cross-reactivity with other
flavivirus NS1, as described above (Figure 6). Except for clone A7, neither of the Nbs displayed
significant reactivity with any unspecific NS1 proteins. Considering that, the catching Nb is also devoid
of cross-reactivity with these proteins; this result provides an additional layer of safety to warrant the

specificity of the sandwich assay.

3-

OIREEDN

0- — ]} =

A7 A12 B8 c7 D6 D9 E1 E10 F6 H3

Nanobody

SLV-NS§1
WNV-NS1
DV-NS1
YFV-NS1
ZV-NS1
BSA.

Figure 6. Evaluation of the cross-reactivity of the detection-nanobody candidates against different

flavivirus NS1 proteins. Nanobodies were exposed to wells sensitized with 1.0 pug of NS1 from Zika
Virus (ZV), Dengue Virus (DV), Yellow Fever Virus (YFV), West Nile Virus (WNYV). Bovine serum

albumin (BSA) was used as the negative control.

To further select the Nb partner to be used with Bt32 as the capture Nb, individual calibration
curves were done for each of the selected secondary antibodies. SCs values were used as indicators of
assay sensitivity (Figure 7). Based on these results, the HANbD6 was chosen as the detection Nb.

SC508.3ng/mL
/- A12.5C5,=65ng/mL
/= BB8.SCs=56ng/mL

C7. SCsp=54ng/mL
-x- D6. SC50=6.8ng/mL
D9. SC5¢=7.4ng/mL
E1. SCs5=60ng/mL
E10. SCs0=25ng/mL
F6. SC57=8.8ng/mL
H3. SC5¢=20ng/mL
B9 (Neg. Control)

OD 450nm

¢ttt

100 1000

NS1 (ng/mL)

Figure 7. Calibration curves of the best-performing pairs. The sandwich ELISA was performed using

BtNb32 as the capture antibody in combination with ten detection clones. The NbB9 with specificity

for human hemoglobin was used as a negative control. The concentration corresponding to 50% of

the maximum readout, SCsy (ng/mL), for each different pair is shown. Measurements were done

by triplicates.
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3.4. Development of a Nano-Sandwich ELISA for Quantification of ZVNS1

Based on the overall results of the pairwise screening, the pair BtNb32/HANbD6 (32/D6) was
chosen to develop the ZVNS1 32/D6 assay (Figure 8). The analytical parameters of the sandwich ELISA
in saline buffer were determined. The extended range of the calibration curve was 0.20-200 ng/mL,
with a linear range of 0.20-6.25 ng/mL, showing the high sensitivity achieved. Despite the fact that
Nb32 and NbD6 did not show cross-reactivity with other NS1 proteins, we tested the specificity of the
assay in solution against the panel flavivirus NS1 proteins (Figure S5). As expected, no cross-reactivity
was observed.

2.57
3.0 2.0
£
£ c 1.51
g 20 5
< [a)
D -
8 (@] 1.0
1.0 2_
- PBS, SCo= 4.9 ng/mL 05 = PBS, R~ 0.9909
-= Serum 1/10, SCs,= 4.8 ng/mL ¢ = Serum 1/10, };{ =0.9923
Serum 1/2, SCso= 5.5 ng/mL 00 Serum 1/2, R“= 0.9925
0.0 T T T | . ' J j .
0.1 1 10 100 1000 0 2 4 6 8
NS1 ng/mL NS1 ng/mL

Figure 8. ZVNS1-32/D6 nanobody sandwich ELISA for the detection of ZVNS1. Extended (left)
and linear (right)-range calibration curves performed in phosphate-buffered saline (PBS) or serum
dilutions. The results are the average values of triplicate measurements, and the error bars represent
the standard deviation.

To evaluate the possible interference of the matrix, identical calibration curves were also run using
1/10 and 1/2 dilutions of a pool of healthy serum samples. As expected, considering that human sera
was used during the selection of the nanobodies, no significant interference of this matrix was noticed,
even using a high serum concentration. To further analyze this point, individual serum samples from
healthy donors were enriched with known concentrations of ZVNS1. There is scarce information of
the occurrence of ZVNS1 in the blood of Zika-infected patients. Nevertheless, while the mean levels
of circulating Denguel NS1 antigen were found to be about 120 ng/mL, the mean value reported for
the Zika virus was at least four times lower (30 ng/mL), consistent with a lower viremia level [28,29].
Based on these values, and in order to validate the use of the assay to detect trace amounts of the
antigen, the ZVNS1-32/D6 test accuracy was established by analyzing the recovery of the antigen from
27 healthy donors’ sera spiked with 1.5 or 4.5 ng/mL of ZVNSI (Table 1). The recoveries for all the
samples were within the recommended range by the SANTE guidance document for method validation
of the European Union [30]. This showed that the ZVNS1-32/D6 ELISA accurately detects ZVNS1 in
different serum samples in the low-ng/mL range. The precision of the method was also assessed by
spiking the serum with 0.80, 1.6, and 3.1 ng/mL of ZVNS1. The sample was analyzed five times in
the same day (intraday precision) (Table 2) or five times on five different days (interday precision)
(Table 3). In both cases, the percent coefficient of variation (CV%) was lower than the acceptance
criteria (CV < 20%) recommended by the SANTE guidelines.
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Table 1. Analysis of recovery in ZVNSI spiked serum samples.

Unspiked Spiked ZVNS1 1.50 ng/mL Spiked ZVNS1 4.50 ng/mL
Sample ZVNS1ng/mL ZVNSI1ng/mL % Recovery = ZVNSlng/mL % Recovery
1 <LOQ 118 £0.10 78 4.62+0.13 103
2 <LOQ 1.35+0.03 90 3.54 +0.04 79
3 <LOQ 1.55 +0.01 103 4.35 +0.09 97
4 <LOQ 143 +0.19 95 3.97 £0.12 88
5 <LOQ 1.36 £ 0.01 90 4.20 +0.01 93
6 <LOQ 1.32+£0.20 88 3.68 +0.23 82
7 <LOQ 1.33£0.16 89 4.14 +£0.05 92
8 <LOQ 1.66 + 0.09 110 5.26 + 0.07 117
9 <LOQ 157 £0.12 105 4.96 +0.13 110
10 <LOQ 1.08 + 0.05 72 4.02 +0.15 89
11 <LOQ 1.27 +£0.10 84 3.91+0.01 87
12 <LOQ 1.77 £ 0.09 118 410+0.10 91
13 <LOQ 117 +0.21 78 3.96 + 0.02 88
14 <LOQ 153 +0.14 102 3.46 +0.15 77
15 <LOQ 129 +0.18 86 4.58 +0.10 102
16 <LOQ 1.30 £ 0.06 87 4.20 +0.03 93
17 <LOQ 1.30 £ 0.30 86 417+ 0.21 93
18 <LOQ 154 +0.11 102 4.77 £ 0.04 106
19 <LOQ 1.31 +£0.02 87 449 +0.13 100
20 <LOQ 1.82 +£0.09 121 4.22 +0.20 94
21 <LOQ 1.60 +0.14 107 4.19 +0.05 93
22 <LOQ 1.38 £0.25 92 447 +0.19 99
23 <LOQ 1.48 £ 0.06 99 4.62 +0.01 103
24 <LOQ 114 +0.10 76 4.19 £0.10 93
25 <LOQ 1.34+0.19 89 3.88 £0.31 86
26 <LOQ 1.30 £ 0.01 86 3.14 + 0.04 70
27 <LOQ 1.54 £ 0.27 103 3.89 +0.11 86

11 0f 14

Samples were measured in triplicates. The mean value + the standard deviation is shown. Spiked-ZVNSI: Zika virus
NS1 and LOQ: limit of quantification.

Table 2. Intraday precision of the test with ZVNS1-spiked serum.

Spiking 0.80 ng/mL Spiking 1.60 ng/mL Spiking 3.10 ng/mL
Assay Unspiked  pfeasured Recovery  Measured Recovery Measured Recovery
Serum (ng/mL) % (ng/mL) % (ng/mL) %
1 <LOQ 0.81 102 1.51 94 3.16 102
2 <LOQ 0.81 102 1.52 95 3.18 102
3 <LOQ 0.69 86 147 92 3.21 104
4 <LOQ 0.77 96 1.54 96 3.21 104
5 <LOQ 0.76 95 1.51 94 3.19 103
Average 0.77 96 1.51 94 3.2 102.8
CV% 5.1 2.3 2.3

Samples spiked with 0.80, 1.60, or 3.10 of ZVNSI were diluted 2 times and measured by the 32/D6 ELISA.
CV%: percent coefficient of variation.

Table 3. Interday precision of the test with ZVNS1-spiked serum.

Spiking 0.80 ng/mL Spiking 1.60 ng/mL Spiking 3.10 ng/mL
Day Unspiked  Measured  Recovery Measured  Recovery Measured  Recovery
Serum (ng/mL) % (ng/mL) % (ng/mL) %
1 <LOQ 0.77 97 1.56 104 3.02 97
2 <LOQ 0.67 84 1.38 86 2.84 92
3 <LOQ 0.65 82 1.64 106 3.22 104
4 <LOQ 0.58 73 1.48 92 297 96
5 <LOQ 0.77 98 1.51 94 3.19 103
Average 0.69 86.8 1.51 96.4 3.05 98.4
CV% 8.1 9.8 16.0

Samples spiked with 0.80, 1.60, or 3.10 of ZVNS1 were diluted 2 times and measured by the 32/D6 ELISA.
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4. Conclusions

Owing to its sensitivity and high specificity, the molecular diagnosis of Zika virus infections is
key to the management of the disease. Alternatively, the detection of circulating ZVNS1 represents
a simpler affordable option for acute diagnosis of the disease, but due to the extended similarity
of flavivirus antigens, it requires a highly specific and sensitive antibody pair [16]. In this work,
we generated a large library from a hyperimmunized llama and used a two-step high-throughput
selection process geared to optimize the final sensitivity of the assay. The limit of quantification of the
test in the serum, 0.80 ng/mL, was established experimentally by studying its recovery (accuracy) and
reproducibility with a panel of spiked serum samples. This sensitivity compared favorably with other
well-established antibody-based assays for NS1, such as the one described by Bosch et al. that was able
to detect up to 18 ng/mL [28]. Moreover, Nb32 and NbD6 are fully devoid of cross-reactivity with other
flaviviruses, which is of paramount importance for their potential diagnostic applications in countries
that are endemic for coexisting flaviviruses. Considering that these Nbs can be fully reproduced at
very low costs from their amino acid sequences (provided in this study), the ZVNS1-32/D6 ELISA
could be replicated in any laboratory and be the basis for an affordable tool for the early diagnosis of
ZIKV. Nevertheless, a validation process with relevant patient serum samples should be conducted
locally in order to demonstrate its diagnostic value.

Supplementary Materials: The following are available online at http://www.mdpi.com/2218-273X/10/12/1652/s1:
Figure S1: Serum titration against ZVNSI along the immunization process. Figure S2: Performance of 22 Nb clones
in the presence of human serum. Figure S3: Capture Nbs to ZVNS1 sequence alignment. Figure S4: Detection
Nbs to ZVNS1 sequence alignment. Figure S5: Analysis of the cross-reactivity of the 32/D6 nanobody pair with
non-Zika NS1.
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