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Abstract

This thesis explores the application of cooperative game theory to optimize resource allocation by
conducting an in-depth analysis of the academic article ”Coalitional Game Theoretical Approach to
Coinvestment with Application to Edge Computing,” focusing on identifying and validating the the-
oretical properties of the proposed model, exploring implications for software implementation, and
proposing extensions to improve its applicability and effectiveness. The referenced article studies how
different stakeholders, specifically a Network Owner (who controls the infrastructure) and multiple
Service Providers (who use this infrastructure to deliver services), can jointly invest in shared re-
sources, such as computational capacity in Edge Computing. The article proposes a cooperative game
theoretical model that determines how stakeholders should allocate resources optimally, share invest-
ment costs, and fairly distribute revenues among themselves based on each stakeholder’s contribution.
The main analysis is structured in two stages. In the first stage, we examine the original model and
identify possible simplifications that significantly reduce its computational complexity, transforming it
from a non-deterministic exponential time problem into one deterministic and solvable in linear time.
These simplifications will preserve the exact results. Additionally, we highlight constraints that were
overlooked in the original formulation, enhancing the theoretical accuracy of the model. Furthermore,
we study the risks arising from inaccuracies or incorrect estimates in critical parameters, offering sim-
plified analytical equations that stakeholders can use to quantify and evaluate the potential impact
of these errors on their expected outcomes. In the second stage, we propose alternative utility func-
tions specifically designed to address the limitations identified in the original model, particularly its
reduced applicability to realistic scenarios. These alternative functions are systematically studied and
compared to evaluate their implications for resource allocation and incentive compatibility. Addition-
ally, we introduce model extensions that optimize resource allocation under more realistic conditions;
however, these enhancements result in increased computational complexity. Both main stages of this
thesis follow a structured approach composed of two complementary parts. The first part is theoreti-
cal, involving an analytical study of the model, its parameters, and the derived equations. The second
part is practical, providing empirical evidence through numerical simulations and sensitivity analyses.
These simulations illustrate theoretical insights and help to evaluate the effects of varying utility func-
tion parameters. For the purpose of conducting a systematic study, the model is implemented and the
results of the executions are stored and analyzed with standard tools; the programming language is
Python, the database is MySQL, and the business intelligence tool is Metabase. This combination of
theory and empirical validation clearly demonstrates the practical relevance of game theoretical models
and provides a robust framework for assessing parameter impacts in real-world scenarios.

Key words: Edge Computing, Coinvestment, Cooperative (Coalitional) Game Theory, Grand Coali-
tion, Core of The Game, Core Stability, Shapley Value, Convexity, Marginal Contribution, Strategy-
Proofness, Risk Analysis, Simulation, Sensitivity Analysis, Prosumers.
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Chapter 1

Introduction

The aim of this thesis is to study, validate and extend the model proposed in the academic article
(Rosario Patanè, Chahed, Kiedanski, & Kofman, 2023). This research is motivated by the significant
financial challenges associated with deploying computational infrastructure, particularly in contexts
such as Edge Computing (EC). Deploying computational resources at edge locations is typically costly
and often exceeds the capacity of a single entity. To address this, the article proposes a cooperative
game theoretical model in which multiple actors collaborate to invest in shared infrastructure. Specifi-
cally, the scenario involves two distinct types of stakeholders: a single entity that owns and operates the
physical resources, called the Network Owner (NO) and multiple Service Providers (SPs) that use this
infrastructure to deliver services. Since we are adopting a game-theory approach, in future sections, we
may refer to the previously named actors as players and the process of assigning resources and defining
payments and revenues as a game. As a general principle throughout this thesis, any modifications
introduced to address the limitations of the original model will be as minimal as possible, preserving
the integrity of the core framework.

1.1 Problem Definition

The Network Owner is responsible for deploying, managing, and allocating the shared computational
resources. Service Providers utilize these resources to generate revenue by offering services to their
customers. SPs may deliver different types of services: some may provide real-time services that require
strict timing constraints and thus drive investment towards high-quality resources, while others offer
regular (non-real-time) services. SPs can also be classified on the basis of their load profile. For
example, a business collaboration platform provider would experience the highest traffic during office
hours, as it primarily serves workplaces and professionals. In contrast, a real-time gaming service
provider would exhibit a more regular traffic pattern throughout the day, with a peak in the evening.
These variations in traffic profiles influence how resources are allocated and optimized within the
shared infrastructure.

The model proposed a set of time-slots with a default value of 96 units to discretize the load and
utility functions. Traffic generation for Service Providers follows realistic daily patterns, as specified
in the article (A. P. Vela A. Vı́a & Velasco, 2016). Specifically, the model uses a sinusoidal function
to represent typical daily fluctuations in user demand, accurately reflecting real-world scenarios. By
adjusting the function’s parameters (such as average load and a set of amplitude and offset values),
different types of Service Providers can be modeled based on how their traffic load fluctuates throughout
the day. It is important to note that the model does not account for variations throughout the
investment period or interday fluctuations beyond the predefined daily pattern. This load for a given
player i in a time-slot t is defined as:

1



lti = a0 +

K∑
k=1

ak sin

(
2kπ

t− tk
T

)
where the variables are defined as follows:

• a0: Average load .

• ak: Set of k values representing the amplitude of each sinusoidal component, indicating the
magnitude of the corresponding harmonic in the overall traffic pattern.

• tk Set of k values representing the phase offsets, which determine the timing (or shift) of each
sine wave.

• T is the number of daily time-slots.

The load is used as input within two other parameters; β indicates the benefit factor, which quantifies
the revenue generated per unit of load, while ξ indicates the diminishing return effect, measuring the
rate at which additional resource allocation yields progressively smaller utility improvements. The
utility function for a given Service Provider i in the time-slot t is modeled as follows:

ui(l
t
i , h

i) = βi · lti · (1− e−ξhi

)

where the variables are defined as follows:

• ui : The utility produced by player i in time-slot t given the load lti in that time-slot and the
fixed allocated resources hi.

• lti : The number of requests expected for SP i in time-slot t.

• hi : Denotes the amount of resources allocated to the SP i, measured in millicores.

• βi : The benefit factor, indicating how each unit of load is converted into monetary units.

• ξ : Models the diminishing returns effect. Quantifies how quickly the benefits of extra resources
taper off; a higher value of ξ implies that a small increase in resources produces a significant
initial improvement, after which performance saturates rapidly.

Note that when allocation is zero, the utility is also zero, and increasing the allocation increases the
utility, but in a sub-linear manner.

The simulation of a game under this model involves three critical steps:

• Step 1: Maximizing the grand coalition’s total value: Determining optimal resource allocation
among all SPs to maximize combined benefits, accounting for both the revenues from user demand
and the associated infrastructure costs. This involves the optimization problem of maximizing
the value of the Grand Coalition that can be expressed by the following equations:

v(S) = max
h⃗,C

vh⃗,C,S ≜ max
h⃗,C

D
∑
i∈S

T∑
t=1

ui(lit, h
i)− d · C (1.1)

s.t.
∑

i∈S\{NO}

hi = C; hNO = 0. (1.2)

C, hi ≥ 0, ∀t ∈ [T ], ∀i ∈ S. (1.3)

Where the variables are defined as follows:



– h⃗ : Allocation vector, defining the optimal allocation for each SP.

– D : The duration of the investment in days; the default value is 3 years.

– d : The CPU allocation price, measured in dollars per millicore.

– C : The sum of all the service provider’s allocation h.

– N : The coalition with all players, also known as the Grand Coalition.

• Step 2. Calculating each player’s payoff. To ensure a fair distribution of the total benefits
generated by a coalition, each player’s payoff is determined using their Shapley value. This value
assigns a payoff based on the player’s marginal contribution to all possible coalitions. While a
detailed explanation of the concept will be provided in future sections, for now, we present the
equation used to compute its value:

ϕi =
1

|N |!
∑

S⊆N\{i}

|S|! · (|N | − |S| − 1)! ·∆i(S)

where the variables are defined as follows:

– ϕi: The Shapley value for the player i, representing the fair payoff assigned to the player i
from the total value generated by the coalition.

– N : The set of all players in the game.

– S ⊆ N \ {i}: A subset of players that does not include the player i. The sum is taken over
all such subsets.

– (|N |−|S|−1)!: The factorial of the number of players not in S and excluding i, representing
the number of ways to order the remaining players.

– ∆i(S): The marginal contribution of the player i to coalition S, defined by

∆i(S) = v(S ∪ {i})− v(S),

where v(·) is the value function of a coalition.

Note that this approach requires evaluating the value of every possible coalition as defined in
Step 1. Since coalitions without the Network Owner have a value of zero because NO is needed
for hardware deployment, the maximization problem in Step 1 must be executed only for those
coalitions that include the NO. However, for a set of n players, this still requires performing 2n−1

evaluations, making this step computationally intensive and infeasible as n grows large.

• Step 3. Calculating each player’s payments and revenues. This step consists in establishing fair
financial exchanges between stakeholders by determining how much each player should pay or
receive from others. The goal is to ensure that each player’s payoff, defined as revenues minus
payments, coincides with their Shapley value. This guarantees a fair and stable distribution of
benefits. In mathematical terms, this corresponds to solving the following system:

ri − pi = xi, ∀i ∈ N

subject to
∑
i∈N

ri = D ·
∑
i∈N

T∑
t=1

ui(l
t
i , h

i∗)

where: h∗, C∗ = argmax
ĥ,C

vi(ĥ, C,N)

where the variables are defined as follows:

– xi: The payoff of the player i, which is equal to its Shapley value (ϕi).

– pi: The payment of the player i. A positive pi indicates that the player pays to others,
while a negative pi indicates that the player receives funds from others.

– ri: The revenue collected by the player i for the services rendered.



Note that this framework leads to a system of n + 1 equations with 2n variables, which admits
multiple possible solutions. This is not a limitation, as all solutions yield the same payoff for
each player, and we can choose the one that minimizes the required payments to achieve these
payoffs.

In summary, the proposed solution effectively addresses the co-investment challenge by combining
realistic load modeling, an economically grounded utility function, and a structured game-theoretical
framework. It optimizes the total value of the grand coalition, assigns individual contributions via
the Shapley Value, and defines fair mechanisms for payments and revenues. This ensures that one
Network Owner and multiple Service Providers share costs and benefits equitably. The model captures
variability in traffic while offering a scalable and stable approach to fair resource allocation as the
number of stakeholders grows.

1.2 Research Aims and Expected Outcomes

This research aims to analyze and validate the proposed model for addressing the Edge Computing
problem, identify its limitations, and propose modifications to overcome them while preserving the
core principles of the original model.

In a first stage, we examine the model from two different perspectives. First, we analyze the math-
ematical equations underlying each one of the previously defined steps, employing both analytical
methods and visualizations to evaluate their behavior. Second, we assess the strategic implications for
stakeholders, for example, investigating whether they have incentives to misreport their parameters
and also evaluating the risks associated with their parameters’ misestimations. The primary aim of
this stage is to validate the original model and identify its weaknesses. In a second stage, we build
upon these insights by introducing enhancements that increase the model’s complexity in order to
better adapt it to real-world scenarios.

The Edge Computing problem belongs to a broader category of academic literature that explores
mechanisms for resource exchange among actors who simultaneously produce and consume a specific
good or service, often referred to as prosumers. Most of these related studies focus on local and
decentralized energy markets. For example, how households equipped with batteries and/or electricity
generation systems (typically solar panels) can trade energy locally, thereby reducing their overall
energy costs compared to relying solely on their own production and storage capacities.

Although the Edge Computing problem differs fundamentally in its characteristics, SPs can also be
considered prosumers, as the amount of hardware allocated could be seen as the resources they produce
and the hardware they need could be seen as the resources they consume. To maximize profit, SPs
could exchange resource allocations when actual usage parameters deviate from those used in the
initial allocation. Since the original allocation remains fixed throughout the investment period and
across all time-slots, a natural improvement is to enable dynamic exchanges of resources. In the second
stage, where per time-slot allocation is introduced, such exchanges could be beneficial when SPs face
parameter values different from those assumed initially. For instance, in a given time-slot, one SP
might anticipate underutilization of part of its allocated resources based on historical load data, while
another expects higher demand or increased benefit. In this case, the first SP can sell part of its unused
allocation to the second, generating mutual gains.

The expected outcome of this thesis is to develop a deeper understanding of the proposed model by
validating it, but at the same time identifying simplifications and restrictions that were originally
overlooked, as well as aspects where the model shows limited alignment with real-world scenarios.
Building on these insights, we aim to introduce the minimal set of modifications required to improve
its practical relevance, while preserving the core principles and structure of the original formulation.
Additionally, we aim to develop a software tool enabling us to run simulations, store results in a
database, visualize data, and execute both the original model as stated in the reference academic
article and the alternative proposed modifications.



Overview of Conclusions

• We identified several simplifications of the original model, significantly reducing analytical com-
plexity and computational requirements. These simplifications enabled simulations to run in
linear rather than exponential time, greatly enhancing practical feasibility. They also allowed
for a more comprehensive and straightforward analysis of the model’s core equations.

• Constraints such as the requirement for positive allocation, along with limitations of the original
model, were identified, especially conditions under which its assumptions did not hold or resulted
in unrealistic outcomes. To overcome these limitations, we proposed alternative utility function
formulations and systematically compared their implications for resource allocation and incentive
compatibility.

• We gained insights into the internal dynamics of the model, particularly regarding the role and
interpretation of each variable. The diminishing return parameter was notably clarified, and
we showed that it can be related to measurable real-world parameters, helping to explain its
influence on optimal resource allocation and utility.

• We conducted a risk analysis focusing on the consequences of misestimating key parameters,
providing equations that allow service providers to evaluate potential losses and support more
informal strategic decisions.

• By introducing additional complexity into the model, particularly allowing service providers to
have varying allocations across different time-slots, we achieved a more realistic representation of
edge computing scenarios. Although these enhancements invalidated the initial simplifications,
the simplified model remains valuable as a clearly defined worst-case scenario for comparative
analysis, providing a conservative lower bound on service providers’ utility under more complex
scenarios.

• We proposed three alternative utility functions based on modifications of the exponential satu-
ration structure of the original utility function. By varying parameters within the exponential
term, we obtained distinct utility equations exhibiting different behaviors. We then analyzed
these variations and compared their trade-offs in terms of economic interpretation, resource al-
location, and strategic implications.

• We developed a software tool to support simulation analyses, including scenario configuration,
execution, data storage, and visualization. This tool facilitated the comparison of various model
formulations and provided deeper insight into their behaviors.

• We found that both the original model and our modified versions are not strategy-proof, identi-
fying a single parameter, the benefit factor, as the source of this limitation. To mitigate this, we
proposed mechanisms such as a secondary market to allow service providers to trade allocations,
and introduced priority based differentiation in internet services linked to declared values. These
mechanisms create strategic trade-offs that encourage truthful declarations.

• We reviewed academic articles provided within the thesis to identify concepts that could inspire
future iterations of our model.

• We found that the original diminishing return parameter implicitly combined two distinct real-
world aspects: the fraction of requests served at the edge, and the hardware resources required
per request. Because coupling these two characteristics restricts the diversity of achievable SPs
profiles, we proposed using two separate parameters instead.

• We outlined potential directions for future work. As discussed in the previous point, one possi-
bility is to redefine the utility function using two separate parameters to decouple the fraction of
requests served at the edge from the hardware required to process them. Additionally, some of the
ideas and mechanisms presented in the reviewed academic articles, such as secondary markets,
ramp constraints, or dynamic coordination mechanisms, can also be adapted and incorporated
into future versions of the model. Whether to implement the proposed separation of parameters
or adopt one of the other modified utility functions presented in this work is a design decision



that should be made in coordination with the rest of the research team. Once this decision is
made, the next step would be to proceed with the formal definition and analysis of a selected
new utility function.

1.3 Document Structure

This document is structured into seven chapters and an Appendix with five extra chapters.

• Chapter 1: Introduction

– We motivate the work, state and define the problem, set the main objectives of the investi-
gation, establish the expected outcomes, and give a summary of the conclusions.

• Chapter 2: Background Review and Related Work

– Background Review: We identify existing research and established real-world cases related
to cooperative resource sharing, particularly within edge computing contexts. We examine
previous academic research, highlighting its parallels and implications for Edge Computing
scenarios. 2.2.1.

– Prosumers Academic Articles: This thesis proposal included several relevant academic ar-
ticles specifically addressing various aspects of the prosumer problem. In this section, we
summarize key insights and ideas from these sources that have potential relevance for our
research. Here, we present a concise overview of these insights without explicitly mention-
ing each individual article 2.2.3. For a comprehensive review of each of these articles and
detailed commentary on their connection to Edge Computing, please refer to Appendix
Chapter A.

• Chapter 3: Analytical Investigation of the Originally Proposed Edge-Computing Model

– As a consequence of the independent contribution property, we identify simplifications that
significantly reduce both the model complexity and computational demands 3.

– Once this simplified yet equivalent version of the model is obtained, we perform a detailed
analysis of its fundamental equations 3.8.

– We explore the strategic implications of the model, particularly focusing on risk assessment
and strategy-proofness 3.11.

– We outline the limitations of the previously mentioned simplifications by identifying the
conditions under which these simplifications no longer hold. We also discuss scenarios in
which our simplified model represents a worst-case scenario 3.16.

• Chapter 4: Empirical Illustration and Results Analysis of the Originally Proposed Edge-Computing
Model

– We review and discuss the simulation results presented in the referenced academic article 4.2.

– We perform our own simulations, focusing on performing a sensitivity analysis of each
parameter involved in the utility and resource allocation functions 4.3.

• Chapter 5: Analytical Investigation of the Proposed Modifications to the Edge-Computing Model

– We propose modifications to the net utility function to address the previously detected
limitations and analyze its consequences 5.2.

– We study strategy-proofness for the proposed modified utility functions 5.8.

– We extend the model by adding synergies and externalities that better reflect real-world
scenarios and disrupt the independent contribution among Service Providers 5.9.

– We study how the Shapley value changes when more than one Network Owner is considered
in the coinvestment 5.10.



• Chapter 6: Empirical Illustration and Results Analysis of the Proposed Modifications to the
Edge-Computing Model

– We provide some numerical examples regarding strategy-proofness 6.4

– We perform a sensitivity analysis for each variable of each one of the proposed modified
models and compare them 6.3.

– We perform more general simulations focusing on the effects of the interdependent contri-
butions among Service Providers 6.5

• Chapter 7: Developed Software Description

– We describe the software developed to run simulations and provide a guide on how to execute
it.

• Chapter 8: Conclusions and Future Work

– Describe our conclusions and suggest future interaction of the model.

• Appendix A: Related Academic Articles

– This chapter reviews the academic articles provided as part of the thesis proposal. Although
these works address diverse problems, they share a common conceptual foundation: the idea
of prosumers, entities that both produce and consume resources. Most of these articles focus
on peer-to-peer (P2P) energy markets, where households equipped with energy storage
and generation capabilities trade electricity locally. We briefly summarize each article,
highlighting ideas or mechanisms relevant to the Edge Computing coinvestment model,
thereby placing it within the broader context of prosumer-based cooperative systems.

• Appendix B: Demonstrations

– In this chapter, we include the detailed mathematical demonstrations that were excluded
from the main body of the thesis to maintain a smooth and uninterrupted flow of the
core arguments. When a demonstration is particularly short or directly relevant to the
understanding of a section, it is kept within the main text. However, more technical or less
central derivations are placed in the appendix to make the document easier to read without
omitting the necessary rigor.

• Appendix C: Additional Considerations

– This chapter expands on several ideas that, while relevant to our study, do not belong to
the core of the proposed model. Rather, they represent general considerations, extensions,
observations, and consequences that emerge from it. We explore how some of the identified
properties may influence the model’s behavior in real-world settings and discuss the extent
to which the model is suited to practical applications.

• Appendix D: Software Manual

– This chapter is dedicated to the user and developer manual of the simulation software
developed during this thesis. The manual explains how to install, configure, and use the
tool, how to modify it if needed, and how to interpret the outputs. This allows other
researchers or stakeholders to replicate the results, explore new scenarios, and extend the
analysis in a consistent and efficient way.

• Appendix E: Variable definitions

– We provide a brief definition for each variable used throughout this thesis.





Chapter 2

Background Review and Related
Work

2.1 Background Review

Although we have previously defined the problem addressed by the referenced academic article, we
assume that the reader has read and understood its main ideas and outcomes. Furthermore, throughout
this document, each core concept or theoretical notion is explicitly defined at the point where it is
introduced and applied. This choice aims to facilitate readability and ensure that definitions remain
closely connected to their practical implementation.

2.2 Related Work

The referenced article explicitly states that:

to the best of our knowledge we are the first to apply it for co-investment in EC, and thus
there are no other works with which we can compare our proposal

The main difference in the approach is the application of cooperative game theory, specifically coalition
formation and Shapley value payoff allocation, to analyze joint investment decisions among independent
entities in Edge Computing environments. Prior to this work, such cooperative game theoretical
analysis had not been applied in the specific context of resource co-investment for Edge Computing
infrastructures, making their proposal fundamentally different from other existing research.

2.2.1 Real-World Cases and Examples

Several real-world cases provide practical insights into coinvestment strategies in edge computing,
illustrating both opportunities and challenges in joint investments.

In telecom cloud collaborations, telecom operators such as AT&T, Verizon, and SK Telecom have
partnered with cloud providers like AWS, through its Wavelength initiative, and Microsoft with Azure
Edge Zones, to jointly deploy edge computing infrastructure. Such initiatives distribute the significant
capital expenditures associated with deploying edge nodes, aligning with the coinvestment framework
examined in this thesis.

Additionally, recent deployments of Multi-access Edge Computing (MEC) integrated with small cell
networks have been driven by joint investments from telecom operators. These collaborative efforts
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are primarily targeted at supporting low-latency applications, including augmented reality, real-time
gaming, and autonomous driving assistance, which require extensive distributed computing resources.

In the automotive industry, manufacturers such as Tesla and Renault, alongside telecom providers,
are exploring shared investments in roadside edge infrastructure. These nodes play a critical role in
facilitating vehicle-to-everything (V2X) communications, enhancing safety, and reducing latency for
real-time vehicular applications.

Smart city initiatives have similarly benefited from joint investments between municipalities, telecom
operators, and technology companies. These collaborations help develop urban edge computing facil-
ities that support various applications, including IoT deployments, surveillance, traffic management,
and public safety systems.

Moreover, the analogy of coinvestment is also found in energy and storage systems. For instance, coop-
erative investments in battery storage within smart grid projects provide useful parallels, illustrating
the broader relevance of game-theoretical coinvestment models beyond the context of edge computing.

2.2.2 Related Literature

Given the originality and the limited availability of directly comparable research, some articles from
closely related domains can provide valuable context.

A survey by Moura and Hutchison (2019) presents an overview of game theory applications in mul-
tiaccess edge computing, discussing resource allocation and computation offloading scenarios (Moura
& Hutchison, 2019). Computation offloading refers to the process of transferring resource intensive
computational tasks from a device to a more powerful remote processor, such as a server or cloud
platform. Although it does not explicitly address coinvestment, its insights into the broader use of
game theory within edge computing provide relevant background knowledge.

In their work, Zhang et al. (2019) apply coalitional game theory to computation offloading in
Nonorthogonal Multiple Access (NOMA)-enabled MEC scenarios (Zhang et al., 2019). While their
primary focus is offloading rather than coinvestment, their methodologies and insights remain highly
relevant, particularly for understanding the applicability of cooperative game theory to resource sharing
problems in edge computing environments.

Industry insights from the ETSI White Paper (2019) provide valuable perspectives on transitioning
from theoretical frameworks to actual infrastructure deployments and software developments within
edge computing (European Telecommunications Standards Institute (ETSI), 2019). This source under-
scores the practical challenges and collaborative opportunities that directly align with joint investment
initiatives.

Finally, a practical empirical study conducted by Das and Mukherjee (2021) explores edge comput-
ing deployments using AWS, emphasizing performance optimization and cost-sharing issues (Das &
Mukherjee, 2021). Their findings validate the practical necessity of structured cost allocation method-
ologies, reinforcing the importance of coinvestment frameworks.

Using This Background

The real world cases and academic literature reviewed provide a useful context for understanding the
practical implications of coinvestment frameworks. Joint investments in telecom, automotive infras-
tructure, and urban computing underscore the practical need for cooperative financial models that
distribute risks and reduce capital barriers for individual stakeholders.

Moreover, by connecting theoretical concepts, such as coalitional game theory and the Shapley value,
with concrete industry examples such as AWS Wavelength or MEC deployments, this thesis highlights
the practical applicability and relevance of its theoretical contributions.

Additionally, positioning this work within the broader literature that explores game theory approaches



to resource allocation and economics in edge computing helps underline both the theoretical novelty
and practical significance of the proposed approach.

2.2.3 Prosumers Academic Articles

This section summarizes insights from related academic articles provided alongside the primary refer-
ence (Rosario Patanè et al., 2023), which we extensively analyze throughout this thesis. Most of these
articles focus on local energy markets and cooperative game theory approaches to resource manage-
ment.

While we have not directly integrated these findings into our current work, we identify meaningful
parallels between local energy management scenarios and edge computing environments. Therefore,
we recommend the reader to first fully review and understand the outcomes, limitations, and proposed
improvements presented in the main body of this thesis before engaging with this section. Doing so
will provide the necessary context to better appreciate how these related works might contribute to
addressing unresolved challenges or extending the current model in future research.

Summary of Ideas Related to the Edge Computing Problem

The articles analyzed in the appendix A covering coalitional game theory approaches for local energy
trading, flexible prosumer models with storage, auction mechanisms for local markets, and misalign-
ments in demand response objectives primarily examine resource sharing coordination at the local level.
Despite their focus on local energy markets, several conceptual parallels can be drawn to edge comput-
ing scenarios. In both domains, resources are distinguished as either local (battery capacity or edge
server capacity) or global (central grid or cloud resources). This section summarizes how each article’s
insights could potentially inform the edge computing model and identifies necessary modifications for
practical implementation.

Coalitional Game-Theoretical Approaches for Edge Resource Coinvestment

Articles examining joint investments in battery storage propose scenarios analogous to edge computing
stakeholders coinvesting in shared micro data centers.

• Major Adjustments: The concept of ramp constraints translates directly into the challenges
faced when reallocating resources dynamically at each time-slot in edge computing scenarios.
While reallocating computational resources such as CPU or memory might be nearly instanta-
neous, reassignments involving significant data migration, storage operations, or the duplication
of entire virtual environments impose substantial ramp constraints. Thus, analogous ramp con-
straints must be explicitly modeled in dynamic allocation contexts to realistically reflect resource
reallocation limitations.

• Applicability: Core concepts such as stable coalitions and Shapley value distributions remain
potentially applicable. However, adjustments are necessary due to the difference between linear
programming methods and the nonlinear diminishing returnutility functions present in the edge
computing model. Therefore, suitable modifications in mathematical modeling are essential to
accurately capture the resource sharing dynamics specific to computational workloads.

Discrete and Stochastic Storage vs. Shared Edge Servers

The notion of ramp constraints and discrete battery sizes in energy storage can parallel discrete CPU
units (millicores) in edge computing, with analogous ramp constraints modeled as the maximum rate
of task offloading or resource allocation.



• Major Adjustments: Edge computing resource allocations typically occur at discrete intervals
(e.g., 15-minute time slots), which parallel the discrete intervals used in storage scheduling within
energy systems. The main adjustment required involves accommodating discrete resource blocks
and handling resource adjustments at predefined intervals. Additionally, the latency constraints
in edge computing differ significantly from energy market pricing signals.

• Applicability: Insights into multi-stage resource scheduling from storage games can inform the
structuring of discrete resource blocks among edge computing participants.

Auction-Based Approaches for Local Energy and Edge Computing

Articles proposing combinatorial double auctions (e.g., CombFlex) for energy trading can be adapted
to allocate computing resources over multiple time slots.

• Major Adjustments: Auctions would focus on computational task requirements within specific
time windows, incorporating edge computing’s different cost structures.

• Applicability: Multi-interval bidding structures from energy auctions can effectively translate to
edge computing resource allocation scenarios involving correlated resource usage over multiple
time-slots.

Forecasting, Benchmarks, and Flexibility for Edge Computing

Standardized benchmarks proposed for grid flexibility can similarly apply to edge computing, where
benchmarks would evaluate the efficiency of allocation and scheduling mechanisms against typical
usage patterns.

• Major Adjustments: Metrics would shift from energy load curves to computational loads, latency
violations, and resource utilization.

• Applicability: Benchmarking methodologies promote systematic comparisons across resource
scheduling strategies, fostering the use of machine learning techniques such as reinforcement
learning to optimize dynamic edge resource management.

Misalignments in Objectives: Energy vs. Edge Computing

Articles highlighting misaligned objectives in local energy markets illustrate how simultaneous resource
scheduling can inadvertently create peaks or imbalances.

• Major Adjustments: In edge computing, peaks correspond to periods of high concurrency, poten-
tially causing latency and throughput issues, particularly during resource reallocation at discrete
time-slot transitions. Similar to energy markets, where pricing changes or industry operations
commencing at specific times (e.g., at the start of business hours) create consumption imbalances,
simultaneous resource adjustments at the boundaries of discrete time-slots in edge computing
could lead to significant delays or bottlenecks.

• Applicability: The concept of unintended resource allocation peaks highlights the necessity of
carefully designed scheduling mechanisms. These mechanisms must account for simultaneous
reallocation at predefined intervals, aligning user incentives with system constraints to maintain
stable and efficient edge computing operations.



Concluding Remarks

In summary, although significant differences exist between local energy management and edge comput-
ing resource allocation, the reviewed literature reveals fundamental principles and methodologies that
can inform the development of cooperative edge computing infrastructures. Adapting these method-
ologies to edge computing requires redefining physical constraints, adjusting time granularities, and
revising cost and utility structures. Nevertheless, the core principles of coalition formation, combina-
torial auctions, and multi-stage strategic scheduling remain highly relevant and adaptable, provided
the necessary modifications are thoroughly addressed.





Chapter 3

Analytical Investigation of the
Originally Proposed
Edge-Computing Model

In the first part of this theoretical chapter, we show that, without changing the existing model, the
optimal allocation for each Service Provider can be calculated in a deterministic manner and computed
in constant time O(1). This contrasts with the current approach, which relies on optimization methods
that maximize the value of the Grand Coalition. Furthermore, we demonstrate that the full load
function can be omitted, as the same results are obtained by using only the average load.

O(2n−1) −→ O(n)

Furthermore, we prove that, within the proposed model, the Shapley value can be calculated in a
straightforward manner, significantly reducing the computational complexity. Instead of evaluating
every possible coalition containing the NO, which requires exponential time, the calculation can be
performed in constant time O(1). Finally, we demonstrate that both the model and its software
implementation can be solved in linear time O(n), where n represents the number of players. This
marks a substantial improvement compared to the original formulation and implementation, where
scaling beyond a few dozen players is computationally infeasible.

In the second part, we analyze the strategic implications of the proposed model. We begin by deriving a
simplified, yet equivalent, version of the net utility function and use it to demonstrate that the model is
not strategy-proof. This finding implies that players have incentives to misrepresent the parameters of
their utility functions. We then propose potential approaches to address the lack of strategy-proofness.
Next, we examine the economic impact of inaccurate estimations of utility function parameters by SPs,
comparing the effects of both underestimations and overestimations.

Finally, we define the scope of the proposed simplifications by identifying changes to the model, such
as sublinearity in allocation pricing or dynamic allocation per time-slot, that disrupt the independent
contribution of SPs and thereby invalidate most of the proposed simplifications. If these changes arise
due to positive externalities or synergies among players (such as the previously mentioned), then the
original model may be interpreted as a worst-case scenario in terms of players’ revenues and payoffs.
In the second stage, we incorporate some of these changes into the model and compare the resulting
outcomes in terms of both allocation and revenue.
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3.1 SPs Independent Contribution and Game Convexity

The Theorem 1 of the referenced article demonstrates the game is convex; for that, it uses the definitions
of the value function as expressed in equations 1.1, 1.2 and 1.3. In cooperative game theory, a game is
said to be convex when the gains from forming coalitions grow at least as fast as the sum of individual
contributions, reflecting increasing or additive returns.

Formally, if we let v : 2N → R to be the value function of the game, where N is the set of players and
v(S) denotes the value of the coalition S, T ⊆ N . The game is convex, if for all subsets S and T of N ,
the following inequality holds:

v(S) + v(T ) ≤ v(S ∪ T ) + v(S ∩ T ).

An equivalent and perhaps more intuitive convexity definition is that for any player i ∈ N and for any
pair of coalitions S ⊆ T ⊆ N \ {i}:

v(S ∪ {i})− v(S) ≤ v(T ∪ {i})− v(T ).

This means that the marginal contribution of player i is non-decreasing with respect to the size of
the coalition: typically, the larger the coalition, the higher the additional value generated by player i
joining it.

From an economic perspective, typically convexity implies:

• Players have incentives to cooperate in larger coalitions, as their marginal contribution is better
valued.

• Larger coalitions tend to be stable, since players prefer to stay within them.

Now let’s evaluate how these definitions apply to our game, which has some particularities that are
worth mentioning. If we take the second definition of convexity, we can identify three different cases:

• NO /∈ T and NO /∈ S : The expression is equal and zero in both sides.

• NO ∈ T and NO /∈ S : Only case when the strict inequality is meet.

• NO ∈ T and NO ∈ S : The expression is equal on both sides, indicating the marginal contribu-
tion is equal for any coalitions with the NO in it.

Therefore, although the game does not exhibit strictly increasing marginal contributions in the sense
of complementarity between the SPs, it still satisfies the formal conditions for convexity. However, the
typical implications of convexity are not met here; SPs don’t have incentives to cooperate in larger
coalitions as their marginal contribution remains constant. As a consequence, larger coalitions are not
stable since SPs are indifferent about other SPs joining the coalition. This characteristic is known as
independent contribution or additive value function.

The referenced article identifies this independent contribution between SPs. However, it overlooks
some of its implications, leading to a solution that, while correct, could be streamlined further. In
the next sections, we will explore how this property influences other relevant aspects of the game and
discuss potential modifications to the model that would affect the independent contribution property.

3.2 Analyzing Service Providers’ Net Utility

In this analysis, we introduce a new equation crucial for future demonstrations; a Service Provider’s
net utility is defined as the difference between its revenues or utility (from now on, we are going to



call it gross utility), given by the utility function, and the cost of its resource allocation. Under the
independent contribution property, the net utility represents the SP’s marginal contribution to any
coalition that includes the NO. Before we study the net utility function and propose simplifications of
its calculation, we review the meaning of ξ in the proposed model.

3.2.1 Interpretation of the Diminishing Returns Parameter

The instantaneous utility of service provider i at time-slot t is defined as:

ui

(
lti , hi

)
= βi l

t
i

(
1− e−ξ hi

)
.

In the referenced article, the parameter ξ is an exogenous shape parameter that models how quickly
the term 1− e−ξ hi

approaches its saturation limit of 1. A larger value of ξ implies quicker saturation,
reflecting stronger diminishing returns, whereas a smaller ξ corresponds to a more gradual increase in
utility as resource allocation hi grows. Originally, ξ is treated as a fixed, uniform parameter common
to all SPs and time-slots within the model, independent of individual SP characteristics.

After evaluating the implications of this assumption and consulting with the authors of the article,
we choose to redefine ξ as a service provider-specific variable, denoted as ξi. This decision arises from
the recognition that treating ξ uniformly would imply all SPs share an identical relationship between
monetized load (lits ·βi) and the hardware allocation hi. Such uniformity restricts the model’s capacity
to accurately represent diverse SP behaviors and characteristics.

Among the model’s variables, ξi poses the greatest challenge when it comes to interpreting its physical
meaning. In later sections, we will explore this parameter thoroughly and reinterpret it from a practical
standpoint. For the present discussion, however, it suffices to acknowledge that ξi is now regarded as
an intrinsic variable of each service provider, rather than a universal parameter of the model.

3.2.2 Calculating the Net Utility

Calculating a Service Provider’s net utility involves two key equations from the referenced article: the
coalitional value function, v(S), and the utility function, ui(l

t
i , hi). For any player i and a time-slot t,

these equations are defined as follows:

v(S) =

(
D ·
∑
i∈S

T∑
t=1

ui(lit, h
i)

)
− d · C subject to NO ∈ S

ui(lit, h
i) = βi · lit · (1− e−ξi·hi

) subject to hi = 0 for NO

By applying the independent contribution property to the first equation, we can isolate the portion of
the total cost attributable to a specific player. This allows us to express the net utility function for
player i at time-slot t as:

ui
ts net(l

i
t, h

i) = βi · lit · (1− e−ξi·hi

)− d · hi

T ·D
(3.1)

Consequently, the value function of a coalition can be redefined as

v(S) =
∑
i∈S

ui
net(l

i
t, h

i) (3.2)



3.2.3 Net Utility Calculation Equivalence

In the proposed model, the average load was used within a sinusoidal equation and a set of hyper-
parameters to reflect changes in traffic load throughout the day. In this section, we prove that, as a
consequence of having a fixed allocation at all time-slots and the player’s independent contribution,
we can use the average load and avoid calculating each time-slot’s specific load and utility, thereby
simplifying the model.

Starting with the net utility function for the player i in the time-slot t, as defined in Equation 3.1, we
calculate the total net utility for that player over the entire investment period T as follows:

U i
tot net = D ·

(
T∑

t=1

βi · lit · (1− e−ξi·hi

)

)
− d · hi

Considering liavg as the average load. By definition:

T∑
t=1

lit = T · liavg

We can then express the total net utility for the player i using the average load.

U i
tot net = D · T ·

(
βi · liavg · (1− e−ξi·hi

)
)
− d · hi (3.3)

Accordingly, the value function of a coalition, accounting for the average load, is defined as:

v(S) = D · T ·
∑
i∈S

ui
net(l

i
avg, h

i) (3.4)

3.2.4 Constraint for Positive Net Utlity

To ensure that the total net utility is positive, we require:

U i
tot net > 0

This condition is met under the following constraint:

d · hi < D · T · βi · liavg

A detailed demonstration is provided in the Section B of the demonstrations Appendix.

3.3 Analyzing Service Providers’ Optimal Allocation

In the proposed model, each player’s optimal allocation was calculated to maximize the total global
net utility; this is the grand coalition value. This implies a maximization algorithm considering the
summation of all Service Providers’ utility functions and the subtraction of the total allocation price. In
this section, we prove that we can achieve the same result in a more straightforward and deterministic
manner.

Having previously isolated each Service Provider’s net utility function as expressed in equation 3.3, we
analyze this function’s critical points to identify a unique maximum representing the optimal allocation
for player i at:



hi =
1

ξi
· ln

(
D · T · βi · liavg · ξi

d

)
(3.5)

Additionally, we identify a condition on the SP parameters that must be met for the allocation to be
positive:

d < D · T · βi · liavg · ξi (3.6)

This condition represents the minimum requirement for an SP to have any incentive to participate in
the co-investment. The complete demonstration is in Section B.1 of the demonstrations chapter of the
Appendix.

Finally, we prove that U i
tot net is always non-negative for the optimal allocation hi and is equal to zero

only when the optimal allocation is zero, showing that only constraint 3.6 should be added to our
model.The complete demonstration is in Section B.2 of the demonstrations chapter of the Appendix.

3.4 Service Providers’s Marginal Contribution

As a consequence of the independent contribution among SPs and the NO being a veto player, for
an SP in any coalition within the NO, this contribution remains consistent and equals the player’s
net utility U i

tot net. Conversely, for coalitions excluding the NO, the contribution is zero. In the next
section, we will find some implications of this marginal contribution characteristic when calculating
the Shapley value.

3.5 Shapley Value Calculation

The Shapley Value is a fundamental concept in cooperative game theory. It uniquely determines the
payoff for each player within a coalition by quantifying their individual contribution to each possible
group’s overall success. This value is calculated as the weighted average of the marginal contributions
that a player makes to all possible coalitions to which they can join. This approach ensures a fair
distribution of payoffs, accurately reflecting each player’s contributions and the significance of the
coalitions they impact.

In the referenced article, the Shapley value is used to define the payoff vector. where the payoff of
the player i is denoted by xi. In this section, we show that previous calculations of the Shapley value
have underestimated the impact of the independent contribution property. By fully integrating it,
we can significantly simplify the computation, reducing its complexity to a constant time O(1). This
enhancement dramatically increases the scalability of simulations, extending from a small group of
players to scenarios that include hundreds or even thousands of players.

Intuitively, we can observe that as a consequence of having the same marginal contribution for coalitions
within the NO, we should be able to calculate the Shapley value without considering all possible
coalitional values. Our next step is to work with the Shapley value equation, demonstrate that this
simplification is possible, and give an equivalent formula for finding the Shapley value for a Service
Provider and for the Network Owner.

The Shapley value for the player i is expressed by the following formula:

ϕi =
∑

S⊆N\{i}

|S|!(|N | − |S| − 1)!

|N |!
(v(S ∪ {i})− v(S))

where v(S) is the value of the coalition S and |S| is its size. This formula can be dissected into the
weighting factor and the marginal contribution.



3.5.1 The Weighting Factor

The weighting factor, represented by |S|!(|N |−|S|−1)!
|N |! reflects how different coalition sizes are considered

in the overall computation by accounting for all permutations of coalitions that can be formed, with
and without the player i. The sum of this factor totals 1, symbolizing the balanced probability of
coalition formations.

For each coalition S that contains player i, this factor can be seen as the probability that coalition S
is formed first, followed by the joining of player i and then the remaining players joining in any order.
It similarly represents the probability for the reverse formation sequence.

We show that for any player i, there is an equal probability 1
2 of forming a coalition with or without

any other specific player k. Considering a set of players N , with |N | = n, and a pair of different players
i and k. The probability calculations involve:

• The number of subsets of N \ {k} that include i but exclude k, totaling 2n−2.

• The number of subsets where both i and k are included is also 2n−2.

Since the total number of coalitions that can include i is 2n−1, the probability that i is in a coalition
with or without k is given by:

P (Coalition with k) = P (Coalition without k) =
2n−2

2n−1
=

1

2

This shows that there is an equal probability that k is included or excluded from any subset containing
i. Finally, setting k = NO and i = SPi, the sum of the weighting factor equals 1

2 when NO ∈ S and
1
2 when NO /∈ S.

3.5.2 Marginal Contribution Factor

The second term in the Shapley value equation represents the player’s marginal contribution to any
potential coalition. As previously established, this marginal contribution for a given player remains
constant for coalitions that include the NO and is zero for those that do not include the NO.

3.5.3 Simplifying Shapley Value Calculation

By combining the weighting factor and marginal contribution parts of the formula, we can conclude
that for any SP, the Shapley value is equal to half of the value it brings to any coalition, which in turn
is equal to half of its net utility. For the NO, it is equal to half of the summation of all SP’s net utility.

xSPi = ϕSPi =
v({SPi})

2
=

U i
tot net

2
,∀SPi ∈ N (3.7)

xNO = ϕNO =
1

2

n∑
i=1

v({SPi}) =
1

2

n∑
i=1

U i
tot net (3.8)

3.6 Analyzing the Core of the Game

In this section, we analyze the Core of the game. Although the referenced article correctly establishes
the nonemptiness of the Core from a mathematical perspective, we showed in section B that achieving
a positive net utility might require a negative allocation. This highlights the practical necessity of



enforcing the positive allocation constraint expressed in (3.6). As a result, if a player’s utility param-
eters do not satisfy this condition, the player will be excluded from the Core and have no incentive
to participate in the co-investment. Furthermore, we show that, due to the independent contribution
property, the Core reduces to a unique point.

3.6.1 Defining the Core of the Game

The Core represents the set of feasible payoff allocations among players such that no subgroup, or
coalition, has an incentive to deviate from the grand coalition. It is a central concept in cooperative
game theory, as it ensures stability in the distribution of benefits. If a payoff vector belongs to the
Core, no coalition can improve upon it by breaking away.

Formally, the Core is defined as:

C =

{
x ∈ Rn |

∑
i∈N

xi = v(N),
∑
i∈S

xi ≥ v(S), ∀S ⊆ N

}

Where:

• x = (x1, x2, . . . , xn) is the payoff vector.

• v(S) denotes the value of coalition S.

• The first condition ensures efficiency, meaning the total distributed payoff equals the value of the
grand coalition.

• The second condition ensures coalitional rationality, meaning no subgroup receives less than what
it could earn on its own.

Thus, the Core contains all payoff allocations where all players prefer remaining in the grand coalition.
A non-empty Core ensures stability and prevents deviation.

3.6.2 Uniqueness of the Core under Independent Contribution with a Veto
Player

Our game is characterized by independent contributions and the presence of a veto player (the NO).
In this setting, the value of any coalition depends entirely on the SPs it includes, but only if the NO
is present. That is, the NO enables value creation but does not contribute value on its own. The
characteristic function is defined as:

v(S) =


∑

i∈S\{NO} v({i}) if NO ∈ S,

0 otherwise.

Under these assumptions, coalitional rationality simplifies to:

∑
i∈S

xi =
∑

i∈S\{NO}

v({i}), ∀S ⊆ N with NO ∈ S,

and efficiency becomes:

∑
i∈N

xi =
∑

i∈N\{NO}

v({i}).



These two conditions uniquely determine the payoff vector. Specifically, the only vector satisfying both
conditions is the Shapley value, which in this case is given by:

xSPi
=

1

2
v({SPi}), ∀SPi ∈ N,

xNO =
1

2

∑
SPi∈N

v({SPi}).

Any deviation from this payoff vector would violate either coalitional rationality or efficiency. For
instance, if an SP is assigned less than half of its marginal contribution, it would be strictly better off
by forming a coalition with the NO alone, excluding all other players. On the other hand, assigning
the NO less than half of the total contributions from all SPs would result in a total payoff that falls
short of the coalition’s full value, thus violating efficiency.

Therefore, under the assumptions of independent contributions and a veto player, the Core reduces to
a unique point. This point corresponds exactly to the Shapley value, indicating that cooperation does
not generate additional surplus beyond the sum of individual contributions.

If the assumption of independent contributions no longer holds in future extensions of the model, for
example, if coalition synergies or complementarities arise, then this payoff vector can still be used as
a reference or estimation. However, unlike in earlier approximations, it would not represent a worst-
case scenario, since it may underestimate or overestimate players’ actual incentives depending on the
specific form of interdependence.

3.6.3 Calculating Payments and Revenues

In the referenced article, the definition of the aim of payments is ambiguous. To clearly illustrate this,
we present direct extracts from different sections of the article.

In the ”COINVESTMENT MODEL” section, the article states:

The payoff of any player i ∈ N is xi = ri − pi, where ri and pi are the revenues and the
payment, i.e. the capital cost, respectively.

This statement implies that payments serve to redistribute payoffs among players, aligning each player’s
payoff with their Shapley value.

However, in the subsequent paragraph of the same section, the article presents another definition:

... the sum of all players’ payments should be such that
∑

i∈S pi = d · C,

where C represents the total capacity allocated and d is the price per millicore. This second statement
suggests that payments are instead intended specifically to cover the deployment costs.

Also in the ”ANALYSIS” section, subsection ”Initial investment of players,” which addresses how
revenues and payments are calculated. The article states that the calculations aim to determine how
much each player must pay at the beginning of the investment, defining the relationships between the
players’ revenues, payments, and their respective payoffs as follows:

ri − pi = xi, ∀i ∈ N (3.9)

s.t.
∑
i∈N

ri = D ·
∑
i∈N

T∑
t=1

ui(lit, h
i∗) (3.10)

where: h∗, C∗ = argmax
ĥ,C

vi(ĥ, C,N) (3.11)



Thus, the article simultaneously presents two different interpretations of the payment variable pi: one
aimed at redistributing payoffs to achieve fairness (through the Shapley value), and another exclusively
designed to distribute the initial infrastructure deployment costs. It is important to note that requiring
payments to achieve fairness entirely at the beginning of the investment period may not be attractive
for SPs, as it could imply significant upfront payments. A more realistic approach might involve
covering only the deployment costs upfront, while distributing payments related to fairness (aligned
with Shapley values) periodically over the investment duration.

To clarify the previous ambiguity, we define:

• pialloc As the payment made by SP i with the sole purpose of paying for the initial hardware
deployement such that

∑
i∈S pialloc = d · C

• pifair As the payment made (or received if negative) by player i with the sole pourpose of
redistributing payoffs to achieve fairness

Then we take pi = pialloc + pifair which aligns with the framework described in equations from 3.9 to
3.11. This framework results in a system of n + 1 equations and 2n variables, allowing for multiple
possible solutions. Although these solutions will lead to the same payoff for each player, the specific
payments may vary. By applying the independent contribution property, we propose that each Service
Provider can calculate its own payments and revenues.

As we have previously demonstrated, each SP can independently calculate its net utility using equa-
tion 3.3, which we rewrite here.

U i
tot net = D · T ·

(
βi · liavg · (1− e−ξi·hi

)
)
− d · hi

The first term of this equation corresponds to the SP revenue, the second term corresponds to the
SP payment for allocation pialloc. Also, from equation 3.7 we know that an SP payoff is half of its
total net utility value, and from equation 3.8 we know that the other half should be given to the NO
corresponding to pifair.

Formally, for SP i:

pSPi = pialloc + pifair = d · hi +
ui
tot net

2
(3.12)

xSPi =
U i
tot net

2
,∀SPi ∈ N (3.13)

rSPi = D · T ·
(
βi · liavg · (1− e−ξi·hi

)
)

(3.14)

In the case of the NO, it does not allocate any resources and does not generate any revenue. As we
have seen in equation 3.8, its payoff corresponds to the sum of half of the net utility of each SP.

Formally, for the NO, being n the amount of service providers:

pNO = −1

2

n∑
i=1

U i
tot net (3.15)

where the negative sign indicates that it is receiving the payment from other players, contrary to the
SPs that pay to the NO.

To complete this section, we analyze the following claims of the referenced article that are under the
section ”ANALYSIS”, subsection ”Relevant properties of our game”:

If player i does not produce revenues and makes no payments, then it is a null player, i.e.
v(S ∪{i}) = v(S) Note that there can be players that do not pay or are even paid (pi ≤ 0),
which still positively contribute to the coalition. For instance, any SP i can positively
contribute to the coalition collecting large revenues ri.



These statements may be generally valid in cooperative game theory. However, in our specific model,
they do not apply.

Regarding the null player statement; revenues in our model are defined as the gross utility generated by
each SP, reflecting the income derived from serving their customers. The motivation for participating
in the co-investment is to achieve a positive marginal contribution, which is equivalent to the net
utility. If an SP does not generate any revenue, it will fail to produce a positive net utility and
consequently has no incentive to allocate resources; indeed, allocating resources in such a case would
lead to economic losses. Moreover, if a player’s revenues merely cover the deployment costs, then under
the independent contribution property, the player neither gains nor loses money. In that scenario, the
incentive to participate would rely solely on anticipated future benefits (for example, an increase in
the β parameter) that are not yet incorporated into the SP utility function. In summary, null players
(those that do not generate a positive marginal contribution) are not allowed in our model.

Regarding the claim that some players do not pay or are even paid, our analysis shows that in our
model pi is never zero for any player and is negative only for the NO. This indicates that SPs always
make positive payments and never receive funds from other players, a result that follows directly from
the independent contribution.

Note that we could consider the case where SP’s net utility is negative, indicating that they are
subsidizing a service, but as shown in the demonstrations Section B.2 positive allocations always lead
to positive net utility.

3.7 Computational Complexity of the Game

The independent contribution has significant implications for the computational model of our cooper-
ative game. So far, we have established some key aspects:

• Objective function: Maximizing the coalitional value can be done in linear time and in a deter-
ministic manner. This eliminates the need for approximation-based numerical methods, which
are computationally intensive.

• Marginal contribution consistency: For coalitions that include the Network Owner, each SP’s
marginal contribution remains constant, and it is zero for coalitions without the NO. This con-
sistency allows the Shapley Value and thus the payoff to be computed directly, avoiding the need
to evaluate all possible coalition formations.

• Allocation payment calculation: Since the per-unit price of the allocation is fixed and the alloca-
tion remains constant across all time-slots, calculating each player’s share of the total cost pialloc
becomes straightforward.

• Fairness payment calculation: All SPs should pay half of their total net utility to the NO this is
defined as pifair.

• The two previous points simplifies the determination of payments and revenues, leading to a
unique solution.

These characteristics reveal the game’s inherent linear time complexity, allowing SPs to independently
compute their optimal allocations, revenues, payments, and payoffs. Additionally, the Network Owner’s
payoff can be derived directly from the total payments made by all SPs. As a result, for n players, the
computational model can be solved in linear time O(n), which simplifies implementation and improves
both the efficiency and transparency of the solution process.

Further and more general observations on the individual contribution property are provided in Sec-
tion C of the Appendix.



3.8 Model Simplification and Critical Functions Analysis

In this section, we derive compact yet equivalent expressions for the net utility and optimal allocation
functions by consolidating all parameters into their most concise form. This streamlined representation
retains full equivalence with the original model while making it easier to analyze how variations in
model parameters affect an SP’s net utility and optimal allocation.

3.8.1 Simplified Net Utility

To simplify the net utility equation (3.3), we begin by expressing it in its original form:

U i
tot net = D · T ·

(
βi · liavg · (1− e−ξi·hi

)
)
− d · hi

Observe that the terms βi and liavg appear as a product. This allows us to introduce a new variable,

denoted as ρi, representing potential monetization.

ρi = βi · liavg (3.16)

This variable represents the maximum potential utility, which remains unattainable in practice.

Formally:

lim
h→∞
d→0

U i
tot net = ρ

Next, we define the amortized unit price d′, which represents the cost associated with a single time-slot:

d′ =
d

D · T
(3.17)

For simplicity, from now on, we omit the superscript i in the following analysis, as it is not essential
for our purposes. The resulting simplified net utility equation for a single time-slot is:

Uts net = ρ
(
1− e−ξh

)
− d′h (3.18)

To obtain the total net utility over the entire investment period, we multiply the single time-slot utility
by the total number of time-slots: D · T .

3.8.2 Simplified Optimal Allocation

Using the simplified net utility function we just derived (3.18), we determine the optimal allocation
h∗ by maximizing the net utility with respect to h. This leads to the following simplified optimal
allocation equation:

h∗ =
1

ξ
ln

(
ρξ

d′

)
(3.19)

The condition that ensures h∗ > 0, corresponding to equation (3.6), simplifies the following:

d′ < ρ · ξ (3.20)



3.9 Derivation of Different Expressions for Allocation and Op-
timal Net Utility Functions

Having derived simplified versions of the allocation and net utility equations, we now obtain different
expressions for the optimal allocation condition. By substituting these expressions into the net utility
function, we derive alternative forms in which one variable is eliminated.

Introducing Notation

Since the simplified utility functions involve different variables, we explicitly incorporate these variables
into the equation notation. This allows the net utility function, as defined in (3.18), to be written as:

Uts net(ξ, ρ, d
′, h) = ρ

(
1− e−ξh

)
− d′h (3.21)

3.9.1 Derivation of Different Expressions for the Allocation Function

The optimal allocation equation (3.19) defines a relationship between the parameters of the utility
function. By manipulating this equation, we can solve for different parameters, obtaining expressions
that will be used in later analyses.

Solving for ρ:

ρ =
d′ · eh·ξ

ξ
(3.22)

Solving for d′:

d′ =
ξ · ρ
eh·ξ

(3.23)

Solving for ξ:

ξ =
d′ · eh·ξ

ρ
(3.24)

The last equation is a transcendental equation, because the variable appears inside and outside an
exponential function. Such equations cannot be solved algebraically in a straightforward manner.

3.9.2 Derivating Different Expressions for the Utility Function

The net utility function for a single time-slot, given by (3.18), depends on four variables: ξ, ρ, d′, and h,
which must satisfy the optimal allocation condition presented in (3.19). By substituting relationships
derived from this condition into the utility function, we obtain alternative expressions in which one of
these variables is eliminated. However, since no explicit algebraic solution exists for ξ, it cannot be
directly substituted.

In Section B.3 of the Demonstrations chapter in the Appendix, we present detailed step-by-step deriva-
tions of these alternative expressions for the net utility function, along with interpretations of the
resulting equations after substituting d′ and ρ. In the following subsection, we specifically analyze the
expression obtained by substituting h∗, as it is the most significant and useful form.



3.9.3 Utility Function Subject to the Optimal Allocation Condition

Uts net(ξ, ρ, d
′) = ρ

(
1− d′

ρξ

)
− ·d

′

ξ
ln

(
ρξ

d′

)
(3.25)

This expression is valuable because it eliminates the need to explicitly compute the allocation, sim-
plifying both analytical derivations and numerical computations. By removing h from the equation,
sensitivity analyses become more direct, clearly highlighting how the fundamental parameters (ρ, ξ,
and d′) influence net utility.

The first term, ρ
(
1− d′

ρξ

)
, represents the fraction of the potential monetization that is converted into

gross utilities.

The second term, −d′

ξ ln
(
ρξ
d′

)
, represents the amount of allocated resources at h∗ multiplied by the

amortized per-millicore price.

Taken together, these two parts show how revenue generation, expressed through ρ, and the corre-
sponding cost penalty interact under varying parameter values. They show the balance between higher
benefits and increased costs.

We also provide an equivalent expression of this function that will be used in future sections:

U(ρ) = ρ − d′

ξ

[
1 + ln

(
ρ ξ
d′

)]
Although this expression is less intuitive, it clearly separates the maximum potential monetization
ρ in the first term from the second term, which combines the unmonetized requests with the costs
associated with monetized ones. Note that this function is strictly convex in ρ and asymptotically linear
(limρ→∞ U(ρ)/ρ = 1), implying increasing marginal returns that converge to one. These considerations
suggest that, although the logarithmic form simplifies the analysis, it may not fully reflect hardware
demands as load grows. In Section 5.3 we propose net utility function modifications to address these
limitations.

In table 3.1 we present a summary of the variables influenced by analyzing their derivatives.

Parameter
∂U(h∗)

∂(·)
Interpretation

ρ Positive Greater monetization increases net utility.

ξ Positive Higher ξ improves resource efficiency, in-
creasing net utility.

h

{
> 0, h < h∗

< 0, h > h∗
Net utility follows diminishing returns and
is maximized at h∗.

d′ Negative Higher marginal cost reduces net utility.

Table 3.1: Effects of parameters on net utility at the optimal allocation.

3.10 Allocation Function Analysis

From Equation 3.19,

h∗ =
1

ξ
ln
(
ρ ξ
d′

)
,

we see two clear parts:



• 1
ξ : the inverse of the sensitivity. A larger ξ cuts the allocation.

• ln
(
ρ ξ
d′

)
: a logarithm that rises with ρξ and falls with d′.

Together, a bigger ξ lowers h∗ directly and also shapes how ρ and d′ push on it.

Effect of ρ

∂h∗

∂ρ
=

1

ξρ
.

Because the equation for h∗ contains ρ = β lavg only inside a logarithm, raising β increases the
allocation slowly. This is reasonable: a larger benefit factor alone does not call for a proportional rise
in capacity, so a sub-linear (logarithmic) response may accurately reflect real-world scenarios. Load,
however, should scale differently. When lavg doubles, the optimal allocation needs to grow by roughly
the same amount, and often even more. A purely logarithmic response can therefore underestimate
the capacity that real systems must deploy as load rises.

Effect of d′

∂h∗

∂d′
= − 1

ξd′
.

A higher marginal cost d′ lowers the allocation. The drop is steep when d′ is small and flattens as d′

rises, matching the shape of a logarithm.

Effect of ξ

∂h∗

∂ξ
= − 1

ξ2

[
ln
(
ρ ξ
d′

)
− 1
]
.

ξ changes both the scale and the inside of the logarithm, so its impact is mixed. If ln(ρξd′ ) < 1,raising

ξ increases h∗; after ln(ρξd′ ) > 1, raising ξ lowers h∗. We name this maximum as ξpeak.

Since the effect of ξ is the more complex one, we dedicate the next section to analyze its effects in
more depth. Before that, we present the table 3.2 to summarize the results of this section.

Parameter Sign of
Derivative

Interpretation Mathematical relation-
ship

ρ Positive Larger potential monetization in-
creases allocation.

Logarithmic

ξ Positive until
ξpeak, negative
after ξpeak

Benefit-driven rise followed by re-
source efficiency-driven fall.

Linear and logarithmic

d′ Negative Increased marginal cost reduces al-
location.

Logarithmic

Table 3.2: Summary of parameter influences on optimal allocation based on derivatives.



3.10.1 Influence of the Diminishing Returns Parameter on Allocation

We identified a specific value of ξ that maximizes the allocation, denoted as ξpeak. The allocation at
this value is h(ξpeak), and the corresponding net utility is Uts net(ξpeak).

This maximum arises from the interaction between the inverse factor 1
ξ and the logarithmic term

ln
(

ρξ
d′

)
. For smaller values of ξ, the logarithmic term grows rapidly, causing a quick rise in allocation.

However, beyond ξpeak, the inverse term 1
ξ becomes dominant, outweighing the logarithmic growth,

and the allocation begins to decline.

Formally, we can define ξpeak as the solution to the following maximization problem:

ξpeak = argmax
ξ>0

{
h∗(ξ) =

1

ξ
ln

(
ρξ

d′

)}
(3.26)

We analyze h∗(ξ) as a function of ξ, holding ρ and d′ constant. By studying its derivatives, we find
a unique critical point ξpeak that maximizes the allocation. We then compute the allocation at this
peak, h∗(ξpeak), and the corresponding time-slot net utility Uts net(ξpeak). The detailed derivation is
presented in Section B.4 of the Demonstrations chapter of the Appendix.

We find that h∗(ξ) has a unique maximum at:

ξpeak =
d′ · e
ρ

(3.27)

The corresponding allocation at this point is:

h∗(ξpeak) =
ρ

d′ · e
(3.28)

At ξpeak the value of the exponential term (−h · ξ ) is exactly 1, implying that the fraction of requests
served at the Edge is ≈ 63%, and the corresponding net utility is:

Uts net(h∗,ξpeak
) = ρ · e− 2

e
≈ ρ · 0.264 (3.29)

Interpreting ξpeak

At ξpeak, the allocation reaches its maximum with respect to ξ. Beyond this point, any increase or
decrease in ξ results in a reduction of the allocation. While SPs can technically operate with values of
ξ below ξpeak, doing so places the system in a sensitive region where small parameter changes can cause
significant variations in allocation, due to the steep increase before reaching ξpeak. Moreover, in this
range, the service provider receives at most about 26% of the potential monetization. As demonstrated
in Section B.5, as ξ decreases, the net utility also decreases.

It is also important to note that if ρ decreases to ρ
e , the positive allocation constraint (Equation 3.20) is

no longer satisfied, resulting in a non-positive allocation and effectively preventing the service provider
from participating in the co-investment.

To mitigate this issue, we could introduce the following soft constraint:

ξ >
d′e

ρ
(3.30)

We will not enforce this constraint in our model since it is not required and we don’t want to limit the
profiles of the SPs that take part in the coinvestment to only the ones that process a high percentage of



the total requests at the edge. However, this constraint can provide additional stability. In Section C.1
of Appendix Chapter C, we discuss the potential advantages of enforcing this constraint.

3.10.2 Pseudocode for Solving the Model

Before we get into the strategic implications of our model, we provide a pseudocode to illustrate the
practical application of all the simplifications we have found so far.� �

1 f unc t i on reso lve game (game : Game) :
2

3 i n i t i a l i z e p l a y e r s t o t a l n e t u t i l i t y , t o t a l a l l o c a t i o n to 0
4 f o r sp in game . s e r v i c e p r o v i d e r s
5

6 # Fi r s t d e r i v a t i v e o f the net u t i l i t y to c a l c u l a t e the optimal a l l o c a t i o n
7 a l l o c a t i o n = 1/ sp . x i ∗ np . l og ( (D ∗ T ∗ sp . b e n e f i t f a c t o r ∗ sp . avg load ∗ sp . x i

) / d)
8

9 # po s i t i v e a l l o c a t i o n c on s t r a i n t
10 i f ( a l l o c a t i o n < 0)
11 r e turn
12 e l s e
13 sp . a l l o c a t i o n = a l l o c a t i o n
14

15 # Serv i c e Provider net u t i l i t y
16 n e t u t i l i t y = sp . b e n e f i t f a c t o r ∗ sp . avg load ∗ (1 − np . exp(−sp . x i ∗ sp .

a l l o c a t i o n ) ) ∗ D ∗ T − d ∗ sp . a l l o c a t i o n
17

18

19 # Shapley Value ( payo f f ) f o r an SP i s h a l f i t s net u t i l i t y
20 sp . payo f f = n e t u t i l i t y / 2
21 sp . a l l ocat ion payment = d ∗ sp . a l l o c a t i o n
22 sp . f a i rne s s payment = n e t u t i l i t y / 2
23 sp . revenue = n e t u t i l i t y + d ∗ sp . a l l o c a t i o n
24

25 p l a y e r s t o t a l n e t u t i l i t y += n e t u t i l i t y
26 t o t a l a l l o c a t i o n += sp . a l l o c a t i o n
27

28 end f o r
29

30 no = game . network owner
31 no . payo f f = p l a y e r s t o t a l n e t u t i l i t y / 2
32 no . payment = −1 ∗ p l a y e r s t o t a l n e t u t i l i t y / 2
33 no . revenue = 0� �
3.11 Strategic Implications

In this second part of the analytical investigation, we explore two main strategic aspects of the model.
First, we assess the risks associated with parameter misestimations by quantifying how much the
parameters can deviate before the investment becomes unviable and by evaluating the corresponding
losses incurred by the Service Providers. Second, we investigate whether the model is strategy-proof
and examine how SPs might benefit from misrepresenting their parameters. This analysis directly
addresses a point raised in the ”CONCLUSION” section of the referenced article, which states:

For future work, we will consider adding a strategy-proof enforcement feature to ensure
that players are truthful.

After demonstrating that the model is not strategy-proof, we comment on mechanisms or model
changes that could potentially enhance strategy-proofness. Finally, we enumerate the modifications to
the model that would disrupt the independent contribution property and, as a result, invalidate most
of the simplifications identified so far. In later sections, we incorporate some of these changes into our
model.



3.12 Evaluating the Impact of Parameters Misestimation

The net utility depends on three parameters ξ, β, and lavg. In this section, we focus on the misesti-
mation of lavg and β and its effect on an SP’s payoff.

We treat ξ as fixed, since it reflects the SP’s business model. In contrast, lavg (requests per time-slot)
and β (the benefit factor) can vary or be estimated incorrectly over the investment horizon. Recall
ρ = lavg · β; let ρexp be the expected value at investment time and ρreal its realized value. Once
hardware is provisioned, allocations remain fixed, so any gap between ρexp and ρreal directly alters net
utility.

SPs face two risk stages: before declaring parameters (and receiving an allocation) and after allocation
is defined but ρreal ̸= ρexp. We begin by analysing the latter, which is more straightforward.

3.12.1 Effects of Misestimation After the Initial Investment

The current Edge Computing model does not account for deviations from the expected utility function
values; therefore, risk management and the strategic implications of misestimating these values were
not previously considered. In this section, we will analyze the impact of deviations in ρreal.

If this deviation is downward, the utility function can still be used as originally defined to calculate the
SP’s net utility. However, if the deviation is upward, we must adjust the interpretation of the utility
function to reflect the insufficient resource allocation needed to process the additional requests.

To address this, we assume that once the average load is exceeded, no additional utility will be
generated. This can be understood either as a lack of sufficient hardware resources to handle the extra
requests, leading to an overflow, or as a decline in overall SP’s virtual environment performance caused
by the increased load, which counteracts any additional utility from the extra requests. In practical
terms, this can be seen as requests that cannot be processed at the Edge Computing infrastructure
due to resource limitations.

It is important to note that this assumption may not hold in all scenarios, especially during time-
slots with low load. For a more accurate analysis, we could model the extra requests as generating
additional utility, but with diminishing returns once the maximum expected load is reached. However,
such an analysis would require considering the per time-slot load, which is beyond the scope of this
section, since we are analyzing the model under the independent contribution property. That said, if
per time-slot allocation were adopted, this type of analysis would become more precise, with the only
difference being that the effects of misestimation would need to be computed individually for each
time-slot. In our current framework, we assume that no additional requests will be processed and the
results should be interpreted as a worst-case scenario.

Considering this, we redefine the utility function as the effective utility function, which considers only
the requests that generate utility. This adjustment reflects the fact that once the system exceeds its
capacity, any unprocessed requests will no longer contribute to the Service Provider’s utility.

Uts net ef(ρ) =

ρreal
(
1− e−ξh

)
− d′ h, ρreal ≤ ρexp,

ρexp
(
1− e−ξh

)
− d′ h, ρreal > ρexp.

(3.31)

Underestimation or Opportunity Cost

The equation above demonstrates that in cases of underestimation (ρreal > ρexp), recalculating the
allocation and its associated cost is necessary to account for the missed potential gains due to insuf-
ficient resources. Since in this section we are considering only the economic risks after the allocation
has been decided, we can’t apply it here, but we want to give the definition for the next subsection.

This concept, known as opportunity cost, represents the additional utility that could have been ob-



tained if the allocation had been optimized for ρreal instead of ρexp. We denote hexp as the allocation
corresponding to ρexp and, consequently, the deployed one, and hreal as the allocation that would
optimize the utility for ρreal.

To state all combinations of ρreal and ρexp with hreal and hexp, we introduce a new notation to the
net utility function where we assume ξ as fixed and take ρ and h as parameters. This will allow us to
express the impact of mis-estimation on the net utility equation.

Uts net(ρ, h)

In this way, the opportunity cost is defined as:

Opportunity Cost = Uts net(ρreal, hreal)− Uts net(ρexp, hexp)

To make this explicit, we can expand on the previous equation.

Opportunity Cost =
(
ρreal · (1− e−ξhreal)− d′ · hreal

)
−
(
ρexp · (1− e−ξhexp)− d′ · hexp

)
The opportunity cost will be further explored in the subsequent section, where the Service Provider
has not yet determined its allocation.

Overestimation

Once the allocation has been defined, it is important for an SP to assess the risk of not covering the
initial investment and to quantify how much of the expected revenue could be lost due to a lower than
expected ρreal. Since we do not recalculate the allocation, the loss due to the overestimation is directly
proportional to the magnitude of the overestimation in ρ.

Overestimation of ρreal = (ρexp − ρreal) · (1− e−ξ·hexp) (3.32)

The overestimation is calculated with respect to the expected net utility in response to the lower than
anticipated ρreal.

Determining the Breaking Point Where the Investment Becomes Unprofitable

In this section, our aim is to find the breaking point where the overestimation equals the expected
payoff, making the investment unprofitable. Furthermore, we will determine the maximum allowable
decrease in ρexp that still keeps the investment viable. Knowing this threshold enables SPs to better
assess risks and define their strategies. The following equations demonstrate how, starting from the
net utility function, we can derive the condition that ensures that the investment remains profitable,
that is, the net utility must be greater than zero.

Uts net = ρexp · (1− e−ξ·h)− d′ · h

Uts net > 0 ⇐⇒ ρexp >
d′ · h

1− e−ξ·h

We now introduce ρzero as the break-even point where the net utility is equal to zero:

ρzero =
d′ · h

1− e−ξ·h (3.33)



Let p100 ∈ [0, 1] be the decimal that represents the maximum percentage decrease from ρexp that keeps
the investment non-deficient, the sub-index 100 indicates a 100% decrease in the expected net utility.

ρzero = ρexp · (1− p100)

ρexp · (1− p100) =
d′ · h

1− e−ξ·h

p100 = 1− d′ · h
ρexp · (1− e−ξ·h)

(3.34)

This last equation quantifies the viability threshold, providing a useful decision-making tool for Service
Providers to evaluate risks.

Generalizing the Breaking Point to Any Percentage of Loss

We defined p100 as the percentage decrease that results in zero net utility. Similarly, we can define
pα = p100 · α, for any desired percentage decrease α. This linear relationship allows Service Providers
to assess the impact of various levels of misestimation on profitability.

Using p100, we formulate:

pα = p100 · α (3.35)

Alternatively, by substituting directly into equation 3.34, we derive:

pα =

(
1− d′ · h

ρexp · (1− e−ξ·h)

)
· α (3.36)

Here, α is a decimal representing the desired percentage of decrease. This formulation provides flexi-
bility in assessing the impact of various levels of misestimation on profitability.

3.12.2 Effects of Misestimation Before the Initial Investment

Now we will evaluate the scenario when the allocation has not yet been defined, so we will have to
recalculate the optimal allocation based on ρreal instead of ρexp. Once again, we will work with two
base scenarios: one where the actual value ρreal exceeds the expected value, and another where it is
less than expected.

Underestimation or Opportunity Cost (ρreal > ρexp)

We have already defined the opportunity cost with equation 3.12.1, it is important to note that this
amount does not represent a real cost or an effective loss; rather, it defines the amount of monetary
units that could have been obtained. In future analysis, we will equalize opportunity cost to the loss
due to overestimation; note that in real-world scenarios a Service Provider may not consider them
equal in their business model.

Overestimation (ρreal < ρexp)

Symmetrically to how we defined the opportunity cost, we can define the overestimation considering
the optimal allocation.

Allocation Overestimation = Unet(ρexp, hexp)− Unet(ρreal, hreal)



If we wanted to only account for the overestimation of the allocation but without considering the
overestimation of ρ, we can calculate it as follows:

Allocation Overcost = Unet(ρreal, hreal)− Unet(ρreal, hexp)

So far, we have provided a set of useful equations for SPs to acknowledge the effects of misestimating
their parameters. In the next section, we will consider the effects of misestimating hreal by a small
percentage and then for any arbitrary percentage number. We will consider the case of misestimation
in allocation and the case of misestimation in parameter ρ.

If we assume that mechanisms for dynamic allocation are available or that SPs can precisely predict
their parameter values, it becomes relevant to study scenarios where deviations in ρ are small, and
consequently, the deviations in h are also small. We will generalize this to any percentage of estimated
deviation to account for scenarios where the Service Provider cannot precisely predict its parameter
values. In both cases, we will find the equilibrium point where underestimation and overestimation
have equal impacts.

Considering that the model is not strategy-proof and we aim to introduce a mechanism to enforce it,
it is relevant to our study to evaluate the misallocation of h instead of ρ, since the Service Providers
can calculate their declared parameters to get the allocation they want.

3.12.3 Allocation Misestimation

Given the diminishing returneffect of the allocation on net utility, we hypothesize that underestimating
and overestimating h by the same percentage ϵ will not result in equivalent changes in Uts net. This
suggests an asymmetry in the impact of misestimating h. To verify this, it is necessary to compare
the net utility outcomes of overestimating and underestimating h to determine if similar magnitudes
of error in either direction affect Uts net equally.

Considering any percentage deviation expressed in its decimal form ϵ, we can evaluate the effect of
both overestimating and underestimating h on net utility Uts net, and derive a generalized equilibrium
point for any percentage of deviation.

For any percentage deviation ϵ, the overestimation and underestimation of h can be represented as
follows:

Overestimating h:

Uts net(h(1 + ϵ)) = ρ
(
1− e−ξh(1+ϵ)

)
− d′h(1 + ϵ)

Underestimating h:

Uts net(h(1− ϵ)) = ρ
(
1− e−ξh(1−ϵ)

)
− d′h(1− ϵ)

Equating Overestimation and Underestimation

To find the point where the impact of overestimating and underestimating h by ϵ is equal, we set the
two previous equations equal:

ρ
(
1− e−ξh(1+ϵ)

)
− d′h(1 + ϵ) = ρ

(
1− e−ξh(1−ϵ)

)
− d′h(1− ϵ)

After simplifications, we find the expression for the equilibrium point ρeq:



ρeq =
d′hϵ

sinh(ξhϵ)e−ξh
(3.37)

This is the generalized equilibrium point for any percentage deviation ϵ. It provides a reference point
at which the impacts of overestimation and underestimation of h on net utility are equal.

Moreover, since sinh(ξ h ϵ) > ξ h ϵ for any ϵ > 0, we have

ρeq =
d′ h ϵ

sinh(ξ h ϵ) e−ξ h
<

d′ h ϵ

(ξ h ϵ) e−ξ h
=

d′

ξ
eξ h = ρexp.

Note that the expression at the right is the same as the one we get by solving the optimal allocation
equation for ρ. Hence ρeq is always strictly less than the real expected value ρexp. Furthermore, the
function

f(ϵ) =
ϵ

sinh(ξ h ϵ)

is strictly decreasing for ϵ > 0, which implies that ρeq decreases as ϵ increases.

A detailed, step-by-step derivation of this result is provided in the demonstrations chapter of the
appendix (see Appendix B.6).

3.12.4 Practical Implications for Service Providers

The previous analysis yields a single equilibrium expression ρeq for any percentage deviation ϵ, as given
by equation 3.37. Since ρeq < ρexp for all ϵ > 0, any actual ρexp will lie above this equilibrium. As a
result, modest overestimation of h carries a larger utility penalty than a comparable underestimation,
and vice versa.

These observations about the asymmetry in misestimating h provide useful insight when we study
strategy-proofness. In particular, knowing that ρeq always falls below ρexp helps frame how an SP
might combine this risk profile with transferring half of its declared net utility: the balance between
real revenue and declared transfers will ultimately determine whether underreporting yields a higher
retained payoff.

The key reason ρeq always falls below ρexp is that utility depends on ρ almost linearly (through the
factor 1−e−ξh), whereas the allocation h itself is only a logarithmic function of ρ. When we perturb h
by ±ϵ, the term e−ξh changes by a factor e±ξ h ϵ, which grows or shrinks exponentially in ϵ, while the
cost term d′ h changes only linearly in ϵ. Because sinh(ξ h ϵ) captures the difference between eξ h ϵ and
e−ξ h ϵ, the equation that balances ”overestimating” versus ”underestimating” h forces ρ to be smaller
than the nominal ρexp = d′

ξ e
ξ h. In other words, the exponential sensitivity of revenue to changes in h

always overpowers the linear sensitivity of cost, so the unique ρ that makes those two one-sided errors
cancel must lie below the value that exactly maximizes the unperturbed allocation.

3.13 Exploring Strategy Proofness

From a game-theory perspective, a dominant strategy is one that yields a payoff for a player that is
at least as high as the payoff from any other strategy, regardless of what strategies the other players
choose.

A model is considered strategy-proof if truthfulness is a dominant strategy for every participant. In
other words, no participant can improve their outcome by misrepresenting their true preferences or
information.



In our model, individual contribution guarantees ensure that one SP’s misrepresentation does not affect
another SP’s outcome. However, the NO, who collects half of each SP’s net utility, relies on accurate
reports and would be affected by any misrepresentation.

Parameters in the utility function quantify real-world interactions, but differ in their susceptibility to
misreporting. Specifically, β is more prone to being misrepresented than lavg, since the NO can directly
measure the SP’s load. The parameter ξ lies in between: it is not defined how it could be directly
observed but can sometimes be inferred from an SP’s business model or by measuring the need for
allocated hardware each request creates. For the purpose of this analysis, we assume that the NO only
has precise data for lavg, so any number submitted for β and ξ must be taken at face value. Because
β partly defines the parameter ρ = β · lavg, this effectively makes ρ subject to misrepresentation.

3.13.1 Getting the Optimal Allocation with Two Misrepresented Parame-
ters

In this Section we prove the model is not strategy-proof by presenting a procedure that enables an SP
to achieve the optimal allocation while declaring any desired net utility. Additionally, we provide a
more detailed analytical demonstration to gain deeper insights into the model’s behavior.

Constructive Method

In this demonstration, we define ξdec and ρdec as declared parameters and Udeclared
ts net as declared net

utility. The core idea is to use the allocation optimization equation 3.19 to first calculate the optimal
allocation h. Then substitute its expression for the optimal allocation solved for ρ 3.22 into the declared
net utility function. This gives us an expression for the net utility declared with ξdec as a variable,
Udeclared
ts net (ξdec). Finally, by using the declared net utility equation again, we can determine the value

of ρdec corresponding to the value of ξdec that has been selected.

First, we calculate the allocation h∗ according to 3.19

h∗ =
1

ξ
ln

(
ρξ

d′

)

Define the declared net utility function:

Udeclared
ts net (ξdec, ρdec) = ρdec

(
1− e−ξdech

)
− d′h (3.38)

Once we find Udeclared
ts net (ξdec) using 3.22, we rearrange this equation to solve for ρdec:

ρdec =
Udeclared
ts net (ξdec) + d′h

1− e−ξdech

After substitutions and simplification, the expression for ρdec is as follows:

ρdec =
d′eξdech

ξdec
(3.39)

Using this equation, SPs can manipulate their declared utility by selecting a desired value for ξdec, and
then calculating the corresponding value of ρdec.

This method allows SPs to declare parameters ξdec and ρdec that maintain the optimal allocation for
the real values of ξ and ρ, while also achieving the desired declared net utility Udeclared

net .



A more detailed step-by-step demonstration of this constructive method along with an analytical
demonstration is provided in the section B.8. Additionally, in the practical chapter, we provide a
numerical example in section 4.4.2

3.13.2 Strategic Misreporting of One Parameter

We previously considered the case where both ρ (through β) and ξ were declared by SP and unknown
to NO. We showed SP can obtain the optimal allocation while declaring any desired net utility, proving
the model is not strategy-proof and that SPs can arbitrarily profit from misreporting . In the next
two subsections, we examine the case where only one parameter is private.

Misreporting ρ

Recall that the SP transfers half of its declared net utility to the NO. In this scenario, the NO can
measure ξ but cannot verify ρ, so the SP may declare a value ρdec ̸= ρreal.

We begin by writing:

• Declared utility (based on ρdec and the induced allocation hdec):

Udec = ρdec
(
1− e−ξ hdec

)
− d′ hdec

• Actual utility (using the true ρreal but the same allocation hdec):

Ureal = ρreal
(
1− e−ξ hdec

)
− d′ hdec

• Utility retained by the SP (it keeps all of Ureal minus half of Udec):

USP(ρdec) = Ureal − 1
2 Udec

Next, recall that, even when the SP misreports, the mechanism chooses the allocation

hdec =
1

ξ
ln
(ρdec ξ

d′

)
We now substitute this into Udec and Ureal and compute Udec in closed form. Since e−ξ hdec = d′/(ρdec ξ),
we have:

Udec = ρdec

(
1− d′

ρdec ξ

)
− d′

1

ξ
ln
(ρdec ξ

d′

)
This simplifies to:

Udec = ρdec −
d′

ξ
− d′

ξ
ln
(ρdec ξ

d′

)
Now we compute Ureal in closed form, similarly to what we just did:

Ureal = ρreal

(
1− d′

ρdec ξ

)
− d′

1

ξ
ln
(ρdec ξ

d′

)
Which simplifies to:

Ureal = ρreal −
ρreal d

′

ρdec ξ
− d′

ξ
ln
(ρdec ξ

d′

)



By definition, the retained net utility is:

USP(ρdec) = Ureal − 1
2 Udec

Now we substitute the expression we just derived:

USP(ρdec) =
[
ρreal − ρreal d

′

ρdec ξ
− d′

ξ ln
(

ρdec ξ
d′

)]
− 1

2

[
ρdec − d′

ξ − d′

ξ ln
(

ρdec ξ
d′

)]
After simplifications, we arrive at:

USP(ρdec) = ρreal −
ρreal d

′

ρdec ξ
− d′

2 ξ
ln
(ρdec ξ

d′

)
+

d′

2 ξ
− ρdec

2

This single algebraic expression summarizes the SP’s retained utility as a direct function of its declared
parameter ρdec.

Finally, we want to find the optimal misreport. To maximize USP(ρdec) over all feasible ρdec (subject
to ρdec ξ > d′), we compute the derivative with respect to ρdec and set it equal to zero:

dUSP

d ρdec
=

ρreal d
′

ρ2dec ξ
− d′

2 ρdec ξ
− 1

2
= 0

Multiply through by 2 ρ2dec ξ to clear denominators:

2 ρreal d
′ − d′ ρdec − ρ2dec ξ = 0

or equivalently

ρ2dec +
d′

ξ
ρdec −

2 d′ ρreal
ξ

= 0

Solving this quadratic for ρdec and taking the positive root yields the unique maximizer:

ρ∗dec =

d′

ξ

[
−1 +

√
1 + 8 ρreal ξ

d′

]
2

(3.40)

By construction, ρ∗dec satisfies ρ
∗
dec ξ > d′, meaning that the allocation is positive. Now that we got the

formula for the optimal misreporting of (ρ∗dec) we want to compare the retained net utility an SP can
get by misreporting this value. For that, we define the retained net utility obtained through a truthful
declaration and the retained net utility obtained through an untruthful declaration:

Utruth = USP(ρreal) and Uopt = USP(ρ
∗
dec)

Since we already have the general formula:

USP(ρdec) = ρreal −
ρreal d

′

ρdec ξ
− d′

2 ξ
ln
(ρdec ξ

d′

)
+

d′

2 ξ
− ρdec

2

we substitute ρdec = ρreal and ρdec = ρ∗dec separately:

Utruth = ρreal −
ρreal d

′

ρreal ξ
− d′

2 ξ
ln
(ρreal ξ

d′

)
+

d′

2 ξ
− ρreal

2
=

ρreal
2

− d′

2 ξ
− d′

2 ξ
ln
(ρreal ξ

d′

)
Uopt = ρreal −

ρreal d
′

ρ∗dec ξ
− d′

2 ξ
ln
(ρ∗dec ξ

d′

)
+

d′

2 ξ
− ρ∗dec

2



with ρ∗dec as defined in equation 3.40. Finally, define the retention-ratio and percentage gain as:

R =
Uopt

Utruth
Gain = (R− 1)× 100%.

Computing R for any fixed triple (ρreal, ξ, d
′) shows exactly how much retained utility the SP gains

by lying optimally instead of telling the truth. In particular, as ρreal → ∞

ρ∗dec ≈

√
2 d′ ρreal

ξ
, Uopt ≈ ρreal, Utruth ≈ ρreal

2
, R ≈ 2, Gain ≈ 100%

Thus in the large ρ limit, the SP can roughly double its retained net utility by optimally understating
ρ.

Finally we use equation (3.40) to give a declared value of ρ and supposing that this value is ρ∗dec find
the corresponding value of ρreal.

ρreal =
ρ∗dec
2

+
ξ (ρ∗dec)

2

2 d′

Misreporting ξ

Assume ρ is public and ξ is private. SP declares ξdec

hdec =
1

ξdec
ln
(ρ ξdec

d′
)
,

valid when ρ ξdec > d′.

Utilities

• Declared net utility:

Udec = ρ
[
1−

1 + ln
(
ρ ξdec
d′

)
ρ ξdec
d′

]
= ρ
[
1− d′

ρ ξdec

(
1 + ln(ρ ξdec

d′ )
)]
.

• Real net utility:

Ureal = ρ
[
1−

(
ρ ξdec
d′

)−ξreal/ξdec −
ln(ρ ξdec

d′ )
ρ ξdec
d′

]
.

• Utility retained by SP:

USP = Ureal − 1
2 Udec.

Solving ∂USP/∂ξdec = 0 yields a unique solution to the optimal declaration condition.

ξ∗dec < ξreal whenever ρ ξreal > d′.

Note that the function

hdec(ξdec) =
1

ξdec
ln
(
ρ ξdec
d′

)
attains its maximum at

ξpeak =
d′ e

ρ
, hmax =

ρ

d′ e
,



and for any h < hmax there are two values of ξdec one below and one above ξpeak that yield the same
allocation hdec. SP can therefore choose the smaller of these two ξdec to reduce its declared utility
without changing hdec.

Understating ξ reduces the transfer more than the loss from the smaller h, so SP’s utility strictly
increases. To understand how much a SP can profit from this misrepresentation, we compare:

Utruth = USP(ξreal) and Uopt = USP(ξ
∗
dec).

Define the gain ratio and the gain in percentage:

R =
Uopt

Utruth
, Gain = (R− 1)× 100%.

For fixed ρ, ξreal, and d′, we compute R and

Gain(ξreal) = (R− 1)× 100%

to see exactly how much an SP can increase its retained utility by optimally understating ξ.

In the practical Chapter, we provide a numerical example of this misreporting 4.6

3.14 Conclusions on Strategy-Proofness

The previous analysis confirms that the model is not strategy-proof:

• When both ρ and ξ are private, an SP can choose any ξdec and compute a matching ρdec that
preserves the optimal allocation h∗ while declaring any desired net utility.

• When only one parameter is private:

– Under-declaring ρ trades off a slightly smaller h∗ against lower transfers, strictly increasing
the SP’s retained utility.

– Under-declaring ξ similarly reduces transfers by more than the loss in allocation, again
raising retained utility.

• In every scenario, the dominant strategy for an SP is to under-declare its private parameter(s)
rather than over-declare.

• As ρreal or ξreal tend to infinity, the maximum percentage gain from under-declaring approaches
100%.

• For realistic, finite parameter values, a finite upper bound exists on the percentage gain achievable
by under-declaring.

3.15 Proposing Mechanisms to Enhance Strategy-Proofness

The previous section showed that the current Edge Computing model is not strategy-proof. To achieve
fair and incentive-compatible outcomes, we can either extend the model with external mechanisms or
modify it.

In mechanism design and cooperative game theory, the Vickrey-Clarke-Groves (VCG) mechanism is a
standard tool for enforcing truthfulness. We describe below why VCG is infeasible in our setting. We
then consider post-initial allocation market mechanisms, which introduce a secondary trading stage to
discourage misrepresentation.



3.15.1 Considering the Application of the Vickrey-Clarke-Groves (VCG)
Mechanism

The VCG mechanism maximizes the reported social welfare, which in our model corresponds to the
grand coalition’s total net utility under the optimal allocation. Each SP is charged a transfer equal
to the externality it imposes on the rest of the coalition, ensuring that truthful reporting becomes a
dominant strategy. This mechanism is feasible when the total value of the grand coalition is known,
typically because payments flow into a common account, even if individual contributions remain un-
known. In our scenario, however, each SP’s revenue remains private, preventing verification of the
coalition’s total net utility. As a result, the VCG mechanism cannot be effectively enforced.

3.15.2 Considering Post-Allocation Market Mechanisms

This approach preserves the original model but adds a secondary market after the initial resource
allocation. SPs may buy or sell allocation shares through auctions or bilateral trades. For example, a
new SP entering the coalition or an existing SP that underestimated its needs can purchase additional
allocation at a price equal to the seller’s expected remaining revenue, based on the seller’s declared
utility. Sellers are obliged to complete the sale.

Under this scheme, SPs that declared truthfully receive their anticipated profits sooner when they sell
part of their allocation. Those that misrepresented their utility risk getting purchased their allocation
at a lower value than the one they would get. By acquiring allocations from SPs with lower per-unit
net utility, honest SPs are rewarded, and misreporting is partially deterred.

However, an SP aware of having high per-allocated unit net utility can still benefit by slightly un-
derstating its value to reduce the declared net utility while most likely retaining all the allocation.
Conversely, an SP with relatively low per-allocation unit net utility might choose to hold its allocation
rather than selling, preferring continued low-latency service delivery over immediate revenue. Such
a scenario could discourage some truthful SPs from wanting to sell their allocation. However, this
scenario is unlikely, as low-latency SPs typically have a higher benefit factor.

Different approaches to these market-based mechanisms are explored in the related prosumer academic
articles. In Chapter A of the Appendix, we explore and summarize each of these articles. These
mechanisms can improve incentive compatibility and overall efficiency, and extending trades to per-
time-slot units further enhances flexibility and risk management. Nevertheless, because SPs can still
find profitable misreporting strategies, post-allocation markets alone cannot fully guarantee strategy-
proofness.

3.15.3 Externally Inferring the Diminishing Returns Parameter

The specific method used to share hardware infrastructure among SPs is beyond our scope. But in any
scenario of virtualization, the parameter ξ can be inferred by analyzing the relation between served
requests and required hardware resources. Specifically, ξ quantifies the amount of computing resources
needed to attend to a certain amount of requests in a certain amount of time.

A higher ξ implies that minimal extra resources are enough as potential monetization increases, while
a lower ξ indicates more gradual scaling, typical of background-processing services. Section 4.2.2
presents empirical insights of this behavior in our current model and Section 5.2 formalizes a revised
definition of ξ that makes it directly measurable by the NO.

If ξ is externally measured, the only remaining private parameter is the benefit factor β. Misreporting
only β prevents an SP from attaining the full optimal allocation, and the profit from misreporting is
limited by the true value of β. Moreover, since β captures time-sensitivity of service delivery, it can
serve as a priority indicator: declaring a higher β grants lower-latency responses at the expense of
higher payments.

This introduces a trade-off: under-declaring β raises retained utility but reduces response priority,



whereas over-declaring β improves latency at the cost of lower net gains. When combined with post-
allocation market mechanisms previously discussed, where SPs can buy or sell allocation shares after
the initial assignment based on their declared utility, the benefits of truthful β reporting can outweigh
the misreporting incentives, thus reinforcing honest declarations and balancing latency against utility
retention.

3.16 Limits of the Independent Contribution Property

As seen in previous sections, the model simplifications we found were possible as a consequence of
the independent contribution property. While this property greatly simplifies the mathematical and
computational aspects of the game, it is important to acknowledge that it assumes that no externalities
or synergies among SPs are introduced. The presence of such factors could significantly alter the
dynamics and outcomes of the game. Below are some scenarios that would disrupt the independent
contribution property and, in consequence, invalidate the equivalence between how the model was
originally proposed and our simplified version:

• Global Coupling Constraint: Introducing a global constraint such as requiring the total allocation
to fall within a minimum or maximum threshold for co-investment to take place imposes a
dependency among SPs’ value functions and breaks the independent contribution property. When
the sum of individually optimal allocations falls outside this range, players will not be able to
achieve their individual optimal allocations, resulting in strictly worse net utility. If the total
allocation is below the minimum, co-investment may not occur or may yield reduced returns for
all players. Conversely, if it exceeds the maximum, players may be forced to scale down their
allocations, even when their individual optimum is higher.

• Variable Resource Unit Pricing: Moving away from a fixed price per resource unit, to a sublinear
pricing model would give a greatter Shapley value to SPs with greatter needed allocations.

• Dynamic Allocation: Allowing allocations to vary by time-slot rather than being fixed would
introduce variability in utility calculations and strategic considerations. This would also imply
working with each time-slot load instead of the average load. In this case, SPs whose peak load
is offset from that of the others would benefit.

• Energy Costs Variability: Incorporating the cost of electricity per allocated resource unit, if these
costs vary or allow for the deactivation of resources in certain time-slots, would introduce a cost
factor that fluctuates based on external conditions or operational decisions.

• Demand Interdependence (Complementarity or Substitutability): If the value generated by one
SP depends on the allocations of others because their services are complementary or substitutable,
then contributions can no longer be assessed independently.

3.16.1 Considering Positive Externalities and Synergies

Adding positive externalities or synergies among players would necessitate reevaluating the individual
contribution approach. In such cases, the simplified model may no longer accurately capture the
strategic and economic dynamics of the system. However, under certain conditions, this simplified
version can still provide meaningful insights.

If only some of the previously discussed modifications are introduced, such as sublinear per-unit pric-
ing, per time-slot allocation, or demand interdependence in the case of complementary services, the
simplified model can still serve as a valid baseline. Although these changes disrupt the independent
contribution assumption, the simplified model remains a useful benchmark. In particular, it can be
interpreted as a ”worst-case” scenario for individual Service Providers, as the lack of synergies or
cooperative gains results in lower potential utility compared to a model that explicitly accounts for
them.



In Chapter 5, we incorporate some of the previously discussed modifications that disrupt the inde-
pendent contribution property. Specifically, we analyze the effects of introducing a sublinear per-unit
pricing scheme, enabling dynamic allocation across time-slots, and enforcing minimum and maximum
total allocation thresholds required for co-investment to occur. Then, in Chapter 6, we visualize the
impact of these changes and compare the outcomes of the modified model with those of the baseline
scenario developed under the assumption of independent contributions.





Chapter 4

Empirical Illustration and Results
Analysis of the Originally Proposed
Edge-Computing Model

4.1 Introduction

This chapter presents numerical experiments and visualizations designed to corroborate the theoretical
insights established in the previous chapter. We begin by reproducing and critically reviewing the
simulation results from the original article (Section V, ”APPLICATION TO EDGE COMPUTING”).
We then conduct a sensitivity analysis on all the variables, visualize the results through charts, and
interpret them. Finally, we show how misestimation of ρ and ξ influences optimal allocation, net
utility, and SP strategic gains through numerical examples.

4.2 Analyzing the Simulations Results of the Referenced Ar-
ticle

To conclude our analysis of the referenced article, and before conducting our own simulations and
proposing modifications to the model, we first interpret the simulation results presented in Section ”V.
APPLICATION TO EDGE COMPUTING” of the original article. To support this interpretation,
we reproduce charts and extracts directly from that article. The load and utility functions defined in
Section ”A. Parameters” have already been discussed in the previous analytical chapter. Therefore,
we begin our analysis directly with Section ”B. Scenario with 2 SPs of the same type”.

4.2.1 B. Scenario with 2 SPs of the same type

Below we copy the extract where the scenario is set:

In this case, there are two SPs of the same type: βSP 1

= βSP 2

= p̂ where p̂ ≜ d
D·T is the

price, d = 0.05 dollars/millicores, amortized over each of T time-slots over the investment
duration, D. SP1 and SP2 have the same temporal trends, but l1t = 4l2t ∀t. For simplicity,
we use the simplified equations for one time-slot, using the amortized CPU price.

In this section, the authors set the value of β equal to the amortized price d′ (we call it d′ to keep
consistency with the previous definitions but is the same as p̂ ). In practice, these variables would
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Figure 4.1: Figure 1. Scenario with 2 SPs of the same type

not typically be related, since β should be a free parameter set by the SP, representing how requests
served at the edge translate into monetary units while d′ is a time-slot dependent variable. There is no
intrinsic reason for relating them. However, as we will observe, these two variables cancel each other
out in the optimal allocation equation, simplifying it considerably. The value of ξ is not explicitly
provided in this section, but since the scenario involves two SPs ”of the same type”, it must be the
case that their parameters match, ξSP1 = ξSP2.

Recall the original net utility equation:

Uts net = ρ
(
1− e−ξh

)
− d′h.

The corresponding optimal allocation equation is:

h∗ =
1

ξ
ln

(
ρ ξ

d′

)
.

With the chosen condition β = d′, these equations simplify to:

h∗ =
1

ξ
ln(ξ).

Substituting this simplified allocation back into the time-slot net utility equation gives:

Uts net =
ρ(ξ − 1)− d′ ln(ξ)

ξ
.

In the figure 4.1 we paste the first chart from this simulation along with its interpretation as presented
in the original article:

In Fig. 4.1, we show the capacity of purchased CPU and the value of the grand coalition,
as a function of the daily total load, ltot =

∑T
t=1 l

tot
t . We observe that, the more the

load the more the capacity installed to serve it. However, recall that, the utility functions
follow a diminishing return with respect to the resources, so, the trend of the capacity C
is sublinear. We observe a linear trend for coalitional value because the value function is
linearly dependent on the load (see Eqn. (17)).



Figure 4.2: Figure 2. Scenario with 2 SPs of the same type

The authors correctly identify that the trend of C is sublinear; we further clarify that, specifically, this
relationship is logarithmic. Additionally, they claim the coalitional value exhibits a linear trend. Since
the coalitional value equals the sum of individual net utilities, we add a minor correction here. Because
each individual net utility Uts net is strictly convex in its load argument (having a positive second
derivative), their sum is also strictly convex with respect to the total load ltot. Therefore, the grand
coalition value function V (ltot) exhibits increasing marginal returns at moderate loads (additional
load generates increasingly larger marginal gains), eventually approaching a linear asymptote. Thus,
rather than strictly linear, the grand-coalition value initially experiences accelerated growth and later
transitions to linear scaling behavior.

In figure 4.2 we reproduce the second chart from this simulation, and below we present an extract of
the interpretation provided in the original article:

We observe in Fig. 4.2 capacity sharing between the SPs, SP1 receives a larger capacity:
it has to serve a larger part of the requests. Note that, even if the load of SP1 is 4 times
the load of SP2, the difference between the resource allocated to them is not that big: a
consequence of the diminishing return.

It is important to clarify here that the observed behavior is indeed a consequence of diminishing
returns, but specifically the diminishing returns of the optimal allocation with respect to the variables
ltot and β, not directly the diminishing returns of utility with respect to allocation. Additionally, as a
direct consequence of this phenomenon, the proportional difference in allocation shrinks as load grows
larger.

To illustrate this clearly, consider a simple numerical example under conditions identical to the scenario
presented:

• βSP 1

= βSP 2

= d′



• l1t = 4 l2t

• d′ = 0.05
D·T

Case 1:

Set the number of daily time-slots to 100 and assume a daily load of l1t = 400, 000, evenly distributed.
Since SPs are of the same type, we set ξ = 0.1 for both. Then, β = d′ = 0.05

D·T = 4.566 × 10−7. The
optimal allocation is computed as follows:

h∗
i =

log(lit · ξ)
ξ

Then:

h∗
1l=4000 =

log(400)

0.1
≈ 59.91

U1
ts net l=4000 = 4000 · 4.566× 10−7

(
1− e−5.991

)
− 4.566× 10−7 · 59.91 ≈ 1.79× 10−3

h∗
2l=1000 =

log(100)

0.1
≈ 46.05

U2
ts net l=1000 = 1000 · 4.566× 10−7

(
1− e−4.605

)
− 4.566× 10−7 · 46.05 ≈ 4.31× 10−4

The resulting relationships are:
h∗
1

h∗
2

≈ 1.2,
U1
ts net

U2
ts net

≈ 4.2.

Case 2:

For the same 100 daily time-slots but now with l1t = 40, 000:

h∗
1l=400 =

log(40)

0.1
≈ 36.88

U1
ts net l=400 = 400 · 4.566× 10−7

(
1− e−3.688

)
− 4.566× 10−7 · 36.88 ≈ 1.61× 10−4

h∗
2l=100 =

log(10)

0.1
≈ 23.02

U2
ts net l=100 = 100 · 4.566× 10−7

(
1− e−2.302

)
− 4.566× 10−7 · 23.02 ≈ 3.06× 10−5

Now, the relationships are:
h∗
1

h∗
2

≈ 1.6,
U1
ts net

U2
ts net

≈ 5.3.

Observe that when the load is reduced to 10% of its initial value, the optimal allocation reduces to
approximately 61% for SP1 and approximately 50% for SP2. This confirms that as the total load
grows, the relative allocation difference diminishes.

Regarding net utility, when the load drops to 10% of its initial value, the utility shrinks to approxi-
mately 9% for SP1 and approximately 7% for SP2. Furthermore, notice that the utility ratio approaches
4 as load increases while maintaining the ratio l1t = 4 l2t . Formally, for SPs with identical β:

lim
load→∞

Unet(n · load)
Unet(load)

= n.



This result holds true even if the SPs have different ξ values, because verifying this limit for players
with the same β but different ξ values is equivalent to proving:

lim
ρ→∞

Unet(ρ, ξ)

ρ
= 1.

We proceed with the demonstrations of this last equation. We begin with an equivalent form of the
net utility for the optimal allocation expression 3.25

Unet(ρ, ξ) = ρ
(
1− e−ξ h∗

)
− d h∗ = ρ − d

ξ

[
1 + ln

(
ρ ξ
d

)]
.

Divide through by ρ:

Unet(ρ, ξ)

ρ
= 1 − d

ξ ρ

[
1 + ln

(
ρ ξ
d

)]
.

As ρ → ∞, the term d
ξ ρ

[
1 + ln(ρ ξ

d )
]
vanishes, since ln ρ grows much more slowly than ρ. Hence:

lim
ρ→∞

Unet(ρ, ξ)

ρ
= 1,

establishing that Unet(ρ, ξ) tends to ρ as their ratio converges to one.

In conclusion, two SPs cannot be considered ”of the same type” even if they share identical values
for β and ξ, since their relative allocation cost weighting strongly depends on their respective loads.
Additionally, our analysis confirms that the model inherently favors SPs with larger loads. This
phenomenon results from the exponential saturation function (1−e−h ξ), whose argument grows larger
with increasing load, diminishing the relative significance of allocation costs.

To illustrate this behavior visually, we present the exponential saturation function chart 4.3:

Figure 4.3: Exponential Saturation Function



Players of the Same Type

Two SPs can be considered ”of the same type” when the product ξ · h is equal for both, implying
that the relative weighting of allocation cost is identical, or in other words, the fraction of the total
requests served at the Edge is identical. This condition is equivalent to stating that both players share
the same value of the product ρ · ξ. Below, we provide a formal demonstration of this equivalence.

From the first-order conditions of the utility function, we have:

h∗
i =

1

ξi
ln

(
ρi ξi
d

)
, i = 1, 2.

Multiplying by ξi, we obtain:

ξi h
∗
i = ln

(
ρi ξi
d

)
.

Imposing the equality condition:
ξ1 h

∗
1 = ξ2 h

∗
2,

it follows that:

ln

(
ρ1 ξ1
d

)
= ln

(
ρ2 ξ2
d

)
=⇒ ρ1 ξ1 = ρ2 ξ2.

Regarding the section of payments and revenues for this scenario, the original article states:

The contribution of SPi to the coalitional revenues is defined as r̂i = D ·
∑T

t=1 u
i(lit, h

i). We
denote the grand coalitional revenues as rN =

∑
i∈N ri, where ri is the result obtained in

(12)–(14), i.e. the payoff of each player without considering the component of the payment.
The term r̂i is the amount of revenues produced by SP i, due to the served load during the
overall duration of the coinvestment.

Fig. 2 shows that most contribution comes from SP1, since its load is four times higher than
that of SP2, and the utility of any SP (and thus its contribution to the grand coalitional

revenues) is proportional to the served load; indeed, we observe that r̂SP
1

= 1
4 r̂

SP2

. Note
that hNO and rNO are not in the figure, as the NO does not use resources, because its load
is null; this implies that its utility is null so it does not produce revenues to the grand
coalition by serving a load.

We first address what appears to be a typographical error in the quoted text. Rather than stating
r̂SP

1

= 1
4 r̂

SP2

, the authors likely intended to express r̂SP
1

= 4 r̂SP
2

, given that SP1’s load is four times
higher.

However, as we previously demonstrated, the relationship r̂SP
1

= 4 r̂SP
2

does not hold unless the
players satisfy the condition ρ1 ξ1 = ρ2 ξ2. To meet this condition given that ρ1 = 4 ρ2, the parameters
ξ must be adjusted accordingly, specifically ξ1 4 = ξ2.

This result aligns with the behavior we previously discussed in Section 3.10.

To complete our analysis of the scenario involving two SPs ”of the same type”, we reproduce below
the charts from the referenced article, provide the authors’ original interpretations, and supplement
them with our own observations.

Fig. 4.4 shows the outcome of the game, i.e. the payment pi, the revenue ri and the payoff
xi of each player i ∈ N given by the Shapley value. We first observe that the payoff of
anyone increases with the total load, which is obvious as the revenues of the grand coalition
is the sum of the utilities of each player, which in turn increase with the number of served
requests. It is interesting to notice that only SP2 actually pays to deploy the resources



Figure 4.4: Shapley value: payoffs, revenues and payments



at the Edge, while the NO and SP1 have negative payments, so they are not paying, but
are being paid. In the case of SP1, this means that it enjoys an additional gain from the
coinvestment in the Edge resources, which sums to the revenue rSP

1

directly coming from
its customers. The ”privilege” of the NO and SP1 can be explained by the fact that they
are the most important for the coalition: NO is the veto player; SP1 brings to the coalition
most of the revenues collected from users (Fig. 2).

As described in Section 3.6.2, the referenced article proposes a framework (Equations 3.9 to3.11) to
define payments and revenues. We identified several issues with this framework, as it results in a
system of n + 1 equations and 2n variables, which allows an infinite number of possible solutions. In
this part of the referenced article, payments seem to have been calculated solely to cover allocation
costs, satisfying the condition

∑
i∈S pi = d · C, rather than to achieve fairness.

As previously mentioned in quotation 4.2.1, the NO should not generate any revenues, contrary to
what is depicted in the first chart of Fig. 4.4. Additionally, as discussed in Section 3.4, SPs’ revenues
must be greater than twice their payoffs, and no SP should exhibit negative payments (which implies
receiving money); this should only be the case for the NO.

Despite trying different interpretations, we could not reproduce these results. We believe this discrep-
ancy arises from having n − 1 free parameters in their framework. Therefore, we propose adopting
the alternative framework described in Section 3.6.2, as it uniquely defines payments and clearly dis-
tinguishes payments intended to cover initial allocation costs from the ones aimed to ensure fairness
through the Shapley value.

4.2.2 C. Scenario with 2 SPs of different type

In this scenario, the load relationship remains the same as before, with l1t = 4 l2t ∀t. Also, they

maintain the condition βtot = βSP1 + βSP2 = 2 d̂, where d̂ denotes the amortized price. However, they
introduce variability by changing the value of β according to the parameter ω:

βSP1 = (1− ω)βtot, βSP2 = ω βtot, ω ∈ [0.5, 1].

At ω = 0.5, both SPs have the same characteristics as in the previous scenario. As ω increases, SP2
better monetizes its served load.

The authors then vary ω and highlight two main effects. First, Fig. 4.5 shows SP1’s CPU allocation
decreasing despite having four times the load of SP2, eventually reaching zero at ω = 1, while SP2’s
allocation correspondingly increases. Second, Fig. 4.6 shows that SP2’s Shapley value (the payoff)
grows as ω increases, while SP1’s payoff diminishes. The NO consistently receives half of the total
coalition value.

We are not in disagreement with the results or their interpretation. Nevertheless, we quote below a
fragment from the original article’s interpretation of this scenario that is worth commenting on:

Figure 4.5 shows how the CPU allocation evolves with ω. Increasing ω shifts capacity away
from SP1, until at ω = 1 SP1 receives no CPU and SP2 receives all of it. Although SP1 still
attracts four times the load, its lower benefit factor at high ω makes it less advantageous
to allocate resources there. This illustrates that edge allocation must consider both load
and service time-sensitivity.

Figure 4.6 shows the corresponding Shapley-value payoffs. As ω increases, SP2’s payoff
slice grows and SP1’s shrinks, while the network owner maintains half of the total coalition
value.

It is important to clarify that ”time-sensitivity” here is captured by the parameter β. Thus, the authors
indicate that both the load l and the benefit factor β should be considered when allocating resources



Figure 4.5: Capacity subdivision among the players

Figure 4.6: Payoff sharing



at the edge, as both directly influence the produced value of SP. We add here that changes in β and
changes in l have exactly the same effect. Therefore, performing a sensitivity analysis by varying β is
equivalent to performing the same analysis by varying l. For example, we could take the symmetric
case:

lSP1 = (1− ω) ltot, lSP2 = ω ltot, ω ∈ [0.5, 1],

with the constraint β1 = 4β2, and we would obtain identical results. This symmetry is the one that
allowed us to introduce the substitution ρ = l β.

Furthermore, note that when ω = 0.8, we reach the scenario described in Section 4.2.1, where players
satisfy condition ρ1 ξ1 = ρ2 ξ2. Since in this case lSP1 = 4 · lSP2 is exactly compensated for by
βSP1 · 4 = βSP2, we can say that at ω = 0.8 players are not just of ”the same type” but precisely
identical. This explains why they receive exactly the same proportion of both the total allocation and
the total coalitional value.

Since we do not know the value of ξ, neither the value of l they used, and we want to reproduce
their results, we start by confirming that indeed ξ1 = ξ2 since at ω = 0.8 we know ρ1 = ρ2. Then
we can fix any number for l1 and l2 as long as l1 = l4 · 4, and any value for β1 and β2 as long as:
β1 + β2 = d̂ and β1 = (1− w) · β1 + β2 and β2 = w β1 + β2

We take these simple initial values:

• l1 = 4.0, l2 = 1.0

• d = 1.0

• β1 + β2 = 2.0

Because the published charts report only relative allocation and payoff shares, we can reverse the
solution for the value of ξ that exactly reproduces their curves. In particular, at ω = 0.5 the two SPs
receive a similar amount of allocation shares, yet SP1 contributes nearly four times the utility of SP2.
Such a large disparity implies that the marginal cost term is effectively negligible and therefore ξ must
be very large. Carrying out a ”reverse engineering” on ξ to reproduce their results, we find that:

ξ = 900.

Interestingly, the obtained value ξ = 900 coincides exactly with the duration of each of the 96 daily
time-slots in seconds. This numerical match strongly suggests that ξ was intentionally calibrated using
the relationship ξ = µ∆t, with ∆t = 900 seconds and µ = 1, rather than emerging coincidentally.
Note that here µ indicates the amount of requests served at the Edge by one millicore in one second.
In other words, the parameter ξ appears designed to scale proportionally with the length of each time-
slot. Thus, we interpret the numerical equality ξ = 900 for time-slots of 900 seconds as a deliberate
modeling decision rather than mere coincidence.

Note that values of ξ of such a magnitude would produce unrealistic low allocations. If, for example,
we have 48,530 requests in one time-slot, a number used as average load in the article (A. P. Vela
A. Vı́a & Velasco, 2016) from where the traffic load is modeled, and a β value of 1.5 × 10−6 (both
numbers used in some of their simulations), we would get an allocation of ≈ 0.018 millicores, meaning
that with one core we could have ≈ 55,000 SPs with these characteristics.

In Section 5.2, we revisit the meaning of the parameter ξ, providing a theoretical discussion on its
definition and computation. Subsequently, in Section 5.3, we introduce modifications to the utility
function to address the unrealistically low allocations that such large values of ξ produce.

Figures 4.7 and 4.8 respectively plot the CPU allocation share and the total coalition payoff share as
functions of the parameter ω.



Figure 4.7: CPU Allocation Share vs ω

Figure 4.8: Coalitional Payoff Share vs ω



4.2.3 D. Price sensitivity analysis

In this scenario, a sensitivity analysis with respect to price d is conducted, in figure 4.9 we show the
corresponding charts from the referenced article and below we quote their interpretation of them.

Figure 4.9: Price Sensitivity Analisis

Here, we assess our model to show its behavior varying the number of SPs. The consequence
of increasing the price is that (Fig. 5(i)) the purchased capacity is reduced but in a sublinear
way, because of (17), and the coalitional value decreases linearly. These trends remain
consistent when changing the number N of SPs. Fig. 5 also confirms that adding a player
to the game brings a higher benefit in terms of the coalition value v. This is in line with
the supermodularity of v (Th. 1) and hence the convexity and stability of the game.



As previously discussed in Scenario B (Section 4.2), we confirm here that the purchased capacity indeed
decreases logarithmically. However, contrary to the authors’ interpretation, the coalitional value does
not decrease linearly. Below we provide a formal demonstration.

Increasing the unit price d′ affects the optimal per time-slot net utility as follows:

U∗(d′) = ρ− d′

ξ

[
1 + ln

(
ρ ξ

d′

)]
.

Taking the first derivative with respect to d′:

dU∗

dd′
=

1

ξ
ln

(
d′

ρ ξ

)
< 0,

and the second derivative is:

d2U∗

dd′2
=

1

ξ d′
> 0.

Thus, U∗(d′) is strictly convex and decreasing with respect to d′. Consequently, the coalitional value
defined as

V (d′) =

T∑
t=1

U∗(d′)

also decreases strictly convexly, flattening as d′ increases. Hence, the coalitional value does not decline
linearly but exhibits a convex pattern with diminishing marginal losses as the price grows.

4.3 Sensitivity Analysis

In this section, we perform a sensitivity analysis for each variable, presenting the corresponding charts.
Our aim is to validate the observations discussed in both the theoretical and previous sections, as well
as to highlight additional insights derived from this analysis.

4.3.1 Price Sensitivity Analysis

In figure 4.10 we can observe that as price d′ rises, the optimal allocation h∗ declines sharply at first
and then more gradually, reflecting the inverse logarithmic relationship. Small increases in price when
costs are low therefore lead to substantial cuts in allocated resources, whereas once prices are high,
further increases have only a modest additional impact. The curve reaches zero at the boundary of the
positive allocation condition (d′ = ρ ξ). This behavior captures the trade-off between marginal benefit
and marginal cost under diminishing returns. It also mirrors the price-sensitivity effects discussed in
Section 4.2.3.

We recall the net utility equation subject to the optimal allocation

U(h∗) = ρ − d′

ξ

[
1 + ln

(
ρ ξ
d′

)]
.

In figure 4.11 we can observe that as d′ rises, net utility U(h∗) falls more sharply at first and then
more gradually, reflecting its strictly convex dependence on price. Small increases in d′ when costs
are low produce large utility losses, whereas at higher d′ further price hikes have diminishing impact.
Finally, U(h∗) reaches zero at the threshold d′ = ρ ξ, where marginal cost equals marginal benefit. This
curve therefore captures the balance between revenue generation and allocation cost under diminishing
returns. It also mirrors the price-sensitivity effects discussed in Section 4.2.3.



Figure 4.10: Optimal Allocation vs Price

Figure 4.11: Net Utility at h U(h) vs Price



4.3.2 Potential Monetization Sensitivity Analysis

The figure 4.12 shows that the curve of h∗ versus ρ is logarithmic: it rises very steeply when ρ is small
and then gradually flattens as ρ grows. Economically, this means that increases in the SP’s combined
parameter ρ (whether from higher average load or greater benefit per request) prompt significant
additional resource allocation at low levels but yield ever-smaller marginal increases once ρ is already
large. This concave shape embodies the principle of diminishing returns: each additional unit of ρ
produces a smaller incremental allocation of computing resources.

This diminishing returns in allocation may not accurately reflect how computing resources should
escalate with respect to ρ, this is something we should address when proposing changes to the net
utility function.

Figure 4.12: Optimal Allocation (h*) vs ρ

The figure 4.13 shows that the net utility under optimal allocation grows sublinearly with the combined
parameter ρ, reflecting the trade-off between revenue and allocation cost. For ξ = 1 and d′ = 1, we
have

h∗ = ln(ρ), U(h∗) = ρ−
[
1 + ln(ρ)

]
At low ρ, the term 1 + ln(ρ) nearly cancels ρ, so U(h∗) remains close to zero until ρ exceeds about e.
As ρ increases, U(h∗) rises steadily but always stays below the line U(h∗) = ρ, since each additional
unit of ρ must cover both the direct revenue and the logarithmically growing cost of extra resources.
In the limit ρ → ∞, ln(ρ)/ρ → 0, so the gap between U(h∗) and ρ vanishes and U(h∗) ∼ ρ, illustrating
that costs become negligible at very large scales.

This confirms what we established in Section 4.2.2 indicating that for a fixed value of ξ the fraction of
requests served at the Edge changes when the value of ρ changes.



Figure 4.13: Net Utility at h U(h*) vs ρ

4.3.3 diminishing returnEffect Sensitivity Analysis

To complete the sensitivity analysis, we proceed with the diminishing returns parameter ξ. Given the
more complex impact of this parameter on the h∗ and U(h∗) charts, we include heatmap visualizations
for these functions to clearly illustrate the interaction between the parameters ρ and ξ.

The figure 4.14 visualizes the optimal allocation as a function of the sensitivity parameter ξ for various
benefit-to-price ratios ρ/d. No resources are allocated until the positive allocation condition ρ ξ > d is
satisfied. As ξ increases slightly above d/ρ, the marginal benefit term ln(ρ ξ/d) grows faster than the
cost of increasing ξ, causing h∗ to rise. The allocation attains its maximum when

d

dξ

[
ln(ρ ξ/d)− ln ξ

]
= 0 =⇒ ξpeak =

e d

ρ
, h∗

max =
ρ

e d
.

Beyond ξpeak, the 1/ξ factor dominates and h∗ decays toward zero, reflecting the stronger effect of
diminishing returns. Higher values of ρ/d not only raise the peak allocation but also shift ξpeak to
lower values, meaning that more profitable configurations can sustain larger allocations even under
greater sensitivity to resource increases.

The figure 4.15 shows a heatmap for the optimal allocation equation:

h∗(ξ, ρ) =
1

ξ
ln
(ρ ξ

d

)
across the (ξ, ρ) plane. The white dashed line marks the locus of points satisfying h∗ = 1. Below and
to the left of this contour, the allocation would be less than one unit (and effectively zero below the
feasibility boundary ξ = d/ρ). Above and to the right, the allocation exceeds one. The shape of this
contour illustrates that maintaining h∗ = 1 at higher values of ρ requires the sensitivity parameter
ξ to increase sublinearly, reflecting the logarithmic relationship between h∗ and ρ. The pronounced
curvature observed near low values of ξ and ρ emphasizes the model’s heightened sensitivity when
operating near the viability threshold. This confirms our earlier observation that, in order to maintain
a constant fraction of the load served at the Edge, it is necessary to carefully adjust ξ whenever ρ
varies, typically as a consequence of changes in load.

In the figure corresponding to the optimal net utility 4.16, the curves remain zero until the feasibility
condition ρ ξ > d is met, since no allocation can occur below that threshold. As ξ increases beyond
this point, U(h∗) initially rises with a rapid growth of h∗, then its speed diminishes once h∗ peaks.



Figure 4.14: Optimal allocation h∗(ξ) versus ξ for varying ρ/d.

Figure 4.15: Heatmap of h∗(ξ, ρ) with the contour h∗ = 1.



Recalling the equation:

U
(
h∗(ξ)

)
= ρ− d′

ξ

[
1 + ln

(
ρ ξ
d′

)]
,

so as ξ → ∞ the logarithmic term cancels out with the linear one and U(h∗) → ρ. Higher ratios of
ρ
d shift all curves upward and move their turnover points to smaller ξ, illustrating that more lucrative
settings sustain larger payoffs even under strong diminishing returnsensitivity.

Figure 4.16: Optimal net utility U(h*) vs ξ for varying ρ
d

The figure 4.17 shows the heatmap of U(h∗)(ξ, ρ) with the contour U = ρ/2. This heatmap displays
the net utility over the same parameter plane. The white dashed curve is the points where U(h∗) = 1

2 ρ,
marking half-saturation of the benefit factor. Points above this contour achieve more than half of the
maximum possible utility, while points below achieve less. The shape of the contour shows that larger
ρ or moderate ξ are required to reach 50% of ρ, while very high sensitivity actually suppresses utility.
This boundary identifies the region of parameter space in which the system captures a majority of its
potential payoff.



Figure 4.17: Heatmap of U(h∗)

4.4 Practical Illustration of the Strategic Implications

To conclude this practical chapter, we numerically analyze the strategic implications of economic risks
associated with misestimating the parameter ρ.

Then we present three numerical examples illustrating how a Service Provider might strategically
misrepresent its net utility. In the first case, misestimation occurs in both parameters (ξ and ρ),
where the optimal allocation can still be maintained. In the second case, misestimation occurs only in
parameter ξ, and in the third case, the misestimation occurs only in the parameter ρ.

4.4.1 Practical Illustration of Parameter Misestimation

In this practical section, we numerically illustrate the theoretical insights developed in Section 3.12.
Through specific numerical examples and visualizations, we show the effects of parameter misestima-
tion.

Recall that ρexp represents the expected value of ρ, determining an optimal allocation hexp and yielding
an expected net utility Uexp, while ρreal refers to the actual realized value of ρ, producing the real net
utility Ureal.

Consider two different scenarios characterized by different real parameter values of ξ:

• Case A: ξ = 0.02718, ρ = 1, d′ = 0.01 (Note that this is ξpeak)

• Case B: ξ = 0.2, ρ = 1, d′ = 0.01



Optimal Allocation and Expected Utility

The optimal allocation hexp and expected net utility Uexp are

hexp,A =
1

0.02718
ln
(
1·0.02718

0.01

)
≈ 36.79, Uexp,A = 1

(
1− e−1

)
− 0.01× 36.79 ≈ 0.2642,

hexp,B =
1

0.2
ln
(
1·0.2
0.01

)
≈ 14.98, Uexp,B = 1

(
1− e−2.996

)
− 0.01× 14.98 ≈ 0.8000.

Effects of Misestimation After Initial Investment

Recall that when h is fixed, the opportunity cost here is not applicable.

Overestimation (ρreal = 0.5):

LossA = 0.5
(
1− e−1

)
≈ 0.3160, LossB = 0.5

(
1− e−2.996

)
≈ 0.4750.

Case A becomes unprofitable under a 50% drop, while Case B remains profitable.

Uexp,A − Uexp,A = −0.0518

Uexp,B − Uexp,B = 0.325

Break-Even Point

Solve U = 0 for ρ:

ρ100,A =
0.01× 36.79

1− e−1
≈ 0.5819 =⇒ p100,A = 1− 0.5819 ≈ 0.4181 (41.81%),

ρ100,B =
0.01× 14.98

1− e−2.996
≈ 0.1577 =⇒ p100,B = 1− 0.1577 ≈ 0.8423 (84.23%).

This is consistent with the previous results since dropping ρ by a 50% becomes case A unprofitable,
while case B should drop more than ≈ 84.23 to become unprofitable.

Effects of Misestimation Before Initial Investment

Recalculate h and U for actual ρ:

Underestimation (ρreal = 1.5):

hreal,A =
1

0.02718
ln
(
1.5·0.02718

0.01

)
≈ 51.71, Ureal,A = 1.5

(
1− e−1.406

)
− 0.01× 51.71 ≈ 0.6150,

hreal,B =
1

0.2
ln
(
1.5·0.2
0.01

)
≈ 17.01, Ureal,B = 1.5

(
1− e−3.402

)
− 0.01× 17.01 ≈ 1.2799.

Overestimation (ρreal = 0.5):

hreal,A =
1

0.02718
ln
(
0.5·0.02718

0.01

)
≈ 11.29, Ureal,A = 0.5

(
1− e−0.308

)
− 0.01× 11.29 ≈ 0.0192,

hreal,B =
1

0.2
ln
(
0.5·0.2
0.01

)
≈ 11.51, Ureal,B = 0.5

(
1− e−2.3026

)
− 0.01× 11.51 ≈ 0.3349.



Generalizing Misestimations

We begin with the equilibrium formula 3.37 valid for any misestimation fraction ϵ:

ρeq =
d′ h ϵ

sinh
(
ξ h ϵ

)
e−ξ h

Using this expression, we compute the thresholds for three values of ϵ:

Small misestimation (ϵ = 0.2)

ρeq,A =
0.01× 36.79× 0.2

sinh
(
0.02718× 36.79× 0.2

)
e−1

≈ 0.9934, ρeq,B =
0.01× 14.98× 0.2

sinh
(
0.2× 14.98× 0.2

)
e−2.996

≈ 0.9400.

Moderate misestimation (ϵ = 0.5)

ρeq,A =
0.01× 36.79× 0.5

sinh
(
0.02718× 36.79× 0.5

)
e−1

≈ 0.9596, ρeq,B =
0.01× 14.98× 0.5

sinh
(
0.2× 14.98× 0.5

)
e−2.996

≈ 0.7053.

Extreme misestimation (ϵ = 1)

ρeq,A =
0.01× 36.79× 1

sinh
(
0.02718× 36.79× 1

)
e−1

≈ 0.8510, ρeq,B =
0.01× 14.98× 1

sinh
(
0.2× 14.98× 1

)
e−2.996

≈ 0.3020.

SPs compare their ρexp against these thresholds:

• If ρexp > ρeq: overestimating allocation is riskier.

• If ρexp < ρeq: underestimating allocation is riskier.

Interpretation of Equilibrium Thresholds

Why is ρeq,A > ρeq,B for the same values of ϵ.

• Case A has a much smaller ξ than Case B, so its optimal allocation hA is larger.

• The numerator d′ h ϵ therefore grows more in A than in B.

• Meanwhile the denominator sinh(ξ h ϵ) e−ξ h grows more rapidly in B (since ξB hB is larger),
reducing its ratio.

• Consequently the threshold ρeq remains higher in Case A than in Case B for any fixed ϵ.

Why ρeq decreases as ϵ increases.

• The numerator grows linearly in ϵ.

• The denominator contains sinh(ξ h ϵ), which increases super-linearly (exponentially) in ϵ.

• As ϵ grows, the denominator outpaces the numerator, driving ρeq down.

Why ρeq never exceeds 1 (the original ρexp).



• In the limit ϵ → 0, sinh(ξ h ϵ) ≈ ξ h ϵ, so

ρeq −→ d′ h

ξ h e−ξ h
= ρexp = 1.

• For any ϵ > 0, the super-linear growth of sinh makes the denominator strictly larger than its
ϵ → 0 approximation, so ρeq < ρexp = 1.

• Hence the equilibrium threshold always lies below the original expected value.

In conclusion, and from a more intuitive point of view, we can assess that overestimation always poses
a greater risk than underestimation. These results are consistent with the theoretical section 3.12.4
where we exposed the reasons behind this asymmetry.

4.4.2 Numerical Illustration of Optimal Allocation with the Two Misrep-
resented Parameters

We demonstrate practically how an SP can achieve the optimal allocation while declaring a lower net
utility using a detailed numerical scenario. Consider the following real parameters:

ξ = 0.02, ρ = 1, d′ = 0.01

Step 1: Calculate the optimal allocation h∗:

h∗ = −1

ξ
ln

(
d′

ρ ξ

)
= − 1

0.02
ln

(
0.01

1× 0.02

)
≈ 34.66

Step 2: Compute the corresponding time-slot real net utility Ureal:

Ureal = ρ
(
1− e−ξh

)
− d′h = 1× (1− e−0.02×34.66)− 0.01× 34.66 ≈ 0.1534

Suppose the SP wants to declare exactly half of this real net utility:

Udeclared =
Ureal

2
≈ 0.0767

Step 3: Using the constructive method (see Section 3.13), the declared parameters ξdec and ρdec can
be found.

First, express the declared time-slot net utility solely in terms of the SP’s declared parameter ξdec and
the fixed parameters d′ and h∗ :

Udeclared
net (ξdec) =

d′eξdech
∗

ξdec

(
1− e−ξdech

∗
)
− d′h∗

Step 4: Numerically solve for ξdec to achieve the declared utility of 0.0767:

0.0767 =
0.01 eξdec×34.66

ξdec

(
1− e−ξdec×34.66

)
− 0.01× 34.66

Solving numerically yields:

ξdec ≈ 0.01118



Step 5: Using the obtained ξdec, calculate the corresponding ρdec:

ρdec =
d′eξdech

ξdec
=

0.01 e0.01118×34.66

0.01118
≈ 1.3177

Thus, the SP maintains the optimal allocation h = 34.66, declaring parameters:

ξdec ≈ 0.01118, ρdec ≈ 1.3177,

achieving to declare exactly half the real net utility. This numerical illustration clearly shows the
vulnerability of the model to strategic misrepresentation by SPs. Note that this percentage

4.5 Numerical Illustration of Misreporting ρ

Take
ρreal = 10, ξ = 1, d′ = 1.

Then hdec = ln ρdec, and we evaluate at:

ρdec hdec Udec Ureal USP Benefit
10 ln 10 ≈ 2.30 6.70 6.70 3.35 0%
8 ln 8 ≈ 2.08 4.92 6.67 4.21 25.7%
5 ln 5 ≈ 1.61 2.39 6.39 5.20 55.1%
2 ln 2 ≈ 0.69 0.31 4.31 4.15 24.0%

Table 4.1: Comparison of declared vs. real utilities and retained SP utility

As ρdec decreases, USP peaks at ρdec = 5 with a 55.1% gain over truthful reporting. This is the
maximum benefit attainable by misreporting ρ in this scenario. Note that this percentage may vary
depending on the real value of ρ.

4.6 Numerical Illustration of Misreporting ξ

As previously established, the value of ξ can be measured directly, a fact we formalize in the next
chapter. To illustrate how the declaration of this parameter influences the model’s strategy-proofness,
we present an example demonstrating how an SP can benefit from misreporting its value. As shown
earlier in the theoretical section, if the actual value satisfies ξreal > ξpeak, an SP can choose a declared
value ξdec < ξpeak that yields the same allocation. Moreover, declaring an even lower value, while
resulting in a smaller allocation, can further increase the SP’s payoff from misreporting. Below, we
consider an illustrative example where ξreal = ξpeak, a particularly insightful scenario.

Take
ρreal = 1, ξreal = ξpeak = 0.1 e ≈ 0.2718, d′ = 0.1.

Then

hdec =
1

ξdec
ln
(ξdec
0.1

)
,

and we evaluate at:



ξdec hdec Udec Ureal USP Benefit
0.2718 ≈ 3.6788 0.2642 0.2642 0.1321 0%
0.4000 ≈ 3.4657 0.4034 0.2636 0.0619 −53.1%
0.3000 ≈ 3.6620 0.3005 0.2642 0.1140 −13.7%
0.2000 ≈ 3.4657 0.1534 0.2636 0.1869 41.5%
0.1500 ≈ 2.7031 0.0630 0.2501 0.2186 65.4%
0.1250 ≈ 1.7851 0.0215 0.2059 0.1952 47.7%
0.1000 0.0000 0.0000 0.0000 0.0000 −100.0%

Table 4.2: Comparison of declared vs. real utilities and retained SP utility for various ξdec.



Chapter 5

Analytical Investigation of the
Proposed Modifications to the
Edge-Computing Model

5.1 Introduction

In this chapter, we present changes to the baseline model, addressing its primary limitations and
enabling it to more accurately represent real-world co-investment dynamics. Our main goals for this
chapter are:

• Reinterpretation and redefining the meaning of ξ: In the referenced article, the varible ξ is
described as ”a parameter that governs the diminishing returns”, without much clarification
beyond its mathematical meaning. In the practical Section 4.2.1, we grasped some insights of its
real word meaning that we intend to formalize.

• Linearization of the allocation/utility scaling: In the original model, optimal allocation grows
logarithmically with ρ, while net utility approaches linearity as ρ → ∞. This behavior does not
realistically reflect proportional scaling.

• Differentiating the load demand l and the benefit factor β: In the original model, l and β appear
multiplicatively as β l, which justifies replacing them with ρ, although they represent distinct
concepts from the real world. To better capture their separate influences, we extend the model
to allow these variables to play different roles. Specifically, we want to be able to differenciate
them in the optimal allocation equation, where the load demand should induce a more linear-like
scaling behavior, while the benefit factor may retain its current logarithmic relationship.

• Improving Strategy-Proofness: We propose modifications to the utility function aimed at limiting
the lack of strategy-proofness, or at least preventing SPs from arbitrarily declaring their utility
while still receiving the optimal allocation.

• Enabling interdependent contributions: By incorporating positive externalities or synergies among
SP, the independent contribution assumption no longer holds. This allows us to capture richer
cooperative behaviors, where SPs jointly amplify each other’s utility, while the baseline serves
as a ”worst-case” scenario. One of these synergies is the ime-slot-specific allocations. Instead of
allocating resources based solely on the average load, each player now receives potentially differ-
ent allocations per time-slot. This approach captures the heterogeneity in daily demand patterns
that was previously overlooked and reveals additional synergies among SPs with complementary
load curves.
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5.2 Reinterpreting and Redefining the Meaning of the Dimin-
ishing Returns Parameter

In the original article, the parameter ξ is introduced as an exogenous shape parameter that controls the
rate of diminishing returns. Specifically, it determines how rapidly the exponential saturation function

1− e−ξ h

approaches its upper bound of 1 as the allocated resource h increases. However, the original article
does not provide a real-world interpretation, practical measurement methods, or guidelines on empiri-
cally estimating ξ. Additionally, the original formulation implicitly treats ξ as uniform across Service
Providers (SPs). In practice, different SPs typically require distinct amounts of resources to handle
the same number of requests.

In Section 4.2.2 of the empirical chapter, we identified a practical interpretation for the parameter ξ.
Specifically, the parameter ξi represents the number of requests that SP i can serve with one millicore
during a single time-slot. Formally, if SP i can serve on average µi requests per second per millicore,
and the day is divided into T slots, each of length ∆t seconds (e.g., T = 96, ∆t = 900), then the
corresponding parameter for each time-slot is defined as:

ξi∆t = µi︸︷︷︸
req/sec/millicore

× ∆t︸︷︷︸
s per time-slot

.

Although this interpretation clarifies the meaning of ξ and makes it measurable in practical terms, it
introduces an important model limitation: the resulting optimal allocation explicitly depends on the
chosen time-slot length. To illustrate this, consider the optimal allocation expression:

h∗ =
1

ξ∆t
ln
( l∆t β ξ∆t

d′∆t

)
.

Each parameter in this equation scales linearly with the duration of the time-slot ∆t, causing the
resulting allocation h∗ to vary with the time-slot length. A more detailed demonstration of this
dependency is provided in Section B.8.5 of the demonstrations chapter.

To resolve this limitation and maintain consistency with the original model, we redefine the exponential
saturation function using the per-second parameter µi, thus eliminating explicit dependency on ∆t:

1− e−µi h.

Under this redefinition, the saturation function remains consistent regardless of the chosen time-slot
length. Therefore, we conclude that defining ξi = µi best aligns with our original model’s goals,
ensuring clarity, empirical relevance, and time-slot length independence for the optimal allocation.

Typical practical values for the parameter µ (requests per second per millicore) across common edge
service profiles are listed below:

• Static content server: µ ≈ 5 to 15

• Dynamic web application: µ ≈ 1 to 5

• Complex database queries: µ ≈ 0.2 to 1

• Real-time and IoT services (audio, video, gaming, AR): µ ≈ 0.1

• CPU-intensive tasks (scientific computing, ML inference): µ ≈ 0.01 to 0.1

This refined interpretation of the parameter ξ provides enhanced model clarity and empirical grounding.
Furthermore, using ξ = µ gives a more realistic range of allocation values in our original model.



5.3 Motivating Changes in the Net Utility Function

Given our redefinition of ξi∆t as the number of requests that SP i can serve at the edge with one millicore
within a time-slot of duration ∆t, under the assumption of a perfectly uniform request distribution,
the quantity

li,∆t

ξi,∆t

represents the minimum number of millicores necessary for SP i to serve all li,ts requests at the edge
within that time-slot.

In real-world scenarios, requests are not perfectly evenly distributed, and even under ideal conditions,
resource utilization at or near this theoretical limit would degrade service quality and latency. There-
fore, it is economically reasonable for SPs to allocate resources above this minimum threshold whenever
the marginal benefit justifies the associated marginal cost.

By redefining ξ in measurable terms, we provide the NO, which controls the infrastructure, with the
practical capability to measure both request volume and resource usage. Although specific virtual-
ization implementations fall outside the scope of this work, Section C.3 in the Appendix describes
possible approaches for effective measurement and monitoring of these metrics.

With a measurable and practically interpretable definition of ξ, we now turn to addressing two key
objectives introduced at the beginning of this chapter:

• Linearization of the relationship between resource allocation and net utility with respect to l.

• Clear differentiation of the roles of the load demand l and the benefit factor β.

To achieve these goals, we propose modifying the original net utility function accordingly. After
implementing these modifications, and taking into account the measurability of ξ, we must reassess
the strategy-proofness of the resulting model, specifically examining how these changes affect the
incentives and potential strategic misrepresentation by SPs.

5.4 Introducing Modified Net Utility Functions

In the next sections, we propose different modifications to the original utility function that allow us to
address the previously discussed limitations. Our goal is to preserve both the linear price term, which
maintains economic realism, and the original article’s intent to model diminishing returns through an
exponential saturation function multiplying the potential monetization. To achieve this, we introduce
a new auxiliary function:

f(ξ, l, β, d′)

This function multiplies the allocation h in the exponential saturation term and may depend on any
combination of the parameters ξ, l, β, and d′. It also may include additional constant factors. Note
that by setting f(ξ, l, β, d′) = ξ we obtain the original model function.

Our modified new utility equations will be expressed as:

U = b · l ·
(
1− e−h·f(ξ,l,β,d′)

)
− h · d′

The corresponding first-order condition, giving the optimal allocation, is:



h∗ =
1

f(ξ, l, β, d′)
ln
(b · l · f(ξ, l, β, d′)

d′

)
Subject to the positive allocation constraint:

b · l · f(ξ, l, β, d′) > d′

And defining the utility at this optimal allocation as:

U(h∗) = b l − d′

f
− d′

f
ln

(
b l f

d′

)

5.5 Modified Net Utility Function Case 1

To address the previously mentioned models’ limitations, we define:

f(ξ, l) =
ξ

l

The resulting net utility function is:

U = β · l ·
(
1− e−h· ξl

)
− h · d′ (5.1)

The corresponding first-order condition for the optimal allocation is:

∂U

∂h
= β ξ e−h·ξ/l − d′ = 0 =⇒ e−h∗·ξ/l =

d′

β · ξ

h∗ =
l

ξ
ln

(
β · ξ
d′

)
The positive allocation constraint is:

β · ξ
d′

> 1

We show that this optimal allocation equation does not depend on the time-slot length:

h∗ =
l∆t

ξ∆t

ln
(β ξ∆t

d∆t

)
=

l

ξ
ln
(β · ξ

d

)
Since we could eliminate the length of the time slot ∆t the allocation remains constant for any time-slot
duration.

5.5.1 Parameter Interpretation and Economic Intuition for the Optimal
Allocation Function

The optimal allocation h∗ is given by:

h∗ =
l

ξ
ln

(
βξ

d′

)
with

βξ

d′
> 1. (5.2)



Interpretation of Allocation Terms

• First term: l
ξ

This is the amount of request in the time-slot, divided by the amount of requests one millicore
can serve in that time-slot, giving exactly the allocation needed to serve the requests if these
were evenly distributed and using 100% of the allocated resources, this is a pure technical value.

• Second term: ln β·ξ
d′ This term relates the technical parameter with the economical ones. When

the value of this term decreases from 1, the optimal allocation is less than the amount of ”tech-
nically needed” resources, indicating that the relative weight of the allocation cost prevents the
SP from serving all the potential requests, contrary, when the value of this term raises from 1, it
indicates that the relative weight of the allocation cost allows the SP to have ”extra resources”
to ensure that at any time most of the requests are served at the Edge.

As in the original equation we have a value of ξ at which the allocation has maximum, the value of
this ξpeak is:

ξpeak =
e · d′

β

The value of the allocation at this point is:

h∗(ξpeak) =
l · β
e · d′

And the value of the net utility subject to the optimal allocation at this point is:

U(ξpeak) = l · β
(
1− 2

e

)
≈ l ∗ β · 0.264

Note that the only difference from the ξpeak of the original model is that l is not present in the definition
of ξpeak while h∗(ξpeak) and U(ξpeak) remain equal.

In the Section B.8.4 of the demonstrations Appendix, we derive this function for each variable. On
table 5.1 , we present a summary of the derivative signs.

Parameter Sign of
Derivative

Interpretation Mathematical
relationship

β Positive Higher monetization justifies
higher allocation.

Logarithmic

l Positive Larger load requires more
allocation.

Linear

ξ Positive until ξpeak,
negative after ξpeak

Benefit-driven rise, then less need
of resources-driven fall.

Both linear and
logarithmic

d′ Negative Increased marginal cost reduces
allocation.

Logarithmic

Table 5.1: Summary of parameter influences on optimal allocation based on derivatives.

Note that we keep the sign of the derivative of each variable with respect to the original optimal
allocation function, but could differentiate the role of l and β



5.5.2 Parameter Interpretation and Economic Intuition for the Net Utility
Function at the Optimal Allocation

We consider the utility at the optimal allocation:

U(h∗) = β l

(
1− d′

βξ

)
− d′

l

ξ
ln

(
βξ

d′

)
, with

βξ

d′
> 1. (5.3)

Interpretation of Utility Terms

• First term: βl(1− d′

βξ )

Represents the total revenue generated by serving a fraction 1 − d′

βξ of the load l at per-unit
benefit β.

• Second term: −d′ lξ ln
(
βξ
d′

)
This term equals the total cost of allocating the resources h∗ at

amortized marginal cost d′, since h∗ = l
ξ ln
(
βξ
d′

)
.

In the Section B.8.3 of the demonstrations Appendix, we derive this function for each variable. On
table 5.2, we present a summary of the derivative signs.

Parameter Sign of Derivative Interpretation

β Positive Increasing monetization increases utility

l Positive Higher load directly increases utility

ξ Positive Increased capacity to serve requests increases utility

d′ Negative Higher marginal costs reduce utility

Table 5.2: Summary of parameter influences on net utility based on derivatives.

Note that we keep the sign of the derivative of each variable with respect to the original utility function,
but could differentiate the role of l and β.

Considering that now the NO can measure l and ξ, and d′ is fixed externally, the only parameter
vulnerable to misreporting is β. Intuitively, we can observe that β influences the optimal allocation
logarithmically, but in the net utility it appears in a dominant linear revenue term and a smaller
logarithmic cost term, so its overall impact on utility is predominantly linear.

For that reason, an SP may understate β so as to reduce its declared net utility by a larger proportion
than its optimal allocation and its actual net utility. This asymmetry in the influence of optimal
allocation motivates the following alternative net utility modification, that although it doesn’t enforce
strategy-proofness, we think is worth mentioning.

5.6 Modified Net Utility Function Case 2

The proposed f function that we are defining below is not a definitive one, but it is expressed to show a
line of reasoning. In this alternative net utility formulation, we aim for the allocation to depend linearly
on β, l, and d′. To achieve this, we introduce a constant λ, tied to the percentage of requests served at
the Edge, a quantity measurable by the NO. By fixing λ, we also fix the exponential-saturation level:

1− e−h·f(ξ,l,β,d′) = 1 − 1

λ



which univocally defines each SP’s type. In order to achieve that, we define the auxiliary function as

f(ρ, d′, λ) =
d′

ρ
λ,

leading to the net utility function:

U = ρ
(
1− e

−h
d′

ρ λ
)

− d′ h. (5.4)

The first-order condition for the optimal allocation is:

h∗ =
ρ

d′ λ
ln(λ),

valid whenever λ > 1.

Thus, substituting h∗ into the exponential saturation term yields 1− 1/λ, which appears in

U(h∗) = ρ
(
1− 1

λ − 1
λ ln(λ)

)
(5.5)

If λ is defined via the observed fraction p of requests handled at the edge,

p = 1− e−λ =⇒ λ = − ln
(
1− p

)
(5.6)

then the optimal allocation

h∗ =
ρ

d′ λ
ln(λ)

requires λ > 1 for h∗ > 0. Equivalently,

ln(λ) > 0 ⇐⇒ λ > 1 ⇐⇒ − ln
(
1− p

)
> 1 ⇐⇒ p > 1− e−1 ≈ 0.632

This formulation therefore represents only those SPs whose fraction of requests served at the edge
exceeds approximately 63.2%. That limitation motivates a new definition of f(ξ, l, β, d′), where λ can
vary over (0, 1) by appearing in the denominator of the exponent. For that, we define the auxiliary
function as:

f(ρ, d′, λ) =
d′

ρ λ

yielding the net utility function:

U(h) = ρ
(
1− e

−h
d′

ρ
1
λ
)
− d′ h

The optimal allocation from the first-order condition is:

h∗ =
ρ λ

d′
(
− lnλ

)
with the positive-allocation constraint 0 < λ < 1.



In an analogous way to what we did before, we can show that the exponential saturation equation is
indeed:

1− e−h·f(ξ,l,β,d′) = 1 − λ

5.6.1 Parameter Interpretation and Economic Intuition for the Optimal
Allocation Function

The optimal allocation h∗ is given by:

h∗ =
ρ λ

d′
(
− lnλ

)
with 0 < λ < 1 (5.7)

Interpretation of Allocation Terms

The expression splits into two factors:

• ρ λ
d′ : shows ρ and λ being directly proportional to h∗, and d′ inversely proportional.

• − lnλ: is the logarithmic amplification, which grows as λ decreases.

As in the original formulation and the previously proposed modified utility functions, there is a value
of λ at which the optimal allocation reaches its maximum. For this inverse λ formulation, the peak
occurs at:

λpeak =
1

e

The optimal allocation at this point remains equal to the previous cases:

h∗(λpeak) =
ρ

e · d′

Similarly, the net utility at the optimal allocation remains unchanged compared to previous cases:

U(λpeak) = l · β
(
1− 2

e

)
≈ l · β · 0.264

Thus, the only difference from the previous cases is the value of λpeak itself, while the optimal allocation
and its corresponding utility at this point remain consistent. On table 5.3, we present a summary of
the derivative signs.

Parameter Sign of ∂h∗

∂· Interpretation Relationship

ρ Positive More monetization yields more
allocation.

Linear

λ Positive until λpeak,
then negative

Benefit-driven rise, then less need of
resources-driven fall.

Both

d′ Negative Higher marginal cost reduces
allocation.

Both

Table 5.3: Effects of parameters on the optimal allocation h∗.



5.6.2 Parameter Interpretation and Economic Intuition for the Net Utility
Function at the Optimal Allocation

We consider the utility at the optimal allocation:

U(h∗) = ρ
(
1− λ+ λ lnλ

)
, with 0 < λ < 1 (5.8)

Interpretation of Utility Terms

• ρ
(
1− λ

)
: revenue from serving a fraction 1− λ of total requests.

• ρ (λ lnλ): cost term from the allocated resources (note lnλ < 0 for λ < 1).

On table 5.4, we present a summary of the derivative signs.

Influence of Parameters on U(h∗)

Parameter Sign of ∂U(h∗)/∂· Interpretation

ρ Positive Greater potential monetization raises net utility

λ Negative Higher λ reduces net utility (smaller edge share)

d′ Zero Cost changes shift allocation but net utility remains unchanged

Table 5.4: Effects of parameters on net utility at the optimal allocation.

Note that in this case we inverted the influence of λ compared to previous equations where the greater
the value of µ or ξ the greater the percentage of requests served at the Edge.

Similarly to what we did on equation 5.6 the NO can infer λ from the observed fraction p of requests
served at the edge:

p = 1 − e− 1/λ ⇐⇒ e− 1/λ = 1− p ⇐⇒ − 1

λ
= ln

(
1− p

)
⇐⇒ λ = − 1

ln
(
1− p

)
Because the Network Owner measures p directly (by counting edge-served requests versus total), the
value

λ = − 1

ln
(
1− p

) (5.9)

is empirically observable. This procedure yields a valid λ ∈ (0, 1) whenever 0 < p < 1, and it does not
impose a lower bound of 63% or any lower bound at all.

In this formulation, the parameter λ uniquely determines the edge-served fraction:

p = 1− e− 1/λ

Consequently, once λ (and thus p) is observed, the marginal cost d′ only affects the allocation

h∗ =
ρ λ

d′
(
− lnλ

)



but drops out of the net utility at optimum:

U(h∗) = ρ
(
1− λ+ λ lnλ

)
.

Because U(h∗) no longer depends on d′, a change in cost only changes h∗, not the achieved net utility.
This is mathematically consistent but economically restrictive, since it implies that higher costs are
fully absorbed by adjusting allocation without reducing net benefit. For applications requiring that a
higher cost actually lowers utility, one should use a model in which d′ appears explicitly in the final
utility expression rather than only in the allocation.

5.7 Modified Net Utility Function Case 3

In this formulation, we remove the marginal cost d′ from the exponential saturation term. Specifically,
we define

f(ρ, ξ, d′) =
ξ

ρ

then the net utility function becomes:

U(h) = ρ
(
1− e

−h
ξ
ρ
)

− d′ h (5.10)

The corresponding first-order condition for the optimal allocation is:

∂U

∂h
= ξ e−h ξ/ρ − d′ = 0 =⇒ e−h∗ ξ/ρ =

d′

ξ

hence, the optimal allocation equation is:

h∗ =
ρ

ξ
ln
( ξ

d′

)
, (5.11)

with the positive-allocation constraint:

ξ

d′
> 1 ⇐⇒ ξ > d′

Note that in this case we are using the same definition of ξ as in case one; this is the amount of requests
that can be served at the Edge by one millicore in one time-slot of duration ∆t. Observe that the
time-dependent variables cancel each other, making h∗ time-slot length invariant.

h∗ =
l∆t β

ξ∆t

ln
( ξ∆t

d′∆t

)
,

5.7.1 Influence of Parameters on Optimal Allocation

In table 5.5 we present the influence of the parameter on the optimal allocation h∗.

5.7.2 Net Utility at Optimal Allocation and Its Interpretation

Substituting h∗ into U(h) yields



Parameter ∂h∗/∂· Interpretation Relationship

ρ Positive Greater potential monetization increases
the scale of allocation h∗.

Linear

ξ Positive until
ξpeak, negative
after ξpeak

Greater serving capacity initially drives up
allocation, then yields diminishing returns.

Both linear
and

logarithmic

d′ Negative Higher marginal cost reduces optimal
allocation.

Logarithmic

Table 5.5: Effects of parameters on the optimal allocation h∗.

U(h∗) = ρ
(
1− e−h∗ ξ/ρ

)
− d′ h∗ = ρ

(
1− d′

ξ

)
− d′

ρ

ξ
ln
( ξ

d′

)
,

which can also be written as

U(h∗) = ρ
(
1− d′

ξ − d′

ξ ln
(

ξ
d′

))
. (5.12)

Interpretation of Utility Terms

• ρ
(
1− d′

ξ

)
: revenue from serving a fraction

(
1− d′

ξ

)
of the potential demand, since ξ/d′ measures

technical capacity relative to cost. Note that the positive allocation constraint allows us to
represent any fraction of the total requests to be served at the Edge.

• − ρ d′

ξ
ln
(

ξ
d′

)
: total cost of allocated resources at price d′, adjusted by diminishing returns.

In table 5.6 we present a summary of parameters’ interpretation on the net utility at the optimal
allocation.

Parameter ∂U(h∗)/∂· Interpretation

ρ Positive Greater monetization increases net utility

ξ Positive (for ξ > d′) Higher service rate raises utility

d′ Negative Higher marginal cost reduces net utility

Table 5.6: Effects of parameters on net utility at the optimal allocation.

5.8 Formal Demonstration of Non-Strategy-Proofness

We provide a formal proof demonstrating why all previously introduced utility functions fail to meet
the conditions necessary for strategy-proofness, along with an explicit equation to quantify the profit
an SP can gain from misreporting the benefit factor β.

General Formulation

Consider the general net utility function:

U(β, l, h) = β l
(
1− e−h f(ξ,β,l,d′)

)
− h d′



where:

• β is declared by the SP.

• l and ξ are measurable and d′ is exogenous.

• The allocation is chosen to maximize the declared utility, so we solve

∂U

∂h
= 0 =⇒ h∗(βdec)

SP’s Retained Utility

After the allocation h∗ is determined using βdec, the SP’s actual realized utility is computed using
βreal, and the declared utility is computed using βdec. Since the SP transfers half of its declared net
utility to the NO, the SP keeps:

USP(βdec) = Ureal(βreal, h
∗)− 1

2 Udec(βdec, h
∗).

Where:

Udec = βdec l
(
1− e−h∗ f(ξ,βdec,l,d

′)
)
− h∗ d′,

is the utility computed with the declared benefit factor, and

Ureal = βreal l
(
1− e−h∗ f(ξ,βdec,l,d

′)
)
− h∗ d′,

is what the SP actually earns when using the same allocation h∗. Thus USP captures the fact that
the SP’s payoff depends both on the allocation (which itself depends on βdec) and on the true benefit
βreal.

Condition for Strategy-Proofness

To show whether truth telling is optimal for the SP, we must check that no deviation from reporting
βreal can increase the SP’s retained utility USP. Concretely, the standard strategy-proofness conditions
are that, at βdec = βreal

∂USP

∂βdec

∣∣∣
βdec=βreal

= 0,
∂2USP

∂β2
dec

∣∣∣
βdec=βreal

< 0

These two conditions ensure that the truthful report is a stationary point of USP, and that it is a local
maximum.

Because USP depends on βdec both through the allocation h∗(βdec) and the declared utility term, we
use the chain rule and write

∂USP

∂βdec
=

∂Ureal

∂h∗
∂h∗

∂βdec
− 1

2

∂Udec

∂βdec

• The term ∂Ureal

∂h∗ measures how the SP’s real utility would change if the allocation h∗ shifted
slightly, holding βdec fixed in the function.

• The factor ∂h∗

∂βdec
captures how the allocation itself changes when βdec changes.

• The term 1
2

∂Udec

∂βdec
captures the direct marginal effect on the declared utility from changing βdec

(and in consequence the fraction the SP must transfer).



At the truthful report βdec = βreal, the allocation h∗ was chosen to maximize the SP’s declared utility.
Because the first-order condition for h∗ is

∂U

∂h

(
βdec, h

∗
)
= 0,

it follows that ∂Ureal/∂h
∗ = 0 when βdec = βreal. Therefore the first term in the chain-rule expression

vanishes at truth. The only way to have

∂USP

∂βdec

∣∣∣
βdec=βreal

= 0

is then to force
∂Udec

∂βdec

∣∣∣
βdec=βreal

= 0

In other words, truthful reporting can be a local maximizer of retained utility only if changing βdec

has zero first-order effect on the declared utility term at the truthful point. Since our exponential
saturation form never satisfies that condition ∂Udec/∂βdec is nonzero at βdec = βreal.

We have proven that no utility function with an exponential saturation equation to model the dimin-
ishing returns can be strategy-proof.

Explicit Equation for Profit from Misreporting

Even though truthful declarations fail to be a local maximum, we can still quantify how much an SP
gains by choosing the best misreported value; for that, we define:

Profit (%) =
USP(β

∗
dec) − USP(βreal)

USP(βreal)
× 100%,

where

β∗
dec = argmax

βdec

USP(βdec).

5.8.1 Misreporting Benefit Factor for a Generic Auxiliary Function f

We assume the NO measures ξ but the SP may declare βdec ̸= βreal. We then write:

• Declared allocation:

hdec =
1

f(ξ, βdec, l, d′)
ln
(βdec l f(ξ, βdec, l, d

′)

d′

)
• Declared utility (computed using βdec):

Udec = βdec l
(
1− e−hdec f(ξ,βdec,l,d

′)
)
− d′ hdec

• Actual utility (using the true βreal but the same allocation):

Ureal = βreal l
(
1− e−hdec f(ξ,βdec,l,d

′)
)
− d′ hdec

• Utility retained by the SP:

USP(βdec) = Ureal − 1
2 Udec



Substitute the formula for hdec into Udec and Ureal. We find:

USP(βdec) = βreal l −
βreal l d

′

βdec l f(ξ, βdec, l, d′)
− d′ hdec

2
− 1

2 βdec l

Finally, solving by solving:

dUSP

d βdec
= 0

we get the best misreport β∗
dec, and the percentage of gain is:

Gain (%) =
USP(β

∗
dec)− USP(βreal)

USP(βreal)
× 100%.

5.8.2 Finding Optimal Declared Benefit Factor for Each of the Proposed
Utility Function Modifications

Similarly to what we did in section 3.13.2 where we provided an equation for the optimal misreporting
of ρ in the original formulation, we aim to find the optimal misreporting of β for the alternative net
utility functions. We will find a closed form for β∗

dec for Case 1, and show that there is no closed form
for β∗

dec in Cases 2 and 3, since the optimal declaration for beta is β∗
dec → 0+. We will subsequently

analyze why this occurs and provide an alternative interpretation of strategy-proofness, under which
this result can indeed be beneficial.

Case 1: f(ξ, β, l, d′) = ξ
l

We don’t reproduce all calculations here since they are very similar to what we did in section 3.13.2.
We just recall the h∗ equation for this case:

hdec =
l

ξ
ln
(βdec ξ

d′

)
then solving dUSP/dβdec = 0 yields

ξ β2
dec + d′ βdec − 2 d′ βreal = 0

β∗
dec =

− d′ +
√
d′2 + 8 d′ βreal ξ

2 ξ
, Gain (%) → 100% as βreal → ∞ (5.13)

If we assume that the declared value of β is always β∗
dec then we can calculate the real value of β as:

βreal =
β∗
dec

(
ξ β∗

dec + d′
)

2 d′
(5.14)

Case 2: f(ρ, d′, λ) =
d′

ρ λ

In this formulation, 0 < λ < 1 so that − lnλ > 0. Hence, the declared allocation is:



hdec =
1

d′

βdec l
1
λ

ln
(βdec l

(
d′

βdec l
1
λ

)
d′

)
=

βdec l λ

d′
(
− lnλ

)
Because hdec depends linearly on βdec, we have

hdec =
βdec l λ

d′
(− lnλ)

Next, note that

e−hdec f = e
−
(
βdec l λ

d′ (− lnλ)
)
×
(

d′

βdec l
1
λ

)
= e− lnλ = λ

Therefore

Udec = βdec l
(
1− λ

)
− d′ hdec = βdec l (1− λ) − βdec l λ (− lnλ) = βdec l

[
(1− λ) − λ (− lnλ)

]
and

Ureal = βreal l
(
1− λ

)
− d′ hdec = βreal l (1− λ) − βdec l λ (− lnλ)

The utility retained by the SP is

USP(βdec) = Ureal − 1
2 Udec = βreal l (1− λ) − βdec l λ (− lnλ) − 1

2

[
βdec l (1− λ) − βdec l λ (− lnλ)

]
Collecting like terms gives

USP(βdec) = βreal l (1− λ) − βdec l

2

[
(1− λ) + λ (− lnλ)

]
Since (1− λ) > 0 and (− lnλ) > 0 for 0 < λ < 1, one sees

dUSP

d βdec
= − l

2

[
(1− λ) + λ (− lnλ)

]
< 0

Consequently USP(βdec) is strictly decreasing in βdec, and the SP’s optimal misreport is

β∗
dec → 0+

Case 3: f(ρ, ξ, d′) =
ξ

ρ

Here ρ = β l and the positive allocation constraint is ξ > d′. We compute:

hdec =
1
ξ

βdec l

ln
(βdec l

ξ
βdec l

d′

)
=

βdec l

ξ
ln
( ξ

d′

)

Since e−hdec f = e− ln(
ξ
d′ ) = d′

ξ , one finds



Udec = βdec l
(
1− d′

ξ

)
− d′ hdec = βdec l

(
ξ−d′

ξ

)
− βdec l

d′

ξ ln
(

ξ
d′

)

Ureal = βreal l
(
1− d′

ξ

)
− d′ hdec = βreal l

(
ξ−d′

ξ

)
− βdec l

d′

ξ ln
(

ξ
d′

)

USP(βdec) = Ureal − 1
2 Udec = βreal l

(
ξ−d′

ξ

)
− βdec l

2 ξ

[
(ξ − d′) + d′ ln ξ

d′

]
Because (ξ − d′) > 0 and ln(ξ/d′) > 0 when ξ > d′, we have

dUSP

d βdec
= − l

2 ξ

[
(ξ − d′) + d′ ln ξ

d′

]
< 0

Thus USP(βdec) decreases in βdec, and the SP maximizes its retained utility by choosing β∗
dec → 0+.

5.8.3 Summary and Interpretation

As with the original formulation, we derived a closed-form expression for β∗
dec in Case 1. In Cases 2

and 3, however, the optimal declared value is βdec → 0+. At first glance, letting β → 0 would force
the optimal allocation h∗ → 0, which initially appears paradoxical. This could indicate a problematic
net utility function design; nevertheless, these cases might still be practically viable. Notably, in both
Cases 2 and 3, the net utility at the optimal allocation depends linearly on β. Specifically:

• In Case 2:
U(h∗) = ρ

(
1− 1

λ − 1
λ ln(λ)

)
, ρ = β l.

• And in Case 3:
U(h∗) = ρ

(
1− d′

ξ − d′

ξ ln
(

ξ
d′

))
, ρ = β l.

The factor in parentheses does not depend on β. As long as the SP picks βdec so that the first-order
condition is satisfied, that same constant multiplies ρ and fully determines the utility. Hence β appears
only inside the allocation formula but only linearly in the final utility expression.

Because the SP’s retained utility is
USP = Ureal − 1

2 Udec,

making βdec smaller drives both the declared allocation h∗ and the declared utility Udec toward zero,
but it does not reduce the real utility Ureal by a proportional amount. In fact, the ratio USP

Ureal
approaches

one as βdec → 0+. That is why no finite interior solution exists: the best ’solution’ is always to push
βdec as low as the rules allow.

A Different Notion of Strategy-Proofness

Under the classical definition of strategy-proofness, namely, that no SP can misdeclare β in a way that
raises its retained utility, Cases 2 and 3 clearly fail; moreover, we could say that these functions fail to
represent the net utility of an SP. However, suppose we shift our focus away from maximizing retained
net utility and instead ask:

Is there any way for an SP to declare a lower net utility (smaller β) while simultaneously
securing a proportionally less lower allocation?

Under this alternative definition:



• In Case 2 the optimal allocation is:

h∗ =
ρ λ

d′
(
− lnλ

)
=

β l λ

d′
(
− lnλ

)
.

Here h∗ is proportional to β. If an SP lowers βdec, then ρdec = βdec l falls and h∗ falls in exactly
the same proportion.

• In Case 3 the optimal allocation is:

h∗ =
ρ

ξ
ln
(

ξ
d′

)
=

β l

ξ
ln
(

ξ
d′

)
.

Again h∗ is proportional to β. Any under-declaration of β strictly reduces h∗ in the same
proportion.

Hence, if we adopt the criterion ”no SP can declare a lower β and thereby get a proportionally larger
portion of h∗” then Cases 2 and 3 do satisfy this.

Note that in Case 1 as well as in the original formulation, this is not the case, since an SP may
underdeclare β and get a proportionally larger allocation. The key difference in these formulations
is that in Case 2 and 3, h∗ has a linear relationship with β while in the first two this relationship is
logarithmic.

Viewed in this light, the formulas for Cases 2 and 3 admit an alternative interpretation; suppose
the SPs are partially or fully not identified by the net utility equations, but they are taken as price
functions. Since other parameters are even measurable or exogenous, each SP then ”buys” allocation

h∗ at U(h∗)
2 − d′ h which combines the allocation cost with that SP’s share of the Network Owner’s

Shapley value.

5.8.4 Summary of Strategy-Proofness Results and Real-World Implications

To complete our analysis on strategy-proofness, we summarize our findings and propose new mecha-
nisms to counter the lack of strategy-proofness based on the quality of service the NO provides.

Case 0 and Case 1: Bounded Misreport Gains

In the original model (Case 0) and the first modified one (Case 1), we showed:

• If only β remains private, the SP still benefits by understating it, the SP’s optimal misreport of
β can be computed in closed form. Thus, although the model fails strategy-proofness, there is a
finite upper bound on how much net utility can be retained by the SP by giving an untruthful
report of β.

Case 2 and Case 3: Allocation-Price Forms

• The optimal allocation h∗ depends linearly on β. As a result, any under-declaration of β reduces
the SP’s actual allocation by exactly the same proportion.

• Under the usual definition of strategy-proofness (no SP can lie and end up with strictly more
retained utility), Cases 2 and 3 completely fail since βdec → 0 lets the SP keep nearly 100% of
its true utility.

• However, under the criterion ”no SP can get a proportionally larger allocation by misdeclaring
β”, then Cases 2 and 3 become strategy-proof: From a purely allocation-oriented perspective,
no SP can buy more CPU for less money.



Interpreting β as Time-Sensitivity

In the underlying economic model, β represents a per-unit benefit: every request served at the Edge
delivers β monetary units to the SP. As the original article notes:

Time-sensitivity here is captured by the parameter β. Resource allocation at the Edge
must be based not only on load, but also on the nature of the services, and in particular
on time-sensitivity, which is reflected in a different benefit per unit of load satisfied at the
Edge.

Thus:

• A higher β means each request served at the Edge is worth more, typical of real-time or ultra-
low-latency services (e.g. industrial IoT, real-time analytics).

• A lower β corresponds to less time sensitive or best effort workloads (e.g. background data
processing, non-urgent updates).

Real-World QoS Mechanisms to Encourage Honest β Reporting

Quality of Service (QoS) refers to technologies and mechanisms network providers use to manage
bandwidth, latency, and reliability, ensuring differentiated performance levels for various types of
network traffic. Since β encodes time sensitivity, the NO, typically an Internet Service Provider (ISP),
can tie the declared value of β to measurable QoS guarantees and priorities. Specifically:

Prioritized Internet Slicing Based on β:

• The NO assigns distinct network slices with differentiated latency and throughput characteristics
for each declared value of β. Higher declared values of receive slices with better latency and
throughput.

• Each SP thus automatically obtains service quality strictly ordered by their declared β. Under
declaring β leads directly to assignment on a lower quality slice, providing an inherent penalty
for dishonesty.

Post Initial Allocation Market Mechanisms:

Under this new scenario, a secondary market as the one described in Section 3.15.2 may not even be
necessary since the incentives for misreporting can be entirely countered by the quality slice SPs sit
in. Nevertheless, if we were to consider such mechanisms, we could include several variants:

• Enforce or not SPs to sell their allocation.

• Buying or selling, depending on their updated expected load and market price, could be useful
to mitigate misestimations or even to profit from pure speculation.

• If SP1 buys allocation from SP2 such that β1 > β2 then it has to pay SP2 for what SP2 would
get until the end of the co-investment, and at this point, it has two options:

– Option 1: Keep the value of β2 as it was and have some allocated resources in a lower
quality slice.

– Option 2: Make the value of β2 = β1 increase the amount of allocated resources at the same
quality slice it originally has, but having to pay proportionally more tho the NO.

• Allow or not to buy allocations from an SP with a greater β value.

These options, along with others, create new scenarios that, although they fall outside of the scope of
this work, we think are worth exploring.



5.9 Positive Price Externality and Dynamic Allocation Syn-
ergies

In this section, we extend the baseline allocation model by incorporating two distinct mechanisms. The
first is a positive externality of volume discount pricing, where the per-millicore price diminishes as the
coalition’s total allocation grows. The second is a player synergy enabled by dynamic allocation, which
allows SPs to vary their resource shares across time-slots to exploit time-varying allocation benefits.
We consider three model variants: (i) externality only; (ii) synergy only; and (iii) both effects together.
This enables us to isolate each mechanism’s impact and to assess their joint effect on aggregate utility.

5.9.1 Linear Volume-Discount (Sublinear) Per-millicore Pricing

Recall that C denotes the total CPU allocation in millicores, with Cmin ≤ C ≤ Cmax. We impose
a linear volume-discount schedule (also known as declining-block pricing) by defining a per-millicore
price

p(C) = pmax −
C − Cmin

Cmax − Cmin
(pmax − pmin),

so that p(Cmin) = pmax and p(Cmax) = pmin. The total cost is then

Cost(C) = C p(C) =

[
pmax −

C − Cmin

Cmax − Cmin
(pmax − pmin)

]
C.

Because p(C) decreases linearly in C, Cost(C) is strictly concave (sublinear) in C. Economically, this
models a positive scale externality: as the coalition’s total allocation grows, each additional millicore
becomes cheaper.

5.9.2 Introducing Dynamic Allocation

We propose a dynamic allocation mechanism in which each SP’s allocation can vary across time-slots
while ensuring that the entire deployed capacity C is always used. Because the cost of hardware
deployment is paid upfront and there is no variable charge for millicore consumption, any idle capacity
in a slot sacrifices strictly positive benefit without lowering cost. Under these conditions, the marginal
benefit of allocating each additional millicore remains positive, and the total benefit is maximized by
allocating at the capacity boundary in every time-slot. We do not consider the possibility of saving
money through reduced energy cost, as energy expenditures are not modeled in our framework.

Under dynamic allocation, the exponential term in the saturation component of the original net utility
equation (Case 0) can vary across time-slots. This variability occurs because the diminishing returns
parameter remains constant despite changes in load, preventing service providers from maintaining a
consistent fraction of requests served at the edge throughout the day. In contrast, the modified net
utility equations (Cases 1, 2, and 3) explicitly incorporate load into this diminishing returns parameter,
thereby ensuring that each SP consistently serves the same percentage of requests at the edge in every
time-slot.

It is important to note that neither of these modeling approaches is inherently incorrect. They simply
represent distinct design decisions regarding how the percentage of requests served at the edge should
respond to changes in load. In the original model (Case 0), the fraction of requests varies with
load, reflecting resource allocation that does not directly adapt to changing demand. In contrast, the
modified models (Cases 1, 2, and 3) enforce a consistent fraction of requests served, thereby explicitly
adapting resource allocation to load variations. Each approach is valid depending on the specific
objectives and assumptions of the analysis.



5.9.3 Consequences of Interdependent Service Providers’ Contributions

Introducing interdependent contributions significantly alters several key insights derived from the orig-
inal model. As previously discussed, the original independent contribution scenario can now be viewed
as a worst-case benchmark. Below we list specific claims from the analytical investigation of the
originally proposed model ( Section 3) that no longer hold under interdependent contributions:

• Optimal allocation cannot be calculated independently: Optimal resource allocations must now
be determined using optimization algorithms designed to maximize the total grand coalition
value, rather than computed individually per SP.

• Shapley value computation becomes significantly more complex: Instead of a straightforward
individual calculation, evaluating the Shapley value now requires determining the value of each
possible fecoalition. This approach exponentially increases computational complexity as the
number of SPs grows. To mitigate this complexity, we adopt approximation techniques employ-
ing Monte Carlo methods, sampling random coalition formations, and caching results to avoid
redundant computations.

• The core of the game is no longer a single point: It is now represented by a set of feasible payoffs.
The values that SPs would receive under independent contributions establish the minimum payoff
boundary. By definition, the Shapley value remains within the core.

• Computational complexity escalates: The original formulation, when evaluating all potential
coalitions for the Shapley value, has a computational complexity of O(2n), where n represents
the number of SPs.

5.10 Generalization of the Shapley Value for any Amount of
Network Owners

In this final section we explore what would happen if more than one NO is interested in taking part
in the co-investment; specifically, we analyze how the Shapley value is calculated in this new scenario.
As we saw in equation 3.8 of section 3.4, the Shapley value and consequently the payoff of the NO is
half of the sum of each SP’s net utility. This arises because the NO is a veto player, and the set of all
SPs, when considered as a single super-player, is also a veto player. As stated in the referenced article:

The intuition behind this equal sharing of the Shapley value between the NO and the SPs
is based on each game is decomposed into a weighted sum of unanimity games in which
the Shapley value assigns an equal share of a unit to each veto player.” In our case if the
set of SPs is considered as one super-player, it is actually a veto player as well, because the
value function is zero if no SP is in the coalition, since it would not be possible to collect
revenues from users utilization.

These results raise important questions regarding fairness. Although the formal definition of fairness
in cooperative game theory is achieved through the Shapley Value, it may seem inequitable that a
player who makes no economic investment, assumes no risk, and collects no revenue receives half of
the grand coalition’s total value. Moreover, the advantageous position of the NO is so attractive that
additional NOs may be interested in participating in the coinvestment by providing the infrastructure
location, which could substantially alter the distribution of the coalition’s value. In this section, we
calculate the Shapley value under two scenarios:

• Scenario 1: Multiple NOs can participate in the coinvestment simultaneously.

• Scenario 2: Many potential NOs exist, but only one NO is allowed per feasible coalition.



We show that for the SPs, from the point of view of the payoff, these scenarios are equal. In contrast,
for the NOs, the allocation differs: in Scenario 1, all NOs should agree to impose their veto power,
whereas in Scenario 2, the entire veto power is allocated to the single effective NO.

Let us consider n Network Owners named as NO1,NO2, . . . ,NOn and m Service Providers named as
SP1,SP2, . . . ,SPm. We assume independent contributions for SPs (each SP provides a fixed contri-
bution ci,) this assumption does not affect the NO Shapley values but simplifies the calculation for
SPs.

In both scenarios, let

V = {NO1, . . . ,NOn} and I = {SP1, . . . ,SPm}

with the total set N = V ∪ I. The characteristic function is defined as:

For Scenario 1 (feasible if at least one NO is present):

v(S) =


0, if S ∩ V = ∅,∑
SPi∈S

ci, if S ∩ V ̸= ∅

For Scenario 2 (feasible only if exactly one NO is present):

v(S) =


0, if |S ∩ V | ≠ 1,∑
SPi∈S

ci, if |S ∩ V | = 1

The grand coalition’s value is:

v(N) =

m∑
i=1

ci

Calculation of the Shapley Value:

The Shapley value for a player i is given by

ϕi(v) =
∑

S⊆N\{i}

|S|!(|N | − |S| − 1)!

|N |!

[
v(S ∪ {i})− v(S)

]

For an independent Service Provider SPi, its contribution is activated by the presence of at least one
NO. Considering the ordering of SPi with n NOs, the probability that SPi appears after at least one
NO is

1− 1

n+ 1
=

n

n+ 1

Hence,

ϕ(SPi) =
n

n+ 1
ci

For a Network Owner NOj , the marginal contribution is nonzero only when it is the first NO to appear
in the permutation. When a NO appears as the first veto, it activates the contributions of all SPs
preceding it; for each SP, the probability of appearing before any NO is 1

n+1 . Therefore, the expected
contribution activated is

1

n+ 1

m∑
i=1

ci

Since the NOs are symmetric, the probability that a given NO is the first is 1
n . Thus, in Scenario 1,

the Shapley value for an NO is



ϕ(NOj) =
1

n
· 1

n+ 1

m∑
i=1

ci =
1

n(n+ 1)

m∑
i=1

ci, j = 1, . . . , n

In Scenario 2, only coalitions with exactly one NO are feasible (all other coalitions yield zero value).
Consequently, in any permutation, the only effective NO receives the entire NO share, which is

1

n+ 1

m∑
i=1

ci

Thus, if a coalition features a unique NO, that NO’s Shapley value is

ϕ(NO) =
1

n+ 1

m∑
i=1

ci

Verification of Efficiency:

The efficiency property requires that

n∑
j=1

ϕ(NOj) +

m∑
i=1

ϕ(SPi) =

m∑
i=1

ci

Indeed, in Scenario 1,

n∑
j=1

ϕ(NOj) = n · 1

n(n+ 1)

m∑
i=1

ci =
1

n+ 1

m∑
i=1

ci

and

m∑
i=1

ϕ(SPi) =
n

n+ 1

m∑
i=1

ci

Thus,

1

n+ 1

m∑
i=1

ci +
n

n+ 1

m∑
i=1

ci =

m∑
i=1

ci

In Scenario 2, since only one NO is effective in each coalition, the entire NO share, 1
n+1

∑m
i=1 ci, is

allocated to that single NO, and the SPs’ Shapley values remain unchanged.

Summary of Results:

ϕ(SPi) =
n

n+ 1
ci, i = 1, . . . ,m

ϕ(NOj) =
1

n(n+ 1)

m∑
i=1

ci, j = 1, . . . , n (Scenario 1)

ϕ(NO) =
1

n+ 1

m∑
i=1

ci (Scenario 2)



Thus, while the SPs’ payoffs are identical in both scenarios, they substantially benefit from increasing
the amount of NOs willing to take part in the coinvestment. Meanwhile, the interpretation for NOs
differs. In Scenario 1, the veto power is shared among the n NOs, whereas in Scenario 2, the single
active NO in a coalition obtains the entire NO share, making the coinvestment opportunity even more
attractive for NOs.

In our model, the Shapley value for a Network Owner (NO) is given by ϕ(NOj) =
1

n(n+1)

∑m
i=1 ci, where

n is the number of NOs and m the number of Service Providers (SPs). This result remains unchanged
even if the independent contribution property for SPs is not assumed because the NO’s veto power,
ensuring that any coalition without an NO has zero value, dominates its marginal contribution. Thus,
while the SPs’ payoffs may vary with different contribution structures, the NO’s share is invariant and
solely reflects its essential role as a veto player.





Chapter 6

Empirical Illustration and Results
Analysis of the Proposed
Modifications to the
Edge-Computing Model

6.1 Summarizing and Comparing the Different Utility Func-
tions

Before conducting the sensitivity analysis to compare our modified versions of the utility functions, we
first summarize their main characteristics in Tables 6.1 and 6.2.

Table 6.1 provides an organized overview of each utility function, highlighting the optimal allocation
(h∗), the conditions ensuring positive allocations, and the peak values of the diminishing-return pa-
rameters. This arrangement simplifies referencing each case and clearly illustrates which variables
influence both the optimal allocation and the diminishing returns parameter at its peak. Note that for
Cases 2 and 3, the parameter β does not appear in the expression for the diminishing-return parameter
at peak. This absence occurs because, in these cases, β impacts the optimal allocation linearly, rather
than through a nonlinear or logarithmic relationship.

Table 6.2 decomposes the utility at the optimal allocation (U(h∗)) into three components: (1) potential
monetization, identical across all cases, (2) fraction of requests served at the edge, and (3) cost of
allocation. For Cases 2 and 3, β similarly does not influence the fraction of requests served at the edge
nor the allocation cost, consistent with its linear relationship with the optimal allocation. Consequently,
service providers in these scenarios could strategically misreport the value of β without affecting their
allocation, thus enabling them to maximize profits without immediate negative repercussions.
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Case U(h) h∗ Positive
Allocation
Constraint

Diminishing Returns
Parameter Peak

0 ρ
(
1− e−µh

)
− d′ h

1

µ
ln
(
ρ µ
d′

) ρµ

d′
> 1 µpeak = e

d′

ρ

1 ρ
(
1− e−

ξ
l h
)
− d′ h

l

ξ
ln
(
β ξ
d′

) β ξ

d′
> 1 ξpeak = e

d′

β

2 ρ
(
1− e

− d′

ρ λ h
)

− d′ h
ρλ

d′
(
− lnλ

)
0 < λ < 1 λpeak = e−1

3 ρ
(
1− e

−h
ξ
ρ
)

− d′ h
ρ

ξ
ln
(

ξ
d′

)
ξ > d′ ξpeak = e d′

Table 6.1: Summary of the modified utility formulations, their optimal allocations, feasibility con-
straints, and the peak value of each diminishing-return parameter.

Case U(h∗) breakdown

Potential
Monetization

Fraction of Requests
Served at the Edge

Cost of Allocation

0 ρ 1− d′

ρµ

d′

µ
ln
( ρ
d′

)
1 ρ 1− d′

β ξ

d′ l

ξ
ln
(β ξ

d′

)
2 ρ 1− λ ρ

(
λ lnλ

)
3 ρ 1− d′

ξ
ρ
(

d′

ξ ln
(

ξ
d′

))
Table 6.2: U(h∗) breakdown: potencial monetización, fracción de requests served at the Edge and
allocation cost.



6.2 Unification of All Cases by Calibration to Case 0

In this section, we demonstrate that, by selecting appropriate values for µ, ξ, and λ, we can cal-
ibrate these parameters so that any modified utility formulation collapses into another. Although
we present the collapse into Case 0 for concreteness, the same reasoning applies to transforming any
case into any other. This universality arises because each formulation retains the original structure;
potential monetization multiplied by an exponential saturation term, minus the resource allocation
cost. Consequently, adjusting µ, ξ, or λ simply rescales the exponential coefficient without altering
the fundamental utility form, allowing complete equivalence among all cases under proper calibration.

Note that although we can collapse one into each other, once we fix the value of the diminishing returns
parameter, they have different behaviors with respect to changes in their variables.

Collapsing Case 1 into Case 0

In Case 0, the exponent coefficient on h is µ. In Case 1, it is ξ
l . To match them, set

ξ

l
= µ ⇐⇒ ξ = µ l

Since ρ = β l may remain arbitrary, the utility functions become identical:

U1(h)
∣∣
ξ=µ l

= ρ
(
1− e−

µ l
l h
)
− d′ h = ρ

(
1− e−µh

)
− d′ h = U0(h)

Likewise, the optimal allocation collapses:

h∗
1 =

l

ξ
ln
(β ξ

d′

)∣∣∣∣
ξ=µ l

=
l

µ l
ln
(β (µ l)

d′

)
=

1

µ
ln
(ρµ
d′

)
= h∗

0

Thus, with

xi = µ l

Case 1 is equivalent to Case 0.

Collapsing Case 2 into Case 0

In Case 2, the exponent coefficient on h is d′

ρ λ . Equate this to µ:

d′

ρ λ
= µ ⇐⇒ λ =

d′

ρµ

Substituting into U2(h) yields

U2(h)
∣∣
λ=

d′

ρ µ

= ρ
(
1− e

− d′

ρ

(
d′

ρ µ

) h)
− d′ h = ρ

(
1− e−µh

)
− d′ h = U0(h).

The optimal allocation likewise matches:

h∗
2 =

ρ λ

d′
(
− ln(λ)

)∣∣∣∣
λ=

d′

ρ µ

=
ρ
(

d′

ρ µ

)
d′

(
− ln( d′

ρ µ )
)
=

1

µ
ln
(ρµ
d′

)
= h∗

0



Hence, with

λ =
d′

ρµ

Case 2 reduces to Case 0.

Collapsing Case 3 into Case 0

In Case 3, the exponent coefficient on h is ξ
ρ . Set this equal to µ:

ξ

ρ
= µ ⇐⇒ ξ = ρµ

Then

U3(h)
∣∣
ξ=ρ µ

= ρ
(
1− e−h ρ µ

ρ

)
− d′ h = ρ

(
1− e−µh

)
− d′ h = U0(h)

The optimal allocation also matches:

h∗
3 =

ρ

ξ
ln
( ξ

d′

)∣∣∣∣
ξ=ρ µ

=
ρ

ρµ
ln
(ρµ
d′

)
=

1

µ
ln
(ρµ
d′

)
= h∗

0

Therefore, choosing

ξ = ρµ

collapses Case 3 into Case 0.

Summary of Calibrations to Case 0

• Case 1 → Case 0: ξ = µ l.

• Case 2 → Case 0: λ = d′

ρ µ .

• Case 3 → Case 0: ξ = ρµ.

In each instance, the choice of parameter values makes Ui(h) = U0(h) and h∗
i = h∗

0. Thus, all four
formulations collapse into Case 0 under these calibrations.

6.3 Sensitivity Analysis and Cases Comparative

In this section, we perform a sensitivity analysis with respect to each parameter for the original utility
formulation (Case 0) and its three proposed modifications (Cases 1, 2, and 3). For each utility function,
we individually vary each parameter to analyze how these changes influence the optimal allocation (h∗)
and the associated optimal utility (U(h∗)). By comparing results across cases, we identify common
behaviors and differences, providing a characterization of the net utility function.



6.3.1 Sensitivity Analysis for the diminishing returnsParameter

The figure 6.1 illustrates the optimal allocation (h∗) as a function of the normalized diminishing returns
parameter for each of the four utility function cases. To enable a consistent comparison, we normalize
the diminishing returns parameter as a percentage relative to its respective peak value. For Cases 0,
1, and 3, the parameter ranges from the positive allocation constraint to the peak value, and then
continues up to four times this peak. In contrast, Case 2 provides simpler handling, as its diminishing
returns parameter has clearly defined upper and lower bounds.

Upon normalization, Cases 0, 1, and 3 exhibit identical behaviors, indicating a shared structural
relationship between the diminishing returns parameter and optimal allocation. Conversely, Case 2
demonstrates a fundamentally different functional dependency, distinctly differentiating its allocation
pattern from that of the other cases. More formally:

• Characterization of the diminishing returns parameter for Case 0, 1 and 3, (we represent them
with ξ but it is equivalent for µ):

– increasing from the positive allocation constraint to the peak

– maximum at ξpeak

– decreasing for ξ > ξpeak

– limξ→∞ h∗(ξ) = 0

• Characterization of the diminishing returns parameter for Case 2 λ:

– h∗(λ) = −ρ λ
d′ ln(λ)

– h∗(λ) = 0 at λ = 0 and λ = 1

– increasing for λ ∈
(
0, 1

e

)
– maximum at λpeak = 1

e

– decreasing for λ ∈
(
1
e , 1

)
The figure 6.2 shows the utility at optimal allocation (U(h∗)) as a function of the normalized diminish-
ing returns parameter for each case. After normalization, Cases 0, 1, and 3 show identical behaviors,
indicating a consistent positive relationship between the diminishing returns parameter and the utility
achieved. Conversely, Case 2 exhibits an inverse relationship, where the highest utility is obtained at
the minimal value of the diminishing returns parameter. More formally:

• Characterization of the diminishing returns parameter for Case 0, 1, and 3:

U(h∗) = ρ − d′

α

[
1 + ln

(
ρα
d′

)]
with α =


µ (case 0)
β ξ
l (case 1)

ξ
ρ (case 3)

– Threshold of positivity: U(h∗) = 0 for α ≤ d′

ρ

– Supralinear growth just above α0 = d′

ρ (convex region)

– Inflection point at α = e d′

ρ where growth changes from convex to concave

– Monotonic increase in α for α > d′

ρ

– Asymptotic bound: lim
α→∞

U(h∗) = ρ

• Characterization of the diminishing returns parameter for Case 2 λ:

– Domain: interior solution for 0 < λ < 1 (else h∗ = 0, U = 0)



Figure 6.1: Comparative of diminishing returns parameters in the optimal allocation



Figure 6.2: Comparative of diminishing returns parameters in the utility at optimal allocation

– Monotonicity: U(h∗) decreases in λ on (0, 1) since
dU

dλ
= ρ ln(λ) < 0

– Convexity:
d2U

dλ2
= ρ/λ > 0

– Asymptotic behavior:

∗ U → ρ as λ → 0+

∗ U = 0 at λ = 1 (horizontal tangent)

The charts in figure 6.3 emphasize again the similarity among Cases 0, 1, and 3, highlighting that
these cases collapse into identical behaviors once normalized. Conversely, Case 2 demonstrates the
opposite relationship, attaining its maximum fraction of requests served at minimal values of the
diminishing-return parameter.

More significantly, these charts illustrate a fundamental limitation present in all cases: the existence
of a single parameter modeling both the fraction of total requests served at the edge and the linear
cost component, specifically through the number of requests a single millicore can serve within a
given time-slot duration. Due to this shared parameter, increasing the fraction of requests served at
the edge inherently reduces the linear cost, thus restricting the range of achievable SP profiles. For
instance, scenarios requiring both high fractions of requests served at the edge and high linear costs
are unattainable within this framework.



Figure 6.3: Influence of diminishing returns parameters in the fraction sedved at the Edge and the
allocation cost

To overcome this limitation and allow greater flexibility in modeling diverse SPs profiles, it is needed
to introduce separate parameters: one parameter to independently control the fraction of requests
served at the edge, and another distinct parameter dedicated to defining the hardware requirement
per request.

6.3.2 Sensitivity Analysis for the Load Parameter

The charts presented in figure 6.4 illustrate that Cases 1, 2, and 3 successfully achieve optimal alloca-
tions (h∗) that scale linearly with respect to the total number of requests. Conversely, Case 0 reveals a
problematic sublinear scaling, characterized by a slowly increasing logarithmic function. This behav-
ior poses limitations in adequately representing scenarios requiring proportional resource allocation
growth.

The linear scaling observed in the modified versions (Cases 1, 2, and 3) is more desirable, as it enables
straightforward and predictable resource allocation in direct proportion to the load. While one could
potentially use other supralinear or sublinear functional forms, a linear or nearly-linear scaling is
preferable, particularly avoiding logarithmic relationships.

The charts presented in figure 6.5 show the utility at optimal allocation (U(h∗)) relative to the number
of requests. Once again, Cases 1, 2, and 3 exhibit identical, strictly linear behaviors, while Case 0



Figure 6.4: Comparative analysis of load effects on optimal allocation



Figure 6.5: Comparative analysis of load effects on utility at optimal allocation

differs distinctly. Specifically, Case 0 demonstrates an asymptotically linear (sub-linear) growth of
utility, consistent with its previously observed logarithmic scaling in allocation. Conversely, Cases 1,
2, and 3 maintain a precisely linear relationship.

Note that the achieved utility at optimal allocation U(h∗) reaches a higher value for Case 0; this is
due to the sublinear influence of the load in allocation and, as a consequence, on the cost.

6.3.3 Sensitivity Analysis for the Benefit Factor Parameter

The charts presented in figure 6.6 illustrate distinct behaviors of optimal allocation (h∗) with respect
to the benefit factor (β). Cases 0 and 1 display sublinear scaling, consistent with the logarithmic
relationship previously observed between load and allocation in Case 0. In contrast, Cases 2 and 3
exhibit strictly linear behavior, indicating direct proportionality between the benefit factor and the
optimal allocation. Although this linear relationship mirrors the one observed for load in Case 1,
2 and 3 there is no inherent requirement for the economic benefit from requests served at the edge
to linearly determine optimal allocation; rather, it is sufficient, and economically intuitive, that this
relationship is positive.

The charts in figure 6.7 for utility at the optimal allocation (U(h∗)) versus the benefit factor (β)
demonstrate consistency with the previous observations regarding load. Specifically, Cases 0 and 1
display an asymptotic, sub-linear behavior reflecting the logarithmic relationship of the benefit factor



Figure 6.6: Comparative analysis of beta factor effects on optimal allocation



Figure 6.7: Comparative analysis of beta factor effects on utility at optimal allocation

with allocation, similar to what was previously observed in utility vs. load charts.

Conversely, Cases 2 and 3 exhibit completely linear relationships, due to the explicit linear influence
of β in their allocation functions, translating directly into linear behavior in the optimal utility. This
distinction arises precisely because, in Cases 2 and 3, the benefit factor β explicitly appears within
the exponent of the exponential saturation term, thus yielding linear scaling in optimal allocation and,
consequently, linear growth in the utility at the optimal allocation. Cases 0 and 1, lacking β in the
exponent, inherently display sub-linear, asymptotic utility behavior.

Note that analogously to what we observed for the load in Case 0, here it is present in case 1 and 2.
This is; the achieved utility at optimal allocation U(h∗) reaches a higher value, this is due to the
sublinear influence of the β in allocation and as a consequence in the cost term.

6.3.4 Sensitivity Analysis for the Amortized Price Parameter

The charts presented in figure 6.8 show optimal allocation (h∗) versus the amortized per-millicore
price (d′) clearly illustrate identical behaviors across Cases 0, 1, and 3, all of which exhibit an inversely
logarithmic relationship. Case 2, however, differs significantly, displaying an inversely linear relation-
ship. This distinct behavior in Case 2 arises explicitly due to the presence of the amortized unit price
d′ within the exponent of the exponential saturation function, whereas in the other cases, d′ is not
included in this exponent, resulting in their characteristic logarithmic scaling.



Figure 6.8: Comparative analysis of amortized price effects on optimal allocation



Figure 6.9: Comparative analysis of amortized price effects on utility at optimal allocation

The charts presented in figure 6.9 show utility at optimal allocation (U(h∗)) versus the amortized
per-millicore price (d′). They reveal that Cases 1 and 3 retain the behavior observed in the original
formulation (Case 0), showing a diminishing net utility as the price increases. In contrast, Case 2
distinctly demonstrates that the price parameter (d′) does not influence the net utility at optimal
allocation. Economically, this implies that in Case 2, the price solely determines the amount of
resources purchased without affecting the overall net utility outcome. Such a scenario is plausible if
the marginal benefit of resource allocation precisely offsets the incremental cost at every price level,
resulting in a constant optimal net utility regardless of unit pricing variations.

To complete this comparative between the different net utility functions, we present table 6.3 where
the influence of each term in the optimal allocation function is compared.

Load (ℓ) Benefit (b) Diminishing-return Price (d′)

Case 0 Logarithmic Logarithmic Mixture (log and linear) Inverse-logarithmic

Case 1 Linear Logarithmic Mixture (log and linear) Inverse logarithmic

Case 2 Linear Linear Mixture (log and linear) Linear

Case 3 Linear Linear Mixture (log and linear) Inverse logarithmic

Table 6.3: Influence of each variable on the optimal allocation h∗.



To analyze how parameters influence the optimal net utility U(h∗), we separate the utility equation
into two different components. First, in table 6.4, we present the fraction of requests served at the
edge, multiplied by the potential monetization factor ρ, corresponding to the gross utility. Then in
table 6.5 we show the influence of these variables in the cost term, and finally in table 6.6 we show the
combined effect of these variables.

Case Benefit Term Load Benefit Factor Diminishing Return Price

0 ρ
(
1− d′

ρ µ

)
Linear Linear Inverse Linear Inverse Linear

1 β l (1− d′

β ξ ) Linear Linear Inverse Linear Linear

2 ρ (1− λ) Linear Linear Inverse Linear –

3 ρ
(
1− d′

ξ

)
Linear Linear Inverse Linear Inverse Linear

Table 6.4: Influence of each parameter on the gross utility.

Case Cost Term Load Benefit Factor Diminishing Return Price

Case 0 d′

µ
ln
(
ρ µ
d′

)
Logarithmic Logarithmic Mixed (Inverse Linear +

Logarithmic)
Mixed (Linear + In-
verse Logarithmic)

Case 1 d′ l
ξ

ln
(
β ξ
d′

)
Linear Logarithmic Mixed (Inverse Linear +

Logarithmic)
Mixed (Linear + In-
verse Logarithmic)

Case 2 ρ (λ lnλ) Linear Linear Mixed (Linear + Loga-
rithmic)

–

Case 3 ρ d′

ξ
ln
(

ξ
d′

)
Linear Linear Mixed (Inverse Linear +

Logarithmic)
Mixed (Linear + In-
verse Logarithmic)

Table 6.5: Influence of each parameter on the cost.

Case Load (l) Beta (β) Diminishing Return Price (d′)

Case 0 Asymptotic linear
(sublinear→linear)

Asymptotic linear
(sublinear→linear)

Direct (monotonic
increase)

Mixed (steep
drop→flat)

Case 1 Linear Asymptotic linear
(sublinear→linear)

Direct (monotonic
increase)

Mixed (steep
drop→flat)

Case 2 Linear Linear Inverse (monotonic
decrease)

None (no effect)

Case 3 Linear Linear Direct (monotonic
increase)

Mixed (steep
drop→flat)

Table 6.6: Influence of each parameter on the optimal net utility.

6.4 Numerical Illustration of Misreporting the Benefit Factor

Since we have already established that, for Cases 2 and 3, an SP can retain all the utility, because β
does not affect the fraction of requests served at the edge, and we have already made a numerical
illustration of this misreporting for Case 0 in section 4.5 we limit our analysis to Case 1.

We examine two distinct service provider profiles. The first profile (SP1) features a high value of β,
allowing it to retain a significant portion of the potential monetization. The second profile (SP2),
by contrast, retains approximately 26% of the potential monetization, corresponding to the scenario
where β results in ξ = ξpeak. Typically, SP1 corresponds to real-time applications with latency
constraints, while SP2 represents services less sensitive to response time. We expect that SP1 can
profit more from misreporting than SP2. We define the same values for l, ξ and d′ for both:



l = 10000, ξ = 60, d′ = 5× 10−7

SP 1 :βreal = 1× 10−6

The interior optimum solves

dUSP

dβdec
= 0 =⇒ β∗

dec =
− d′ +

√
d′2 + 8 d′ βreal ξ

2 ξ
≈ 4.04× 10−7

At truthful declaration, the retained utility is

USP(βreal) =
1
2

[
βreal l −

l d′

ξ
− l d′

ξ
ln
(
βreal ξ

d′

)]
≈ 4.76× 10−3

We evaluate USP at ten values of βdec:

βdec hdec Udec Ureal USP Benefit
1.0× 10−6 797.92 0.00952 0.00952 0.00476 0.0%
5.0× 10−7 682.39 0.00458 0.00949 0.00720 51.4%
2.0× 10−7 529.68 0.00165 0.00932 0.00849 78.5%
1.0× 10−7 414.15 0.00071 0.00896 0.00860 80.8%
6.0× 10−8 329.01 0.00035 0.00845 0.00827 73.8%
5.0× 10−8 298.63 0.00027 0.00818 0.00805 69.2%
4.0× 10−8 261.44 0.00019 0.00779 0.00769 61.7%
3.0× 10−8 213.49 0.00011 0.00712 0.00706 48.4%
2.0× 10−8 145.91 0.00004 0.00576 0.00574 20.6%
1.0× 10−8 30.39 0.00000 0.00165 0.00165 -65.3%

Table 6.7: Declared vs. real utilities and retained SP utility for Case 1a

The SP’s retained utility USP rises to a maximum at βdec ≈ 4.04 × 10−7 and then declines as βdec is
reduced further.

SP 2 :βreal = 2.26× 10−8

The interior optimum solves

dUSP

dβdec
= 0 =⇒ β∗

dec =
− d′ +

√
d′2 + 8 d′ βreal ξ

2 ξ
≈ 1.57× 10−8

At truthful declaration, the retained utility is

USP(βreal) =
1
2

[
βreal l

(
1− e− ξ h∗/l

)
− d′ h∗

]
≈ 2.97× 10−5

We evaluate USP at several βdec:

The SP’s retained utility USP peaks at βdec ≈ 1.57 × 10−8 and then falls, becoming negative for
sufficiently small βdec.



βdec hdec Udec Ureal USP Gain
2.26× 10−8 166.7 5.95× 10−5 5.95× 10−5 2.97× 10−5 0.0%
2.00× 10−8 145.8 4.39× 10−5 5.89× 10−5 3.70× 10−5 24.5%
1.60× 10−8 108.7 2.90× 10−5 5.72× 10−5 4.27× 10−5 43.9%
1.40× 10−8 86.5 3.10× 10−5 5.71× 10−5 4.16× 10−5 40.0%
1.00× 10−8 30.4 1.51× 10−6 2.26× 10−5 2.18× 10−5 -26.5%

Table 6.8: Comparison of declared vs. real utilities and retained SP utility for Case 1b

6.5 Studying the Effects of Interdependent Contribution

The effects of implementing sublinear per-millicore pricing (Section 5.9.1) are straightforward and
independent of the characteristics of the service providers (SPs). In contrast, dynamic allocation
introduces more intricate behaviors, which we examine in this section.

We begin our analysis by considering an artificial but illustrative, scenario. We assume two SPs with
identical values for the diminishing return parameter, benefit factor, and average load, differing only by
reversing the signs of the hyperparameters {ak} for one SP. This construction results in two perfectly
complementary SPs. Next, we compute the diminishing return parameter for each case. This can
be done either by applying the equations from Section 6.2, which unify the cases, or more simply by
directly defining the diminishing return parameter as a fraction of the total load served at the edge.
By adopting this approach, we compare Case 0 against Cases 1, 2, and 3.

We expect identical behavior for Cases 1, 2, and 3 under varying loads because, in these scenarios,
the exponential term of the saturation function scales linearly with load. Conversely, Case 0 behaves
differently, as the load does not explicitly scale the exponential term. Consequently, SPs do not
maintain consistent behavior across all time slots in Case 0. Here, the diminishing return parameter
defined as a fraction of load is valid only at the average load. This behaviour of Case 0 is consistent
with the claim we did section 4.2 stating that two SPs are ”of the same type” defining the same type
as they serve the percentage of requests in the edge, or in other words the relative weight of their cost
is the same. only when their diminishing return parameters have equal value and at the same time,
for SP1 and SP2 l1 β1 = l2 β2.

This distinct characteristic in Case 0 produces two notable effects:

• When normalizing the allocation and load curves, they coincide only at the average load. For
load levels above the average, allocations fall slightly below the load, while for loads below the
average, allocations are slightly higher than the load. This effect is illustrated in Figure 6.10,
where 66% of requests are served at the edge.

• When the target fraction of requests served at the edge is reduced, allocations may drop to
zero for SPs during periods of low load. This occurs when the positive allocation constraint is
violated, resulting in all resources being allocated to the complementary SP. This phenomenon
appears mildly in Figure 6.11, with 40% of requests served at the edge, and more prominently
in Figure 6.12, where the served requests drop to 10%. Note that contrary to the previous case
here, when load drops from the average, allocation drops even more, and when load is higher
than the average, allocation is even higher.

Formalizing these observations, Tables 6.1 and 6.2 clearly demonstrate that only in Case 0 do both the
positive allocation constraint and the peak value µpeak explicitly depend on the load. Consequently,
the fraction of requests served at the edge also varies with load exclusively in this scenario. Thus,
when the positive allocation constraint is violated in Case 0, allocation for the affected SP drops to
zero, reallocating resources entirely to the other SP to maximize net utility.

Note that for Case 1, 2 and 3 as a consequence of the load not determining the fraction of requests
served at the edge, the curves of load and allocation perfectly overlap each other regardless of the
fraction of the total load served at the edge. This can be observed in figure 6.13 where 99% of the
requests are served at the edge, and in figure 6.14 where only 10% of requests are served at the edge.



Figure 6.10: Load vs Allocation for Case 0, 66% of Requests Served at the Edge

Figure 6.11: Load vs Allocation for Case 0, 40% of Requests Served at the Edge



Figure 6.12: Load vs Allocation for Case 0, 10% of Requests Served at the Edge

Figure 6.13: Load vs Allocation for Case 1, 2 and 3 with 99% of Requests Served at the Edge



Figure 6.14: Load vs Allocation for Case 1, 2 and 3 with 10% of Requests Served at the Edge

To evaluate how synergic interdependency improves the SPs net utility, we compare their outcomes
under independent contribution versus interdependent contribution. Our analysis focuses on Case 1,
but results for Cases 2 and 3 are identical, and for Case 0 they are similar, except for previously
mentioned differences. Specifically, load and allocation exactly overlap only at the average load, and
when the positive allocation constraint is unmet, the entire allocation is reassigned to the other SP.

We present results for one SP, but given the symmetry of the scenario, outcomes for both SPs are iden-
tical. Table 6.9 presents gross utility, net utility, and costs for both scenarios. Additionally, we compute
the absolute difference in net utility and normalize this difference by dividing it by the independent
net utility and multiplying by 100, expressing the result as a percentage gain from interdependent
cooperation. Based on these results, we provide the following observations:

• Gross utility depends exclusively on the percentage of requests, thus it remains identical in both
interdependent and independent scenarios. Differences arise only due to cost sharing.

• Minor numerical differences in gross utility result from the independent scenario being computed
through a deterministic algorithm, whereas the interdependent scenario involves maximization
of net utility.

• At lower percentages of requests (e.g., 1% or 10%), the relative gain from perfect complemen-
tarity is substantial. As the percentage increases, the benefit diminishes significantly. At high
utilization (95% or 99%), the additional net utility is reduced to around 6% and 3%, respectively,
above the independent scenario.

• The above point illustrates the dual influence of the diminishing returns parameter. Increasing
this parameter results in a higher percentage of requests being served at the edge but simultane-
ously reduces the relative weight of allocation cost, by reducing the amount of needed resources
per request.

• We have presented a case of two perfectly complementary SPs and compared it with the indepen-
dent contribution case. In practice, interdependent real-world scenarios will lie between these



two extremes. Perfect complementarity represents the best-case gain from cooperation, while
independent contribution is the worst-case baseline. Other intermediate load curves will produce
gains that fall somewhere in the middle.

Load (%) Interdependent Independent Normalized Diff (%)
Gross Net Cost Gross Net Cost Net

1% 62.81 24.18 38.63 62.94 0.32 62.63 7456.10
10% 637.02 264.79 372.23 636.28 32.80 603.48 707.29
20% 1292.40 582.00 710.40 1289.12 137.38 1151.74 323.64
30% 1961.43 952.28 1009.15 1961.10 325.00 1636.09 193.01
40% 2654.79 1393.53 1261.26 2655.42 610.58 2044.83 128.23
50% 3379.64 1947.16 1432.48 3376.19 1014.70 2361.49 91.93
60% 4128.97 2603.14 1525.83 4128.72 1567.26 2561.46 66.06
70% 4921.37 3362.92 1558.45 4919.97 2315.10 2604.87 45.27
80% 5759.40 4292.76 1466.64 5759.28 3340.61 2418.68 28.50
90% 6659.10 5481.77 1177.33 6659.81 4823.48 1836.33 13.64
95% 7139.71 6259.86 879.85 7139.68 5887.96 1251.73 6.32
99% 7544.70 7330.48 214.22 7544.65 7130.00 414.66 2.82

Table 6.9: Comparison of net utilities and normalized gain





Chapter 7

Developed Software Description

This section provides a description of the simulation software developed to investigate cooperative
game-theoretical models for edge computing. The software is built using Python, employs a MySQL
database for data management, uses .YAML configuration files to define simulation setups and facilitate
sensitivity analysis. Additionally, Metabase is used for data visualization.

In this context, specific terminology is adopted to distinguish between individual simulations and
groups of simulations clearly. The term ”game” refers explicitly to the execution of a single instance
of the simulation process, characterized by a specific parameter configuration. Conversely, the term
”simulation” denotes a collection of multiple games that share the same set of service providers but
differ in specific parameter values. Each simulation is uniquely identified by a simulation name,
facilitating grouped management and organized analysis of related games.

Software Architecture Overview

The software structure is organized into six key components:

• Configuration Management

• Simulation Setup and Initialization

• Game Controllers

• Optimization Algorithms

• Load Function Generation

• Database Interaction

These components interact to execute simulations, manage data, and perform analyses.

Configuration Management

The Python configuration class (”config.py”) defines technical parameters and specifies the type of
simulation to execute. In this file, we do not set the numerical values of game parameters, but rather
we configure the simulation framework itself. Specifically, this includes:

• Logging levels: DEBUG, INFO, ERROR.

• Database connection settings.
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• Database maintenance operations: (Drop, Truncate, Create)

• Optional flags to save detailed simulation data (load and utility values). This is useful since the
load function may include randomnes, making results non-deterministic.

• Simulation type (additive deterministic, non-additive deterministic, non-additive estimation).
These simulation types are described in detail later.

• Allocation settings (per-time-slot or dynamic allocation), and CPU pricing strategies (variable
or fixed).

Simulation Setup and Initialization

The YAML configuration files enable users to configure simulation runs. The possible parameters to
configure are the following:

• Simulation identification: unique names to group related executions of simulations named as
”games”.

• Resource constraints: maximum possible amount of cores hosted at the edge.

• Investment duration: timeframes (years) to evaluate investment impacts.

• Daily granularity: number of time slots per day.

• Utility function selection: choice among predefined cases (0–3), new cases can be defined here.

• Pricing strategy: fixed or variable CPU prices.

• Service Provider specifications:

– Name: It identifies an SP inside its corresponding simulation name, by defining multiple
name for the same SP definition, it wil create multiple ”different” SP with the exact same
parameters values.

– Load function:

∗ Average load.

∗ Hyperparameters for sinusoidal load function.

∗ Variability (sigma).

– Benefit factor.

– diminishing returns parameter:

∗ Directely configured through the variable xi (that also represents λ or µ).

∗ Fractional service level (fraction of requests served at Edge).

– Optimization parameters (latter described in more depth) :

– GTOL: the gradient tolerance.

– FTOL: the function tolerance.

– XTOL: the step tolerance.

– JTOL: the Jacobian tolerance.

– EPS: the finite-difference step size.

– MAXITER: the maximum number of iterations.



The YAML files allow defining parameters in three different ways: using a single value (e.g., price cpu:

0.5), an explicit list of values (e.g., price cpu: [0.5, 0.6]), or a range defined by an initial value,
a final value, and the number of intermediate points (e.g., price cpu: [’0.5:1:5’]). The software
automatically runs one game for each possible combination of these parameters. Users should carefully
manage the configuration, as this approach can rapidly increase the total number of simulations.

Regarding the Utility function selection, the file allows us to modify or even create new utility func-
tions by defining the exponents (i, j, k,m) of the parameters in the auxiliary function f(l, β, ξ, d′) =
li βj ξk d′m such that the utility function for a time-slot is:

l β(1− e−h f(l,β,ξ,d′))− d′ h

As stated in Section 5.9.2, the fraction of requests served at the edge remains invariant with respect
to the load for Cases 1, 2, and 3. In contrast, for Case 0, when the diminishing returns parameter is
defined through a fraction of requests, this fraction is valid only at the average load, from which the
constant value of ξ is derived.

YAML Configuration example� �
1 // General p r op e r t i e s o f the game
2 # Only one value accepted
3 # I d e n t i f i e s the s e t o f games de f ined in t h i s f i l e
4 s imulat ion name : Sim 127
5

6 # Al l the f o l l ow i n g p r op e r t i e s in t h i s f i l e have 3 d i f f e r e n t p o s s i b l e ass ignment
c on f i g u r a t i o n s :

7 # Immediate number , ex : p r i c e cpu : 0 . 5
8 # Exp l i c i t l i s t o f values , ex : p r i c e cpu : [ 0 . 5 , 0 . 6 ]
9 # Imp l i c i t l i s t o f va lue s with the format [ I n i t i a l v a l : F i n a l v a l : amount o f va lues ] , e .

g . cpu pr i c e : [ ’ 0 . 5 : 1 : 5 ’ ]
10

11 max cores hosted : [ 4 4000 ] # Max amount o f c o r e s hosted at the edge
12

13 years : [ 3 , 4 ] # Investment per iod ( years ) , can take dec imals
14 d a i l y t im e s l o t s : [ 2 4 , 9 6 , 1 92 ] # Time s l o t s per day
15

16 # Ut i l i t y func t i on r e d e f i n i t i o n :
17 # The four numbers correspond to the exponent o f the parameters in the a ux i l i a r y

func t i on f ( l ,\ beta ,\ xi , d ’ ) , new ca s e s can be de f ined here
18

19 ca s e s :
20 0 : [ 0 , 0 , 1 , 0 ]
21 1 : [−1 , 0 , 1 , 0 ]
22 2 : [−1 , −1, −1, 1 ]
23 3 : [−1 , −1, 1 , 0 ]
24

25 s e l e c t e d c a s e : 0 #This cor responds to the o r i g i n a l u t i l i t y func t i on
26

27 # In the c on f i g . py i t i s de f i ned i f i t take the f i x ed or va r i ab l e cpu p r i c e
28 p r i c e s :
29 when f ixed :
30 cpu pr i c e : [ 0 . 0 5 : 0 . 5 : 1 0 ] # Used i f ’ v a r i ab l e cpu p r i c e ’ : False , i f not i t i s

ignored
31 when var iab le :
32 # Fol lowing 3 work toge the r and need equal amount o f e lements
33 min core s hos ted : [ 0 ] # Min amount o f c o r e s hosted at the Edge , t h i s may make

smal l c o a l i t i o n to have 0 value
34 min cpu pr i ce : [ 0 . 1 ] # Pr i ce per un i t when a l l o c a t i n g max cores hosted

r e s ou r c e s
35 max cpu price : [ 0 . 5 ] # Pr i ce per un i t when a l l o c a t i n g min core s hos ted
36

37 s e r v i c e p r o v i d e r s :
38 − s e rv i c e p rov ide r name : [ ’ SP1 ’ ]
39 sigma : [ 0 ] # standard dev i a t i on f o r c a l c u l a t i n g the load , 0 w i l l make the load

func t i on d e t e rm i n i s t i c



40 avg load : [ 4 8530 ] # average load
41 # hyperparameters : used to d e f i n e the load funct ion , a k determining the

amplitude ( r eque s t s ) and t k the o f f s e t ( time in seconds )
42 a k : − [ 25313 , −8832 , 1757 , −2873]
43 t k : − [ 47340 , 49080 , 44520 , 44880 ]
44 b e n e f i t f a c t o r : [ 1 . 5 e−06 ,3e−06 ,6e−06]
45 f r a c o f r e q u e s t s : [ 0 . 9 9 ] #a l t e r n a t i v e l y we can de f i n e the value o f the

d imin i sh ing r e tu rn s parameter e . g . x i : [ 0 . 0 8 ]
46

47 − s e rv i c e p rov ide r name : [ ’ SP2 ’ , ’ SP3 ’ , ’ SP4 ’ ]
48 sigma : [ 0 ]
49 avg load : [ 4 8530 ]
50 a k : − [−25313 , 8832 , −1757 , 2873 ]
51 t k : − [ 47340 , 49080 , 44520 , 44880 ]
52 b e n e f i t f a c t o r : [3 .5 −06 ]
53 f r a c o f r e q u e s t s : [ 0 . 5 , 0 . 6 , 0 . 7 , 0 . 8 ]� �

In the example above, each simulation named as ”game” will have four SPs, one named as SP1, and
three named as SP2, SP3, and SP4, with the same characteristics.

Given the following parameters for which we declared multiple values:

daily timeslots: [24, 96, 192] (defining at least 3 simulations) years: [3, 4] (defining at least 2 simula-
tions) cpu price: [0.05:0.5:10] (defining at least 10 simulations) (suppose that the price is set as fixed)
for SP1: benefit factor: [1.5e-06, 3e-06, 6e-06] (defining at least 3 simulations) for SP2, SP3 and SP4:
frac of requests: [0.5, 0.6, 0.7, 0.8] (defining at least 4 simulations)

This will result in 3 · 2 · 10 · 3 · 4 = 720, simulations, with 4 SPs each one. We can observe that this
mechanism facilitates the sensitivity analysis, but if we are not careful, the total amount of simulations
can grow extremely fast. Also note that while under the independent contribution, each simulation
is executed in less than a second; when the contribution is interdependent, particularly in the case
of dynamic allocation, running 720 simulations with 4 SPs each one can take a few minutes even if
we relax the epsilon and tolerance values of the Sequential Least Squares Programming maximization
method.

GameBuilderController Class

The GameBuilderController interprets YAML files, initializes simulations and individual games. Each
game generated is uniquely identifiable by the Simulation it belongs to and all the parameter values. A
group of games sharing the same simulation name can be updated: when executing a simulation with
an existing name, the software adds new cases if parameters differ, and overrides existing results if
parameters match exactly. The number and names of service providers must match exactly; otherwise,
the software raises an error indicating an incompatible simulation name.

Game Controllers

Deterministic Additive Value Game Controller

This controller addresses scenarios with independent contributions from SPs, significantly simplifying
calculations. It implements the pseudocode given in Section 3.10.2, eliminating the need for numerical
optimization and greatly enhancing computational speed.

Estimation Non-Additive Solver Game Controller

This controller manages scenarios in which service provider contributions are interdependent, especially
when the number of service providers is large or dynamic allocation is enabled. Instead of calculating
values for all possible coalitions explicitly, it calculates only the grand coalition value to determine
resource allocations. The Shapley values are then approximated by sampling random coalitions, making



computations feasible in a reasonable amount of time. It also incorporates caching mechanisms to
prevent redundant calculations, balancing computational efficiency with analytical accuracy.

Deterministic Non-Additive Solver Game Controller

This controller manages scenarios where service provider contributions are interdependent, but the
number of service providers is relatively small or dynamic allocation is not enabled, keeping compu-
tational complexity manageable. Under these conditions, the controller explicitly calculates the value
for each possible coalition to precisely determine the Shapley value.

Optimization Algorithms

The OptimizationController class is crucial for handling complex optimization scenarios. This class
numerically maximizes coalition utilities, particularly under dynamic, per-time-slot resource allocations
and variable CPU pricing strategies. Key functionalities include:

• Computing utility functions based on the selected net utility function case and input parameters.

• Employing the trust-constr optimization method from SciPy, which is particularly well-suited
for constrained, smooth, nonlinear optimization problems.

• Explicitly computing and supplying the Jacobian (first-order derivative) and Hessian (second-
order derivative) matrices to improve numerical precision and convergence efficiency.

• Enforcing feasibility constraints to ensure all resource allocations stay within the bounds of
available resources.

• Reading optimization parameters from the configuration file, including:

– GTOL: the gradient tolerance, which defines the stopping criterion based on the projected
gradient norm.

– XTOL: the step tolerance, which controls convergence by checking the magnitude of relative
changes in the decision variables.

– BARRIER TOL: the barrier tolerance, controlling the accuracy in constraint satisfaction and
convergence of barrier subproblems.

– JTOL: the Jacobian tolerance, applied to constraints, ensuring that constraint violations
remain within acceptable bounds.

– MAXITER: the maximum number of iterations allowed during the optimization process to
prevent infinite loops or excessive computation time.

The following table summarizes how these parameters influence the speed and precision of the opti-
mization process:

Load Function Generation

The LoadFunctionController generates the load profiles for each SP, utilizing sinusoidal expansions
that mimic typical daily fluctuations in demand. It can introduce controlled randomness through a
configurable sigma parameter, enabling the exploration of load uncertainty impacts. This functionality
provides support for sensitivity analyses under varying load conditions, to better model real-world
operational scenarios.



Parameter Description Effect on Speed Effect on Precision

GTOL Gradient-norm threshold
for convergence

Lower values slow conver-
gence

Improves accuracy near op-
timum

XTOL Tolerance on variable
changes

Reduces early stopping Helps locate stable solu-
tions

BARRIER TOL Tolerance for constraint
barrier subproblems

Stricter feasibility slows
convergence

Enhances constraint satis-
faction

MAXITER Cap on number of iterations Slows if set very high Avoids premature termina-
tion

Table 7.1: Optimization parameters and their influence on performance.

Simulation Execution

The SimulationController oversees the complete simulation execution, orchestrating three primary
processes:

• Maximization of the coalition’s total payoff using optimization algorithms.

• Calculation of individual contributions (Shapley values) for each SP and the NO; this implies
calculating the payoff maximization for each feasible coalition.

• Determination of financial outcomes, explicitly calculating payments for each participant based
on their Shapley value.

Additionally, it logs execution details, including computational resource usage and timing information,
aiding performance analysis and scalability evaluations.

Database Interaction

The DAOController class manages interactions with a MySQL database, storing and updating simu-
lation results. Its functionalities include:

• Storing simulation inputs (parameters, configurations).

• Managing updates and insertions of game data, merging results for the same simulation name
and same SPs.

• Saving generated load functions, utility values, when this option is selected in the configuration
file.

Main Execution

The main execution script (main.py) serves as the software’s central operational entry point. It
systematically performs the following actions:

• Initializes the logging environment and database connections as specified in the Python config-
uration class.

• Sequentially reads YAML configuration files, generating and initializing simulation scenarios
using the GameBuilderController.



• Executes each simulation, managing individual game processes through selected Game Con-
trollers and Optimization modules.

• Logs resource utilization and execution timing information, enhancing transparency and aiding
resource management.

Interactive Load Function Editor

The script create load function.py provides a browser-based tool to define any daily load pattern
visually and extract the corresponding sinusoidal hyperparameters and average load. Its main features
are:

• A parametric model of the load curve as the sum of K sinusoids.

• An interactive plot (using ”Bokeh” library) spanning 0 to 24 hours, where the user can drag
sample points up or down.

• On each Submit & Fit Curve action, a nonlinear least squares fit (SciPy curve fit) recom-
putes. {ak}, {tk} and avg load

• A ”copy to clipboard” button that outputs the result in a YAML format to directly paste it into
the setup file.

This tool makes it simple to generate different daily demand patterns without manual computation
of phase shifts or amplitudes. To execute it just run the file named create load function.py inside
the utils folder.

Conclusion

The presented simulation software provides a framework to analyze cooperative resource allocation
models in edge computing environments. It integrates optimization algorithms, configurable load
modeling, and systematic data management, supporting economic evaluations and strategic analyses
of cooperative scenarios.





Chapter 8

Conclusions and Future Work

In this final chapter, we synthesize the results obtained throughout the thesis and reflect on the extent
to which our original goals were met. We also outline possible directions for future work based on the
insights gained.

This document focused primarily on developing a deep understanding of the original model proposed
in the referenced academic article. Rather than immediately pursuing enhancements or extensions, we
first chose to validate and dissect the model’s structure, simplify its formulation where possible, and
evaluate its behavior under different conditions. This approach allowed us to identify key limitations,
interpret the economic meaning of its parameters, and explore both the computational and strategic
implications of its assumptions.

While there are numerous opportunities to expand the model or incorporate additional complexities,
we deliberately limited the scope of this thesis to avoid superficial treatments. The contributions made
here aim to establish a solid analytical foundation that clarifies the model’s internal mechanics. With
this understanding now in place, we are better positioned to pursue meaningful extensions in future
research, including the formal integration of alternative utility functions, dynamic resource allocation
mechanisms, and mechanisms to improve incentive compatibility.

The sections that follow present a structured overview of the main contributions and propose a concrete
path for future development.

8.1 Conclusions

Analytical Simplifications and Efficiency Gains

We identified several simplifications of the original model, significantly reducing analytical complexity
and computational requirements. These simplifications enabled simulations to run in linear rather than
exponential time, greatly enhancing practical feasibility. They also allowed for a more comprehensive
and straightforward analysis of the model’s core equations.

Identification of Constraints and Limitations

Constraints such as the requirement for positive allocation, along with limitations of the original model,
were identified, especially conditions under which its assumptions did not hold or resulted in unrealistic
outcomes. To overcome these limitations, we proposed alternative utility function formulations and
systematically compared their implications for resource allocation and incentive compatibility.
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Insights into Model Variables and Parameters

We gained insights into the internal dynamics of the model, particularly regarding the role and inter-
pretation of each variable. The diminishing return parameter was notably clarified, and we showed
that it can be related to measurable real-world parameters, helping to explain its influence on optimal
resource allocation and utility.

Risk Analysis and Strategic Implications

We conducted a risk analysis focusing on the consequences of misestimating key parameters, providing
equations that allow service providers to evaluate potential losses and support more informed strategic
decisions. We found that overstating the load or benefit factor β consistently results in greater risk
than understating them. This asymmetry aligns with the lack of incentive compatibility identified in
the model, where underdeclaring β is a dominant strategy for SPs seeking to maximize their retained
utility.

Alternative Utility Function Formulations

We proposed and analytically investigated three alternative utility function formulations, each address-
ing specific limitations of the original model. These new formulations allowed us to explore different
economic interpretations of resource allocation and saturation effects, and provided more flexible rep-
resentations of SP behavior. We compared their mathematical properties, strategic implications, and
practical consequences, highlighting the trade-offs involved in selecting each version.

Strategy-Proofness Across Different Formulations

We demonstrated that the lack of strategy-proofness in the model is limited exclusively to the benefit
factor β, since all other variables are either directly measurable or exogenous to the service provider.
This finding holds true across all the utility function formulations analyzed: the original model and
the three proposed alternatives. Furthermore, we showed analytically that the absence of strategy-
proofness is not specific to the exponential saturation equation used initially but rather applies to any
possible saturation function employed to model diminishing returns. In particular, we found that for
the original and the first proposed utility functions, the gains from strategic under-declaration can
be effectively bounded. In contrast, under the second and third utility function formulations, the
retained utility obtained by misreporting β cannot be similarly constrained. However, if we adopt
an alternative interpretation of strategy-proofness, specifically, preventing SPs from proportionally
increasing their allocation while simultaneously declaring a lower net utility, Case 2 and Case 3 utility
function formulations satisfy this second criterion of strategy-proofness.

Proposed Mechanisms to Enhance Strategy-Proofness

To address this lack of strategy-proofness, we proposed mechanisms such as a secondary market where
service providers can trade their allocation. In this setup, service providers are required to sell alloca-
tion based on their declared net utility, while buying remains optional. This arrangement encourages
truthful declarations, as underdeclaring utility could result in being forced to sell allocation at a de-
clared value lower than its actual worth. We also suggested interpreting the benefit factor β as a
priority indicator linked to response time. In this context, the network owner can employ internet
slicing to offer differentiated service levels, associating higher declared values of β with faster and more
reliable responses. These adjustments introduce a strategic trade-off that discourages misreporting by
making honest declarations more attractive.



Enhanced Realism Through Dynamic Allocation

By introducing additional complexity into the model, particularly allowing service providers to have
varying allocations across different time-slots, we achieved a more realistic representation of edge com-
puting scenarios. Although these enhancements invalidated the initial simplifications, the simplified
model remains valuable as a clearly defined worst-case scenario for comparative analysis. In this con-
text, it represents a conservative baseline for SPs, meaning their net utility under the more complex
models will always be equal to or greater than what they would obtain under the original version.

Simulation Framework and Computational Scalability

We developed a software tool to support extensive simulation analyses, including scenario configu-
ration, execution, data storage, and visualization. This tool facilitated the comparison of various
model formulations and provided deeper insight into their behaviors. The framework supports both
independent and interdependent contribution models, enabling simulations under dynamic allocation
and variable pricing strategies. When interdependencies between players are present, particularly
for the calculation of the Shapley value, simulation runtimes can significantly increase. To address
this computational challenge, we employed techniques such as Monte Carlo sampling and caching,
which substantially reduce the required computational time, allowing simulations to scale effectively
to larger numbers of players. Additionally, by adjusting the optimization parameters directly in the
configuration files, users can explicitly manage the trade-off between computational precision and exe-
cution speed, choosing parameter values that best match their analytical priorities and computational
resources.

Integration of Ideas from Related Literature

We analyzed the set of academic articles provided with the thesis and summarized their main findings
to identify which ideas could be integrated into our model. Among these, we highlight the concept of a
secondary market where service providers can optionally buy or sell allocation. Unlike the previously
described scenario, in which service providers are forced to sell based on their declared utility, here
trading is voluntary. Service providers can freely sell portions of their allocation for any subset of time
slots and durations, thereby providing flexibility to adapt to changing needs or to address parame-
ter misestimations effectively. Additionally, the PyMarket library, presented in one of the reviewed
articles, provides a simple yet powerful Python-based toolkit designed specifically for the prototyp-
ing, implementation, and evaluation of auction-based market mechanisms. PyMarket supports various
market designs, including multi-unit double auctions (MUDA) and peer-to-peer trading, both particu-
larly suitable for facilitating such secondary market exchanges. Its compatibility with Python ensures
seamless integration with our existing simulation framework, significantly simplifying the development
and testing of these auction mechanisms. Furthermore, we adopted the concept of ramp constraints
from these articles, which must be considered when dynamic allocation is introduced. Reassigning
resources at every time slot could otherwise introduce delays in response time, and ramp constraints
offer a way to realistically account for these transition costs. The reviewed literature also highlighted
the benefits of combinatorial auctions, enabling participants to bid simultaneously across multiple
time slots, effectively capturing flexibility in resource utilization. This combinatorial approach is espe-
cially relevant when considering dynamic allocations, where efficient redistribution of resources must
be managed across consecutive periods to enhance overall performance and fairness.

Decoupling Edge-Served Request Fraction from Hardware Requirements for Enhanced
Model Flexibility

We found that the original diminishing return parameter implicitly defined two distinct and indepen-
dently measurable real-world quantities: the fraction of requests served at the edge, and the amount
of hardware (in millicores) required to process a given number of requests in a given time. Since these
two aspects do not necessarily need to be coupled, we proposed separating them into two different



parameters. One parameter explicitly controls the fraction of requests served at the edge, reflecting
service responsiveness and saturation behavior. The other parameter defines the hardware require-
ments per request, which depend on the computational intensity of the service. By using a single
variable to simultaneously define both dimensions, the model only allows a narrow set of combinations
between responsiveness and hardware usage. This restriction limits the diversity of service provider
profiles that the model can represent. For instance, a high value of the original diminishing return
parameter implies that a very large fraction of requests is served at the edge with minimal hardware
allocation, which may not reflect realistic service behaviors. By introducing two separate parameters,
we allow for a much broader range of configurations, enabling the model to represent service providers
with high responsiveness but also high hardware demands, or any other meaningful combination. This
separation increases the expressiveness of the utility function and allows the model to more accurately
reflect the physical and performance constraints of edge computing environments.

Potential Directions for Future Work

We outlined potential directions for future work. As discussed in the previous point, one possibility
is to redefine the utility function using two separate parameters to decouple the fraction of requests
served at the edge from the hardware required to process them. Additionally, some of the ideas and
mechanisms presented in the reviewed academic articles, such as secondary markets, ramp constraints,
or dynamic coordination mechanisms, can also be adapted and incorporated into future versions of the
model. Whether to implement the proposed separation of parameters or adopt one of the other modified
utility functions presented in this work is a design decision that should be made in coordination with
the rest of the research team. Once this decision is made, the next step would be to proceed with the
formal definition and analysis of a selected new utility function.

8.2 Future Work

8.2.1 Introducing Separate Variables for Edge Request Fraction and Hard-
ware Requirements

As discussed in the conclusions, a promising future direction involves redefining the utility function by
introducing two separate variables, each explicitly representing a distinct, measurable real-world met-
ric. One variable would define the fraction of requests served at the edge, while the other independently
specifies hardware requirements per request. Although a detailed analysis of these new utility functions
exceeds the scope of this thesis, we provide their initial formulations, demonstrating that each has a
well-defined first-order optimality condition and possesses a unique global maximum. This separation
has the potential to substantially increase model flexibility and realism in future formulations of the
Edge computing model.

We define λ as the variable that controls the exponential saturation of the fraction of requests served
at the edge, and ξ as the number of requests a single millicore can serve in one time-slot. While we
keep d′ as the amortized price per millicore and l, β and h as previously defined.

Utility Formulation A

UA(h) = l β
(
1− e−λh

)
− d′

l

ξ
h

Benefit saturates with λ, while cost is linear in h. The linear cost term is scaled by l
ξ that converts

load into the number of millicores required to serve it during the time-slot.

First-order condition:



∂UA

∂h
= l β λ e−λh − d′

ξ
= 0 =⇒ h∗

A =
1

λ
ln

(
β ξ λ

d′

)
Where β ξ λ ≤ d′ is the positive allocation constraint.

Uniqueness:

∂2UA

∂h2
= −l β λ2e−λh < 0 ∀h > 0

Since UA(h) is strictly concave, the stationary point h∗
A is the unique global maximizer. Because a

closed-form expression for h∗
A was obtained, we can directly substitute this value into the net utility

function UA(h) to obtain a closed-form expression for the optimal utility UA(h
∗
A):

UA(h
∗
A) = l β

(
1− d′

β ξ λ

)
− d′ l

ξ λ
ln
(β ξ λ

d′

)
.

Utility Formulation B

UB(h) = l β
(
1− e−λh

)
− d′

l

ξ
h

(
1− e−

λh
l

)
Both benefit and cost employ the same saturation rate λ,capturing diminishing returns in revenue and
in marginal cost as allocation grows relative to load.

First-order condition:

l β λ e−λh − d′

ξ

(
1− e−

λh
l + λh

l e−
λh
l

)
= 0

A closed form for h∗
B is not available because λh appears both inside and outside exponentials.

Uniqueness:

∂2UB

∂h2
= − l β λ2e−λh − d′

ξ

(
λ

l

)2

h e−
λh
l < 0 ∀h > 0

so UB(h) is strictly concave and the root of the first-order condition is unique, hence there is a unique
optimal allocation. Because of strict concavity, any monotone root finding method, such as the Newton
Raphson iteration or a bracketed bisection search, converges to h∗

B .

Utility Formulation C

UC(h) = l β
(
1− e−λh

)
− d′

l

ξ
h
(
1− e−ξh

)
Benefit saturation depends on λ (edge-served fraction), while cost saturation depends on ξ (hardware
efficiency), allowing independent tuning of these two effects.

First-order condition

l β λ e−λh − d′

ξ

(
1− e−ξh + ξ h e−ξh

)
= 0



Again no closed form exists, but

∂2UC

∂h2
= − l β λ2e−λh − d′ l e−ξh

(
ξ

ξ

)2

< 0 ∀h > 0

so UC(h) is strictly concave and the stationary point h∗
C is unique. Strict concavity guarantees con-

vergence of Newton–Raphson or bisection methods to h∗
C .

Table 8.1 lists the three formulations and their optimal allocation conditions.

Form Utility U(h) First-order condition Optimal allocation h∗

A l b (1− e−λh)− d l
ξ h bλe−λh = d

ξ

1

λ
ln

(
b ξ λ

d

)
B l b (1− e−λh)− d l

ξ h (1− e−
λh
l ) bλe−λh =

d
ξ

(
1− e−

λh
l + λh

l e−
λh
l

) Solve numerically

C l b (1− e−λh)− d l
ξ h (1− e−ξh) bλe−λh = d

ξ

(
1− e−ξh + ξhe−ξh

)
Solve numerically

Table 8.1: Comparison of three utility functions and their optimal allocations

8.2.2 Improving Computational Efficiency for Shapley Value Estimation

The most computationally intensive task in the current model is calculating each service provider’s
Shapley value. For the network owner, this is not problematic; as detailed in Section 5.10, the network
owner consistently retains half of the grand coalition’s value due to its role as the veto player. However,
computing Shapley values for individual SP requires evaluating all possible feasible coalitions, a process
that grows exponentially with the number of SPs involved.

In our primary approach, we addressed this challenge by applying Monte Carlo sampling methods.
While effective as an approximation, Monte Carlo methods may perform inconsistently when there is
significant heterogeneity among service providers. For example, including or excluding a provider with
a highly complementary load profile can substantially alter the estimated Shapley value purely due to
random sampling variability.

To overcome this limitation, we propose developing estimators based on two key factors: the distinc-
tiveness of a provider’s load profile relative to others, and the proportion of total requests served at the
edge, which determines the relative weight of costs in the utility function. By computing a coefficient
capturing these characteristics, we could directly scale an SP’s marginal contribution within the grand
coalition. This approach would allow for a more computationally efficient and reliable estimation of
Shapley values, particularly when scaling the model to include a large number of SPs. Specifically,
this coefficient would be greater for providers with more distinct load profiles and for those serving a
lower fraction of requests at the edge.

8.2.3 Extending the Model for Multi-resource Optimization and Quality-
of-Service Differentiation

Throughout this thesis, we have focused on optimizing a single computational resource, specifically
CPU allocation measured in millicores. While this simplification allowed us to rigorously analyze
the core model and clearly interpret its economic implications, real-world edge computing scenarios
typically require simultaneous consideration of multiple resource types. Resources such as memory,
storage, bandwidth, and computing capability each have distinct usage patterns and constraints.

Moreover, we could interpret that the existing model associates CPU allocation with corresponding
quantities of memory and storage. This interpretation, while simplifying, is overly restrictive, as
different edge computing services exhibit heterogeneous resource demands. By explicitly modeling



multiple resource dimensions, including CPU capacity, memory allocation, storage capability, and
bandwidth, we can more accurately capture the trade-offs faced by service providers with varying
service profiles.

Furthermore, Quality-of-Service (QoS) metrics such as latency, reliability, and response time have
only been briefly considered through preliminary ideas about internet slicing by the network operator.
Initially proposed as a mechanism to counteract the lack of strategy-proofness in the benefit factor,
internet slicing could also enhance the realism of the model. Explicitly incorporating QoS metrics as
constraints or additional utility terms would allow SPs to associate higher benefit factors directly with
improved latency, reliability, and bandwidth guarantees.

Implementing such multi-resource and QoS-aware modeling will undoubtedly increase the complexity of
the optimization problem, as it now involves multi-dimensional allocation strategies. Nevertheless, this
extended model would enable a more realistic and nuanced representation of practical edge computing
environments.

8.2.4 Incorporating Uncertainty, Risk Preferences, and Extended Dynamic
Allocation

Throughout this thesis, variability was introduced only into the load function by adding randomness
to simulate stochastic demand scenarios. However, a detailed analysis of the implications of such
uncertainty on optimal allocations and coalition stability was beyond the scope of this work. Future
extensions of the model could systematically incorporate stochastic processes not only in demand but
also in other critical utility parameters, such as resource prices, benefits, and diminishing returns
factors.

Additionally, the current formulation assumes the daily load pattern remains constant throughout
the entire investment period, allowing only daily dynamic allocation. A further enhancement could
involve modeling weekly load patterns or incorporating longer-term variations across the full investment
horizon. Such an extended dynamic allocation would imply a unique allocation for each individual
time slot of each day throughout the investment period, significantly increasing the complexity and
computational demands of the model.

8.2.5 Integration of Secondary Markets and Auction-based Mechanisms

As discussed in the conclusions and throughout this thesis, introducing secondary markets or auction-
based mechanisms represents a promising avenue for future extensions. Such mechanisms can serve
two primary purposes: first, to address the identified lack of strategy-proofness related to the benefit
factor; and second, to enhance service providers’ overall utility. By allowing service providers to trade
their allocated resources at any point during the investment period, secondary markets could provide a
practical means to mitigate risks associated with parameter misestimations and dynamically improve
individual utilities through flexible resource reallocation.

8.2.6 Spatial Considerations and Network Topology

Another valuable direction for extending the model involves incorporating spatial dimensions and
network topology considerations. The current framework assumes a single edge site, disregarding
location-specific characteristics such as resource costs and latency variations. A natural generalization
would involve multiple edge sites interconnected via a backbone network, each characterized by unique
pricing structures, availability of resources, and distinct latency constraints. In such an extended
model, service providers would face more complex allocation and resource transfer decisions, influenced
not only by local resource prices but also by the geographical distribution of users, infrastructure
capabilities, and network latency constraints. Additionally, coalition formation and stability analyses
would need to explicitly account for spatial interdependencies, resource transfer costs, and potential
strategic behaviors driven by site-specific advantages.
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Appendix A

Summary of Related Articles

In addition to an in-depth analysis of the primary Edge Computing article, this thesis examines
nine other articles provided as complementary thesis material. The core concepts of these articles
relate, to varying degrees, to the Edge Computing problem explored in this work. These articles
serve as reference points and sources of inspiration, offering valuable insights and suggesting possible
enhancements to our current model. In the following sections, we summarize each article, highlight
their main contributions, and discuss how their findings may either complement our existing approach
or guide potential improvements through the integration of new concepts.

A.1 Strategy-Proof Local Energy Market With Sequential Stochas-
tic Decision Process For Battery Control

The article (Kiedanski, Kofman, Horta, & Menga, 2019) proposes a new framework for coordinating
household energy storage systems (batteries) and local renewable energy generation through a local
energy market. The key elements are described below.

Strategy-Proof Local Energy Market

• Uses a multi-unit double auction (MUDA) that is strategy-proof in both price and quantity.

• Prosumers (households producing and consuming electricity) are incentivized to bid their true
preferences.

• This design encourages fairness and transparency, enabling participants to buy or sell energy at
prices determined by competition.

Battery Control Via Stochastic Decision Process

• Each household manages its battery through a sequential stochastic decision process.

• Uncertainty in load and generation forecasts is handled using approximate dynamic programming
or reinforcement learning methods.

• The control policy optimizes when to charge, discharge, buy, or sell energy, considering expected
rewards and costs.
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Combined Benefits

• Integrating the local market with adaptive battery control reduces reliance on the main grid,
lowering both congestion and costs.

• Prosumers benefit economically by locally matching supply and demand, rather than depending
solely on utility rates.

• Distribution system operators experience a more stable aggregate load profile within the neigh-
borhood.

Relation To The Edge Computing Problem

Although this article centers on household energy markets rather than hardware capacity sharing, it
focuses on mechanisms through which participants benefit from truthful bidding. In edge computing
coinvestments, a similar requirement emerges: handling uncertainty in resource allocation demands
and incentivizing honest declarations of resource needs or valuations. The core ideas of strategy-
proof market design and real-time decision-making provide valuable insights for the fair and efficient
allocation of edge computing resources among multiple stakeholders.

In contrast, our Edge Computing model directly assigns resources to maximize the grand coalition
value, thus inherently providing optimal allocation. However, a significant issue identified in our ap-
proach is the lack of strategy-proofness. Introducing auction mechanisms, such as MUDA, for resource
assignment would fundamentally alter the existing model’s intent. Nonetheless, incorporating a mar-
ket mechanism after resource allocation, particularly when discrepancies arise between declared and
actual utility parameters, could allow SPs to trade their allocated resources. This approach might be
especially advantageous in scenarios involving dynamic allocation, discussed in section 5.9.2. Here, SPs
can be analogous to prosumers, where the ”produced” resources correspond to their allocated capaci-
ties, and the ”consumed” resources reflect their operational demands. The potential implementation
of such post-allocation market mechanisms is explored further in section 3.15.2 and section 5.8.4

A.2 The Effect Of Ramp Constraints On Coalitional Storage
Games

The article (D. K. Diego Kiedanski Ariel Orda, 2019) explores how ramp constraints limits on battery
charge and discharge rates affect the formation of coalitions for jointly purchasing and operating energy
storage systems. Using cooperative game theory, it identifies scenarios where consumer groups benefit
from shared battery investments, demonstrating how ramp constraints significantly influence coalition
profitability and stability.

Shared Battery Investment and Cooperative Games

• Consumers jointly invest in batteries, dividing costs and benefits based on cooperative game
rules.

• Without ramp constraints, sharing provides minimal or no advantage over individual investments.

• Introducing ramp constraints makes certain joint investments profitable but can also destabilize
coalitions (potentially resulting in an empty core).

Key Theoretical Findings

• Constant ramp constraints, independent of battery size, can lead to an empty core, indicating
unstable profit divisions.



• When ramp constraints scale linearly with capacity, stable and fair cost allocation is achievable,
and the Shapley value resides within the core.

• Certain scenarios relate closely to classic ”glove-market” games, allowing explicit identification
of stable solutions.

Practical Relevance

• Real battery products have significant ramp constraints, influencing coalition profitability for
smaller groups.

• Empirical data confirms ramp constraints critically impact the viability of coalition formation.

• Analysis offers guidelines for coalition formation and stable benefit-sharing strategies.

Relation To The Edge Computing Problem

Originally developed for battery storage, ramp constraints parallel practical limitations in edge com-
puting resources—such as maximum data throughput, concurrency limits, and reallocation delays.
These constraints influence coalition incentives, impacting stability and fairness in resource-sharing.
Recognizing such analogies helps build realistic and fair cost-sharing models for edge computing envi-
ronments, especially when immediate resource reallocation is impractical.

Currently, ramp constraints are not integrated into our model but may be relevant in future iterations,
particularly for dynamic allocations over multiple time slots. Increasing the frequency of allocation
adjustments under such constraints may not always yield improved performance or efficiency. The
significance of ramp constraints also varies depending on virtualization practices: duplicating a full
virtual environment or database could impose substantial constraints, whereas expanding resources
within an existing environment is generally quicker.

A.3 PyMarket: A Simple Library For Simulating Markets in
Python

The article (J. H. Diego Kiedanski Daniel Kofman, 2020) introduces PyMarket, a library written in
Python designed to facilitate the development and evaluation of diverse market mechanisms (https://
pypi.org/project/pymarket/). Its primary use is in contexts such as local energy trading or band-
width allocation, where auctions and market algorithms require systematic prototyping and evaluation.
PyMarket offers an interface for bid submission, market clearing processes, and visualization of results,
including supply and demand curves.

Key Features and Market Mechanisms

• Implements standard market designs, including multi-unit double auctions and peer-to-peer trad-
ing schemes.

• Provides Python APIs for defining bids and clearing mechanisms, with built-in statistical analysis
and plotting capabilities.

• Facilitates replication and adaptation of existing market designs for academic research and new
applications.

https://pypi.org/project/pymarket/
https://pypi.org/project/pymarket/


Practical Utility

• Enables quick prototyping and validation of new auction and market mechanisms.

• Offers a framework for reproducible experiments with consistent data, metrics, and visualizations.

• Proposes market clearing routines, simplifying the integration of customized auctions or bidding
rules.

Relation to the Edge Computing Problem

Although PyMarket was primarily developed for energy-related auctions, its toolkit can be applied
effectively to resource allocation scenarios in edge computing. Coinvestments SPs or operators could
create real-time markets for resources such as CPU capacity, storage, or network throughput. Addi-
tionally, PyMarket can support the implementation of post-allocation market mechanisms as discussed
in Section 3.15.2. Its flexible design offers:

• Simple bidding processes for shared edge resources.

• Visual tools to assess real time capacity allocation and pricing.

• An extendable base for incorporating specialized constraints, such as latency demands or fairness
conditions, crucial for cooperative edge computing scenarios.

Moreover, the simulation toolkit developed in this thesis uses Python, making PyMarket highly com-
patible with our existing codebase. However, a complete integration of PyMarket into our framework
is beyond this thesis’s scope, as it would significantly expand its complexity and extent.

A.4 Efficient Distributed Solutions for Sharing Energy Re-
sources at the Local Level: A Cooperative Game Ap-
proach

This article (D. K. Diego Kiedanski Ana Bušić & Orda, 2020) investigates how multiple households
(players in our context), each owning energy generation or storage equipment, can jointly reduce
electricity costs by cooperatively sharing resources. By formulating this as a cooperative game, the
authors demonstrate that at least one stable payoff allocation exists, ensuring that all participants are
satisfied (non-empty core). Specifically, the article models the demand and battery constraints of each
household.

Main Contributions

• A linear programming formulation demonstrating that a stable payoff allocation in the core can
always be found. This addresses concerns regarding the computational complexity of finding
stable cost distributions.

• An efficient centralized algorithm that computes the payoff allocation. Unlike naive methods
requiring exhaustive evaluation of all coalitions, the proposed solution scales linearly with the
number of players.

• A distributed algorithm that allows households to iteratively converge to a stable payoff without
fully disclosing their private load or resource data. The algorithm achieves convergence through
exchanging partial results among neighboring nodes in a communication network.

• A graph analysis highlighting that certain network topologies, such as expander graphs or selected
overlay networks, accelerate iterative convergence, whereas complete or sparse ring topologies
slow it down.



Relation to the Edge Computing Problem

The article’s exploration of cooperative investment and resource-sharing among multiple participants
under specific constraints aligns directly with our edge computing co-investment problem. Concepts
such as distributed information exchange without revealing full data and scalable distributed algorithms
can inform our approach. Moreover, both scenarios face the computational challenge of evaluating
all possible coalitions for calculating the Shapley value, especially when considering interdependent
contributions. Nevertheless, the extensive use of linear programming techniques in the article presents
a significant obstacle for direct integration into our nonlinear model. Adapting our nonlinear utility
functions, characterized by diminishing returns, into linear equivalents would not only be challenging
but would also fundamentally alter the nature and practical realism of our edge computing model.

A.5 Design of a Combinatorial Double Auction for Local En-
ergy Markets

This article (D. K. Diego Kiedanski Ariel Orda, 2020a) proposes an approach to local energy trading,
shifting from multiple individual auctions (one per time-slot) toward a single combinatorial double
auction covering multiple time-slots simultaneously. Participants (households) specify their desired
aggregate daily energy usage, leveraging battery flexibility or shifting loads. The auction maximizes
the total market value while ensuring each participant is at least as well off as they would be without
participating.

Main Contributions

• A combinatorial bidding format enabling participants to bid on multi-slot energy usage profiles
rather than separate bids for each time-slot.

• An allocation rule that selects net consumption or production profiles to maximize local energy
trade value, benchmarked against tariffs paid to the main grid.

• A settlement (payment) mechanism that ensures buyers and sellers within the coalition achieve
mutual economic improvement compared to traditional utility arrangements.

• Illustrative examples demonstrating the advantages of the combinatorial auction over sequential
single-slot auctions by exploiting synergy across time-slots.

Relation to the Edge Computing Problem

This article addresses multi-interval auctions, a scenario closely related to the allocation of edge com-
puting resources across multiple time-slots. The principles of combinatorial allocation, ensuring in-
dividual rationality, and bundling resource requests to simplify complexity are particularly relevant.
Such concepts are especially useful when extending our model to dynamic allocation contexts, where
resources must be efficiently redistributed based on changing demands over consecutive periods. Rather
than comparing benefits against an external baseline, as done in the energy context, we can compare
improvements against an initial fixed allocation scenario. This approach ensures that each stakeholder
clearly recognizes the advantages provided by cooperative resource reallocation.

A.6 Benchmarks for Grid Flexibility Prediction: Enabling Progress
and Machine Learning Applications

This article (D. K. Diego Kiedanski Lauren Kuntz, 2020) highlights the absence of standardized bench-
marks for evaluating grid flexibility and demand response (DR) programs. As renewable energy de-



ployment increases, effective DR schemes become crucial for aligning intermittent generation with
consumption patterns. The authors propose a benchmark framework for generation profiles, detailed
grid topology, consumer appliance models, and standardized performance metrics. This structured
approach allows consistent evaluation and comparison of DR initiatives across realistic scenarios.

Main Contributions

• Benchmark Architecture: Provides guidelines for specifying data on local renewable generation,
grid structure, and consumer appliances (flexible and inflexible). Recommendations include
optimal time granularity, baseline operating modes without DR, and performance metrics to
assess DR effectiveness.

• Grid Flexibility Metrics: Focuses on aligning renewable energy production with actual consump-
tion to minimize unmet demand and energy curtailment, rather than exclusively targeting peak
load reduction.

• Machine Learning Opportunities: Illustrates how standardized benchmarks facilitate machine
learning applications, including deep learning methods for predicting maximum achievable flex-
ibility and reinforcement learning techniques for real-time management of flexible assets.

Relation to the Edge Computing Problem

Although centered on power systems and renewable energy integration, the proposed benchmarking
framework is applicable to evaluating multi-tenant edge computing environments. The distinction
between flexible and inflexible electrical loads corresponds directly to edge computing workloads, which
may either be deferred or must be executed immediately. The concept of grid flexibility aligns with
metrics used to quantify resource mismatches in edge infrastructures, such as underutilized hardware or
unmet computational demand. Additionally, standardized benchmarks could support machine learning
approaches, including reinforcement learning, for managing dynamic and adaptive resource allocation
in edge computing scenarios. While these ideas have not been incorporated into the current model,
they offer promising avenues for future development.

A.7 Discrete and Stochastic Coalitional Storage Games

This article (D. K. Diego Kiedanski Ariel Orda, 2020b) addresses the idea of sharing energy storage
capacity among multiple residential consumers (players) cooperatively. Unlike traditional models that
assume a continuous (infinitely divisible) battery size and deterministic demand profiles, this article
considers two important practical extensions:

• Stochastic Demand Profiles: Each player’s daily consumption is uncertain and represented by a
probability distribution or scenario set (rather than a fixed, deterministic profile).

• Discrete Battery Sizes: Instead of allowing for any fraction of a storage device to be purchased,
real-world constraints are introduced by having battery sizes come only in integral multiples of
a base module (e.g., 13.5 kWh units).

The article demonstrates how these two extensions affect the classical model of ”coalitional storage
games” and how a stable cost-allocation method (i.e., in the core) can or cannot be obtained.

A.7.1 Cooperative Investment in Energy Storage

• Households form a coalition to jointly invest in battery storage, sharing the total costs and
subsequent benefits.



• Each household’s random energy usage is handled using a two-stage stochastic optimization:

– First stage: the coalition decides how many battery modules to buy (discrete).

– Second stage: the realized consumption and storage usage is optimized for each scenario,
minimizing day-to-day operational costs.

• By pooling resources and risks, households can acquire a larger effective storage capacity than
would be viable individually.

A.7.2 Core Existence and Approximate Stability

• In the continuous (infinitely divisible) battery model, the article shows the core is guaranteed to
be nonempty (so there is a stable cost split).

• Under discrete battery-size constraints, the game may fail to admit a cost allocation in the core.
Hence, an approximate or relaxed notion of stability (the ε-core) is introduced.

• An approximate solution is proposed: first find a stable allocation in the continuous case, then
adjust or ”round” the result for discrete battery sizes. The article derives theoretical bounds on
the ”rounding error.”

A.7.3 Relation To The Edge Computing Problem

In edge computing scenarios, as in shared battery investment models, resource sharing among multiple
entities is a strategy to reduce capital expenditure and operational costs. The article’s approach to
modeling stochastic demand closely parallels the time-varying workloads encountered in edge environ-
ments. Discrete battery sizes are conceptually similar to the modular capacity increments found in
edge infrastructure. The coalitional analysis presented in the article, which ensures that no group of
participants can benefit by deviating from the grand coalition, is also relevant to multi-tenant edge
systems where isolated subgroups may fail to capture the full benefits of cooperation. In the ex-
tended version of our model, we address fluctuations in service providers’ demand by incorporating
the standard deviation of their load; however, our model currently assumes identical load values across
different days for a given time-slot. Allowing for varying loads across days is a possible direction for
future iterations.

A.8 CombFlex: A Linear Combinatorial Auction for Local En-
ergy Markets

This article (D. K. Diego Kiedanski Ariel Orda, 2020a) proposes a market mechanism named CombFlex
to facilitate local energy trading among prosumers within low-voltage distribution grids. Its main
contributions include the following:

Motivation and Bid Format

• Traditional local energy markets typically use sequential auctions or peer-to-peer trading schemes,
each conducted per time-slot.

• Such methods fail to leverage the flexibility in prosumers’ loads, which arises from energy storage
capabilities.

• CombFlex introduces a combinatorial bidding format, allowing participants to submit bids spec-
ifying prices and quantities across multiple time-slots simultaneously. This bid format explicitly
captures the flexibility of prosumers’ battery usage schedules.



Winner Determination Problem

• CombFlex aggregates bids for all time-slots into a single linear programming (LP) formulation.

• The LP objective is to maximize the total value of local energy trades, aligning aggregate buying
and selling volumes while adhering to battery constraints.

• The resulting optimization problem has linear complexity relative to the number of participants
and time-slots, making it computationally manageable.

• By exploiting flexibility across multiple time-slots, CombFlex enables more profitable local trad-
ing, reducing dependence on external grids.

Price and Payment Rule

• After determining an optimal allocation, clearing prices for each time-slot are set within the
range bounded by the highest accepted selling price and the lowest accepted buying price.

• The payment rule can optionally split participants into two groups, ensuring that each group’s
clearing prices are influenced only by the opposite group’s supply and demand. This prevents
participants from manipulating their own trading prices.

Relation to the Edge Computing Problem

The CombFlex mechanism primarily addresses flexibility in local energy exchanges among prosumers.
However, its core concepts have potential relevance to edge computing resource allocation. Specifically,
the combinatorial auction approach could be used in scenarios where resources must be allocated dy-
namically across multiple time-slots, particularly when adapting allocations due to changes in expected
utility parameters. Additionally, as discussed in section 3.15.2, employing such combinatorial auction
mechanisms post-allocation could limit strategic misreporting by service providers, thus enhancing the
overall fairness and effectiveness of the cooperative edge computing framework.

A.9 Misalignments of Objectives in Demand Response Pro-
grams: A Look at Local Energy Markets

The article (P. M. Diego Kiedanski Daniel Kofman & Horta, 2020) examines Local Energy Markets
(LEMs) within demand response programs. It focuses on scenarios where households, possibly equipped
with energy storage, trade their energy surplus or deficit in a local market, while also having the
option to transact directly with a Traditional Energy Company (TEC). The primary motivation is to
investigate how agents schedule their consumption and production when interacting with potentially
more attractive local markets, and how these decisions might inadvertently create negative impacts
on the overall electricity demand profile. A key finding is that certain market designs can misalign
participant incentives, causing unexpected peaks or imbalances in demand, ultimately undermining
the intended benefits.

Main Idea and Contributions

• Introduces a multi-stage stochastic game to model prosumers’ decision-making processes, con-
sidering both local markets and traditional energy suppliers.

• Proposes a simplified model where agents form and continually update beliefs about future market
prices, adjusting their battery schedules accordingly.



• Demonstrates through numerical experiments that purely rational agent strategies can unexpect-
edly synchronize, leading to undesirable consumption peaks.

• Identifies how specific tariff structures (such as certain time-of-use pricing ratios) and agent
expectations contribute to these harmful consumption peaks and explores ways to mitigate them.

Relation to the Edge Computing Problem

While local energy markets and edge computing both involve resource management at a local scale,
a direct parallel is not immediately apparent. However, a relevant analogy can be drawn concerning
dynamic resource allocations. In edge computing scenarios where resources are frequently reallocated,
simultaneous adjustments across all service providers within identical time-slot intervals could create
throughput bottlenecks. Such synchronized reallocations could similarly produce undesirable peaks,
negatively impacting response times during resource redistribution. This aspect highlights a potential
parallelism with the challenges identified in the article and suggests the need for careful consideration
of synchronized reallocations in edge computing environments.

A.10 Summary of Ideas Related to The Edge Computing Prob-
lem

Although significant differences exist between energy markets, including ramp constraints for battery
storage and resource reallocation processes in edge data centers, numerous parallels can still be drawn.
The main body of this thesis synthesizes the key insights obtained from reviewing these related ar-
ticles, highlighting how their findings can inform enhancements and refinements to our current edge
computing coinvestment model.





Appendix B

Demonstrations

The detailed mathematical demonstrations are included in this Appendix to improve the readability
and overall flow of the thesis. While these proofs provide necessary rigor and validate our analytical
framework, they are not essential for understanding the main contributions and conclusions of the
work. Readers who are interested in the full details of the mathematical proofs can refer to this
appendix at their convenience.

B.1 Positive Net Utility Constraint

The total net utility for player i over the investment period T is given by:

U i
tot net = D · T ·

(
βi · liavg ·

(
1− e−ξi·hi

))
− d · hi.

To ensure that the total net utility is positive, we require:

U i
tot net > 0.

Substituting the expression for U i
tot net:

D · T ·
(
βi · liavg ·

(
1− e−ξi·hi

))
− d · hi > 0.

Rearranging the inequality:

D · T · βi · liavg ·
(
1− e−ξi·hi

)
> d · hi.

Considering that
(
1− e−ξi·hi

)
< 1 , when ξ is negative and h is positive, we can substitute this

expression with 1. Thus, the condition required for the total net utility to be positive is as follows:

d · hi < D · T · βi · liavg.

Note that this expression is valid for any positive allocation h, not only the optimal one.
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B.2 Optimal Allocation and Positive Allocation Constraint

Starting from the equation of total net utility 3.3, we calculate the first derivative with respect to hi

and set it equal to zero:

D · T ·
(
βi · liavg · ξ · e−ξ·hi

)
− d = 0 (B.1)

To solve for hi, we isolate the exponential term:

e−ξ·hi

=
d

D · T · βi · liavg · ξ

Taking the natural logarithm of both sides:

−ξ · hi = ln

(
d

D · T · βi · liavg · ξ

)

Thus, hi is given by:

hi = −1

ξ
· ln
(

d

D · T · βi · liavg · ξ

)
(B.2)

To more intuitively interpret how the optimal allocation relates to the utility function parameters, we
can rewrite the previous equation as:

hi =
1

ξ
· ln

(
D · T · βi · liavg · ξ

d

)
(B.3)

The second derivative, indicating the nature of the critical point, is calculated as follows: :

d2U i
tot net

(dhi)2
= −D · T ·

(
βi · liavg · ξ2 · e−ξ·hi

)
(B.4)

This function will always have negative values because it has a negative sign at the beginning and is
the product of positive terms. This indicates that the critical point is a maximum aligned with the
diminishing-return effect expressed in the net utility equation.

Having established that the optimal allocation hi maximizes the net utility and is unique, we must
next ensure that hi is positive. This is certain when.

d

D · T · βi · liavg · ξi
< 1

Therefore, the condition for hi to be positive is:

d < D · T · βi · liavg · ξi (B.5)



B.3 Positive Net Utility Constraint

We want to investigate whether the net utility subject to the optimal allocation condition can be
negative. We prove that it is always non-negative.

We start with the net utility equation

U i
tot net = D · T · βi · liavg ·

(
1− e−ξ·hi

)
− d · hi, (B.6)

subject to the optimal allocation

hi =
1

ξ
· ln

(
D · T · βi · liavg · ξ

d

)
. (B.7)

First, we substitute the optimal allocation expression into the exponential term e−ξ·hi

of the net utility
expression.

e−ξ·hi

= e
−ξ· 1ξ ln

(
D·T ·βi·liavg·ξ

d

)
.

Notice that we can simplify the exponent since −ξ · 1
ξ = −1. Therefore, the expression simplifies to

e−ξ·hi

= e
− ln

(
D·T ·βi·liavg·ξ

d

)
.

Now we apply the exponential logarithm identity. For any positive number x, e− ln(x) = 1
x . From the

positive allocation constraint we know that x is positive.

e
− ln

(
D·T ·βi·liavg·ξ

d

)
=

1
D·T ·βi·liavg·ξ

d

.

Taking the reciprocal of the fraction gives

e−ξ·hi

=
d

D · T · βi · liavg · ξ
.

Now, we compute

1− e−ξ·hi

= 1− d

D · T · βi · liavg · ξ
.

Substituting into the original equation yields

U i
tot net = D · T · βi · liavg

(
1− d

D · T · βi · liavg · ξ

)
− d · hi.

The first term simplifies to

D · T · βi · liavg −
d

ξ
.

Substituting the expression for hi in the second term, we have

d · hi =
d

ξ
ln

(
D · T · βi · liavg · ξ

d

)
.

Thus, the net utility becomes

U i
tot net = D · T · βi · liavg −

d

ξ
− d

ξ
ln

(
D · T · βi · liavg · ξ

d

)
.



To simplify the equation, we define a new variable z

z =
D · T · βi · liavg · ξ

d
.

Then, the expression for the net utility becomes

U i
tot net =

d

ξ
[z − 1− ln(z)] .

Determine the condition for positivity: Since d
ξ > 0, the sign of U i

tot net depends on

g(z) = z − 1− ln(z).

We can see that:

• The derivative g′(z) = 1− 1
z is zero at z = 1.

• The second derivative g′′(z) = 1
z2 > 0 for z > 0, so z = 1 is a minimum.

• At z = 1, we have g(1) = 1− 1− ln(1) = 0.

Thus, g(z) ≥ 0 for all z > 0 and with g(z) = 0 only when z = 1. Therefore, U i
tot net is strictly positive

if and only if

g(z) > 0 ⇐⇒ z ̸= 1.

Recalling that

z =
D · T · βi · liavg · ξ

d
,

the condition z ̸= 1 is equivalent to

D · T · βi · liavg · ξ
d

̸= 1,

or, rearranging,

d ̸= D · T · βi · liavg · ξ.

Thus, starting from the initial equations and substituting the given expression for hi, we arrive at the
conclusion that U i

tot net is nonnegative and equal to zero only if:

d = D · T · βi · liavg · ξ.

B.4 Derivation of Different Expressions for the Utility Func-
tion

In the following sections, we present step-by-step demonstrations showing how to derive alternative
expressions for the net utility function. Each version is obtained by isolating one of the variables from
the optimal allocation condition and substituting it into the net utility equation.



Getting Unet(ξ, ρ, h)

Starting with the original net utility function:

Unet(ξ, ρ, h, d
′) = ρ

(
1− e−ξh

)
− d′h

Substitute d′ from Equation (3.23):

d′ =
ξ · ρ
eh·ξ

Perform the following substitution:

Unet(ξ, h, d
′) = ρ

(
1− e−ξh

)
−
(
ξ · ρ
eh·ξ

)
h

Simplifying the expression:

Unet(ξ, h, d
′) = ρ

(
1− e−ξh − ξh

eξh

)

Getting Unet(ξ, ρ, d
′)

We start with the utility function, where ρ, ξ, and h are variables, and d′ is a constant. As we want
to eliminate h, we proceed to substitute it from the 3.19 equation into the utility equation 3.18. This
results in the following equation:

Uts net(ξ, ρ, d
′) = ρ ·

(
1− e

−ξ·
(
− 1

ξ ln
(

d′
ρ·ξ

)))
− d′ ·

(
−1

ξ
ln

(
d′

ρ · ξ

))
The exponent simplifies as follows:

−ξ ·
(
−1

ξ
ln

(
d′

ρ · ξ

))
= ln

(
d′

ρ · ξ

)
Thus, the expression for Unet becomes:

Uts net(ξ, ρ, d
′) = ρ ·

(
1− e

ln
(

d′
ρ·ξ

))
+ d′ · 1

ξ
ln

(
d′

ρ · ξ

)

Since eln(a) = a, the equation further simplifies to:

Uts net(ξ, ρ, d
′) = ρ ·

(
1− d′

ρ · ξ

)
+ d′ · 1

ξ
ln

(
d′

ρ · ξ

)

Getting Unet(ξ, h, d
′)

To obtain the net utility only in terms of ξ, d′ and h∗ , we substitute 3.22 in 3.25.

Uts net(ξ, h, d
′) =

d′ · eξ·h

ξ

(
1− d′

d′·eξ·h
ξ ξ

)
+

d′

ξ
ln

(
d′

d′·eξ·h
ξ ξ

)



Uts net(ξ, h, d
′) =

d′ · eξ·h

ξ

(
1− 1

eξ·h

)
+

d′

ξ
ln

(
1

eξ·h

)

Using logarithmic identity ln( 1x ) = − ln(x):

Uts net(ξ, h, d
′) =

d′ · eξ·h

ξ
(1− e−ξ·h)− d′

ξ
(ξ · h)

Uts net(ξ, h, d
′) =

d′ · eξ·h

ξ
e−ξ·h(eξ·h − 1)− d′ · h

Factoring out d′

ξ :

Uts net(ξ, h, d
′) =

d′

ξ
(eξ·h − 1)− d′ · h (B.8)

Utility function expressed in terms of ξ, ρ, and h

Uts net(ξ, ρ, h) = ρ

(
1− e−ξh − ξh

eξh

)
(B.9)

This expression simplifies the analysis by allowing us to study how the net utility evolves with h
without directly involving the cost parameter d′. The term 1 − e−ξh captures the gross benefit,
highlighting how revenue grows with increasing allocation h, subject to diminishing returns governed by
ξ. The subtracted term ξh

eξh
emerges from the cost component after substituting the optimal allocation

condition. Together, the combined expression 1− e−ξh − ξh
eξh

concisely represents the balance between
growing revenues and increasing costs. This formulation improves the interpretability of the net utility
function and supports a more efficient and stable numerical evaluation.

Utility function expressed in terms of ξ, d′, and h

Uts net(ξ, h, d
′) =

d′

ξ

(
eξh − 1

)
− d′ h (B.10)

This expression provides the net utility per time-slot in terms of the diminishing returns parameter ξ,
the allocation h, and the amortized cost d′. The term d′

ξ

(
eξh−1

)
represents the nonlinearly increasing

benefit as h grows, while subtracting d′ h accounts for the linear cost. By eliminating the monetized
load ρ, this expression focuses directly on ξ and d′, simplifying both sensitivity analyses and numerical
optimizations. Overall, this compact representation highlights the core trade-off between rising benefits
and increasing costs, serving as a practical tool for theoretical studies and simulation-based evaluations.

Among the three previous expressions, this is generally preferable in terms of numerical stability
and conditioning. This is because it directly captures the trade-off between the non-linear benefit
component and the linear cost component. The term d′

ξ

(
eξh − 1

)
reflects the benefit that grows

nonlinearly with h, while the subtraction of d′ h covers the cost. As long as Uts net is not very close to
zero, this formulation avoids cancellation errors that may occur in the first expression and circumvents
the sensitivity issues associated with logarithms in the second one. Moreover, it is easier to evaluate
numerically over a broad range of ξ · h, making it a robust and well-conditioned representation for
further analysis.



B.5 Finding ξpeak Max Allocation of the Function h(ξ)

Starting with equation 3.19 we can define h(ξ) as the function that, for a fixed value of ρ and d′,
returns the value of h that maximizes the net utility.

h(ξ) =
1

ξ
ln

(
ρ · ξ
d′

)
To find the critical points, we first take the derivative of h(ξ) with respect to ξ and set it to zero:

h′(ξ) =
d

dξ

(
1

ξ
ln

(
ρ · ξ
d′

))
Using the product rule (uv)′ = u′v + uv′:

u =
1

ξ
, v = ln

(
ρ · ξ
d′

)

First, find u′ and v′:

u′ =
d

dξ

(
1

ξ

)
= − 1

ξ2

v′ =
d

dξ

(
ln

(
ρ · ξ
d′

))
=

1

ξ

Now, apply the product rule:

h′(ξ) = u′v + uv′ = − 1

ξ2
ln

(
ρ · ξ
d′

)
+

1

ξ
· 1
ξ

h′(ξ) = − 1

ξ2
ln

(
ρ · ξ
d′

)
+

1

ξ2

h′(ξ) =
− ln

(
ρ·ξ
d′

)
+ 1

ξ2

To find the critical points, we set the derivative equal to zero, which is equivalent to making the
numerator equal to zero:

− ln

(
ρ · ξ
d′

)
+ 1 = 0

Solve for ξ:

ln

(
ρ · ξ
d′

)
= 1

ρ · ξ
d′

= e

ξ =
d′ · e
ρ

Now, we substitute this critical point back into the original allocation function to find h at ξ = d′e
ρ :

h =
1

d′·e
ρ

ln

(
ρ · d′·e

ρ

d′

)



Simplify the logarithm:

h =
ρ

d′ · e
ln (e)

h =
ρ

d′ · e

Thus, the maximum allocation at the critical point ξ = d′e
ρ is:

h =
ρ

d′ · e

Moreover, at this peak sensitivity one finds

ξpeak h(ξpeak) =
d′e

ρ
× ρ

d′e
= 1,

so the product ξ h equals one exactly at ξpeak.

To find the equation for Unet with ξpeak, we substitute h(ξpeak) =
ρ

d′·e into the net utility function:

Uts net = ρ ·
(
1− e−ξ h

)
− d′ · h.

First, we substitute ξ = d′·e
ρ :

e−ξ h = e−1.

Substitute into the net utility equation:

Uts net = ρ

(
1− 1

e

)
− d′ · ρ

d′ e
= ρ

e− 1

e
− ρ

e
=

ρ(e− 2)

e
.

Thus, the net utility at the peak sensitivity is

Uts net xi peak =
ρ(e− 2)

e
.

B.6 Analysis of Utility Function Different Expressions

In the following sections, we examine how the net utility for a single time-slot responds to variations
in the key parameters used in the different expressions.

Analyzing Unet(ξ, ρ, h, d
′)

Unet(ξ, ρ, h, d
′) = ρ

(
1− e−ξh

)
− d′h

To understand how Unet changes with each variable, we compute the partial derivatives with respect
to ξ, ρ, d′, and h.

The partial derivative with respect to ξ:

∂Unet

∂ξ
= ρhe−ξh.

All terms are positive, which ensures that ∂Unet

∂ξ > 0. Thus, Unet increases with an increase in ξ.



Partial derivative with respect to ρ:

∂Unet

∂ρ
= 1− e−ξh.

Since e−ξh < 1 for all positive values of ξ and h, it follows that ∂Unet

∂ρ > 0. Therefore, the net utility
increases as ρ increases.

The partial derivative with respect to h is

∂Unet

∂h
= ρξe−ξh − d′.

The sign of this derivative depends on the relationship between ρξe−ξh and d′. Specifically, ∂Unet

∂h > 0

if ρξe−ξh > d′, and ∂Unet

∂h < 0 if ρξe−ξh < d′. This indicates that Unet increases with h when ρξe−ξh

exceeds d′ and decreases when it is below.

Partial derivative with respect to d′:

∂Unet

∂d′
= −h.

Given that h > 0, this implies ∂Unet

∂d′ < 0. Consequently, Unet decreases as d
′ increases.

In summary, the net utility Unet(ξ, ρ, h, d
′) behaves as follows: it increases with ρ and ξ, decreases with

d′, and increases with h up to the optimal value h = 1
ξ ln

(
ρξ
d′

)
before decreasing beyond this point.

Analyzing Unet(ξ, ρ, h)

Unet(ξ, ρ, h) = ρ

(
1− e−ξh − ξh

eξh

)
Partial derivative with respect to ρ:

∂Unet

∂ρ
= 1− e−ξh − ξh

eξh

If we define a new variable x = ξh, where x > 0. Substituting x into the expression, we have:

1− e−x − x

ex
= 1− e−x(1 + x)

Consequently, the term 1 − e−ξh − ξh

eξh
is positive, but less than 1. This indicates that the net

utility Unet increases with an increase in ρ. However, the rate of this increase is moderated by the
exponential terms, which means that while Unet grows as ρ increases, the growth rate decreases due
to the diminishing contributions of the exponential components.

Partial derivative with respect to h:

∂Unet

∂h
= ρξ2he−ξh > 0

All terms are positive, so Unet increases with h.

Partial derivative with respect to ξ:



∂Unet

∂ξ
= ρξh2e−ξh > 0

All terms are positive, so Unet increases with ξ.

In summary, this expression, Unet(ξ, ρ, h) increases with ρ, h, and ξ.

[

Analyzing Unet(ξ, ρ, d
′)]Analyzing Unet(ξ, ρ, d

′)

Unet(ξ, ρ, d
′) = ρ

(
1− d′

ρξ

)
+ d′ · 1

ξ
ln

(
d′

ρξ

)
To examine the behavior of the utility function with respect to ρ, we compute the partial derivative:

∂Unet

∂ρ
= 1− d′

ρξ

The condition for the derivative to be positive is:

1− d′

ρξ
> 0 =⇒ ρξ > d′

This inequality shows that the net utility function is marginally supra-linear with respect to ρ when
the positive allocation constraint 3.20 is met . In other words, increases in ρ lead to a proportionally
greater increase in net utility, indicating that the system benefits more than linearly from an increase
in ρ.

Partial derivative with respect to d′:

∂Unet

∂d′
= − ρ

ρξ
+

1

ξ
ln

(
d′

ρξ

)
+

1

ξ
= −1

ξ
+

1

ξ
ln

(
d′

ρξ

)
+

1

ξ
=

1

ξ
ln

(
d′

ρξ

)
< 0

Since
d′

ρξ
<

1

e
, the logarithm is negative. Thus, Unet decreases with d′.

The partial derivative with respect to ξ:

∂Unet

∂ξ
=

d′

ξ2
− d′

ξ2
ln

(
d′

ρξ

)
− d′

ξ2
= − d′

ξ2
ln

(
d′

ρξ

)
> 0

The negative logarithm multiplied by the negative sign yields a positive result. Therefore, Unet increases
with ξ.

In this expression, Unet(ξ, ρ, d
′) increases with ρ and ξ, but decreases with d′.

Analyzing Unet(ξ, d
′, h)

Unet(ξ, d
′, h) =

d′

ξ
(eξh − 1)− d′h

Partial derivative with respect to d′:

∂Unet

∂d′
=

1

ξ
(eξh − 1)− h =

eξh − 1− ξh

ξ
> 0



Since eξh − 1 − ξh > 0 (due to the exponential function growing faster than any polynomial), Unet

increases with d′.

Partial derivative with respect to h:

∂Unet

∂h
= d′eξh − d′ = d′(eξh − 1) > 0

All terms are positive, so Unet increases with h.

Partial derivative with respect to ξ:

∂Unet

∂ξ
= d′eξh

(
h− 1

ξ

)

Given the constraint ξh > 1 (since ξh = ln

(
ρξ

d′

)
> 1), we have h >

1

ξ
. Therefore,

∂Unet

∂ξ
> 0, and

Unet increase with ξ.

In summary, this expression, Unet(ξ, d
′, h) increases with d′, h, and ξ.

B.7 Equating Overestimation and Underestimation

To find the point where the impact of overestimating and underestimating h by ϵ is equal, we set the
two previous equations equal:

ρ
(
1− e−ξh(1+ϵ)

)
− d′h(1 + ϵ) = ρ

(
1− e−ξh(1−ϵ)

)
− d′h(1− ϵ).

Expanding both sides:

ρ
(
1− e−ξhe−ξhϵ

)
− d′h(1 + ϵ) = ρ

(
1− e−ξheξhϵ

)
− d′h(1− ϵ).

Rearranging terms leads to:

ρ e−ξh
(
eξhϵ − e−ξhϵ

)
= 2 d′ h ϵ.

Using the definition sinh(x) = ex−e−x

2 , we obtain:

ρ e−ξh · 2 sinh(ξhϵ) = 2 d′ h ϵ =⇒ ρ e−ξh sinh(ξhϵ) = d′ h ϵ.

Dividing both sides by e−ξh sinh(ξhϵ) yields the generalized equilibrium expression:

ρeq =
d′ h ϵ

sinh(ξ h ϵ) e−ξ h
.

Notice that if we formally set ϵ = 0, the left-hand side of the starting equation becomes an identity
(ρ(1−e−ξh)−d′h = ρ(1−e−ξh)−d′h), so no new information is gained directly from equating. Instead,
to recover the same equilibrium value of ρ when ϵ = 0, we turn to the optimal allocation condition:

h∗ =
1

ξ
ln
(ρ ξ
d′

)
.

Solving this for ρ gives



ρ =
d′

ξ
e ξ h∗

.

Since eξ h
∗
= eξ h when h = h∗, this matches exactly the limit of (3.37) as ϵ → 0. In other words,

setting ϵ = 0 in the generalized condition is equivalent to using the optimal allocation equation to solve
for ρ. Thus the two approaches coincide, confirming consistency without invoking a Taylor expansion.

B.8 Strategy-Proof

In the next subsections, we use both a constructive and an analytical approach to show that the model
is not strategy-proof.

B.8.1 Constructive Method Demonstration

We give a complete demonstration and find the expression for ρdec in terms of ξdec and h. We start
with the optimal allocation, formula 3.19:

h = −1

ξ
ln

(
d′

ρξ

)
Now we use the optimal allocation solved for ρdec 3.22

ρdec =
d′ · eξdec·h

ξdec

Substitute it into the declared net utility:

Udeclared
net (ξ) =

d′ · eξdec·h

ξdec
·
(
1− 1

eξdech

)
− d′h

This equation represents the net utility declared in terms of the declared parameter ξdec as a variable,
and the allocation h is a fixed constant with the value we previously calculated.

Next, we use the equation 3.38 and solve it for ρdec:

ρdec =
Udeclared
net (ξ) + d′h

1− e−ξdech

Now, we substitute the expression for Udeclared
net (ξ) in the previous equation. Then we only need to

operate to simplify the equation.

ρdec =

(
d′·eξdec·h

ξdec
·
(
1− 1

eξdech

)
− d′h

)
+ d′h

1− e−ξdech

Simplifying the expression, the −d′h+ d′h terms cancel out, leaving us with:

ρdec =

d′·eξdec·h
ξdec

·
(
1− 1

eξdech

)
1− e−ξdech

Next, we factor the eξdech terms in parentheses:



ρdec =

d′·eξdec·h
ξdec

· eξdech−1
eξdech

1− e−ξdech

Now, cancel out the eξdech terms in the numerator:

ρdec =

d′·(eξdech−1)
ξdec

1− e−ξdech

Finally, notice that e−ξdech = 1
eξdech

, so we can express the denominator 1− e−ξdech in terms of eξdech:

ρdec =
d′ · (eξdech − 1)

ξdec · (1− e−ξdech)

The denominator becomes:

ξdec · (1− e−ξdech) = ξdec ·
eξdech − 1

eξdech
=

ξdec(e
ξdech − 1)

eξdech

Now, substitute the simplified denominator back into the original expression:

ρdec =
d′ · (eξdech − 1)

ξdec(e
ξdech − 1)

eξdech

The terms eξdech − 1 in the numerator and denominator cancel out (assuming eξdech ̸= 1):

ρdec =
d′

ξdec
eξdech

Dividing by a fraction is the same as multiplying by its reciprocal:

ρdec = d′
eξdech

ξdec

So the simplified expression for ρdec is:

ρdec =
d′eξdech

ξdec

B.8.2 Analytical Method Demonstration

To demonstrate that the net utility can decrease while maintaining the optimal allocation, we will use
the utility equation Unet(ξ, h, d

′) B.9. Our next step is to show that the derivative of this equation is
never zero, which we will now calculate:

dUnet

dξ
=

(d′ · h · eξ·h) · ξ − d′ · eξ·h + d′

ξ2

Simplifying further:
dUnet

dξ
=

d′ · (h · eξ·h · ξ − eξ·h + 1)

ξ2
(B.11)



This expression provides the rate of change of Unet with respect to ξ. If there is no value of ξ that
would make this expression equal to zero, this implies that there is a direction in which, by modifying
ξ, the net utility, Unet decreases, indicating that the game is not strategy-proof.

To analyze whether the previous expression can be equal to zero, we take the expression in parentheses
to define the auxiliary function f(ξ) and make it equal to zero:

f(ξ) = h · eξ·h · ξ − eξ·h + 1 = 0

Factoring out eξ·h, we obtain:

eξ·h(h · ξ − 1) + 1 = 0

This rearranges to:

eξ·h =
−1

h · ξ − 1

The denominator must be negative, implying we should add the following condition to our model

h · ξ − 1 < 0 =⇒ ξ <
1

h

We can see that this condition doesn’t hold in our model and contradicts what we have previously
seen. To complete the demonstration, we calculate the derivative of the function f(ξ):

f ′(ξ) = h2 · eξ·h · ξ + h · eξ·h − h · eξ·h

f ′(ξ) = h2 · eξ·h · ξ (B.12)

Given that dUnet

dξ > 0 for all ξ > 0, the function f(ξ) and in consequence the net utility Unet increases
with ξ when h is kept constant. This means that by decreasing ξ, a Service Provider can reduce Unet

while maintaining the same allocation h. Even with the restriction ξ > ξpeak = d′e
ρ , there is room to

adjust ξ downward (but still above ξpeak) to achieve a lower net utility.

B.8.3 Analysis of Modified Utility Function Using Derivatives

• With respect to β:
∂U

∂β
= l

(
1− d′

βξ

)
• With respect to l:

∂U

∂l
= β

(
1− d′

βξ

)
− d′

ξ
ln

(
βξ

d′

)
• With respect to ξ:

∂U

∂ξ
= −d′l

ξ2
ln

(
βξ

d′

)
• With respect to d′:

∂U

∂d′
= − l

ξ
ln

(
βξ

d′

)

B.8.4 Analysis of Modified Optimal Allocation Using Derivatives

• With respect to β:
∂h∗

∂β
=

l

βξ
> 0



• With respect to l:
∂h∗

∂l
=

1

ξ
ln

(
βξ

d′

)
> 0

• With respect to ξ:
∂h∗

∂ξ
= − l

ξ2
ln

(
βξ

d′

)
+

l

ξ2

(This derivative is positive until ξpeak and negative after it.)

• With respect to d′:

∂h∗

∂d′
= − l

ξd′
< 0

ξpeak Parameter Modified Derivation

Consider the optimal allocation:

h∗(ξ) =
l

ξ
ln

(
β ξ

d′

)
To find the optimal sensitivity parameter ξpeak, we set the first-order derivative equal to zero:

∂h∗

∂ξ
= 0

First-order condition

We compute the derivative:
∂h∗

∂ξ
= − l

ξ2
ln

(
β ξ

d′

)
+

l

ξ2
= 0

Multiplying by ξ2

l :

− ln

(
β ξ

d′

)
+ 1 = 0

Solve for ξ:

ln

(
β ξ

d′

)
= 1

Exponentiating both sides gives:
β ξ

d′
= e

Thus, we obtain the optimal ξ, denoted by ξpeak:

ξpeak =
e d′

β

Allocation at ξpeak

Evaluating h∗ at ξpeak:

h∗(ξpeak) =
l

e d′

β

ln

(
β · e d′

β

d′

)
=

l β

e d′
ln(e)

Since ln(e) = 1, we have:

h∗(ξpeak) =
l β

e d′



Utility at ξpeak

The original utility function is given by:

U = l β
(
1− e−

ξ h
l

)
− d′h

Evaluating at ξpeak and h∗(ξpeak):

First, simplify the exponent:

ξpeak h
∗(ξpeak)

l
=

e d′

β · l β
e d′

l
= 1

Thus, the utility simplifies to:

U(ξpeak) = l β
(
1− e−1

)
− d′ · l β

e d′

Simplifying further:

U(ξpeak) = l β

(
1− 1

e

)
− l β

e
= l β

(
1− 2

e

)
Therefore, the utility at the optimal point is:

U(ξpeak) = l β

(
1− 2

e

)

B.8.5 Allocation is Time-dependent When ξ is Time-dependent

If we add the ∆t suffix for the variables dependent on time-slot length and consider that all variables
scale proportionally to it. By recalling the h∗ equation

h∗ =
1

ξ∆t
ln
( l∆t β ξ∆t

d′∆t

)
.

We suppose each ”per–slot” parameter scales linearly with ∆t:

l∆t ∝ ∆t, ξ∆t ∝ ∆t, d′∆t ∝ ∆t.

Then inside the logarithm
l∆t β ξ∆t

d′∆t

=
(∆t)(∆t)

∆t
C = ∆t C,

where C is independent of ∆t. Hence

h∗ =
1

ξ∆t
ln(∆t C) =

1

ξ∆t

[
lnC + ln(∆t)

]
=

lnC

ξ∆t
+

ln(∆t)

ξ∆t
.

The term
ln(∆t)

ξ∆t
cannot cancel out unless ln(∆t) = 0 (i.e. ∆t = 1). Thus ∆t cannot be eliminated

from the per–slot expression for h∗.

Demonstration of the Exponential Term at h∗

Starting from

U = ρ
(
1− e

−h
d′

ρ λ
)

− d′ h,



and using

h∗ =
ρ

d′ λ
ln(λ),

we compute the exponent:

−h∗ d′

ρ
λ = −

( ρ

d′ λ
ln(λ)

) d′

ρ
λ = − ln(λ)

(
ρ

d′ λ · d′

ρ · λ
)
= − ln(λ).

e
−h∗ d′

ρ λ
= e− ln(λ) =

1

λ
,

1− e
−h∗ d′

ρ λ
= 1− 1

λ
.





Appendix C

Further Considerations and
Real-World Implications

This annex presents additional analyses that complement our theoretical and numerical results. The
discussions included here are placed outside the main body of the thesis because they address secondary
aspects, involving potential implementations and real-world considerations that exceed the primary
scope of this research. Specifically, we explore general properties of the independent contribution
scenario, consider the introduction of the ξ > ξpeak constraint for improved economic efficiency and
stability, examine practical edge computing scenarios that exhibit sublinear resource scaling, and
outline monitoring techniques for accurately tracking per-tenant request rates. These discussions bridge
the gap between theoretical findings and practical applications, highlighting how different assumptions
and constraints impact outcomes in realistic environments.

C.1 Some More General Observations Regarding the Indepen-
dent Contribution

To complete the first part of the model’s analytical investigation, we review several general theo-
retical consequences of the independent contribution property and discuss their impact on the Edge
Computing model.

• Strong Stability: This property guarantees that the payoff assigned to any coalition exactly equals
the coalition’s total value, thereby preventing any subgroup from having an incentive to deviate.
Although this creates a stable structure by discouraging defection, it also limits the motivation
of existing SPs to recruit new members, since their individual payoffs remain unchanged with
the addition of new participants. This motivation only holds for the NO.

• Core Non-Emptiness: A common challenge in cooperative game theory is to ensure that the core
is not empty. When the independent contribution property is satisfied, it often guarantees a non-
empty core. This occurs because matching a coalition’s value with the sum of its members’ payoffs
naturally satisfies the condition of coalitional rationality for all coalitions, including the grand
coalition. In the Edge Computing model, while the existence of the core has been established in
the referenced article, we have shown that, as a result of the independent contribution property,
the core is reduced to a unique point.

• Fairness and equity: This property means that each player’s contribution is clearly recognized
and fairly rewarded. In general, this creates a sense of fairness among participants. However, in
some cases, the use of the Shapley value and the dependence on other players’ utility functions
could seem unclear or even unfair. In our model, this concern is reduced because the indepen-
dent contribution property ensures that each Service Provider’s payoff depends only on its own
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parameters. This avoids incentives for strategic manipulation or bargaining between SPs, since
no SP can influence the payoff of another. The Network Owner, however, can still be affected by
inaccurate reports from SPs. We will explore this in more detail in section 3.13.

• Simplified Negotiation: When the independent contribution property holds, surplus or deficit
divisions are transparently linked to each player’s independent contribution, thereby simplifying
negotiations. In our case, there is no surplus or deficit to negotiate, effectively eliminating any
scope for disputes over payoff divisions.

• Multiple Participation for Diversified Services: A Service Provider offering different services
can participate in the coinvestment as if it were multiple distinct SPs. This approach allows
for a clearer identification of the revenues and payoffs associated with each service, enhancing
transparency and facilitating the assessment of each service’s financial performance.

Considering Adding the ξ > ξpeak Constraint

Although adding this constraint is not mandatory in our model, it could bring several advantages:

• Economic Efficiency: When ξ ≤ ξpeak, small changes in ξ can cause large increases in allocation,
leading to inefficient overconsumption of resources. The enforcement of ξ > ξpeak ensures a more
stable and controlled allocation behavior.

• Predictability: Staying above ξpeak leads to smoother and more manageable allocation changes,
reducing the risks associated with estimation errors in the parameters of the utility function.

• Strategic Robustness: In the region ξ ≤ ξpeak, the high marginal utility of additional resources
may incentivize SPs to underreport parameters in order to secure larger allocations. Keeping ξ
above the peak mitigates this risk.

• Feasibility and Long-term Sustainability: When ξ > ξpeak, the system operates in a more stable
regime where the marginal gain from additional allocation naturally tapers off, aligning costs
with true economic value.

• Numerical and Computational Stability: Operating in the region ξ > ξpeak leads to smoother
gradients and more stable behavior in the allocation function. This improves simulation robust-
ness.

Rather than setting this threshold as a strict rule, a more robust approach may be to define a small
buffer:

ξ ≥ ξpeak + ϵ =
d′e

ρ
+ ϵ

where ϵ > 0 is a small constant. This ensures that allocation remains stable even when parameters
drift slightly and avoids configurations where it sits too close to an unstable maximum.

Although the allocation decreases beyond ξpeak, the corresponding net utility function continues to
increase slowly and becomes more stable. This is because:

• As ξ → ∞, h(ξ) → 0

• The term e−ξh → 0, so the gross utility approaches ρ

• The cost term d′h → 0 even faster.

This implies that for ξ > ξpeak net utility enters a regime of diminishing sensitivity and greater
predictability.



C.2 Edge Computing Services with Sublinear Resource Scal-
ing

Although using a logarithmic relationship between monetized load (ρ) and resource allocation offers
analytical simplicity, it may underestimate hardware requirements in real-world edge computing. As
request volumes grow, demands from load balancing, redundancy, high availability, and latency guar-
antees typically cause resource usage to increase at least linearly.

The monetized load is defined as ρ = β · lavg, where β represents the effectiveness of each request in
generating revenue, and lavg is the average number of requests per time-slot. While in the allocation
function modeling β logarithmically is reasonable due to diminishing returns, applying a logarithmic
model to lavg does not align well with practical observations. Typically, higher request loads necessitate
proportional or greater hardware expansion.

Nonetheless, there are scenarios in edge computing where resource usage scales sublinearly with in-
creasing load. Such cases occur when computational tasks or data-serving efforts can be amortized
across multiple requests via caching, sharing, or coordinated mechanisms. Below, we highlight practical
service examples where sublinear scaling occurs:

• Content Delivery Networks (CDNs):CDNs commonly exhibit sublinear scaling due to effective
caching at edge nodes. Frequent requests are served locally, significantly reducing upstream
traffic. This efficiency is facilitated by Zipf-like content popularity distributions, where the
frequency of requests for a given item is inversely proportional to its popularity rank, meaning
a small set of items accounts for most requests. Once popular content is cached, additional
requests yield minimal upstream load increases. For instance, Vanerio (Juan Vanerio, 2024)
demonstrates that edge caching can reduce upstream traffic by 44% relative to a baseline, with
routing overhead growing sublinearly with request rates.

• Real-time video streaming: Edge computing supports sublinear resource scaling through re-
quest coalescing, combining simultaneous requests for identical content segments. Platforms like
Facebook utilize cache sharding and multicast delivery to serve millions of live viewers without
proportional growth in network and server resources. Coalescing techniques significantly reduce
redundant upstream fetches, maintaining nearly constant upstream load despite increasing viewer
numbers (Khatri, Lambert, Cenzano, & Broilo, 2020).

• Augmented and Virtual Reality (AR/VR): Real-time AR/VR applications benefit from edge
computing by reusing computational tasks among users sharing the same environment. Systems
like MUVR cache rendered frames and intermediate results, enabling the reuse of common com-
ponents such as background scenes. Experiments report over 90% savings in computation and a
95% bandwidth reduction compared to individual rendering per user (Li & Gao, 2018), demon-
strating significant sublinear scaling in computational and network resources as user numbers
increase.

• Real-time Internet of Things (IoT): Edge nodes aggregate, filter, or summarize sensor data before
upstream transmission, resulting in sublinear growth in network load relative to sensor count.
Nguyen et al. (Nguyen & Huh, 2021) propose a two-tier edge-cloud architecture where clustered
edge brokers manage local traffic and directly exchange summarized data, reducing inter-broker
relay traffic to approximately 7.77% compared to non-clustered systems.

These examples illustrate how edge computing achieves sublinear resource scaling by leveraging mech-
anisms such as caching, task reuse, and data aggregation. By avoiding redundant computations and
transmissions—such as repeated rendering, cached video segments, or aggregated sensor data—resource
demands can scale sublinearly or even remain nearly constant as load increases. While locality pri-
marily helps reduce latency and backbone congestion, combining it with reuse strategies is critical for
achieving efficient scaling. Empirical evidence from the discussed examples underscores the feasibility
and practical significance of sublinear resource growth in edge computing.



C.3 Monitoring Per-Tenant Request Rates

Monitoring the request rates of tenants (individual users or organizations using shared infrastructure)
is critical for efficient resource allocation. Several techniques are available, ranging from low-level
system metrics to high-level application instrumentation.

• Hypervisor Metrics: Hypervisors such as KVM or VMware ESXi track basic statistics like net-
work packets and bytes transmitted by each virtual machine. Management tools like libvirt (a
library for virtual machine management) or VMware’s vSphere API allow periodic retrieval of
these counters. By measuring how these counters change over time, the request rate for each
tenant can be estimated.

• Virtual Switch Monitoring: Virtual switches, such as Open vSwitch, connect virtual machines to
networks. These can use protocols like sFlow or IPFIX (standard methods for sampling network
flows) to monitor network traffic. Each captured flow (a record of packets traveling through the
network) indicates traffic associated with specific virtual machines. Aggregating these records
provides an estimate of per-tenant request rates.

• Network Fabric Monitoring: Physical network devices often support standard flow monitoring
protocols such as NetFlow or sFlow. When tenants’ network traffic is isolated using mechanisms
like VLAN (Virtual LAN), VXLAN (Virtual Extensible LAN), or VRF (Virtual Routing and
Forwarding), traffic flows can be separated and analyzed. Aggregating these flows yields the
request rates per tenant.

• In-Guest Instrumentation: Another method involves installing lightweight software agents di-
rectly inside the virtual machine or container. These agents use technologies such as eBPF (ex-
tended Berkeley Packet Filter, which efficiently observes kernel-level events) or OpenTelemetry
(a toolkit for application-level telemetry). These tools precisely track requests at the application
or network socket level, providing accurate measurements of request counts and rates.

• Cloud and Container Orchestration APIs: Public cloud services and container orchestration
platforms often provide built-in monitoring. Services like AWS CloudWatch, Azure Monitor,
or Kubernetes metrics-server expose standardized metrics related to network and application
activity. These metrics can be easily associated with individual tenants or application instances,
facilitating straightforward measurement of per-tenant request rates.



Appendix D

Edge Computing Simulations
Manual

D.1 Introduction

The software (Tabarez, 2025) was developed primarily to simulate the model proposed in the referenced
academic article, along with the three alternative formulations introduced in Section 5.4. Additionally,
it extends and illustrates the underlying mathematical theory presented in that work. To capture more
realistic scenarios and improve functionality, the software also incorporates additional considerations
discussed in the previous sections of this thesis.

This software defines a ”game” as a single simulation run and a ”simulation” as a set of games. A
simulation defines a collection of games, and this set of games can be updated or extended by reusing
the same simulation name in subsequent executions. The software verifies that the simulation name
and the amount and names of SPs match those already present in the database to correctly merge
the results. Additionally, the software supports simulations with either independent or interdependent
SP contributions. In the case of interdependent contributions, the software allows estimations to be
performed using deterministic or non-deterministic approaches.

The simulator imports data from a YAML file containing general game parameters, such as the invest-
ment duration (in years), the number of time slots, the price per CPU unit, and the maximum allowed
CPUs. Additionally, the file includes data for each SP, specifying their load and utility functions.

The load function describes the SP’s demand profile, modeled by a sinusoidal function as detailed in
article (A. P. Vela A. Vı́a & Velasco, 2016). This function is parameterized by the average load and
a pair of hyperparameters ak and tk, representing the amplitude (in requests) and the time offset (in
seconds), respectively. Additionally, the YAML input file can optionally specify a standard deviation
for the load, enabling the simulation of stochastic dynamics within the game.

Alternatively, the software provides a visual tool for manually defining different daily load profiles. This
functionality is implemented in the script create load function.py, located in the utils folder, and
uses the interactive visualization capabilities of the ”Bokeh” library. Upon executing this script, a
browser window opens, allowing the user to define any desired load profile by interactively dragging
points corresponding to specific loads at different time slots. Each time the user submits the modified
points, the tool automatically computes the corresponding sinusoidal hyperparameters and the average
load. The resulting parameters can then be copied directly in YAML format into the simulator’s setup
file. This interactive approach simplifies the definition of load profiles, avoiding manual computation
or explicit specification of sinusoidal hyperparameters.

The utility function defined for each SP takes as inputs the load function, the benefit factor (β), and
the diminishing return parameter (ξ). To facilitate switching between different utility function cases
without having to recalibrate the diminishing return parameter, as we previously did in section 6.2,
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the software alternatively allows defining this parameter through the percentage of load served at the
edge.

The input variables, including both generic game parameters and SP’s specific data, have been de-
signed to facilitate straightforward execution of multiple sensitivity analyses and customized scenarios.
Multiple YAML files can be processed simultaneously by placing them within the folder Simulations
to process, enabling the evaluation of diverse scenarios through a single execution.

The data generated from the simulations is stored in an SQL database, integrated with Metabase (Inc.,
2024), a visualization platform that enables the creation of various charts and supports direct execution
of SQL queries. Metabase also includes a querying interface that suggests relevant columns for joins
based on foreign keys, significantly simplifying and streamlining the querying process. This integration
offers users an effective tool for analyzing and interpreting the outcomes of simulations.

D.2 Installation

In the following subsections, we provide step-by-step instructions for installation and explain how to
use the Vagrant file included in the project. Both approaches were tested using Ubuntu 22.04, but the
simulator and its dependencies should be straightforward to install on any operating system.

D.2.1 Installation Steps

Assuming a clean virtual or local machine, first update the available system packages by running:

sudo apt-get update

Then we install all the needed operating system dependencies:

sudo apt-get install -y \

software-properties-common \

build-essential \

zlib1g-dev \

libssl-dev \

libffi-dev \

curl \

libbz2-dev \

libsqlite3-dev \

liblzma-dev \

mysql-server \

libmysqlclient-dev \

pkg-config \

openjdk-11-jdk

Although any Python 3 version should be compatible, here we show how to install the exact version
used during development directly from the source:

if ! command -v python3.12; then

curl -O https://www.python.org/ftp/python/3.12.1/Python-3.12.1.tgz

tar -xf Python-3.12.1.tgz

cd Python-3.12.1

./configure --enable-optimizations

make -j $(nproc)

sudo make altinstall



cd ..

rm -rf Python-3.12.1

rm Python-3.12.1.tgz

fi

Next, we install the Python package manager (pip):

curl -sS https://bootstrap.pypa.io/get-pip.py | sudo python3.12

Start and enable the MySQL service:

sudo systemctl start mysql

sudo systemctl enable mysql

Create Database and MySQL user:

sudo mysql -e "CREATE DATABASE edge_computing;"

sudo mysql -e "CREATE USER ’admin’@’%’ IDENTIFIED BY ’admin’;"

sudo mysql -e "GRANT ALL PRIVILEGES ON edge_computing.* TO ’admin’@’%’;"

sudo mysql -e "FLUSH PRIVILEGES;"

Now we proceed to install git if necessary, clone the project repository, and navigate to its main file:

sudo apt install git

git clone https://github.com/Santiago-Tabarez/edge-computing-simulations

cd edge-computing-simulations

Create a virtual environment for the project, activate it, install the required dependencies, and update
the Python path (replace path to project with your project’s actual path):

python3.12 -m venv \~/env

source ~/env/bin/activate

pip install --upgrade pip

pip install -r requirements.txt

export PYTHONPATH=/path_to_project/edge-computing-simulations

At this point, the simulator has been installed. To verify the installation, execute:

python3 main/main.py

To also install Metabase, first download it using the following command:

curl -Lo \~/metabase.jar https://downloads.metabase.com/v0.44.6/metabase.jar

Next, create the configuration file for the Metabase system service:

echo "[Unit]

Description=Metabase

After=syslog.target

After=network.target

[Service]



User=$USER

ExecStart=/usr/bin/java -jar /home/$USER/metabase.jar

Restart=always

StandardOutput=syslog

StandardError=syslog

SyslogIdentifier=metabase

[Install]

WantedBy=multi-user.target" | sudo tee /etc/systemd/system/metabase.service

Reload systemd, then enable and start the Metabase service:

sudo systemctl daemon-reload

sudo systemctl enable metabase

sudo systemctl start metabase

To verify if Metabase is correctly installed, open a browser and go to localhost:3000.

D.2.2 Vagrant Configuration

If the user or developer prefers using Vagrant for deployment, a Vagrant file has been provided in the
main folder of the project repository.

After installing Vagrant and VirtualBox, follow these steps to set up and run the simulator inside the
virtual machine:

First, open a terminal window (on Windows or Unix), navigate to the project’s main folder containing
the Vagrant file, and create the virtual machine by running:

vagrant up

Once the setup process is complete, connect to the virtual machine with:

vagrant ssh

Inside the virtual machine’s console, activate the Python virtual environment:

source /home/vagrant/env/bin/activate

Navigate to the project’s main directory:

cd /home/vagrant/edge-computing-simulation/main

Finally, execute the simulator:

python3 main.py

The Metabase service can be accessed through the web browser by navigating to localhost:3000.



D.2.3 Dependencies

All dependencies are listed in the requirements.txt file and include the following:

• psutil: Used to monitor system resources such as CPU and memory usage during simulations,
specifically to identify whether a given simulation is CPU-intensive, memory-intensive, or both.

• mysql: Manages the MySQL database that stores simulation results and configurations.

• mysql-connector-python: Provides the necessary tools for connecting to the MySQL database,
executing queries, and managing database transactions.

• scipy: Offers advanced mathematical functions and algorithms essential to the simulations,
particularly for optimizing coalition values.

• numpy: Facilitates numerical operations, efficient array management, and mathematical compu-
tations.

• PyYAML: Handles parsing and generation of YAML configuration files used as inputs for the
simulations.

While the previous dependencies are necessary to run simulations, the following packages are optional.
They have been included to facilitate the creation of static and interactive charts for reproducing the
results presented in this thesis, as well as for manually defining daily load patterns.

• plotly: Used for creating interactive charts.

• matplotlib: Used for generating static charts.

• bokeh: Provides interactive visualizations, particularly used for the manual definition and fitting
of daily load profiles.

D.3 Configuration

D.3.1 Logging Configuration

The simulator supports three logging levels to accommodate varying detail requirements during sim-
ulation monitoring:

• ERROR: Records only critical errors that affect the validity of simulation results and halt the
execution.

• INFO: Captures intermediate and final simulation results, such as resource allocations, payoffs,
Shapley values, as well as payments and revenues.

• DEBUG: Provides comprehensive and detailed information, including the type of value function
used, duration of each game and the overall simulation, and system resource usage. Additionally,
in dynamic allocation scenarios (allocation per time slot), it logs the distribution of allocations
across the different time slots.

D.3.2 Database Configuration

In addition to the standard database connection settings such as host, port, username, password,
and database name, this software provides a special database management configuration under the
DATABASE MANAGEMENT CONFIG section. This configuration manages the execution of three SQL scripts
located in the sql scripts folder. Each script can be individually activated by setting its correspond-
ing variable to True:



• truncate: Erases all existing data while preserving the database structure when set to True.

• drop: Completely removes the database when set to True. This is useful when the database and
its data are no longer needed, or before running the create script to accommodate structural
changes.

• create: Creates the database structure from scratch when set to True. It assumes no existing
database with the same name and will produce an error if such a database already exists.

Simulations will not execute until all three configuration variables are set to False. Only one of these
scripts should be activated at any given time; activating more than one simultaneously will result in
an error displayed in the console. Developers should update these scripts whenever modifications to
the database structure are made.

This software has been developed and tested with MySQL 8.4, but it should be compatible with other
SQL databases with minimal or no adjustments required.

D.3.3 Optimization Parameters for TRUST-CONSTR Method

The simulator uses the trust-constr optimization method because the utility function employed is
nonlinear, smooth, and has analytically computable derivatives, Jacobian, and Hessian. This method
leverages these analytical properties, offering efficient convergence and robust constraint handling for
nonlinear optimization problems.

The following optimization parameters can be configured specifically for the trust-constr method:

• GTOL: The gradient tolerance, defining the stopping criterion based on the projected gradient
norm.

• XTOL: The step tolerance, controlling convergence by monitoring the relative changes in decision
variables.

• BARRIER TOL: The barrier tolerance, governing the accuracy in constraint satisfaction and con-
vergence of barrier subproblems.

• JTOL: The Jacobian tolerance applied to constraints, ensuring constraint violations remain within
acceptable bounds.

• MAXITER: The maximum number of iterations permitted during optimization to prevent infinite
loops or excessive computation times.

By carefully tuning these parameters, users can adjust the trade-off between computational precision
and execution speed, enhancing one at the expense of the other according to their specific needs.

D.3.4 Save Function

The SAVE FUNCTION configuration section allows users to specify whether the load function, the utility
function, or both should be stored in the database, recording their values at each time-slot. This
functionality is particularly beneficial when randomness is introduced into the load, as simulation
outcomes will vary between executions and therefore cannot be exactly reproduced.

D.3.5 Simulation Mode and Extra Considerations

The following subsections are closely interrelated; they define the computational methods for executing
simulations and additional considerations influencing their execution.



Value Function Mode

The VALUE FUNCTION MODE in the configuration section determines how the coalition values are com-
puted, directly influencing how the games are simulated. There are three available options; exactly
one must be set to True at any given time.

It is important to note that the terms additive and non-additive used here correspond respectively to
the current notation of independent and interdependent contributions of SPs.

• additive: This mode defines the value function as additive, implying that contributions from
players to a coalition are independent. Consequently, only the grand coalition’s value is com-
puted, and the load curves of SPs are not considered since the same results are obtainable using
the average load. Simulations in this mode run in linear time, making it efficient and scalable
for scenarios involving hundreds or thousands of players. However, this mode does not capture
externalities or synergies within coalitions. Although running additive simulations with synergy
or externality options is permissible (and will trigger a warning), this mode primarily serves as
a rapid and straightforward estimation tool rather than providing precise results. Its outcomes
represent a worst-case scenario for SP utility.

• non additive deterministic: This mode treats the value function as non-additive (interde-
pendent), meaning individual contributions cannot be isolated due to the presence of synergies
or externalities. Since the values of all possible coalitions must be computed in order to calcu-
late each player’s Shapley value, simulations are computationally intensive and do not scale well
beyond a small number of players.

• non additive estimation: This mode also treats the value function as non-additive (interde-
pendent) but utilizes Monte Carlo methods to estimate coalition values more efficiently. This
efficiency, however, sacrifices determinism, resulting in probabilistic rather than fixed outcomes.
This method is suitable for scenarios prioritizing computational speed and scalability over exact
precision.

Both non-additive modes were specifically developed to incorporate externalities or synergies, as
detailed in the subsequent section. In both non-additive scenarios, the grand coalition value and
the resulting optimal allocations remain the same. However, calculating the Shapley value, which
requires evaluating all feasible sub-coalitions, is computationally intensive, as the number of sub-
coalitions grows exponentially with the number of SPs. To address this computational challenge, the
non additive estimation mode estimates the Shapley value using Monte Carlo methods combined
with a caching strategy to avoid recalculating coalition values that have already been computed. Run-
ning these modes without activating externality or synergy options is permissible (though it triggers
a warning message), primarily serving to verify correctness (in the deterministic case) or accuracy (in
the estimation case) relative to expected results.

Extra Considerations

The ”EXTRA CONSIDERATIONS” determines if the value function can be considered as additive;
if at least one is set to True, then the non additive modes should be used for accurate results. They
are called extra considerations since they were not present in the original model and were introduced
to break the independent contribution property and, in consequence, introduce complexity into the
model.

• per time slot allocation: This consideration allows players to have different allocations per time-
slot. Considering that we are running an optimization problem (optimizing SPs’ allocations
for each time-slot) inside another optimization problem (optimizing SPs’ allocations for all time-
slots), the simulation will be computing intensive. Since this dynamic allocation acts as a synergy
between players, the outcomes should always be at least as beneficial for players as they are for
a fixed allocation.



• variable cpu price: This consideration makes the per-unit CPU price sublinear. The price is
defined using a maximum per-unit price for the minimum allowed total allocation and a minimum
per-unit price for the maximum allowed total allocation. This setup is typically considered a
positive externality, as all players benefit when new players join the coalition. However, to
ensure that this mechanism acts as a positive externality, the minimum allocation should be set
either to zero or at most equal to the smallest individual allocation among service providers, while
the maximum allocation should be at least the sum of all individual allocations. If intermediate
values are selected instead, the pricing can inadvertently create negative externalities. Under
these conditions, if the resulting per-unit price from the additive value function mode is lower
than the fixed price, results incorporating this consideration will always be at least as favorable
as those obtained using the fixed CPU price.

Monte Carlo Variable

When using the non additive estimation mode, in this section, the amount of samples to calculate the
Shapley value for each Service Provider should be set in this field. This number defines the amount
of random coalitions without the current SP, that will be used to approximate the Shapley value.
To equally account for coalitions with and without the NO (that would produce zero value). The
implementation only considers the subgroups with the NO in it, then divides the result by two. It also
uses a cache to avoid calculating the same coalition’s value twice.

It is up to the user to define a reasonable number of samples, depending on the characteristics of the
game.

D.4 Input Files

The simulations to process folder must contain one or more YAML files, each specifying the details
of a simulation. Each of these files defines a collection of one or more games, grouped under the same
simulation identifier.

Originally, the design involved reading the files from this folder, executing the corresponding simula-
tions, and subsequently moving them to a different folder to systematically manage multiple simulation
executions. However, to simplify the workflow and avoid repeatedly copying files during testing phases,
when users frequently execute brief simulations rather than extensive ones, the files are now kept in the
same folder. This approach prevents users from needing to move or copy files back for each execution.

In the following subsections, we describe each input parameter contained in these YAML files, speci-
fying their format and behavior when defining multiple values for a single parameter.

D.4.1 Simulation name

This value is defined through the input data field, called ”simulation name”. For this field, only one
value is accepted in each simulation file, and it identifies a set of games. If this name is used multiple
times, there are three distinct cases to consider:

• If the names of the SPs differ from a previous simulation with the same name, an error is
generated in the console, and the simulation is interrupted.

• If the SPs’ names are compatible with a previous simulation, for all the games where input values
are identical, the software will overwrite the existing values after issuing a warning to the console.

• If the SP are compatible, but the input values differ, the software will merge the data from these
simulations, allowing the combined data to be visualized together.



D.4.2 Input Values Format

With a few exceptions noted later, most input fields can accept values in any of the following three
forms:

• A single numeric value, directly specified (e.g., price cpu: 0.05).

• An explicit list of numeric values enclosed in square brackets (e.g., price cpu: [0.05, 0.06]).

• A range of numeric values defined by three elements in the format [’Initial val:Final val:amount of values’],
where the first element specifies the initial value, the second the final value, and the third indi-
cates how many values to generate (e.g., price cpu: [’0.05:0.1:5’]).

With these formats, each possible combination of values across all input fields generates a distinct
game, facilitating the definition of many games within a single file. For instance, if there are 3 CPU
price values, 3 co-investment duration values (in years), 3 average load values for Service Provider SP1,
3 benefit factor values for SP1, and 3 sigma values for Service Provider SP2, then the total number of
games executed will be:

3 (cpu price) × 3 (years) × 3 (SP1 avg load) × 3 (SP1 benefit factor) × 3 (SP2 sigma) = 35 = 243
distinct games

Having already described the input field simulation name, we now proceed to describe the remaining
input parameters, grouped into general game values and Service Provider-specific values.

D.4.3 Global Games Inputs

• max cores hosted: Defines the maximum number of millicores that can be hosted.

• price: This field includes two subfields. Which subfield is read depends on whether the variable
variable cpu price in the configuration file is set to True or False:

– If variable cpu price is set to False, the value under the subfield when fixed: cpu price

is used. This results in a fixed per-unit CPU price for each game.

– If variable cpu price is set to True, the values under the subfield when variable are used.
This subfield includes three values: min cores hosted, min cpu price, and max cpu price.
These three input fields must each have the same number of values. They collectively
determine the number of games processed, meaning that if, e.g., each has three values, the
total number of games will be multiplied by three.

• years: Specifies the total duration of the co-investment period, measured in years. Fractional
values are accepted, enabling detailed sensitivity analyses.

• daily timeslots: Indicates the number of daily time-slots used in simulations. Increasing this
value provides more load samples per day, resulting in a more precise representation of the load
function. If per time slot allocation is set to False, changes to this variable won’t affect
the final results, as any setting is equivalent to using a single time-slot with average load values.
Conversely, if per time slot allocation is set to True, simulations more accurately reflect
differences between service providers’ load patterns, generally leading to better outcomes for all
participants due to improved allocation granularity. However, this increased precision also makes
simulations computationally more intensive.

• selected case: This input selects the specific utility function case to be used in the simulation.
Case 0 corresponds to the originally proposed utility function, while cases 1 to 3 represent
modified versions. These modifications alter the exponents of the terms in the exponential
saturation equation, as described in section 5.4. Unlike other input parameters, selected case

accepts exactly one value per simulation.



D.4.4 Service Providers Inputs

Under the label service providers, one or more Service Providers can be defined using the following
input fields:

Service Providers Names

• service provider name: Identifies each Service Provider within a simulation. It accepts either
a single name or a list of names. If a list is provided, it creates multiple Service Providers with
different names but identical characteristics defined by the remaining input parameters. This
facilitates scaling the number of players within simulations.

Service Providers Load Function

Each Service Provider defines its load function through three input fields:

• sigma: Specifies the standard deviation of the load for each time slot.

• average load: Defines the average daily load.

• hyperparameters: Defined through two sets of four values, describing the sinusoidal function
modeling the load shape. The first set of four values represents the amplitude (in requests per
time slot), and the second set of four values represents the time offsets (in seconds). Together,
these two sets characterize the load function for a single game.

Service Providers Utility Function

The load of each Service Provider is translated into monetary units via its utility function, defined by:

• benefit factor: Represents the monetary benefit obtained by the Service Provider from serving
one unit of load at the edge.

• xi and frac of requests: Both fields define the diminishing returns effect on the Service
Provider’s utility, but only one of them should be specified per Service Provider. The field
xi directly sets the diminishing returns parameter, maintained primarily for consistency with
previous work. Alternatively, the frac of requests field allows defining this effect indirectly
via the fraction of load served at the edge, facilitating switching between different utility func-
tion cases (original and modified versions) without manual calibration. When frac of requests

is used, the software automatically computes the corresponding diminishing returns parameter
based on the selected utility function case as specified in section 6.2.

D.4.5 Additional Project Folders and Files

In addition to the previously described folders and files, the repository includes the following resources:

• charts reproduction: A dedicated folder containing scripts and data to easily reproduce the
charts presented in this thesis.

• utils/create load function.py: A script providing an interactive, browser-based tool for
manually defining daily load profiles, simplifying the process of computing sinusoidal hyper-
parameters as described in the introduction.



Appendix E

Variable definitions

• lit: Expected load for player i at time t, representing the average number of requests coming from
users of SP i during timeslot t.

• βi: Benefit factor of SP i

• ξi: Diminishing returns parameter of SP i, µi and λi are also used to represent the same parameter
but measured in different ways.

• xi: Payoff of any player i.

• ri: Revenues of player i.

• pi: Payment or capital cost of player i.

• C: Total computational capacity, measured in millicores.

• hi: Resources allocated to player i.

• d: Price expressed in dollars per resource unit for the whole investment period

• d′: Amortized price that corresponds to one timeslot, can be calculated as d′ = d
D·T

• uit: Instantaneous utility for player i at time t, representing the revenues coming from the end
users of the services.

• U i
tot net: Total net utility for player i

• D: Duration of the investment in days.

• T : Number of timeslots in one day.

• v(S): Value of coalition S.

• δi(S): Marginal contribution of player i to coalition S.

• ϕi: Shapley value of player i
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