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Abstract. Here, we propose Deep CS-TRD, a new automatic algorithm for de-
tecting tree rings in whole cross-sections. It substitutes the edge detection step
of CS-TRD by a deep-learning-based approach (U-Net), which allows the appli-
cation of the method to different image domains: microscopy, scanner or smart-
phone acquired, and species (Pinus taeda, Gleditsia triachantos and Salix glauca).
Additionally, we introduce two publicly available datasets of annotated images to
the community. The proposed method outperforms state-of-the-art approaches in
macro images (Pinus taeda and Gleditsia triacanthos) while showing slightly
lower performance in microscopy images of Salix glauca. To our knowledge,
this is the first paper that studies automatic tree ring detection for such different
species and acquisition conditions. The dataset and source code are available in
https://hmarichal93.github.io/deepcstrd/.
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1 Introduction

Most existing automatic tree ring measurement methods rely on images from cores
(small cylindrical samples that capture a transect of the tree’s growth rings) rather than
entire cross-sections. However, extracting a core is not feasible for very small trees or
shrubs, and analyzing entire cross-sections is essential for individuals with suppressed
or irregular growth, where there may be wedging rings. Furthermore, modeling tree
growth in forestry often requires 2D information, which can only be obtained from
analyzing the entire cross-section.

Automatically delineating rings in images of tree cross-sections presents the chal-
lenge of generating a pattern of closed curves that accurately represent the ring bound-
aries, as seen in Figure [T} These rings may exhibit irregular and asymmetric growth
patterns, especially in trees and shrubs growing in extreme environments. Moreover,
ring boundaries make up only a small portion of the disc, which may also contain per-
turbations such as cracks, knots, and fungal growth, further increasing the complexity
of the task.

Figure [2] outlines the pipeline proposed in this work: a disc image is provided as
input, and tree ring traces are generated as output. Once the tree ring curves are delin-
eated, areas and perimeter can be computed, which is essential for forestry studies [[7].
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(b) (c)

Fig. 1: Tree Ring Detection. Accurate detection of tree ring boundaries in images is critical. (a)
Wood cross-section image. (b) Zoomed-in view of the red square in (a). (¢c) The same view with
ring boundaries in blue. The ring thickness is set to 1 pixel.

Marichal et al. [11]] proposed an automatic method for tree ring delineation in wood
cross-section images called CS-TRD. This method is based on classical edge detec-
tion techniques and was applied to two coniferous tree species, Pinus taeda and Abies
alba. Furthermore, they introduced a model for wood cross-section images named spi-
der web, see Figure k. This model enforces constraints to ensure that tree rings do not
intersect and remain roughly concentric.

In this work, the edge detection module from the CS-TRD method is replaced with
a U-Net [18]] model, a deep learning architecture designed explicitly for semantic seg-
mentation, as illustrated in Figure |Z|3 U-Net architecture has demonstrated remarkable
results in tree ring delineation of cores [2] and in microscopy images of shrubs [4].

(b) (c) (d)

Fig.2: DeepCS-TRD Tree-Ring detection pipeline. (a) Input disc image. (b) Deep Contour
Detector. (c) Spider web model. (d) Tree-ring continuous curves.

By replacing the edge detection module in the CS-TRD method with this deep
learning-based model, we successfully extended its application to a diverse range of
species and growth forms. Notably, this enhanced approach works with angiosperm
trees (i.e. Gleditsia triacanthos) and shrubs prepared using microscopy (i.e. Salix glauca)
, samples illustrated in Figure 3] We refer to this new method as DeepCS-TRD.

In addition, we introduce a new image dataset of the Pinus taeda species (Uru-
Dendro?2 [9]]), containing 53 samples, and another dataset comprising nine samples of
Gleditsia triacanthos (UruDendro3a [8]]), all with their corresponding expert ring delin-



DeepCS-TRD, a Deep Learning-based Cross-Section Tree Ring Detector 3

(a) UruDendrol (b) UruDendro2 (¢) UruDendro3a (d) Diskolsland

Fig. 3: Examples of the used datasets. Species are (a-b) Pinus taeda, (c) Gleditsia triacanthos,
(d) Salix glauca. Acquisition conditions: (a-c) in a laboratory with a smartphone camera, sanded
and polished. (d) microsection stained with 1 % safranin and 0.5 % astrablue, permanently fixed
to a microscope slide with Eukitt, and scanned at 100 x magnification

eations. Generating these types of datasets is a highly time-consuming task that requires
the expertise of dendrochronology specialists and is critical for algorithm training.

2 Previous work

Though not yet widely adopted in the tree-ring community, deep learning approaches
have become more prevalent in recent years and have naturally been applied to this
problem, framing ring detection tasks as a segmentation problem. Two architectures are
commonly used: U-Net and Mask R-CNN [[17]. Gillert et al. [4] proposed a method
for cross-section tree-ring detection called Iterative Next Boundary Detection Network
(INBD), based on the U-NET architecture. This method was applied to high-resolution
microscopy images of shrub cross-sections, detecting the annual rings individually at
each iteration step, from the medulla to the bark. INBD was trained and tested on shrub
microscopy images, using standard cross-entropy loss as the main loss for the ring de-
tection network.

Besides the INBD method, most deep-learning-based approaches have been applied
to core images. Polek et al. used a Mask R-CNN deep learning architecture to
detect rings in cores of coniferous species. During network training, they used mean
average precision (mAP) as a loss function. Fabijariska et al. proposed a classic image-
processing approach [3]] (based on the linking of maximum image gradient pixels) and a
convolutional neural network based on a U-Net architecture [2] for detecting tree rings
in core images. When comparing both methods, they reported a significant improvement
in precision and recall for the deep learning approach over the classic one. The U-Net
network was trained to minimize the categorical cross-entropy loss function.

The scarcity of annotated tree ring image datasets remains a significant challenge,
as the methods must be tailored to the specific characteristics of each species. Gillert
et al. made a dataset available of 213 high-resolution annotated images of cross-
sections from three shrub species (Dryas octopetala, Empetrum hermaphroditum, and
Vaccinium myrtillus), that were prepared using similar methods to those applied to the
Salix glauca included in this study (see Figure [3d). Furthermore, the CS-TRD publica-
tion included a publicly available dataset of 64 annotated images of Pinus taeda (see
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Figure E}a). Kennel et al. [5]] included a dataset of 7 cross-section images of Abies alba,
although the ring annotations are not fully accessible. Regarding cores, Polek et al. [[14]
made available a dataset of 2601 image patches (similar to the red square in Figure [Th)
with ring annotations for Picea abies, a coniferous tree species.

Among the available methods, only INBD and CS-TRD are adapted for processing
full cross-section images and provide accessible code, allowing for comparison with
our proposed approach.

3 Approach

Algorithm 1: Deep Contour Detector

Input: Im;,: RGB disc image;

tile_size: Tile size (0 if no patching is applied);

total_rotations: Number of rotations applied to the image;

¢y, cx: X and y coordinates of the pith position;

Output: [_ch;: list of continuous curve edges;

I_nodes;: list of nodes of the curves;

£ « arange(0, 360, 360/total_rotations); // Define rotation angles

P « Zero matrix of the same size as Im;,; // Initialize the probability map

// Process each rotation angle

3 forfe Qdo

Liotarea < rotatelmage(Im;,, cy, cx, 0); // Rotate the image around the pith position

Protarea < ringSegmentationModel(Z,preq, tile_size); // Apply the segmentation
model. See Figure 4]

P« rotatelmage(P,orareas €Y, €X, —0); // Undo the rotation of the probability map

P « P+ P,,,; // Accumulate the rotated probability map

[

s

e Y

®

P « P/total_rotations; /| Average the probability map

M « P > 0.2; // Threshold the accumulated probability map

10 S « skeletonize(M); // Skeletonize the binary mask

11 m_ch, < findContoursCurves(S ); // Extract ring curves from the skeleton

12 Nx, Ny « getNormalComponent(m_ch,); // Compute normal directions for each edge
13 m_ch; « filterEdges(m_ch., Nx, Ny); // Filter edge curves. See Equation

14 I_chy,I_nodes, <« samplingCurves(m_chy); // Convert curves to the spider web format
15 return [_ch,, [_nodesg; /| Return the results

-

The proposed approach aims to extract a set of continuous, connected pixel curves
from an RGB image of a wood cross-section, a disc. These curves serve as input to
the spider web model presented in [11]], enabling the reconstruction of digital tree-ring
curves for the sample. An overview of the whole Tree-Ring detection pipeline is in
Figure[2]

The CS-TRD method [[11] works as follows: (i) Several rays are traced departing
from the center (the pith) outwards. (ii) Canny edge filtering is applied to the image.
(iii) Filter out edges not belonging to the latewood to earlywood transitions, which
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correspond to the annual rings, using the angle between the edge normals and the rays.
(iv) All edge chains that belong to the same ring are grouped by imposing the spider
web structure through an iterative procedure that connects chains that do not cross each
other, have strong edge information, and comply with a smoothness condition. The
authors claim an F-Score of 89% in Pinus taeda and 97% in Abies alba species.

3.1 Algorithm

The DeepCS-TRD method maintains the principal steps of the CS-TRD but with a
substantial modification: replacing the Canny-based edge detection step with a module
based on the U-Net architecture [[18]] trained to segment ring boundaries (Figure Q)).
Algorithm[T]shows the pseudocode of this step. The method’s inputs are an RGB image
of a disc (Im;,) and a parameter to indicate the image is split into tiles of (tile_size) size,
following the overlap-tile strategy described in [[18]]. Additionally, the method allows to
apply a Test-Time Augmentations (TTA) [6]] strategy, which consists of fotal_rotation
rotations around the pith location (cy, ¢,). The method produces a list of continuous ring
edge curves (I_chy) and a list of pixels nodes (I_nodes;) which are the input to the spy-
der web model. In lines 1 and 2, the method initializes the TTA rotation domain angles
£ and the probability map P. Then, between lines 3 and 7, the inference loop iterates
between the elements 6 € Q. In line 4, Im;, is rotated an angle 6 and stored in I,.y4zeq. In
line 5, the ring boundaries are generated with the ring segmentation model as illustrated
in Figure [4 First, if needed, the image is split into tiles with an overlapping of 10%
(to avoid the tile border effects). The tiles are zero-padded when necessary to ensure
compatibility with the stride size (tile_size). Then, a probability map is computed for
each tile with a U-Net network. Finally, the probability map for the whole disc (P, orareq)
is built (with the original image size). The average between the tile’s probability map is
assigned to the overlapping area.

Once the probability map of the whole image (P,.wreq) has been obtained, the ro-
tation of angle 8 needs to be inverted (line 6, angle -6). Then, in line 7, the current
probability map (P,,,) is accumulated into P. In line 8, the average probability map is
obtained. In line 9, the probability map P is binarized with a 0.2 threshold to generate
the mask M. This low threshold is deliberately chosen, considering an additional filter-
ing step in line 13 that further refines the results. In line 10, this mask is skeletonized
to improve the tree-ring curve precision. Finally, curves are extracted from the skele-
ton S using the Suzuki method [[19] implemented in the function findCountour of the
OpenCV library [[I]]. Figure [3] illustrates the lines 8 to 11 steps. Figure [5p shows the
probability map P for a disc region. Brighter pixels indicate a higher probability of be-
longing to a ring. Figure Sk shows the skeleton S overlaid on the mask M, with colors
representing curve labels. The skeleton corresponds to the center of the mask. Finally,
Figure [5d presents the extracted curves overlaid on the original image.

The normal component of each pixel belonging to a curve in m_ch, is computed
using a straightforward procedure (line 12). The pixels of each curve are ordered se-
quentially from one end to the other. The tangent direction of pixel pg is Ty, = p1—p-1,
where p_; and p; are the preceding and succeeding pixels along the curve, respectively.
The normal direction N, is then computed as a vector perpendicular to T',, given by

Np, = (—T,,Oyy, Tpo,x), where T, = (T, x, Tp,,y)- This ensures that N, is orthogonal to
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Fig. 4: Ring Segmentation Model Inference. The input to the model is a complete cross-section
disc (a). (b) The disc is divided into square tiles. (c) and (d) Each tile is processed individually
using the U-Net network to generate its corresponding probability map. Finally, the tile predic-
tions are combined to reconstruct the probability map for the entire sample (e). This procedure
corresponds to line 5 of AlgorithmE}

the curve at po. The point c is the pith location (¢, ¢y). In line 13, the angle ¢ between

CPO'NPO
llepollllNpy I

We filter out all pixels py with normals not collinear and outbound oriented con-
cerning the ray’s direction at that point:

cpy and N, is computed as 6 (cpo, N,,O) = arccos(

@ < 8(epo, Npy) < 180 — (1)

We set o = 45 degrees. When a pixel pg is removed, the curve to which py belongs
is split at that position. This step is straightforward because m_ch, is a matrix of di-
mensions N X 2. Each curve is separated from the others by a row with values (-1, —1).
Therefore, if a pixel does not satisfy the condition in Equation (I), we insert the vector
(=1, —1) at its position.

Finally, in line 14, the curves in m_chy are converted into the format required by the
spider web model, structured around a central pith, the origin of the rays. Each curve is
represented as a set of points, with nodes in the intersections of the curve with the rays.
The resulting sampled curve is called a chain. These chains have the notable property of
being non-intersecting, inspired by the biological characteristics of tree rings observed
in conifer species. More details can be found in [11]].
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(d)

Fig. 5: Stages for extracting the ring edge curves. (a) Zoomed-in view of the RGB image. (b)
The probability map of the image section is shown in (a). (c) Probability map with overlaid edge
curves. (d) Extracted edge curves overlaid on the image.

Preprocessing The background was removed from all images using the U?-Net net-
work [[16]] and manually corrected when necessary. Furthermore, portions of the image
background were cropped to focus on the cross-section so that the minimum distance
between the disc and the image edges is 50 pixels. Images from all datasets were re-
sized to 1504x1504 pixels using Lanczos interpolation. To complete the image size,
if the smallest dimension of the resized image does not reach the new dimension, a
255-value padding was applied, maintaining the aspect ratio.

3.2 Network Training

Non-overlapping square tiles were used for training the U-Net network. Only the patches
with ring presence of each image sample were used. The tile size is a hyperparameter
of the training step (see Section[5.2) where 60% of the samples were used for training,
20% for validation and 20% for assessing the full tree-ring detection pipeline (Fig-
ure 2. Training and validation subsets were split into patches to train and select the
network’s hyperparameters. We also trained the network to predict the ring boundaries
on the complete disc sample.

The network was trained over 100 epochs on an NVIDIA P100 GPU with 12 GB of
VRAM and 40 GB of system RAM. The Adam optimizer was used with an initial learn-
ing rate of le-3, while a cosine annealing schedule was applied to adjust the learning
rate dynamically during training. The Dice Loss function was employed to optimize the
model’s performance. The Resnetl8 backbone, pre-trained on ImageNet, was also used
to enhance feature extraction. The network’s weights that result in the lowest validation
loss during training are selected as the optimal model.

Regarding data augmentation, in 50% of the dataset images, randomly selected, we
generate three augmented images: one with a random rotation around the pith, another
with occlusions simulating cracks or fungi, and a third with elastic deformations.
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4 Datasets

The datasets used in this study encompass a variety of species as shown in Figure [3]
Some species, like the conifer Pinus taeda, have clear ring contrasts, while Gleditsia
triacanthos and Salix glauca are more challenging. Due to the differences in growth
forms, the sample preparation methods also varied. While the cross sections from the
trees in datasets UruDendro 1, 2, and 3, were sanded and polished as typical for tree
samples, the cross-sections in the Diskolsland dataset were prepared using standard
protocols for shrubs. Specifically, 12-15 um thick cross-sections were cut, stained with
1% safranin and 0.5% astrablue, and permanently fixed to microscope slides using Eu-
kitt (BiOptica, Milan). The image acquisition methods also varied. The images from the
UroDendro 1, 2, and 3 datasets were captured with smartphone cameras (iPhone 6s and
Huawei P20 Pro), while the images of the microsections from the Diskolsland dataset
were captured at 100x magnification using a Zeiss slide scanner (Axio Scan Z1, Zeiss,
Germany (2.26 pixel/um)).

Ring boundaries in the selected acquired images were annotated using the Labelme
Tool [20], which allows users to mark polylines over the image and export the annota-
tions in JSON format. Ring annotations were performed by users with different levels
of expertise, from undergraduate students to expert professors, and in all cases, they
were reviewed by at least one other expert. Finally, a binary image mask was generated
from the ring boundary annotations, with a thickness of 3 pixels. Table [T depicts the
datasets, the number of samples and rings in each one, the species, and the acquisition
method.

Table 1: Dataset description.

Collection [Samples|Tree-rings Species Acquisition
UruDendrol [[10] 64 1221 Pinus taeda Smartphone
UruDendro2 [9] 53 1151 Pinus taeda Smartphone
UruDendro3a [8]] 9 216 Gleditsia triacanthos|Smartphone
Diskolsland [|15]] 50 654 Salix glauca Scanner

5 Results and discussion

5.1 Metrics

We adopt the same evaluation metrics used by the authors of the INBD method: the
mean Average Recall (mAR) and the Adapted Rand error (ARAND). False positives
are preferred to false negatives because an incorrect ring can be deleted with just one
click, while tracing a new one is more time-consuming. In this sense, the mAR metric
is particularly suitable for this application.
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5.2 Experiments

The DeepCS-TRD method involved two key parameters: tile_size and total_rotations
(see Algorithm E]) We tested tile sizes of 64, 128, 256, 512, and 1504 (full resolution,
no tiles) pixels for all the datasets. Figure [Th illustrates a tile size of 256px. For the
total_rotations parameter, combinations of 0, 3, and 5 rotations were evaluated. The
selection of this parameter was made by optimizing the validation subset. After exper-
iments, parameter values were fixed in tile_size = 256 and total_rotations = 5 for the
four datasets.

We noted that the thickness of the annotated ring boundary masks during training
impacts the method’s performance. The best value was 3-pixel in all datasets. In conse-
quence, DeepCS-TRD and INBD methods are trained using ring boundary thicknesses
of three pixels. The two networks in the INBD method were trained following the au-
thor’s procedure during 100 epochs, setting the downsampling parameter to 1, which
gave the best results.

Table 2: Results on the test set for the four used datasets and the available SOTA methods:
INBD [4] and CS-TRD |[[11] as well as the proposed DeepCS-TRD. The best performance is in
boldface. Urul stands for UruDendrol, and the same is done for UruDendro2 and UruDendro3a
datasets. Disko stands for DiskIsland dataset.

mAR 7T ARAND |
Method |Urul Uru2 Uru3a Disko|Urul Uru2 Uru3a Disko
CS-TRD 7787 710 .007 .026 |.093 .144 466 .634
INBD 846 742 200 .735|.081 .132 .494 .099
DeepCS-TRD| .884 .809 .620 .628 |.053 .105 .207 .107

5.3 Results

This section evaluates the performance of INBD, CS-TRD, and DeepCS-TRD on the
test set across all datasets. The INBD method was modified to accept the pith boundary
ground truth as input to ensure a fair comparison, as both DeepCS-TRD and CS-TRD
take the pith locations as input but modeled as a pixel [[12]].

Table [2| presents each method’s mAR and ARAND values across all datasets. The
proposed DeepCS-TRD method has the best results on all the UruDendro datasets. It
achieves outstanding results with near-perfect ring detection from the pith to the bark
in UruDendrol and UruDendro2, as illustrated in Figure [§] Despite the INBD method
giving very good performance in most of the samples, in some situations, it generates
notorious propagation errors in the presence of significant fungal growth, cracks, or
knots because it begins delineating ring boundaries from the pith center (see rows 1
and 2). In row 1’s sample, DeepCS-TRD detects some false rings near the center, but
its remaining detections are highly accurate. In contrast, CS-TRD gives good results,
but rings are inaccurate with this strong fungus presence. In the sample in row 2, both
DeepCS-TRD and CS-TRD performed well.
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(a) DeepCS-TRD (b) CS-TRD (c) INBD

Fig. 6: Tree-Ring Delineation Results. Each column displays the ring boundaries produced
by each method, shown in blue. Each row corresponds to a different disc sample. Column (a)
DeepCS-TRD; Column (b) CS-TRD; Column (c) INBD. Note the presence of knots, cracks, fun-
gus, and the differences between species. Note that the darker region in the third row does not
correspond to the tree rings of that species.
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In the UruDendro3a dataset, DeepCS-TRD performs well; in the sample shown in
Figure[6} row 3, it correctly delineates 15 out of 19 rings. In contrast, the INBD method
detects only six rings. CS-TRD detects five rings but interestingly identifies the three
innermost rings missed by the other methods (see the region around the pith in row 3
for all methods).

In the Diskolsland dataset, DeepCS-TRD performs slightly worse than the INBD
method on average. In the sample in row 4, the INBD method correctly detects all the
rings, while DeepCS-TRD missed the second ring. CS-TRD performs poorly in this
dataset.

There are differences regarding the training time for the DeepCS-TRD and INBD
methods. Both methods” maximum required training time was in the UruDendro1 dataset,
with 25 and 4 hours for the INBD and DeepCS-TRD, respectively, using the same HW.

6 Conclusions

A new method for automatic Tree-Ring delineation has been proposed. It adapts the
CS-TRD method by replacing the edge detector step with a U-Net deep convolutional
network. This modification allows us to apply the spider web model to other species,
such as Gleditsia triachantos or Salix glauca, with different, and often more difficult,
annual ring patterns than for the coniferous species. Additionally, the proposed method
also increases the performance of CS-TRD for Pinus taeda as can be seen in Table [2}
in this case, the accuracy (mAR) has improved from 0.787 to 0.884 in UruDendrol and
from 0.710 to 0.809 in UruDendro2.

By applying data augmentation techniques and the overlap-tile strategy, a high ring
detection rate has been achieved in UruDendro3a despite using a limited number of im-
ages. Additionally, satisfactory results have been obtained on the Salix glauca dataset.
One advantage of this method over INBD is that INBD requires two training steps,
whereas DeepCS-TRD requires one. Moreover, DeepCS-TRD significantly reduces
training time, requiring just 4 hours compared to 25 hours for INBD on the UruDendrol
dataset.
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