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Abstract

In this work we explore a mixed formulation of the fractional Poisson problem via the fractional
divergence and fractional gradient. Following Hughes and Masud [1] we pursue a stabilized
formulation that results in a coercive and well-posed problem. We prove the convergence of
this discretization, its order and perfom some numerical experiments.

Fractional Gradient and Fractional Divergence

Definition

Following [2], the fractional gradient and divergence can be expressed in integral form as:

gradsφ(x) = µ(d, s)
∫
Rd

(y − x)(φ(y) − φ(x))
|y − x|d+s+1 dy,

divs Φ(x) = µ(d, s)
∫
Rd

(y − x) · (Φ(y) − Φ(x))
|y − x|d+s+1 dy,

where the normalization constant is given by

µ(d, s) = 2sΓ
d+s+1

2


πd/2Γ

1−s
2

.

Problem Formulation

Let Ω ⊂ Rd be a bounded and Lipschitz domain. We consider the following fractional Darcy
problem: find (p, Φ) ∈ L̃2(Ω) × H(divs; Ω) such that



Φ + gradsp = 0 in Rd,

divsΦ = f in Ω,

p = 0 in Ωc,

where
H(divs; Ω) := {Ψ ∈ L2(Rd,Rd) : (divsΨ)

∣∣∣∣∣∣Ω ∈ L2(Ω)},

furnished with the norm
∥Ψ∥H(divs;Ω) :=

∥Ψ∥2
L2(Rd) + ∥(divsΨ)

∣∣∣∣∣∣Ω∥2
L2(Ω)

1/2
.

We also denote by L̃2(Ω) the space of L2(Ω) that are extended by zero to Rd.
The weak formulation of the problem reads: find (p, Φ) ∈ L̃2(Ω) × H(divs; Ω) such that, for
all (q, Ψ) ∈ L̃2(Ω) × H(divs; Ω),∫

Rd
Φ · Ψ −

∫
Rd

p divsΨ +
∫
Rd

q divsΦ =
∫
Rd

fq. (1)

Note that all but the first of the integrals above need to be effectively computed in Ω.
We are using the integration by parts formula:∫

Rd
gradsq · Ψ = −

∫
Rd

q divsΨ, for all q ∈ H̃s(Ω) and Ψ ∈ H(divs; Ω).

Well-Posedness

Let
a : H(divs; Ω) × H(divs; Ω) → R, a(Φ, Ψ) =

∫
Rd

Φ · Ψ,

b : L̃2(Ω) × H(divs; Ω) → R, b(q, Ψ) =
∫

Ω
q divsΨ,

F : L̃2(Ω) → R, F (q) =
∫

Ω
fq.

(2)

Problem (1) is well-posed if
I the form a is coercive in ker B, the Riesz representantive of the map b(·, Ψ);

II the form b satisfies an inf-sup condition.

Stabilized Form

To shorten the notation, we define in
L̃2(Ω) × H(divs; Ω)

 ×
L̃2(Ω) × H(divs; Ω)

 the form
L((p, Φ), (q, Ψ)) := a(Φ, Ψ) − b(p, Ψ) + b(q, Φ).

Let V := H̃s(Ω) × H(divs; Ω). We introduce the stabilized form in V × V:

Lstab((p, Φ), (q, Ψ)) := L((p, Φ), (q, Ψ)) + 1
2

∫
Rd

(Φ + gradsp) · (−Ψ + gradsq) . (3)

With this, we consider the stabilized problem: find (p, Φ) ∈ V such that
Lstab((p, Φ), (q, Ψ)) = F (q) ∀(q, Ψ) ∈ V.

We introduce a norm in V:

|||(q, Ψ)||| :=

1
2

∥gradsq∥2
L2(Rd) + ∥Ψ∥2

L2(Rd)



1/2

.

Coercivity/Stability, Continuity and Well-Posedness

We have
Lstab((p, Φ), (p, Φ)) = |||(p, Φ)|||2 ∀(p, Φ) ∈ V,

Lstab((p, Φ), (q, Ψ)) ≤ |||(p, Φ)||||||(q, Ψ)||| ∀(p, Φ), (q, Ψ) ∈ V.

As usual, the Lax-Milgram theorem gives rise to the well-posedness of our problem.

Finite Element Discretization

We are approximating Φ, which is not compactly supported, and the form a in (2) and the
stabilization term in (3) involve integration in Rd. To tackle this problem, we consider a ball
BH containing Ω and such that H := d(Ω, Bc

H) >> 1.
Let {Th}h>0 be a family of regular, simplicial triangulations of BH with mesh size h > 0.
Moreover, we assume that {T ∈ Th : T ∩ Ω ̸= ∅} is a triangulation of Ω for all h > 0. On
the triangulation Th we define

Vh = {(qh, Ψh) ∈ P1(Th) × Pd
1 (Th) : qh|Ωc = 0, Ψh|Bc

H
= 0}.

We consider the following discrete problem: find (ph, Φh) ∈ Vh such that
Lstab((ph, Φh), (qh, Ψh)) = F (qh) ∀(qh, Ψh) ∈ Vh. (4)

Galerkin Orthogonality

The fact that Vh ⊂ V implies the existence and uniqueness of solutions to (4). Let
(p, Φ) ∈ V and (ph, Φh) ∈ Vh be the exact solution and the discrete solution, respectively.
Then, we have the Galerkin orthogonality:

Lstab((p − ph, Φ − Φh), (qh, Ψh)) = 0 ∀(qh, Ψh) ∈ Vh.

Therefore,
|||(p − ph, Φ − Φh)||| ≤ inf

(qh,Ψh)∈Vh

|||(p − qh, Φ − Ψh)|||.

Order of Convergence

To obtain convergence rates, we employ regularity estimates up to ∂Ω for the fractional
Poisson problem [3], regularity estimates for the flux given by the mapping properties of
the grads operator [4] and quasi-interpolation estimates (cf., [5] and [6]): We have

|||(p − ph, Φ − Φh)||| ≤



Ch
1
2| log h|

1
2∥f∥L2(Ω), for s > 1/2,

Chs| log h|
1
2∥f∥L2(Ω), for s < 1/2,

Ch
1
2| log h| ∥f∥L2(Ω), for s = 1/2.

Numerical Experiments

We test the convergence rates for different values of s in 1d. We take f ≡ 1, Ω = (−1, 1)
and the distance H = d(Bc

H, Ω) is chosen such that H−1−d−2s ≃ h| log h|.
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Figure: Computed pressures for different values of s.
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Figure: Computed fluxes for different values of s.

Value of s Hs order L2 order
0.1 0.4691 0.4949
0.2 0.4956 0.6444
0.3 0.5000 0.7968
0.4 0.5004 0.9236
0.5 0.5005 1.0012

Value of s Hs order L2 order
0.6 0.5005 0.9966
0.7 0.5009 0.9928
0.8 0.5014 0.9952
0.9 0.5017 1.0045

Table: Order of convergence for the pressure p.
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Figure: Error in Hs vs h.
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Work in progress and questions

• 2d implementation.
• Non-zero Dirichlet conditions, and Neumann conditions.
• Convergence rates in non-uniform meshes.
• Test (P0) elements for the pressure p.
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