

Fractional (p,s)-Laplacian: A Numerical Approach

José Rueda a joint work with J. P. Borthagaray and L. M. Del Pezzo

PEDECIBA. Universidad de la República, Uruguay.

Abstract

We study the Dirichlet problem for a fractional p-Laplacian defined through the Riesz fractional gradient. Our approach provides a numerical framework by introducing a discretization scheme and establishing interpolation and error bounds. The study is divided into three main sections: theoretical foundations, numerical methods, and computational results.

Riesz Fractional Gradient and Divergence

Definition

For the definition of the fractional gradient and divergence, following [4], these operators can be expressed in integral form as:

$$\nabla^s \varphi(x) = \mu(N, s) \int_{\mathbb{R}^N} \frac{(y - x)(\varphi(y) - \varphi(x))}{|y - x|^{N+s+1}} dy,$$
$$\operatorname{div}_s \Phi(x) = \mu(N, s) \int_{\mathbb{R}^N} \frac{(y - x) \cdot (\Phi(y) - \varphi(x))}{|y - x|^{N+s+1}} dy,$$

where $s \in (0,1)$ and the normalization coefficient is given by:

$$\mu(N,s) = \frac{2^s \Gamma\left(\frac{N+s+1}{2}\right)}{\pi^{N/2} \Gamma\left(\frac{1-s}{2}\right)}.$$

Lions-Calderón spaces

From this definition, the Lions- $Calder\'{o}n$ spaces naturally arise as the associated variational spaces, defined by

$$X^{s,p}\left(\mathbb{R}^{N}\right):=\left\{ f\in L^{p}\left(\mathbb{R}^{N}
ight):D^{s}f\in L^{p}\left(\mathbb{R}^{N};\mathbb{R}^{N}
ight)
ight\} ,$$

endowed with the norm

$$\|f\|_{X^{s,p}(\mathbb{R}^N)} := \left(\|f\|_{L^p(\mathbb{R}^N)}^p + \|D^s f\|_{L^p(\mathbb{R}^N;\mathbb{R}^N)}^p \right)^{rac{1}{p}}.$$

The relationship between these spaces and the classical fractional Sobolev spaces is given by

$$X^{s,p}(\mathbb{R}^N) = W^{s,p}(\mathbb{R}^N)$$
 if and only if $p = 2$.

Moreover, under the nested inclusion of interpolation spaces, we have

$$X^{s+\varepsilon,p}\left(\mathbb{R}^{N}\right)\subset W^{s,p}\left(\mathbb{R}^{N}\right)\subset X^{s-\varepsilon,p}\left(\mathbb{R}^{N}\right),$$

for all $p \in (1, \infty)$, $s \in (0, 1)$, and $\varepsilon > 0$. We denote by $\tilde{X}_{s,p}(\Omega)$ the zero extension spaces in Ω .

Problem Statement

Our goal is to study the Dirichlet problem involving the fractional (p, s)-Laplacian with homogeneous boundary conditions in a bounded Lipschitz domain. The continuous problem consists in finding $u \in \tilde{X}^{s,p}(\Omega)$ such that

$$-\Delta_p^s u = f \text{ in } \Omega,$$
$$u = 0 \text{ in } \Omega^c,$$

where the operator is defined as

$$\Delta_p^s u := \operatorname{div}_s (|\nabla^s u|^{p-2} \nabla^s u).$$

The weak formulation of this problem consists in finding $u \in \tilde{X}^{s,p}(\Omega)$ such that

$$\int_{\Omega} |\nabla^s u|^{p-2} \nabla^s u \cdot \nabla^s v \, dx = \int_{\Omega} f v \, dx, \quad \forall v \in \tilde{X}^{s,p}(\Omega).$$

Spector and Shieh [4] established that, if $g \in L^{p'}(\Omega)$ this problem has a unique solution. Our goal is to develop a numerical implementation based on the Coordinated Decomposition Method by Glowinski-Marocco [2]. Specifically, we reformulate the variational problem as a minimization problem:

$$\min_{v \in \tilde{X}^{s,p}(\Omega)} \left\{ \frac{1}{p} \int_{\mathbb{R}^N} |\nabla^s v|^p \ dx - \int_{\Omega} f v \ dx \right\}. \tag{9}$$

Minimization Problem Reformulation

Introducing an auxiliary variable $v = \nabla^s u$, the problem (1) can be reformulated as a constrained minimization problem, where the constraint space is defined as:

$$W = \{(u, v) \in \tilde{X}^{s,p}(\Omega) \times L^p(\mathbb{R}^N) : \nabla^s u - v = 0 \text{ a.e. in } \mathbb{R}^N \}.$$

Using an augmented Lagrangian approach, we transform this saddle-point problem into an unconstrained minimization problem, where the augmented Lagrangian is given by:

$$\mathcal{L}_r(u, w, \lambda) = \int_{\mathbb{R}^N} \frac{|w|^p}{p} - \int_{\Omega} fv + \langle \lambda, \nabla^s u - w \rangle + \frac{r}{2} \|\nabla^s u - w\|_{L^2(\mathbb{R}^N)}^2.$$

Augmented Lagrangian Iterative Scheme

For the numerical approximation, we employ a finite element discretization. Specifically, the solution u_h^n is approximated using piecewise linear elements (P_1) , while w_h^n and λ_h^n are discretized using piecewise constant elements (P_0) . Given an initial condition $\{w_h^{n-1}, \lambda_h^n\}$, the sequence $\{u_h^n, w_h^n, \lambda_h^{n+1}\}$ is computed through the following iterative process:

$$r \int_{\mathbb{R}^N} \nabla^s u_h^n \cdot \nabla^s \phi_h \, dx = \int_{\Omega} f \phi_h \, dx + \langle r w_h^{n-1} - \lambda_h^n, \nabla^s \phi_h \rangle \, .$$

Step 2: Update w_h^n

Step 1: Update u_h^n

$$\int_{\mathbb{R}^N} (|w_h^n|^{p-2} + r) w_h^n \eta_h dx = \langle \lambda_h^n, \eta_h \rangle + r \int_{\mathbb{R}^N} \nabla^s u_h^n \eta_h dx.$$

Step 3: Update Lagrange Multiplier λ_h^{n+1}

$$\lambda_h^{n+1} = \lambda_h^n + \rho \left(r \frac{1}{|T_j|} \int_{T_j} \nabla^s u_h^n \, dx - w_h^n \right).$$

Convergence Theorem

If $0 < r_0 \leqslant \rho \leqslant r_1 < \frac{r}{2}$, then for any initial condition λ_h^0 , as $n \to \infty$, we have:

 $u_h^n \to u_h, \quad w_h^n \to \nabla^s u_h, \quad \lambda_h^n \to |\nabla^s u_h|^{p-2} \nabla^s u_h.$

where u_h is the finite-dimensional solution of (1).

Error and Interpolation Estimates

In the interpolation estimate result, we consider \mathcal{T}_h as an admissible triangulation of Ω and denote S_T as the patch associated with the element T, i.e., the set of all elements that share at least one vertex or edge with T. Additionally, these estimates involve quasi-interpolation operators, such as those of Scott-Zhang, Clément, or Chen-Nochetto.

Interpolation Error

For $s \in (0,1)$ and $0 < t \le s$, we have:

$$\forall h \lesssim 1, \forall T \in \mathcal{T}_h, \forall v \in X^{s,p}(S_T), \quad \|v - \Pi_h v\|_{L^p(T)} \lesssim h_T^{s-t} |v|_{X^{s,p}(S_T)}.$$

Error Estimate

Let u be the exact solution of (1) and u_h its finite element approximation. Then, there exists a constant C>0, independent of u, such that:

$$||u - u_h|| \le \begin{cases} C \inf_{v_h \in V^h} ||u - v_h||^{p/2}, & \text{if } 1$$

Numerical Experiments

We validate our numerical approach by solving the Dirichlet problem involving the fractional (p, s)-Laplacian in both one and two dimensions for s = 0.5 and varying values of p. The obtained solutions are displayed in the following figure, illustrating the influence of p on the regularity and shape of u.

Figure: Computed solutions and their derivatives for s = 0.5 and multiple values of p in 1D.

Figure: Computed solutions for s = 0.5 and multiple values of p in 2D.

Ongoing and Future Works

- We are studying boundary regularity for the Dirichlet problem, aiming to obtain Besov regularity by employing Savaré's [3] approach, which is based on Nirenberg's difference quotient technique.
- We seek to establish new interpolation error estimates using quasi-norms, adapting the methods developed by Ebmeyer and Liu [1] for the *p*-Laplacian to this class of nonlocal operators.

References

- [1] Ebmeyer, C., & Liu, W. B. Quasi-norm interpolation error estimates for the piecewise linear finite element approximation of p-Laplacian problems. Numerische Mathematik, 100, 233–258, 2005. Springer.
- [2] Glowinski, R., Numerical methods for nonlinear variational problems, Springer Science & Business Media, 2013.
- Savaré, G. Regularity results for elliptic equations in Lipschitz domains. Journal of Functional Analysis, 152(1), 176–201, 1998. Elsevier.
- [4] Shieh, T.-T., Spector, D. E., On a new class of fractional partial differential equations, Advances in Calculus of Variations, 8(4), pp. 321–336, 2015.