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Abstract

We study the Dirichlet problem for a fractional p-Laplacian defined through the Riesz frac-
tional gradient.Our approach provides a numerical framework by introducing a discretization
scheme and establishing interpolation and error bounds. The study is divided into three
main sections: theoretical foundations, numerical methods, and computational results.

Riesz Fractional Gradient and Divergence

Definition

For the definition of the fractional gradient and divergence, following [4], these operators
can be expressed in integral form as:

∇sφ(x) = µ(N, s)
∫
RN

(y − x)(φ(y) − φ(x))
|y − x|N+s+1 dy,

divs Φ(x) = µ(N, s)
∫
RN

(y − x) · (Φ(y) − Φ(x))
|y − x|N+s+1 dy,

where s ∈ (0, 1) and the normalization coefficient is given by:

µ(N, s) = 2sΓ
N+s+1

2


πN/2Γ

1−s
2

.

Lions-Calderón spaces

From this definition, the Lions-Calderón spaces naturally arise as the associated variational
spaces, defined by

Xs,p
RN

 :=
f ∈ Lp

RN
 : Dsf ∈ Lp

RN ;RN
 ,

endowed with the norm

∥f∥Xs,p(RN) :=
∥f∥p

Lp(RN) + ∥Dsf∥p
Lp(RN ;RN)


1
p .

The relationship between these spaces and the classical fractional Sobolev spaces is given
by

Xs,p
RN

 = W s,p
RN

 if and only if p = 2.

Moreover, under the nested inclusion of interpolation spaces, we have
Xs+ε,p

RN
 ⊂ W s,p

RN
 ⊂ Xs−ε,p

RN
 ,

for all p ∈ (1, ∞), s ∈ (0, 1), and ε > 0. We denote by X̃s,p(Ω) the zero extension spaces
in Ω.

Problem Statement

Our goal is to study the Dirichlet problem involving the fractional (p, s)-Laplacian with
homogeneous boundary conditions in a bounded Lipschitz domain. The continuous problem
consists in finding u ∈ X̃s,p(Ω) such that

−∆s
pu = f in Ω,

u = 0 in Ωc,

where the operator is defined as

∆s
pu := divs

|∇su|p−2∇su
 .

The weak formulation of this problem consists in finding u ∈ X̃s,p(Ω) such that∫
Ω
|∇su|p−2∇su · ∇sv dx =

∫
Ω
fv dx, ∀v ∈ X̃s,p(Ω).

Spector and Shieh [4] established that, if g ∈ Lp′(Ω) this problem has a unique solution.
Our goal is to develop a numerical implementation based on the Coordinated Decomposition
Method by Glowinski-Marocco [2]. Specifically, we reformulate the variational problem as
a minimization problem:

min
v∈X̃s,p(Ω)


1
p

∫
RN

|∇sv|p dx −
∫

Ω
fv dx

 . (1)

Minimization Problem Reformulation

Introducing an auxiliary variable v = ∇su, the problem (1) can be reformulated as a
constrained minimization problem, where the constraint space is defined as:

W =
(u, v) ∈ X̃s,p(Ω) × Lp(RN) : ∇su − v = 0 a.e. in RN

 .

Using an augmented Lagrangian approach, we transform this saddle-point problem into an
unconstrained minimization problem, where the augmented Lagrangian is given by:

Lr(u, w, λ) =
∫
RN

|w|p

p
−

∫
Ω
fv + ⟨λ, ∇su − w⟩ + r

2
∥∇su − w∥2

L2(RN).

Augmented Lagrangian Iterative Scheme

For the numerical approximation, we employ a finite element discretization. Specifically,
the solution un

h is approximated using piecewise linear elements (P1), while wn
h and λn

h are
discretized using piecewise constant elements (P0). Given an initial condition {wn−1

h , λn
h},

the sequence {un
h, wn

h, λn+1
h } is computed through the following iterative process:

Step 1: Update un
h

r

∫
RN

∇sun
h · ∇sϕh dx =

∫
Ω
fϕh dx +

〈
rwn−1

h − λn
h, ∇sϕh

〉
.

Step 2: Update wn
h∫

RN

|wn
h|p−2 + r

 wn
hηh dx = ⟨λn

h, ηh⟩ + r

∫
RN

∇sun
hηh dx.

Step 3: Update Lagrange Multiplier λn+1
h

λn+1
h = λn

h + ρ

r
1

|Tj|

∫
Tj

∇sun
h dx − wn

h

 .

Convergence Theorem

If 0 < r0 ⩽ ρ ⩽ r1 <
r

2
, then for any initial condition λ0

h, as n → ∞, we have:

un
h → uh, wn

h → ∇suh, λn
h → |∇suh|p−2 ∇suh.

where uh is the finite-dimensional solution of (1).

Error and Interpolation Estimates

In the interpolation estimate result, we consider Th as an admissible triangulation of Ω and
denote ST as the patch associated with the element T , i.e., the set of all elements that share
at least one vertex or edge with T . Additionally, these estimates involve quasi-interpolation
operators, such as those of Scott-Zhang, Clément, or Chen-Nochetto.

Interpolation Error

For s ∈ (0, 1) and 0 < t ≤ s, we have:

∀h ≲ 1, ∀ T ∈ Th, ∀ v ∈ Xs,p (ST ) , ∥v − Πhv∥Lp(T ) ≲ hs−t
T |v|Xs,p(ST ).

Error Estimate

Let u be the exact solution of (1) and uh its finite element approximation. Then, there
exists a constant C > 0, independent of u, such that:

∥u − uh∥ ≤



C inf
vh∈V h

∥u − vh∥p/2, if 1 < p ≤ 2,

C inf
vh∈V h

∥u − vh∥2/p, if 2 ≤ p < ∞.

Numerical Experiments

We validate our numerical approach by solving the Dirichlet problem involving the fractional
(p, s)-Laplacian in both one and two dimensions for s = 0.5 and varying values of p. The
obtained solutions are displayed in the following figure, illustrating the influence of p on the
regularity and shape of u.

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

p=1.5

p=2

p=3

p=4

p=7

-3 -2 -1 0 1 2 3
-5

-4

-3

-2

-1

0

1

2

3

4

5

p=1.5

p=2

p=3

p=4

p=7

Figure: Computed solutions and their derivatives for s = 0.5 and multiple values of p in 1D.

Figure: Computed solutions for s = 0.5 and multiple values of p in 2D.

Ongoing and Future Works

• We are studying boundary regularity for the Dirichlet problem, aiming to obtain
Besov regularity by employing Savaré’s [3] approach, which is based on Nirenberg’s
difference quotient technique.

• We seek to establish new interpolation error estimates using quasi-norms, adapting
the methods developed by Ebmeyer and Liu [1] for the p-Laplacian to this class of
nonlocal operators.
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