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Biology of the Rufous Hornero, from mechanisms to behavioral ecology: a
potential Neotropical model species?

Biologia del Hornero, de los mecanismos a la ecologia del comportamiento: juna
potencial especie modelo neotropical?
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ABSTRACT. Model organisms help us understand biological processes and provide insights applicable to other organisms. Birds are
commonly used as model organisms. However, since most information comes from songbirds in the Northern Hemisphere, this limits
our understanding of broader biological processes. Here we review existing knowledge on the biology of the Rufous Hornero (Furnarius
rufus), a non-songbird found in southern South America. We highlight recent advances in research on its nesting, breeding behavior,
and vocal communication, and propose promising new research questions. Finally, we discuss the potential of the hornero as a
Neotropical model bird species.

RESUMEN. Los organismos modelo nos ayudan a comprender los procesos bioldgicos y proporcionan conocimientos aplicables a
otros organismos. Las aves se utilizan habitualmente como organismos modelo. Sin embargo, dado que la mayor parte de la informaciéon
procede de aves cantoras del hemisferio norte, esto limita nuestra comprension de procesos biologicos mas amplios. Aqui revisamos
los conocimientos existentes sobre la biologia del Hornero (Furnarius rufus), un ave no canora que se encuentra en el sur de Sudamérica.
Destacamos los avances recientes en la investigacion sobre su nidificacion, comportamiento reproductivo y comunicacion vocal, y
proponemos nuevas y prometedoras cuestiones de investigacion. Por ultimo, discutimos el potencial del Hornero como especie modelo

de ave neotropical.
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INTRODUCTION

A substantial portion of knowledge in biological research stems
from the study of model organisms: organisms that are extensively
studied to provide generalized insights into biological
phenomena. Although this approach has yielded remarkable
success across different research areas, a lack of diversity in model
organisms can also introduce bias in interpreting diverse
biological processes. Scientific knowledge exhibits a clear
geographical bias, likely attributed to geographical disparities
across biological research fields rather than model species per se.
Most studies in evolutionary biology and ecology originate in the
Northern Hemisphere (Nufez et al. 2021, Theuerkauf et al. 2022,
Soares et al. 2023). Considering the differences in evolutionary
forces and environments across hemispheres or continents, it is
fair to assume that generalizations drawn from Northern
Hemisphere research are unlikely to hold universally (Kennedy
et al. 2017). Hence, efforts to establish new model species in
underrepresented regions, such as the Neotropics (Mexico to
Argentina and Chile), and within less-studied taxa become
worthwhile, despite the challenges involved (Kennedy et al. 2017).
Adopting an organismal approach in these regions can

significantly enhance our understanding of diverse biological
phenomena, spanning ecological to mechanistic (i.e., proximate
causes) perspectives.

Birds have been used as models in disciplines ranging from
neuroscience to evolutionary biology. For instance, Canaries
(Serinus canaria) and Zebra Finches (Taeniopygia guttata) gained
recognition as models for vocal learning and vocal production in
neuroscience, among other fields (e.g., Goldman 1998, Griffith
and Buchanan 2010). Similarly, Pied Flycatchers (Ficedula
hypoleuca), Blue Tits (Cyanistes caeruleus), and Great Tits (Parus
major) became pivotal models for behavioral ecology (e.g., Gibb
1950, Lundberg and Alatalo 2010). Despite the great diversity of
birds in South America, only a handful of species have attained
model status in ornithology (Soares et al. 2023). One of the most
notable is perhaps the widely distributed Rufous-collared
Sparrow (Zonotrichia capensis), important for the fields of
behavioral endocrinology, behavioral ecology, or the study of
vocal dialects (e.g., Miller and Miller 1968, Nottebohm 1969,
Moore et al. 2002, 2004). Other songbirds that have the potential
of becoming model species include the Shiny Cowbird (Molothrus
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bonariensis) and the Blue-black Grassquit (Volatinia jacarina),
serving as models in brood parasitism and sexual selection,
respectively (e.g., Mason and Rothstein 1986, Cavalcanti and
Pimentel 1988, Sackmann and Reboreda 2003, Macedo and
Manica 2019). Interestingly, all the examples here share a
common trait: they all belong to the suborder Passeri, a group of
around 5000 species.

The sister group of Passeri comprises the suborder Tyranni,
consisting primarily of a Neotropical radiation of over 1000
species. Tyrannids, representing 26% of Passeriformes, are
different from Passerids in, for example, life-history traits,
neuroanatomy, and vocalizations (Gahr 2000, Liu et al. 2013,
Oliveros et al. 2019). Among the several studies on Tyrannids,
only one species appears to have achieved the status of an animal
model: the Thorn-tailed Rayadito (Aphrastura spinicauda).
Extensively studied, primarily in Chile, the rayadito provides
essential insights into the biology of suboscines (e.g., Ippi et al.
2011, 2013, Botero-Delgadillo et al. 2017) and now serves as the
primary outgroup for comparing discoveries in songbirds.
However, given the enormous diversity within the Tyranni, it is
evident that the Thorn-tailed Rayadito represents only a fraction
of suboscine biological diversity. Because Tyrannids hold a more
basal position in avian phylogeny, investigating more species will
advance our understanding of avian evolution, including
anatomy, neuroscience, life history, and more.

We review the knowledge on the Rufous Hornero (Furnarius rufus;
hereafter referred to as the hornero), a Tyrannid of the
Furnariidae family, widely distributed in southern South America
and popularly known as ovenbirds. Since the first description of
the species, and despite its popularity in the countries where it
occurs (see Box 1), publications on the hornero have been sporadic
with very few systematic approaches (e.g., Hudson 1923,
Diesselhorst and Hermann 1958, Hermann 1958, Vaz-Ferreira
and Palerm 1973, Fraga 1980). Only in the past decade different
research groups in Argentina, Brazil, and Uruguay have, in
parallel, initiated various research programs centering on
horneros. This review aims to compile existing knowledge about
these birds and inspire research on mechanistic, ecological, and
evolutionary questions. We first present general aspects of
hornero biology, then explore specific research topics, and finally,
use the discussion to evaluate the potential of the hornero as a
Neotropical model bird species.

General biology

Horneros are non-migratory and widely distributed in southern
South America, in Argentina, Brazil, Bolivia, Uruguay, and
Paraguay (Fig. 1A; Carman 1977, Remsen and Bonan 2020). They
can be found in urban areas, savannas, pastures, and both
agricultural and natural lands across the species distribution
range (Remsen and Bonan 2020). The species is abundant and
common where it occurs, it is classified as least concern, and its
population appears to be increasing (BirdLife International
2023).

Horneros are relatively large ovenbirds, similar in size to the
European Starling (Sturnus vulgaris; Fig. 1A). Depending on the
population, they weigh between 40 to 70 grams (Fig. 1B). They
have straight bills, rufous upperparts, and light rufous supercilia.
The wings have a slight band, and their underparts are either
brownish-grey or light cinnamon (Remsen and Bonan 2020).
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Fig. 1. (A) Rufous Horneros (Furnarius rufus) inhabit
Argentina, Paraguay, Uruguay, Bolivia, and Brazil. (B)
Scatterplot depicting the association between annual mean
temperature (from Fick and Hijmans 2017) and hornero body
mass (r = -0.46, p < 0.001, N =451, data from (Fraga 1980,
Navas and B6 1986, Schmitt et al. 1997, Oniki and Willis 1999,
Bugoni et al. 2002, Di Giacomo 2005, Roper 2005, Aldatz 2006,
Massoni et al. 2012, Smith et al. 2012, Salvador 2014, VerNet
2015a, b, 2017, 2018, 2019a, b, c, d, Rodrigues et al. 2019, Diniz
2024).
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They exhibit minimal sexual dichromatism (Diniz et al. 2016,
Barreira et al. 2021) and dimorphism (Aldatz 2006, Diniz et al.
2016), with females tending to be lighter colored and smaller than
males. Moreover, horneros exhibit marked geographic variation
in size: body mass negatively correlates with temperature variation
following Bergmann’s rule (Fig. 1B). This pattern is most likely
driven by thermoregulatory factors, but a possible arms race with
nest parasites could also contribute. Although predominantly
insectivorous, horneros are known to feed occasionally on human
food in urban areas and even prey on small vertebrates (Heredia
et al. 2010, Miyasaki et al. 2017, Oliveira et al. 2022).

Both male and female horneros defend their territories year-
round (Fraga 1980, Dinizet al. 2018). During the breeding season,
horneros occupy large home ranges that vary from 0.7 = 0.5 ha
to 0.8 + 0.3 ha. Territory sizes seem to decrease outside the
breeding season, but it is unclear if this reduction is effectively in
size or because horneros are less territorial (i.e., sing less or get
less involved in territorial disputes; Amorim et al. 2023a). Both
male and female horneros build the nest, which weighs an average
of 4.30 kg and is made of mud (Fraga 1980, Massoni et al. 2012).
Females lay 2—4 eggs in the austral spring and summer (i.e.,
September—February; Fraga 1980, Diniz et al. 2019, Rodrigues et
al. 2019), with incubation and nestling phases lasting 14-18 and
23-26 days, respectively (Fraga 1980, Remsen and Bonan 2020).
Both parents incubate and provide care (Fraga 1980, Massoni et
al. 2012, Shibuya et al. 2015). Juveniles often remain in the natal
territory for several months, delaying dispersal (Fraga 1980, Vaz-
Ferreira et al. 1993, Bobato 2012). On average, pair bonds in
horneros last three years (Fraga 1980, Amorim et al. 2023a). In
a 12-year study on this species, males were 30% more likely to
remain in a territory than females (Fraga 1980). This implies that
either males have a higher likelihood of survival and/or changing
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partners than females, or females are more likely to die and/or
abandon males while seeking new partners. However, in one
population in Brazil, both sexes appear equally likely to keep their
territories throughout the year (Amorim et al. 2023a).
Furthermore, even though extra-pair paternity is widespread
among socially monogamous birds (Brouwer and Griffith 2019),
horneros appear to be an exception. The only available study
suggests low extra-pair paternity in horneros, with 7% of broods
and 3% of nestlings attributed to extra-pair males in an urban
population in central Brazil (Diniz et al. 2019).

Behavior, physiology, ecology, and evolution

Hornero nest

Despite the attention nests have received in the fields of behavioral
science, ecology, and evolution, numerous fundamental questions
remain unanswered. A crucial step to understand behavioral,
ecological, and evolutionary questions concerning animal
architecture is to clearly identify and define different nest
phenotypic traits so that they are replicable within one species
and ideally generalizable to other bird species. This task can be
exceptionally challenging, both in intricate and, especially so, in
simple nests (e.g., Mainwaring et al. 2012). Bilateral asymmetry
isacommon binary phenotypic trait in nature, akin to handedness
or the morphological asymmetry observed in certain crab species’
claws (Palmer 2004). The simplicity of bilateral asymmetries
makes them optimal traits for investigating the role of chance,
environment, and genetics in explaining phenotypic variation
(Palmer 2004). In this respect, hornero nests are bilaterally
asymmetric (Fig. 2). Horneros construct nests with the entrance
on either the left (Fig. 2A) or right (Fig. 2B) side of the dome,
resulting in a clockwise or counterclockwise entrance to the
incubation chamber. From a citizen science project that collected
information on nest entrances in all five countries where the
hornero is present, we now know that this trait is not randomly
distributed in the population. There are 12% more nests with right
entrances than expected by chance (Adreani et al. 2022). At
present, it is challenging to discern a direct evolutionary
advantage of one nest phenotype over the other; it could be that
nest asymmetry is linked to another trait that may confer
differential advantages (e.g., lateralized behavior) or simply
unequally distributed in the population, like human handedness
(discussed by Frasnelli and Vallortigara 2018). Additionally,
large-scale environmental factors and nest site selection properties
do not seem to account for the occurrence of left- or right-
entrance nests (Adreani et al. 2022). Furthermore, the
repeatability of this trait is among the highest reported for animal
behavioral traits (R = 0.65), indicating that the likelihood of a
pair building a new nest with the same asymmetry as the previous
one is high (Adreani et al. 2022). This leaves two potential
scenarios for explaining nest asymmetry: culture or genetics,
which requires an experimental approach to be tested.

Because the hornero nest is primarily made of mud and the species
originally evolved in central South America, it has been proposed
to function as an incubation chamber when parents are absent
(Vaz-Ferreira et al. 1992, Shibuya et al. 2015). The location and
orientation of nests can also determine the thermal conditions
inside the nest, influencing offspring development (Mainwaring
et al. 2014, Martin et al. 2017, Schaaf et al. 2018) and potentially
constitute key adaptive responses of species to the environment
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(Hartman and Oring 2003, Souza and Santos 2007, Mainwaring
et al. 2014, Shibuya et al. 2015). Nest location and orientation are
expected to be influenced by temperature, rainfall, humidity,
wind, and nest materials among others (Conway and Martin 2000,
Souza and Santos 2007, Schaaf 2020). In horneros, nests located
closer to the Equator, where temperatures are high early in the
breeding season (September and October) and rainfall is low, are
often in areas with more vegetation or artificial cover (Schaaf et
al. 2018). Nests without such cover tend to face south, likely to
avoid direct sunlight and benefit from humid winds. The
importance of climatic effects on hornero nest orientation is
further supported by nesting records collected over 9 years from
7 sites in central Argentina. These records show a trend toward
more southerly nest orientations as average temperatures increase
(Schaaf and De la Pefia 2020). Whether this trend helps reduce
direct solar radiation or is a direct result of rising temperatures
or other environmental factors (e.g., wind, changes in the
landscape) remains an open question.

Most horneros build new nests every season, and those old nests
can last for multiple years (Fraga 1980). This means that usable
old nests become available for other bird species over time, such
as many secondary cavity nesters. A survey of the literature
revealed that hornero nests are used by at least 29 species of birds,
belonging to 13 different families, mostly in the order
Passeriformes (Fig. 2C; Delhey 2018). The most recorded
secondary nest tenants include swallows, finches, house wrens,
tyrant flycatchers, and New World blackbirds. Hornero nests are
also used by invasive bird species such as House Sparrows (Passer
domesticus) and European starlings (Sturnus vulgaris), with the
former observed forcefully expelling the horneros from their nests
(Fraga 1980). Interestingly, one bird seems to specialize in using
hornero nests as their primary nesting site: the southern
subspecies of the Brown-chested Martin (Progne tapera fusca).
Although the northern nominate subspecies uses cavities, the
southern subspecies nests almost exclusively in hornero nests
(Turner 2020). In addition to birds, hornero nests are also used
as roosting sites by mammals such as opossums, and bats, among
others (Narosky and Carman 2008), and they contain associated
invertebrate fauna (Turienzo and Iorio 2007). This includes
ectoparasites such as hematophagous bugs (A canthocrios furnarii,
Cimicidae). Hence, by providing a key resource (nest sites) for
other species, horneros may act as physical ecosystem engineers,
that s, species that create new environmental resources with broad
implications for ecosystem dynamics (Jones et al. 1994).
Woodpeckers (Family Picidae) are well-known examples of avian
ecosystem engineers (van der Hoek et al. 2017). However, in
contrast with woodpeckers, horneros create cavities where
woodpeckers cannot: on small trees, buildings, and other artificial
substrates. In fact, horneros thrive in human-modified
landscapes, and their nests could be the key element that attracts
a diversity of other birds to these often-impoverished urban
environments.

The hornero nest therefore offers a wealth of opportunities in
three research areas: one avenue explores the asymmetric nature
of the hornero nest as a pivotal phenotype, investigating the roles
of genes and culture in nest architecture, aspects related to
cognition, and the extent to which both males and females
contribute to the asymmetry. A second avenue examines the
ecology of nest site selection in relation to climate and explores
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Fig. 2. The Rufous Hornero’s (Furnarius rufus) nest is primarily built with mud, and its entrance can be (A) on the left
or (B) on the right. (C) Hornero’s nest serves as a cavity provider for different species of secondary cavity nesters.
Silhouettes represent different families and within each family the circles represent species. The size of the circles is
proportional to the degree of usage of hornero nests by the species following Delhey (2018).
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the consequences of nest orientation on bird phenology, internal
nest temperature, and birds’ behavior and fitness. The third avenue
focuses on the ecological importance of hornero nests in different
environments and their putative role as ecosystem engineers. The
conspicuousness of the nest and the wide distribution of the
species in both rural and urban areas provide an excellent
opportunity to address the last research question by involving the
public. For example, citizen science initiatives could prompt
people to observe hornero nests during the breeding season,
quantify their longevity over several years, and record whether it
is used by another species.

Breeding biology

Antiparasitic behavior: Brood parasitism reduces reproductive
success of the host and selects for antiparasitic defenses and
results in a coevolutionary arms race (Davies and de L. Brooke
1988, Davies 2011, Soler 2017). The most common antiparasitic
defense is the rejection of parasite eggs, either by ejection or nest
desertion and most hosts use differences in eggshell background

color and spots between their own and parasite eggs to recognize
and reject foreign eggs (Kriiger 2007, Abolins-Abols et al. 2019).

The hornero is a host of the brood-parasitic Shiny Cowbird, but
the frequency of parasitism varies widely within its distribution.
In Argentina, it ranges from 2% of nests in Buenos Aires province
to 59% in Formosa province, with intermediate values in Cérdoba
(13%) and Santa Fe (39%) provinces (De Marsico et al. 2010). In
Uruguay, it is 44% (Tosi-German 2015). Horneros eject cowbird
eggs by grasping them at the widest part (Mason 1986, Tosi-
German et al. 2020). However, because of the darkened interior
of the incubation chamber of its closed nest, cues based on
eggshell color might not be useful for recognizing cowbird eggs
under some climatic conditions. Mason and Rothstein (1986)
proposed that horneros use differences in size to recognize and
eject parasitic eggs.

In a study conducted in Uruguay, where Shiny Cowbirds
frequently parasitize horneros, Mason and Rothstein (1986)
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demonstrated that horneros eject parasite eggs based on their
width and length. They also showed that in Uruguay, Shiny
Cowbird eggs are larger than those in Buenos Aires province,
where horneros are rarely parasitized by Shiny Cowbirds. They
proposed that this increase in egg size is a counteradaptation by
cowbirds to evade the discriminatory cue used by horneros. There
is also evidence of a coevolutionary arms race in Formosa,
Argentina, where Shiny Cowbirds heavily parasitize horneros. In
this region, horneros and Shiny Cowbirds are 25% and 10%
smaller in body mass, respectively, than in Buenos Aires. As
expected by allometry, the hornero eggs in Formosa are smaller
than those in Buenos Aires. However, contrary to expectations,
the eggs of Shiny Cowbirds in Formosa are larger than those in
Buenos Aires. Horneros in Formosa eject Shiny Cowbird eggs
with widths less than about 88% of the widths of their own eggs
(asreported by Mason and Rothstein 1986 in Uruguay). However,
because Shiny Cowbirds lay larger eggs than expected by
allometry, horneros cannot discriminate between their own and
most parasitic eggs, resulting in high levels of parasitism (Di
Giacomo, Massoni, and Reboreda, unpublished data).

A study by Tosi-German et al. (2020) showed that horneros do
not need to compare the parasite egg with their own eggs, which
is consistent with the hypothesis of a template or mental image
of their own eggs. The use of a template-based recognition
mechanism has been reported in hosts that reject parasite eggs
based on differences in background eggshell color or spotting
(Moskatetal. 2010, Ban et al. 2013, Manna et al. 2017). However,
the hornero would be the first host that ejects parasitic eggs using
a template-based recognition mechanism for the size of their eggs.
In this species, both sexes eject cowbird eggs. In hosts where
females incubate alone, they are responsible for egg rejection
(Palomino etal. 1998). Still, if incubation is shared, as in horneros,
males may also eject parasitic eggs (Soler et al. 2002, Lee et al.
2005). The ejection of parasitic eggs by males and the use of a
template or mental image to discriminate between their own and
foreign eggs imply that males should learn the characteristics of
their partners’ eggs. By studying horneros we can gain knowledge
on the cognitive processes underlying the evolution of female and
male antiparasitic defenses, how these defenses may drive the
evolution of parasite counter-defenses, and how selection for
certain life history traits, such as body size, may constrain or
facilitate coevolutionary processes between hosts and parasites.

Aggressive behavior: Elaborate and costly traits, like agonistic
behavior, found in both males and females have been shown to
result from social competition for ecological resources, like
territories (West-Eberhard 1983, Kraaijeveld et al. 2007). In such
cases, individuals should benefit from displaying ornamented and
conspicuous traits outside breeding contexts, and selection
pressures are expected to be balanced between the sexes. At
present, the roles of sexual and nonsexual competition are both
recognized as important selection factors acting on the expression
of costly traits. Yet, the extent to which each of these selection
pressures shapes elaborate traits remains an open question,
partially explained by the geographic bias in ornithological
studies, which are more common where males are typically more
ornamented than females (e.g., Kraaijeveld et al. 2007, Tobias et
al. 2011).
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The hornero may be a key species for addressing evolutionary
questions about presumably costly traits present both in males
and females. As explained above, male and female horneros
defend their territory year-round (Fraga 1980, Diniz et al. 2018),
often for multiple years (Fraga 1980, Amorim et al. 2023a).
Remarkably, in two breeding contexts (mating and provisioning),
the same set of behaviors explained how male and female horneros
defend their territory, with number of flights over the decoy and
duets being the best predictors of territorial defense (Mentesana
et al. 2020). Moreover, aggressive interactions (e.g., fights or
displacements) and duets are also important behaviors performed
by both sexes when defending their territory outside the breeding
season (Diniz et al. 2018, 2020). Although in some populations,
males are more aggressive than females when defending their
territories throughout the year (Diniz et al. 2018, Mentesana et
al. 2020), Diniz et al. (2020) and Amorim et al. (2022, 2023b)
observed that aggression levels are similar in both sexes.
Aggressive behavior in horneros seems to be influenced by social
competition for territories. This is supported by their year-round
territoriality, shared territorial defense behaviors, and in some
populations, equal aggression in both sexes (Diniz et al. 2019).

The field of bird physiology has predominantly focused on males
(as reviewed by Caro 2012, Kimmitt 2020, Smiley et al. 2022),
mirroring the existing trend in behavioral ecology. This bias
persists in current literature, with 82% of studies involving male
birds, 61% involving females, and only 43% considering both sexes
(reviewed by Kimmitt 2020). Consequently, there is a significant
gap in understanding the physiological mechanisms underlying
female behavior. For instance, over the past 30 years, researchers
have developed a conceptual framework elucidating the role of
the steroid hormone testosterone in modulating social behaviors,
such as territory defense, in males (known as the “challenge
hypothesis”; Wingfield et al. 1990). The lack of experimental
support for the “challenge hypothesis™ led to the recent proposal
of a modified version (“challenge hypothesis 2”; Goymann et al.
2019). In contrast to males, our understanding of steroid
hormones in mediating social behaviors in females is in its early
stages. Importantly, the framework used for investigating such
questions is not specifically tailored for females but rather follows
the framework designed for males (discussed by Smiley et al.
2022).

To understand the mechanisms mediating territorial defense in
males and females, Adreani et al. (2018) and Mentesana and
Adreani (2021) experimentally studied if and how steroid
hormones modulate territorial defense in horneros during the
breeding season. In response to a territorial intrusion, neither
males nor females changed their testosterone levels, but only
males increased their progesterone levels. Moreover, Mentesana
and Adreani (2021) studied if both sexes experienced similar
physiological consequences from aggression. Here, aggressive
interactions decreased the concentration of antioxidants
(molecules that protect tissues from oxidative damage) in both
males and females. However, females experienced a more abrupt
decrease compared to males. Interestingly, while in the
experimental group, more aggressive females had lower
antioxidant levels than less aggressive ones (a sign of causation);
this was not the case for males. Altogether, these results suggest
that defending territories in horneros could be modulated
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differently in males and females, despite both sexes performing
the same set of behavioral responses during such interactions.
And that engaging in aggressive interactions might have different
physiological consequences for males and females: females
experience a higher exposure to oxidative stress compared to
males when being aggressive. Whether this difference in
antioxidant levels affects females’ fitness is yet to be determined.
If it does, it could explain why female horneros are often less
aggressive than males.

Hence, horneros can be a valuable species to examine the
contribution of sexual and nonsexual selection pressures to the
evolution of agonistic behavior, as well as the physiological
mechanisms underlying it. Horneros can enhance our
understanding of whether certain hormones function similarly in
both sexes, identify unique mechanistic differences, and shed light
on factors influencing physiological responses in males and
females.

Vocal communication

Mechanisms of vocal production

Songs are important correlates of fitness because they are used
for mate attraction, territorial contests, and other reproductive
behaviors. Given their vocal diversity and the beauty of their
songs, Passeriformes are possibly the most studied group in terms
of vocalizations. Within this order, songbirds (Passeri) are vocal
learners, and the complexity of their songs is due to the richness
of neuromuscular control (Amador et al. 2017). Non-songbirds
(Tyranni) are generally not considered to be vocal learners, and,
for this reason, they are very much understudied compared to
oscines. However, suboscines produce a rich variety of songs with
a great degree of complexity including perceivably intricate duets,
raising the question of which mechanisms allow such flexibility
without learning.

To understand Tyranni vocal complexity, its diversity, and the
evolutionary processes underlying it, the central nervous system,
the peripheral nervous system, and the anatomy of the syrinx
must be studied. Tackling each of these systems involves
numerous challenges, but a solid starting point lies in
understanding the anatomy and its relationship with the sound
produced by the birds. This approach has two advantages: the
measurability of anatomy and the ability to model the dynamics
of sound production. Based on anatomy and thanks to
advancements in linear and non-linear dynamics, we understand
how songs are produced. Birdsong production involves the
emergence of complex and coordinated rhythms that can result
from non-linear physical processes (Mindlin 2017). A
straightforward example is the oscillation of tissues, such as
syringeal membranes or labia (depending on the species), when
airflow passes between them. These oscillations modulate airflow,
resulting in sound production (Mindlin and Laje 2005).
Interestingly, both the oscillations of the syringeal tissue and the
neuronal activity responsible for respiratory rhythms have
nonlinear characteristics. Consequently, in both cases, a diverse
range of non-trivial effects acoustically and rhythmically shape
the song. Mathematical modeling plays a crucial role in this
context, as sophisticated dynamical models enable precise
predictions regarding the potential interactions between the
central nervous and peripheral systems, which contribute to the
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observed songs. Thus, with appropriate dynamic models, it is
possible to reverse-engineer the different mechanisms of vocal
complexity.

Horneros, and other suboscines, are tracheophones: they possess
a syrinx with a pair of membranes (one ventral and one dorsal),
above the point where the bronchi meet and merge into the trachea
(Figs. 3A and B; membrane tracheales [MT]). Initially, because
of anatomical considerations (Riippell 1933), these membranes
were believed to be the primary sound source for these species,
hence the name “tracheophones.” However, Garcia et al. (2017)
showed that vocal production includes three sound sources. In
addition to the MT, a pair of opposing bronchial labia (BL;
resembling the labia in the well-studied oscine syrinx) is located
at each juncture of the bronchi and the trachea (Figs. 3A and B).
In six suboscine species, including horneros, fiberscope
examination showed that the intact syrinx could produce pulse-
like signals (Garcia et al. 2017). When MT were non-functional,
the pulsatile nature of the oscillations ceased, leading to a decrease
in sound amplitude and an increase in oscillation frequency.
Notably, these were not only present in the induced vocalizations
of anesthetized animals but also in the distress calls of several
studied species. Beyond the direct description of experimental
manipulations, all findings were successfully replicated through
a dynamical system model. This model was designed to
characterize oscillations associated with both MT and BL,
assuming synchronization between the two bronchial sound
sources. All experimental outcomes could be reproduced by this
dynamical model, which also created realistic synthetic sounds
(see Garcia et al. 2017 for details). More remains to be
investigated, for example, the study of the biological importance
of these rough sounds or the role of the three vocal sources in
natural songs and duets.

Songs can be produced by one individual as well as jointly by
several individuals in a duet or chorus manner (Farabaugh 1982,
Langmore 2002, Hall 2004). Horneros produce highly structured
duets with sex-specific contributions (Laje and Mindlin 2003,
Amador et al. 2005, Roper 2005). During a duet, males generally
initiate their vocalizations with a note production rate of
approximately 6 Hz and gradually increase their note rate by
roughly 200%. The temporal evolution of female note production
rate is more variable, yet the timing remains structured. To
quantify this synchronization pattern, and to generate predictions
about the underlying mechanisms of duet synchronization, Laje
and Mindlin (2003) modeled the duets as a system of externally
forced oscillators. Linear oscillators tend to synchronize with the
forcing signal, whereas nonlinear oscillators can have a range of
locking regimes. Hornero duets have an intricate rhythmic
behavior that is effectively represented by the stair-like pattern, a
well-known phenomenon in the literature referred to as the
“devil’s staircase” (Figs. 3C and D). It commonly occurs when
periodically forcing either a nonlinear oscillator or an excitable
system (Bak 1982).

The presence of this specific signature of nonlinear behavior was
interpreted as the result of male notes acting as a driving force
on the female motor system through the auditory pathway. This
hypothesis was tested in a dynamic system model that reproduced
the observed behavior (Figs. 3C and D; Laje and Mindlin 2003)
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Fig. 3. Rufous Hornero (Furnarius rufus) vocal organ and duet
dynamics. (A) A drawing of a ventral view of the hornero
syrinx, where the syringeal muscles are colored in pink. (B)
Schematic of a lateral view of the tracheobronchial junction. F,
fiber optic cable; T, trachea; A, air sac; MT, membrana
trachealis; BS, bronchial septum; BL, bronchial labia; B,
bronchus. (C) Left panel: spectrogram of a hornero’s duet. The
locking sequence between male and female vocalizations in this
duet is shown above the spectrogram (rotation numbers). Right
panel: approximation of the rotation number as a function of
the normalized average time interval between male notes (N =
11 hornero duets). (D) Left panel: spectrogram of a synthetic
duet. Right panel: rotation number as a function of forcing
period, for a nonlinear oscillator subjected to periodic forcing.
This steplike organization is known as the devil’s staircase. The
bottom axis is normalized to the natural period of the driven
oscillator.
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and generated testable predictions for the female respiratory
activity during the duet (Amador et al. 2005). However, despite
some isolated efforts (Liu et al. 2013), the suboscine neural
structures remain largely unexplored, presenting a fascinating
animal model that exhibits highly complex and rich behavior.
Finding the neural substrate responsible for this complex
rhythmicity would be a starting point for unveiling the
sensorimotor integration in birds that presumably lack vocal
learning capacities.

The function of duets

Duets occur in approximately 16% of bird species, are
taxonomically widespread, and have evolved multiple times
(Tobiasetal. 2016). They seem to have several functions, including
jointterritory defense and mate guarding (Hall 2004, 2009, Dahlin
and Benedict 2014, Tobias et al. 2016). Understanding duetting
is key to gaining knowledge on the evolution of female songs,
communal vocalizations, and cooperation in social species. Yet,
compared to solo songs, duets are least understood, which might
be partially explained by duetting species occurring mostly in
tropical and subtropical habitats (Tobias et al. 2016).
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In the hornero, partners overlap 60% of their sex-specific songs
in a loud ~8-second duet (Diniz et al. 2018) and their duets
possibly propagate over long distances (Amorim, Guaraldo, and
Diniz, unpublished manuscript). Although both sexes produce solo
songs, males predominantly lead the duets and are more
responsive to partner-initiated songs (Roper 2005, Diniz et al.
2018). Songanswering and duet production responds to territorial
intrusions year-round and peaks during pre-breeding and juvenile
dispersal stages, respectively (Diniz et al. 2018, 2020, Mentesana
et al. 2020). Female song signals territory quality and duet
duration is positively related to fledgling success (Diniz et al.
2019). These studies indicate that duets signal year-round
territorial defense and may also act as mutual mate guarding and
acoustic paternity guarding by males during the female fertile
period (Hall 2004, Dowling and Webster 2018).

Playback studies confirm the duet functions in horneros. Partners
coordinate responses similarly to both paired and solo intruders,
with an 80% song overlap and correlated physical and vocal
responses (song rate and duration) between partners (Diniz et al.
2020, Mentesana et al. 2020). Females respond more to female
intruders, suggesting that mate guarding drives female song and
territoriality, with males cooperating in deterring female intruders
(Diniz et al. 2020). Additionally, these birds show caution when
responding to duets with a higher degree of song overlapping and
tend to respond with more overlapping songs to playbacks of
duets that are rhythmically coordinated (Diniz et al. 2021). This
suggests that duet coordination encodes information about
coalition quality of partners in territory defense (Hall and
Magrath 2007). A recent study by Amorim et al. (2022) suggests
that both sexes can also differentiate between neighbors and
strangers through their duets. However, it is unclear if this ability
is selected in both sexes and if there is cooperation with the sex
that distinguishes the duet (Amorim et al. 2022).

In summary, horneros may duet to cooperatively defend their
territories, guard mates, and signal coalition quality (Diniz et al.
2018, 2020, 2021, Mentesana et al. 2020). Future research could
explore additional roles of duetting in this species, like promoting
behavioral coordination and spatial cohesiveness between
partners (Logue 2007), confirming partner identity (Kunkel 1974,
Hall 2004, 2009), or encoding qualities related to fighting
outcomes (Smith 1994, Hall 2004, 2009). Investigating male
duetting in preventing extra-pair paternity through male removal
experimentsis also important (Dowling and Webster 2018). These
findings highlight the complexity of acoustic signals in
tracheophone suboscines and their role in duet evolution among
birds.

Box 1. Hornero’s cultural importance and its potential as a
charismatic species.

In every country where they occur, Argentina, Bolivia, Brazil,
Paraguay, and Uruguay, horneros are emblematic species. In
general, because of their conspicuous nests and nest-building
activities, horneros symbolize hard work, intelligence, joy
(because of their duet singing), and fidelity (because of their
monogamous system). Moreover, this bird is deeply rooted in the
culture of every country where it occurs, and multiple legends
exist about it. In Argentina, the hornero is the national bird,
chosen by primary school students in 1928 (Villafuerte 1962).
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Also in Argentina, closed hornero nests have been associated with
the burial of the deceased partner or the entombment of nest
usurpers such as house sparrows (Carman 1973, unpublished
manuscript). In Bolivia, there are even records of hornero nests
being used for medicinal purposes (Paca Condori, personal
communication). In this case, the mud extracted from a nest built
on a Peruvian pepper tree (Schinus molle) is applied to the face to
treat facial paralysis, and tobacco smoke blown into the hornero
nest is used to cure people with ear pain (Paca Condori, personal
communication). Narosky and Carman (2008) also mention
similar applications in the northwest part of Argentina. In Brazil,
legend has it that if one member of a hornero pair cheats, the
other will close the nest using mud with the partner inside (de
Almeida 2003). Although these stories are highly implausible,
such closed nests do exist (Delhey, personal communication), but
as far as we know have not been examined. In Brasilia, the capital
of Brazil, the satellite city of Sobradinho (“house with two
floors”) getsits name from hornero nests with a distinctive feature:
the overlapping of nests in a single location, situated at the
entrance of the city (Neto 1998). In Paraguay, the Guarani legend
suggests that a couple of potters who did not have their blessings
to get married were killed after insisting on it and then
transformed into horneros (Yampey 2003). Not all cultures
consider horneros favorably. Florian Paucke, a Jesuit monk,
recorded that the Mocovi in the Chaco region would throw rocks
at horneros and destroy their nests because the bird was suspected
of disclosing private conversations to others (Carman 1977). The
popular allure of the hornero is also reflected by the fact that
horneros often feature in poetry and music (Villafuerte 1962;
Narosky and Carman 2008). For example, the horneros have been
a topic in the songs of influential songwriters like Atahualpa
Yupanqui, Alfredo Zitarrosa, Maria Elena Walsh, and Maria
Gadu.

All these examples of the hornero’s cultural relevance
demonstrate that in general humans have a lot of empathy toward
the species, almost everyone can identify the bird and, even more
easily, their nest. This presents great potential for the use of this
species, not only for the development of citizen-science projects
involving the species (e.g., Adreani et al. 2022), but also as a
“flagship” species in outreach and science communication.

DISCUSSION

‘We have reviewed several ongoing and foundational research lines
concerning the hornero. A key question arises: Is the hornero a
good model species? Model organisms can be defined in two ways:
as a “multi-purpose” species, thoroughly researched to
understand various biological phenomena, or as a “topic-
specific” species, optimal for studying a particular process or
system (Leonelli and Ankeny 2013). We believe the hornero has
potential as both a multi-purpose and a topic-specific model
species.

To qualify as a multi-purpose model, a species should (i) be
accessible, easily observable, and individually identifiable; (ii)
possess traits of interest across different research fields; (iii)
tolerate experimental manipulations; and (iv) allow extrapolation
to other animal systems. Regarding (i), horneros are widespread,
with conspicuous and accessible nests that resemble natural nest
boxes. They can be easily captured and individually marked with
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color rings. For (ii), the accessibility of nests allows for the study
of fitness traits like clutch size and fledging success. Additionally,
horneros are territorial, long-lived, and have adapted to urban
environments, facilitating diverse research questions such as:
ecological drivers of territoriality and its link to urbanization, the
relationship between longevity, territory quality, and reproductive
success, behavioral mechanisms and ecological drivers of
cooperation in parental care or nest building, and their role as
cavity providers for the avian community, among others. Their
long lifespan and year-round territoriality also support long-term
population monitoring and investigations at individual and
population levels. For (iii), horneros offer ample opportunities for
experimental manipulation, such as altering clutch size, thermal
properties of the nest, social composition, or population density.
Finally, for (iv), many aspects of hornero biology are relevant to
other bird species and taxa. For example, findings on cavity-
nesting behavior and territoriality can be applied to other species,
including woodpeckers and urban-adapted birds.

To be a topic-specific model, a species must have unique features
that make it ideal for studying a specific topic. For horneros, their
distinctive nest-building behavior stands out. Although nest
building is common in birds, its complexity and quantification
remain challenging. Horneros build unique, conspicuous nests,
and their nest-building behavior can be precisely studied in the
wild. Thus, horneros could serve as a model for understanding
nest-building behavior and animal architecture. Questions such
as how pairs coordinate nest building, the representation of nests
in the birds’ brains, the repeatability of nest-building behavior,
and the behavioral mechanisms behind nest architecture are
particularly relevant. Horneros could provide unique insights into
these aspects of nest-building behavior.

CONCLUSION

It is now generally accepted that our global understanding of
nature is hindered by a deep geographical bias toward Northern
Hemisphere species. One way to overcome this is to establish long-
term research lines in underrepresented species and position them
as comparable models to those already established. By doing so,
we will be able to disentangle patterns that are common to birds
in general from taxon-specific ones driven by the specific
evolutionary history of certain species.

This review highlights foundational research lines, and three
promising areas focused on mechanistic, ecological, and
evolutionary questions related to nest traits, breeding, and singing
behavior. Additionally, given the species’ relevance in its native
countries, horneros are valuable for research using citizen science
and for strengthening the relationship between science and
society. Establishing horneros as a model species will depend on
the consistency and continuity of current research lines as well as
the development of new ones.

As a starting point, we have established the Furnarius Research
Network (FuRNet). FuR Net is a collaborative and open network
of scientists based in Argentina, Uruguay, Brazil, and abroad who
have worked and are currently working with the hornero. We
present different research lines and interests, as well as remaining
open to questions and future directions. We hope that this review
serves as motivation not only for South American ornithologists
and students to become interested in investigating this species,
but also for ornithologists in general to consider the possibility
of addressing research questions on these amazing birds.
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