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Abstract—Separating the individual elements in a music mixture is an
important tool in computational musicology, allowing for an improved
analysis of music repertoires. In the context of Carnatic music, this task
remains a challenge given the suboptimal generalization of existing music
source separation systems to this style. Although multi-stem Carnatic
recordings exist, these are mostly collected from the mixing console in
live performances. Therefore, there is an unintended presence of other
sources in the background of the audio signal of an individual instrument.
Another challenge for Carnatic music is the strong melodic correlation
between the singing voice and the violin, two sources widely found
in live performances of this repertoire. Existing strategies to address
such problems struggle with source quality and only consider vocals.
In this work, we propose to incorporate two components in the regular
training scheme of a source separation network, namely a learned loss
and a mixer model, to account for the source bleeding. We achieve
improved separation while extending the separation targets to the violin,
an important source in the repertoire, and therefore cover the separation
of the most common melodic components in Carnatic Music. Code and
models are available in compiam.

Index Terms—Music Source Separation, Carnatic music, Source Bleed-
ing, Violin Separation.

I. INTRODUCTION

Music source separation (MSS) is concerned with automatically
extracting individual elements in a musical mixture [1]. In a computa-
tional musicology context, MSS is an important tool to isolate certain
sources in music signals for a more reliable analysis [2]. The state-of-
the-art in source separation is currently led by neural networks that
are trained with clean and aligned multi-stem datasets [3], which tend
to include a very restricted music style distribution. Consequently,
the publicly released models may not generalize to out-of-domain
signals [4]. Moreover, these are typically restricted to a {vocals, bass,
drum, other} music instrument arrangement.

In this work, we address the MSS problem for Carnatic music, an
important music style originated in South India. Conveniently, a large
corpus of music, metadata, and time-aligned annotations is available
for Carnatic music [5]. Moreover, for a portion of this collection,
multi-stem recordings are available for research purposes under the
name of Saraga Carnatic dataset [6]. However, since Carnatic music
is mostly enjoyed live, these tracks are directly recorded through the
mixing console in live performances, which leads to source bleeding
in the individual stems. We define source bleeding as the unintended
presence of other sources in the background of the audio signal
of an individual instrument. This kind of artifact hinders proper
optimization of MSS networks [3].

Carnatic-tailored separation efforts have been done [4], aiming at
outperforming the open systems in the literature that are generally
used in the context of the computational analysis of Carnatic and
Hindustani music [7], [8]. Several studies have pointed out the
suboptimal generalization of openly available pre-trained models for
Carnatic music examples [2], [4], [9], [10]. Works such as [4] propose
different bleeding-aware techniques to improve over existing pre-
trained models for singing voice separation (SVS). However, these

still face two main challenges: (1) the separation quality is not
leveling the latest in the literature, and (2) singing voice is the only
source being currently separated. In certain music repertoires such
as Carnatic music, instruments like the violin or mridangam (the
main percussion instrument in the style) are crucial but have not
been included in any separation attempt yet.

This work is a research effort toward bleeding-aware MSS focusing
on two objectives: (1) improve the separation quality for the singing
voice, and (2) extend the separation targets to violin, the most com-
mon melodic accompaniment instrument in Carnatic music, which
normally has a prominent overlap with the singing voice, adding
an extra layer of complexity to its analysis [11]. We first pre-train
a separator network using the multi-stem data containing bleeding,
leveraging the inherent knowledge of the Carnatic domain. The pre-
trained separator is subsequently fine-tuned using an auxiliary loss
based on the bleeding level in the pre-separated sources. The bleeding
level is predicted using a bleeding estimator network which we pre-
train using a small set of bleeding-free multi-stem data. However,
this approach relies on the pre-trained separator to perform – even
if constrained by the inherent limitations imposed by the source
bleeding in the individual stems – an initial separation of the source.

While the approach based on the bleeding estimator loss shows
positive impact for singing voice separation, preliminary experiments
show that it is sufficiently effective for the violin source. The loudness
differences between the vocal and violin stems may be a potential
cause. In Carnatic music, the lead performer is typically the vocalist,
and it tends to be accompanied by a violinist who closely follows
its melody with slight variations, subtle delay, and lower loudness
for aesthetic effect. This intricate interplay intertwines the vocal and
violin, creating a complex challenge for analyzing this instrument.

Aiming at addressing the limitation of the bleeding estimator loss
for the violin, we propose to use an alternative system composed
of (1) two separator networks for the vocal and the violin stem
respectively, and (2) a mixer network [12], which is aimed at
exploiting the knowledge between tracks to reduce the bleeding in the
outputs of the separators. The system is trained using only the multi-
stem signals with bleeding, therefore no clean multi-stem recordings
are needed. Moreover, no pre-training is required. Our evaluation
experiments indicate that the learned loss approach outperforms
existing baselines for vocal separation, while the mixer model allows
satisfactory separation of the violin stem. The code and pre-trained
models are made available for reproducibility. Additionally, we make
an out-of-the-box implementation available through the compIAM
Python library.

II. METHOD

A. Baselines

Training an MSS model using multi-stem data with bleeding has
a limited achievable performance imposed by the intrinsic bleeding
in the data. Fine-tuning pre-trained separation models using these



Fig. 1. Training process of the bleeding estimator. First, we process and
combine the non-vocal stems. We sample a bleeding level s, and create the
artificial sample of vocals with bleeding. Having ground-truth s at hand, we
optimize the MelGAN Discriminator to estimate the bleeding level.

datasets has also been explored [13], however, in this case, the
bleeding in the ground truth still poses a challenge and the separated
sources lack quality and cleanliness from interferences. These exper-
iments suggest that, in order to take complete advantage of the multi-
stem data with bleeding, we need strategies to identify the presence
of bleeding and suppress it.

Existing works have attempted to use the Saraga dataset, aiming
at capturing the instrument timbres and practices of Carnatic Mu-
sic from the audio signals, while exploring methods to overcome
the bleeding problem. [4] proposes a training strategy inspired by
generative cold diffusion to train a separator network using Saraga
Carnatic, while detecting the spectrogram bins corresponding to the
bleeding. Although improving on interference removal, said strategy
has a negative impact on the quality of the separated vocals, especially
on the high-frequency end and for effects such as reverberation.

To explore the actual effect of training a network to perform
MSS using data with bleeding and establish a baseline for the
proposed bleeding-aware techniques, we rely on a base separator
network, denoted S, which in this work is a TFC-TDF-Net [12]. This
convolutional U-Net downsamples the two-dimensional spectrogram
of the mixture audio with 5 blocks of 2D convolutions, batch normal-
ization and a ReLU activation functions. After each downsampling
unit, a TFC-TDF block is applied. These combine Time-Frequency
Convolutions (TFC) with Time-Domain Filters (TDF) to effectively
capture both spectral and temporal features. This architecture is
selected due to its demonstrated stability, rapid convergence, and
outstanding vocal separation quality.

B. A fine-tuning loss based on the bleeding level

Aiming at leveraging the inherent knowledge in the multi-stem
data with bleeding, we first pre-train a separator model S using
solely these recordings, followed by a fine-tuning stage using an
auxiliary loss that penalizes the presence of bleeding. This loss term
is computed by a side network, denoted bleeding estimator, which
we separately train to estimate the level of bleeding in an audio
signal. Preliminary experiments show that pre-training a separator
model S using data with bleeding may be able to preserve the target
source while partially removing the rest [4], letting us assume that

Fig. 2. Training process of the mixer model. The mixture xmix is the input of
the separators Svocal and Sviolin, and also of the mixer M , which refines the
pre-separated outputs of both S models, reducing the induced source bleeding.

the distinction between the sources has been learned to an extent that
may be advantageous.

In speech denoising and enhancement, learned loss functions [14]
modeling speech quality metrics, e.g. PESQ or STOI, have helped
improve separation performance [15]. In [16], the quality metrics
are directly predicted from a corrupted audio file without the need
for a clean reference track. During training, different kinds of noise
are added to the clean speech signal, and PESQ and STOI metrics
are calculated for the clean voice. A dense convolutional network is
trained to predict these metrics only from the noisy audio signal.

To address the problem of learning the source bleeding, we propose
a training process that reformulates the source separation training
objective. First, the model minimizes the L1 distance to the reference
tracks affected by bleeding until the loss stabilizes. Then, we use a
pre-trained bleeding estimator model as a learned loss function for
fine-tuning. This bleeding estimator predicts the amount of bleeding
as a scalar between 0 (no bleeding) and 1 (only bleeding) directly
from audio and can, therefore, be used as a loss function that does
not depend on clean reference tracks [16].

Following this approach, we train a bleeding estimator on artifi-
cially simulated bleeding derived from a second, smaller, clean multi-
stem dataset. In Fig. 1 this process is depicted for the vocal source.
During training, a bleeding level s ∈ [0, 1] is sampled for every
training step. We sample the instrumentation stems of a clean multi-
stem recording and process these using random gain and band-pass
filtering, following the SDX bleeding challenge data generation [3].
We denote the resulting signal xbleeding . We normalize in loudness
the vocal signal, denoted xvocal, and also the xbleeding , and mix
them together regarding the bleeding level s:

xb
vocal = (1− s)× norm(xvocal) + s× norm(xbleeding) (1)

where xvocal is the vocal signal, xbleeding is the bleeding instrumen-
tal mix, and s is the bleeding factor (see Fig. 1). To estimate the
bleeding factor s, we employ the multi-level waveform discriminator
architecture from MelGAN [17]. This process may be applied to other
sources by permuting the signals that are mixed to compute xbleeding .

C. Multi-source mixer model

In the context of SVS for Carnatic music, one of the major chal-
lenges is the presence of violin accompaniment. The violin closely
follows the vocalist throughout the performance, often mirroring the
same fundamental frequency This constant overlap in pitch creates
significant difficulties in isolating the vocal signal from the violin
accompaniment. To address this challenge, we aim at isolating both



TABLE I
PERFORMANCE METRICS FOR VARIOUS SEPARATION MODELS ON VOCAL AND VIOLIN AUDIO STEMS.

Vocals Violin

Model SI-SDR SIR SAR SI-SDR SIR SAR

ColdDiffSep [4] 4.03 -2.31 1.20 ✗ ✗ ✗
TFC-TDF Net 6.45 15.40 5.60 -0.43 -7.97 -3.91

TFC-TDF Net with Learned Loss, CMC 7.92 4.15 0.00 ✗ ✗ ✗

the vocal and violin stems together. This approach not only aims
to improve SVS but also facilitates a more in-depth analysis of the
violin, recognizing its vital role as a melodic accompaniment in
Carnatic music.

We first propose reproducing the training pipeline in Sec. II-B for
the violin stem. However, as seen in Tab. I, the baseline for Carnatic
violin separation is not capable of learning the task as successfully.
This may be due to the loudness difference. For instance, the average
signal power of the vocal stem within all songs containing violin in
the CMC dataset (see Sec. III-A2) is ≈ 2.8 times higher than the
power of the violin stem. The bleeding estimator is effective when
the pre-trained model achieves partial separation of the violin with
some bleeding. However, when the model fails to perform meaningful
separation, the bleeding estimator becomes ineffective.

To overcome this limitation, we hypothesize that sharing infor-
mation between sources, and especially singing voice and violin,
may disentangle these intertwining sources and potentially reduce
the bleeding in the separated signals. We explore the potential of
the so-called mixer network proposed in [12] as a disentangler and
bleeding suppressor.

We define multiple separators Ssrc as defined in Sec. II-A, with
one dedicated to each melodic source we target, namely vocals,
denoted Svocal, and violin, denoted Sviolin. Each separator receives
a musical mixture xmix as input and outputs the corresponding
separated source. However, in this case, a single separator S does
not have information about the other sources, as it solely targets a
single source from the mixture individually. Let M be the mixer
model, which consists of a single and trainable linear layer. Then,
the entire system operates as follows:

x̂vocal, x̂violin = M(xmix, Svocal(xmix), Sviolin(xmix)) (2)

Therefore, the mixer M has 2 extra input channels when operating
on stereo, and 1 extra input channel when the data is monophonic.
In other words, M takes, as input, the pre-separated sources x̂vocal

and x̂violin, and the corresponding mixture xmix, and refines the
separations by relying on the shared information between sources.
We use only multi-stem data with bleeding for this training process.
Note again that theoretically, the glass ceiling of both S models is
the corresponding source with the bleeding as noticeable as in the
ground-truth data.

III. EXPERIMENTS

A. Datasets

1) Saraga Carnatic: To our best knowledge, Saraga Carnatic [6],
and its audiovisual counterpart [13] are the largest openly available
research collections for Carnatic Music, containing ≈ 60 h of multi-
stem data, including vocals, violin, mridangam, and occasionally
ghatam. These data have been collected in live performances hence
the individual tracks are not completely clean, but there is source
leakage or bleeding in the background, which makes these recordings

not ideal for training MSS models. For this work, we rely on Saraga
Carnatic [6] only, pursuing consistency with the training data of
the compared models. However, we hypothesize that including the
Audiovisual counterpart would contribute to a better performance. We
use the 168 multi-stem recordings in Saraga Carnatic, which totals
≈21 hours of music.

2) Carnatic Multi-stem Clean (CMC): This private collection of
58 tracks amounts to ≈5 h of multi-stem Carnatic music recordings,
including lead vocals, violin, mridangam, tanpura, and any addi-
tional instruments that may be featured. Notably, each instrument
is recorded separately, ensuring that no bleed occurs between tracks.

3) Sanidha: This is an open dataset of ≈ 8 h of clean multi-stem
Carnatic recordings including 5 concerts [18]. It also provides video
recordings for each performer. Similarly to CMC, given the limited
amount of recording time, and diversity of artists and recording
setups, we hypothesize that these data may not be sufficient for
a supervised training of a MSS model. However, it is a valuable
resource for evaluating the separation systems, therefore we rely on
Sanidha as an additional testing set.

B. Experimental setup

1) Bleeding Estimator Fine-tuning: We train a TFC-TDF U-Net
with pairs of mixture audio signals and the corresponding target
source, namely the vocal or the violin stem with bleeding. The model
has 10.2M trainable parameters. We compute L1 loss between the
separations and the target signals that include bleeding. We train
the model using a learning rate of 0.0004 and RMSprop optimizer
until the training process converges after 300k iterations. The loss
estimator is trained on source stems containing artificially added
bleeding labeled with the bleeding level, as described in Sec II-B.

The model comprises three identical convolutional neural networks
that operate on the input signal at the original sampling rate of
24kHz, as well as downsampled versions at 12kHz and 6kHz.
Each CNN contains 6 layers of 1D-convolutions with kernel sizes:
(41, 41, 41, 41, 5, 3), channels: (16, 64, 256, 1024, 1024, 1024) and
strides: (4, 4, 4, 4, 2, 2). The convolutional layers are followed by
an average pooling operation with strides of 2. Additionally, a
LeakyRELU activation function follows the first 4 convolution layers.
A final average-pooling operation combines the predictions of the 3
models. To constrain the output within the range [0,1] we apply a
sigmoid activation function. The model has 16.9M parameters. We
compute L2 loss between predictions and ground truths and train
until convergence for 20k steps using Adam optimizer and a learning
rate of 0.0001. We fine-tune the preceding experiment using our loss
estimator trained on 58 tracks of the CMC dataset. We use RMSprop
optimizer with a learning rate of 0.000001 and fine-tune for 1k
iterations. Finally, we also explore low-data resource scenarios by
training the bleeding estimator with just 15 and 5 tracks and fine-
tuning the proceeding experiment using these bleeding estimators.



TABLE II
COMPARISON, ON TWO DIFFERENT TEST SETS, OF THE PRE-TRAINED TFC-TDF NET USING SARAGA OPTIONALLY FINE-TUNED USING THE BLEEDING

ESTIMATOR LEARNED LOSS, WHICH IS TRAINED USING DIFFERENT SIZES OF CLEAN DATASETS (5, 15, AND 58).

Sanidha CMC

Learned Loss No. of Tracks SI-SDR SIR SAR SI-SDR SIR SAR

✗ ✗ 5.37 7.81 -0.24 6.45 15.40 5.60

✓ 58 6.70 14.75 -0.25 7.92 4.15 0.00
✓ 15 6.40 9.37 -0.84 6.81 8.65 0.00
✓ 5 6.19 15.74 -0.15 7.08 4.68 -0.01

TABLE III
PERFORMANCE COMPARISON OF DIFFERENT MODELS FOR VIOLIN

SEPARATION.

Violin

Model SI-SDR SIR SAR

TFC-TDF Net -0.43 -7.97 -3.91

TFC-TDF Net with Mixer 3.05 12.33 3.09

2) Mixer model: We train the multi-source mixer model on the
Saraga dataset [6] for 750k iterations. In each training step, we sum
the instrumental stems in a Saraga recording and mix them to the
vocal stem with a decibel ratio, randomly sampled between -5 and 5.
We normalize the input mixture and scale the loudness of the violin
and vocal stems, which are used as targets accordingly. We compute
L1 loss on the separated vocal and violin against the corresponding
targets. This loss is optimized using RMSprop and a learning rate of
0.0002, as suggested in [12]. The model has 20.4M parameters.

IV. RESULTS

See Tab. I for a report of the experiments on the bleeding estimator
learned loss. The system in [4] serves as a baseline model for SVS in
this evaluation, trained solely on vocal data from the Saraga dataset.
As a result, it achieves an SI-SDR of 4.03 dB for vocals, while
the SIR and SAR scores are −2.31 dB and 1.20 dB respectively.
To the best of our knowledge, there is currently no dedicated violin
separation model in the literature that could serve as a baseline for
comparison. The baseline TFC-TDF Net model shows a moderate
improvement to separate the vocals, achieving an SI-SDR of 6.45
dB, an SIR of 15.40 dB, and an SAR of 5.60 dB. Fine-tuning the
pre-trained separation with the learned loss trained on the complete
CMC dataset boosts the SI-SDR to 7.92 dB for the vocal stem.

In Tab. II we report an ablation study on the bleeding estimator
loss. We report low-resource experiments testing the dependence of
the system on clean multi-stem data. Moreover, we compute the
metrics on the Sanidha dataset, in order to neglect the bias that may
arise from evaluating the system on the same data that is used to
train the bleeding estimator. The difference in SI-SDR performance
between the 5 and the 58-track bleeding estimator is of ≈ 0.5 dB
for the Sanidha dataset, and ≈ 0.8 dB for CMC, which suggests
that the proposed approach provides a notable improvement under
limited data conditions. This is a convenient property in the context
of MSS, given the notable complexity of compiling clean multi-stem
dataset, especially for repertoires that are generally enjoyed live. The
dataset shift does not imply an important performance loss, in fact,
we observe an improvement on interference removal.

The baseline TFC-TDF Net performance on the violin stem is
notably poor, with a negative SI-SDR (−0.43 dB) and SIR (−7.97
dB). These results indicate high interference and distortion in the
separated violin track. Therefore, we conclude that the trained
TFC-TDF Net struggles to discriminate between vocals and violin,
particularly in isolating the violin stem. In this scenario where
the pre-trained separator network is not capable of performing a
satisfactory preliminary separation, fine-tuning with the bleeding
estimator becomes ineffective.

The trained mixer model allows the separation of the violin,
achieving an SI-SDR of 3.05 dB, as seen in Tab. III. These results
suggest that the mixer M may rely on the shared information between
individual sources to reduce the bleeding and improve the source
quality for the violin, substantially improving the baseline. Finally,
as suggested by the SIR results, the separations of the violin are
considerably clean from interferences. See our online demo page for
separation examples and relevant links.1

V. CONCLUSION

This work explores bleeding-aware techniques for music source
separation in Carnatic music, specifically designed to address the
challenges posed by overlapping melodic sources in multi-stem live
recordings. By enabling the separation of both vocals and violin—two
fundamental and often intertwining melodic components in Carnatic
repertoire—this research extends the limitations of existing separation
frameworks, which have traditionally focused only on vocal source
separation. We propose a bleeding estimator loss for fine-tuning
a pre-trained separator. Our findings demonstrate that the bleeding
estimator, when fine-tuned with a limited number of training tracks,
significantly enhances vocal separation, providing a marked improve-
ment over baseline models. However, while the bleeding estimator
effectively addresses vocal separation, the challenge of isolating the
violin stem remains. In this regard, we explore the potential of using
a Mixer model for separation. By leveraging shared information
between the vocal and violin sources, the mixer model enables better
separation of both stems, particularly the violin, which is otherwise
difficult to disentangle from the vocals due to their overlapping
melodic content. This model provides a substantial improvement in
the separation of the violin. By informally listening to separation
examples we confirm the obtained metrics, especially the capability
of the model to remove interferences from other sources. To further
investigate these perceptual improvements, we plan to conduct more
rigorous listening tests, which will provide a deeper understanding
of the separation quality, especially for the violin stem.

1https://mtg.github.io/violin-vocal-sep/
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