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Abstract—Maultivariate time-series (MTS) play a crucial role
in network monitoring and analysis problems. We explore the
usage of generative Al for MTS data modeling, in particular
for the sake of knowledge replay. Knowledge replay mechanisms
help in leveraging past experiences to enhance learning, mitigate
forgetting, promote generalization, and enable the transfer of
knowledge across different tasks or domains. Using a VAE-
based deep architecture for data modeling, we incorporate a
Deep Generative Replay (DGR) approach to transfer previ-
ously learned latent representations into future learning tasks,
enabling continual learning in MTS problems. We study the
generative characteristics of VAE-based models on top of a
multi-dimensional network monitoring dataset collected from an
operational mobile Internet Service Provider (ISP), portraying
its usage in the context of DGR learning tasks.

Index Terms—Anomaly Detection, Generative AI, VAE, Mul-
tivariate Time-Series, GenDeX

I. INTRODUCTION

Time-series analysis is an essential approach to network
monitoring, in particular to profile temporal data behaviors
and to detect anomalies in real-time. While time-series based
anomaly detection has a long standing literature associated to
signal processing techniques [1], modern approaches to time-
series anomaly detection based on deep learning technology
have flourished in recent years [2]. We have recently intro-
duced DC-VAE [3], a deep-learning based approach to unsu-
pervised anomaly detection in multivariate time-series (MTS),
based on Variational Auto-Encoders (VAEs) [4]. VAEs are a
generative version of classical auto-encoders; for a given input,
they produce as output prediction not only an expected value,
but also the associated standard deviation, corresponding to the
distribution the model has learnt. This automatically defines
a normality region for each independent time-series, which
can then be easily exploited for detecting deviations beyond
this region. To exploit the temporal dimension of the input
time-series, DC-VAE encoder/decoder architecture is based on
popular CNNs, using Dilated Convolutions (DCs) [5].

A general problem faced by AI/ML-driven approaches for
anomaly detection is their inability to deal with so-called
concept drifts. Concept drifts correspond to events where the
statistical properties of the target variable or the relationships
between the input features and the target variable change
over time. As such, the patterns and rules that an AI/ML
model learned from historical data may no longer hold in
the current data, and the model may need to be updated to
adapt to the changes. Concept drifts are intrinsically related to
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(a) Encoder network. (b) Decoder network.

Fig. 1. DC-VAE encoder/decoder architecture using causal dilated convolu-
tions, implemented through a stack of 1D convolutional layers.

catastrophic forgetting, which occurs when an AI/ML model
trained on a set of tasks or data samples forgets previously
learned information when learning new tasks or samples.
Both problems require methods to adapt to changing data
distributions, by retraining the underlying models.

We resort to a continual learning paradigm [6] to ad-
dress the continual model adaptation and retraining of DC-
VAE. Continual learning enables a model to learn from a
stream of evolving data, without forgetting previously learned
knowledge. We leverage the generative Al properties of the
underlying VAE model to remember past data. By concep-
tion, once the encoder-decoder VAE model has been trained,
the decoding function is capable to synthesize new samples
mimicking the characteristics of the MTS training datasets,
using as input only Gaussian noise.

We combine DC-VAE and its generative decoder into Gen-
DeX, an approach to continual learning for anomaly detection
in MTS network measurements. In a nutshell, when DC-VAE
is confronted with concept drifts, or it is applied to a new MTS
dataset — e.g., measurements collected at a different network —
GenDeX uses the previously trained decoder to synthesize past
MTS measurements, and combines them with the new MTS
data to retrain the underlying VAE model. GenDeX follows
a Deep Generative Replay (DGR) [7] paradigm for continual
learning, where a generative model produces synthetic data
which replays old memories during training, augmenting the
heterogeneity and expressiveness of the retraining.
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(a) Example of real anomalies in TSs.
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(b) Example of real anomalies in TSy4.

Fig. 2. Examples of real anomalies present in the analyzed dataset, and their
identification by DC-VAE.

In this paper, we study the generative capabilities of DC-
VAE, describing the underlying architecture and its adaptation
to make it operate as a synthetic MTS generator. This paper
is a continuation of our initial work on continual learning for
anomaly detection in multivariate time-series data [8].

II. DC-VAE AND GENDEX

MTS data is generally processed through sliding windows,
condensing the information of the most recent 7' measure-
ments. We define « as a matrix in RM™*T where M is the
number of variables in the MTS process. As depicted in Fig.
1, for a given input x, the trained VAE model produces two
different predictions, p, and o, — matrices in RMXT  corre-
sponding to the parameterization of the probability distribution
which better represents the given input. If the VAE model was
trained (mainly) with data describing the normal behavior of
the monitored system, then the output for a non-anomalous
input would not deviate from the mean g, more than a specific
integer o times the standard deviation o ,. On the contrary, if
the input presents an anomaly, the output would not belong to
this normality region.

The main goal of the VAE model is to learn a compressed
representation of x in an unsupervised manner. This com-
pressed representation z is referred to as a latent variable, and
it is learned by training the VAE to generate data that is similar
to the input data. Similar to &, z will also be a sequence of
length T, but with a smaller number of dimensions J < M,
z € R/*T, VAEs learn a probabilistic mapping between the
input data and its latent variable, which allows to generate new
data by sampling from the learned latent variable distribution.

We portray DC-VAE in a proprietary MTS dataset, cor-
responding to real measurements collected at an operation
mobile ISP. The TELCO dataset corresponds to twelve dif-
ferent time-series TSy to TS12, with a temporal granularity of
five minutes per sample, collected and manually labeled for a
period of seven months, between January 1 and July 31, 2021.
Fig. 2 present DC-VAE predictions, using a sliding-window of
length T" = 512 samples, corresponding to roughly two days of
past measurements. For each of the displayed time-series TS;,
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Fig. 3. The GenDeX generative replay approach. At time ¢, a concept drift
significantly modifying the underlying distribution of S; triggers a model
retraining event <.
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Fig. 4. GenDeX latent space representation. Latent space z with J = 4. The
colors correspond to the hours of the day.

its real value z;, along with the outputs of the VAE p,, and
04, are reported. The detection of anomalies with different
nature is also depicted.

We explore an approach to cope with concept drifts, in
particular exploiting the generative nature of the DC-VAE
model for continual learning. In a continual learning frame-
work, we assume a continually evolving stream of data,
represented as a sequence of subsets S;, each characterized
by a specific underlying distribution. We define a sequence
of A\ subsets Si,...,S5y sequentially arriving, and assume
access to only the data in current subset S;, with ¢ < A.
We consider a concept drift occurring at time ¢, and thus,
assume that the underlying distributions of Si,...,5;_1 are
similar among them, but significantly different from S;. An
initial DC-VAE model is trained using S; data, which per-
forms accurately till time ¢. We refer to this model as DC-
VAE, = {qg,pg} = {E9, D)}, where E and D represent the
encoding and decoding functions, respectively.

GenDeX follows the principles behind DGR to adapt DC-
VAE, to the new data S;, without forgetting the parame-
terization learned from S;, valid for Sy,...,S;—;. Fig. 3
explains the GenDeX approach. The decoding function DY
acts as generator, and it is used to synthesize a new dataset
Fy_,(¢—1) out of Gaussian noise, which mimics former training
examples in S; and its underlying distribution. We say Dj
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(a) Synthetic MTS samples generated through GenDeX.
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(b) Histograms of generated samples (pz).

Fig. 5. For each time-series in TELCO, two examples of time-series generated from noise are depicted. The trend is perfectly captured by the synthetically
generated examples. The histograms of samples () generated from noise considers the same number of samples as those in the validation set.

acts as the teacher model. Then, the new student model DC-
VAE; is trained on joint synthetic data F' and new data S;.
This approach is model-agnostic and overcomes catastrophic
forgetting, as the updated model DC-VAE; is now capable to
handle pre- and post-concept drift data distributions.

III. EXPLORING GENDEX GENERATIVE Al

We assess the generative properties of DC-VAE, firstly by
analyzing the latent space generated by the encoding function
Ey4, and then by exploring the generative capabilities of the
generative model as represented by the trained decoding func-
tion Dy. The dimension of the latent space in a VAE model is
one of the hyper-parameters to define during model evaluation.
These dimensions are restricted by the dimensions of the
input samples x space, as for the model to only capture the
relevant information or energy of the samples, there must be a
dimension reduction. By conception and underlying modeling
hypothesis, the distribution of the samples z living in the latent
space must be a normal distribution with zero mean and an
identity covariance matrix. This is enforced during training, by
minimizing the standard ELBO loss function [4], consisting
of a reconstruction loss (auto-encoding), and a regularization
term imposing z ~ N (p,,0,2).

To evaluate the behavior of the encoder E, a representation
of the latent space is shown for a trained DC-VAE model, using
TELCO data. Fig. 4 depicts the resulting latent representation,
projecting on each bi-dimensional combination of dimensions
z[i], and taking take J = 4 in this case. Each point corresponds
to the projection of a sample from the validation set. with
different colors representing a different hour of the day. The
distribution of samples in z bi-dimentional projections does

look very close to a zero-one normal distribution. It is certainly
centered at zero, and the highest concentration of samples
is in the range [—3,3]|. If we consider the bi-dimensional
latent space {z[2],z[3]}, we observe how each hour of the
day maps to a different angular area in the data distribution.
Under this setup, it is enough to feed the decoder Dy with
samples drawn from a zero-one normal distribution to generate
synthetic MTS samples out of noise, controlling timing by
sampling clockwise.

Fig. 5(a) shows two examples per selected TELCO time-
series generated out of noise, along with real time-series
included in the original validation set, for two days worth of
MTS data. The trend of the time-series is perfectly captured
by the synthetically generated examples, with the paramount
advantage of these being synthetically generated by Dy. The
MTS process is properly generated, despite having different
types of behavior and variability. To evaluate the generative
power of GenDeX more broadly, we generate the same number
of samples as those in the validation set for each of the selected
time-series, and compare them with the real time-series values
in the validation set. Fig. 5(b) reports the distribution of
the generated and real values, in the form of a histogram.
Each pair of distributions strongly overlap, especially for non-
spiky values. Time-series TS5 shows a more variable behavior,
which cannot be fully reproduced by the generated baseline,
as shown in the corresponding histogram. Recall that we are
using GenDeX to track the form and trend of the time-series,
by generating u,, which cannot capture spiky behaviors.
Indeed, we are interested in continually adapting the baseline
of the MTS process for anomaly detection, to enable a proper
detection of deviations from this baseline.
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